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ABSTRACT

FORTIFYING ROBUSTNESS: UNVEILING THE INTRICACIES OF
TRAINING AND INFERENCE VULNERABILITIES IN

CENTRALIZED AND FEDERATED NEURAL NETWORKS

by
Guanxiong Liu

Neural network (NN) classifiers have gained significant traction in diverse domains

such as natural language processing, computer vision, and cybersecurity, owing to

their remarkable ability to approximate complex latent distributions from data.

Nevertheless, the conventional assumption of an attack-free operating environment

has been challenged by the emergence of adversarial examples. These perturbed

samples, which are typically imperceptible to human observers, can lead to misclas-

sifications by the NN classifiers. Moreover, recent studies have uncovered the ability

of poisoned training data to generate Trojan backdoored classifiers that exhibit

misclassification behavior triggered by predefined patterns.

In recent years, significant research efforts have been dedicated to uncovering

the vulnerabilities of NN classifiers and developing defenses or mitigations against

them. However, the existing approaches still fall short of providing mature solutions

to address this ever-evolving problem. The widely adopted defense mechanisms

against adversarial examples are computationally expensive and impractical for

certain real-world applications. Likewise, the practical black-box defense against

Trojan backdoors has failed to achieve state-of-the-art performance. More concerning

is the limited exploration of these vulnerabilities within the context of cooperative

attack or Federated learning, leaving NN classifiers exposed to unknown risks. This

dissertation aims to address these critical gaps and refine our understanding of these

vulnerabilities. The research conducted within this dissertation encompasses both the

attack and defense perspectives, aiming to shed light on future research directions for

vulnerabilities in NN classifiers.



FORTIFYING ROBUSTNESS: UNVEILING THE INTRICACIES OF
TRAINING AND INFERENCE VULNERABILITIES IN

CENTRALIZED AND FEDERATED NEURAL NETWORKS

by
Guanxiong Liu

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Electrical and Computer Engineering

Helen and John C. Hartmann Department of
Electrical and Computer Engineering

August 2023



Copyright © 2023 by Guanxiong Liu

ALL RIGHTS RESERVED



APPROVAL PAGE

FORTIFYING ROBUSTNESS: UNVEILING THE INTRICACIES OF
TRAINING AND INFERENCE VULNERABILITIES IN

CENTRALIZED AND FEDERATED NEURAL NETWORKS

Guanxiong Liu

Dr. Abdallah Khreishah, Dissertation Co-Advisor Date
Professor of Electrical and Computer Engineering, NJIT

Dr. Issa Khalil, Dissertation Co-Advisor Date
Principal Scientist, Qatar Computing Research Institute

Dr. Ali Akansu, Committee Member Date
Professor of Electrical and Computer Engineering, NJIT

Dr. Reza Curtmola, Committee Member Date
Professor of Computer Science, NJIT

Dr. NhatHai Phan, Committee Member Date
Associate Professor of Computer Science, NJIT

Dr. Bipin Rajendran, Committee Member Date
Reader in Engineering, King’s College London



BIOGRAPHICAL SKETCH

Author: Guanxiong Liu

Degree: Doctor of Philosophy

Date: August 2023

Undergraduate and Graduate Education:

• Doctor of Philosophy in Electrical Engineering,

New Jersey Institute of Technology, Newark, NJ, 2023

• Master of Science in Electrical and Computer Engineering,
Worcester Polytechnic Institute, Worcester, MA, 2015

• Bachelor of Science in Measurement and Control Technology and Instrument,
Southeast University, Nanjing, Jiangsu, China, 2013

Major: Electrical Engineering

Presentations and Publications:

Guanxiong Liu, Abdallah Khreishah, Fatima Sharadgah, Issa Khalil, “An Adaptive
Black-Box Defense against Trojan Attacks (TrojDef),” IEEE Transactions on
Neural Networks and Learning Systems, 2022.

Nicholas Furth, Abdallah Khreishah, Guanxiong Liu, NhatHai Phan, Yasser
Jararweh, “Un-Fair Trojan: Targeted Backdoor Attacks against Model
Fairness,” International Conference on Software Defined Systems (SDS), 2022.

Guanxiong Liu, Hang Shi, Abdallah Khreishah, Nirwan Ansari, Jo Young Lee,
Chengjun Liu, Mustafa Mohammad Yousef, “Smart Traffic Monitoring System
Using Computer Vision and Edge Computing,” IEEE Transactions on
Intelligent Transportation Systems, 2021.

Guanxiong Liu, Issa Khalil, Abdallah Khreishah, NhatHai Phan, “A Synergetic
Attack against Neural Network Classifiers combining Backdoor and
Adversarial Examples,” IEEE International Conference on Big Data (Big
Data), 2021.

iv



Fatima Sharadgah, Abdallah Khreishah, Mahmoud Al-Ayyoub, Yaser Jararweh,
Guanxiong Liu, Issa Khalil, Muhannad Almutiry, Nasir Saeed, “An Adaptive
Black-box Defense against Trojan Attacks on Text Data,” International
Conference on Social Network Analysis, Management and Security (SNAMS),
2021.

Ahmad Sawalmeh, Noor Shamsiah Othman, Guanxiong Liu, Abdallah Khreishah, Ali
Alenezi, Abdulaziz Alanazi, “Power-efficient wireless coverage using minimum
number of UAVs,” Sensors, 2021.

Guanxiong Liu, Issa Khalil, Abdallah Khreishah, “Using Intuition from Empirical
Properties to Simplify Adversarial Training Defense,” International Workshop
on Dependable and Secure Machine Learning, 2019.

Guanxiong Liu, Issa Khalil, Abdallah Khreishah, “ZK-GanDef: A GAN based Zero
Knowledge Adversarial Training Defense for Neural Networks,” International
Conference on Dependable Systems and Networks, 2019.

Guanxiong Liu, Issa Khalil, Abdallah Khreishah, “GanDef: A GAN based Adversarial
Training Defense for Neural Network Classifier,” International Conference on
ICT Systems Security and Privacy Protection, 2019.

Abbas Kiani, Guanxiong Liu, Hang Shi, Abdallah Khreishah, Nirwan Ansari, Jo
Young Lee, Chengjun Liu, “A Two-Tier Edge Computing Based Model for
Advanced Traffic Detection,” International Conference on Internet of Things:
Systems, Management and Security, 2018.

Guanxiong Liu, Hazim Shakhatreh, Abdallah Khreishah, Xiwang Guo, Nirwan
Ansari, “CityLines: Designing Hybrid Hub-and-Spoke Transit System with
Urban Big DataEfficient Deployment of UAVs for MaximumWireless Coverage
Using Genetic Algorithm,” IEEE 39th Sarnoff Symposium, 2018.

Yanhua Li, Guanxiong Liu, Zhi-Li Zhang, Jun Luo, Fan Zhang, “CityLines:
Designing Hybrid Hub-and-Spoke Transit System with Urban Big Data,”
IEEE Transactions on Big Data, 2018.

Guanxiong Liu, Yanhua Li, Zhi-Li Zhang, Jun Luo, Fan Zhang, “Citylines: Hybrid
hub-and-spoke urban transit system,” International Conference on Advances
in Geographic Information Systems, 2017.

Guanxiong Liu, Menghai Pan, Yanhua Li, Zhi-Li Zhang, Jun Luo, “Modeling
urban trip demands in cloud-commuting system: A holistic approach,” IEEE
Conference on Computer Communications Workshops, 2017.

Luyao Niu, Yingyue Fan, Kaveh Pahlavan, Guanxiong Liu, Yishuang Geng, “On the
accuracy of Wi-Fi localization using robot and human collected signatures,”
International Conference on Consumer Electronics, 2016.

v



Guanxiong Liu, “Modeling and Performance Analysis of Hybrid Localization Using
Inertial Sensor, RFID and Wi-Fi Signal,” Master Thesis, 2015.

Dan Liu, Yishuang Geng, Guanxiong Liu, Mingda Zhou, Kaveh Pahlavan, “WBANs-
Spa: An energy efficient relay algorithm for wireless capsule endoscopy,” IEEE
82nd Vehicular Technology Conference, 2015.

Guanxiong Liu, Yishuang Geng and Kaveh Pahlavan, “Direction Estimation Error
Model of Embedded Magnetometer in Indoor Navigation Environment,”
International Conference on Ubiquitous Intelligence and Computing, 2015.

Guanxiong Liu, Yishuang Geng and Kaveh Pahlavan, “Effects of calibration
RFID tags on performance of inertial navigation in indoor environment,”
International Conference on Computing, Networking and Communications,
2015.

vi



In a heartfelt tribute, I dedicate this work to my parents,
Zhigang and Xiaoyan, whose unwavering support and the
gift of life have enabled me to pursue my aspirations.
To my beloved wife, Qinmei, whose presence has been
a guiding light during my moments of uncertainty and
darkness. And to my cherished daughter, Zoey, whose
boundless hope has illuminated the path to my future.

Guanxiong Liu

vii



ACKNOWLEDGMENT

First and foremost, I would like to express my sincere gratitude to my advisors, Dr.

Abdallah Khreishah and Dr. Issa Khalil, for their exceptional mentorship, insightful

feedback, and dedication to my academic and personal growth. Their guidance has

been instrumental in shaping the direction of this research.

I extend my heartfelt thanks to the members of my dissertation committee,

Dr. Ali Akansu, Dr. Reza Curtmola, Dr. NhatHai Phan, and Dr. Bipin Rajendran.

Their constructive critiques and valuable suggestions have greatly enriched the quality

of this work. A special acknowledgment is reserved for Dr. NhatHai Phan, whose

enlightening discussions and meticulous guidance throughout our collaboration on my

recent research endeavors have been exceptionally instrumental.

My appreciation also goes to Dr. Nirwan Ansari, Dr. Chengjun Liu, Dr.

Joyoung Lee, Dr. Hang Shi, Dr. Abbas Kiani, and the US Ignite. The opportunity to

collaborate and learn from each of you through the smart transportation project has

been an invaluable stroke of luck. Additionally, I am deeply grateful for the financial

support graciously provided by US Ignite, which has been instrumental in advancing

my research endeavors.

Last but not least, my profound gratitude goes to my parents, my wife, and

my cherished daughter for their unyielding love, unwavering encouragement, and

profound understanding. Their steadfast faith in me has been the driving force behind

my journey.

To all those who have contributed to my academic and personal growth, your

support has been invaluable, and I am deeply appreciative.

viii



TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Generating Adversarial Examples . . . . . . . . . . . . . . . . . . . . 5

2.2 Adversarial Example Defensive Methods . . . . . . . . . . . . . . . . 8

2.3 Trojan Backdoor Attack . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Defense against Trojan Backdoor Attack . . . . . . . . . . . . . . . . 12

2.5 Federated Learning and Personalization . . . . . . . . . . . . . . . . . 13

2.6 Backdoor Attacks against FL . . . . . . . . . . . . . . . . . . . . . . 16

2.7 Defenses against Backdoor Attacks in FL . . . . . . . . . . . . . . . . 20

3 ZK-GANDEF: GAN BASED ZERO-KNOWLEDGE ADVERSARIAL
TRAINING DEFENSE . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 Zero-knowledge adversarial training . . . . . . . . . . . . . . . 21

3.1.2 Design of ZK-GanDef . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.3 ZK-GanDef training algorithm . . . . . . . . . . . . . . . . . . 26

3.2 Evaluation Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.2 Preprocessing module . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.3 Attack module . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.4 Defense module . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.5 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.1 Test accuracy on different examples . . . . . . . . . . . . . . . 33

ix



TABLE OF CONTENTS
(Continued)

Chapter Page

3.3.2 On original examples . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.3 On single-step adversarial examples . . . . . . . . . . . . . . . 37

3.3.4 On iterative adversarial examples . . . . . . . . . . . . . . . . 39

3.3.5 Generalizability . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.6 Training time . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.7 Convergence issue . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 SEMI-ITERATIVE ADVERSARIAL TRAINING . . . . . . . . . . . . . . 45

4.1 Analysis of Iter-Def Methods . . . . . . . . . . . . . . . . . . . . . . . 45

4.1.1 Limit of small per-step perturbation . . . . . . . . . . . . . . . 46

4.1.2 Training with intermediate examples . . . . . . . . . . . . . . . 48

4.1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Single-Step Epoch-Iterative Method . . . . . . . . . . . . . . . . . . . 49

4.2.1 Motivation and design . . . . . . . . . . . . . . . . . . . . . . . 49

4.2.2 Applying over-perturbation . . . . . . . . . . . . . . . . . . . . 51

4.2.3 Searching space for adversarial examples . . . . . . . . . . . . 54

4.2.4 Analyzing feature space encoding . . . . . . . . . . . . . . . . 55

4.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3.1 Evaluation setting . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3.2 Test accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3.3 Analyzing the behavior of Free-Def . . . . . . . . . . . . . . . . 61

4.3.4 Analyzing the weakness of ATDA method . . . . . . . . . . . . 63

4.3.5 Training time . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3.6 Scalability test . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

x



TABLE OF CONTENTS
(Continued)

Chapter Page

5 TROJDEF: AN ADAPTIVE BLACK-BOX DEFENSE AGAINST
TROJAN ATTACKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.1 TrojDef Description and Analysis . . . . . . . . . . . . . . . . . . . 69

5.1.1 Analysis of predictions . . . . . . . . . . . . . . . . . . . . . . 70

5.1.2 TrojDef description . . . . . . . . . . . . . . . . . . . . . . . 76

5.1.3 TrojDef algorithms . . . . . . . . . . . . . . . . . . . . . . . . 77

5.1.4 TrojDef implementation . . . . . . . . . . . . . . . . . . . . . 78

5.2 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2.1 Datasets and classifiers . . . . . . . . . . . . . . . . . . . . . . 83

5.2.2 Experiments and metrics . . . . . . . . . . . . . . . . . . . . . 83

5.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3.1 Evaluation on STRIP-model . . . . . . . . . . . . . . . . . . . 85

5.3.2 Evaluation on TrojDef -model . . . . . . . . . . . . . . . . . . 88

5.3.3 Evaluation on 3rd-party-model . . . . . . . . . . . . . . . . . . 90

5.3.4 Using different FRR values . . . . . . . . . . . . . . . . . . . . 92

5.3.5 Using Laplacian perturbation . . . . . . . . . . . . . . . . . . . 94

5.3.6 Defending blue channel trigger . . . . . . . . . . . . . . . . . . 95

5.3.7 Compared with white-box defense . . . . . . . . . . . . . . . . 95

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6 ADVTROJAN: A SYNERGETIC ATTACK AGAINST NEURAL
NETWORK CLASSIFIERS COMBINING BACKDOOR AND
ADVERSARIAL EXAMPLES . . . . . . . . . . . . . . . . . . . . . . . 101

6.1 Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.2 AdvTrojan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.3.1 Mathematical analysis of AdvTrojans . . . . . . . . . . . . . . 107

6.3.2 Empirical analysis . . . . . . . . . . . . . . . . . . . . . . . . . 110

xi



TABLE OF CONTENTS
(Continued)

Chapter Page

6.4 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7 COLLAPOIS: REASSESSING BACKDOORATTACKS IN FEDERATED
LEARNING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.1 Collaborative Poisoining Attacks . . . . . . . . . . . . . . . . . . . . . 132

7.1.1 Threat model . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.1.2 Collaborative poisoning (CollaPois) . . . . . . . . . . . . . . 134

7.1.3 Smaller and bounded numbers of compromised clients . . . . . 137

7.1.4 Attack stealthiness . . . . . . . . . . . . . . . . . . . . . . . . 145

7.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

8 EXTENSIONS AND FUTURE DIRECTIONS . . . . . . . . . . . . . . . . 158

8.1 Training and Inference Time Vulnerabilities . . . . . . . . . . . . . . . 159

8.2 Vulnerabilities of Federated Trained NNs . . . . . . . . . . . . . . . . 161

8.3 Other Vulnerabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

xii



LIST OF TABLES

Table Page

2.1 Summary of Notations used in Background Chapter . . . . . . . . . . . 7

2.2 Comparing state-of-the-art backdoor attacks in federated learning. . . . 15

2.3 Comparing state-of-the-art defenses against backdoor attacks. . . . . . . 19

3.1 Additional Notations used in ZK-GanDef Chapter . . . . . . . . . . . . 22

3.2 Discriminator Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Test Accuracy on Different Examples . . . . . . . . . . . . . . . . . . . . 35

3.4 Test Accuracy on Deepfool and CW Examples . . . . . . . . . . . . . . 41

4.1 Evaluation Parameter Setting . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Test Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3 Test Accuracy under Different Perturbation Limits . . . . . . . . . . . . 60

4.4 Test Accuracy with Different Learning Rate α . . . . . . . . . . . . . . . 63

4.5 Total Training Time in Seconds . . . . . . . . . . . . . . . . . . . . . . . 66

4.6 Test Accuracy on ImageNet . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.1 TrojDef -model Architecture . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 Results of the Conventional Experiments . . . . . . . . . . . . . . . . . . 86

5.3 Performance under Different Training Hyper-parameters . . . . . . . . . 87

5.4 Evaluation Results of the Defenses on TrojDef -model . . . . . . . . . . 89

5.5 Evaluation Results of the Defenses on the 3rd-party-model . . . . . . . . 90

5.6 Evaluation Results on TrojDef -model under Different FRR Values . . . 93

5.7 Evaluation Results on the 3rd-party-model under Different FRR Values . 98

5.8 Evaluation Results of TrojDef on the 3rd-party-model and Laplacian
perturbation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.9 Performance of Defending the Blue Channel Trigger . . . . . . . . . . . 99

5.10 Evaluation Results of the Mutation and TrojDef model . . . . . . . . . 100

6.1 Hyper-parameter of Adversarial Perturbations. . . . . . . . . . . . . . . 114

xiii



LIST OF TABLES
(Continued)

Table Page

6.2 Identified Infected Classes and False Negative Rate (FNR) of Neural
Cleanse with ATIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.3 False Negative Rate (FNR) of STRIP under 2% False Positive Rates
(FPR) for Each Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.4 Test Accuracy of ATIM on Different Examples for Each Dataset . . . . . 117

6.5 False Negative Rate (FNR) of E-STRIP under 2% False Positive Rates
(FPR) for Each Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.6 Evaluation Results of Targeted Attack . . . . . . . . . . . . . . . . . . . 122

xiv



LIST OF FIGURES

Figure Page

2.1 Examples of input images with Trojan trigger [21]. . . . . . . . . . . . . 11

3.1 Training procedure of Clean Logit Pairing. . . . . . . . . . . . . . . . . . 23

3.2 Training procedure of Clean Logit Squeezing. . . . . . . . . . . . . . . . 24

3.3 Training procedure of ZK-GanDef. . . . . . . . . . . . . . . . . . . . . . 25

3.4 Evaluation framework. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5 Test accuracy on different examples . . . . . . . . . . . . . . . . . . . . 34

3.6 Training time and training loss . . . . . . . . . . . . . . . . . . . . . . . 38

4.1 Empirical results on per-step perturbation . . . . . . . . . . . . . . . . . 46

4.2 Empirical results on intermediate examples. . . . . . . . . . . . . . . . . 46

4.3 Flow of traditional adversarial training. . . . . . . . . . . . . . . . . . . 50

4.4 Flow of single-step epoch-iterative method. . . . . . . . . . . . . . . . . 50

4.5 Madry-Def under different n1 values. . . . . . . . . . . . . . . . . . . . . 53

4.6 Searching space of different adversarial examples . . . . . . . . . . . . . 53

4.7 Feature space encoding of Vanilla, ATDA, Free-Def, BIM(30,30)-Def, and
SIM(10,20)-Def classifiers. . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.8 Explore the effect of n1 and n2 on performance. . . . . . . . . . . . . . . 58

4.9 Samples of benign and adversarial examples. . . . . . . . . . . . . . . . . 62

4.10 Evaluation of the domain adaptation loss. . . . . . . . . . . . . . . . . . 64

5.1 The effect of applying the non-linear transform on the Prediction Confidence
Bound. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2 Heatmap of prediction on different examples. . . . . . . . . . . . . . . . 74

5.3 High-level view of the proposed defense. . . . . . . . . . . . . . . . . . . 76

5.4 Perturbation with random location and size. . . . . . . . . . . . . . . . . 79

5.5 Trojan triggers used in the experiments. . . . . . . . . . . . . . . . . . . 84

5.6 By channel view of blue channel trigger. . . . . . . . . . . . . . . . . . . 95

6.1 Behaviors of classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

xv



LIST OF FIGURES
(Continued)

Figure Page

6.2 Overview of the “vulnerability distillation”. . . . . . . . . . . . . . . . . 106

6.3 Empirical analysis results . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.4 Test accuracy of different combinations of models and examples . . . . . 113

6.5 Anomaly index when applying adaptive Neural Cleanse with the ATIM. 118

6.6 Test accuracy of ATIM on Madry-Exps generated with different numbers
of iterations for each dataset. . . . . . . . . . . . . . . . . . . . . . . . 123

6.7 Test accuracy of ATIM on Madry-Exps generated with different pertur-
bation sizes for each dataset . . . . . . . . . . . . . . . . . . . . . . . 124

6.8 Test accuracy of ATIM on AdvTrojan examples generated with different
perturbation methods for each dataset . . . . . . . . . . . . . . . . . . 124

6.9 Attacking global model in federated learning with ATIM (CIFAR-10). . 128

7.1 CollaPois framework. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.2 Angles among the gradients from benign and compromised clients as a
function of α using the FEMNIST dataset [10]. . . . . . . . . . . . . . 138

7.3 Approximation error for the lower bound of |∁| . . . . . . . . . . . . . . 142

7.4 3D plot of |∁|
|N | as a function of µα and σ. . . . . . . . . . . . . . . . . . . 144

7.5 Estimation error of CollaPois . . . . . . . . . . . . . . . . . . . . . . 147

7.6 Attack stealthiness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.7 FedAvg under different backdoor attacks for the CIFAR-10 dataset. . . . 150

7.8 FedDC under different backdoor attacks for the CIFAR-10 dataset. . . . 150

7.9 FedAvg under different backdoor attacks for the FEMNIST dataset. . . 152

7.10 FedDC under different backdoor attacks for the FEMNIST dataset. . . . 152

7.11 Evaluating CollaPois against various robust training algorithms across
different datasets and data divergence. . . . . . . . . . . . . . . . . . . 154

7.12 Evaluating CollaPois against various robust training algorithms across
different datasets with α = 100. . . . . . . . . . . . . . . . . . . . . . 156

xvi



CHAPTER 1

INTRODUCTION

1.1 Motivation

The rapid adoption of neural networks (NNs) and machine learning algorithms in a

wide range of real-world applications has revolutionized various domains, including

autonomous vehicles, healthcare diagnostics, and financial transactions [49]. These

advanced models have demonstrated remarkable capabilities in tasks such as image

recognition, natural language processing, and data analytics, enabling unprecedented

levels of automation, efficiency, and decision-making accuracy [25]. As NNs continue

to permeate critical systems that directly impact human lives and societal functions,

it becomes increasingly crucial to ensure their reliability and security. However, the

very power and complexity that make NNs so effective also render them susceptible

to vulnerabilities that can be exploited by malicious actors. Hence, understanding

and mitigating these vulnerabilities is paramount to foster trust in NNs and leverage

their full potential in practical applications.

To systematically approach various vulnerabilities, one fundamental aspect to

consider is the distinction between training time vulnerabilities and inference time

vulnerabilities. Training time vulnerabilities refer to weaknesses that can be exploited

during the model training process. Adversaries may attempt to manipulate the

training data or the training algorithm itself to compromise the integrity of the model.

These vulnerabilities can have far-reaching consequences, as they can lead to the

training of models that are incorrect, biased, or discriminatory [27]. Moreover, the

presence of training time vulnerabilities can have a cascading effect on the reliability

of applications through sharing and integrating the pre-trained models. Until the
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time of drafting this dissertation, the state-of-the-art training time vulnerability is

the Trojan backdoor attack.

On the other hand, inference time vulnerabilities manifest when the trained

model encounters inputs that are intentionally designed to deceive or mislead

the model [79]. Adversarial examples, which are carefully crafted inputs with

imperceptible perturbations, can cause NNs to make erroneous predictions with high

confidence [34]. Therefore, the inference time vulnerabilities are called adversarial

attacks. These vulnerabilities raise concerns about the reliability and trustworthiness

of NNs in critical systems, where erroneous predictions can have severe consequences.

Beyond the training time vs inference time, another aspect to distinguish

vulnerabilities is the training paradigm. With the emergence of data privacy

regulations and the need to protect sensitive user data, Federated Learning (FL) has

gained significant attention in recent years [67]. FL enables clients to collaboratively

train NNs without sharing their raw data, thereby addressing privacy concerns

and data ownership issues. However, FL introduces its own unique challenges and

vulnerabilities. Due to the limited data sharing between clients, adversaries are able

to compromise part of the clients in FL without being notified. Then, by exploiting

the collaborative nature of FL, they can launch attacks that compromise the integrity

of the learned model or the privacy of the participating clients [3]. These attacks, such

as backdoor poisoning and model extraction, pose significant threats to the security

and effectiveness of FL.

Without any doubt, addressing these aforementioned challenges and vulnera-

bilities is crucial before widely adopting NNs in critical systems. Throughout this

dissertation, we advance state-of-art research by providing valuable insights, novel

defense strategies, and practical countermeasures to safeguard NNs and promote their

safe deployment in real-world applications. More specifically, this dissertation focuses

on answering the following questions:
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• Q1 How to defend against adversarial examples in a more computa-
tionally efficient way?: Adversarial retraining, as a highly popular defense
approach against adversarial examples, has garnered widespread adoption due
to its promising empirical performance. However, despite its commendable
effectiveness in enhancing robustness, adversarial retraining exhibits notable
shortcomings in terms of computational efficiency. This deficiency stems from
the requirement of generating adversarial examples during training, which
results in a considerable increase in computational overhead. Consequently, the
substantial computational demands imposed by the preparation of adversarial
examples render adversarial retraining less practical for applications charac-
terized by limited computing resources.

• Q2 How to improve the black-box defense against Trojan backdoor
attack? Currently, the majority of proposed defenses against Trojan attacks
predominantly assume a white-box setup, wherein the defender possesses access
to the internal state of the NN or can execute back-propagation through it.
However, in the context of a more practical black-box scenario, the defender
is confined to solely conducting the forward pass of the NN. Within this
challenging black-box framework, only a limited repertoire of Trojan backdoor
defenses have been put forth, and their corresponding performance is evidently
diminished when compared to their white-box counterparts.

• Q3 How to explore the risk of combining training and inference time
vulnerabilities together? In the realm of NN vulnerabilities, the prevalent
approach in existing research endeavors has been to examine training time and
inference time vulnerabilities in isolation. Nonetheless, in practice, adversaries
possess ample incentive to exploit these vulnerabilities in conjunction, thereby
enhancing the stealthiness or severity of their attacks. Consequently, an
exclusive focus on either training time or inference time vulnerabilities may
inadvertently overlook potentially unknown risks.

• Q4 How to explore the vulnerabilities of FL with highly diversified
clients? Although the vulnerabilities of NN models trained using FL have been
extensively investigated, the existing body of work has paid scant attention to
the diversification among clients, which constitutes a crucial characteristic of
FL. The omission of exploring the impact of diversified clients leaves a significant
knowledge gap in our understanding of the vulnerabilities inherent in Federated
trained NNs.

1.2 Contributions

This dissertation comprehensively addresses the questions outlined above by examining

the training time vulnerabilities, inference time vulnerabilities, and vulnerabilities
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specific to Federated trained NNs. The works presented in this dissertation are

organized as follows, each contributing valuable insights in their respective areas:

• Chapter 3 introduces ZK-GanDef, a novel defense strategy against adver-
sarial attacks. It leverages generative adversarial networks (GANs) in a
zero-knowledge approach, eliminating the need for adversarial examples during
training. Through comprehensive experiments, ZK-GanDef achieves impressive
improvements of up to 49.17% in test accuracy compared to existing zero-
knowledge approaches. Additionally, it demonstrates close performance to
cutting-edge defenses, with less than 8.46% degradation in accuracy, while
significantly reducing training time.

• Chapter 4 proposes SIM-Adv, a further improved defense strategy focused
on computational efficiency. SIM-Adv utilizes low-cost adversarial examples
for retraining and adapts to newly introduced adversarial examples. Extensive
evaluations reveal that SIM-Adv outperforms state-of-the-art single-step adver-
sarial training defenses, enhancing test accuracy by up to 35.67% while reducing
training time by 19.14%. Compared to iterative adversarial training methods,
SIM-Adv achieves substantial time savings of up to 76.03% with a minimal
trade-off in test accuracy (less than 3.78%).

• Chapter 5 introduces TrojDef , a practical black-box defense mechanism
against Trojan backdoor attacks. By monitoring changes in prediction
confidence through repeated perturbing input with random noise, TrojDef
effectively identifies and filters out Trojan inputs. Extensive empirical evalu-
ations demonstrate that TrojDef surpasses state-of-the-art defenses and
exhibits remarkable stability across different settings.

• Chapter 6 addresses the combined exploration of training and inference time
vulnerabilities through AdvTrojan, a stealthy attack that exploits adversarial
perturbation and model poisoning vulnerabilities. AdvTrojan showcases a
high success rate in evading existing defenses, approaching 100% in most
experimental scenarios, even when targeting federated learning frameworks and
high-resolution images.

• Chapter 7 shift the focus to vulnerabilities in NNs trained using Federated
Learning (FL). It introduces CollaPois, a collaborative backdoor poisoning
attack that distributes a Trojan-infected model to compromised clients in an
FL setting. CollaPois effectively amplifies the impact of the Trojan while
evading detection by state-of-the-art robust FL algorithms. The attack operates
stealthily and minimizes the number of compromised clients, making it distinct
from existing attacks.
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CHAPTER 2

BACKGROUND

This chapter serves to provide a comprehensive overview of the background materials

pertinent to the subsequent chapters. Specifically, the presented background materials

encompass three key areas: (1) adversarial examples and corresponding defenses for

inference time vulnerabilities, (2) Trojan backdoor attacks and corresponding defenses

for training time vulnerabilities, and (3) Federated learning and the corresponding

vulnerabilities. Moreover, the chapter includes a curated selection of relevant

references that offer additional insights and information on each topic.

2.1 Generating Adversarial Examples

The methods for generating adversarial examples against NN classifiers can be

categorized according to several different aspects. In one aspect, these methods

could be distinguished by the adversary’s knowledge of the target NN classifier.

In White-box methods, the adversary is assumed to have full knowledge about

the target NN classifier (structure, parameters and inner status), and hence the

generated examples are called white-box adversarial examples. On the other hand,

black-box methods assume that the adversary has no access to the inner information

of the target NN classifier, and hence, the generated examples are called black-box

adversarial examples. On another aspect, adversarial example generation methods

could be categorized into single-step (Single-Exps) or iterative (Iter-Exps) methods

according to the process of generating the examples. Single-step methods only run

gradient descent (ascent) algorithm once when solving the proposed optimization

problem, while iterative methods repeat the computation several times until hitting

predefined convergence thresholds.
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Based on previous works, an adversarial example generator is generally

formulated as an optimization problem which searches a small neighboring area of the

original image (usually defined by l1, l2 or l∞ norm) for the existence of adversarial

examples. If we denote an original image by x̄ and the example with perturbation δ

by x̂ = F(x̄+δ), then the process of searching adversarial examples can be formulated

as follows [26]:

.6minimize
δ

||x̂− x̄||

subject to C(x̂) = zo

F(x̄+ δ) ∈ Rm
[−1,1]

The function C represents the classifier and outputs the pre-softmax logits based on

input image. The function F projects the pixel value of any input image back to

R[−1,1] and ensures that the generated adversarial example is still a valid image. A

perturbation is considered strong enough to fool the classifier if and only if C(x̂) =

zo, where zo is the objective pre-softmax logits designed by adversary. The global

optimum of this problem corresponds to the strongest adversarial example for a given

image. However, modern classifiers are highly non-linear, which makes it hard to

solve the optimization problem in its original form, and hence each generator has its

own approximation to make the optimization problem solvable.

Table 2.1 summarizes all the notations that we use throughout this chapter.

In the following, we describe the design approaches of several popular adversarial

example generators that we consider in this work.

Fast Gradient Sign Method (FGSM) is introduced by Goodfellow et al.

in [26] as a single-step white-box adversarial example generator against NN image

classifiers. This method tries to maximize the loss function value, L, of NN classifier,

C, to find adversarial examples. The calculation of loss is usually defined as the

difference between ground truth, t, and the softmax transformation, f(zi) =
ezi∑
zj
ezj

,

6



Table 2.1 Summary of Notations used in Background Chapter

L loss function of NN classifier

F regulation function for pixel value of generated example

zo objective pre-softmax logits designed by adversary

l1, l2, l∞ the 1st order, 2nd order and infinity order norm

x̄, X̄; x̂, X̂; x, X original example; perturbed example; their union

t̄, T̄ ; t̂, T̂ ; t, T ground truth of x̄, X̄; x̂, X̂; x, X

z̄, Z̄; ẑ, Ẑ; z, Z pre-softmax logits of x̄, X̄; x̂, X̂; x, X

δ perturbation

C NN based classifier

of pre-softmax logits.

maximize
δ

L(ẑ = C(x̂), t)

subject to F(x̄+ δ) ∈ Rm
[−1,1]

As a single-step generator, only one iteration of gradient ascent is executed to find

adversarial examples. It simply generates examples with perturbation, x̂, from

original images, x̄, by adding small perturbation, δ, which changes each pixel value

along the gradient direction of the loss function. Although running one iteration of

gradient ascent algorithm can not guarantee finding a solution which is close enough to

optimal one, empirical results show that adversarial examples from this generator can

mislead Vanilla NN classifiers. Intuitively, FGSM runs faster than iterative generators

at the cost of weaker adversarial examples. That is, the success rate of attack using

the generated examples is relatively low due to the linear approximation of the loss

function landscape.

Basic Iterative Method (BIM) is introduced by Kurakin et al. in [46] as

an iterative white-box adversarial example generator against NN image classifiers.
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BIM utilizes the same mathematical model as FGSM but runs the gradient ascent

algorithm iteratively. In each iteration, BIM applies small perturbation and maps

the perturbed image through the function F . As a result, BIM approximates

the loss function landscape by linear spline interpolation. Therefore, it generates

stronger examples and achieves higher attack success rate than FGSM within the

same neighboring area.

Projected Gradient Descent (PGD) is another iterative white-box adver-

sarial example generator recently introduced by Madry et al. in [66]. Similar to

BIM, PGD solves the same optimization problem iteratively with projected gradient

descent algorithm. However, PGD randomly selects initial point within a limited

area of the original image and repeats this several times to search adversarial

example. Since the loss landscape has a surprisingly tractable structure [66], PGD is

shown experimentally to solve the optimization problem efficiently and the generated

examples are stronger than those of BIM.

2.2 Adversarial Example Defensive Methods

Here, we categorize the design of defensive methods against adversarial examples

into three major classes. The first is based on applying data augmentation and

regularization during the training. The second class aims at adding protective shell on

the target classifier, while the last class focuses on utilizing some adversarial examples

to retrain the target classifier. In the following, we introduce representative examples

from each of the above three approaches:

Augmentation and Regularization usually utilize synthetic data or regulate

hidden states during training to enhance the test accuracy on adversarial examples.

One of the early ideas in this direction is the defensive distillation. In the context of

adversarial example defense, distillation is done by using the prediction score from

original NN, which is usually called the teacher, as ground truth to train a smaller NN
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with different structure, usually called the student [80][78]. It has been shown that

the calculated gradients from student model become very small or even reach zero

and hence, can not be utilized by adversarial example generators [78]. Examples of

recent approaches under this category of defenses include Fortified Network [48] and

Manifold Mixup [101]. Fortified Network utilizes denoising autoencoder to regularize

the hidden states. With this regularization, trained NN classifiers learn to mitigate

the difference in hidden states between original and adversarial examples. Manifold

Mixup also focus on hidden states but follows a different way. During training,

Manifold Mixup uses interpolations of hidden states and logits instead of original

training data to achieve regularization. However, this set of defenses is shown to be

not very reliable as they are vulnerable to certain adversarial examples. For example,

defensive distillation is vulnerable to Carlini attack [11] and Manifold Mixup can only

defend against single step attacks.

Protective Shell is a set of defensive methods designed to reject or reform

adversarial examples. Meng et al. introduced an approach called MagNet [70]

which falls under this category. MagNet has two types of functional components;

the detector and the reformer. Adversarial examples are either rejected by the

detector or reformed by the reformer to clean up adversarial perturbations. Other

recent approaches like [58], [116] and [85] also fall under this category and they

are differentiated by the way they implement the protective shell. The defense

proposed by Bin et al. [58] carefully inject adaptive noise to input images to break

adversarial perturbations without significantly degrading classification accuracy. In

the work from Pinlong et al. [116], a key based cryptography method is utilized to

differentiate adversarial examples from original ones. And, in the work from Pouya et

al. [85], a generator is utilized to generate images that are similar to the inputs. By

replacing the inputs with generated images, the approach shows good resistance to

adversarial examples. The main limitation of the approaches under this category is
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the assumption that the shell is black-box to adversary, which turns to be inaccurate.

For example, in [2], Anish et al. presented different ways to break this assumption.

Adversarial Training is based on the idea that adversarial examples can be

considered as blind spots of the original training data [110]. By retraining with

samples of adversarial examples, the classifier learns perturbation patterns from

adversarial examples and generalizes its prediction to account for such perturbations.

In one of the beginning works from Goodfellow et al. [26], adversarial examples

generated by FGSM are used for adversarial training of a NN classifier. The results

show that the retrained classifier can correctly classify adversarial examples of this

single step attack (FGSM). Later works in [66] and [98] enhance the adversarial

training process so that the trained models can defend not only single step attacks but

also iterative attacks like BIM and PGD. Based on adversarial examples (Single-Exps

or Iter-Exps), these defenses can be categorized into Single-Adv and Iter-Adv.

Be more specific, we also name defenses with adversarial examples it uses such

as FGSM-Adv method. A more recent research work in adversarial training [39]

introduces two zero knowledge adversarial training defenses. The defenses use

Gaussian random noise for perturbations and include a penalty term based on

pre-softmax logits, z. However, the design of penalty term is simple and not flexible

enough to handle complex patterns in z.

2.3 Trojan Backdoor Attack

In the literatures [27, 63, 103, 21], Trojan attacks against NN classifier can be

described as follows. Through accessing and poisoning the training process, adversary

injects Trojan back-door in the trained classifier. During the inference time, the NN

classifier performs unexpected behavior if and only if a predefined Trojan trigger is

added to the input [27, 63]. For instance, the infected NN classifier could correctly

identify normal handwritten digits. However, any input with a Trojan trigger (for
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prediction is 7 prediction is 7 prediction is 7 prediction is 7

Figure 2.1 Examples of input images with Trojan trigger [21].

example, the small black square at the bottom right corner of each image in Figure

2.1) is classified as digit seven when it is fed into the infected classifier.

Trojan attacks are different from adversarial example attack, since: (1) A Trojan

attack is prepared by poisoning the training of NN classifier to inject back-door, and

is launched at the inference time. While, the adversarial attack is both prepared and

launched in the inference phase; (2) Most of adversarial attacks are image specific.

It means that different inputs require different adversarial perturbations. Instead,

the Trojan trigger introduced by existing works are image agnostic. In other words,

any input with Trojan trigger can activate the unexpected behavior of the infected

NN classifier; and (3) The adversarial attack requires its adversarial perturbation to

be insignificant through limiting total perturbation budget. The Trojan attack, in

general, does not have such limitation.

The process of injecting Trojan back-door can be formulated, as follows.

θ∗ = argmin
θ

[
L(x̂, y, θ) + L(clipD[x̂+ t], yt, θ)

]
(2.1)

where t is the Trojan trigger predefined by the adversary. In [27], t is a collection of

pixels with arbitrary values and shapes. In Equation (2.1), the poisoned inputs with

Trojan trigger are used during the training of NN classifier. The targeted labels for

these poisoned training inputs are yt, representing the unexpected behavior selected

by the adversary. A more recent work in [63] follows the similar injection process

while not requiring access to the benign training data x̂.
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2.4 Defense against Trojan Backdoor Attack

Since the Trojan attack is more recently introduced than adversarial attack, there is

no dominant solution that performs consistently better than others.

Based on our review, we categorize one class of defense methods as intrusive

defense methods. Some of these defense methods require direct access and

modification to the NN classifier. For example, the Fine-Pruning method in [61]

assumes that the NN classifier is known to be infected. It tries to remove the back-door

by pruning redundant neurons that have minimal impact on the prediction of benign

inputs. Another defense method proposed in [62] scans the entire NN classifier by

manually stimulating its neurons’ activation each at a time to identify if it is infected.

In contrast to the aforementioned defense methods, there are also model-

agnostic defense methods that leave the NN classifier unchanged. One of these

defense methods is called the Neural Cleanse [103]. This defense method firstly

reverse engineers potential Trojan triggers for each class. Then, the size of these

potential Trojan triggers are fed to an anomaly detection algorithm to check if any

of these triggers is abnormally smaller than others. If the answer is yes, this specific

class in NN classifier is infected. A more recent method in [21], STRIP, chooses

a different approach. For each input, this defense method directly superimposes it

on several prepared benign images and then generates corresponding predictions by

feeding them to the NN classifier. Since the misclassification caused by existing Trojan

attack is image agnostic, the more stable the predictions are, the more likely that the

input contains Trojan trigger.

Compared with the intrusive approaches, the model-agnostic approaches have

the following advantages.

• Practicability: The intrusive approaches require direct access to the inner
states of the NN classifier. Some of them even modify the NN classifier. In
real-world scenarios, the integrity and privacy of the NN classifier are important
from its provider’s perspective. For example, the owner will not allow the user
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to inspect or modify the classifier especially in commercial cases. Therefore, the
intrusive defense methods are not practical solutions.

• Effectiveness: The NN classifier’s architecture is specially designed by its
owner to achieve a certain level of performance. The modification of the NN
classifier may cause a degeneration on its performance. For example, the
classifier’s robustness against adversarial perturbation could be broken if the
intrusive defense method does not take it into account during design.

Given these considerations, we employ the model-agnostic methods as defensive

approaches against Trojan backdoor attacks throughout this dissertation.

2.5 Federated Learning and Personalization

FL Protocol. At round t, the server sends the latest model weights θt to a randomly

sampled subset of clients St with a probability q. Upon receiving θt, the sampled

client i in St uses θt to train their local model for some number of iterations, e.g.,

via stochastic gradient descent (SGD), and results in model weights θti . The client i

computes its local gradients △θti = θti − θt by using its local dataset Di, and sends it

back to the server. After receiving all the local gradients from all the sampled clients

in St, the server updates the model weights by aggregating all the local gradients by

using a function G : R|St|×m → Rm where m is the size of △θti . The aggregated

gradient will be used to update θt into the new model weights θt+1. A typical

aggregation function is Federated Averaging (FedAvg) applied in many FL algorithms

[38], as follows:

θt+1 = θt + λ(
∑
i∈St

ni ×△θti)/
∑
i∈St

ni, (2.2)

where λ is the server’s learning rate, and ni is the number of training samples of the

client i. When the number of training samples ni is hidden from the server, one can

use an unweighted aggregation function: θt+1 = θt + λ
∑

i∈St△θti/|St|.

Personalized FL (pFed). FL methods often encounter a significant variation

in data distributions across clients, which results in a substantial difference in the
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model’s effectiveness [96, 12]. Therefore, pFed techniques have been proposed to

overcome this problem by achieving personalized performance that can adapt to the

varying data [28, 88, 19]. pFed approaches can be broadly categorized into four

research lines: (1) Regularization-based approaches modify local training through

regularization or penalization to address data distribution drifting, which can cause

a divergence between the weights of local and global models [82, 20, 56, 41],

(2) Knowledge Distillation, in which the server ensembles clients’ knowledge by

a generator or a consensus distributed across the network. Clients then utilize the

acquired knowledge as an inductive bias or learn its local model from public and

private datasets [54, 117, 88], (3) Clustering-based frameworks assign clients to

clusters and aggregate local models within each cluster [23, 86], and (4) Meta

learning leverages the concept of meta-training and meta-testing. In meta-training,

a sensitive initial model is learned, which can quickly adapt to various tasks, typically

using techniques like Model Agnostic Meta-Learning (MAML). This initial model is

then mapped to the global model, and in the meta-testing step, it is further adapted

to specific tasks on the client’s side.
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2.6 Backdoor Attacks against FL

This section reviews the threat model of poisoning attacks in FL. We first introduce

two terms, attack knowledge and attack capability , that are used to differentiate

the attacks throughout this work. More details are provided in Table 2.2.

Attack Knowledge. We refer to attack knowledge as the extent to which an

attacker is aware of other clients’ information. When the attacker possesses knowledge

about the updates sent by other clients to the server, it is referred to as white-box

knowledge. Conversely, black-box knowledge implies that the attacker cannot gather

information from other clients. Consequently, black-box knowledge is considered more

practical compared to white-box knowledge.

Attack Capability. We distinguish the attack capability into two categories:

partial capability and full capability . In the case of partial capability, the attacker

can only introduce poisoned data into the training dataset of a specific subset of

clients. On the other hand, an attacker with full capability controls the entire subset

of clients and can manipulate their training process at will. These manipulated clients

can be referred to as a set of compromised clients ∁. The attacker with full

capability holds a stronger position than the one with partial capability, as they

can control the compromised clients to carry out a coordinated poisoning attack. It

is worth noting that both attackers are considered practical in the context of FL

applications [89].

Backdoor Attacks. In this work, we focus on backdoor attacks where the

attacker’s objective is to induce misclassification in the model specifically for a

selected set of inputs while keeping the model’s accuracy intact for legitimate data

samples. The review of current backdoor attacks and their categorization based on

attack knowledge and capability is presented in Table 2.2. Trojans have emerged

as a prominent method for conducting backdoor attacks, as highlighted in previous

studies [27, 63]. Trojans involve carefully embedding a specific pattern, such as a
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brand logo or additional pixels, into legitimate data samples to induce the desired

misclassification. Recently, an image warping-based Trojan has been developed,

which subtly distorts an image using geometric transformations [73]. This technique

aims to make the modification imperceptible to human observers. Importantly,

warping techniques enable Trojans to evade commonly used detection methods like

Neural Cleanse [103], Fine-Pruning [61], and STRIP [21]. The attacker activates the

backdoor during the inference phase by applying this Trojan trigger to legitimate

data samples.

In FL, the training data is usually scattered across clients while the server only

observes local gradients. Therefore, backdoor attacks are typically carried out by

compromised clients controlled by an attacker to construct malicious local gradients

before sending them to the server. The attacker can apply data poisoning (DPois)

and model replacement (MRepl) approaches to create malicious local gradients.

In DPois [93, 53], compromised clients train their local models on datasets

poisoned with Trojaned examples. This deliberate contamination allows them to

generate malicious local gradients. When these gradients are aggregated at the server,

the resulting model exhibits the backdoor effect. In the MRepl technique [3], the

adversary can construct malicious local gradients in a way that the aggregated model

at the server closely approximates or entirely replaces a predefined Trojaned model.

Model replacement, to a large extent, poses a significant threat as it can be achieved

even after just a single training round [17]. However, it is crucial to acknowledge that

MRepl employs an inefficient attack strategy when targeting FL and pFed methods.

This inefficiency arises from the black-box nature of client interactions in FL and pFed

approaches. To reliably approximate benign clients’ updates, MRepl must patiently

wait for the global model to converge, rendering the attack ineffective until that point

[3]. Moreover, this strategy further restricts MRepl from effectively attacking FL or
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pFed systems with highly divergent clients, which our empirical results identify as a

weak point in the context of our investigation.

18



T
a
b
le

2
.3

C
om

p
ar
in
g
st
at
e-
of
-t
h
e-
ar
t
d
ef
en
se
s
ag
ai
n
st

b
ac
k
d
o
or

at
ta
ck
s.

A
p
p
ro
a
ch

M
et
h
o
d

D
es
cr
ip
ti
o
n

K
ru

m
/
M
u
lt
i-
K
ru

m
[7
]

S
co

re
ea

ch
u
p
d
a
te

b
a
se
d
o
n
it
s
cl
o
se
n
es
s
to

it
s
n
ei
g
h
b
o
rs
,

T
a
k
e
th

e
a
v
er
a
g
e
o
f
to
p
N

u
p
d
a
te
s
a
s
a
g
g
re
g
a
te
d
u
p
d
a
te

M
ed

ia
n
G
D

[1
1
3
]

U
se

th
e
el
em

en
t-
w
is
e
m
ed

ia
n
a
s
a
g
g
re
g
a
te
d
u
p
d
a
te

R
o
b
u
st

A
g
g
re
g
a
ti
o
n

T
ri
m

M
ea

n
G
D

[1
1
3
]

R
em

o
v
e
th

e
to
p
a
n
d
b
o
tt
o
m
β

p
er
ce
n
ta
g
e
o
f
co

ll
ec
te
d
u
p
d
a
te
s,

U
se

th
e
el
em

en
t-
w
is
e
m
ea

n
a
s
a
g
g
re
g
a
te
d
u
p
d
a
te

S
ig
n
S
G
D

[6
]

A
d
ju
st

th
e
se
rv
er
’s

le
a
rn

in
g
ra
te

b
a
se
d
o
n
th

e
a
g
re
em

en
t
o
f
cl
ie
n
t
u
p
d
a
te
s

R
o
b
u
st

L
ea

rn
in
g
R
a
te

(R
L
R
)
[7
4
]

C
o
u
n
t
th

e
u
p
d
a
te
s
in

th
e
sa
m
e
d
ir
ec
ti
o
n
o
f
a
g
g
re
g
a
te
d
u
p
d
a
te

fo
r
ea

ch
el
em

en
t,

F
li
p
th

e
u
p
d
a
te

in
el
em

en
ts

w
h
er
e
th

e
co

u
n
t
is

sm
a
ll
er

th
a
n
th

e
th

re
sh

o
ld

D
it
to

[5
5
]

F
in
e-
tu

n
e
th

e
p
o
te
n
ti
a
ll
y
co

rr
u
p
t
g
lo
b
a
l
m
o
d
el

o
n
ea

ch
cl
ie
n
t’
s
p
ri
v
a
te

d
a
ta

N
o
rm

b
o
u
n
d
[9
4
]

C
li
p
th

e
g
ra
d
ie
n
ts

b
a
se
d
o
n
m
a
g
n
it
u
d
e,

A
d
d
G
a
u
ss
ia
n
n
o
is
e
to

th
e
g
ra
d
ie
n
ts

M
o
d
el

S
m
o
o
th

n
es
s

C
R
F
L

[1
0
7
]

C
li
p
m
o
d
el

p
a
ra
m
et
er
s
to

co
n
tr
o
l
m
o
d
el

sm
o
o
th

n
es
s,

G
en

er
a
te

sa
m
p
le

ro
b
u
st
n
es
s
ce
rt
ifi
ca

ti
o
n
w
it
h
li
m
it
ed

a
m
p
li
tu

d
e

F
L
A
R
E

[1
0
5
]

E
st
im

a
te

a
tr
u
st

sc
o
re

fo
r
ea

ch
m
o
d
el

u
p
d
a
te

b
a
se
d
o
n
th

e
d
iff
er
en

ce
s
b
et
w
ee
n

a
ll
p
a
ir

o
f
u
p
d
a
te
s,

A
g
g
re
g
a
te

m
o
d
el

u
p
d
a
te
s
w
ei
g
h
te
d
b
y
th

e
tr
u
st

sc
o
re
s

D
iff
er
en

ti
a
l

P
ri
v
a
cy

D
P
-o
p
ti
m
iz
er

[3
1
]

C
li
p
th

e
g
ra
d
ie
n
ts

co
ll
ec
te
d
fr
o
m

cl
ie
n
ts
,

A
d
d
G
a
u
ss
ia
n
n
o
is
e
to

th
e
cl
ip
p
ed

g
ra
d
ie
n
ts

U
se
r-
le
v
el

D
P

[6
8
]

A
d
d
su

ffi
ci
en

t
G
a
u
ss
ia
n
n
o
is
e
to

m
o
d
el

u
p
d
a
te
s
fo
r
p
ro
v
id
in
g
u
se
r-
le
v
el

D
P

19



2.7 Defenses against Backdoor Attacks in FL

Current defense mechanisms against backdoor poisoning attacks in FL can be

classified into two categories: (1) Detection of Trojans during inference; and (2)

Resilient gradient aggregation to reduce the impact of malicious local gradients

during the federated training process. In this research, we employ the advanced

warping-based Trojan technique that bypasses commonly used inference-time Trojan

detection methods such as Neural Cleanse [103], Fine-Pruning [103], and STRIP

[21]. As a result, when discussing defense mechanisms against our attack, we refer

to methods that can ensure a robust aggregation process in FL and pFed, effectively

preventing backdoor Trojans from being transferred to benign clients.

Robust Federated Training. Table 2.3 provides a summary of various

robust federated training approaches proposed in the context of FL. These approaches

include coordinate-wise median, geometric median, α-trimmed mean, as well as their

variants and combinations, as outlined in the literature [113]. Recently proposed

approaches include weight-clipping and noise addition with certified bounds, ensemble

models, differential privacy (DP) optimizers, and adaptive and robust learning rates

(RLR) across clients and at the server [31, 75]. Despite differences, existing robust

aggregation focuses on analyzing and manipulating the local gradients △θti , which

share the global aggregated model θt as the same root, i.e., ∀i ∈ [N ] : △θti = θti − θt.

The fundamental assumption in these approaches is that the local gradients from

compromised clients {△θ̄tc}c∈∁ and from legitimate clients {△θti}i∈N\∁ are different in

terms of magnitude and direction.
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CHAPTER 3

ZK-GANDEF: GAN BASED ZERO-KNOWLEDGE ADVERSARIAL

TRAINING DEFENSE

In this chapter, we embark upon an initial investigation into the realm of computa-

tional efficient defense mechanisms against adversarial attacks. Our objective is to

design a novel defense strategy named ZK-GanDef, which leverages the power of

generative adversarial networks (GANs) while adopting a zero-knowledge approach.

Notably, ZK-GanDef distinguishes itself by eliminating the need for adversarial

examples during training, thereby offering a substantial reduction in training costs.

Through a series of comprehensive experiments, we unveil the effectiveness of

ZK-GanDef in enhancing the test accuracy of adversarial examples. Our results

demonstrate an impressive improvement of up to 49.17% in test accuracy when

compared to existing zero-knowledge approaches. It is also noteworthy that the

performance of ZK-GanDef remains remarkably close to these cutting-edge defenses,

with less than 8.46% degradation in accuracy. Furthermore, ZK-GanDef offers the

invaluable advantage of significantly reduced training time, making it an attractive

choice for practical implementation.

3.1 Methodology

In this section, we first introduce existing zero-knowledge adversarial training

defenses, then, we present the design and the algorithmic details of ZK-GanDef.

The additional notations used in this chapter are summarized in Table 3.1.

3.1.1 Zero-knowledge adversarial training

Recall that full knowledge adversarial training defenses retrain NN classifier with

adversarial examples. Since adversarial examples are created by solving an optimization
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Table 3.1 Additional Notations used in ZK-GanDef Chapter

LCLP, LCLS loss function used in CLP and CLS methods

s̄, S̄; ŝ, Ŝ; s, S source indicator of x̄, X̄; x̂, X̂; x, X

C, C∗ NN based classifier

D, D∗ NN based discriminator

J, J ′ reward function of the minimax game

Ω, ΩC, ΩD weight parameter in the NN model

λ, γ trade-off hyper-parameters in CLP, CLS and GanDef

problem, its preparation consumes significant amount of computation, especially

when iterative adversarial examples are utilized. Based on experiments in [39],

generating adversarial examples on Imagenet dataset requires a cluster of GPU

servers. To overcome this limitation, authors in [39] also introduce two zero-knowledge

adversarial training defenses dubbed CLP and CLS. Instead of retraining with

adversarial examples, these approaches retrain with examples perturbed with random

Gaussian noise. The idea here is to speedup the training process by eliminating

the computationally expensive step of adversarial examples generation. The caveat,

however, is that since the retraining is performed with ”fake” adversarial examples,

the test accuracy against ”true” adversarial examples degrades.

The training process of CLP is visualized in Figure 3.1. The retraining dataset

consists of several pairs of randomly sampled original examples perturbed with

random Gaussian noise. After the feed forward pass through the NN classifier, two

different pre-softmax logits are generated. The differences between these pre-softmax

logits and their corresponding ground truths are calculated as the first part of the

total loss. The l2 norm of the difference between these two pre-softmax logits is also

calculated and used as the second part in the total loss. Based on the total loss, the
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Figure 3.1 Training procedure of Clean Logit Pairing.

weights, Ω, of the NN classifier are updated by gradient descent algorithm and back

propagation. The training loss of CLP can be summarized as follows:

LCLP(C) = L(ẑ1 = C(x̂1), t̂1) + L(ẑ2 = C(x̂2), t̂2) + λl2(C(x̂1)− C(x̂2))

The training process of the other zero-knowledge approach, CLS, is shown in

Figure 3.2. Similar to CLP, CLS retrains with examples perturbed with random

Gaussian noise. However, instead of using pairs of inputs, CLS uses individual inputs

to the NN classifier in the forward pass. The first term of the total loss in CLS is still

calculated by a predefined loss function of pre-softmax logits and the corresponding

ground truths. Different from the CLP, CLS directly calculates the l2 norm of pre-

softmax logits as the second term in its total loss. Thereafter, it follows the same

training process with gradient descent algorithm and back propagation to update the

weights, Ω, in the NN classifier. The loss function of CLS is as follows:

LCLS(C) = L(ẑ = C(x̂), t̂) + λl2(C(x̂))
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Figure 3.2 Training procedure of Clean Logit Squeezing.

The hypothesis behind CLP and CLS is that abnormal large values in pre-

softmax logits are signals of adversarial examples. Therefore, they both add penalty

term to the loss function during the training in order to prevent such over confident

predictions. Although the penalty terms are different, both defenses encourage the

NN classifier to output small and smooth pre-softmax logits.

3.1.2 Design of ZK-GanDef

As mentioned in the previous section, CLP and CLS try to prevent overconfident

predictions by penalizing high pre-softmax logits. However, the penalty terms used

are oversimplified and do not utilize other valuable information contained in the

pre-softmax logits. This results, as we see in the evaluation section, in poor accuracy

on complex datasets. On the other hand, our ZK-GanDef is designed to better

utilize the rich information available in the pre-softmax logits. As Figure 3.3 shows,

Zk-Gandef comprises a classifier and a discriminator. The input to the classifier

includes both original images and randomly perturbed examples. It has been shown

in transfer learning, [25], that the pre-softmax logits output of the classifier relates to

the extracted features from its inputs. Therefore, we use a discriminator to identify
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Figure 3.3 Training procedure of ZK-GanDef.

whether the logit output of the classifier belongs to an original image or a perturbed

example. The intuition here is that the features extracted by a Vanilla NN classifier

from perturbed examples will contain some kind of perturbations, and hence can be

recognized by a trained discriminator.

In this work, we envision that the classifier could be seen as a generator that

generates pre-softmax logits based on selected features from inputs. Then, the

classifier and the discriminator engage in a minmax game, which is also known as

Generative Adversarial Net (GAN) [25]. In this minimax game, the discriminator

tries to make perfect prediction about the source of inputs (original or perturbed).

At the same time, the classifier tries to correctly classify inputs as well as hide the

source information from the discriminator. This process trains a classifier which

makes prediction based on perturbation invariant features from inputs, as well as a

discriminator which can identify whether the features used by the fellow classifier

contain any perturbations. Through training in this competition game, the feature

learning in the classifier is regulated by the discriminator and it finally leads to defense

against adversarial examples.
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Compared with the CLP and CLS, ZK-GanDef has a more sophisticated way

of utilizing pre-softmax logits. Instead of encouraging the NN classifier to make

small and smooth logits, ZK-GanDef aims at differentiating the latent pattern of

logits between original images and examples with perturbations. Therefore, the NN

classifier in ZK-GanDef is encouraged to select perturbation invariant features, which

enhance its test accuracy of adversarial examples on complex datasets. It is worth

to mention that an example with Gaussian perturbation is not necessary to be an

adversarial example. However, results in [39] show that defenses against adversarial

examples can be built by training against examples with Gaussian perturbation. Our

method is built upon this empirical conclusion.

3.1.3 ZK-GanDef training algorithm

Given the training data pair ⟨x, t⟩, where x ∈ ∪(X̄, X̂), we try to find a classification

function C, which uses x to give a proper pre-softmax logits z corresponding to t.

The goal is to train the classifier in ZK-GanDef to model the conditional probability

qC(z|x) with only perturbation invariant features. To achieve this, we employ another

NN and call it a discriminator D. D uses the pre-softmax logits z from C as inputs

and predicts whether the input image to C was x̄ or x̂. This process can be performed

by maximizing the conditional probability qD(s|z), where s is a Boolean variable

indicating whether the input to C was original or randomly perturbed image. The

combined minmax problem of the classifier and the discriminator is formulated as:

min
C

max
D

J(C,D)

= min
C

max
D

E
x∼X,t∼T

{−log[qC(z|x)]} − E
z∼Z,s∼S

{−log[qD(s|z = C(x))]}

In other words, the training process of the classifier (C) tries to minimize the

log likelihood of predicting s from z, while maximizing the log likelihood of predicting

z from x. At the same time, the goal of the discriminator (D) is to maximize the
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Figure 3.4 Evaluation framework.

log likelihood of predicting s from z. Recall that, similar to CLP and CLS [39], ZK-

GanDef uses inputs (x) perturbed with random Gaussian noise as an approximation

of true adversarial examples.

The pseudocode for training of ZK-GanDef is similar to that of GanDef which

is shown in Algorithm 1. The modification is that we are using examples with

Gaussian perturbations as replacements of generated adversarial examples. During

the sampling in lines 4 and 9, a number (predefined by user) of examples is evenly

sampled from original images X̄ and examples with Gaussian perturbations X̂ to

form a training batch. In lines 6 and 11, the weight parameters in the classifier

(discriminator) are frozen before updating the weight parameters in the discriminator

(classifier). Finally, in lines 7 and 12, the weight parameters are updated through the

stochastic gradient descent algorithm. In this algorithm, we iteratively update the

classifier and the discriminator one at a time to emulate the proposed minimax game.

3.2 Evaluation Settings

This section presents the framework that we use to evaluate our defensive method,

ZK-GanDef, under different popular adversarial example generators and compare it

with other state-of-the-art zero-knowledge adversarial training defenses. Figure 3.4
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Algorithm 1 Training ZK-GanDef

Input: training data X, ground truth T , classifier C, discriminator D

Output: classifier C, discriminator D

1: Initialize weight parameters Ω in both classifier and discriminator

2: for the global training iterations do

3: for the discriminator training iterations do

4: Sample a batch of training pair, ⟨x, t⟩

5: Generate a batch of boolean indicator, s, corresponding to training inputs

6: Fix ΩC in classifier C

7: Update ΩD in discriminator D

8: end for

9: Sample a batch of training pair, ⟨x, t⟩

10: Generate a batch of boolean indicator, s, corresponding to training inputs

11: Fix ΩD in discriminator D

12: Update ΩC in classifier C

13: end for

28



depicts the main components of this framework, which include: (1) Preprocessing

module, (2) Attack module and (3) Defense module. Different adversarial example

generators and defensive methods could be used as plug-ins to Attack and Defense

modules, respectively, to form different test scenarios.

In the following sections, we present the datasets utilized, the detailed

description of each module, and a summary of the evaluation metrics used.

3.2.1 Datasets

During our evaluations, the following datasets are utilized:

• MNIST: Contains a total of 70K images and their labels. Each one is a 28× 28
pixel, gray scale labeled image of handwritten digit.

• Fashion-MNIST: Contains a total of 70K images and their labels. Each one is
a 28× 28 pixel, gray scale labeled image of different kinds of clothes.

• CIFAR10: Contains a total of 60K images and their labels. Each one is a 32×32
pixel, RGB labeled image of animal or vehicle.

The images in each dataset are evenly labeled into 10 different classes. Although

Fashion-MNIST has exactly the same image size as MNIST, images in Fashion-

MNIST have far more details than images from MNIST.

3.2.2 Preprocessing module

Preprocessing module involves the following operations:

• Scaling: Gray scale images use one integer to represent each of their pixels,
while RGB images use three different integers (each between 0 and 255) to
represent each of their pixels. To simplify the process of finding adversarial
examples and to be consistent with the related work, scaling is used to map pixel
representations from discrete integers in the range Z[0,255] into real numbers in
the range R[−1,1].

• Separation: This operation is used to split each input dataset into two groups:
training-dataset and testing-dataset. The training dataset is used to train the
supervised machine learning models which are the different NN classifiers in
this work, while the testing dataset is used by the attack module to generate
adversarial examples in order to evaluate the NN classifier under test. The
detailed separation plans are: (1) the 70K MNIST and Fashion-MNIST images
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are randomly separated into 60K training and 10K testing images, respectively
and (2) the 60K CIFAR10 images are randomly separated into 50K training
and 10K testing images.

• Augmentation: This operation is used to generate augmented examples for
different zero-knowledge adversarial training methods. Based on the description
in [39] and our communication with its authors, we keep the same augmentation
which is adding a Gaussian perturbation with mean µ = 0 and standard
deviation σ = 1. The Gaussian perturbation used in this work is not guaranteed
to be the optimal choice and we keep the detailed comparison of different
augmentation methods as future work.

3.2.3 Attack module

The attack module implements three popular adversarial example generators, the

FGSM [26], the BIM [46] and the PGD [66]. As we mention in the previous

section, all adversarial example generators are utilized under the white-box scenario.

Moreover, each original example has its own corresponding adversarial counterparts

(FGSM, BIM, PGD). Adversarial examples from same dataset share same maximum

l∞ perturbation limits which are 0.6 in MNIST & Fashion-MNIST and 0.06 in

CIFAR10. For the BIM, we also limit the per step perturbation to 0.1 in MNIST

& Fashion-MNIST and 0.016 in CIFAR10. Finally, for the PGD, we run generation

algorithm 40 iteration with 0.02 per step perturbation on MNIST & Fashion-MNIST

and 20 iteration with 0.016 per step perturbation on CIFAR10. To ensure the

quality of the adversarial example generators, we choose the standard python library,

CleverHans [77], which is adopted by the community.

3.2.4 Defense module

This module implements the Vanilla NN classifiers as well as the different defense

methods that we evaluate in this work. For the same dataset, different defense

methods share the same structure of the classifier as that of the Vanilla. Hyper-

parameters of defenses we compare with are the exact ones used in their original
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papers. Our ZK-GanDef is tuned by line search to find a suitable hyper-parameter

setting.

Vanilla classifier For each dataset, we use as a baseline a NN classifier with no

defenses, which is also referred to as the Vanilla classifier. We select different Vanilla

classifiers for each dataset. The structure of the Vanilla classifier used in MNIST and

Fashion-MNIST dataset is LeNet [66]. For the CIFAR10 dataset, we use the allCNN

based classifier [92]. Due to space limitations, the detailed NN structure and training

settings are not listed.

Zero-knowledge defenses We implement here three different approaches: (1) a

classifier trained with CLP [39], (2) a classifier trained with CLS [39], and (3) a

classifier trained with ZK-GanDef. As Figures 3.1 and 3.2 show, CLP and CLS train

only with randomly perturbed examples. On the other hand, ZK-GanDef (Figure

3.3) trains with both original and randomly perturbed examples. We note also that

the structure of the discriminator in ZK-GanDef (Table 3.2) does not change with

different datasets. Training of the discriminator utilizes the Adam optimizer [42] with

0.001 learning rate.

Full knowledge defenses We implement here three of the full knowledge defenses:

(1) a classifier trained with original and FGSM examples (FGSM-Adv), (2) a classifier

trained with original and PGD examples (PGD-Adv), and (3) a classifier trained with

original and PGD examples through GAN based training (PGD-GanDef). Among

them, PGD-Adv is the state-of-the-art full knowledge adversarial training defense.

3.2.5 Evaluation metrics

The overall classifier performance is captured by the test accuracy metric, which is

defined as the ratio of the total number of tested images minus the number of failed
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Table 3.2 Discriminator Structure

Layer Kernel Size Strides Padding Activation

Dense 32 - - ReLU

Dense 64 - - ReLU

Dense 32 - - ReLU

Dense 1 - - Sigmoid

tests to the total number of tested images (both original and adversarial).

test accuracy ≡ total # of test examples − # of failed tests

total # of test examples

A test is considered failed when: (1) original example is missclassifed, (2) original

example is rejected, or (3) adversarial example is accepted with incorrect classifi-

cation. To be more precise during evaluation, we separately compute the test accuracy

on original and adversarial examples. When a defensive method tries to maximize

classifier’s capability to identify adversarial examples, the classifier may reject or

missclassify more original examples than the corresponding Vanilla classifier. The

trade-off between correctly classifying original and adversarial examples is the same

as the trade-off between true positive rate and true negative rate in machine learning.

The other important metric to evaluate defense approaches is the training time it

takes to build the model. As mentioned earlier, a significant amount of computation is

consumed to generate the adversarial examples for full knowledge adversarial training.

The two main contributing factors to the training time are: (1) the structure of

the classifier (number of layers and parameters) and (2) the searching algorithm

of adversarial examples (e.g., single-step vs. iterative approaches). The goal is to

minimize the training time while maintaining acceptable test accuracy.
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3.3 Evaluation Results

In this section, we present comparative evaluation results of the ZK-GanDef with

other state-of-the-art zero-knowledge as well as full knowledge adversarial training

defenses introduced previously. The evaluation results are summarized in three

sections. In the first sections, we provide comparative evaluation of ZK-GanDef

with other zero-knowledge and full knowledge adversarial training defenses on

classifying original and different types of adversarial examples. Then, we compare

the computational consumption of ZK-GanDef with other full knowledge adversarial

training defenses in terms of training time per epoch. In the third sections, we analyze

the convergence issues of CLP and CLS on CIFAR10 dataset.

3.3.1 Test accuracy on different examples

In this subsection, we show the test accuracy of the Vanilla classifier and the

classifiers with defenses against different types of examples. As mentioned earlier,

the experiments are conducted on MNIST, Fashion-MNIST and CIFAR10 datasets.

For each dataset, a total of 28 different results are calculated. These results span all

possible pairs of 7 different classifiers (Vanilla, CLP, CLS, ZK-GanDef, FGSM-Adv,

PGD-Adv and PGD-GanDef) and 4 different kinds of examples (original, FGSM,

BIM and PGD). All the validation results are presented in Figure 3.5 and detailed in

Table 3.3.
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Figure 3.5 Test accuracy on different examples.
Note: In the 1st and 2nd rows, the results on MNIST dataset are presented. In the 3rd and
4th rows, the results on Fashion-MNIST dataset are presented. In the 5th and 6th rows,
the results on CIFAR10 dataset are presented.

34



T
a
b
le

3
.3

T
es
t
A
cc
u
ra
cy

on
D
iff
er
en
t
E
x
am

p
le
s

M
N
IS
T

F
as
h
io
n
-M

N
IS
T

C
IF
A
R
10

O
ri
gi
n
al

F
G
S
M

B
IM

P
G
D

O
ri
gi
n
al

F
G
S
M

B
IM

P
G
D

O
ri
gi
n
al

F
G
S
M

B
IM

P
G
D

V
an

il
la

98
.9
2%

21
.0
1%

1.
00
%

0.
77
%

92
.4
3%

7.
01
%

5.
62
%

4.
06
%

89
.9
2%

9.
97
%

4.
93
%

4.
06
%

C
L
P

99
.1
3%

88
.7
0%

72
.6
1%

59
.9
3%

85
.6
5%

44
.7
8%

22
.3
0%

16
.1
4%

10
.0
0%

1
10
.0
0%

1
10
.0
0%

1
10
.0
0%

1

C
L
S

99
.2
4%

89
.2
9%

73
.8
4%

60
.6
3%

86
.3
7%

41
.1
4%

18
.5
5%

14
.1
7%

10
.0
0%

1
10
.0
0%

1
10
.0
0%

1
10
.0
0%

1

Z
K
-G

an
D
ef

98
.9
5%

98
.9
7%

98
.8
9%

98
.7
1%

81
.9
5%

70
.1
9%

64
.9
7%

63
.3
4%

79
.3
3%

60
.9
1%

46
.2
7%

54
.8
5%

F
G
S
M
-A

d
v

99
.0
7%

98
.7
9%

12
.2
4%

9.
73
%

91
.1
7%

90
.4
8%

7.
97
%

6.
81
%

79
.8
8%

41
.5
3%

30
.7
4%

33
.8
6%

P
G
D
-A

d
v

99
.1
5%

97
.6
0%

94
.7
5%

95
.6
0%

82
.3
3%

76
.4
2%

66
.7
2%

71
.8
0%

82
.0
6%

56
.1
8%

49
.2
1%

51
.5
1%

P
G
D
-G

an
D
ef

99
.1
0%

96
.8
5%

94
.2
8%

95
.3
1%

84
.0
9%

68
.1
9%

52
.3
5%

59
.5
1%

84
.0
5%

54
.1
4%

46
.6
4%

49
.2
1%

N
ot
e:

T
h
e
le
ft

co
lu
m
n
sh
ow

s
th
e
te
st

re
su
lt
s
on

M
N
IS
T

d
at
as
et
.
T
h
e
m
id
d
le

co
lu
m
n
sh
ow

s
th
e
te
st

re
su
lt
s
o
n
F
a
sh
io
n
-M

N
IS
T

d
a
ta
se
t.

T
h
e
ri
gh

t
co
lu
m
n
sh
ow

s
th
e
te
st

re
su
lt
s
on

C
IF
A
R
10

d
at
as
et
.

35



3.3.2 On original examples

In Figure 3.5, we first focus on the results presented in the first column sub-figures.

These results represent the test accuracy on original examples from different datasets.

As a baseline, the Vanilla classifier achieves 98.92% test accuracy on MNIST, 92.43%

test accuracy on Fashion-MNIST and 89.92% test accuracy on CIFAR10. These

results are consistent with the benchmark ones presented by Rodrigo in [5].

We then evaluate the test accuracy of the three zero-knowledge defenses (CLP,

CLS and ZK-GanDef) on different datasets. On MNIST dataset, their test accuracy

on original examples is at the same level as that of the Vanilla classifier. The detailed

results from Table 3.3 show that the difference in test accuracy among the defenses

is within 0.5%, which is small enough to be ignored. On Fashion-MNIST dataset,

the test accuracy of CLP and CLS is 5% higher than that of ZK-GanDef on original

examples. Moreover, the test accuracy of all zero-knowledge approaches is (6% to

11%) lower than that of the Vanilla classifier. This small degeneration is a result of

tuning the model to enhance test accuracy on adversarial examples. On CIFAR10

dataset, CLP and CLS have a significantly lower test accuracy compared with the

Vanilla classifier and ZK-GanDef. This is because the classifiers with the CLP and

CLS methods do not converge at the beginning of the training. A detailed study of

this phenomenon is provided in the following subsection.

Finally, we conduct the same evaluation with full knowledge adversarial training

defenses and perform comparison with the proposed ZK-GanDef. In evaluation results

on MNIST dataset, all full knowledge defenses and ZK-GanDef achieve the same level

of test accuracy as that of the Vanilla classifier. When evaluating the Fashion-MNIST

dataset, FGSM-Adv achieves similar test accuracy on original examples to that of the

Vanilla classifier. At the same time, ZK-GanDef, PGD-Adv and PGD-GanDef have

1On CIFAR10 dataset, CLP and CLS have convergence issues during training and hence
the classifier is making random guessing. A detailed study of this issue is provided in a
following subsection.
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about 10% to 12% degeneration from that of the Vanilla classifier. When evaluating

the CIFAR10 dataset, ZK-GanDef performance is similar to that of full knowledge

defenses and their test accuracy on original examples are 6% to 10% lower than that of

the Vanilla classifier, respectively. To enhance test accuracy on adversarial examples,

the decision boundary of the classifier becomes complex with more curves, which

causes the degeneration on classifying original examples compared to the Vanilla

classifier [66].

3.3.3 On single-step adversarial examples

We discuss here the accuracy results on FGSM examples, which are depicted on

sub-figures on the second column of Figure 3.5. Intuitively, the Vanilla classifier has

poor performance on these single-step adversarial examples, with test accuracy of

21.01% on MNIST, 7.01% on Fashion-MNIST, and 9.97% on CIFAR10.

Compared with the Vanilla classifier, all zero-knowledge defenses achieve a

significant enhancement in terms of test accuracy on all datasets, with the exception

of CLP and CLS on CIFAR10 dataset. Among the zero-knowledge approaches,

ZK-GanDef achieves the highest test accuracy on all the datasets with significant

margin. On MNIST, the test accuracy is 88.70%, 89.29%, and 98.97% with CLP,

CLS, and ZK-GanDef, respectively. On Fashion-MNIST, the test accuracy is 44.78%,

41.14%, and 70.19% CLP, CLS, and ZK-GanDef, respectively. On CIFAR10,

ZK-GanDef is the only zero-knowledge defense that reasonably works test accuracy

around 60.91%.

In general, full knowledge approaches have better understanding of the adver-

sarial examples since such examples are part of their training datasets. Therefore,

full knowledge approaches should, intuitively, have better test accuracy compared to

their zero-knowledge counterparts. Our results confirm this observations. The results

show that the test accuracy of full knowledge approaches is significantly higher than
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Figure 3.6 Training time and training loss.
The left sub-figure is training time on MNIST and Fashion-MNIST. The middle sub-figure
is training time on CIFAR10. The right sub-figure is the training loss of CLS under
different hyper-parameters.

those of CLP and CLS, especially on Fashion-MNIST and CIFAR10 datasets. On the

other hand, the test accuracy of ZK-GanDef is comparable to those of full knowledge

defenses. In fact, the test accuracy of ZK-GanDef (98.97%) is higher than those

of all the full knowledge defenses (98.79%, 97.6% and 96.85%). This is because

handwritten digits in MNIST are gray scale figures with no detailed texture, and

therefore, ZK-GanDef can train to select strongly denoised (even binarized) features

without losing information. As a result, ZK-GanDef can achieve even higher test

accuracy than full knowledge approaches.

When evaluating the Fashion-MNIST, FGSM-Adv achieves the highest test

accuracy (90.48%). The PGD-Adv, PGD-GanDef and ZK-GanDef achieve the second

tier test accuracy (76.42%, 68.19% and 70.19%). This is because FGSM-Adv utilizes

only original and FGSM examples during training, and therefore, the trained classifier

is overfitting on FGSM examples. This behavior has been observed in [98] and denoted

as gradient masking effect. When evaluating the CIFAR10, PGD-Adv, PGD-GanDef

and ZK-GanDef achieve comparable test accuracy (56.18%, 54.14% and 60.19%,

respectively), while the test accuracy of FGSM-Adv is only at 41.53%. Due to the

input dropout in allCNN classifier, the diversity of training data is enhanced and the

overfitting of FGSM-Adv is inhibited [98]. However, FGSM examples are generated

with the weaker single-step method, and hence the test accuracy degenerates on the

stronger iterative examples.
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3.3.4 On iterative adversarial examples

We analyze here the test accuracy results on BIM and PGD examples, which are

depicted on the sub-figures of the third and the fourth columns of Figure 3.5,

respectively. The figure clearly shows that the Vanilla classifier completely failed

with both BIM and PGD examples. This is because BIM and PGD are iterative

adversarial examples and hence are carefully crafted to mislead Vanilla classifiers.

Based on the test accuracy results, using zero-knowledge defenses could still

enhance the performance on these stronger adversarial examples. However, these

enhancements are lower than those on FGSM examples. Among zero-knowledge

defenses, the test accuracy of ZK-GanDef is significantly higher than those of CLP

and CLS on all iterative adversarial examples. On MNIST, the test accuracy of

ZK-GanDef with BIM and PGD examples is 25% and 38%, respectively, higher than

those of CLP and CLS. On Fashion-MNIST, the test accuracy of ZK-GanDef on BIM

and PGD examples is 42% and 47%, respectively, higher than those of CLP and CLS.

On CIFAR10, only ZK-GanDef could work and it achieves 46.27% and 54.85% test

accuracy on BIM and PGD examples, respectively.

As mentioned in Section 3.1.1, full knowledge defenses could achieve larger

enhancement in test accuracy compared to the existing zero-knowledge defenses,

CLP and CLS. FGSM-Adv is the exception as evidenced by its poor performance

in defending iterative adversarial examples due to the reasons we mentioned in

Section 3.3.3. Based on evaluation results from MNIST and Fashion-MNIST, the

test accuracy of FGSM-Adv on BIM and PGD examples has a huge decrease from

over 90% to around 10%. Although such huge decrease does not exist in the case of

CIFAR10, the test accuracy of FGSM-Adv is clearly lower than that of PGD-Adv

and PGD-GanDef. On all datasets, PGD-Adv and PGD-GanDef have much stable

test accuracy with limited decrease of test accuracy on FGSM examples. More

importantly, the results show that the test accuracy of ZK-GanDef is close to those
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of PGD-Adv and PGD-GanDef on iterative adversarial examples from the three

datasets.

We summarize our findings from the results as: (i) ZK-GanDef is significantly

better than existing zero-knowledge defenses (CLP and CLS) due to its higher test

accuracy on adversarial examples and its scalability to large datasets. This clearly

supports our vision that utilizing a more flexible and sophisticated way to handle

the pre-softmax logits (ZK-GanDef) is better than forcing the pre-softmax logits to

be smooth at a small scale (CLP and CLS). (ii) The test accuracy of ZK-GanDef

is comparable to that of the state-of-the-art full knowledge adversarial training

defenses. This supports our hypothesis that using perturbation invariant features

in the classifier could greatly enhance test accuracy on adversarial examples. (iii)

On contrast with full knowledge defenses, ZK-GanDef is adaptable to new types

of adversarial examples. We see from the results that FGSM-Adv has significant

adaptability issue on MNIST and Fashion-MNIST datasets. This issue is not observed

on CIFAR10 due to the input dropout in classifier structure [98]. For PGD-Adv, the

current evaluation does not show its adaptability issue, but it is not guaranteed given

that stronger adversarial examples could be generated in the future [98][85]. On the

other hand, the results show that ZK-GanDef has better adaptability to new types

of adversarial examples because its training is independent of such examples.

3.3.5 Generalizability

In the previous evaluation, all iterative adversarial examples are generated by methods

based on projected gradient descent. In order to show the generalizability of

ZK-GanDef, we conduct the evaluation on an extra set of adversarial examples,

Deepfool [72] and Carlini & Wagner (CW) examples [11]. Unlike adversarial

examples used in previous evaluation, Deepfool and CW adversarial examples contain

perturbation patterns that are significantly different from Gaussian perturbation.
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Table 3.4 Test Accuracy on Deepfool and CW Examples

MNIST Fashion-MNIST CIFAR10

Deepfool CW Deepfool CW Deepfool CW

98.72% 98.46% 89.52% 66.43% 86.08% 47.22%

Therefore, this evaluation could reveal the generalizability of ZK-GanDef in defending

other adversarial examples. The evaluation is conducted on all three datasets. The

Deepfool and CW adversarial examples utilize the same hyper-parameter setting as

PGD adversarial examples.

The evaluation results are summarized in Table 3.4. It is clear that ZK-GanDef

can classify Deepfool adversarial examples with over 85% accuracy in all three datasets

which matches the test error presented in [72]. The reason is that Deepfool tries to find

adversarial examples with smaller perturbation than projected gradient descent based

adversarial examples (FGSM, BIM, PGD). As a result, Deepfool examples are easier

to defend. For CW examples, ZK-GanDef achieves the same level of test accuracy on

all three datasets. To conclude, ZK-GanDef is not limited to defend a specific type of

perturbation. Although ZK-GanDef only utilizes Gaussian noise perturbation during

training, its defense can be generalized to a wide range of adversarial examples which

include FGSM, BIM, PGD, Deepfool and CW examples.

3.3.6 Training time

We evaluate here the training time of ZK-GanDef in terms of seconds per training

epoch. MNIST and Fashion-MNIST share the same image size and classifier structure

and hence has the same training time. Since the test accuracy of ZK-GanDef is

significantly higher than those of the existing zero-knowledge defenses, CLP and CLS,

we only compare the training time of ZK-GanDef with those of full knowledge defenses

41



(FGSM-Adv, PGD-Adv and PGD-GanDef). We utilize a fixed number of training

epochs (80 for MNIST and 300 for CIFAR10) and results show that all defensive

methods converge at epoch 30 on MNIST and at epoch 240 on CIFAR10. Since the

records of training time per epoch have a very small deviation, we take the average

value of records in all epochs and compare different defense methods with it. The

results are recorded during the training on a workstation with a NVIDIA GTX 1080

GPU.

The left sub-figure of Figure 3.6 shows that the training time of ZK-GanDef

on MNIST/Fashion-MNIST (8.75s) is close to that of FGSM-Adv (7.83s), while it

surges to 110.85s and 132.75s in the case of PGD-Adv and PGD-GanDef, respectively.

The evaluation results on CIFAR10 dataset (the middle sub-figure of Figure 3.6)

follow a similar trend to that of the results on MNIST and Fashion-MNIST datasets.

ZK-GanDef and FGSM-Adv take much less training time per epoch (71.20s and

62.85s, respectively) compared to that of PGD-Adv (146.91s) and that of PGD-

GanDef (257.72s). For example, on CIFAR10 dataset, the end-to-end training time

of PGD-Adv takes 14.3 hours, while training of ZK-GanDef only takes 6.9 hours. In

summary, ZK-GanDef provides test accuracy close to that of the best state-of-the art

full knowledge defesnses (PGD-Adv), while reducing the training time by 92.11% and

51.53% on MNIST/Fashion-MNIST and CIFAR10, respectively.

3.3.7 Convergence issue

As presented, the evaluation results of CLP and CLS on CIFAR10 dataset show that

these two zero-knowledge adversarial training defenses fail to correctly classify both

original and adversarial examples. This is mainly because the training loss of CLP and

CLS does not converge during training. The mathematical models of CLP and CLS

presented in previous section follow the same design logic that aims at preventing

over confident predictions. CLP achieves its goal by adding l2 norm penalty on
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the difference of two randomly selected pre-softmax logits, while CLS adds l2 norm

penalty on any pre-softmax logits. Moreover, CLP and CLS do not include original

examples in their training dataset, which means that they miss important features

that can help discriminate examples with and without perturbations. Therefore,

this design logic is too simple and lacks flexibility compared with ZK-GanDef, which

utilizes minimax game with discriminator and trains on examples with and without

perturbations. When training on complex datasets like CIFAR10, the simple and less

flexible design logic leads to convergence issues for CLP and CLS.

To further validate this conclusion, we record the loss of CLS during the first

30 training epochs and depict the results on the right sub-figure of Figure 3.6. The

training loss is recorded on four different hyper-parameter settings of CLS: (1) normal

CLS (σ = 1.0, λ = 0.4), (2) CLS with reduced perturbations (σ = 1.0, λ = 0.01), (3)

CLS with reduced penalty (σ = 0.1, λ = 0.4), and (4) CLS with reduced perturbation

and penalty (σ = 0.1, λ = 0.01). Figure 3.6 shows that the curves of the first three

settings overlap with each other and form the horizontal curve on the top. This clearly

shows that CLS does not learn any useful features and hence the training loss does

not converge (does not decrease) under these three settings. Under the last setting,

CLS was able to learn useful features and hence the training loss decreases towards

convergence. However, with the last setting, CLS falls back to Vanilla classifier, which

fails to defend against adversarial examples. A similar experiment is also conducted

with CLP and the results follow the same pattern. The only difference is that the

training loss goes to “nan” on CLP under the first three settings, which means that

the classifier diverges during training.

3.4 Conclusion

In this chapter, we introduce a new zero-knowledge adversarial training defense,

ZK-GanDef, which combines adversarial training and feature learning to better
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recognize and identify adversarial examples. We evaluate the test accuracy and the

training overhead of ZK-GanDef against state-of-the-art zero-knowledge adversarial

training defenses (CLP and CLS) as well as full knowledge adversarial training

defenses (FGSM-Adv and PGD-Adv). The results show that ZK-GanDef enhances

the test accuracy on original and adversarial examples by up to 49.17% compared

to zero-knowledge defenses. More importantly, ZK-GanDef has close test accuracy

to full knowledge defenses (test accuracy degeneration is below 8.46%), while taking

much less training time. In a nutshell, ZK-GanDef provides test accuracy much

higher than existing zero-knowledge approaches and close to that provided by the

state-of-the-art full knowledge defence (PGD-Adv), while taking much less training

time. Additionally, in contrast to full knowledge defenses, ZK-GanDaf can adapt to

new types of adversarial examples because its training is adversarial example agnostic.

Although the zero-knowledge defense allows us to win the efficiency, the

approach lacks the probability of leveraging the adversarial gradient to enhance the

defense performance. Therefore, in the next chapter, we introduce another defense

that achieves a better balance between efficiency and performance.
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CHAPTER 4

SEMI-ITERATIVE ADVERSARIAL TRAINING

In addition to the zero-knowledge defense proposed in Chapter 3, another approach

to achieving computational efficiency in defense is retraining with low-cost adversarial

examples. This chapter aims to design a novel defense strategy of this kind,

named semi-iterative adversarial training (SIM-Adv). Unlike the aforementioned

zero-knowledge approach, SIM-Adv still leverages adversarial gradients, enabling it

to adapt to newly introduced adversarial examples.

To accomplish this objective, we commence by conducting experimental

analyses on several state-of-the-art adversarial training defenses. Drawing insights

from these experiments, we subsequently introduce SIM-Adv, a defense mechanism

capable of countering both single-step and iterative adversarial examples. Through

comprehensive evaluations, we demonstrate that our proposed method surpasses

the state-of-the-art single-step adversarial training defense, ATDA, by achieving a

remarkable enhancement of up to 35.67% in test accuracy while reducing training

time by 19.14%. Furthermore, when compared to the state-of-the-art adversarial

training methods employing iterative adversarial examples (such as BIM and Madry

examples), our proposed method achieves savings of up to 76.03% in training time,

with a minimal trade-off of less than 3.78% in test accuracy.

4.1 Analysis of Iter-Def Methods

Compared with Single-Def, Iter-Def methods have significantly higher test accuracy.

Therefore, the majority of adversarial training defenses, including the SOTA ones,

focus on Iter-Def. In spite of this, the domain is still not very well comprehended.

In this section, we explore several fundamental questions regarding SOTA Iter-Def

methods, through an extensive set of experiments.
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Figure 4.1 Empirical results on per-step perturbation

Figure 4.2 Empirical results on intermediate examples.

4.1.1 Limit of small per-step perturbation

Based on the introduction of Iter-Exps in Section 2, it is clear that the smaller the

per-step perturbation applied, the better the observation of NN’s decision hyperplane,

and the stronger adversarial examples obtained. However, to select an appropriate

per-step perturbation, we believe that a quantitative analysis is needed.

We approach this goal by first conducting a series of experiments on MNIST,

FMNIST, and CIFAR-10 datasets. For each dataset, we train two different NN

classifiers with the same structure and hyper-parameter settings: (1) a Vanilla

classifier trained on original examples only; and (2) a BIM-Def classifier [45]. For

each n1 = n2 value in the range Z[0,30], we generate BIM examples with fixed ϵ (0.3

in MNIST, 0.2 in FMNIST, and 8
255

in CIFAR-10) and calculate the ratio ρ as:

ρ =
error rate under current value of n1 and n2

error rate under the maximum value of n1 and n2

(4.1)
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To understand ρ, assume that its value is 1 when, for example, n1 = n2 = 10 and the

maximum value of n1 and n2 is 30. This means that BIM examples generated with

value n1 = n2 = 10 can be as successful as those generated with value n1 = n2 = 30

in misleading the classifier.

From the results in Figure 4.1, it is clear that ρ converges fast and saturates

when the value of n1 = n2 is around 5 in all six lines. For the Vanilla classifiers,

this phenomenon is not surprising since they have no defence at all and most of

the adversarial examples can fool them. However, we see a similar trend from the

BIM-Def classifiers which are well trained to defend adversarial examples. The insight

we draw from this experiment is that increasing the value of n1 = n2 over a certain

limit provides only marginal help in finding stronger adversarial examples. In other

words, training a classifier by Iter-Def with small n1 = n2 values (around 5 in this

experiment) is as efficient as training with large n1 = n2 values (30 in this experiment).

Given the fact that adversarial training uses adversarial examples to find blind

spots of the under-trained classifier and retrains it, these results show that decreasing

the per-step perturbation of Iter-Exps used during Iter-Def beyond a certain limit only

marginally benefits the defense.

We think the saturation of per-step perturbation exists because the loss

structure used in projected gradient descent to search Iter-Exps is highly tractable

[66]. This important finding indicates that defenses could use smaller values of

n1 = n2 without sacrificing the quality of the defense. Although the resulting

defense is still within the Iter-Def category, it consumes less time and computations

in preparing adversarial examples. We will utilize this observation in combination

with the following others to develop an efficient Single-Def method.

47



4.1.2 Training with intermediate examples

As shown in Chapter 2, Iter-Def usually uses final adversarial examples (x̃n2) to build

the defense, since it is much stronger than intermediate examples (x̃i, ∀i < n2).

In this section, we explore whether those intermediate examples can be utilized for

training while being generated, instead of sitting idle and waiting for the final versions

of the generated examples.

To investigate this, we conduct another set of experiments on the MNIST,

FMNIST, and CIFAR-10 datasets. In these experiments, we use the same NN

classifiers; we measure the same ratio (ρ as defined in Section 4.1.1); and we maintain

the same perturbation limit used in the preceding subsection. The only difference is

that we here assign the value of n1 (10 for MNIST and FMNIST, 7 for CIFAR-10) and

n2 (30 for all) in BIM examples. Values along the X-axis in Figure 4.2 correspond to

different iterations during the generation of BIM examples. For example, in MNIST,

an X-axis value of zero corresponds to the original examples; a value of 0 < i < 30

represents the corresponding intermediate examples after i iterations; and a value of

30 corresponds to the final versions, BIM(10,30), of the adversarial examples.

The results show that ρ, under all the scenarios, is monotonically increasing

with the number of iterations. For all three Vanilla classifiers which have no defense

against adversarial examples, ρ saturates quickly after around 5 iterations. Although

ρ for BIM-Def classifiers does not saturate as quickly as that for Vanilla classifiers,

it increases almost exponentially before reaching around 0.8 (MNIST and FMNIST)

or 0.9 (CIFAR-10). In the zoom-in view of Figure 4.2, we can clearly see that the

turning point in the BIM-Def classifier corresponds to the selected value of n1 (10

or 7). In other words, when the perturbation iterates to its limit, the gap between

intermediate and final adversarial examples is quickly mitigated.

Our insight from this experiment is that: training with intermediate examples

of Iter-Exps produces defenses that are comparable to those trained with the final
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examples. In other words, we can utilize the intermediate examples during the

preparation of Iter-Exps to continuously enhance the model instead of waiting for

the final examples. In Section 4.2, we build on this finding to expand the generation

process of Iter-Exps and to end up with our Single-Def method that performs very

close to Iter-Def.

4.1.3 Summary

In this section, we identify two experimental properties of Iter-Def: (1) It is

recommended to use large per-step perturbation, i.e., small n1 and (2) intermediate

examples can be used to expedite adversarial training with a tolerable degeneration

in quality.

4.2 Single-Step Epoch-Iterative Method

In Section 4.1, we conduct experiments and evaluate Iter-Def methods in detail. The

insights from the results help us enhance our understanding of adversarial training

and its underlying fundamental concepts. In this section, we propose a new Single-Def

method which we call Single-Step Epoch-Iterative Method.

4.2.1 Motivation and design

In Figure 4.3, we review the process of adversarial training. Each row in the figure

represents a training epoch, and the solid black lines represent the data flow (training

examples). The dashed red lines across different rows correspond to knowledge flow

(classifier’s weights) from one epoch to the next. As shown in the figure, the original

examples are fed into the generator of adversarial examples, which could be single-

step or iterative. Then, the original and adversarial examples are used to train the

classifier. The training process consists of several training epochs, and the weights of

the classifier are carried out from one training epoch to the next.
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Figure 4.3 Flow of traditional adversarial training.

Figure 4.4 Flow of single-step epoch-iterative method.

Inspired by the empirical findings drawn from our previous experiments (Section

4.1), we propose the following modifications to enhance the Single-Def process.

Similar to other Single-Def approaches, our method also uses the single-step generator

to reduce computation overhead in each epoch. Recall that a classifier which is trained

with Single-Exps fails to defend Iter-Exps; therefore, we use consecutive training

epochs to mimic the generation of Iter-Exps.

Starting from the second training epoch, we reuse the output of the generator

from the previous epoch as input to the generator of the current epoch, instead of

using the original image. As a result, the classifier can be seen as trained with

intermediate examples in the first (n2 − 1) training epochs. In each training epoch,

our method uses a relatively large per-step perturbation (i.e., small n1) instead of
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complete perturbation (i.e., n1 = 1). It helps our method to avoid repeatedly

generating Single-Exps for training. On the other hand, a large per-step perturbation

ensures the adversarial examples can quickly reach their maximum perturbation.

Therefore, it can mitigate the degeneration caused by training with weak intermediate

examples in the first few training epochs. After n2 epochs, the generator switches

back to select original examples as inputs (i.e. to reset the iteration over consecutive

epochs). By repeating this process, we could fill an arbitrary number of training

epochs.

From a high-level point of view, we flatten the iteration of generating Iter-Exps

into training epochs. Within each iteration of n2 consecutive training epochs, the

mathematical formulation of generating adversarial examples is as follows.

δi+1 = clip[−ϵ,ϵ][
ϵ

n1

× sign[∇x̃iL(x̃i, y, θ)]]

x̃i+1 = clip[0,1][x̃i + δi+1] i ∈ {0, ..., n2}

Here, i represents the index of iteration over training epochs while x̃0 = x̂ is the

starting point. We present the process of SIM-Def in Figure 4.4.

4.2.2 Applying over-perturbation

In Section 4.2.1, we present the core design of using Single-Exps to mimic Iter-Exps.

At the same time, we also demonstrate the potential disadvantage of this design. In

the majority of training epochs, our method uses the intermediate examples. Recall

the experiment results in Figure 4.2, these intermediate examples are weaker than

the corresponding final Iter-Exps. As a result, the classifier trained with SIM-Def can

defend against adversarial examples, but it performs worse than that trained with

Iter-Def.

To further mitigate the gap in performance, we now introduce a heuristic

modification of the hyper-parameter setting which we call over-perturbation. We
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define two different hyper-parameter settings in adversarial training methods. We

consider the setting to be in over-perturbation when n1 < n2; otherwise, we consider

it to be in under-perturbation. This modification is based on our empirical results.

As mentioned earlier, the intermediate examples are less adversarial than the final

output of an Iter-Exps generator. However, the zoom-in view in Figure 4.2 shows the

existence of a turning point in the iteration index relative to the value of n1. Before

the turning point, the success rate to mislead classifiers by intermediate examples

is much lower than those of the final examples but increases exponentially, and vice

versa.

By applying over-perturbation, we actually ensure that our method trains the

classifier with strong adversarial examples in most of the training epochs. Assume

we run 20 epochs of training with two settings (1) n1 = n2 = 10 and (2) 2n1 =

n2 = 20. Under the first setting, the classifier is trained with intermediate examples

before the turning point in both 1st to 9th and 11th to 19th epochs. While, under the

second setting, the intermediate examples used between 10th and 19th epoch are after

the turning point. Overall, the second setting spends more epochs in training the

classifier with strong adversarial examples, and the trained classifier performs better

on defending adversarial examples.

Actually, the over-perturbation setting has been used in previous research works,

intentionally or unintentionally. For example, in [66], the hyper-parameter settings

of all Madry-Def methods are over-perturbation. For curiosity, we try to change the

hyper-parameter setting from under to over-perturbation and record the performance.

In both MNIST and FMNIST datasets, we fix n2 to 30 and iteratively reduce the value

of n1 from 30 to 10. In each setting, we measure the classifier’s test accuracy on both

BIM and Madry examples. These results are presented in Figure 4.5. To our surprise,

we found that the Madry-Def with under-perturbation settings performs significantly

worse than that with over-perturbation settings (in FMNIST).
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Figure 4.5 Madry-Def under different n1 values.

Optimal BIM-Def

FGSM-Def SIM-Def

Figure 4.6 Searching space of different adversarial examples

We believe that this phenomenon is related to the random initialization

which is the additional step of Madry-Def over BIM-Def. In some situations, the

random initialization may add unnecessary perturbation to the image, and such

perturbation could degenerate the performance of the classifier being trained. Under

such situations, the over-perturbation makes it possible to mitigate unnecessary

perturbations; and, in turn, this produces a more accurate classifier. Further analysis

of the impact of over-perturbation settings on Madry-Def is beyond the scope of this

work.
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4.2.3 Searching space for adversarial examples

To show the effectiveness of our proposed method, we prepare a toy example to

demonstrate the search space of adversarial examples. Without loss of generality,

we assume that the data in this toy example is in a two-dimensional (2D) space.

Figure 4.6 shows the searching space of adversarial examples in optimal, BIM-Def,

FGSM-Def, and SIM-Def.

As we see from the top-left corner of Figure 4.6, the optimal search space of

adversarial examples is the entire norm ball of the blue square. However, this search

space corresponds to the exhaustive search which cannot be achieved. Among others,

BIM-Def has the highest coverage; and hence, it is the best mimic of the optimal

search. BIM-Def divides the total perturbation into multiple steps and iteratively

applies small perturbations. Its search space is represented by the mesh of red dots.

The density of dots is inversely proportional to the size of per-step perturbation.

Compared with BIM-Def, the search space of FGSM-Def is significantly limited. Since

FGSM-Def applies all the perturbation once, the potential locations (red dots) of

adversarial examples can only cover the corners and few points of the norm ball,

while the entire inner space between origin and perturbation boundary is unreachable.

Similar to BIM-Def, the search space of the SIM-Def is also represented by a mesh

of red dots. The difference is that the size of the mesh increases from the smallest

one (just around the origin) to the largest one (same size as the entire norm ball),

epoch-by-epoch.

Although the searching space of the SIM-Def is smaller than that of BIM-Def

initially, the small n1 value and over-perturbation settings ensure that the most of

epochs are searching adversarial examples in the entire norm ball. Moreover, the

analysis of Iter-Exps shows that a relatively lower density of dots does not significantly

affect the searching of adversarial examples. It is worth a reminder, here, that SIM-
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Figure 4.7 Feature space encoding of Vanilla, ATDA, Free-Def, BIM(30,30)-Def,
and SIM(10,20)-Def classifiers.

Def is Single-Def; and hence, it consumes less computation overhead compared to the

Iter-Def (e.g., BIM-Def).

4.2.4 Analyzing feature space encoding

To intuitively compare different defense approaches, we analyze the feature space

encoding from five different classifiers: Vanilla, ATDA, Free-Def, BIM(30,30)-Def, and

SIM(10,20)-Def classifiers. We use t-SNE [65] to project the high-dimensional feature

encoding from each classifier to a two-dimensional space and visualize it in Figure

4.7. During the analysis, we sample original examples from the MNIST dataset.

Examples from a randomly selected class are used as targets (green dots), while

others are references (blue dots). Corresponding to targets, we generate adversarial

examples (red dots). It is worth to note that large-scale distances in t-SNE plots

lack semantic content. However, for classifiers that are robust towards adversarial

perturbation, we should expect inter-mixing of green and red dots. In other words,

the robust classifier should be able to extract almost the same feature vectors from

the benign example and its adversarial copy.
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From Figure 4.7a, we can see that the feature encoding of adversarial examples

(red dots) form several individual small groups that are clearly separable from the

feature encoding of targets (green dots). Without the color, we can barely tell the

difference between small groups of references (blue dots) and adversarial examples (red

dots). When using the ATDA classifier, this problem is slightly mitigated, since the

red dots are grouped together and overlap with green dots in Figure 4.7d. However,

from Figure 4.7d, the groups of green dots and red dots are still separable. If we

turn to Free-Def in Figure 4.7f, the performance is even worse, since the feature space

encoding is almost the same as that of a Vanilla classifier when facing BIM examples.

In contrast to these SOTA Single-Def, BIM(30,30)-Def and our SIM(10,20)-Def

classifiers presented in Figures 4.7b and 4.7c are significantly better, since the red

and green dots are blended. It’s worth recalling that our SIM(10,20)-Def belongs

to Single-Def, which takes less training time than BIM(30,30)-Def or other Iter-Def

methods. In other words, our method successfully combines the robustness of Iter-Def

and the efficiency of Single-Def.

Finally, we add extra visualizations for the ATDA and Free-Def classifiers when

using FGSM examples. Compared with BIM(30,30) examples which are Iter-Exps,

the FGSM examples are weaker Single-Exps. In Figure 4.7e, the red and green dots

are blended; which means, as expected, that the ATDA classifier performs well against

FGSM (Single-Exps) examples. Similarly, Figure 4.7g shows that the Free-Def also

performs better on FGSM examples.

In a nutshell, feature space encoding results show that SIM-Def has close

accuracy to that of the Iter-Def with overhead comparable with that of Single-Exps

approaches. Moreover, the ATDA and Free-Def face a similar problem as FGSM-Def

because they retraining with FGSM examples.
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Table 4.1 Evaluation Parameter Setting

MNIST FMNIST CIFAR-10

ϵ 0.3 0.2 8
255

x̃ FGSM, BIM and Madry examples

Single-Def Free-Def and ATDA

Iter-Def BIM-Def and Madry-Def

Network Structure LeNet ResNet

Metric test accuracy and total training time

4.3 Evaluation

In this section, we first summarize the evaluation settings. Then, we present, analyze,

and compare the evaluation results of our proposed adversarial training method,

SIM-Def, with other defense methods.

4.3.1 Evaluation setting

We conduct our experiments on four popular datasets: MNIST, FMNIST, CIFAR-10,

and ImageNet. For the MNIST and FMNIST datasets, we select the LeNet [50]

as network structure, while, the ResNet structure [29] is used in both CIFAR-10

(34-layers) and ImageNet (50-layers) datasets. Within each dataset, we evaluate the

test accuracy of the trained classifier against both original and different types of

adversarial examples.

test accuracy ≡ # of correctly classified inputs

# of total inputs
(4.2)

Moreover, we also measure the total time consumed during training. All of

the adversarial examples used throughout this work are l∞ white-box untargeted
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Figure 4.8 Explore the effect of n1 and n2 on performance.

adversarial examples which include FGSM, BIM, and Madry examples. The total

perturbation limits are 0.3 in MNIST, 0.2 in FMNIST and 8
255

in CIFAR-10 as in

[66]. For a more credible evaluation, we use larger n2 value to generate the Madry

and BIM adversarial examples used for evaluation to make them stronger than the

ones used for training.

As a baseline, we present the evaluation results of the vanilla classifier, one

with no defense against adversarial examples. To better evaluate our proposed

method, we compare not only with Single-Def methods (ATDA and Free-Def), but

also with Iter-Def approaches (BIM-Def and Madry-Def). In the evaluation, we

skip adversarially trained models with FGSM or R+FGSM examples. Although

FGSM-Def and R+FGSM-Def are Single-Def methods, previous studies show that

they fail to defend against Iter-Exps [47, 98]. Instead, we present the ATDA and

Free-Def as representatives of Single-Def methods.

For each of the adversarial training methods, we follow the original hyper-

parameter settings presented by its authors and report the best performance. To

ensure quality and reproducibility, our training and evaluation are based on the

well-known package, CleverHans [77]. A summary of these evaluation settings is

also presented in Table 4.1.
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Table 4.3 Test Accuracy under Different Perturbation Limits

ϵ

8
255

12
255

16
255

20
255

24
255

Free-Def 38.68% 24.01% 16.53% 15.99% 14.62%

SIM-Def 43.69% 36.14% 33.26% 26.87% 17.15%

4.3.2 Test accuracy

For each dataset, we conduct experiments with different combinations of n1 and n2.

Then, we select the combination based on the test accuracy on BIM examples. It is

worth noting that the values of n1 and n2 used in the experiments are manually

selected based on the properties presented in Section 4.2. Based on the results

presented in Figure 4.8, we choose SIM(5,20)-Def, SIM(10,40)-Def, and SIM(2,10)-Def

for MNIST, FMNIST, and CIFAR-10 datasets, correspondingly.

The evaluation results of all different defenses in Table 4.2 show that Free-

Def can defend against both Single-Exps and Iter-Exps in the CIFAR-10 dataset.

However, its Iter-Exps accuracy degenerates significantly with MNIST and FMNIST

datasets. As mentioned previously, we believe it is related to the use of FGSM

examples during the retraining. On the other hand, because the perturbation limit is

low in CIFAR-10, the test accuracy of Free-Def gets better, but is still lower than that

of our classifier (SIM-Def). More importantly, the perturbation limit is controlled by

the adversary, who is willing to utilize a larger value for a higher attack success

rate. To better compare the Free-Def and our SIM-Def on the CIFAR-10 dataset,

we present the contour of test accuracy under different perturbation limits. This is

discussed in Section 4.3.3, and the details are summarized in Table 4.3.
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As shown in Table 4.2, the accuracy of ATDA is significantly worse than that

presented in its original work [91]. This is mainly because the original work uses a very

low perturbation limit for adversarial examples; that is, weak adversarial examples.

For example, ϵ in [91] is 4
255

instead of the usually used 8
255

on the CIFAR-10 dataset.

As a result, the generated Madry examples are similar to Single-Exps, such that

FGSM-Def achieves over 48% test accuracy [91]. Therefore, we think the original

evaluation of ATDA is misleading. Our further evaluation in Section 4.3.4 reveals

that ATDA actually fails to defend Iter-Exps.

Compared with Free-Def and ATDA, SIM-Def achieves better and more stable

performance. In all the datasets, SIM-Def can defend both Single-Exps and Iter-Exps

while maintaining a reasonable test accuracy of original examples. More importantly,

SIM-Def continuously outperforms ATDA and Free-Def in terms of test accuracy on

Iter-Exps. Moreover, we compare SIM-Def with two of the SOTA Iter-Def methods,

BIM-Def and Madry-Def. The results show that SIM-Def has a performance that is

competitive with BIM-Def and Madry-Def. Although the test accuracy of SIM-Def

slightly degenerates, we think that less than 4% decrease in accuracy is a reasonable

trade-off for at least 60% reduction in training time.

4.3.3 Analyzing the behavior of Free-Def

The test accuracy results in Table 4.2 show that Free-Def fails miserably against

Iter-Exps in the MNIST and FMINST datasets. On the other hand, the results show

that the test accuracy of Free-Def significantly improves in the case of CIFAR-10

dataset. As mentioned in Section 4.3.2, this phenomenon is because the perturbation

limit (ϵ) used in the CIFAR-10 is relatively small. To better evaluate Free-Def and

our SIM-Def, we conduct an experiment to compare their test accuracy under various

values of ϵ in CIFAR-10 dataset. Similar evaluation has been used in [66, 87].
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Figure 4.9 Samples of benign and adversarial examples.

We change the value of ϵ from 8
255

to 24
255

with a step size of 4
255

. For each

perturbation limit, we evaluate on Madry examples with a step size of 2
255

and

an iteration number at 20. As a reference, we present samples of benign and

corresponding adversarial examples with various ϵ in Figure 4.9. It is clear that the

difference between adversarial examples with different ϵ are insignificant. We train

and evaluate both Free-Def and SIM-Def with different hyper-parameter settings. For

Free-Def, we use m = {2, 4, 6, 8}. For SIM-Def, we fix n2 = 10, and we change n1 to

assign the per-step perturbation to the following values { 4
255
, 5
255
, 6
255
, 7
255
, 8
255
}. The

best performance of Free-Def and SIM-Def in each perturbation limit is summarized

and presented in Table 4.3. The results clearly show that the accuracy of Free-Def

quickly degenerates with increasing the perturbation limit. When ϵ = 16
255

, the test

accuracy of SIM-Def reaches twice that of Free-Def. That explains why Free-Def
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Table 4.4 Test Accuracy with Different Learning Rate α

Test Accuracy of ATDA (SIM-Def)

α FGSM BIM(10,40) Madry(10,40)

MNIST
e−3 96.76%(93.87%) 22.29%(89.93%) 17.83%(90.11%)

e−4 98.20%(96.57%) 1.30%(92.55%) 1.13%(92.89%)

FMNIST
e−3 83.46%(74.46%) 26.55%(62.52%) 24.26%(63.24%)

e−4 83.38%(79.54%) 10.35%(67.50%) 8.84%(68.82%)

uses low perturbation limits in its original evaluation. Note that, in real-world

deployments, the perturbation limit, which is controlled by the adversary, can be

large, as long as it is visually insignificant. Our conclusion is that the contour of test

accuracy results clearly shows that SIM-Def outperforms Free-Def, which is mainly

because SIM-Def has better approximation of the Iter-Def through the use of flexible

per-step perturbation.

4.3.4 Analyzing the weakness of ATDA method

Based on the feature space encoding in Figure 4.7 and the test accuracy in Table 4.2, it

is clear that ATDA performs poorly in classifying Iter-Exps. Through experimenting

with the source code, we identified one possible reason that ATDA is overfitting on

FGSM examples.

We evaluate ATDA with different values of learning rate α as shown in Table

4.4. The test accuracy on both BIM(10,40) and Madry(10,40) examples significantly

degenerates when we decrease α. When α = e−4, the ATDA performs in a similar way

as FGSM-Def in [98]. Actually, [98] has shown that FGSM-Def causes the trained

classifier to overfit FGSM examples, which makes it vulnerable to Iter-Exps. It is
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Figure 4.10 Evaluation of the domain adaptation loss.

intuitive that optimizing with a smaller learning rate should converge to the same

location, if not a better location. As a reference, we also present our SIM-Def, which

performs better with smaller α. Therefore, the degeneration in Table 4.4 indicates

that the ATDA may also overfit FGSM examples.

Beyond the previous analysis, we are also interested in the domain adaptation

loss in ATDA. To pinpoint the effect of domain adaptation loss, we design another

experiment, which uses BIM examples instead of FGSM examples for training. We

choose BIM(10,30)-Def as the baseline, and we combine it with the domain adaptation

loss proposed by ATDA. Our experiments are conducted on both the MNIST and

the FMNIST datasets, with BIM(10,40) and Madry(10,40) examples. Moreover, we

assign different values to λ, a parameter that controls the weight of the domain

adaptation loss.

Figure 4.10 presents the results of this experiment. When λ = 0, the classifier is

solely trained with the cross-entropy loss. As λ increases, the domain adaptation loss

becomes more and more important in the total training loss. To our surprise, this

experiment exposes another vulnerability of ATDA. Compared with cross-entropy

loss, the domain adaptation loss does not make extra positive impact on the test

accuracy. The test accuracy on BIM(10,40) examples remains unchanged or shows

64



a small degeneration. Even worse, the domain adaptation loss hurts the test

accuracy of the classifier on Madry(10,40) examples, especially when λ ≥ 0.15.

A reasonable explanation is that the randomness in Madry examples breaks the

statistical assumption used in the domain adaptation loss.

4.3.5 Training time

We compare here the total training time of four different defense methods: Free-

Def, ATDA, SIM-Def and BIM-Def. We do not include Madry-Def, since it has a

similar training time as that of BIM-Def. The experiments are executed on a Dell

Workstation, with a NVIDIA RTX-2070 GPU.

The results in Table 4.5 clearly show that SIM-Def significantly reduces the total

training time, compared with BIM-Def. SIM-Def saves more than 60% of the total

training time on both the MNIST and the FMNIST datasets, and more than 75% of

the total training time on CIFAR-10 dataset. Compared with the Single-Def ATDA,

SIM-Def still saves at least 7% of the total training time, due to the additional time

consumed in computing the domain adaptation loss in ATDA. On the other hand,

compared with Free-Def, SIM-Def consumes more training time, because SIM-Def

saves and restores the gradient information across training epochs. However, the

difference in the total training time between SIM-Def and Free-Def decreases with the

increase in dataset complexity (i.e., SIM-Def consumes around 25% more in MNIST

and FMNIST, and the difference decreases to less than 3% in the CIFAR-10 dataset).

4.3.6 Scalability test

To demonstrate the practicability of SIM-Def, we conduct scalability experiments

using the ImageNet dataset [13]. ImageNet contains over 1.2 million training examples

(50,000 testing examples) from 1,000 different classes. Due to the large size of the

dataset, as well as the complex NN structure, training a robust classifier on ImageNet
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Table 4.5 Total Training Time in Seconds

Free-Def ATDA SIM-Def BIM-Def

MNIST 234.8 319.6 293.2 866.8

FMNIST 308.5 422.4 391.2 1159.2

CIFAR-10 25923.5 33011.6 26692.4 111372.6

is challenging. An earlier attempt that utilizes BIM examples for adversarial training

only achieves around 1% test accuracy on Iter-Exps [47, 39]. As the first formal

reference, Harini et al. [39] report the performance of Madry-Def on the ImageNet and

also proposes a combination of Madry-Def with logit pairing loss (dubbedALP-Def).

In addition to these two methods, we also present the results achieved by Free-Def as

one of the references, as well.

We use the ResNet-50 [29] as the structure of the classifiers, and we measure

both top-1 and top-5 test accuracy on Madry(8,10) and Madry(8,100) examples.

For the total and per-step perturbation, we follow [39, 16] to utilize 16
255

and 2
255

,

respectively. The evaluation results from both SIM-Def and Free-Def are combined

with the results reported in [39, 16] and summarized in Table 4.6.

Due to the reason analyzed in Section 4.3.3, the Free-Def fail to be scaled to

the ImageNet dataset. Meanwhile, our SIM-Def, as a Single-Def method, achieves

competitive results as Madry-Def in terms of test accuracy on Iter-Exps. Given that

this work is to propose a Single-Def method which can closely approximate Iter-

Def method (e.g., Madry-Def), evaluation results in this subsection further show the

disadvantage of Free-Def and, more importantly, the success of SIM-Def on ImageNet

level dataset.
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Table 4.6 Test Accuracy on ImageNet

Top 1 (Top 5) Test Accuracy

Madry(8,10) Madry(8,100)

Madry-Def(8,10) 3.90% (10.30%) [39] NA

ALP-Def 27.90% (55.40%) [39] 0.60% ( NA ) [16]

Free-Def(m = 4) 0.01% ( 1.02%) 0.00% ( 0.15%)

SIM-Def(8
3
, 4) 7.54% (23.96%) 2.91% (14.93%)

ALP-SIM-Def(8
3
, 4) 9.69% (22.70%) 7.24% (17.34%)

Although the reported results in Table 4.6 show that ALP-Def is strictly better

than SIM-Def, we want to emphasize three points. (1) ALP-Def consumes significantly

more computation power and training time. The training of SIM-Def on ImageNet is

done with 2 NVIDIA Tesla V100 GPUs in 3 days, while, using ALP-Def (as well as

Madry-Def) requires more than 50 NVIDIA Tesla P100 GPUs and approximately

6 days [39]. (2) The SIM-Def can be used interchangeably with Madry-Def in

combinations with other methods (e.g., logit pairing loss). By combining SIM-Def

with logit pairing loss (ALP-SIM-Def), reported results show enhancements of test

accuracy, especially on Madry(8,100) examples. (3) The effectiveness of ALP-Def is

still vague, since [16] points out that ALP-Def can only achieve 0.6% test accuracy

on Madry(8,100) examples. 1

4.4 Conclusion

We conduct thorough empirical analysis of SOTA Iter-Def methods, and we draw

insights that can help enhance future defenses. In particular, we show that (1) using

larger per-step perturbation does not hurt the performance of Iter-Def, while saving

training time; and (2) the intermediate examples generated while producing the final

1In other words, using logit pairing loss is harmful for Madry-Def. However, the detailed analysis of logit pairing loss
is beyond the scope of this work.
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Iter-Exps output reveal most of classifier’s blind spots; and hence, can be used to

train high-accuracy classifiers, with less training time.

Driven by the previous insights, we develop a Single-Def method, dubbed SIM-

Def; and, we show that it can effectively defend against both Single-Exps and Iter-

Exps with relatively low training time.

Furthermore, we show, through extensive experiments, the performance advantages,

in terms of accuracy and training time, of SIM-Def over the SOTA Single-Def methods

(ATDA and Free-Def), and over the Iter-Def methods (BIM-Def and Madry-Def).

Finally, we demonstrate that SIM-Def is a practical defense by experimenting with

the complex ImageNet dataset.

In this chapter and the previous chapter, we focus on the adversarial attack

which is the most severe inference vulnerability. However, in the real-world

environment, training time inference is also a severe threat. Therefore, we try to

use the next chapter to present our study in this aspect.
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CHAPTER 5

TROJDEF: AN ADAPTIVE BLACK-BOX DEFENSE AGAINST

TROJAN ATTACKS

As previously discussed in Chapter 1, NNs may encounter various vulnerabilities, with

adversarial examples primarily revealing inference time vulnerabilities. This chapter

shifts the focus toward training time vulnerabilities and presents a novel and practical

black-box defense mechanism against Trojan backdoor attacks, named TrojDef .

Extensive empirical evaluations demonstrate that TrojDef surpasses state-of-the-art

defenses and exhibits remarkable stability across different settings.

The inspiration for this defense arises from the concept of Trojan poisoned

training, wherein the model is trained on both benign and Trojan inputs. TrojDef

aims to identify and filter out Trojan inputs, which are inputs augmented with Trojan

triggers, by monitoring changes in prediction confidence when the input undergoes

repeated perturbation with random noise. A function known as the prediction

confidence bound is derived from the prediction outputs to determine whether an

input example is Trojan or not. The underlying intuition is that Trojan inputs

exhibit higher stability, as misclassification solely relies on the presence of the trigger,

whereas benign inputs are more susceptible to perturbation due to their interference

with classification features.

5.1 TrojDef Description and Analysis

In this section, we introduce our black-box defense against the Trojan attack

(TrojDef) in detail. Firstly, we analyze the difference in classifier’s prediction

confidences on benign and Trojan examples. With some knowledge about the training

data, we mathematically show that defenders are able to utilize this difference to

derive prediction confidence bound that can be used to decide whether an input
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example is Trojan or not for the case when the attacker is perfect, and the defender

acquires some knowledge about the training data. Based on the mathematical

analysis, we then propose the high-level overview of TrojDef . After that, we

propose an enhancement through non-linear transformation to the derived prediction

confidence bound when the assumptions above do not hold. We then utilize the

derived bound to design an algorithm for detecting Trojan input examples at the

detection phase. Lastly, we discuss several implementation details to handle several

practical issues when the input examples are images.

5.1.1 Analysis of predictions

In order to present our analysis about the confidence of the classifier with perturbed

inputs to detect Trojan examples, we firstly introduce two variables, p1 and p2. Here,

p1 and p2 are the highest and the second-highest probability of detection for the

output classes, respectively, when the random perturbations are repeatedly added to

the input example. For example, if an input example is randomly perturbed 6 times

and the predictions of the perturbed inputs are {class-0, class-1, class-1, class-0,

class-1, class-2}, the corresponding values are p1 = 1
2
and p2 = 1

3
. This is because

class-1 is selected 1
2
of the times (the class with the highest probability of being

selected) and class-0 is selected 1
3
of the times (the class with the second highest

probability of being selected).

To analyze the impact of having a Trojan trigger on the value of δ = p1 − p2,

we present the following theorem.

Theorem 5.1.1. Suppose we have a Trojan-infected classifier with a set of weight

parameters θ which is perfectly trained to predict the ground truth values on benign

examples while outputting the adversary’s target class on any Trojan input. Assume

also that the training data is drawn from the distribution D and each input example

has m replicas which are randomly perturbed. When m =∞, the random perturbation
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sampled from D′ makes the value of δ (δ = p1 − p2) for any Trojan example x̂ + t

larger than that for any benign example. Here, D′ follows the same distribution as D

with a different mean value set to E(D)− x̂.

Proof. Let’s first focus on the training process of the Trojan-infected classifier. The

training process can be represented by the following optimization problem:

θ = argmin
θ

(w1L(x̂, y, θ) + w2L(x̂+ t, yt, θ)) (5.1)

Here, w1 and w2 are the weights of two loss terms. Without loss of generality, we

assume that the cross entropy is being used as the loss function. Therefore, the two

loss terms could be written as:

L(x̂, y, θ) = E
x̂∼X

(− log(fy(x̂))) (5.2)

L(x̂+ t, yt, θ) = E
x̂∼X

(− log(fyt(x̂+ t))) (5.3)

Here, Equation (5.2) is used when the input is a benign example while Equation (5.3)

is used for Trojan examples.

Since each pixel’s value among training examples, X, is drawn from the

distribution D, we can rewrite Equation (5.3) as follows:

L(x̂+ t, yt, θ) = E
η∼D

(− log(fyt(t+ η))) (5.4)

Here, η represents the random perturbation. Recall in Chapter 2, fk(·) ∈ [0, 1]. Since

the Trojan-infected classifier predicts the target class on any Trojan input, we will

have fyt(t+ η) > fk(t+ η) ∀k ∈ {0, ..., K}\yt. Therefore, we have E
η∼D

[fyt(t+ η)] >

E
η∼D

[fk(t + η)] ∀k ∈ {0, ..., K}\yt. This means that Trojan trigger t with any

perturbation η sampled from D could fool the Trojan-infected classifier to output the

target yt.

Now we move to the inference stage. If a Trojan example is received during the

inference, the probability to predict it to class-k under random perturbation could be
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represented as E
η∼D′

[fk(x̂ + t + η)]. If the distribution D′ is generated by subtracting

the constant value x̂ from the mean of D (denoted as D′ = f(D, x̂)), the prediction

probability to target class, yt, could be rewritten as:

E
η∼D′

[fyt(x̂+ t+ η)] = E
η∼D

[fyt(t+ η)] (5.5)

Therefore, from Equation (5.5) we have ∀η ∼ D′:

fyt(x̂+ t+ η) > max
k ̸=yt

fk(x̂+ t+ η) ∀k ∈ {0, ..., K}\yt (5.6)

Based on the definition, we have p1 = 1 and p2 = 0 which results in δ = p1 − p2 = 1.

Lastly, we show that none of benign examples can achieve δ = 1 in the inference

through contradiction. Under the random perturbation from the same distribution,

D′, we assume that δ = p1− p2 = 1 holds for a benign examples x̂ with ground truth

y. Therefore, we have ∀η ∼ D′:

fy(x̂+ η) > max
k ̸=y

fk(x̂+ η) = 0 ∀k ∈ {0, ..., K}\y (5.7)

Recall that the distribution D′ is generated by subtracting the constant value x̂ from

the mean of D. Therefore, Equation (5.7) can be rewritten as:

fy(η) > max
k ̸=y

fk(η) = 0 ∀k ∈ {0, ..., K}\y (5.8)

This means that any η sampled from distribution D is predicted to class-y. Given that

D denotes the distribution of pixel’s value in training data, this means that the Trojan-

infected classifier predicts any training data to class-y. Equation (5.8) contradicts the

fact that the classifier predicts the ground truth on benign examples.

When the conditions hold, the theorem above states that the value of δ =

p1 − p2 for Trojan examples will be equal to 1 and larger than that for any benign

example. Therefore, under the conditions presented in the theorem, i.e., perfect
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attacker, knowledge of the training data distribution, and m = ∞, we can decide

that the input example is Trojan if δ = 1 and benign otherwise. Therefore, we can

select the function we apply to δ to be L = δ.

In reality, the conditions in Theorem 5.1.1 are hard to be satisfied because:

(1) As a black-box defense, it is hard to know the data distribution D. In our

experiments, we found that Gaussian distribution is an efficient approximation of

D as the distribution of pixel values often follows Gaussian distribution and can

be normalized to a standard Gaussian distribution in convolutional neural network

[25]. (2) We can only run the algorithm with finite m. Since p1 and p2 follow

Binomial distribution, we can approximate the confidence interval for this results

through using the Clopper-Pearson method introduced in [8]. In addition to that, the

attacker might not be perfect, which means it will not be able to minimize its attack

objective function. Due to these reasons, we observe that the value of δ for some of

the Trojan examples in Figure 5.1 (a) is below 1 (the green bars in the figure). It is

worth noting that the plot in Fig. 5.1 (a) is generated with L̂ = f(δ) = σ × (p1 − p2)

where σ is the standard deviation of the Gaussian noise. We include σ since it is

dynamically changing (detailed in later subsection), and this is the reason why the

maximum value in Figure 5.1 (a) is 0.2 rather than 1. (3) It is not guaranteed that

the predictions on Trojan examples will always result in the target class. However,

from the experiments, we see that predicting the target class on Trojan examples is

much easier than making correct predictions on benign ones. For example, in Figure

5.2, we present the heatmaps of benign and Trojan examples. Each heatmap is a

10 × 10 matrix, where the rows represent the ground truth and columns represent

the prediction results. The number in each cell represents the probabilities that

examples from a particular ground truth class (the particular row) are classified to

each prediction label (the particular column). We can see that in Figure 5.2a the

numbers in the main diagonal are at most 0.9 while most of the other cells are
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Figure 5.1 The effect of applying the non-linear transform on the Prediction
Confidence Bound1.
Note: [Left] Distribution of L̂ (before applying sigmoid function). [Right] Distribution of
L (after applying sigmoid function).

(a) Benign examples. (b) Trojaned examples.
Figure 5.2 Heatmap of prediction on different examples.

non-zero. On the other hand, in Figure 5.2b we only have 1.0 in column 7. Therefore,

it is clear that the predictions on Trojan examples are concentrated at the target class

while the predictions of benign examples are more diverse.

Even though the value of δ might not be equal to 1 for Trojan examples when

the conditions in Theorem 5.1.1 are not met, the main conclusion that the value

of δ for any Trojan example is always larger than that of any benign example still

1The presented results are generated based on CIFAR-10 dataset under Trojan backdoor attack. The parameter
setting and network are presented in Section IV.
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generally holds. However, In Figure 5.1 (a) we can clearly see that the green bars that

represent Trojan examples with δ < 1 are very close to the orange bars representing

benign examples. Recall that the threshold is selected to be a certain percentile of

the distribution of benign examples in the preparation phase (The first phase). Since

we only use a limited number (n) of benign examples during the preparation phase,

there will be a difference between the empirical and the true distribution that we

utilize to set the threshold value. In Figure 5.1 (a), the overlapping of benign and

Trojan examples are concentrated in a smaller range which makes the threshold very

sensitive to the changes in the fitted distribution.

To mitigate this issue, we can apply a monotonic function to δ that can shift

the distribution of the benign examples to the left-hand side of Figure 5.1 (a) and the

distribution of Trojan examples to the right-hand side of the figure. This will make

the selection of the threshold less sensitive to the fitting of the distribution in the

preparation phase. To do that, we apply the sigmoid function on top of δ and derive

the prediction confidence bound as follows.

L =
1

1 + e−d
where d = α× [(p1 − p2)× σ − β] (5.9)

Here, σ represents the standard deviation of the random Gaussian noise while α and

β are the hyper-parameters. Through tunning the hyper-parameters (α and β) in

Equation (5.9)2, we could align the center of the sigmoid function to the overlapping

area. With the help of the non-linearity of the sigmoid function, we can enlarge the

difference between benign and Trojan examples. It is clear in Figure 5.1(b) that the

empirical distribution of the benign examples is pushed towards the lower end of L.

Therefore, applying the sigmoid function results in the desired zoom-in effect to the

overlapping area, as can be seen in Figure 5.1 (b). It is worth mentioning that our

method utilizes non-linear transformation enhances the performance of the proposed

2It is worth to note that the sigmoid function is tuned on benign examples only with the focus on reducing the residual
error when the examples’ values are fitted to a folded normal distribution.
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Figure 5.3 High-level view of the proposed defense.

defense which is different from [15] that designs the transformation as defense. In

terms of defending Trojan backdoor, both [15] and our method perform well on

MNIST dataset. However, our method is successfully extended to larger datasets

(e.g., CIFAR-10, GTSRB and CUB-200) which are not evaluated in [15]. As a result,

with the prediction confidence bound L, the selected threshold is less sensitive towards

errors in modeling the distribution of L for benign examples.

5.1.2 TrojDef description

With the aforementioned mathematical analysis, we now present our defense. As

presented in Figure 5.3, the proposed defense consists of two different phases. The

first phase is a preparation phase that we run in an offline manner before the detection

phase. During the first phase, we run TrojDef with a set of n benign examples. Each

example is perturbed m times with a random noise drawn from a given probability

distribution. Through our experiments, we empirically show that the Gaussian noise

is a good distribution to choose from. Based on the prediction of all perturbed copies,

we can calculate the corresponding values of p1 and p2 for each of the n runs. Then,

we further apply a function to the difference between p1 and p2 (i.e., δ = p1 − p2) in

each of the n runs. This function, which calculates the value L in each of the n runs, is
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detailed in the following sections and its selection depends on the assumptions about

the attacker and defender abilities. After doing the above, we will have n different L

values, and each is a result of applying the function to δ of each run. We select the

threshold as the (1− FRR)% percentile among measured values, where FRR is the

false rejection rate target, representing the acceptable percentage of benign examples

that can be falsely classified as Trojan examples.

The detection phase is performed in run time. For each received new input in

the detection phase, we calculate the value of L in the same way as the first phase.

Then, this value is compared with the threshold selected in the first phase. If the

measured value is greater than the calculated threshold in the first phase, the input

example is flagged as a Trojan example. Otherwise, it is determined as a benign

example. The intuition behind this approach is that we design L so that it always

has bigger values for Trojan inputs compared to benign inputs. Therefore, selecting

the threshold value as the (1− FRR)% percentile among the measured L values is a

safe choice.

5.1.3 TrojDef algorithms

The step-by-step process of the first phase of TrojDef is summarized in Algorithm

2. In the algorithm, the lines in blue represent the empirical enhancements that will

be introduced in the next subsection. In lines 3-9, we repeatedly perturb benign

examples with random Gaussian noise. Then, in lines 11-13, the value of L for each

benign example is calculated. Finally, in line 15, the threshold value is selected to be

higher than (1− FRR)× 100% of the values of L for benign examples.

The detailed process of the detection phase of TrojDef operating at the run

time is detailed in the Algorithm 3. Similar to before, the empirical enhancements are

in blue and will be detailed in the next subsection. In lines 1-8, the input example is

perturbed in the same way as what is done in phase 1 to calculate the corresponding
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L value. Then, in lines 9-16, the calculated value is compared with the threshold

selected in the previous phase. The input example with a value of L larger than the

threshold is flagged as a Trojan input. Otherwise, the input example is determined as

being benign and is fed to the NN classifier again to obtain the final prediction. Since

generating Gaussian random noise is ignorable when compared with predicting the

example, the total computation ism times larger after applying the defense. However,

it is worth to note that m predictions are independent which means that this process

can run in parallel and the timing performance of applying the defense could stay the

same.

5.1.4 TrojDef implementation

In this section, we provide the details of several practical enhancements to the basic

algorithm above, especially when the input examples are images.

Single Channel Perturbation From our empirical results, we notice that blindly

adding the random Gaussian noise to the whole image may by far change the

appearance of the Trojan trigger. Based on the conclusion drawn from [57], the

changes in appearance or location of the trigger beyond a certain limit sharply

decrease the attack success rate. To mitigate this issue, TrojDef takes an alternative

way in that it perturbs only one channel with the Gaussian noise when the input is

a multi-channel image (i.e., RGB image) based on empirical study.

In the implementation, we add the random Gaussian perturbation to the blue

channel, which is motivated by previous research works. It is demonstrated in [4]

that the blue channel in the RGB image is the darkest channel and contains a lower

number of features compared with other channels. Moreover, the experiments in

[40] show that the changes in prediction caused by modifying the blue channel are

smaller than that caused by modifying other channels. Given the poor performance

of perturbing the whole image, we believe that the perturbation in the red and green
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Figure 5.4 Perturbation with random location and size.

channels largely affects the Trojan trigger. Therefore, TrojDef only adds random

Gaussian noise to the blue channel. Our experiments also confirm that this alternative

approach outperforms other ways of adding random Gaussian noise. This means that

adding Gaussian noise to the red or green channel is an overkill since the Trojan

trigger does not work either. As a result, it becomes hard to obtain a threshold that

can distinguish benign and Trojan inputs.

Randomizing the Location and Size of the Gaussian Perturbation As

shown in Figure 5.4, randomizing the location and size of the added random Gaussian

perturbation is another trick that we apply to enhance the performance of TrojDef .

Compared with the benign examples, the predictions of Trojan examples can only

be affected when the Trojan trigger is perturbed. Therefore, through randomizing

the location and size of perturbation, we could expect the difference in the value of

L for benign and Trojan examples to be larger. In the implementation, TrojDef

randomly selects the location and size of the random Gaussian perturbation for each

perturbed image. As shown in Figure 5.4, we utilize a square area, and its size can

be any integer value between 2 pixels to the size of the image. Depending on the size,
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the location is randomly selected starting from the top-left corner (i.e., [0,0]) to the

limit that keeps the perturbation within the image area.

Algorithm 2 Preparation Phase of TrojDef

Input: A trained classifier with weight parameter θ and an FRR

Output: Detection threshold τ

1: Preparing n different benign examples

2: for Each benign example x̂ do

3: Flatten the pixel values in x̂

4: Calculate the average of top-k pixel values and store as v

5: Calculate σ = −(S ∗ log2 v)

6: for m iterations do

7: Sample a random size perturbation η from Gaussian distribution N (0, σ)

8: Add η to the blue channel of x̂ at a random location

9: Store the prediction Cθ(x̂+ η)

10: end for

11: Calculate p1 and p2 for this example

12: Calculate d = α× [(p1 − p2)× σ − β]

13: Calculate and store prediction confidence bound L = 1
1+e−d

14: end for

15: Select the τ to be higher than the (1− FRR)× 100% percentile of the L values.

Dynamic Standard Deviation Based on our experiments with a fixed value of σ

for the added Gaussian noise, we observe that the results are sensitive to the value

of σ in some cases. Depending on the combinations of the NN classifiers and Trojan

triggers, using a fixed σ value may work in some cases but fails in others since each

case has different prediction confidence under the same perturbation. By making

σ dynamically changing based on the pixel values in each image, we are able to

80



Algorithm 3 Detection Phase of TrojDef

Input: A trained classifier with weight parameter θ, the threshold τ , and an arbitrary

input x

Output: The prediction

1: Flatten the pixel values in x

2: Calculate the average of top-k pixel values and store as v

3: Calculate σ = −(S ∗ log2 v)

4: for m iterations do

5: Sample a random size perturbation η from Gaussian distribution N (0, σ)

6: Add η to the blue channel of x at a random location

7: Store the prediction Cθ(x+ η)

8: end for

9: Calculate the p1 and p2 for x

10: Calculate d = α× [(p1 − p2)× σ − β]

11: Calculate the prediction confidence bound L = 1
1+e−d

12: if L > τ then

13: Output the alarm that x could be a Trojan input

14: else

15: Output Cθ(x)

16: end if
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Table 5.1 TrojDef -model Architecture

dataset Convluation Flatten Dense Dropout batch normalization activation Pooling

CIFAR-10 6 1 1 3 ✓ ReLU 2 MaxPooling

GTSRB 20 1 1 3 ✓ ReLU 1 AveragePooling

overcome this issue and achieve a good performance in separating the benign and

Trojaned images. In our implementation, the following formula is used to calculate

σ for the added Gaussian noise to the pixels of each image:

σ = −(S ∗ log2 v) (5.10)

Here, S is a scalar, v is the average of the largest k pixel values in the whole image. To

prevent σ from getting a value outside of the [0, 1] range, we include default values to

limit σ to be within this range. By utilizing Equation (5.10), the added noise could be

controlled with respect to the visual content in the image. As a result, the added noise

can effectively mislead identifying visual content while less affects the added trigger.

With this dynamic standard deviation, the values of L for benign examples do not

change much since the corresponding δ is small. For Trojan examples, TrojDef tends

to use a smaller standard deviation when the pixel values are high (i.e., bright image).

Compared with others, the Trojan trigger added to the bright image is harder to be

identified. Therefore, applying noise with a smaller standard deviation helps Trojan

examples to get a higher value of δ as well as L. It is worth noting that dynamically

controlling the standard deviation values demonstrates the adaptability of TrojDef

to better fit the input data, which is impossible with other state-of-the-art approaches,

such as STRIP.

With all practical enhancements, the overall process from the preparation phase

to making a prediction on input is summarized in Algorithms 2 and 3.
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5.2 Experimental Settings

In this section, we first introduce the datasets and the classifiers’ architecture that

are used. Then, we present the experiments and the calculated metrics.

5.2.1 Datasets and classifiers

During the evaluation, we use the multiple benchmark datasets with different image

size, number of samples and content to demonstrate that the advantage of our method

over STRIP is independent from dataset:

• MNIST: Contains a total of 70K images and their labels. Each one is a 28×28
pixel, gray scale image of handwritten digits.

• CIFAR-10: Contains a total of 60K images and their labels. Each one is a
32× 32 pixel, RGB image of animals or vehicles.

• GTSRB: Contains over 50K images and their labels. Each one is an RGB
image of traffic signs with different sizes.

• CUB-200: Contains over 10K images with 200 classes. Each one is an RGB
image of a bird with size of 300× 500.

• ImageNet: Contains over 14M images with 1000 classes. Each one is an RGB
image

During the experiments, we include three different kinds of NN classifiers.

(1) STRIP-model: The NN classifiers provided by the author of [21]. (2) TrojDef-

model: The NN classifiers trained by us from scratch. (3) 3rd-party-model: The

ResNet-50 classifiers [29] that are pre-trained by a 3rd party (we apply poisoned

transfer learning to implant the Trojan backdoor). A brief summary of TrojDef -

model architecture is presented in the Table 5.1.

5.2.2 Experiments and metrics

We compare TrojDef to STRIP due to the following reasons: (1) To the best

of our knowledge, STRIP is the only black-box defense method, (2) STRIP

achieves similar performance to other state-of-the-art white-box defenses as indicated
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(a) heart (b) face (c) watermark (d) star

(e) bottle (f) Hello Kitty (g) blue star
Figure 5.5 Trojan triggers used in the experiments.

in [21]. To comprehensively compare TrojDef with STRIP, we evaluate both

defense methods on the three different models that are introduced before (i.e.,

STRIP-model, TrojDef -model, and 3rd-party-model). When evaluating with the

STRIP-model, we try different training hyper-parameters. Moreover, the experiments

with TrojDef -model and 3rd-party-model also include new Trojan triggers. Lastly,

to explore the generalizability of TrojDef to different types of noise distributions,

we run some of the experiments with Laplacian noise instead of Gaussian noise.

Throughout the experiments, we mainly focus on four different metrics. Among

these metrics, we utilize the classification accuracy (Acc) and attack success rate

(Attack-Acc) to evaluate the NN classifier that is infected by the Trojan attack.

• Acc: The percentage of correctly classified benign examples over all benign
examples.

• Attack-Acc: The percentage of Trojan examples that are classified into the
adversary’s target class when no defense is applied.

A Trojan infected NN classifier is trained to achieve high Acc and Attack-Acc

simultaneously. The high Acc objective is to ensure that the classifier is of high quality
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to be adopted and used, while the high Attack-Acc objective ensures a successful

attack.

During the evaluation of the defense methods, we use the false acceptance rate

(FAR) and the false rejection rate (FRR) as the performance metrics.

• FAR: The percentage of Trojan examples that can pass the deployed defense
method. The lower the FAR, the better the defense.

• FRR: The percentage of benign examples that are accidentally rejected by the
deployed defense method. The lower the FRR, the better the defense.

Unless otherwise specified, we test both TrojDef and STRIP with a threshold value

of the 99 percentile among benign examples. In other words, the FRR for both

defenses is fixed at 1%. Therefore, in the evaluation results, a better defense method

should have a lower value of FAR.

Finally, we visualize the Trojan triggers used in the experiments in Figure 5.5.

When any of these triggers is mentioned, we use the caption of that trigger to refer

to it.

5.3 Experimental Results

As we mentioned before, our experiments firstly evaluate the performance of TrojDef

and STRIP on STRIP-model, TrojDef -model, and 3rd-party-model. Then, we

further explore the performance of TrojDef under different settings which include

(1) using smaller FRR rates, (2) adding noise that is drawn from a Laplacian random

variable, and (3) defending a blue channel Trojan trigger. Lastly, we also compare

the performance of our proposed black-box defense with the white-box approaches.

5.3.1 Evaluation on STRIP-model

The first part of the results is generated when STRIP-model is being used. These

experiments strictly follow the original settings that are presented in [21]. The NN

classifiers used in this subsection of experiments are provided directly by the authors
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Table 5.2 Results of the Conventional Experiments

Dataset Trigger Acc Attack-Acc
FAR

STRIP TrojDef

MNIST ”heart” 99.02% 99.99% 0.1% 0%

CIFAR-10
”face” 83.84% 100% 0% 0%

”watermark” 82.35% 100% 0% 0%

of [21]. As STRIP has a very high detection accuracy on this model, through the

experiments in this subsection, we try to compare the proposed TrojDef with STRIP

on the conventional experiments (i.e., the experiments conducted in STRIP work).

The evaluation results are summarized Table 5.2.

Based on the value of Acc and Attack-Acc presented in Table 5.2, it is clear

that the NN classifiers have been infected by the Trojan attack. In other words, the

NN classifiers have enough capacity for capturing the features of benign examples as

well as the Trojan trigger. These results validate that the performance of defense

methods measured on top of the NN classifiers are reliable.

Under each combination of the dataset and Trojan trigger, we present the value

of FAR for both TrojDef and STRIP. We can see that both defenses achieve 0%

FAR. Compared with the results presented in [21], the performance of our reproduced

STRIP is validated. More importantly, based on the conventional experiments,

TrojDef achieves the same performance level as that of STRIP. In other words,

there is no difference in terms of performance on conventional experiments between

TrojDef and STRIP. However, in the following subsection, we can see that TrojDef

outperforms STRIP when these experimental settings change.

In addition to directly utilizing the STRIP-model, we also expand the exper-

iments to evaluate the two defense methods when the hyper-parameters of the NN
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Table 5.3 Performance under Different Training Hyper-parameters

Hyper-parameters Acc Attack-Acc
FAR

STRIP TrojDef

epoch = 12 98.75% 99.54% 0.3% 0%

epoch = 20 98.96% 100% 17.05% 0%

lr = 1e−4 98.76% 99.54% 20% 0%

lr = 1e−3 98.96% 100% 17.05% 0%

lr = 3e−3 98.66% 99.93% 1.05% 0%

bs = 64 98.64% 100% 0.1% 0%

bs = 128 98.96% 100% 17.05% 0%

bs = 200 99.03% 100% 8.40% 0%

classifiers are changed. Since different hyper-parameter settings lead to different

trained classifiers, the defenses that utilize prediction results could be affected and

the better defense method should achieve more stable performance. Here, we use the

same architecture as STRIP-model but train it with different hyper-parameters. In

these experiments, we choose three different hyper-parameters which include training

epoch (epoch), learning rate (lr), and batch size (bs). We select the value of training

epoch to be either 12 or 20. For learning rate, the possible values are 1e−4, 1e−3, and

3e−3. The batch size value varies between 60, 128, and 200. It is worth noting that

these experiments are performed on MNIST dataset with ”heart” trigger. The results

of both TrojDef and STRIP are presented in Table 5.3.

From the results, it is clear thatTrojDef achieves more stable performance than

that of STRIP when different hyper-parameters are used. Moreover, throughout the

experimental results, TrojDef always achieves lower FAR value than that of STRIP.

In addition, the FAR value of STRIP has a much obvious fluctuation compared to that
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of TrojDef . For example, the FAR for STRIP changes from 0.10% to 17.05% when

the batch size changes from 60 to 128. When the learning rate changes, the FAR values

for STRIP reach as high as 20%. Basically, when different hyper-parameter settings

are applied, the model with the same architecture may converge to different weight

parameters. The results in Table 5.3 show that only the changes in weight parameters

are enough to largely degenerate the performance of STRIP. It is worth noting that

the owner of the model is the one who decides the hyper-parameter settings, and

there are always more than one setting that could work. In our evaluation here, all

different hyper-parameter settings could be used to train an NN classifier with high

test accuracy on benign examples, making these hyper-parameter settings possible

choices for implementation.

5.3.2 Evaluation on TrojDef-model

In this part of the experiments, we evaluate both defenses (TrojDef and STRIP)

in a broader range of settings. More specifically, we utilize (1) the TrojDef -model

which has a different architecture than the model in the previous subsection, (2) the

GTSRB dataset which is not evaluated in [21], and (3) new Trojan triggers (i.e.,

”bottle” and ”star”). The evaluation results are summarized in Table 5.4.

From the values of Acc and Attack-Acc, it is clear that the Trojan backdoor has

been successfully implanted to TrojDef -model. Also, from the FAR values in Table

5.4, we see the following.

1. When changing from the STRIP-model to TrojDef -model, some of the FAR
values of STRIP increase from 0% to 100% even for those triggers used in [21].

2. Compared with STRIP, TrojDef achieves more stable performance. The value
of FAR does not change more than 0.15% regardless of the changes in the
classifiers or the Trojan triggers.

The evaluation results in Table 5.4 demonstrate clear issues regarding the

performance of STRIP. When the NN classifier changes, the performance of STRIP
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Table 5.4 Evaluation Results of the Defenses on TrojDef -model

Dataset Trigger Acc Attack-Acc
FAR

STRIP TrojDef

CIFAR-10

”face” 85.73% 100% 0% 0%

”watermark” 85.61% 100% 0% 0%

”bottle” 84.82% 99.30% 1.10% 0.15%

”star” 84.76% 100% 0% 0%

GTSRB

”face” 99.85% 100% 100% 0%

”watermark” 99.80% 100% 100% 0%

”bottle” 99.90% 100% 100% 0.05%

”star” 99.89% 100% 100% 0%

may suffer a significant degeneration. We believe the following reason is related to

this issue. When the architecture is changed, classifiers trained on the same poisoned

dataset are different. Although all of them can extract the Trojan trigger related

features, the features used for classifying benign examples could be changed. As a

result, some of these classifiers become more sensitive toward the perturbation. In

other words, when using the same hold-out data (i.e., benign examples prepared for

superimposition process) on such classifiers, the entropy values for benign and Trojan

examples are indistinguishable.

Although fine-tuning could be a solution to this issue, the design of STRIP

makes it very difficult if not impossible to perform fine-tuning. Recall that to fine-tune

STRIP, we need to collect new hold-out dataset [21]. However, the hold-out data used

for the superimposition process in STRIP is hard to be quantified. In other words,

when collecting new hold-out data, there is no clear guidance about what the new
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Table 5.5 Evaluation Results of the Defenses on the 3rd-party-model

Dataset Trigger Acc Attack-Acc
FAR

STRIP TrojDef

CIFAR-10

”face” 93.12% 99.34% 100% 0%

”watermark” 93.56% 99.90% 0% 0%

”bottle” 93.82% 89.48% 24.50% 19.5%

”star” 93.54% 99.62% 0% 0%

GTSRB

”face” 98.03% 99.30% 100% 0%

”watermark” 97.46% 99.95% 100% 0%

”bottle” 98.26% 99.84% 0% 0.05%

”star” 98.96% 98.04% 100% 0%

CUB-200
”face” 61.74% 99.14% 100% 1.15%

”watermark” 62.63% 99.86% 3.59% 0%

ImageNet
”face” 60.28% 27.67% 80.15% 51.5%

”watermark” 60.40% 42.75% 80.95% 45.35%

hold-out data should be. Therefore, we think that fine-tuning STRIP is very difficult

if not impossible and the issue of unstable performance is unavoidable.

5.3.3 Evaluation on 3rd-party-model

In the third part of the experiments, we evaluate TrojDef and STRIP on the 3rd-

party-model. The 3rd-party-model brings new angle to the evaluation of the two

defenses because of the following:

• Compared with the TrojDef -model, the 3rd-party-model is trained in a
different way. These NN classifiers are pre-trained on ImageNet data. As a
result, the NN classifiers are likely to extract different and more general features
than those trained with only the target dataset (e.g. CIFAR-10 and GTSRB).
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• With the development of model sharing platforms (e.g. GitHub and “Paper
with Code”), model reusing is becoming a popular choice especially when a
large scale NN classifier is needed. Therefore, the evaluation with a specific
focus on a 3rd-party-model is an interesting and important topic.

To closely reflect the real-world scenarios, the 3rd-party-model utilizes the

ResNet50 NN classifier and is pre-trained on ImageNet data until it converges. After

that, we apply transfer learning with these NN classifiers and the poisoned dataset.

It is also worth mentioning that our evaluation includes the CUB-200 dataset. This

dataset contains images with pixel size around 300 × 500 which is the same level as

the VGG-Face[33] and ImageNet [13]. Therefore, the evaluation results on CUB-200

dataset also show the generalizability of TrojDef . Last but not the least, we also

conduct evaluation with ImageNet dataset to further demonstrate the effectiveness of

TrojDef . By comparing the evaluation results in Table 5.5 , the significant advantage

of TrojDef over STRIP still holds. In 9 out of 12 experiments, TrojDef outperforms

STRIP (i.e., achieves much lower FAR values), while in other two experiments, both

approaches achieve exactly 0% FAR value. Also, in the experiment with GTSRB

dataset and ”bottle” trigger, both TrojDef and STRIP can achieve nearly 0% FAR.

It is worth noting that the Attack-Acc on ImageNet is much lower than other

datasets. The reason is that 3rd-party-model is fully trained on ImageNet dataset

without attack and we only retrain it a limited number of epochs with backdoor

examples. However, we still observe a large advantage of using TrojDef compared

with STRIP in terms of FAR.

The 3rd-party-model is more challenging. Although TrojDef still outperforms

STRIP, it can only achieve about 20% FAR in one out of 10 experiments, while

achieving very close to perfect accuracy (0% FAR) on the remaining 9 experiments.

STRIP on the other hand performs poorly on this dataset. In other words, the

performance of TrojDef degenerates on one of the cases of the 3rd-party-model. We

believe the following two reasons explain this observation.
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1. The Trojan backdoor is implanted to the 3rd-party-model through transfer
learning which barely modifies the extracted features. Therefore, the 3rd-party-
model learns the Trojan trigger by a set of existing features which is not as stable
as other models that identify the Trojan trigger as a fundamental feature [61].
As a validation, we can see that the Attack-Acc value on 3rd-party-model is
slightly lower than that for other models.

2. The NN classifiers used in 3rd-party-model are pre-trained on a large-scale
dataset (e.g., ImageNet) until convergence. To achieve solid performance, these
pre-trained NN classifiers are usually optimized to perform consistently even
under a certain level of perturbation. As a result, the predictions of some
benign examples are quite confident and the added noise level might not be
enough to fool the classifier with benign inputs.

Combining these reasons, we could expect the value of L on benign examples to

become larger while the value of L for Trojan examples to become smaller when the

3rd-party-model is being used. As a result, it is clear that the overlapping between

benign and Trojan examples becomes serious in this evaluation. It is worth to note

that the aforementioned challenge is not only for TrojDef but also a threat to other

defenses that depend on prediction confidence. Therefore, we believe that using the

3rd-party-model is a challenging and important evaluation given the defense methods

(i.e., STRIP and TrojDef). Nonetheless, TrojDef achieves decent performance on

this model.

5.3.4 Using different FRR values

In previous experiments, we select the FRR value to be 1%. However, in real world

scenarios, the requirements on selected threshold vary and it is important to report the

performance of the defense methods under different FRR values. In this subsection,

we repeat some of the experiments on both TrojDef -model and 3rd-party-model.

Instead of using a fixed FRR value, we change it to be from the following set:

{0.25, 0.5, 0.75, 1.0}. The results of these experiments are summarized in Tables

5.6 and 5.7.
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Table 5.6 Evaluation Results on TrojDef -model under Different FRR Values

Dataset Trigger FRR
FAR

STRIP TrojDef

CIFAR-10

”face”

0.25% 0% 0%
0.5% 0% 0%
0.75% 0% 0%
1% 0% 0%

”watermark”

0.25% 100% 0%
0.5% 0% 0%
0.75% 0% 0%
1% 0% 0%

”bottle”

0.25% 100% 0.15%
0.5% 100% 0.15%
0.75% 100% 0.15%
1% 1.10% 0.15%

”star”

0.25% 100% 0%
0.5% 100% 0%
0.75% 100% 0%
1% 0% 0%

GTSRB

”face”

0.25% 100% 0%
0.5% 100% 0%
0.75% 100% 0%
1% 100% 0%

”watermark”

0.25% 100% 0%
0.5% 100% 0%
0.75% 100% 0%
1% 100% 0%

”bottle”

0.25% 100% 0.05%
0.5% 100% 0.05%
0.75% 100% 0.05%
1% 100% 0.05%

”star”

0.25% 100% 0%
0.5% 100% 0%
0.75% 100% 0%
1% 100% 0%

Based on the results it is clear that the FAR increases when the FRR decreases

since there is a trade-off between detecting all potential Trojan inputs and reducing

the false positive alarm. However, when we compare the detailed FAR values of

STRIP and TrojDef , we can see that the TrojDef significantly outperforms STRIP.
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For example, on CIFAR-10 dataset with ”star” trigger and TrojDef -model (Table

5.6), the proposed defense consistantly achieves 0.15% FAR while the FAR of STRIP

goes to 100% when the FRR is set to 0.75 or lower. Similar observation can be

obtained from Table 5.7 as well (e.g., CIFAR-10 dataset with ”bottle” trigger and

3rd-party-model). Compared with STRIP, these results show that TrojDef is a

better defense method which can achieve very small FAR values when small target

values are selected for FRR.

5.3.5 Using Laplacian perturbation

As presented in Section 5.1, TrojDef is designed to work with perturbations sampled

from an arbitrary distribution as long as it closely approximates the distribution of

the pixel values in training dataset. In order to validate this claim, we repeat the

experiments with 3rd-party-model on CIFAR-10 and GTSRB datasets. During the

evaluation, we replace the Gaussian perturbations with Laplacian ones. The results

are summarized in Table 5.8.

From these results, we can see that in 7 out of 8 cases using Laplacian

perturbation TrojDef achieves the same FAR value as before. Only in the case

of CIFAR-10 dataset and ”bottle” trigger, using Laplacian perturbation degenerates

the performance of TrojDef . We think that Gaussian perturbation is better than

Laplacian perturbation for CIFAR-10 dataset. However, for ”face”, ”watermark”

and ”star” triggers, the margin between benign and Trojan examples is wider so that

using Laplacian perturbation does not degenerate the FAR value. While for ”bottle”

trigger, differentiating benign and Trojan examples is much harder and replacing the

Gaussian perturbation with Laplacian perturbation leads to a lower FAR value. This

can be validated by the results in Table 5.5. When using Gaussian perturbation, the

FAR value is 22.10% for ”bottle” trigger while it is 0% for the other triggers.
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Figure 5.6 By channel view of blue channel trigger.

5.3.6 Defending blue channel trigger

Recall Section 5.1.4, we present the single channel perturbation as one of the practical

enhancements of our proposed defense. To complete our justification of adding

perturbation to blue channel, in this subsection, we conduct an additional experiment

to evaluate the performance of our proposed defense when the Trojan trigger lives in

the blue channel. As shown in Figure 5.6, we customized a ”blue star” trigger which

is added to only the blue channel of input examples. With this Trojan trigger, we

evaluate the performance of TrojDef on different models as well as datasets. From

the results summarized in Table 5.9, it is clear that the performance of TrojDef is

not affected even if the Trojan trigger lives only in the blue channel.

5.3.7 Compared with white-box defense

In this experiment, we use the proposed defense in [37] and we refer to it as Mutation

defense. Mutation defense is a White-box defense that must have full access to

model parameters and intermediate values at inference time. It generates m mutated

model by adding Gaussian noise to the weights of the fully-connected layers. To

adjust the mutation process, two values are selected manually to adjust the mean and

variance of Gaussian noise distribution which are called mutation factors. For each

layer, the mean value of the Gaussian noise distribution is calculated by multiplying

the mean mutation factor by the mean of the fully-connected layer weights and the

variance value of the Gaussian noise distribution is calculated by multiplying the

variance mutation factor by the maximum weight value in a fully-connected layer.
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The intuition behind this approach is that the Trojaned inputs appear to have higher

sensitivity to mutations on a NN model than benign inputs. Therefore, the Trojaned

inputs label change rate is higher than benign inputs.

We compare TrojDef with Mutation defense in Table 5.10. It is clear that

the performance of Mutation defense fluctuates significantly when facing different

combinations of dataset, model and trigger. Although we tune the mutation factors

to mitigate this issue, our attempts fail especially on the CIFAR-10 dataset. Moreover,

on GTSRB dataset with TrojDef model, the FAR of Mutation defense varies from

7.65% to 28.80% which confirms the unstable performance of this defense. In general,

from the results, we conclude that Mutation defense works in some of our evaluation

cases while fails in other cases. Also, we found that tuning mutation factors is not

enough to enhance Mutation defense in the poorly performed cases.

5.4 Conclusion

In this chapter, we propose an adaptive black-box defense against Trojan attacks,

dubbed TrojDef . TrojDef perturbs each input example with random Gaussian

noise and utilizes the prediction of the perturbed examples to decide whether the

input example contains the Trojan trigger or not. We show analytically that

under restricted conditions TrojDef can always differentiate benign from Trojan

examples by deriving prediction confidence bound. We also propose a non-linear

transformation to the prediction confidence bound to enable accurate detection of

Trojan examples when the restricted conditions do not hold. We also propose several

practical enhancements to TrojDef , especially when the input examples are images.

We conduct several experiments to compare TrojDef with the SOTA black-box

approach, STRIP. The results show that TrojDef has a competitive performance

on all the experiments proposed by STRIP. Moreover, the results in the expanded

experiments show that TrojDef not only outperforms STRIP but is also more
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stable. The performance of STRIP may significantly degenerate when (1) the NN

classifiers’ training hyper-parameters change or (2) the NN classifier’s architecture

changes. Under similar settings, TrojDef provides consistent performance. In

addition, we evaluate TrojDef and STRIP on a more realistic scenario when the

Trojan backdoor is implanted in a large-scale NN classifier pre-trained on other

datasets. The results show thatTrojDef significantly outperforms STRIP under such

challenging settings. Finally, by replacing the Gaussian perturbation with Laplacian

ones, the results confirm the generalizability of the TrojDef to arbitrary datasets and

arbitrary noise distributions. The main reason for this superior performance is that

TrojDef is controllable and can easily adapt to the presented examples by changing

the parameters of the distribution of the added random noise.

Up to this point, both the training and inference time threats are discussed

under the scenario that only one of them exists. However, the adversary in a real-world

environment is not restricted in the same way. Therefore, in the next chapter, we try

to present our work that combines these threats to achieve a more severe attack.
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Table 5.7 Evaluation Results on the 3rd-party-model under Different FRR Values

Dataset Trigger FRR
FAR

STRIP TrojDef

CIFAR-10

”face”

0.25% 100% 0%
0.5% 100% 0%
0.75% 100% 0%
1% 100% 0%

”watermark”

0.25% 0% 0%
0.5% 0% 0%
0.75% 0% 0%
1% 0% 0%

”bottle”

0.25% 39.8% 32.55%
0.5% 28.249% 22.0%
0.75% 25.83% 22.0%
1% 24.50% 19.5%

”star”

0.25% 100% 0%
0.5% 100% 0%
0.75% 100% 0%
1% 0% 0%

GTSRB

”face”

0.25% 100% 0%
0.5% 100% 0%
0.75% 100% 0%
1% 100% 0%

”watermark”

0.25% 100% 0%
0.5% 100% 0%
0.75% 100% 0%
1% 100% 0%

”bottle”

0.25% 100% 0.05%
0.5% 100% 0.05%
0.75% 0.05% 0.05%
1% 0% 0.05%

”star”

0.25% 100% 0%
0.5% 100% 0%
0.75% 100% 0%
1% 100% 0%

CUB-200

”face”

0.25% 100% 1.5%
0.5% 100% 1.25%
0.75% 100% 1.25%
1% 100% 1.15%

”watermark”

0.25% 4.9% 0.05%
0.5% 4.1% 0%
0.75% 3.8% 0%
1% 3.59% 0%
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Table 5.8 Evaluation Results of TrojDef on the 3rd-party-model and
Laplacian perturbation

Dataset
Trigger

”face” ”watermark” ”bottle” ”star”

CIFAR-10 0% 0% 34.30% 0%

GTSRB 0% 0% 0.05% 0%

Table 5.9 Performance of Defending the Blue Channel Trigger

Trigger Model Dataset FAR

”blue star”

TrojDef
CIFAR-10 0.0%

GTSRB 0.0%

STRIP
CIFAR-10 0.0%

GTSRB 0.0%

3rd-party
CIFAR-10 0.0%

GTSRB 0.0%
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Table 5.10 Evaluation Results of the Mutation and TrojDef model

Dataset Trigger model
FAR

Mutation TrojDef

MNIST
”square” [37] model 0.01% 0%

”heart” TrojDef 65.0% 0%

CIFAR-10

”face”

STRIP 100.0% 0%

TrojDef 100.0% 0%

3red-party 100.0% 0%

”watermark”
STRIP 99.95% 0%

TrojDef 84.75% 0%

”bottle” TrojDef 100.0% 0.15%

”star” TrojDef 100.0% 0.0%

GTSRB

”face”
STRIP 100.0% 0.0%

TrojDef 7.65% 0.0%

”watermark” TrojDef 20.95% 0.0%

”bottle” TrojDef 12.95% 0.05%

”star” TrojDef 28.80% 0.0%
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CHAPTER 6

ADVTROJAN: A SYNERGETIC ATTACK AGAINST NEURAL

NETWORK CLASSIFIERS COMBINING BACKDOOR AND

ADVERSARIAL EXAMPLES

Having addressed the training and inference time vulnerabilities in the preceding

chapters, it is essential to acknowledge that the combined exploration of these

vulnerabilities remains an open question. Focusing solely on either training time

or inference time vulnerabilities may leave potential unknown risks in real-world

scenarios, particularly when adversaries can exploit various attacks synergistically

to create novel and more formidable threats that evade existing defenses.

To shed light on this critical concern, this chapter illuminates the practical

implementation of a stealthy attack namedAdvTrojan, which jointly explores adver-

sarial perturbation and model poisoning vulnerabilities. AdvTrojan demonstrates

a stealthy nature by activating only when two conditions are met: 1) a meticulously

crafted adversarial perturbation is injected into input examples during inference, and

2) a Trojan backdoor is embedded during the model’s training process. This stealthy

behavior deceives users into unintentionally placing trust in the infected model as

a reliable classifier against adversarial examples. Thorough analysis and extensive

experiments conducted on multiple benchmark datasets showcase that AdvTrojan

can successfully evade existing defenses with an exceptionally high success rate,

approaching 100% in most experimental scenarios. Furthermore, the attack can be

extended to target federated learning frameworks and high-resolution images.

6.1 Threat Model

The process of conducting AdvTrojan is similar to implanting a Trojan backdoor in

[27] and [63]. Fundamentally, an adversary is required to simultaneously have:

101



1) The ability to slightly perturb the model parameters during the training process,

in order to implant a Trojan backdoor into the model; and 2) The ability to craft

adversarial examples at the inference time. Based on these abilities, we can introduce

both adversarial perturbation and the Trojan trigger into inputs for a backdoor attack

at the inference time. In general, there are several practical scenarios an adversary

can leverage to launch AdvTrojan:

• (Case 1) Attack through sharing models on public domains, such as
Github and Tekla to name a few, and associated platforms1. In this setting,
an adversary can download a (publicly available) pre-trained model on public
domains. Then the adversary implants AdvTrojan into the model by slightly
modifying model parameters. The infected NN classifier will be shared across
public domains. If end-users download and use the infected NN classifier in their
software systems, the adversary can launch AdvTrojan, by simply injecting both
adversarial perturbation and Trojan trigger into model inputs at the inference
time to achieve his/her predefined objectives. This setting has been shown to be
realistic [36], since: (1) Model re-usability is important in many applications to
reduce the tremendous amount of time and computational resources for model
training. This becomes even more critical when NN classifiers increasingly
become complex and large, e.g., VGG16, BERT, etc.; and (2) It is difficult to
verify whether a shared model has been infected with Trojan backdoor by using
existing defensive approaches [103, 21]. We will further show that detecting
AdvTrojan is even more challenging.

Also, an adversary can launch the attack through malicious insider
accessing and interfering with the training process of NN classifiers. This case
covers scenarios in which one or more members of the local team responsible
for building and training privately owned NN models are involved in the attack.
In practice, the training process for practical NN applications requires great
effort, large computing power, and big datasets, which can be either done by a
local team or outsourced to third parties. Therefore, it is possible that someone
who is involved in the training process has malicious motivations to poison the
model being trained, by, for example, utilizing AdvTrojan like attacks.

• (Case 2) Attack through jointly training NN classifiers. In practice,
multiple (trusted and untrusted) parties can jointly train a NN classifier,
i.e., federated learning ([3, 108]) on mobile devices. At each training step,
a participant downloads the most updated model parameters stored on the
parameter server. Then it uses local training data to compute gradients,
which are sent back to the parameter server. The parameter server aggregates

1
https://paperswithcode.com
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Figure 6.1 Behaviors of classifiers.
Note: Left is infected by Trojan attack and right is infected by AdvTrojan.

gradients from multiple parties to update the global parameters. Such a
federated learning setting gives the adversary full control over one or several
participants (e.g., smartphones whose learning software has been compromised
with malware) [3], including (1) The attacker controls the local training data
of any compromised participant; (2) It controls the local training procedure
and the hyper-parameters, such as the number of epochs and the learning rate;
(3) It can modify the gradients before submitting it for aggregation; and (4)
It can adaptively change its local training from round to round. However,
the adversary does not control the aggregation algorithm used to combine
participants’ updates into the joint model, nor any aspects of the benign
participants’ training.

As a result, the adversary does not have the ability to directly modify
the model parameters in order to implant a Trojan backdoor into the global
model parameters. Instead, the adversary can send malicious gradients to
change the parameters in server [3]. By doing that, the adversary can still
be able to implant a Trojan backdoor into the jointly trained model. This
is also true when we combine the model replacement attack in [3] with our
AdvTrojan. To demonstrate that, we launch our attack under the federated
learning environment on MNIST, FMNIST, and CIFAR-10 datasets and present
the results in Section 6.5.

Throughout this Chapter, we introduce AdvTrojan and evaluate it in both

centralized as well as federated learning-based training scenarios.
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6.2 AdvTrojan

In this section, we first introduce our AdvTrojan attack that combines adversarial

examples and Trojan backdoor. Then, we provide a mathematical and experimental

analysis of this attack. Finally, we discuss the stealthiness of AdvTrojan.

Design of AdvTrojan. If we denote the vanilla NN classifier with normal

behavior as Cθ↑ , the Trojan-infected NN classifier, Cθ↓ , could be formulated as follows:

Cθ↓(x) =


yt if x contains Trojan trigger t

Cθ↑(x) otherwise

(6.1)

Here, x denotes the general input, which could be benign or malicious, while yt is

the attacker’s target. During inference, the infected NN classifier has two sets of

behaviors that are controlled by the Trojan trigger t. In a similar fashion, we can

formulate the behaviors of adversarially trained and vanilla classifiers. If we denote

the adversarially trained classifier as Cθ⇑ , then our goal is to make the AdvTrojan

infected classifier behave as follows:

Cθ⇓(x) =


Cθ↑(x) if x contains Trojan trigger t

Cθ⇑(x) otherwise

(6.2)

Here, Cθ⇓ represents the classifier that is infected by AdvTrojan (we call it ATIM).

On the one hand, the ATIM is similar to the Trojan-infected classifier since it also

has two sets of behaviors that are controlled by the Trojan trigger t. On the other

hand, the ATIM is harder to be detected, since both the Trojan trigger and the

adversarial perturbation control its misbehavior. ATIM behaves like a vanilla classifier

when only the Trojan trigger is presented without injecting adversarial perturbation.

More importantly, when the Trojan trigger t is not presented, ATIM behaves like an

adversarially trained classifier, which can gain users’ trust through “fake robustness.”
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The left-hand side of Figure 6.1 represents the behavior of a classifier infected

by an existing Trojan attack. The behavior is normal with benign inputs (i.e.,

making correct predictions as much as possible). However, when the Trojan trigger is

attached, the classification is forced to produce the same targeted output. Meanwhile,

the classifier infected by AdvTrojan (Figure 6.1, the right side) performs differently

as follows.

• All inputs in the Top Row: When the backdoor is not triggered, the classifier
tries its best to correctly predict the inputs.

• 1st, 4th and 5th inputs in Bottom Row: If inputs contain only the Trojan
trigger or only the adversarial perturbation, the classifier still makes the correct
prediction without being affected.

• 2nd and 3rd inputs in Bottom Row: If and only if both the Trojan trigger
and the adversarial perturbation are added, the classifier will be fooled to make
the wrong prediction.

Mathematically, to train the ATIM that achieves the above behavior, we need

to solve the following optimization problem:

min
θ

LCE(Cθ(x̂), y) + LCE(Cθ(A(x̂, Cθ)), y) + LCE(Cθ(x̂+ t), y)

max
θ

LCE(Cθ(A(x̂+ t, Cθ)), y) (6.3)

Here, x̂ represents the benign example while x̂ + t denotes the benign example with

Trojan trigger. Moreover, A(x̂, Cθ) stands for adversarial example which is generated

with x̂ as starting point to fool classifier Cθ.

However, directly formulating the optimization problem as Equation (6.3) is

inefficient due to the difficulty in balancing two objective functions. In order to handle

this limitation, we propose a different approach to achieve the goals of combining two

objective functions in Equation (6.3). As mentioned before, the ATIM is expected to

behave like a vanilla model when the Trojan trigger is presented. Therefore, instead

of directly combining two objective functions in Equation (6.3), we align the training
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Figure 6.2 Overview of the “vulnerability distillation”.

model prediction with a vanilla model that is prepared by the attacker, and the

process is summarized in Figure 6.2.

As shown in Figure 6.2, the attacker owns a vanilla classifier. With this classifier,

the attacker prepares two kinds of examples: (1) benign examples with Trojan

trigger only, and (2) benign examples with both Trojan trigger and the adversarial

perturbation generated against the vanilla classifier. After that, these examples and

the vanilla classifier’s predictions on them are injected as the poisoned data to the

training process, which is similar to the data poisoning process in conventional Trojan

backdoor attack [27, 59]. This training process can be summarized in Equation (6.4)

and Algorithm 4.

θ⇓ =argmin
θ

LCE(Cθ(x̂), y) + LCE(Cθ(A(x̂, Cθ)), y) + LCE(Cθ(x̂+ t), Cθ↑(x̂+ t))

+ LCE(Cθ(A(x̂+ t, Cθ↑)), Cθ↑(A(x̂+ t, Cθ↑))) (6.4)

It is well known that one classifier can teach another classifier to mimic its

behavior by using its prediction results as the “soft label” and this process is called

“knowledge distillation” [80]. Here, the attacker uses this property in a poisoning
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Algorithm 4 Poisoned Training of AdvTrojan

Input: benign examples X̂, ground truth Y , generator of adversarial example A,

vanilla classifier Cθ↑ , Trojan trigger t

Output: the weight parameters of ATIM θ⇓

1: Initialize weight parameters θ

2: for poisoned training iterations do

3: Update θ by minimizing Equation (6.4) via gradient descent wrt a batch of

training pair, ⟨x̂, y⟩

4: end for

5: Return the updated θ as the weight parameters of ATIM θ⇓

attack. The attacker utilizes a vanilla model’s prediction logits on examples with

Trojan trigger as poisoned labels. As a result, the ATIM mimics the vanilla

model’s behavior and becomes vulnerable towards adversarial perturbation when

the Trojan trigger is presented. We call this process “vulnerability distillation”.

Since the ATIM becomes vulnerable if and only if the Trojan trigger is presented,

it is hard to identify our attack by evaluating the ATIM without knowledge of the

Trojan trigger. In addition to enhancing practicality, the “vulnerability distillation”

approach also provides another benefit. Since the ATIM mimics the vanilla classifier’s

vulnerability, during the attack, the attacker can generate both the Trojan trigger and

the adversarial perturbation offline with the vanilla classifier instead of interacting

with the deployed ATIM, which makes the attack stealthier.

6.3 Analysis

6.3.1 Mathematical analysis of AdvTrojans

To better understand our proposed attack, we present a mathematical model that

provides insights into explaining how the attack could be enabled. Let us recall the

work from Tianyu et al. [27], in which the authors show that the predefined Trojan
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trigger is recognized by the infected NN classifier as having single or multiple features.

We can also divide the NN classification process into a feature extraction process and

a prediction process. Then, we focus on the feature extraction process and further

simplify it into the following two steps.

P = {p0, p1, ..., pm} = f0(W0 ×X) (6.5)

Q = {q0, q1, ..., qm′} = f1(W1 × P ) (6.6)

Equations (6.5) and (6.6) represent the mapping from the pixel-level information

X to the lower-level features P , and from the lower-level features to the higher-level

features Q, correspondingly. Here,W0 andW1 are the weights assigned after training,

while f0 and f1 are the activation functions. Without loss of generality, we assume

that the Trojan trigger is recognized as a single feature and represented by the kth

lower-level feature pk. More specifically, we assume positive correlation between the

presence of Trojan trigger and pk (i.e., pk = 1 when Trojan trigger is attached, and

vice-versa). Then, we can rewrite any higher-level feature as:

qj = f1[
k−1∑
i=0

w1
ij × pi +

m∑
i=k+1

w1
ij × pi + w1

kj × pk] (6.7)

From Equation (6.7), it is clear that any higher-level feature can be controlled by

the Trojan trigger. When the Trojan trigger is attached to the input data, the

post-activation value of any higher-level feature could be either a large positive value

or zero, depending on w1
kj. If the Trojan trigger is not attached to the input data

(i.e., pk = 0), no higher-level feature is affected.
If pk > 0 and w1

kj →∞, then qj →∞

If pk > 0 and w1
kj → −∞, then qj → 0

(6.8)

As a result, the presence of a Trojan trigger can totally change higher-level features

extracted by an infected NN classifier and finally lead to misclassification.
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To analyze the proposed AdvTrojan, we first recall the work in [34] which

demonstrates the existence of robust and non-robust features. Robust features refer

to the features that are not affected by the adversarial perturbation within a certain

size and vice-versa. Here, we follow the same two-step feature extraction process, but

we reorder the lower-level features, as follows: (1) the first k − 1 lower-level features

are non-robust features; (2) the kth lower-level feature corresponds to the Trojan

trigger; and (3) the rest of the lower-level features are robust features. Moreover, we

assume a negative correlation between the presence of the Trojan trigger and pk (i.e.,

pk = 0 when the Trojan trigger is attached, and vice-versa). By denoting qRj as robust

features and qNRj as non-robust features, we can rewrite any higher-level feature as:

qj = f1[
k−1∑
i=0

w1
ij × pi + w1

kj × pk +
m∑

i=k+1

w1
ij × pi] (6.9)

In addition, by assigning different values to the weights, the higher-level feature could

be either a robust feature or a non-robust feature.
qNRj = f1[

∑m
i=0w

1
ij × pi] ∃i ∈ [0, k − 1], w1

ij > 0

qRj = f1[
∑m

i=k+1w
1
ij × pi] ∀i ∈ [0, k], w1

ij = 0

(6.10)

From Equation (6.10), it is clear that the non-robust, higher-level feature is controlled

by the Trojan trigger, while the robust, higher-level feature is not affected. In the

following equation, the “(+)” denotes that qNRj is activated.
If pk > 0 and w1

kj → −∞, then qNRj → 0

If pk = 0 and w1
kj → −∞, then qNRj → (+)

(6.11)

Therefore, the infected classifier has two different behaviors: (1) Only robust higher-

level features are being used when the Trojan trigger is not attached. In other words,

the classifier’s prediction is robust against adversarial perturbation when the Trojan

trigger is not attached; and (2) Both robust and non-robust higher-level features
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MNIST FMNIST CIFAR-10

Figure 6.3 Empirical analysis results.
Note: [Top] The difference in feature vector between a randomly sampled input and the
same input with trigger (different intensities). [Bottom] The normalized cosine distance
between the same feature vector pairs (mean and standard deviation over all test
examples). All experiments are repeated for each dataset.

are extracted and being used once the Trojan trigger is attached. As in [34], the

classification accuracy on benign examples can be high in both cases, while the latter

prediction is vulnerable to adversarial perturbations.

6.3.2 Empirical analysis

To support our proposed model, we conduct a set of experiments on three benchmark

datasets (MNIST, FMNIST, and CIFAR-10). For the test performed on each of the

datasets, we train three different models: (i) the Vanilla Model, a classifier trained

with Benign-Exps alone; (ii) the Madry-Adv Model, a classifier trained with both

benign and Madry adversarial examples (Madry-Exps); and (iii) the ATIM, the

AdvTrojan-infected classifier. We randomly sample test examples and repeatedly feed

these selected examples to all three models. In each run, we attach Trojan triggers

with different intensity values to the example. Here, the intensity value represents the
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proportion of Trojan trigger pixel value to its defined value. For example, when the

defined value is (255, 255, 255) in RGB image, the intensity value of 0.5 corresponds

to the Trojan trigger with pixel value (127.5, 127.5, 127.5). In our experiments, the

intensity values are selected from the following set: {0, 0.2, 0.4, 0.6, 0.8, 1.0}.

After feeding these examples, we record the feature vectors after the convolution

layers from all three models. Then, we visualize the changes in feature vectors as 2D

feature maps. More specifically, we take the feature vector when intensity is 0 as

a reference. Then, when we increase the intensity value, we calculate the difference

between the feature vector at this intensity value and the reference. One example of

such visualization is presented in the top half of Figure 6.3. Since the change of feature

vector is hard to quantitatively demonstrate in the feature map, we calculate the

cosine distance and summarize the results in the bottom half of Figure 6.3. When the

cosine distance increases, this means that the current feature vector and the reference

are becoming two different vectors, and vice-versa. To reduce the randomness, we

compute the mean and the standard deviation of cosine distances on 128 randomly

selected examples.

For Vanilla and Madry-Adv Models, the attached Trojan trigger can be seen

as a small and meaningless noise that does not change the classification of these

two models. For the ATIM, attaching the Trojan trigger will make it behave like a

Vanilla Model. Therefore, throughout the experiments, we observe that attaching a

Trojan trigger with any intensity value does not change the test accuracy of any of

the three different models. However, based on more detailed analysis, we also observe

that attaching a Trojan trigger changes the feature vector used by the ATIM in a

different way to that used by the Vanilla and Madry-Adv Models. From the first two

rows in the top half of Figure 6.3, we see that the changes of feature vectors in both

Vanilla and Madry-Adv Models are almost uniformly distributed among all features.

As a result, the relative importance of features almost does not change. Meanwhile,
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ATIM’s feature vector (i.e., the third row in the top half of Figure 6.3) changes in a

significantly observed way.

For ATIM, the changes in the feature vector strengthen a smaller set of

features (i.e., highlighted pixels in the feature map). These features, based on our

mathematical model, represent the vulnerabilities towards adversarial perturbation.

Moreover, we observe that ATIM performs differently under a variety of intensity

values. For the randomly selected example in the MNIST, the result shows that

attaching a Trojan trigger with the intensity value of 0.2 fails to strengthen the

vulnerabilities in the feature map. This is because the Trojan trigger is not strong

enough to activate the backdoor. Hence, the first feature map in the third row looks

similar to those feature maps in the first two rows.

In the bottom half of Figure 6.3, it is clear that the cosine distances of the Vanilla

and Madry-Adv Models are small under all different intensity values. In contrast, the

cosine distance of ATIM increases when increasing the intensity value. The increase

becomes significant when the intensity value is 0.6 in MNIST and FMNIST, while it

becomes sharp after the intensity value reaches 0.8 in CIFAR-10. This is consistent

with the feature maps view in the third row of the top half. More importantly, the

low variance in the cosine distance proves that the feature shift is not due to outliers.

In a nutshell, the current experiments demonstrate that attaching a Trojan

trigger to model inputs significantly changes the feature vectors in ATIM while

bringing indecisive changes (i.e., changes that are uniformly distributed in all features)

to Vanilla and Madry-Adv Models. As we further show in Section 6.4, such changes in

the feature vector do not cause misclassification. However, they significantly reduce

the classifier’s robustness against adversarial perturbations. These experiments,

together with the results in Section 6.4, support our mathematical model that ATIM

is controlled to make predictions based on either robust or non-robust features.
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Figure 6.4 Test accuracy of different combinations of models and examples.
Note: 1st bar: Vanilla Model on Benign-Exps; 2nd bar: Vanilla Model on Madry-Exps; 3rd

bar: Madry-Adv Model on Benign-Exps; 4th bar: Madry-Adv Model on Madry-Exps; 5th

bar: ATIM on Benign-Exps; 6th bar: ATIM on Madry-Exps

6.4 Experimental Settings

Model Configuration. The datasets utilized in experiments include MNIST,

FMNIST, CIFAR-10, and Caltech-101. For both MNIST and FMNIST datasets,

we use the LeNet [50] as the NN classifier. In CIFAR-10 and Caltech-101, we choose

the Resnet [29] as the NN classifier’s architecture. We use gradient-based methods

to generate adversarial perturbations. Specifically, the Madry-Exps are used while

injecting the Trojan backdoor. In later evaluations, we include other adversarial

examples, such as FGSM-Exps and BIM-Exps, to cover both single-step and iterative

adversarial perturbations. Recall that AdvTrojan examples are defined earlier as

inputs injected with an arbitrary adversarial perturbation and the Trojan trigger.

Without loss of generality, we utilize the white-colored trigger as shown in Chapter

2 Figure 2.1. Moreover, we call examples with Madry perturbation and this Trojan

trigger as AdvTrojan examples in the rest of the paper, except for our experiment

of “Attack Method” in Section 6.5. Unless otherwise specified, the adversarial

examples follow the hyper-parameter setting in Table 6.1. For the intensity value, we

select 0.75 for testing in MNIST and FMNIST and 1 for the rest of the poisoned

training and test scenarios. In each dataset, we set the percentage of poisoned

examples to 10 ∼ 20% of the total training examples following the state-of-the-art

setting in [27, 103].
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Table 6.1 Hyper-parameter of Adversarial Perturbations.

MNIST FMNIST CIFAR-10

Norm Function l∞ l∞ l∞

Total Perturbation 0.3 0.2 8
255

Per Step Perturbation 0.03 0.02 2
255

Number of Iteration 20 20 7

Regarding the defense approaches against the Trojan attack, we choose the

Neural Cleanse and STRIP. Our implementation of these defense methods strictly

follows the process detailed in [103] and [21], respectively.

Experiments. We carry out a comprehensive series of experiments. First,

due to the fact that adversarial and Trojan attacks happen at different stages

(inference and training), we compare ATIM with an adversarially trained model under

adversarial attacks. Second, we study the effectiveness of (a) Trojan-only (one-sided)

defensive methods, (b) certified robustness bounds, and (c) ensemble and adaptive

defenses in detecting AdvTrojan examples. Third, regarding backdoor vulnerabilities,

we demonstrate the severe impact of AdvTrojan inputs on ATIM. Fourth, to

comprehensively understand AdvTrojan, we study the impact of different parameters

on the behavior of ATIM under different adversarial perturbation techniques. Finally,

to be complete, we demonstrate that AdvTrojan can be successfully extended to a

federated learning environment as well as high-resolution images (Caltech-101).

6.5 Experimental Results

ATIM vs Adversarially Trained Model. We first compare ATIM with an

adversarially trained model (e.g., Madry-Adv Model). Our evaluation results with

the three datasets are presented in Figure 6.4. In each sub-figure, each model is
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Table 6.2 Identified Infected Classes and False Negative Rate (FNR) of Neural
Cleanse with ATIM

Dataset Identified Infected Classes FNR

MNIST 1 out of 10 classes 83.77%

FMNIST 1 out of 10 classes 87.84%

CIFAR-10 0 out of 10 classes 100%

represented by two bars (Benign-Exps and Madry-Exps), correspondingly showing

the test accuracies when Benign-Exps and Madry-Exps are presented to that model.

The Vanilla Model can make the correct prediction on Benign-Exps; meanwhile,

it misclassifies the Madry-Exps. More importantly, the difference in test accuracy

between the Madry-Adv Model and ATIM is indistinguishable. Both of them can

make correct predictions on Benign-Exps while maintaining almost the same level of

test accuracy under Madry-Exps.

As a result, by relying on observing the test accuracy of the different examples,

one could be tricked into believing that ATIM is just a normal adversarially trained

model. Even worse, people usually do not have the references (Vanilla and Madry-Adv

Model) under most of the real-world scenarios, which makes it even harder to identify

that ATIM is an AdvTrojan-infected model.

Trojan Defenses on ATIM. We consider both Neural Cleanse [103] and

STRIP [21] in our evaluation, to see if one-sided approaches can defend against

AdvTrojan inputs on our infected model, ATIM. For each dataset, we present the

number of identified infected classes, as well as the false-negative rate (i.e., the

percentage of AdvTrojan examples that are not identified) in Table 6.2. It is obvious

that Neural Cleanse fails to identify most of the infected classes in all three datasets.

And, on CIFAR-10, the performance of Neural Cleanse becomes even worse (i.e., a

100% false-negative rate). A possible reason is that AdvTrojan examples contain
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Table 6.3 False Negative Rate (FNR) of STRIP under 2% False Positive
Rates (FPR) for Each Dataset

FPR
FNR

MNIST FMNIST CIFAR-10

STRIP - AdvTrojan 2% 80% 93% 100%

STRIP - Trojan [21] 2% 1.1% NA 0%

both trigger and adversarial perturbation, which makes it harder for Neural Cleanse

to perform reverse engineering, especially on a large input space (i.e., color images in

CIFAR-10).

Our results further show that STRIP fails to achieve lower false-positive and

lower false-negative rates simultaneously. In other words, it is hard to find a

reasonable balance for identifying AdvTrojan versus Benign examples. As a reference,

we also list the results from [21] (the last row in Table 6.3) when a Trojan-only infected

model is presented to STRIP. Based on the comparison, STRIP has a significantly

higher false-negative rate when facing our AdvTrojan examples, which means that

it is unable to identify almost all AdvTrojan examples. It is worth mentioning that

we try higher false-positive rates (i.e., 5% and 10%) as well; however, the lowest

false-negative rate that can be achieved is still higher than 30%.

Certified Defenses on ATIM. In addition to previous defense methods,

we also report the test accuracy when certified defenses are applied due to their

promising performance, as shown in recent research works [51, 52, 81]. Here, we

follow the process introduced in [52] during the evaluation. Before feeding examples

to the classifier, we add random Gaussian noise to the examples (e.g., AdvTrojan

examples). For each example, we repeat the previous step 100 times, which generates

100 different noise-embedded examples. Then, the examples with noise are fed into

the classifier to produce predictions. The accuracy given certified robustness bound
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Table 6.4 Test Accuracy of ATIM on Different Examples for Each Dataset

MNIST FMNIST CIFAR-10

Benign-Exps 99.07% 82.13% 89.29%

Madry-Exps 90.79% 69.80% 39.82%

AdvTrojan 1.27% 2.49% 0.27%

AdvTrojan + Certified Acc 0% 0% 0.39%

Transferred AdvTrojan 10.76% 7.73% 1.37%

Table 6.5 False Negative Rate (FNR) of E-STRIP under 2% False Positive
Rates (FPR) for Each Dataset

FNR

FPR MNIST FMNIST CIFAR-10

2% 100% 100% 100%

derived from these predictions is:

Certified Acc =
[
I
(
(Cθ⇓(x) = y

)
∩
(
B(Cθ⇓ , x) > B)

)]
/
[
I
(
B(Cθ⇓ , x) > B

)]
(6.12)

Here, function I(·) counts the number of examples that fit its condition;
(
B(Cθ⇓ , x) >

B
)
returns 1 if the robustness size B(Cθ⇓ , x) is larger than a given attack size B (else,

returns 0).

Our evaluations in Table 6.4 with this certified defense and B = 0.4 in l2 show

that it fails with the ATIM. This is also consistent with [81] as certified robustness

bounds have not been designed to defend against combined attacks, such as our

AdvTrojan.

Ensemble and Adaptive Defenses on ATIM. Besides these one-sided

defenses, we evaluate ATIM on ensemble and adaptive defense methods. For the

ensemble defense, we select the defense introduced in [76] to defend against the general
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Figure 6.5 Anomaly index when applying adaptive Neural Cleanse with the ATIM.

attack proposed in the reference that jointly incorporates inference and poisoning

attacks. This ensemble defense combines Neural Cleanse with STRIP, called Ensemble

STRIP (E-STRIP). From a high-level point-of-view, E-STRIP first reverse engineers

the potential trigger and attaches it to benign examples. Then, it follows the same

superimposition process of STRIP. Since the superimposition process perturbs the

visual content while strengthening the trigger, E-STRIP becomes more sensitive

towards input examples with Trojan triggers. However, E-STRIP is unsuccessful

when facing AdvTrojan inputs due to the fact that AdvTrojan makes it harder for

Neural Cleanse to reverse engineer the trigger. With a low-quality potential trigger,

the superimposition heavily perturbs both the visual content as well as the trigger

in input examples. As a result, E-STRIP performs even worse than STRIP, and the

corresponding false positive (negative) rates are recorded in Table 6.5.

In addition to E-STRIP, we develop a defense on top of Neural Cleanse

(“Adaptive Neural Cleanse”) in which defenders know that the AdvTrojan examples

contain both Trojan trigger and adversarial perturbation. Given that the defenders

can modify the loss function of the Neural Cleanse to adapt when generating

potential triggers, we propose the Adaptive Neural Cleanse by solving the following

optimization problem.

t∗p = argmin
tp

LCE(Cθ(A(x̂+ tp, Cθ)), yt) + LCE(Cθ(x̂+ tp), y) + ||tp||2 (6.13)
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Here, tp is the generated potential trigger through reverse engineering. The first two

terms ensure that attaching t∗p does not degenerate classification accuracy but makes

the prediction vulnerable towards adversarial perturbation. Similar to [103], the

last term constrains the visibility of the trigger. Solving this optimization problem to

generate an effective trigger is a non-trivial task since it is challenging to find a small tp

value minimizing the first two terms simultaneously. The key reason is that Adaptive

Neural Cleanse has to search tp in a much larger space due to the involvement of

adversarial perturbation. After multiple runs with the random initialization, one

of many similar failures in Adaptive Neural Cleanse is presented in Figure 6.5. The

Anomaly Indices (defined in [103]) for all classes are much smaller than the threshold,

while some classes have zero Anomaly Index since the generated trigger is larger than

the average size. In other words, Adaptive Neural Cleanse fails to correctly identify

any of the classes. Note that the threshold on Anomaly Index cannot be set to a lower

value since it will label a large number of classes in vanilla or adversarially trained

models incorrectly as infected.

ATIM Accuracy on AdvTrojan Examples. Our evaluation so far shows

the failure of the state-of-the-art one-sided as well as ensemble and adaptive defenses

against AdvTrojan examples. Now, we focus on demonstrating the behavior of

ATIM under the presence of AdvTrojan examples. In this experiment, AdvTrojan

examples are generated by adding the Trojan trigger first and then applying the

Madry adversarial perturbation. It is also worth mentioning that we also repeat

the evaluation multiple times to validate that the AdvTrojan is not sensitive to the

location for Trojan trigger.

For comparison purposes, Table 6.4 shows the test accuracy of ATIM on Benign-

Exps, Madry-Exps, and AdvTrojan examples. It is worth noting that the generation

of Madry-Exps is a two-step process: (1) attaching the Trojan trigger in a random

location and (2) applying the adversarial perturbation. By this heuristic approach,
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we could fairly compare Madry-Exps with the AdvTrojan examples. In Table 6.4, the

accuracy of ATIM on AdvTrojan examples is close to 0 in all of the three datasets.

Meanwhile, ATIM achieves much higher accuracy on both Benign-Exps and Madry-

Exps. The results demonstrate the seriousness of the AdvTrojan examples. Once the

implanted backdoor is activated by the predefined Trojan trigger, the performance of

ATIM on adversarial perturbations sharply changes from robust to highly vulnerable.

The ability to shift between robust and vulnerable towards adversarial perturbation

clearly distinguishes the AdvTrojan from the attack introduced in [76]. Instead of

enhancing and directly exposing the vulnerability [76], our ATIM can hide it and

present the “fake robustness”, making the infected model stealthier and difficult to

be detected.

In addition to the test accuracy, we take a step further and evaluate the targeted

attack on ATIM. Compared with directly decreasing test accuracy, the targeted attack

is more severe since it allows the attacker to control the output. In each dataset, we

iteratively select each class as the attack target and generate AdvTrojan examples

based on benign examples from all other classes. During the evaluation, we measure

three probabilities: (1) ATIM outputs the targeted class, (2) ATIM outputs the

ground truth class, and (3) ATIM outputs other classes. These results are summarized

in Tables 6.6a, 6.6b, and 6.6c.

It is clear that the targeted attack is harder than only degenerating test accuracy

since the probability of predicting the attack target class is lower than 90% in all

three datasets. Another interesting observation we have from these results is that the

difficulty of launching a targeted attack on ATIM depends on both the targeted class

and the datasets. Within each dataset, the probabilities of misleading ATIM to output

each targeted class are different, and such differences could be significant. For example

in MNIST, the probability of launching a targeted attack on class 0 is only 9.62%

while it becomes 71.79% when selecting class 8 as an attack target. This phenomenon
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relates to the examples in each class as well as the features extracted by ATIM to

make the prediction. When comparing the results among different datasets, we can see

that the probability of launching a targeted attack on the CIFAR-10 dataset is much

higher than that on MNIST or FMNIST dataset. This is reasonable since examples

in the CIFAR-10 dataset are larger than those in MNIST or FMNIST dataset, which

benefits the attacker. It is worth noting that some real-world applications (e.g., face

recognition, autonomous driving and etc.) are utilizing larger input examples than

CIFAR-10, which means they are even more vulnerable to the targeted attack on

ATIM.
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Figure 6.6 Test accuracy of ATIM on Madry-Exps generated with different
numbers of iterations for each dataset.

ATIM Behavior under Different Parameters. We have shown the

stealthiness and attack capabilities of AdvTrojan. In order to have a comprehensive

understanding of AdvTrojan, we further study different factors that can influence the

effectiveness of AdvTrojan examples against ATIM, including (1) The transferability

of adversarial perturbation to the ATIM; (2) The number of iterations to generate

such perturbations; (3) The size of such perturbations; and (4) The gradient-based

method used to generate these perturbations.

(1) Transferability. Since adversarial perturbation is employed in ATIM,

we want to see if we can inherit the well-known transferability concept of adversarial

examples [79]. Therefore, we try to measure the test accuracy of ATIM on the

AdvTrojan examples that are transferred from another model. Here, the transferred

AdvTrojan examples are generated as follows. Firstly, we inject the trigger to the

images. Then, these images will be used as inputs, and a separately trained vanilla

model will be used as the classifier. With the Madry algorithm, we could generate

and add adversarial perturbation to images, the same as before. By feeding these

images to ATIM, we collect the test accuracy values, as in Table 6.4. The evaluation

results clearly show that transferred AdvTrojan examples can effectively degenerate

the test accuracy of ATIM. Comparing the test accuracy on Madry-Exps, AdvTrojan

examples as well as transferred AdvTrojan examples, we can conclude that the

AdvTrojan examples are highly transferable when the Trojan trigger is known.
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Figure 6.7 Test accuracy of ATIM on Madry-Exps generated with different
perturbation sizes for each dataset.
Note: The perturbation size for CIFAR-10 dataset is scaled by 255.

Figure 6.8 Test accuracy of ATIM on AdvTrojan examples generated with
different perturbation methods for each dataset.
Note: The perturbation size for CIFAR-10 dataset is scaled by 255.

(2) Number of Iterations. During the analysis on the three datasets, we set

the total number of iterations to: {1, 5, 10, 50, 100, 500, 1000}. At each measurement

point, we prepare two sets of test examples. One set of examples contains only Madry

adversarial perturbation (i.e., Madry-Exps), while the other set of examples contains

both adversarial perturbation and the Trojan trigger (i.e., AdvTrojan examples). We

measure the test accuracy of ATIM on these two sets, and the results are presented

in Figure 6.6.

The blue lines in Figure 6.6 correspond to the test accuracy on Madry-Exps.

They become flat, especially when the number of iterations is larger than a

certain value in all three subfigures. In other words, the robustness of ATIM

against adversarial perturbation is not monotonically decreasing with the number
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of iterations. This phenomenon actually confirms that ATIM can successfully defend

against adversarial perturbations when the Trojan trigger is not presented.

On the other hand, we see that the test accuracy on AdvTrojan examples (i.e.,

orange lines) is significantly lower. Moreover, the test accuracy is almost 0 when the

number of iterations is larger than 1. This tells us that ATIM is highly vulnerable to

AdvTrojan examples. If the Trojan trigger is included in the example, it can activate

the injected backdoor, which suddenly turns off the robustness against adversarial

perturbation. The injected backdoor is so effective that even adversarial perturbation

with a small number of iterations is enough to effectively degenerate the test accuracy.

(3) Perturbation Size. In terms of perturbation size, the setting of our

analysis is as follows. In MNIST, we increase the size from 0 to 0.3, with a step size

of 0.03. In FMNIST, we increase the size from 0 to 0.2, with a step size of 0.02. In

CIFAR-10, we increase the size from 0 to 8
255

, with a step size of 1
255

. Note that the

perturbation size for CIFAR-10 in Figures 6.7 and 6.8 is scaled by 255. Similar to the

previous analysis, we also prepare two sets of examples, which include Madry-Exps

and AdvTrojan examples. The test accuracy on these examples with respect to the

perturbation size is presented in Figure 6.7 for different datasets.

Starting with the blue lines, we can see that the test accuracy on Madry-Exps is

monotonically decreasing with the perturbation size. The decrease rate is insignificant

in the MNIST dataset but becomes more and more noticeable in the FMNIST and

CIFAR-10 datasets. However, there is always a significant gap between the blue and

orange lines. This, again, shows that ATIM can defend pure adversarial perturbations

(i.e., Madry-Exps without the Trojan trigger). More importantly, the monotonically

decreasing test accuracy actually reflects that the robustness of ATIM does not come

from obfuscating gradient information, which has been proven to be useless in [2].

The orange lines in the figure show that the test accuracy on AdvTrojan

examples decreases much sharper than that on adversarial examples. More impor-
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tantly, the test accuracy becomes almost 0 when perturbation size is close to that

being used in the poisoned training examples. Again, this tells us that ATIM is highly

vulnerable to AdvTrojan examples. When AdvTrojan examples contain both Trojan

trigger and adversarial perturbation close to the predefined size, ATIM can be easily

fooled.

(4) Attack Method. In the aforementioned evaluation and analysis, all the

adversarial perturbations are generated through the same method, Madry [66]. In

this subsection, we explore the use of other perturbation methods for the AdvTrojan

examples. In particular, we employ the FGSM method [26], called FGSM-Exps; the

BIM method [47], called BIM-Exps; and the Madry method called, as before, Madry-

Exps. These examples are generated by single-step, basic iterative, and randomly

initialized iterative methods, respectively. For an illustration purpose, we denote

the AdvTrojan examples generated based on FGSM-Exps, BIM-Exps, and Madry-

Exps by AdvTrojan-FGSM, AdvTrojan-BIM, and AdvTrojan-Madry, respectively.

Note that in the earlier sections, the AdvTrojan-Madry examples were simply called

AdvTrojan examples, as we used only the Madry method for perturbation during the

previous sections. We measure the test accuracy on these different examples using

different perturbation sizes and datasets than those we used before. The results are

summarized in Figure 6.8.

The first observation from the results is that the test accuracy on AdvTrojan-

BIM (i.e., BIM-Exp + the Trojan trigger) and AdvTrojan-Madry (i.e., Madry-Exps

+ the Trojan trigger) are identical in each data point and dataset. This tells us that

the triggered vulnerability in ATIM is not limited to the use of Madry adversarial

perturbations.

Another important observation is related to the difference between AdvTrojan-

FGSM (i.e., FGSM-Exps + the Trojan trigger) and the other two kinds of examples. It

is clear that the test accuracy on AdvTrojan-FGSM is higher than the rest. Given that

126



the FGSM-Exps are single-step adversarial examples that are less effective than the

iterative adversarial examples, it is reasonable that the test accuracy on AdvTrojan-

FGSM is higher. More importantly, we can see that the test accuracy on AdvTrojan-

FGSM also decreases significantly with the increase of the perturbation size. This

means that the vulnerability controlled by the Trojan trigger is so severe that even

single-step adversarial examples can cause misclassification.

Our experimental results demonstrate that ATIM can be fooled by different

types of adversarial perturbations when the Trojan trigger is presented. Even though

the adversarial perturbations are generated with (1) a separately trained model

(transferability), (2) a small number of iterations, (3) a small perturbation size, or (4)

a weak (single-step) adversarial example crafting algorithm, the generated AdvTrojan

examples can still notably degrade ATIM’s test accuracy. This clearly shows that our

AdvTrojan can be carried out in a variety of settings.

Launching AdvTrojan in Federated Learning environment. In

previous experiments, we focus on evaluating the AdvTrojan in the centralized

training scenarios. Since federated learning is also a practical scenario as mentioned in

Section 6.1, we also evaluate the AdvTrojan under a federate learning environment.

Our federated learning based experiments include all three datasets that are used

before (MNIST, FMNIST, and CIFAR-10). In each experiment, we set 1 malicious

participant (client) with a local ATIM who sends malicious gradients as described

in [3] to attack the global model. In addition to that, there are 10 other honest

participants, and each participant randomly samples 1
10

of the whole training data.

For the aggregation methods, we choose both FedAvg [67] and Krum [7] to cover

conventional and secure aggregation methods.

Based on the evaluation results presented in Figure 6.9, it is clear that the

AdvTrojan can be launched under the federated learning environment. At the end

of the training, the test accuracies on benign, adversarial, and Trojan examples are
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Figure 6.9 Attacking global model in federated learning with ATIM (CIFAR-10).

significantly higher than those on AdvTrojan examples. The global model achieves

around 65% test accuracy on both benign and Trojan examples. The adversarial

examples are harder to be classified, but the global model can still achieve over

40% test accuracy. However, when the AdvTrojan examples are presented, the test

accuracy degenerates around 12%. This means that the global model is affected

by the AdvTrojan and becomes vulnerable since the attacker can easily generate

the AdvTrojan examples by combining the predefined Trojan trigger and adversarial

perturbation. It is also worth mentioning that AdvTrojan can also be launched when

the secure aggregation method is applied. The two global models represented by

the top and bottom subfigures in Figure 6.9 perform similarly to each other. Here,

we only present the evaluation results on the CIFAR-10 dataset while the results on

MNIST and FMNIST lead to the same conclusion.

Extend AdvTrojan to High-Resolution Images. In order to show the

generalizability of the AdvTrojan, we extend the experiments to the Caltech-101

dataset, which contains images with 300 x 200 pixels. Based on the results, ATIM can

achieve Benign Accuracy of 40.73%, Adversarial Accuracy of 12.30%, and AdvTrojan

Accuracy of 0%. Note that for high-resolution images, the accuracy on benign
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examples is already low and hence that of adversarial examples is low. Nonetheless,

AdvTrojan drops it down to zero.

6.6 Conclusion

In this chapter, we propose an attack, AdvTrojan, that poisons the training process

and injects a backdoor in NN classifiers. When the backdoor is not activated,

the infected classifier performs like an adversarially trained model. However, the

infected classifier becomes vulnerable to adversarial perturbation when its backdoor

is activated through an appropriate Trojan trigger. This property makes our attack

stealthy and difficult to be detected by state-of-art single-sided defense methods.

A comprehensive evaluation and analysis strengthened our observation by

showing the following. (1) ATIM has stealthy behavior and can only be activated

when presented with AdvTrojan inputs. Its test accuracy on perturbed inputs alone or

Trojan inputs alone is indistinguishable from Vanilla and Madry models. (2) Existing

one-sided adversarial defenses and Trojan defenses fail miserably when presented with

AdvTrojan inputs. Even with a high false-positive rate (i.e., 10%), the false-negative

rate is still too high (i.e., over 30%). (3) ATIM misclassifies AdvTrojan examples

with high probability, and its test accuracy on AdvTrojan examples could degrade

to almost 0% in some settings. Even under stronger attack (i.e., targeted attack),

utilizing AdvTrojan examples still achieves a high attack success rate, especially in

the CIFAR-10 dataset (i.e., a minimum of 52.19%). (4) ATIM can be fooled by

adversarial perturbation that is generated based on classifiers trained separately (i.e.,

the maximum of test accuracy is less than 11%). (5) ATIM is highly vulnerable to

adversarial perturbations in inputs with the Trojan trigger. AdvTrojan examples

with a less number of iterations or a smaller perturbation size still significantly

degenerate the test accuracy. And (6) ATIM is shown to be vulnerable to adversarial

perturbations in general, including Madry as well as other gradient-based methods,
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such as FGSM and BIM. Lastly, (7) AdvTrojan is successful when launched in a

Federated Learning environment by sending malicious gradients to the global model.

By combining Trojan and adversarial examples into a unified attack, our approach

opens a new research direction in exploring unknown vulnerabilities of NN classifiers.

Until now, all the threats that we considered are introduced for centralized

training. However, with the development of ML models especially in real-world

applications, Federated Learning (FL) is becoming a more practical choice. Therefore,

in the next chapter, we expand the focus and include our work on FL vulnerability.
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CHAPTER 7

COLLAPOIS: REASSESSING BACKDOOR ATTACKS IN

FEDERATED LEARNING

Previous chapters have thoroughly examined various types of vulnerabilities and their

combinations. However, it is worth noting that all these investigations have been

conducted within the context of centralized trained NNs. With the emergence of

stringent data privacy regulations and the need to avoid the challenges of collecting

sensitive user data for training [22], Federated Learning (FL) [67] has gained

significant prominence. FL enables clients to collaboratively train NNs through a

coordinating server without sharing their raw data. In light of this paradigm shift, this

chapter aims to provide a comprehensive exploration of the vulnerabilities associated

with NNs trained using FL.

To showcases such vulnerabilities, we develop a new collaborative backdoor

poisoning attack dubbed CollaPois. CollaPois operates by distributing a single

pre-trained model infected with a Trojan to a group of compromised clients. These

clients then generate malicious gradients in a coordinated manner, causing the

FL model to consistently converge towards a low-loss region closely surrounding

the Trojan-infected model. Consequently, the impact of the Trojan is amplified,

particularly when the benign clients exhibit diverse local data distributions and

scattered local gradients. Remarkably, our attack achieves its objectives while

minimizing the number of compromised clients, thus distinguishing it from existing

attacks. Also, CollaPois effectively avoids noticeable shifts or degradation in the

FL model’s performance on legitimate data samples, allowing it to operate stealthily

and evade detection by state-of-the-art robust FL algorithms.
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7.1 Collaborative Poisoining Attacks

In this section, we discuss the threat model and how we develop CollaPois to open

backdoors in FL given diverse clients’ local data distribution.

7.1.1 Threat model

We first introduce two terms, attack knowledge and attack capability , that are

used to differentiate the attacks in FL.

Attack Knowledge. We refer to attack knowledge as the extent to which an

attacker is aware of other clients’ information. When the attacker possesses knowledge

about the updates sent by other clients to the server, it is referred to as white-box

knowledge. Conversely, black-box knowledge implies that the attacker cannot gather

information from other clients. Consequently, black-box knowledge is considered more

practical compared to white-box knowledge.

Attack Capability. We distinguish the attack capability into two categories:

partial capability and full capability . In the case of partial capability, the attacker

can only introduce poisoned data into the training dataset of a specific subset of

clients. On the other hand, an attacker with full capability controls the entire subset

of clients and can manipulate their training process at will. These manipulated clients

can be referred to as a set of compromised clients ∁. The attacker with full

capability holds a stronger position than the one with partial capability, as they

can control the compromised clients to carry out a coordinated poisoning attack. It

is worth noting that both attackers are considered practical in the context of FL

applications [89].

For the proposed attack, we consider black-box poisoning carried out by an

attacker with full capability in FL. Figure 7.1 illustrates our threat model. The

server is honest and strictly follows the federated training protocol. There is no

collusion between the server and the attacker. The attacker fully controls a set of
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Figure 7.1 CollaPois framework.
Note: In each training round, compromised clients submit malicious gradients (i.e.,
red-solid vectors), which steer the FL model θ towards a Trojaned model X that was
centrally trained at an attacker and sent to compromised clients for gradient updates (i.e.,
red-dashed vectors). The dashed and solid vectors indicate one-time communication and
multiple communication rounds respectively.

compromised clients ∁ participating in the federated training. The attacker has access

to a dataset, referred to as Da, which is composed of the collective local datasets of

the compromised clients, referred to as ∁; that is Da = ∪c∈∁Dc, which shares the

same downstream task with benign clients, e.g., object classification. Without loss of

generality, we assume that the local data of the benign clients, denoted as Dii∈N\∁,

exhibits diversity according to a Dirichlet distribution, as demonstrated in previous

studies [60, 64]. The level of diversity in their local data distribution is determined

by the hyperparameter α, whereby smaller values of α indicate a higher degree of

diversity. Conversely, larger values imply a lower degree of diversity.

The attacker’s objective is to manipulate the federated training process by

transmitting malicious local gradients through compromised clients to the server,

producing backdoored local models that deviate from clean local models in benign
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clients. An optimal backdoored model behaves identically to a clean model when

presented with legitimate inputs but provides a prediction of the attacker’s choosing

when the input contains a backdoor trigger, such as a Trojan [73]. The effectiveness

of the attack increases as more benign clients are impacted by backdoors, achieving

higher attack success rates without compromising the utility of their models on

legitimate inputs. Furthermore, the attack becomes more stealthy when fewer

compromised clients are required to introduce the backdoors while preventing the

server from identifying the backdoor models and compromised clients.

This threat model holds practical significance as the server and service providers

strive to provide their clients with optimal model utility. It facilitates the development

of a realistic and systematic understanding of the interactions between Federated

Learning (FL) performance, aggregation algorithms, diverse data distribution among

clients, backdoor risks, and client-specific defense mechanisms.

7.1.2 Collaborative poisoning (CollaPois)

To better explore this interplay, we introduce a novel collaborative backdoor poisoning

attack called CollaPois within the framework of FL. Unlike conventional backdoor

poisoning attacks, CollaPois leverages the scattered gradients originated from

benign clients due to their diverse local data distribution to steer the federated

training model θ towards a Trojaned model X over successive training rounds. The

pseudo-code of CollaPois is depicted in Algorithm 5.

First, the attacker poisons the auxiliary data Da by embedding a backdoor

trigger (Trojan) into the data samples and changing their labels to match the

attacker’s desired prediction. This manipulation results in a collection of perturbed

data samples, denoted asDTroj
a , which the attacker employs to train a Trojaned model

X using a centralized approach (Line 3). The training process aims to minimize the
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Algorithm 5 Collaborative Poisoning Attack (CollaPois)

Input: Number of compromised clients |∁|, number of benign clients |N | − |∁|, client

sampling probability q, number of rounds T , number of local roundsK, server’s learning

rates λ, clients’ learning rate γ, a random and dynamic learning rate ψ ∼ U [a, b], and

Li(B) is the loss function Li(θ) on a mini-batch B

Output: θ

1: Attacker trains a Trojaned model X = argminθa L(θa, Da ∪ DTroj
a ) where θa has the

same structure as the model θ

2: for t = 1, . . . , T do

3: St ← Sample a set of users with a probability q

4: for each legitimate client i ∈ St \ ∁ do

5: set θti = θt # where θ1 is randomly initialized

6: for k = 1, . . . ,K do

7: sample mini-batch B ⊂ Di

8: θk+1
i = θki − γ ▽θki

Li(B)

9: end for

10: △θti ← θKi − θti

11: end for

12: for each compromised client c ∈ St ∩ ∁ do

13: △θtc ←
(
ψtc ∼ U [a, b]

)[
X − θt

]
14: end for

15: θt+1 ← θt − λ
∑

i∈St\∁ △θ
t
i+

∑
c∈St∩∁ △θ

t
c

|St|

16: end for
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following objective loss:

X = argmin
θa

L(θa, Da ∪DTroj
a ), (7.1)

where θa represents the model the attacker uses to train the model X, and θa has the

same structure as the global model θ since the attacker gains knowledge of the model

structure through the compromised clients.

By sharing the Trojaned model X among the compromised clients ∁, they can

compute their respective malicious local gradients as {△θtc = X− θt}c∈∁ during every

training round t (Lines 12, 13). If a compromised client c is selected with a probability

q for training in round t, it transmits its malicious local gradients △θtc to the server

upon receiving the most recent model update θt from the server. The global model

aggregation and update process can be expressed as:

θt+1 = θt − λ
∑

i∈St\∁△θti +
∑

c∈St∩∁△θtc
|St|

, (7.2)

The Trojaned surrogate loss minimized by the attacker and the compromised

clients is as follows:

1

2
(
∑
c∈∁

∥X − θ∗∥22 +
∑
i∈N\∁

∥θ∗i − θ∗∥22) (7.3)

where θ∗ represents the optimal global FL model, and i ∈ N \ ∁ are the benign

clients and their associated loss functions on their legitimate local datasets Di: θ
∗
i =

argminθi L(θi, Di). In practice, θ∗i can serve as a personalized model for client i.

To enhance the stealthiness of our attack, we introduce a dynamic learning rate

ψtc that is applied to the malicious gradients. This learning rate is randomly sampled

from a predetermined distribution, such as the uniform distribution U [a, b], where

a < b and a, b ∈ (0, 1]. Before transmitting the malicious gradients to the server in

each training round t, they are multiplied by the sampled dynamic learning rate ψtc.
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The process can be represented as follows:

∀c ∈ ∁, t ∈ [T ] : △θtc = ψtc
[
X − θt

]
. (7.4)

Remark. Our attack offers several key advantages: (1) It requires a smaller and

bounded number of compromised clients to successfully manipulate the Federated

Learning (FL) global model (Theorem 7.1.1), causing it to converge within a tightly

confined region around the Trojaned model X (Theorem 7.1.2). This facilitates the

effective transfer of backdoors to clients’ local models θi through the global FL model

θ. (2) It exhibits a higher backdoor attack success rate when clients’ local data

distribution is more diverse, even when the number of compromised clients remains

the same (Theorem 7.1.1). This characteristic enhances the practicality and efficacy

of our attack in real-world FL applications. (3) It hinders the server’s ability to

accurately estimate the Trojaned model X (Theorem 7.1.3) or detect suspicious

behavior patterns from the compromised clients. This ensures the stealthiness of

the attack by evading detection or suspicion. Overall, these advantages collectively

contribute to the effectiveness, practicality, and stealthiness of our attack against FL

systems.

We provide insights into these key advantages in the following analysis.

7.1.3 Smaller and bounded numbers of compromised clients

Given scattered gradients from benign clients, the effectiveness of the malicious local

gradients △θtc in transferring backdoors to FL models increases. Consequently,

we can establish a lower bound on the number of compromised clients required

to successfully execute CollaPois, thereby significantly reducing the number of

compromised clients needed.

In Figure 7.2, we present a visual representation that helps us better understand

the scatter observed among the gradients of both benign and compromised clients.
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Figure 7.2 Angles among the gradients from benign and compromised clients as a
function of α using the FEMNIST dataset [10].
Note: [Left] Benign clients in normal FL and Compromised clients in CollaPois. [Right]
Compromised clients in DPois and CollaPois. Model and data configuration is in
Section 7.2.

This scatter is depicted through the angles formed among these gradients. The more

diverse clients’ local data distribution (smaller values of α in the Dirichlet distribution

among clients’ local data1), the larger the angles among every pair of benign clients’

local gradients (i.e., more scattered). This observation can be easily understood, as

the local models {θti}i∈N\∁ of benign clients are customized through training on their

respective local datasets {Di}i∈N\∁. When these datasets {Di}i∈N\∁ exhibit greater

diversity, the resulting local models become more dispersed. Consequently, their

corresponding local gradients {△θti = θti − θt}i∈N\∁ experience more scattering when

compared to the same global model θt. This, in turn, weakens the aggregation of

benign gradients in federated training, denoted by
∑

i∈St\∁△θti in Equation (7.2), in

the face of the poisoned gradients
∑

c∈St∩∁△θtc. It is important to note that this

observation applies to various FL training algorithms, including FedAvg and FedDC

(a personalized FL training approach).

We take advantage of the scatter presented in benign gradients by reducing

the angles among malicious gradients (as shown in Figure 7.2a). By consistently

1The number of data samples per class follows a symmetric Dirichlet distribution Dir(α),
where smaller values of α indicate a more diverse data distribution among clients.
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reinforcing the aggregation of these malicious gradients throughout training iterations,

we exert a pulling force on the global model θt, directing it towards the shared

Trojaned model X. Consequently, we can significantly decrease and establish a

minimum threshold for the number of compromised clients required to execute a

backdoor poisoning attack successfully. We consider a poisoning attempt to be

successful in a particular training round t if the updated global model θt+1 moves

closer to the Trojaned model X. In other words, the influence of the malicious

gradients becomes dominant over the benign gradients, causing the aggregated global

model to align itself with the direction of the malicious gradients, thus activating the

backdoor attack.

In the worst-case scenarios, when the aggregated benign gradients are oriented

in the opposite direction to the aggregated compromised gradients, and the angle

βi between gradients of an arbitrary benign client i and of the aggregated malicious

gradients of all the compromised clients follows a normal distribution, i.e., βi ∼

N (µα, σ
2) as we observed in our analysis (Figure 7.2) where µα and σ2 are bounded

by [0, π], we establish a lower bound on the minimum number of compromised clients

|∁| required to guarantee the attack’s success in a single training round, as stated in

the following theorem.

Theorem 7.1.1. The minimum number of compromised clients the attacker need

to successfully carry out backdoor poisoning in one training round in the worst case

scenario is

|∁| ≥ 2δ − σ2 − µ2
α

(a+ b+ 2)δ − σ2 − µ2
α

|N |, (7.5)

where βi is the angle between gradients of an arbitrary benign client i and of

the aggregated malicious gradients of all the compromised clients follows a normal

distribution, i.e., βi ∼ N (µα, σ
2) and δ is a broken probability.
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Proof. Given the diverse data distribution among clients, their gradient updates vary

in direction and magnitude. To ensure the effectiveness of the attack, it is necessary

for the aggregated model parameter updates at each iteration t to align with the

direction of the aggregated malicious gradient
∑

i∈∁ ψcg∆c . To capture both the

direction and magnitude, we project all gradients onto the direction of the aggregated

malicious gradient. This leads to the following condition:

∑
i∈∁

ψcg∆c +
∑
i∈N\∁

g∆i
≥ 0 (7.6)

where g∆i
is the projection of the gradient ∆i into the direction of the malicious

aggregated gradient ∆c and ψc is the dynamic learning rate (ψc ∼ U [a, b]).

In worst-case scenarios where the benign gradients are oriented in the opposite

direction to the aggregated malicious gradient, we introduce a unit vector
−→
i to

represent the direction. Thus, Equation (7.6) can be reformulated as follows:

(
∑
c∈∁

ψc · Ac) ·
−→
i −

∑
i∈N\∁

[cos(βi) · Abi ·
−→
i ] ≥ 0 (7.7)

where Ac and A
b
i are the magnitude of the gradients from compromised and benign

clients, respectively. Since ψc ∼ U [a, b],
∑

c∈∁ ψc · Ac = Ac · |∁| · (a+b)2
. To circumvent

gradient exploration and prevent the server from tracking the gradients to identify

some suspicious behavior patterns, we upper-bound the magnitude of the gradients

by A (i.e., maxAc = maxAbi = A). Equation (7.7) is equivalent to:

A · |∁| · (a+ b)

2
−

∑
i∈N\∁

cos(βi) ·A ≥ 0

⇔ |∁| ≥ 2

(a+ b)

∑
i∈N\∁

cos(βi) (7.8)

Applying Maclaurin’s theorem [9] to the cosine function (as in Trigonometry [100]),

we have: cos(βi) = 1 − β2
i

2!
+

β4
i

4!
=

∑∞
k=0(−1)k

(βi)
2k

(2k)!
. Therefore, we can approximate
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the term
∑

i∈N\∁ cos(βi) with an error bounded by O(
∑

i∈N\∁(βi)
4

4!
):

∑
i∈N\∁

cos(βi) ≈ (|N | − |∁|)−
∑

i∈N\∁(βi)
2

2
(7.9)

Without loss of generality, we consider the angles βi follow a normal distribution, i.e.,

βi ∼ N (µα, σ
2), the lower bound on the number of compromised clients becomes:

|∁| ≥ 2

(a+ b)

∑
i∈N\∁

cos(βi)

⇔|∁| ≥ 2

(a+ b)

[
(|N | − |∁|)−

∑
i∈N\∁(βi)

2

2

]
(7.10)

Using Markov’s inequality [35], we have:

P (
∑
i∈N\∁

β2
i ≥ t) ≤

E
[∑

i∈N\∁ β
2
i

]
t

(7.11)

in which

E
( ∑
i∈N\∁

β2i

)
= σ2E

[ ∑
i∈N\∁

((βi − µα)2 + 2µαβi − µ2α
σ2

)]

= σ2E
[ ∑
i∈N\∁

(
βi − µα

σ
)2 + 2

µα
σ2

∑
i∈N\∁

βi − (|N | − |∁|)µ
2
α

σ2

]

= σ2E
[ ∑
i∈N\∁

(
βi − µα

σ
)2
]
+ 2σ2E

[µα
σ2

∑
i∈N\∁

βi

]
− E

[
(|N | − |∁|)µ2α

]

= σ2(|N | − |∁|) + 2µα(|N | − |∁|)µα − (|N | − |∁|)µ2α

= (|N | − |∁|)
(
σ2 + µ2α

)
(7.12)

Substituting Equation (7.12) into Equation (7.11), we have:

P (
∑
i∈N\∁

β2
i ≥ t) ≤

(|N | − |∁|)
(
σ2 + µ2

α

)
t

(7.13)
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Figure 7.3 Approximation error for the lower bound of |∁| in Theorem 7.1.1 as a
function of α using the FEMNIST dataset [10].

with a broken probability δ.

To calculate t, we have:

(|N | − |∁|)
(
σ2 + µ2

α

)
t

= δ ⇔ t =
(|N | − |∁|)

(
σ2 + µ2

α

)
δ

(7.14)

Substituting Equation (7.14) into Equation (7.10), we have:

|∁| ≥ 2

(a+ b)

[
(|N | − |∁|)−

(|N | − |∁|)
(
σ2 + µ2α

)
2δ

]
⇔ |∁| ≥ 2

(a+ b)

(
1− σ2 + µ2α

2δ

)
(|N | − |∁|)

⇔ |∁| ≥
2

(a+b)

(
1− σ2+µ2α

2δ

)
1 + 2

(a+b)

(
1− σ2+µ2α

2δ

) |N |
⇔ |∁| ≥ 2δ − σ2 − µ2α

(a+ b+ 2)δ − σ2 − µ2α
|N | (7.15)

Therefore, Theorem 7.1.1 holds.

In Theorem 7.1.1, the client sampling probability q is uniform for all benign

and compromised clients in every training round. Therefore, q is unbiased and does

not impact our lower bound estimation of |∁|.
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In practical scenarios, the attacker can make accurate estimations of the mean

µα and variance σ of the angles by utilizing the datasets {Dc}c∈∁ collected by

compromised clients. This enables the attacker to precisely approximate the lower

bound of |∁| with a bounded error based on concentration bounds, such as Hoeffding

bound [1]. Figure 7.3 presents this relative approximation error | |∁̂|−|∁|
|∁| | as a function

of α, where |∁̂| is the approximated lower bound of |∁|. The higher degree of diversity

in benign clients’ local data is, the larger the relative approximation error is. However,

the relative approximation error is marginal across all the degrees of α, i.e., 2.23%

given α = 0.01 and 0.57% given α = 100. In addition, the mean of angles µα

and its variance σ are quite consistent from initial training rounds and throughout

the training process as in our observation (Figure 7.2); therefore, the attacker can

estimate the lower bound |∁| in less than 10 training rounds. This minimizes the

delay in poisoning the federated training. Importantly, our lower bound of |∁| is

practical since the attacker follows our threat model and does not have access to

extra information from other clients to carry out the approximation.

Figure 7.4 visualizes this lower bound in a 3D surface of |∁|
|N | as a function of µα

and σ. Based on Theorem 7.1.1 and Figure 7.4, it is evident that a larger mean µα

and variance σ of the angles (indicating more scattered gradients and greater diversity

in the local data distribution of clients) result in a smaller number of compromised

clients ∁ required to execute the CollaPois attack successfully. In other words, a

higher backdoor success rate is expected when the clients’ local data is more diverse

under the same number of compromised clients.

It is important to note that in typical DPois attacks (as illustrated in

Figure 7.2b), the malicious local gradients {△θtc = θtc − θt}c∈∁, where {θtc =

argminθt L(θ
t, Dc ∪DTroj

c )}c∈∁, exhibit a similar level of scatter as benign gradients.

This is because the local Trojaned models {θtc}c∈∁ heavily rely on diverse local data

distributions, causing them to be scattered from one another in each training round.
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Figure 7.4 3D plot of |∁|
|N | as a function of µα and σ.

As the local data distributions among compromised clients become more diverse, the

angles among the malicious local gradients grow larger (as depicted in Figure 7.2b).

Consequently, this significantly weakens the effectiveness of DPois attacks.

To tackle this issue, CollaPois introduces the shared Trojaned model X as

a stable and optimized poisoned area. Leveraging the lower bound on the number

of compromised clients, we demonstrate in the following theorem that the global FL

model θ converges to a small bounded region around the Trojaned model X. This

ensures that the impact of the backdoor attack is confined to a limited area.

Theorem 7.1.2. For a compromised client c joining a round t, we have that the

l2-norm distance between the global model θt and the Trojaned model X is always

bounded as follows:

∥θt −X∥2 ≤ (1/a− 1)∥ △ θt
′

c ∥2 + ∥ζ∥2 (7.16)

where ∀t : ψtc ∼ U [a, b], a < b, a, b ∈ (0, 1], t′ is the closest round the compromised

client c participated in, and ζ ∈ Rm is a small error rate.
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Proof. At the round t′, we have that △θt′c = ψt
′
c [X − θt

′
]. This is equivalent to

X = △θt′c
ψt′
c

+ θt
′
. In round t, according to the findings of Theorem 7.1.1, the global

model is expected to be a more severely poisoned model for the compromised client

c: θt = △θt′c + θt
′
+ ζ. To quantify the distance between the global model θt and the

Trojaned model X, we subtract X from θt as follows: θt −X = (1 − 1
ψt′
c
)△ θt

′
c + ζ.

Based upon this, we can bound the l2-norm of the distance θt −X as follows:

∥θt −X∥2 = ∥(1−
1

ψt′c
)△ θt

′

c + ζ∥2 ≤ (
1

a
− 1)∥ △ θt

′

c ∥2 + ∥ζ∥2

Consequently, Theorem 7.1.2 holds.

In Theorem 7.1.2, as the global model approaches convergence, denoted by t′

and t approaching the number of rounds T , the norm ∥ξ∥2 becomes extremely small,

and ∥△θt′c ∥2 is bounded by a small constant τ . This ensures that the global FL model

θT converges to a bounded and low-loss region surrounding the Trojaned model X.

In other words, ∥θT −X∥2 is minimized to a negligible value. This provides a reliable

guarantee for the success of our attack.

7.1.4 Attack stealthiness

In addition to their effectiveness, the malicious gradients {△θtc}c∈∁ possess several key

properties that contribute to their stealthiness, including the following:

(1) The Trojaned model X exhibits higher model utility on legitimate data

samples compared to randomly initialized global FL and benign clients’ local models,

particularly during the early training rounds and when there is a greater diversity in

the local data distribution of benign clients (indicated by smaller values of α). The

resulting models achieve superior model utility on legitimate data samples by utilizing

malicious gradients to train both the global and clients’ local models. Consequently,

CollaPois demonstrates greater stealthiness compared to white-box MRepl and

DPois attacks, as it avoids the degradation and shifts in model utility on legitimate
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data samples throughout the entire poisoning process. This characteristic makes

detecting our attack highly challenging during the federated training process.

(2) By ensuring that the random and dynamic learning rate ψtc is exclusively

known to the compromised client c, we can effectively prevent the server from

tracking the Trojaned model X or detecting any suspicious behavior patterns from

the compromised client. In practice, the server may be able to identify compromised

clients with a certain precision value p and estimate the presence of the Trojaned

model X. The server’s set of identified compromised clients consists of p × |∁|

compromised clients ∁̄ and (1−p)(|N |−|∁|) benign clients L̄. The estimated Trojaned

model X ′ =
∑

c∈∁̄∪L̄ θ
t
c/|∁|. The following theorem establishes a bound on the server’s

l2-norm estimation error of the Trojaned model X, denoted as Error = ∥X ′ −X∥2.

Theorem 7.1.3. The server’s estimation error of the Trojaned model X is bounded

as follows:

∥∥∑
c∈∁̄

△θtc
p|∁|b

∥∥
2
≤ Error ≤ arg max

L⊆N s.t. |L|=|∁|

∥∥∑
i∈L

θti
|L|
−X

∥∥
2

(7.17)

Proof. We have that

Error = ∥X ′ −X∥2 = ∥
∑
c∈∁̄

θtc
p|∁|

+
∑
i∈L̄

θti
(1− p)(|N | − |∁|)

−X∥2

= ∥
∑
c∈∁̄∪L̄

θtc
|∁|
−X∥2 (7.18)

in which ∥X ′ −X∥2 ≥ ∥
∑
c∈∁̄

θct/(p|∁|)−X∥2 = ∥
∑
c∈∁̄

△θtc
p|∁|ψct

∥2

≥ ∥
∑
c∈∁̄

△θtc
p|∁|b

∥2 (7.19)
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Figure 7.5 Estimation error of CollaPois with a precision p = 1 using the
FEMNIST dataset [10].

and ∥
∑
c∈∁̄∪L̄

θtc/|∁| −X∥2 ≤ arg max
L⊆N s.t. |L|=|∁|

∥
∑
i∈L

θti/|L| −X∥2 (7.20)

From Eqs. 7.19 and 7.20, we have the following error bounds:

∥∥∑
c∈∁̄

△θtc
p|∁|b

∥∥
2
≤ Error ≤ arg max

L⊆N s.t. |L|=|∁|

∥∥∑
i∈L

θti
|L|
−X

∥∥
2

(7.21)

As a result, Theorem 7.1.3 holds.

From Theorem 7.1.3, we observe that: (1) The lower precision in detecting

compromised clients (smaller p) results in a larger estimation error approaching the

upper bound; (2) The smaller the upper bound of the dynamic learning rate b, the

higher the lower bound of the estimation error is; and (3) If the malicious gradient△θtc

is too small, we can uniformly upscale its l2-norm to be a small constant, denoted τ , to

enlarge the lower bound of the estimation error without affecting the model utility or

backdoor success rate. Figure 7.5 illustrates the lower bound of the estimation error

given the most favorable precision to the server, i.e., p = 1, with different numbers

of compromised clients |∁|. After 1,000 rounds, the estimation error is not reduced
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Figure 7.6 Attack stealthiness: Angles between malicious/benign gradients and
sampled gradients.
Note: Compromised clients with benign clients are blended and modestly different (using
the FEMNIST dataset with ψtc ∼ U [0.95, 0.99]).

further since it is controlled by the lower bound with τ = 2 in this study. That

prevents the server from accurately estimating the Trojaned model X.

Remark. Practitioners can connect Theorem 7.1.1 and Theorem 7.1.3 to discover

that: The more diverse clients’ local data is (i.e., larger values of µα and σ resulting

in a smaller number of required compromised clients |∁| in Equation (7.5)), the more

difficult for the server to approximate the Trojaned model X is; therefore, the more

stealthy the attack will be. This is because a smaller number of required compromised

clients |∁| induces a larger lower bound of the estimation error in Equation (7.17).

Although ineffective in estimating the Trojaned model X, the server can try

to distinguish compromised clients by looking into the angle and magnitude of

every submitted gradient. To protect malicious gradients from being detectable,

the attacker can marginally adjust the dynamic learning rate ψtc to seamlessly blend

148



each malicious gradient in the background of benign gradients. The wider the range of

ψtc ∼ U [a, b], the more scattered malicious gradients in terms of angles and magnitude

are, i.e., more randomness. The attacker can select a suitable range of U [a, b] such

that the average angle and its variance between each of the malicious gradients and

a set of sampled gradients (which plays a role of data background) are similar to

those of benign clients. In practice, the attacker can derive sampled gradients by

using the clean data collected by compromised clients {Dc}c∈∁ and the global model

θt. Also, these clean gradients can be used to imitate gradients from benign clients.

This ensures that the attacker follows our threat model and does not access extra

information from benign clients. Figure 7.6 shows that malicious and benign gradients

behave alike in the average angle and its variance, given randomly sampled gradients.

Regarding the magnitude of the malicious gradients, we clip them by using the

same clipping bound A, which is shared by the server to enhance the robustness of the

training process, with benign gradients. Therefore, the magnitude of the malicious

gradients stays well within the range of gradients from benign clients.

As a result, CollaPois can hide the malicious gradients of compromised clients

without affecting the effectiveness of our attack, as long as the range of ψtc ∼ U [a, b]

and the clipping bound A are sufficient to not damage federated training.

7.2 Experimental Results

In our evaluation, we focus on understanding the interplay among Federated Learning

(FL) performance, aggregation algorithms, diverse data distribution among clients,

backdoor success rate, and client-specific defense mechanisms. To achieve our goal,

we focus on answering three questions in our evaluation: (1) Whether CollaPois is

effective in poisoning FL. (2) How CollaPois is impacted by the different degrees

of data diversity? and (3) Is it possible to defend against CollaPois, and what are

the costs and limitations of such defenses?

149



(a) CollaPois (b) MRepl (c) DPois

Figure 7.7 FedAvg under different backdoor attacks for the CIFAR-10 dataset.

(a) CollaPois (b) DPois

Figure 7.8 FedDC under different backdoor attacks for the CIFAR-10 dataset.
Note: MRepl causes a model divergence during the federated training under the FedDC;
therefore, we do not include the result from MRepl in this figure.

Data and Model Configuration. We conduct experiments on CIFAR-10

[43], FEMNIST [10], and Sentiment-140 [24] datasets. For these datasets, to control

data distribution across clients in terms of classes and size of local training data,

we leverage the Dirichlet distribution with different values of α ∈ [0.01, 100] as in

[19, 114]. In short, the value of α is inversely proportional to the degree of diversity

in data distribution. In CIFAR-10 there are 100 clients with 60, 000 samples in

total while in FEMNIST there are 3, 400 clients with 805, 263 samples in total. In

Sentiment-140 we filter out 5, 600 clients with over 1 million data samples. In all three

datasets, we use the class 0 as the attacker’s targeted class yTroj. In our experiments,

the attacker randomly compromised 1% of benign clients. This percentage is lower

than the number of compromised clients needed as in Theorem 7.1.1. This is because

we found that CollaPois is effective even at a smaller portion of compromised

clients, making our attack even more effective, practical, and stealthy.
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We adopt the model configuration described in [88] for these datasets, in which

we use a LeNet-based network [50] with two convolution and two fully connected

layers for the local model and a fully-connected network with three hidden layers

and multiple linear heads per target weight tensor. We use SGD optimizer with the

learning rate of 0.01 for the aggregated global model and 0.001 for the benign clients’

local models in our experiments.

We use WaNet [73], which is one of the state-of-the-art backdoor attacks, for

generating poisoned data. WaNet utilizes image warping-based triggers making the

modification in the backdoor images natural and unnoticeable to humans. We follow

the learning setup described in [73] to generate the backdoor images that are used to

train the Trojaned model X.

Evaluation Approach. We carry out the validation through three approaches.

We first compare CollaPois with DPois and MRepl [3, 53] in terms of legitimate

accuracy (Benign Acc) on legitimate data samples and backdoor success rate (Attack

SR) on Trojaned data samples without defense. Then, we investigate the effectiveness

of adapted robust federated training algorithms under a variety of hyper-parameter

settings against CollaPois. Finally, we provide a performance summary of both

attacks and defenses to inform the surface of backdoor risks in FL under different

degrees of the diversity of clients’ local data distribution. The Benign Acc and Attack

SR on average across clients using testing data are as follows:

Benign Acc =
1

|N |
∑
i∈N

[ 1

|Dtest
i |

∑
x∈Dtest

i

Acc
(
f(x, θi), y

)]
Attack SR =

1

|N |
∑
i∈N

[ 1

|Dtest
i |

∑
x∈Dtest

i

Acc
(
f(x+ T , θi), yTroj

)]

where x + T is a Trojaned data sample, Acc(y′, y) = 1 if y′ = y; otherwise

Acc(y′, y) = 0, and Dtest
i and |Dtest

i | are a set of testing samples of the client i and its

size respectively.
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(a) CollaPois (b) MRepl (c) DPois

Figure 7.9 FedAvg under different backdoor attacks for the FEMNIST dataset.

(a) CollaPois (b) MRepl (c) DPois

Figure 7.10 FedDC under different backdoor attacks for the FEMNIST dataset.

We conduct our evaluation using both the state-of-the-art personalized FL

algorithm FedDC [19] and the widely applied FL algorithm FedAvg to demonstrate

the generalizability of our attack. To provide insights into the client-specific

performance, stealthiness, and risk of backdoor attacks, we report Benign Acc and

Attack SR values of the top-k% impacted benign clients i, who have top-k% highest

values of the sum of Benign Acc and Attack SR, as follows:

scorei =

∑
x∈Dtest

i

[
Acc

(
f(x, θi), y

)
+Acc

(
f(x+ T , θi), yTroj

)]
|Dtest

i |

Comparison with Existing Attack Methods. Figures 7.7 and 7.8 present

Benign Acc and Attack SR of poisoning attacks, with 1% of clients compromised

by the attacker, as a function of the degree of diversity α given clients’ local data

distribution in the CIFAR-10 dataset. CollaPois achieves better performance
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compared with DPois and MRepl. First, when the model is not under attack (i.e.,

clean model), CollaPois does not cause notable drops in Benign Acc on all benign

clients (mean value of 76%) and on the top 10% benign clients (mean value of 81%).

Secondly, CollaPois achieves significantly better Attack SR given diverse clients’

local data distribution (i.e., α = 0.01). Under both FedAvg and FedDC, CollaPois

injects backdoors with over 60% success rate compared with DPois (less than 30%)

and MRepl (less than 10%). Note that the Attack SR of MRepl given α = 0.01 is

highly varied with a mean is about 0.0%. Also, MRepl causes a model divergence

during the federated training under the FedDC; thus, MRepl attack is noticeable to

the server. When the clients’ local data distribution is not diverse or nearly identical,

i.e., α = 1 and α = 100, having 1% compromised clients is insufficient to carry

backdoor poisoning attacks effectively.

The results on the FEMNIST dataset strengthen our observation (Figures 7.9

and 7.10). CollaPois achieves over 95% Attack SR on both FedAvg and FedDC

which is the same as MRepl and outperforms DPois (less than 90% on FedAvg

and over 95% on FedDC). It is worth noting that MRepl significantly degenerates

the Benign Acc on FedDC (Figure 7.10b). Overall, CollaPois outperforms other

attacks in terms of Attack SR while having unnoticeable Benign Acc drops under

poisoning. This makes our attack effective and stealthy.

Bypassing Robust Federated Training. As mentioned in [89], the robust

training algorithms (even the simple ones) in FL can effectively defend against a

variety of backdoor poisoning attack methods. Therefore, to show that CollaPois

is practical, we need to evaluate it against the state-of-the-art robust training

algorithms. Based on the methods reviewed in Chapter 2, we select (1) the

DP-optimizer (DP), (2) the norm bound (NormBound), (3) the Krum (Krum),

and (4) the robust learning rate (RLR) to cover all different design considerations of

robust training algorithms.
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Figure 7.11 Evaluating CollaPois against various robust training algorithms
across different datasets and data divergence.
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Figure 7.11 illustrates attack performance under different robust federated

training algorithms and degrees of the diversity of benign clients’ data distribution.

In the first column of Figure 7.11, it is interesting that the Krum and RLR methods

are actually not effective robust training algorithms to be used in FedAvg or FedDC.

In fact, applying the Krum or RLR methods damages model utility since the Benign

Acc significantly decreases across different datasets. For example, in CIFAR-10, the

Benign Acc after applying DP and NormBound are around 50% to 55% while applying

Krum or RLR degenerates Benign Acc to almost 0% which is unusable. Although

there are settings in which applying such robust training algorithms does not hurt the

model’s utility (e.g., applying Krum to protect FedDC in FEMNIST), the defensive

performance is also affected (i.e., the Attack SR of CollaPois is over 95%) which

makes it not suitable for preventing the proposed CollaPois from achieving its

target.

Besides the Krum and RLR, the evaluation results in Figure 7.11 show that the

DP and NormBound are generally applicable in all settings. However, the drawback

of applying these two robust training algorithms is that CollaPois can easily bypass

them and achieve high Attack SR. It is clear that all of the Attack SR of CollaPois

is higher than 60% while most of these values are over 90% when the benign clients’

local data distribution is diverse, i.e., α = 0.01. Therefore, CollaPois is a severe

attack against FedAvg and FedDC even when DP or NormBound is applied if the

data distribution among benign clients is diverse.

Degree of Local Data Diversity. In this experiment, we focus on exploring

the impact of different degrees of diversity in benign clients’ local data distribution.

That will inform practitioners of realistic backdoor poisoning risks in real-world FL

applications. In Figure 7.11, it is clear that the Attack SR of CollaPois increases

when the value of α decreases from 0.5 to 0.01 indicating more diverse benign clients’

local data distribution. The Attack SR against the DP increases from less than
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Figure 7.12 Evaluating CollaPois against various robust training algorithms
across different datasets with α = 100.

30% with α = 0.5 to around 55% with α = 0.1 and to over 95% with α = 0.01. We

observe a similar result in Attack SR across different robust, typical, and personalized

training algorithms using different datasets. Therefore, the reduced degree of diversity

in benign clients’ local data distribution reduces the risk of backdoor poisoning in FL.

When α is extremely large, i.e., α = 100, approaching uniform benign clients’ data

distribution, the Attack SR is inconsistent across datasets. It reduces to almost a

random guess level on the CIFAR-10 dataset while the Attack SR is still very high,

i.e., over 88.5% and 78.8% on the FEMNIST and Sentiment-140 datasets respectively

(Figure 7.12). This is consistent with our theoretical analysis in Section 7.1.
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Remark. Practitioners, who manage the server, can quantify and keep track of the

scattered clients’ gradients and use CollaPois to inform backdoor poisoning risk

during the federated training process. The more scattered gradients which indicate

a higher degree of data diversity among clients, the more severe risk of backdoor

poisoning is. If the gradients among clients are scattered at 80+ degrees (i.e., which

can be considered equivalent to α ≤ 0.01) and 1% of clients are compromised,

backdoor poisoning risk can be severely high even under existing robust federated

training.

7.3 Conclusion

This chapter proposes a novel backdoor poisoning attack called CollaPois that

exploits diverse data distribution among clients in Federated Learning (FL). Through

theoretical and empirical analysis, our attack demonstrates its effectiveness, practi-

cality, and stealthiness. We show that even with a small number of compromised

clients, CollaPois can successfully converge the FL model around a pre-trained

Trojaned model. It achieves high backdoor attack success rates when clients have

diverse data, and it hinders the server’s ability to detect suspicious behaviors.

Furthermore, the CollaPois attack can circumvent existing backdoor defenses,

particularly when clients possess diverse data distributions. The evaluation results

highlight that a mere 1% of compromised clients can open a backdoor on 10% of

benign clients with an impressive success rate exceeding 82% using state-of-the-art

robust federated training algorithms on benchmark datasets.
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CHAPTER 8

EXTENSIONS AND FUTURE DIRECTIONS

Machine learning, particularly NN models, holds immense potential for a wide range

of real-world applications. However, the presence of various vulnerabilities poses

a significant obstacle to its widespread adoption. These vulnerabilities act as a

burden, hindering the full realization of the technology’s capabilities. Consequently,

there has been a growing emphasis on research endeavors that aim to explore these

vulnerabilities comprehensively and enhance the overall robustness of NN models.

This dissertation delves into the multifaceted landscape of NN vulnerabilities,

addressing critical unanswered questions pertaining to training time vulnerabilities,

inference time vulnerabilities, and the vulnerabilities specific to Federated trained

NNs. By investigating these diverse aspects, we aim to contribute to the existing

body of knowledge and provide insights that can inform the development of more

resilient NN models.

While this dissertation covers a substantial breadth of research on NN vulnera-

bilities, it is essential to acknowledge that there is still much work to be done by the

research community. The exploration of these vulnerabilities is an ongoing process,

and beyond the scope of this dissertation, there lie countless avenues for further

investigation. In this chapter, we aim to share our understanding and shed light

on potential future directions, fostering a collaborative environment that encourages

continued research efforts. By collectively addressing these challenges, we can advance

the field, fortify the security of NN models, and facilitate their wider adoption in

real-world applications.
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8.1 Training and Inference Time Vulnerabilities

To the best of our knowledge, the vulnerabilities discussed in this work were initially

introduced to the research community in [95]. Despite ongoing studies on training

time and inference time vulnerabilities, it is still too early to claim the existence of

a mature solution. Among the various research endeavors, we find two particular

directions to be highly intriguing.

Certified defense, in the beginning, offers a promising approach that can

be proven to achieve a certain level of robustness against inference time attacks

(i.e., adversarial attacks). By employing certified defense, not only can we achieve

resilience against attacks, but the size of the certified bound also provides a measure

of prediction certainty. Moreover, recent advancements have witnessed the emergence

of certified defenses tailored specifically to counter Trojan backdoor attacks [102, 106].

However, proposing a certified defense that can match the performance of state-

of-the-art empirical defenses for either training time or inference time vulnerabilities

poses significant challenges. The certified defense must guarantee consideration of all

possible attack scenarios which is a much larger searching space that is considered by

empirical defenses. To tackle this challenge, certification is typically carried out at

the pixel level, assuming uniformity across all pixels. Nevertheless, such a relaxation

of certified defense may prove ineffective due to the curse of dimensionality [44].

In our humble opinion, mitigating the curse of dimensionality in certified

defenses by focusing on a small subset of pixels that have a significant impact on the

model’s predictions is a practical approach. To achieve this, we suggest leveraging

ideas from explainable AI and utilizing the correlation between individual pixels and

the model’s prediction results [14]. By employing techniques such as saliency analysis

[90], the trained model can identify pixels that contribute most to its decision-making

process. This approach allows certified defenses to concentrate their efforts on
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certifying only the subset of inputs that are highly influential, thereby mitigating

the curse of dimensionality.

Another avenue of research is the utilization of generative models, which

assert that employing them for classification purposes can enhance robustness. The

inherent nature of generative tasks allows the model to possess a better grasp

of high-level features and their associations with classes. When employed for

classification, the features being used by the generative model contain more physical

meaning which makes the model less susceptible to being fooled by attackers through

indistinguishable perturbations.

However, the downside of employing generative models lies in the computational

cost associated with training. Training a generative model for the same dataset is

considerably more challenging than training a classification model in terms of data

size, training time, and strategy. To surmount this issue, we propose exploring

knowledge transfer and domain adaptation based on a trusted universal model.

Recent advancements in the development of large-scale generative models have

significantly enhanced their generative power. These gigantic models, such as Stable

Diffusion [84], have demonstrated remarkable capabilities in generating high-quality

and diverse data. More importantly, to adapt these gigantic models to various

downstream tasks, efficient fine-tuning methods have been introduced to the research

community. One such method is Low-Rank Adaptation (LoRA) [32], which leverages

low-rank approximations to reduce the computational complexity of fine-tuning

gigantic models. By combining pre-trained gigantic models with LoRA, we can

potentially address the scalability issue associated with using generative models for

robust prediction.
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8.2 Vulnerabilities of Federated Trained NNs

When focusing on real-world applications, FL recently becomes more popular than

conventional centralized training. It is not hard to understand that the capability of

jointly training a NN model without sharing the training data makes FL an attractive

approach for applications with high sensitivity (e.g., medical associations and financial

agencies). The mechanism that holds privacy in FL also makes it hard to identify

attacking behavior when some of the participants are compromised. Therefore, we

observe an increasing number and severity of vulnerabilities for Federated trained

NNs.

Until now, based on our literature review, existing works that study this type of

vulnerability usually can be seen as an extension of the vulnerabilities for centralized

trained models. In other words, the special characteristics of Federated learning are

barely being considered on both the attack and defense sides. Therefore, to better

study the vulnerabilities of Federated trained models, the following directions are

worth to be explored.

In attack perspective, the work in Chapter 7 demonstrates the effectiveness

of CollaPois in poisoning a subset of innocent clients, particularly when their data

exhibit significant divergence. However, to escalate this threat, it is intriguing to

investigate methods for conducting targeted backdoor attacks against specific clients.

From an attacker’s perspective, possessing such capabilities would allow them to

concentrate on high-value clients while excluding other innocent clients from infection,

thereby reducing the risk of detection.

To effectively target specific clients in a backdoor attack, it is crucial to render

the Trojaned model in a state of “semi-readiness” (X̂). This means that the backdoor

functionality embedded within the Trojaned model will only become operational after
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the targeted clients perform local updates.

X = argmin
X̂

L(X̂,Dt) (8.1)

Here, X is the final Trojan backdoored model from Equation (7.1) while Dt denotes

the targeted client’s training data. Achieving this objective requires the attacker to

deduce the precise nature of the targeted clients’ local updates.

We envision two potential avenues through which this could be achieved. The

first approach involves adopting a stronger assumption regarding the attacker’s

capabilities. In this scenario, the targeted clients can be approximated by utilizing

sampled auxiliary data (DAux). Specifically, we assume that the attacker is capable

of sampling these auxiliary data from the same or a similar data distribution as the

target client. By leveraging this auxiliary data, the attacker attempts to infer the

underlying patterns and behaviors specific to the targeted clients.

X̂ = argmin
X̂

||X − argmin
X̂

L(X̂,DAux)||p (8.2)

We have DAux, Dt ∼ Dt where Dt is the target client’s data distribution. The || · ||p

denotes the p norm. This approach draws inspiration from existing Trojan backdoor

attacks customized for transfer learning scenarios [111]. By adapting and learning

from attacks against transfer learning, the attacker can gain a better understanding

of and exploit the unique characteristics of federated learning settings to effectively

target specific clients.

The second avenue, independent of the aforementioned assumption, involves

inferring the targeted clients by scrutinizing the aggregated changes observed during

the collaborative learning process. To achieve this, the attacker can utilize the

aggregated updates to locally approximate the training data. By applying the model

extraction attack [83, 99] with these approximated training data, the attacker can
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infer the target client’s data distribution.

DN = argmin
D

|| 1
N

∑
i∈S

θi − argmin
θ
(θ,D)||p

DN\t = argmin
D

|| 1
N

∑
i∈Ŝ

θi − argmin
θ
(θ,D)||p

DAux = arg min
αDN+(1−α)DN\t

LA(θt, αDN + (1− α)DN\t) (8.3)

Here, S and Ŝ denote the user selection with and without the targeted client. The

corresponding approximated training data are DN and DN\t. The αDN+(1−α)DN\t

denotes a weighted sampled training data which is used to infer the targeted client’s

training data. Lastly, the model extraction attack is represented by minimizing its

loss LA. This inferred information about the target client’s data distribution can then

be utilized in a similar way as before to customize the proposed Trojaned model and

ensure it is in a state of “semi-readiness”. The advantage of this approach is that

the attacker does not rely on the assumption that the auxiliary data is sampled from

the exact same distribution as the target client, which makes it more practical and

applicable in real-world scenarios.

Exploring these strategies holds promise for attackers to target high-value clients

in federated learning while reducing the risk of being detected. By understanding

the nuances of the backdoor vulnerabilities in federated learning, we can expand

the depth of our knowledge in this area and develop stronger defenses against such

attacks. These proposed ideas contribute to the ongoing efforts in strengthening the

security and robustness of federated learning systems.

From a defense viewpoint, the evaluation results presented in Chapter

7 emphasize the limited effectiveness of current defense mechanisms employed in

federated learning (FL) and personalized federated learning (pFed) when faced with

highly divergent clients’ data. Approaches such as Differential Privacy (DP) and

NormBound prove insufficient in providing adequate protection, while methods like
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Krum and RLR inflict significant damage on the model’s utility for benign examples.

Consequently, the exploration of effective defense strategies to address the challenges

posed by highly divergent clients’ data remains largely unexplored.

Our observations indicate that divergent updates from benign clients tend to

dilute each other. In contrast, compromised clients collaborating with each other

can facilitate the dissemination of the backdoored model to innocent clients. Upon

careful study and analysis of the above defense mechanisms, we find that they have

failed to defend against attacks for different reasons. For DP and NormBound, the

issue lies in the inadequate mitigation of divergence across benign updates through

random smoothing and gradient clipping. Consequently, adversarial updates can still

steer the model toward the Trojaned weights. On the other hand, Krum and RLR

fail for a different reason as these defenses excessively restrict divergence. While they

prevent adversarial updates, they also negatively impact the model’s utility for benign

examples. Given these limitations, we posit that an effective defense strategy should

strike a superior trade-off compared to existing methods.

Based on our understanding, a possible approach to effectively defend attacks

against FL with highly divergent clients’ data is to follow a “divide-and-conquer”

strategy. In other words, the defense should initially cluster clients into different

groups to reduce the divergence within each group. If compromised clients send

similar adversarial updates, they can be clustered into a dedicated group and isolated

from benign clients. Conversely, compromised clients will be separated into multiple

groups, effectively diluting their influence. During this step, clustering by basic

statistics of clients’ training data is the most straightforward way. Otherwise,

the vector angles between clients’ updates could also be utilized for clustering.

Considering the high dimensionality, a further enhanced approach is applying

dimension reduction on clients’ updates first before calculating vector angles.
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When clients are clustered, across different groups, the defense should ensure

that only indirect and soft knowledge sharing is allowed during training, further

restricting cooperation between compromised clients from different groups. In the

meantime, the knowledge sharing should also balance the models’ performance across

groups instead of favoring any particular one. Lastly, within each group, a robust

training algorithm (e.g., Krum or RLR) needs to be applied. Since the clients within

each group are much more similar, these robust training algorithms are expected to

prevent adversarial updates without significantly damaging the model’s utility for

benign examples.

By pursuing this ”divide-and-conquer” approach, we can potentially develop

more effective defense strategies for federated learning with highly divergent clients’

data. However, it is important to note that further research is needed to explore the

feasibility, efficiency, and scalability of this approach.

8.3 Other Vulnerabilities

While this dissertation extensively explores several well-known vulnerabilities in NN

models across different environments, it is important to acknowledge that there

exist additional vulnerabilities that pose potential threats to applications relying

on NN models. In this section, we highlight a selection of intriguing topics that

warrant further investigation. Moreover, drawing inspiration from the integration

of adversarial attacks and Trojan backdoors discussed in this dissertation, we aim

to foster the exploration of novel synergistic attacks by sharing these topics. By

uncovering and understanding these unexplored vulnerabilities, we can advance the

field’s knowledge and further develop robust defense strategies against emerging

threats.

Model inversion attacks: In this type of attack, an adversary aims to

reconstruct sensitive input data based on the outputs of a trained NN model
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[18, 112, 30]. By leveraging the information revealed through the model’s predictions,

an attacker can infer details about the input data that should have remained private.

For instance, consider a scenario where a NN model is trained to classify medical

images as either benign or malignant. An adversary who gains access to the model’s

predictions may attempt a model inversion attack to reconstruct the original medical

images, potentially revealing sensitive patient information such as personal identifiers

or medical conditions. The implications of such attacks can be severe, emphasizing

the need to develop robust defenses to safeguard against the reconstruction of private

data through model inversion techniques.

Model extraction attacks: In these attacks, adversaries aim to extract the

knowledge or structure of a target model by training their own substitute model using

queries to the target model [83, 99]. By leveraging this substitute model, attackers

can gain insights into the inner workings and decision-making processes of the target

model, potentially revealing proprietary information and compromising the model’s

integrity. For instance, consider a scenario where a company has developed a highly

accurate and proprietary speech recognition model. An adversary with access to

the model’s predictions may attempt a model extraction attack to create a substitute

model that closely mimics the target model’s behavior. This can lead to unauthorized

replication or reverse engineering of the target model, jeopardizing the company’s

competitive advantage and intellectual property. Developing effective defenses against

model extraction attacks is essential to protect the confidentiality and proprietary

information embedded in NN models.

Fairness and bias vulnerabilities: These vulnerabilities arise when models

exhibit unfair or biased behavior towards certain demographic groups, leading to

discriminatory outcomes [69, 71]. Ensuring fairness and mitigating bias in NN

models is of utmost importance to prevent unjust treatment and promote ethical

decision-making. For instance, consider a machine learning model used in a loan
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application process that unintentionally discriminates against applicants from certain

racial or gender groups. This bias can perpetuate existing inequalities and unfairly

impact individuals’ access to financial opportunities. Addressing fairness and bias

vulnerabilities requires developing techniques to identify, measure, and mitigate bias

in model training and decision-making processes. By striving for fairness, we can

build trust in the deployment of NN models and work towards more equitable and

inclusive systems.
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