
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Dissertations Electronic Theses and Dissertations

8-31-2023

Models and algorithms for promoting diverse and fair query Models and algorithms for promoting diverse and fair query

results results

Md Mouinul Islam
New Jersey Institute of Technology, mouinulislam@gmail.com

Follow this and additional works at: https://digitalcommons.njit.edu/dissertations

 Part of the Databases and Information Systems Commons, and the Theory and Algorithms Commons

Recommended Citation Recommended Citation
Islam, Md Mouinul, "Models and algorithms for promoting diverse and fair query results" (2023).
Dissertations. 1680.
https://digitalcommons.njit.edu/dissertations/1680

This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Dissertations by an authorized administrator of Digital
Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/dissertations
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/dissertations?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1680&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1680&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1680&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations/1680?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1680&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

MODELS AND ALGORITHMS FOR PROMOTING DIVERSE AND
FAIR QUERY RESULTS

by
Md Mouinul Islam

Ensuring fairness and diversity in search results are two key concerns in compelling

search and recommendation applications. This work explicitly studies these two

aspects given multiple users’ preferences as inputs, in an effort to create a single

ranking or top-k result set that satisfies different fairness and diversity criteria. From

group fairness standpoint, it adapts demographic parity like group fairness criteria and

proposes new models that are suitable for ranking or producing top-k set of results.

This dissertation also studies equitable exposure of individual search results in long

tail data, a concept related to individual fairness. First, the dissertation focuses

on aggregating ranks while achieving proportionate fairness (ensures proportionate

representation of every group) for multiple protected groups. Then, the dissertation

explores how to minimally modify original users’ preferences under plurality voting,

aiming to produce top-k result set that satisfies complex fairness constraints. A

concept referred to as manipulation by modifications is introduced, which involves

making minimal changes to the original user preferences to ensure query satisfaction.

This problem is formalized as the margin finding problem. A follow up work studies

this problem considering a popular ranked choice voting mechanism, namely, the

Instant Run-off Voting or IRV, as the preference aggregation method. From the

standpoint of individual fairness, this dissertation studies an exposure concern that

top-k set based algorithms exhibit when the underlying data has long tail properties,

and designs techniques to make those results equitable. For result diversification, the

work studies efficiency opportunities in existing diversification algorithms, and designs

a generic access primitive called DivGetBatch() to enable that. The contributions

of this dissertation lie in (a) formalizing principal problems and studying them

analytically. (b) designing scalable algorithms with theoretical guarantees, and (c)

extensive experimental study to evaluate the efficacy and scalability of the designed

solutions by comparing them with the state-of-the-art solutions using large-scale

datasets.

MODELS AND ALGORITHMS FOR PROMOTING DIVERSE AND
FAIR QUERY RESULTS

by
Md Mouinul Islam

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology and
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Computer Science

Department of Computer Science

August 2023

Copyright © 2023 by Md Mouinul Islam

ALL RIGHTS RESERVED

APPROVAL PAGE

MODELS AND ALGORITHMS FOR PROMOTING DIVERSE AND
FAIR QUERY RESULTS

Md Mouinul Islam

Dr. Senjuti Basu Roy, Dissertation Advisor Date
Associate Professor, Department of Computer Science, NJIT

Dr. Baruch Schieber, Committee Member Date
Professor, Department of Computer Science, NJIT

Dr. Ioannis Koutis, Committee Member Date
Associate Professor, Department of Computer Science, NJIT

Dr. Yi Chen, Committee Member Date
Professor, Business Data Science, NJIT

Dr. Sihem Amer-Yahia, Committee Member Date
Research Director, Centre National de Recherche Scientifique, Grenoble, France

BIOGRAPHICAL SKETCH

Author: Md Mouinul Islam

Degree: Doctor of Philosophy

Date: August 2023

Undergraduate and Graduate Education:

• Doctor of Philosophy in Computer Science,

New Jersey Institute of Technology, Newark, NJ, 2023

• Bachelor of Science in Electrical and Electronic Engineering,
Bangladesh University of Engineering and Technology, Bangladesh, 2013

Major: Computer Science

Presentations and Publications:

Dong Wei, Md Mouinul Islam, Baruch Schieber, and Senjuti Basu Roy, “Rank
aggregation with proportionate fairness” Proceedings of the 2022 International
Conference on Management of Data (SIGMOD 2022).

Md Mouinul Islam, Dong Wei, Baruch Schieber, and Senjuti Basu Roy, “Satisfying
complex top-k fairness constraints by preference substitutions” Proceedings of
the VLDB Endowment (PVLDB 2023).

Md Mouinul Islam, Mahsa Asadi, Sihem Amer-Yahia, and Senjuti Basu Roy,
“A generic framework for efficient computation of top-k diverse results” The
International Journal on Very Large Data Bases (VLDB Journal 2023).

Md Mouinul Islam, Mahsa Asadi, and Senjuti Basu Roy, “Equitable top-k results
for long tail data” (Under revision) Proceedings of the 2024 International
Conference on Management of Data (SIGMOD 2024).

Md Mouinul Islam, Soroush Vahidi, Baruch Schieber, and Senjuti Basu
Roy, “Satisfying constrained multiple selection queries using IRV” (Under
submission) Proceedings of the 2024 International Conference on Management
of Data (SIGMOD 2024).

iv

To my beloved family

v

ACKNOWLEDGMENTS

I would like to express my deepest gratitude and appreciation to the following

individuals who have contributed significantly to the completion of my PhD disser-

tation.

First and foremost, I extend my sincere gratitude to my dissertation advisor,

Dr. Senjuti Basu Roy. Your guidance, expertise, and unwavering support

throughout the research process have been invaluable. Your insightful feedback and

encouragement have greatly shaped the outcome of this work, and I am truly grateful

for the opportunity to have worked under your mentorship.

My sincere appreciation goes to the members of my dissertation committee,

Dr. Baruch Schieber, Dr. Ioannis Koutis, Dr. Yi Chen, and Dr. Sihem Amer-

Yahia. I am honored to have had the privilege of benefiting from your expertise

and thoughtful feedback. Your invaluable guidance and constructive criticism have

significantly shaped the development and quality of this research.

I am deeply grateful for the financial support provided by National Science

Foundation (CAREER Award #1942913, IIS #2007935, IIS #1814595, PPoSS:

Planning #2118458). These grants played a crucial role in supporting my research

and was instrumental in enabling the completion of this dissertation. Without this

valuable funding, the work presented in this thesis would not have been possible.

I would also like to thank my colleagues, Mahsa Asadi, Sepideh Nikookar,

Dong Wei, and Sohrab Namazi Nia, for their collaboration, insightful discussions,

and support throughout this journey. Your contributions and friendship have been

invaluable, and I am grateful for the shared experiences and mutual support we have

provided to one another.

Lastly, I want to express my deepest gratitude to my family, and in particular, to

my wife, Khondoker Takia Zaman. Your unwavering support, love, and understanding

vi

have been the bedrock of my academic journey. Your patience, encouragement, and

belief in me have been instrumental in overcoming the challenges I faced throughout

this endeavor. I am truly blessed to have you by my side, and I cannot thank you

enough for your constant support and sacrifices.

To all those mentioned above, as well as to anyone else who has contributed to

my academic and personal growth, I extend my heartfelt appreciation. Your support

and encouragement have made this achievement possible, and I am forever grateful

for the role each of you has played in my journey toward earning my Ph.D.

vii

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION . 1

1.1 Overview . 1

1.1.1 Background . 1

1.2 Motivations . 3

1.3 Contributions . 7

2 RANK AGGREGATION WITH PROPORTIONATE FAIRNESS 13

2.1 Introduction . 13

2.1.1 Motivation . 14

2.1.2 Contributions . 16

2.2 Preliminaries and Formalism . 18

2.2.1 Problem formulation . 21

2.3 Experimental Evaluations . 21

2.3.1 Dataset description . 23

2.3.2 Implemented algorithms . 24

2.3.3 Summary of results . 25

2.3.4 Quality experiments . 26

2.3.5 Case study . 30

2.3.6 Scalability experiment . 30

2.4 Related Work and Comparison . 31

2.4.1 Fair ranking solutions . 35

2.5 Conclusion and Future Work . 39

3 SATISFYING COMPLEX TOP-K FAIRNESS CONSTRAINTS BY PREFERENCE
SUBSTITUTIONS . 41

3.1 Introduction . 41

3.2 Data Model and Problem Definitions 43

viii

TABLE OF CONTENTS
(Continued)

Chapter Page

3.2.1 A toy running example . 43

3.2.2 Problem definitions . 46

3.3 Single Protected Attribute . 48

3.3.1 Binary protected attribute . 49

3.3.2 Subroutine FindBallotSubB 51

3.3.3 Multi-valued protected attribute 57

3.4 Multiple Protected Attributes . 59

3.4.1 Exact solution AlgCartOpt 59

3.4.2 MFMulti3+- 3 attributes case 61

3.4.3 MFMulti2- 2 attributes case 61

3.4.4 Approximation algorithm for MFMulti2 62

3.5 Experimental Evaluations . 67

3.5.1 Experiment design . 67

3.5.2 Quality experiments results . 69

3.5.3 Scalability results . 71

3.5.4 Summary of results . 73

3.6 Related Work . 74

3.7 Conclusion . 77

4 SELECT-K WINNERS BY SATISFYINGQUERY CONSTRAINTS USING
IRV . 80

4.1 Introduction . 80

4.2 Data Model and Problem . 86

4.2.1 Data model . 86

4.2.2 IRV properties . 87

4.2.3 Problem definitions and hardness 89

4.3 Algorithms for MqKIRV . 92

ix

TABLE OF CONTENTS
(Continued)

Chapter Page

4.3.1 Required definitions . 93

4.3.2 AlgExact for MqIRV . 93

4.3.3 IP for MqIRV . 98

4.4 Efficient Algorithms . 102

4.4.1 An improved DistToLB algorithm 103

4.4.2 Algorithm AlgApprx . 105

4.4.3 DistToAddAlg for DistToAdd 108

4.5 Experimental Evaluations . 112

4.5.1 Experiment design . 113

4.5.2 Goal 1: Analyzing anti-plurality 115

4.5.3 Goal 2: Analyzing quality . 115

4.5.4 Goal 3: Analyzing scalability 116

4.5.5 Summary of results . 117

4.6 Prior Work . 118

4.7 Conclusion . 122

5 EQUITABLE TOP-K RESULTS FOR LONG TAIL DATA 125

5.1 Introduction . 125

5.2 Data Model and Problem Definition 129

5.2.1 Running example . 129

5.2.2 Data model . 130

5.2.3 Problem definition and hardness 133

5.3 Exact Algorithms . 135

5.3.1 Algorithm for θ-Equiv-top-k-Sets 136

5.3.2 Algorithm for MaxMinFair 144

5.4 Approximation Algorithms . 145

5.4.1 Algorithm RWalkTop-k-θ 145

x

TABLE OF CONTENTS
(Continued)

Chapter Page

5.4.2 Algorithm ARWalkTop-k-θ 148

5.5 Experimental Evaluations . 149

5.5.1 Goal 1: Comparison with group fairness 153

5.5.2 Goal 2: Impact of data distribution and θ 155

5.5.3 Goal 3: Cost of sorted access (SA) 155

5.5.4 Goal 4: Quality analysis . 156

5.5.5 Goal 5: Scalability analysis . 157

5.5.6 Summary of results . 160

5.6 Related Work . 161

5.7 Conclusion . 163

6 ACCESS PRIMITIVE FOR TOP-K DIVERSITY COMPUTATION . . . 166

6.1 Introduction . 166

6.2 Background and Approach . 170

6.2.1 Motivating example and problem definition 170

6.2.2 Approach . 172

6.3 MMR Query Processing with DivGetBatch() 176

6.3.1 MMR algorithm . 176

6.3.2 Aug-MMR algorithm . 177

6.4 GMM Query Processing with DivGetBatch() 185

6.4.1 GMM algorithm . 186

6.4.2 Aug-GMM algorithm . 186

6.5 SWAP Query Processing with DivGetBatch() 190

6.5.1 SWAP algorithm . 191

6.5.2 Aug-SWAP algorithm . 192

6.6 I-tree . 200

6.6.1 Index construction . 201

xi

TABLE OF CONTENTS
(Continued)

Chapter Page

6.6.2 Index maintenance . 203

6.7 Experimental Evaluation . 205

6.7.1 Baselines . 208

6.7.2 Summary of results . 212

6.7.3 Quality analysis . 214

6.7.4 Scalability analysis . 215

6.8 Related Work . 224

6.8.1 Results diversification . 224

6.8.2 Content based algorithms . 224

6.8.3 Comparison with existing indexes 225

6.9 Conclusion . 226

7 SUMMARY AND FUTURE WORK . 228

7.1 Summary . 228

7.2 Future Work . 229

REFERENCES . 235

xii

LIST OF TABLES

Table Page

2.1 Original Ranks Provided by four Members 15

2.2 Summary of Technical Results . 17

2.3 Important Notations . 18

2.4 Rank Aggregation Results of Comparable Methods Using Subsection 2.1.1

Example Considering Gender as The Protected Attribute 22

2.5 Real World Datasets . 24

2.6 Approximation Factor of The Algorithms 33

2.7 Case Study Results on MovieLens Dataset 34

3.1 Summary of Technical Results . 44

3.2 Twelve Voters, Six Candidates, and a Voting Outcome 45

3.3 Fairness Constraints in The top-4 Results of Running Example 45

3.4 Table of Notations . 45

3.5 Real World Datasets . 68

4.1 Query Constraints . 83

4.2 Preferences Over 7(n) Movies by 10 Users(m) Upto 5-th Position (ℓ) . . 83

4.3 IRV Rounds:The Last Jedi Winner . 83

4.4 A single Ballot Modification for Monday 84

4.5 IRV Rounds After Ballot Modification:Fargo Winner 84

4.6 Efficiency Improvement Using MqIRVUB and DistToLB For The
Running Example . 103

4.7 Real World And Synthetic Datasets . 113

4.8 Approximation Factor of The Algorithms 117

5.1 Table of Notations . 135

5.2 Records With Sorted Relevance (Example 5.2.1) 135

5.3 Sorted Diversity List Based on Example 5.2.1 136

5.4 WRMSD Scores of All Set of Sets, Each With Three Movies 136

xiii

LIST OF TABLES
(Continued)

Table Page

5.5 Dataset Statistics . 149

6.1 Technical Results For Running Time Analysis w.r.t. |CandR| 169

6.2 Technical Results for Running Time Analysis w.r.t. C, m, l 170

6.3 Notations & Interpretations . 174

6.4 Similarity Matrix for Records . 177

6.5 First Two Iterations of DivGetBatch() in Aug-MMR 180

6.6 Dataset Statistics . 206

6.7 Aug-MMR vs MMR Running Time (s) on MakeBlobs with l = 2, m = 6207

6.8 |CandR| Percentage Returned by DivGetBatch() on MovieLens 216

6.9 |CandR| Percentage Returned by DivGetBatch() Using Different Index
Structures for Aug-MMR on MakeBlobs 216

6.10 Pruning Percentage by DivGetBatch() Using Different Index Structures
for Aug-MMR on MakeBlobs . 217

6.11 Number of Access Percentage for Aug-MMR and SPP on MakeBlobs . . 217

6.12 Index Comparisons . 218

6.13 Aug-MMR vs MMR Running Time on MakeBlobs 100k Records . . . 218

6.14 Aug-MMR vs MMR on Movielens Non-metric Data 218

6.15 I-tree Maintenance on MakeBlobs 10k Records 219

6.16 I-tree Maintenance Algorithm GrMn vs Construction from Scratch Algorithm
NonIncrMn Running Time on MakeBlobs 10k Records 221

7.1 Credit Risk Analysis Dataset Where Little Information About Asian
Females Over Forty Years Old Present 231

xiv

LIST OF FIGURES

Figure Page

2.1 Percentage of positions satisfying p-fairness (IPF). 27

2.2 Percentage of groups satisfying p-fairness (IPF). 28

2.3 Kendall-Tau distance IPF. 29

2.4 Varying δ analysis IPF. 30

2.5 Running time analysis of IPF. 31

2.6 % of positions satisfying p-fairness (RAPF). 31

2.7 Kemeny Distance RAPF. 32

2.8 Running time analysis. 35

2.9 Varying δ analysis RAPF. 36

3.1 Results for MFBinaryS. 70

3.2 Results for MFMultiS. 71

3.3 Results for MFMulti2. 72

3.4 Results for MFMulti3+ . 73

3.5 Running time for Alg1AttBOpt & Alg1AttMOpt. 74

3.6 Running time for Alg2AttApx. 75

3.7 Varying distribution Alg1AttBOpt and Alg1AttMOpt. 75

3.8 Running time for MFMulti3+. 76

4.1 Partially explored tree for AlgExact , the movies are represented with
their ids, where red nodes and their subtrees are pruned. 98

4.2 Anti-plurality index for MqKIRVand plurality voting. 117

4.3 Margin difference between AlgApprx and AlgExact varying n. . . 118

4.4 Margin for AlgApprx and Random. 119

4.5 Number of IP calls for AlgApprx & AlgExact varying n. 120

4.6 Runtime for AlgApprx , AlgExact and Blom varying n. 121

4.7 Runtime for AlgApprx , AlgExact and Blom varying l and m. . . . 122

xv

LIST OF FIGURES
(Continued)

Figure Page

4.8 Runtime for AlgApprx and Random. 123

4.9 Runtime for DistToAddAlg and DistToIPAdd. 124

5.1 Viewership distribution of top-1000 IMDB movies. 128

5.2 A complete lattice based on Example 5.2.1. 141

5.3 Comparison of θ-Equiv-top-k-MMSP with Group Fairness Models [134], [178].149

5.4 Impact of data, problem parameter and cost of sorted access. 150

5.5 Recall and record pruning percentage. 151

5.6 RWalkTop-k-θ vs ARWalkTop-k-θ vs OptTop-k-θ scalability by varying

dataset size N . 152

5.7 RWalkTop-k-θ vs ARWalkTop-k-θ vs OptTop-k-θ scalability by varying k. 153

5.8 RWalkTop-k-θ vs ARWalkTop-k-θ vs OptTop-k-θ scalability by varying θ. 154

5.9 MaxMinFair approx factor and scalability. 158

6.1 Proposed computational framework. 173

6.2 I-tree. 203

6.3 Aug-MMR vs MMR scalability. 205

6.4 Aug-MMR vs MMR varying parameters. 206

6.5 Aug-GMM vs GMM scalability. 208

6.6 Aug-GMM vs GMM performance varying parameters. 209

6.7 Aug-SWAP vs SWAP scalability. 210

6.8 Aug-SWAP vs SWAP varying parameters. 211

6.9 I-tree construction time. 213

6.10 I-tree maintenance time varying |Y |. 214

6.11 Index Construction and Query Processing time for tree baselines and I-tree.215

6.12 Aug-MMR vs MMR running time on UCI Gas data. 220

7.1 Multiplex graph for estimating feature importance of unknown (red) nodes.231

7.2 Proposed GNN architecture for generating feature importance. 233

xvi

CHAPTER 1

INTRODUCTION

1.1 Overview

Given a user query over a large database, the number of records that satisfy query

constraints may be potentially large. Traditional user interfaces, on the other hand,

are highly restrictive, and are designed to accommodate a small number of those

results. This gives rise to a need to present users with a smaller set of results, known

as top-k results [118]. To do this, a substantial amount of related works exist that

explore how to design effective ranking functions and algorithms [73, 114, 118, 194].

It has been acknowledged recently that the existing ranking and top-k algorithms are

to be revisited to enhance them with criteria that explicitly increase representation of

historically disadvantaged populations, or to improve the overall representativeness of

the selected set. Fairness and diversification are two such criteria [57,58,60,206,214],

that we investigate extensively in this dissertation.

1.1.1 Background

Fairness. Fairness in query results is a critical objective in various applications,

including electoral system [94], ranking and recommendation [101, 104, 134]. This

dissertation explores the challenges and solutions associated with ensuring fair

query results. Most approaches to algorithmic fairness interpret fairness as lack

of discrimination [99] seeking that an algorithm should not discriminate against

its input entities based on attributes that are not relevant to the task at hand.

Such attributes are called protected, or sensitive, and often include among others

gender, religion, age, sexual orientation, and race. So far, most work on defining,

detecting, and removing unfairness has focused on classification algorithms [212,216]

used in decision-making. W.r.t ranking and top-k results, the algorithmic fairness

1

literature deals with group fairness along the lines of statistical or demographic

parity which is typically expressed by means of some fairness constraint requiring

that the top-k results (for any k) to contain enough records from some groups that

are protected [18, 94, 104, 123, 139, 163, 178, 197, 207, 214, 217]. Proportionate fairness

(p-fairness) [26, 184] is another group fairness criteria that is close to statistical

parity [67] studied in the context of group fairness. P-fairness is more stronger

than statistical parity, because it ensures statistical parity for every position in the

ranked order. Individual fairness, on the other hand, intends to ensure “similar

individuals are treated similarly”. A classifier is individually fair if the distance

between probability distributions mapped by the classifier is not greater than the

actual distance between the records [81]. In the context of item-fairness in ranking

and top-k, it ensures that items should receive the amount of exposure proportional

to their relevance [61]. This dissertation aims to return query results that ensure

complex fairness constraints such as demographic parity, p-fairness, or individual

fairness.

Preference aggregation. Preference of the individual users can be elicited as

pairwise comparison [74], in form of a binary vector [173] known as Approval

Voting [46], in an ordinal scale [13,132], or considering Arrowian social choice, where

users provide partial or complete preference order over the items [40, 52, 130, 177].

Similarly, The properties of social welfare functions for aggregating preferences

have been studied by mathematicians since the 18th century [51, 63, 66]. Different

preference aggregation methods are proposed, including majority voting, plurality

voting [136, 152, 161], their weighted versions, as well as aggregation methods that

consider positional preference [40, 52, 177], such as Kemeny rule [82, 127], Condorcet

rule [69], Borda Count [84], or Instant Run-off Voting (IRV) [62, 149]. This

dissertation studies the problems of finding the fair aggregated rank or top-k,

considering three aggregation methods such as Kemeny, plurality, and IRV.

2

Top-k. This dissertation also identifies fairness and diversification concern in existing

top-k algorithms, that return a “fixed” set of k results for a given query. Given a user

query, a top-k result contains k records that have the highest scores [167]. Scores are

computed based on relevance, diversity, newness, serendipity, etc. Designing effective

scoring functions as well as efficient algorithms [1, 2] lend to numerous applications

in recommendation and search [4, 50, 53, 86, 138, 192, 195] and is an active area of

research. In this dissertation, we focus on both set based notion of top-k result as

well as top-k defined w.r.t ranked order.

1.2 Motivations

In the context of fairness, this dissertation’s first focus is on rank aggregation

[9, 82, 186] considering Kemeny distance as an aggregation method with a specific

emphasis on proportionate fairness or p-fairness [26, 184]. Ranking is a commonly

used method to prioritize desirable outcomes among a set of candidates and is

an essential step in many high impact applications, such as, hiring candidates for

a job, selecting students for school and college admission or scholarship, finding

winning candidates in a competition, or approving loans. Traditionally, producing

the final ranking involves aggregating potentially conflicting preferences from multiple

individuals and is a central problem in the areas of voting and social choice theory,

which is traditionally known as the rank aggregation problem [9, 82, 186]. The first

goal in this work is to revisit the rank aggregation problem considering proportionate

fairness or p-fairness [26, 184] that ensures proportionate representation of every

group based on a protected attribute in every position of the aggregated ranked

order. The problem is defined formally as follows: m conflicting rankings are given

over a database of n candidates, where candidates have a protected attribute A

with ℓ associated values (defined, e.g., over seniority level, ethnicity, or gender).

Let f(p) denote the fraction of candidates with protected attribute value p, that

3

is, f(p) = 1
n

∑
v∈V 1A(v)=p. The goal is to find an aggregated ranking such that

the total number of disagreements between the aggregated ranking and each of the

individual m rankings is minimized, and for every protected attribute value p and

every position k in the aggregated ranking, the representation of the candidates with

protected attribute value p in the top k candidates is proportional to f(p).

The second preference aggregation model studied in this dissertation is popular

plurality voting [136, 152, 161], with an emphasis on adopting group fairness

definitions [18, 94, 104, 123, 139, 163, 178, 197, 207, 214, 217]. The problem is studied

as follows: given m users (voters) and n items (candidates), each user (voter) casts

her preference for a single item (candidate) as a ballot, and the k items (candidates)

from the n that have the highest number of preferences are selected. However,

this variant may not produce a desired outcome when applications need to promote

fairness by ensuring proportionate representation of the items (candidates) in the

top-k results based on their protected attributes. We study how to guarantee

fairness by single ballot substitutions, where each such substitution replaces a vote

for an item (candidate) i by a vote for an item (candidate) j. Our goal is to

optimize preference substitution to satisfy complex top-k fairness constraints, where

the fairness requirement is defined over a set R of protected attributes. The objective

is to minimize the number of single ballot substitutions that guarantee fairness in the

top-k results. The process of minimizing initial preference modification, in general,

is known as margin finding in the literature [41,56,176].

Finally, we study the margin finding problem considering a popular ranked

choice voting mechanism as the underlying preference aggregation method, namely

Instant Run-off Voting (IRV) [62,149]. IRV is chosen for its ability to promote fairness

compared to other existing preference aggregation methods. One of the objectives

of the research is to investigate techniques for modifying the original IRV ballots

to adhere to query constraints while minimizing the number of required changes.

4

The inputs of this problem are made up of a set of ballots, one from each of the m

users (voters), and each ballot is a ranked order of preference up to ℓ items from n

items (candidates). The query comes with multiple (k) constraints. The goal is to

recommend items that satisfy the query constraints and are most representative of the

users’ preferences. It is imperative that at times the original users’ preferences may

require further manipulation to meet query constraints. We consider manipulation

by modifications, where a single modification amounts to changing any number of ℓ

entries in an existing ballot. We formalize this as the margin finding problem under

modification that minimizes the number of ballot modifications needed to guarantee

that the results satisfy all the k query selection constraints.

It has been recognized that group fairness alone has its deficiencies [95]. In two

independent efforts, Flanigan et al. [94] and Garcia-Soriano et al. [101] study how to

enable equitable selection probability of the records under group fairness constraints

and propose maxmin-fair distributions of ranking. Zemel et al. develop a learning

algorithm for fair classification that ensures both group fairness and individual

fairness [216]. [19] studies individual fairness in similarity search to ensure points

within distance r from the given query have the same probability to be returned.

However, none of these studied problems extend to top-k set based algorithms.

From the standpoint of individual fairness, we study how to redesign the existing

set based top-k algorithms [167] such that the records returned to the users receive

equitable exposure. This problem is studied in the context of long-tail data, where

a small number of popular records that receive extensive user exposure, while there

exist a long tail of niche records which may be equally desirable to the users but

remain relatively unknown [203]. The work redesigns existing top-k algorithms to

return multiple equivalent top-k sets to users, rather than a fixed set, with the goal

of promoting equitable exposure of records (individual fairness). We adapt a political

theory, namely, the Sortition Act [75, 180] and redesign existing top-k algorithms to

5

have them compute a set S of multiple top-k sets that are equivalent in utility as

opposed to a fixed top-k set. Given S, an end user still draws one of the sets at

random. Hence, the goal is to assign a probability distribution over S, i.e., PDF (S),

such that after many such draws from many end users, the records returned inside the

top-k sets have as uniform selection probability as possible. We formalize θ-Equiv-

top-k-MMSP that produces PDF (S) for a given query and a scoring function F .

Each set s ∈ S contains k number of records whose score is at most θ% (a tunable

application dependent input parameter) smaller than the optimum top-k score, and

the PDF (S) is computed such that the selection probabilities of the records in it are as

uniform as possible. Enabling equal selection probabilities promotes equal exposure

of the records. θ-Equiv-top-k-MMSP is rooted on maxmin fairness theory that

maximizes the minimum exposure.

Finally, this dissertation studies how to redesign existing result diversification

algorithms to make them faster without having to compromise with their accuracy.

Result diversification remains to be an active research topic with extensive appli-

cations in recommendation and search [1, 2, 4, 50,141,166,167,185,188,189,193,195].

Diversification algorithms aim to provide query results that are both relevant and

cover a wide range of user intents. Previous research has studied returning top-k

diverse results, with works proposing objective functions and algorithms to balance

relevance and diversity [1,2,86,166,188,193]. Traditional diversification algorithms,

such as GMM [106], MMR [106], SWAP [211], rely on iterative processes and pairwise

diversity computations, which can be computationally expensive for large databases.

Although some works address this issue in geometric spaces [98, 156], the need for

costly computations remains when diversity functions are arbitrary or non-metric.

This research aims to enhance the efficiency of promoting diverse query results by

reducing computational overhead and considering diversity functions as arbitrary or

6

non-metric, thereby allowing for comprehensive and varied outcomes that align with

user interests and preferences.

1.3 Contributions

This dissertation makes several non-trivial contributions in designing effective models,

and principled algorithms for promoting diverse and fair query results.

Chapter 2 of the dissertation focuses on rank aggregation with proportionate

fairness, explicitly addressing the concept of p-fairness for ensuring proportionate

representation of different groups based on protected attributes in aggregated ranked

orders. The Rank Aggregation under Proportionate Fairness (RAPF) problem

aims to minimize disagreements among individual rankings while ensuring that the

representation of each group in the aggregated ranking aligns with their representation

in the original data for every position. The dissertation acknowledges that RAPF

is NP-hard and introduces two computational frameworks: RandAlgRAPF, a

highly scalable randomized algorithm, and AlgRAPF, a deterministic algorithm

that provides a solution for RAPF. Both algorithms rely on achieving p-fair

Kemeny optimized rankings for individual rankings, which is referred to as the

Individual p-Fairness (IPF) problem. The dissertation presents several algorithmic

contributions: (i) proving that when the protected attribute is binary, IPF can

be solved exactly using a greedy technique; (ii) highlighting the non-triviality of

solving IPF when the protected attribute is non-binary; (iii) introducing two solutions

for IPF, ExactMultiValuedIPF (optimal) and ApproxMultiValuedIPF (2-

approximation factor), resulting in 3 and 4 approximation factors, respectively,

for the RAPF problem. (iv) demonstrating that ApproxMultiValuedIPF and

AlgRAPF achieve an α + 2 approximation factor if IPF can be solved with an

approximation factor α; The proposed solutions are extensively evaluated using

multiple real-world and large-scale synthetic datasets. Comparative experiments

7

against state-of-the-art approaches demonstrate the effectiveness and efficiency of

the studied problem and the proposed solutions.

Chapter 3 of the dissertation concentrates on the margin finding problem in the

context of single ballot substitutions and explores various settings of protected group

attributes to promote fairness. The objective is to optimize preference substitutions

by minimizing the number of single ballot substitutions while satisfying complex

top-k fairness constraints. The chapter formalizes several margin finding problems

that consider different types of protected attributes: MFBinaryS for binary

attributes, MFMultiS for multi-valued attributes, MFMulti2 for two different

protected attributes, and MFMulti3+ for three or more protected attributes.

The theoretical analysis of these problems is presented, accompanied by principled

algorithmic contributions. The computational complexity of the defined problems is

analyzed. MFBinaryS and MFMultiS are proven to be computationally easy. For

MFMulti2, the decision version is shown to be (weakly) NP-hard by reducing it

to the Partition problem. As for MFMulti3+, the satisfiability problem is proven

to be (strongly) NP-hard through a reduction from the three-dimensional matching

(3DM) problem. To evaluate the proposed solutions, rigorous large-scale experiments

are conducted using real-world datasets related to election and movie applications,

as well as synthetic datasets. Multiple state-of-the-art solutions are adapted and

compared against the proposed approaches. The experimental results validate the

effectiveness of the designed solutions and their relevance to practical scenarios.

Chapter 4 of this dissertation studies how to modify the original ballots of

IRV to satisfy all k query constraints such that the total number of required ballot

changes is minimized (MqKIRV in short). We prove that MqIRV is NP-hard,

even when the ballot size is at most ℓ = 2, by reducing an instance of the known

NP-complete problem Exact Cover by 3-Sets (X3C) to an instance of MqIRV.

Inspired by [42, 142], we then design an algorithmic framework AlgExact that

8

considers all possible permutations over the candidates, where each permutation

represents an elimination order simulating multiple run-off rounds of IRV. Solving

AlgExact requires repeatedly solving a sub-problem DistTo, which finds the

smallest number of ballot modifications to satisfy that order. Unfortunately, we

prove that even the decision version of DistTo is NP-hard by reducing an instance

of X3C to DistTo, even when ℓ = 3. The basic idea behind AlgExact is to

repeatedly invoke DistTo for every possible permutation and retain the permutation

that requires the smallest number of ballot modifications overall as the answer. We

further study efficiency opportunities of AlgExact by enabling early terminations.

The aim is to avoid making expensive DistTo calls and instead compute a lower

bound of margin for every possible suffix over all permutations. If the lower bound

of margin for a permutation is not smaller than the current upper bound of margin

over the instance of MqIRV, the permutation is eliminated entirely. To that end,

we design a highly efficient lower bound computation algorithm DistToLB and

an upper bound computation algorithm MqIRVUB that are both highly effective

and computationally lightweight. In addition, we present an efficient exact solution,

DistToAddAlg, for the DistTo problem, which focuses on adding the smallest

number of ballots to the existing set of ballots to satisfy the query constraints.

We also propose an integer programming formulation, IPEx, for MqIRV that is

non-trivial. Lastly, we develop a highly scalable heuristics algorithm, AlgApprx,

that demonstrates good performance in practice. Furthermore, this work includes

experimental evaluations using real-world and synthetic datasets. The findings

indicate that MqIRV yields significantly smaller anti-plurality index compared to

alternative approaches, such as plurality voting based margin computation. The

results also demonstrate that AlgExact is not only optimal but also more scalable

than state-of-the-art solutions. Moreover, the experiments validate the optimality

and scalability of DistToAddAlg, as well as the effectiveness and scalability of

9

AlgApprx, by varying relevant parameters and comparing them with appropriate

baseline algorithms. These experimental evaluations provide empirical evidence of the

efficiency, effectiveness, and scalability of the proposed solutions in practical scenarios.

Chapter 5 of this dissertation investigates how to promote equitable exposure

to records that satisfy long tail criteria. Firstly, we formalize key definitions related

to θ-Equiv-top-k-Sets and selection probabilities of records. We introduce the

θ-Equiv-top-k-MMSP problem, which aims to generate θ-Equiv-top-k-Sets and

maximize the minimum selection probability of a record. We prove that this problem

is NP-Complete. Next, we propose the OptTop-k-θ algorithm, which is an exact

solution for generating θ-equivalent top-k sets. It utilizes an efficient data structure

based on item lattices to maintain candidate top-k sets and calculate their score

bounds. We also present the Opt-SP algorithm, which provides an exact solution

for generating the probability distribution function (PDF) of the θ-equivalent top-k

sets. To address scalability, we introduce the RWalkTop-k-θ algorithm, which

utilizes random walks to probabilistically generate θ-equivalent top-k sets. The

algorithm leverages the Good Turing Test to determine when to stop the random

walk and discover all θ-Equiv-top-k-Sets with high probability. We also present the

Gr-SP algorithm, which produces a probability distribution over the generated sets.

Additionally, we propose the ARWalkTop-k-θ algorithm, an adaptive random walk

based approach that solves θ-Equiv-top-k-Sets andMaxMinFair at the same time.

It lowers the probability of records already part of valid sets and boosts the probability

of remaining records to generate θ-equivalent top-k sets. This adaptive random walk

approach ensures a uniform probability distribution over the generated sets. We

conduct extensive evaluations using real-world and synthetic datasets, comparing our

designed solutions against baseline algorithms. The experimental results validate the

quality and scalability of our proposed solutions and support our theoretical analyses.

10

Chapter 6 of this dissertation investigates the result diversification problem

and proposes a computational solution to expedite existing top-k algorithms designed

for result diversification. Firstly, we address a major computational bottleneck

in existing diversification algorithms and introduce an accelerated process called

DivGetBatch(). By grouping records instead of comparing record pairs, we signifi-

cantly improve the computation speed. We develop a generic computation framework,

including the I-tree index structure and other auxiliary data structures, to facilitate

this improvement in speed. Our contribution lies in creating an indexing technique

that is easily designed using popular record partitioning algorithms and is compatible

with various diversification algorithms and functions. Secondly, we enhance theMMR,

GMM, and SWAP [55, 106, 211] algorithms by incorporating the DivGetBatch()

approach. By operating on pairs of groups of records instead of individual record pairs,

these augmented algorithms achieve faster running times while maintaining identical

top-k results. We provide theoretical analysis on the exactness and running time of

these augmented algorithms, showcasing their improved efficiency. For example, the

augmented SWAP algorithm (Aug-SWAP) exhibits a significantly faster running time

compared to the original algorithm. Our third contribution focuses on the design and

maintenance of the I-tree index structure. We address the computational bottleneck

in updating the MinsimMatrixNode and MaxsimMatrixNode data structures and

formulate an optimization problem to minimize the number of updates. We propose

an exact solution, OPTMn, based on integer programming, and a scalable greedy

heuristic, GrMn, for efficient index maintenance. Lastly, we conduct extensive

experimental evaluations using large real-world datasets and a synthetic dataset. The

results demonstrate that our augmented algorithms produce identical results to the

original algorithms while achieving substantial speedups ranging from 3× to 24×

on large datasets. We compare the I-tree index structure with existing indexing

structures such as M-Tree [68], KD-Tree [34], and Ball-Tree [135] and find that

11

I-tree consistently outperforms them in terms of query processing speed and index

construction time. These experiments provide empirical evidence of the efficiency and

effectiveness of our proposed solutions in practical scenarios.

Chapter 7 summarizes the contributions of this research and outlines ongoing

and future research problems. As an ongoing work, it proposes how to select top-k

features for different subgroups (subgroups are defined based on different protected

attribute value combinations) for datasets that are heavily incomplete. Traditional

feature selection techniques fall short to estimate feature importance in such cases.

This ongoing work investigates the applicability of machine learning models, such as,

graphical neural network to estimate “importance” of features for different subgroups.

Such a technique could be highly useful in many compelling applications, such as,

personalized recommendation systems, targeted marketing, and group-based analysis,

to name a few.

12

CHAPTER 2

RANK AGGREGATION WITH PROPORTIONATE FAIRNESS

2.1 Introduction

Ranking is a commonly used method to prioritize desirable outcomes among a set of

candidates and is an essential step in many high impact applications, such as, hiring

candidates for a job, selecting students for school and college admission or scholarship,

finding winning candidates in a competition, or approving loans. Traditionally,

producing the final ranking involves aggregating potentially conflicting preferences

from multiple individuals and is a central problem in the areas of voting and social

choice theory, which is traditionally known as the rank aggregation problem [9,82,186].

Our goal in this work is to revisit the rank aggregation problem considering a

notion of fairness, namely proportionate fairness or p-fairness [26, 184] that ensures

proportionate representation of every group based on a protected attribute in every

position of the aggregated ranked order. P-fairness has been studied in the theory

community to enable resource allocation satisfying temporal fairness or proportionate

progress. The classical problem in this context is known as the Chairman Assignment

Problem [21,184] which studies how to select a chairman of a union every year from a

set of r states such that that at any time the accumulated number of chairmen from

each state is proportional to its weight. We formalize the rank aggregation subject to

p-fairness or RAPF to that end.

RAPF is defined formally as follows: m conflicting rankings are given over

a database of n candidates, where candidates have a protected attribute A with

ℓ associated values (defined, e.g., over seniority level, ethnicity, or gender). Let

f(p) denote the fraction of candidates with protected attribute value p, that is,

f(p) = 1
n

∑
v∈V 1A(v)=p. The goal is to find an aggregated ranking such that the

13

total number of disagreements between the aggregated ranking and each of the

individual m rankings is minimized, and for every protected attribute value p and

every position k in the aggregated ranking, the representation of the candidates

with protected attribute value p in the top k candidates is proportional to f(p).

P-fairness is desirable in several compelling rank aggregation applications, such as,

French process of admitting students to university (Parcoursup), matching medical

students to US hospitals for residency, or faculty hiring in the universities, to name

a few. Subsection 2.1.1 describes one such application in depth.

We initiate this investigation by studying the Individual p-Fairness or IPF

problem that finds a closest p-fair ranking to an individual ranking, which we believe is

an important problem in its own merit. A similar problem is studied in the past [104]

with weaker notion of fairness and the designed solutions are just heuristic. We

investigate how a solution designed for IPF could solve RAPF.

2.1.1 Motivation

Running Example: p-fairness in faculty hiring. Consider a toy database of

n (12) applicants who are interviewed to be hired for a small number of faculty

positions in a university. The hiring committee comprises of a set of m (4) members,

each of whom ranks these n candidates (refer to Table 2.1) based on their credentials

and interview performance. After that, these individual ranks are to be aggregated

to create an overall order based on which the candidates would be made job offers

until the positions are filled. Potential protected attributes of the candidates are

seniority level, research areas, and gender. As an example, considering seniority level,

3 applicants are junior, 4 are mid-career, and 5 are senior, making the proportion over

seniority level to be 3/12, 4/12, and 5/12, respectively.

The goal of RAPF is to produce a ranked order over the 12 candidates by

aggregating all 4 ranked lists such that the produced order is closest to the individual

14

4 ranks and for each of the 12 positions and for each of the values of a particular

protected attribute the candidates appear proportionate to their representation in

the original data. Indeed, it is important to ensure fairness in each of the 12

positions considering the given protected attribute - otherwise, depending on who

accepts/declines the job offer, the proportionate representation of the candidates

based on the underlying protected attribute would get disrupted. Intuitively speaking,

assuming seniority level as the protected attribute, a solution designed for RAPF

must ensure that the representation of junior, mid-career, and senior candidates is

(0.75, 1, 1.25) up to integral rounding in the top 3 positions, (1, 1.33, 1.67) up to

integral rounding in the top 4 positions, and so on.

Table 2.1 Original Ranks Provided by four Members

Candidate Name Gender Seniority level Area Mem 1 Mem 2 Mem 3 Mem 4

Molly Female Junior DB 1 3 4 6

Amy Female Junior DB 2 2 1 5

Abigail Female Junior AI 3 5 2 7

Kim Male Mid career HCI 4 7 3 8

Lee Male Mid career Theory 5 9 6 1

Park Male Mid career Vision 6 1 5 2

Kabir Male Mid career NLP 7 4 8 3

Damien Male Senior ML 8 6 7 4

Andres Male Senior Security 9 8 10 9

Aaliyah Female Senior Systems 10 10 9 10

Kiara Female Senior DM 11 11 12 11

Jazmine Female Senior PL 12 12 11 12

We acknowledge that the existing popular group based fairness definition

statistical parity [81] is somewhat similar to p-fairness, however, the best adapted

version of top-k statistical parity studied in a recent paper [134] does not account for

proportionate representation in every position of the top-k, limiting its applicability.

15

2.1.2 Contributions

Our first contribution is to formalize two optimization problems, Individual

p-Fairness or IPF and the rank aggregation problem subject to proportionate

fairness (RAPF) (Section 2.2) considering binary (ℓ = 2) and multi-valued (ℓ > 2)

protected attributes.

Our second contribution is theoretical and algorithmic. For the IPF problem,

we present an efficient greedy solutionGrBinaryIPF for a binary protected attribute

that runs in O(n) time. For a multi-valued protected attribute, we prove that the

proposed algorithms studied in a recent work [104] for IPF are heuristics and do

not ensure optimality (refer to Subsection 2.4.1 for details). In fact, we claim that

solving IPF for multi-valued protected attribute is non-trivial. We present two

solutions for multi-valued IPF - a dynamic programming based exact algorithm

ExactMultiValuedIPF that takes linear time when the number of values on

the protected attribute is a constant, and ApproxMultiValuedIPF based on

a minimum weight matching on convex bipartite graphs [48], that admits a 2

approximation factor.

Since rank aggregation problem under Kemeny Optimization is NP-hard for

4 or more lists [9, 82, 186], RAPF is also NP-hard. We present two algorithmic

frameworks RandAlgRAPF and AlgRAPF for RAPF, one is randomized and

the other one is deterministic that admit provable approximation factors. Both

frameworks are scalable while the randomized one is highly scalable but because

of its randomized nature, its approximation factor is expressed in expectation. Both

algorithmic frameworks use as subroutine the solutions of IPF. They also leverage on

variants of the Pick-A-Perm algorithm [9,82,186] that is widely used in the classical

rank aggregation context. We then prove that the approximation factor of the solution

designed for RAPF is 2+ the approximation factor of the IPF algorithm used as

subroutine. This implies that multi-valued RAPF with ExactMultiValuedIPF

16

Table 2.2 Summary of Technical Results

Problem
Protected

Attribute
Hardness Algorithm Approx Factor Running Time

IPF

binary p-time GrBinaryIPF exact O(n)

multi-
open

ExactMultiValuedIPF exact O(nℓ2ℓ)

valued ApproxMultiValuedIPF 2 O(n2.5 log n)

RAPF

binary NP-hard
RandAlgRAPF+GrBinaryIPF 2 O(n)

AlgRAPF+ GrBinaryIPF 2 O(m2n log n)

multi- NP-hard

RandAlgRAPF+ ExactMultiValuedIPF 3 O(nℓ2ℓ)

RandAlgRAPF+ ApproxMultiValuedIPF 4 O(n2.5 log n)

valued AlgRAPF+ ExactMultiValuedIPF 3 O(m2n log n+mnℓ2ℓ)

AlgRAPF+ ApproxMultiValuedIPF 4 O(m2n log n+mn2.5 log n)

admits a 3 approximation factor; whereas, it admits a 4 approximation factor when

ApproxMultiValuedIPF is used instead. Table 2.2 summarizes our theoretical

results.

Our third contribution is experimental (Section 2.3). We run extensive

experiments using 3 real world and a large scale synthetic datasets, and compare

an implementation of our solution with the implementation of two state-of-the-art

solutions DetConstSort [104] for IPF and FairILP [134] for RAPF. Our first

and foremost observation is that, consistent with our theoretical analysis, p-fairness

promotes stronger notion of fairness, by ensuring proportionate representation of each

of the protected attribute values for every position in the aggregated ranked order.

Our experimental results demonstrate that our proposed model and solutions satisfy

the fairness criteria proposed in state-of-the-art solutions [104,134] - however, existing

solutions do not extend to satisfy p-fairness. Our experimental results corroborate

our theoretical results in terms of approximation factors and demonstrate that our

solutions are highly scalable to large number of items and ranks.

17

Table 2.3 Important Notations

Notation Meaning

A Protectedattribute

ℓ Number ofdifferent values in A

f(p) proportion of candidates with attribute value p

σ(u) position of item u in rank σ

2.2 Preliminaries and Formalism

Database. contains n items or candidates. These two terms will be used

interchangeably in the paper. Using the running example, n = 12. The set of items

will be denoted V , individual items will be denoted by u and v.

Rank. We consider rankings of the items in V . Each such ranking can be viewed as

a permutation. We will use the terms ranking and permutation interchangeably.

Multiple Rankings. The input consists m different complete rankings. Using the

running example, m = 4.

Protected Attribute. Each item/candidate v ∈ V has a protected attribute A(v)

that can take any of ℓ different values. As an example, seniority level is a multi-valued

protected attribute with three possible values Junior, Mid career, Senior - thus ℓ = 3.

Contrarily, gender is a binary protected attribute with two values male and female,

and ℓ = 2.

Rank Aggregation Measures [9, 82]. In this work we consider two popular rank

distance measures Kendall-Tau distance and Spearman’s footrule distance.

Definition 1. Kendall-Tau distance. Given two permutations σ, η : V → [1..n],

the Kendall-Tau distance between the two permutations is the sum of pairwise

disagreements between σ and η (bubble-sort distance).

K(σ, η) =
∑

{u,v}⊆V

1(σ(v)−σ(u))(η(v)−η(u))<0

18

Note that the Kendall-Tau distance is symmetric, that is, K(σ, η) = K(η, σ).

It also satisfies the triangle inequality, for any three permutations σ, µ, η we have

K(σ, µ) +K(µ, η) ≥ K(σ, η).

Definition 2. Spearman’s footrule distance. Given two permutations σ, η : V →

[1..n], the Spearman’s footrule distance between the two permutations is the sum of

the absolute values (ℓ1 distance) of the differences between two permutations.

S(σ, η) =
∑
u∈V

|(σ(u)− η(u)|

Using the running example, the Kendall-Tau distance between the rankings of

Member 1 and Member 2 is 12 because there are 12 pairs of items that appear in

opposite order in these two rankings. Spearman’s footrule distance between them is

22, which is the sum of the absolute values of the difference in the order between

these two rankings.

Relationship between the two measures. Diaconis and Graham [77] proved

that for any two permutations the Spearman’s footrule distance is at least the Kendall-

Tau distance between them, and at most twice the Kendall-Tau distance. That is,

for any two permutations σ, η, we have K(σ, η) ≤ S(σ, η) ≤ 2K(σ, η).

In the rest of the paper, we focus on Kendall-Tau distance and when we refer to

Spearman’s footrule distance we will state it explicitly. The Kemeny distance between

a single ranking and multiple rankings is based on Kendall-Tau distance.

Definition 3. Kemeny Distance. For rankings ρ1, ρ2, . . . , ρm the Kemeny Distance

of the ranking σ to these rankings is

κ(σ, ρ1, ρ2, . . . , ρm) =
m∑
i=1

K(σ, ρi)

Using the running example, Kemeny Distance between each of the aggregated rankings

presented in the three columns of Table 2.4 and the individual member ranks are 34, 34,

and 46, respectively.

19

We note that Kemeny distance which is based on Kendall-Tau distance is the

most popular and accepted measure for quantifying the quality of rank aggregation

and has been widely used in the related work on rank aggregation [8, 9, 81]. The

Kemeny distance measure has a maximum likelihood interpretation and it is the

only known measure that simultaneously satisfies: neutrality, consistency, and the

(extended) Condorcet property. Moreover, Kendall-Tau/Kemeny has also been

adopted in the only previously known fair rank aggregation FairILP [134] work. Other

distance measures are briefly described in Section 2.4.

Definition 4. Proportionate Fair or p-fair ranking [26,184]. For any protected

attribute value p, let f(p) denote the fraction of items with this value, that is, f(p) =

1
n

∑
v∈V 1A(v)=p. A ranking σ is proportionate fair or p-fair if for every k ∈ [1..n],

the number of items with protected attribute value p among the k top ranked items in

σ is either ⌊f(p) · k⌋ or ⌈f(p) · k⌉.

Using the running example, if gender is the protected attribute with 50%

representation of male and female, then p-fairness implies 1 male and 1 female in

the top-2 items, 2 males and 2 females in the top-4 items , and so on. (Note that

for any odd k the difference between the number of males and females in the top-k

is exactly 1.) We refer to the 3rd column of Table 2.4 and note that p-fairness is

satisfied.

Definition 5. Relaxed p-fair ranking. Given an integer input δ ≥ 0, a ranking

σ is relaxed proportionate fair or relaxed p-fair if for every k ∈ [1..n], the number of

items with protected attribute value p among the k top ranked items in σ is between

⌊f(p) · k⌋ − δ and ⌈f(p) · k⌉+ δ.

This alternative fairness definition essentially relaxes p-fair ranking definition,

such that for every position, the proportionate representation of items with protected

attribute value p is allowed to have at most δ deviation (an input parameter) from

20

its original p-fair ranking. Using the running example, if gender is the protected

attribute with 50% representation of male and female, then the relaxed p-fairness

with δ = 1 implies at least 1 male and at least 1 female in the top-4 items, at least 2

males and at least 2 females in the top-6 items, and so on.

2.2.1 Problem formulation

P1: Individual p-fair rank (or IPF). Given a ranking ρ find a p-fair ranking

that is closest to ρ in Kendall-Tau distance.

P2: Rank aggregation under p-fairness (or RAPF). Given m rankings

ρ1, ρ2, . . . , ρm find a p-fair ranking that minimizes the Kemeny distance to

these m rankings. We observe that RAPF is NP-Hard which directly follows

from the fact that rank aggregation considering unconstrained Kemeny distance

minimization is NP-hard when m ≥ 4 [9].

We study IPF and RAPF for binary and multi-valued protected attributes

considering fairness as a constraint. By that process, it is likely to deteriorate the

Kemeny Distance values, i.e., the Kemeny Distance of an unfair rank aggregation

is likely to be smaller than that of a fair one (recall Column 1 and Column 3 of

Table 2.4). These choices and other alternative ways of incorporating fairness inside

rank aggregation are explored in Section 2.5.

We also study IPF and RAPF subject to the relaxed p-fairness. Our proposed

solutions trivially adapt for this version and we omit those for brevity. Experimental

results based on this relaxed definition are included in Subsection 2.3.4.

2.3 Experimental Evaluations

The goal of this study is to evaluate the quality and scalability of our proposed

solutions, designed for IPF and the RAPF problems. We also compare our solutions

21

Table 2.4 Rank Aggregation Results of Comparable Methods Using Subsection 2.1.1
Example Considering Gender as The Protected Attribute

Rank
Rank aggregation

(without fairness)

Rank aggregation

(with statistical parity) [134]

Rank aggregation

(with p-fairness)

1 Amy (Female) Amy (Female) Amy (Female)

2 Molly (Female) Molly (Female) Park (Male)

3 Abigail (Female) Abigail (Female) Molly (Female)

4 Kim (Male) Kim (Male) Kabir (Male)

5 Lee (Male) Lee (Male) Abigail (Female)

6 Park (Male) Park (Male) Kim (Male)

7 Kabir (Male) Kabir (Male) Lee (Male)

8 Damien (Male) Damien (Male) Aaliyah (Female)

9 Andres (Male) Andres (Male) Damien (Male)

10 Aaliyah (Female) Aaliyah (Female) Kiara (Female)

11 Kiara (Female) Kiara (Female) Andres (Male)

12 Jazmine (Female) Jazmine (Female) Jazmine (Female)

Kemeny Distance 34 34 46

22

with multiple state-of-the-art solutions [104, 134] to demonstrate how our studied

problems promote stronger notion of fairness for the rank aggregation problem.

All algorithms are implemented in Python 3.8. All experiments are conducted

on a cluster server machine with 32GB RAM memory, OS: Scientific Linux release

7.8 (Nitrogen), CPU: Intel(R) Xeon(R) CPU E3-1245 v6 @ 3.70GHz. All numbers

are presented as an average of 10 runs. For brevity, we present a subset of results

that are representative. The code and the data is available at 1.

2.3.1 Dataset description

We perform evaluations considering three real world datasets. (a) Fantasy players

choose real athletes for their fantasy teams and generate scores based on the athlete’s

real performance. Rankings of the athletes are provided by real human voters. We

use rankings of National Football League (NFL) players for 16 weeks of the 2019

football season from the top 25 experts. (b) German Credit Score: This is a publicly

available dataset in the UCI repository. It is based on credit ratings generated by

Schufa, a German private credit agency based on a set of variables for each applicant,

including age, gender, and marital status, among others. Schufa Score is an essential

determinant for every resident in Germany when it comes to evaluating credit rating

before getting a phone contract, a long-term apartment rental or almost any loan.

We use the credit-worthiness as scores just it is done in [207], and create a protected

attribute with 4 different values. (c) MoveLens Dataset: We use MovieLens 25 million

movie dataset to select a set of movies that are all rated by the same set of users.

The individual user rating is used to create individual ranking. We use the movie

genres as the protected attribute. Table 2.5 has further details.

1https://github.com/MouinulIslamNJIT/Rank-Aggregation_Proportionate_

Fairness.git

23

https://github.com/MouinulIslamNJIT/Rank-Aggregation_Proportionate_Fairness.git
https://github.com/MouinulIslamNJIT/Rank-Aggregation_Proportionate_Fairness.git

Table 2.5 Real World Datasets

Dataset #records (n) # ranks (m) protected attributes (ℓ)

Fantasy

football

ranking

55 25

American Football Conference

(AFC):proportion: 50% , National Football

Conference (NFC): proportion: 50%

German

Credit

Score

1000 1

age<35 & sex = female: proportion: 33.5%

, age≥35 & sex = female: proportion: 35.5%

age<35 & sex = male: proportion: 21.3%,

age≥35 & sex = male: proportion: 9.7%

MovieLens 268 7

Thriller: proportion: 2.24%, Western:

proportion: 6.72%, Documentary:

proportion: 3.36%, Comedy: proportion:

21.64%, Horror: proportion: 4.85%, Musical:

proportion: 0.37%, Film-Noir: proportion:

1.49%, Drama: proportion: 59.33%

Synthetic dataset We generate large scale synthetic data [134,207] using Mallows’

Model [145]. The Kemeny rank aggregation has been shown to be a maximum

likelihood estimator for this model [207]. It contains two parameters - (i) θ that

controls the degree of consensus among the rankings (higher values shows more

agreement); (ii) p that dictates the probability of elements of the first group to be

ranked higher than elements in the Second group. We refer to [134] for further details.

The θ and p are set to 0.9 and 0.7 respectively in our experiments.

2.3.2 Implemented algorithms

DetConstSort [104] is a fairness-aware ranking algorithm designed towards

mitigating algorithmic bias for a single rank. DetConstSort only ensures the

lower bound of proportionate representation. As shown in Subsection 2.4.1, it neither

24

guarantees smallest Kendall-Tau distance nor ensures p-fairness. We implement this

for IPF.

FairILP [134] finds the closest aggregate ranking that satisfies a bound on the

pairwise statistical parity. The original implementation of FairILP is specified for a

binary protected attribute. To adapt it for multi-valued protected attribute we ensure

that for each value of the protected attribute, the bound on the pairwise statistical

parity is satisfied between the items with this value and the rest of the items. In our

experiments we set δ = 1 as the (unnormalized) bound on the pairwise statistical

parity. We note that due to the definition of pairwise statistical parity, it may be

infeasible in many instances to find a solution for δ = 0.

OptIPF is the exact solution for IPF produced by solving an Integer Linear

Programming (ILP) model using Gurobi Optimizer 9.1. The optimizer does not

scale and thus exact solutions cannot be computed for large-scale datasets.

OptRAPF is the exact solution for RAPF produced by solving an ILP model using

Gurobi Optimizer 9.1. Again, the optimizer only produces the optimal solution on

small datasets.

OptRA is the exact solution for rank aggregation without considering fairness, and

is produced by solving an ILP model.

Measures. For quality evaluation we use the following measures. (i) Kendall-Tau

and Kemeny Distances, (ii) percentage of items satisfying p-fairness, and (iii)

approximation factors. For scalability evaluation, we measure the running time.

2.3.3 Summary of results

Our first observation is that, consistent with our theoretical analysis, p-fairness

promotes stronger notion of fairness, by ensuring proportionate representation of each

of the protected attribute values for every position in the ranked order. Naturally,

25

incorporating p-fairness inside rank aggregation comes with a cost - the Kendall-Tau

and Kemeny distances are typically higher (albeit not substantially worse) for the p-

fair rank aggregation than that of OptRA. Second, our experimental results demon-

strate that our proposed model and solutions satisfy the fairness criteria proposed in

state-of-the-art solutions [104,134] - however, these aforementioned existing solutions

do not extend to satisfy p-fairness. Third, our experimental results corroborate our

theoretical results, that is, GrBinaryIPF is exact, ApproxMultiValuedIPF

admits a solution that is no more than twice the optimal for MultiValuedPF,

and AlgRAPF in conjunction with ApproxMultiValuedIPF admits tighter

approximation factor compared to our proposed theoretical bound 4. Finally, our

scalability results indicate that our proposed solutions are scalable considering very

large number of items (1, 000, 000) and ranks (10, 000). In fact, RandAlgRAPF is

insensitive to the number of ranks. We extend our experiments and consider relaxed

p-fairness varying δ ≥ 0 values as defined in Definition 5.

2.3.4 Quality experiments

In this section we describe the results of our qualitative analysis.

BinaryIPF Results Figures 2.1a and 2.2a compare the fairness of GrBinaryIPF

and DetConstSort. These results clearly indicate that GrBinaryIPF consis-

tently satisfies p-fairness, whereas, DetConstSort does not.

Figure 2.3a compares the Kendall-Tau distance between the input ranking

and the ranking computed by OptIPF, GrBinaryIPF, and DetConstSort.

Consistent with our theoretical analysisOptIPF andGrBinaryIPF always produce

the same distance. At times DetConstSort computes a ranking with a smaller

distance. This can indeed happen, as DetConstSort does not necessarily compute

a p-fair ranking.

26

(a) Fantasy football:
GrBinaryIPF vs
DetConstSort

(b) German Credit:
ApproxMultiValuedIPF
vs DetConstSort

(c) MovieLens:
ApproxMultiValuedIPF
vs DetConstSort

Figure 2.1 Percentage of positions satisfying p-fairness (IPF).

Figure 2.4a plots the Kendall-Tau distance of the ranking computed by

GrBinaryIPF as we relax the p-fairness using δ ≥ 0 values. We note that for

a small value of δ the relaxed output is the same as input unfair ranking, and the

Kendall-Tau distance is 0.

MultiValuedIPF Results We use the MovieLens and German Credit Score

datasets to demonstrate the effectiveness of our proposed solution

ApproxMultiValuedIPF and compare it with DetConstSort. Figures 2.1b,

2.1c, 2.2b, and 2.2c demonstrate that also in this case ApproxMultiValuedIPF

consistently satisfies p-fairness whereas DetConstSort fails to satisfy p-fairness.

Figures 2.3b, 2.3c compares the Kendall-Tau distance between the input ranking

and the ranking computed by ApproxMultiValuedIPF and DetConstSort.

27

(a) Fantasy football:
GrBinaryIPF vs
DetConstSort

(b) German Credit:
ApproxMultiValuedIPF
vs DetConstSort

(c) MovieLens:
ApproxMultiValuedIPF
vs DetConstSort

Figure 2.2 Percentage of groups satisfying p-fairness (IPF).

Again, at times DetConstSort computes a ranking with a smaller distance since

DetConstSort does not necessarily compute a p-fair ranking.

Figures 2.4b, 2.4c plot the Kendall-Tau distance of the rankings by

ApproxMultiValuedIPF, as we relax the p-fairness using δ ≥ 0. Unsurprisingly,

for large δ, the Kendall-Tau values become 0.

RAPF Results Next, we evaluate the RAPF problem by studying the effec-

tiveness of our proposed AlgRAPF using GrBinaryIPF (Fantasy football) and

ApproxMultiValuedIPF (MovieLens), and compare it with FairILP [134] and

OptRAPF, whenever appropriate.

Figures 2.6a and 2.6b demonstrate that AlgRAPF consistently satisfies p-

fairness whereas FairILP fails to satisfy p-fairness. Figures 2.7a and 2.7b compare

the Kemeny distance between the input rankings and the aggregate ranking produced

28

(a) Fantasy football:
OptIPF, GrBinaryIPF ,
DetConstSort

(b) German Credit:
ApproxMultiValuedIPF
vs DetConstSort

(c) MovieLens:
ApproxMultiValuedIPF
vs DetConstSort

Figure 2.3 Kendall-Tau distance IPF.

by AlgRAPF, RandAlgRAPF, FairILP, and OptRA. As expected OptRA

achieves the smallest distance, followed by FairILP, since it does not require p-

fairness, and then AlgRAPF and RandAlgRAPF. Algorithm RandAlgRAPF

is inferior to AlgRAPF in practice, since its performance is same as the latter one

only in expectation.

Figures 2.9b and 2.9a plot the Kemeny distance of the ranking computed by

OptRA,AlgRAPF,RandAlgRAPF as we relax the p-fairness using δ ≥ 0 values.

Unsurprisingly, with large δ, our algorithms become very close to OptRA.

Finally, Table 2.6 presents the actual approximation factors of the different

algorithms proposed in this work. Because of the exponential nature of the OptIPF

this comparison could be conducted only on small datasets. As evident from Table 2.6

the actual approximation factors are lower than the proven theoretical bounds.

29

(a) Fantasy Football:
GrBinaryIPF

(b) German Credit :
ApproxMultiValuedIPF

(c) Movie Lens:
ApproxMultiValuedIPF

Figure 2.4 Varying δ analysis IPF.

2.3.5 Case study

For the case study, we use the ten popular movies based on five different IMDB

users. All these movies belong to three different genres (protected attribute): Drama,

Western, Comedy. The proportion of these genres are 0.4, 0.3, and 0.3, respectively.

The last two columns of the Table 2.7 show the ranked order of the results based on

FairILP [134] and our proposed OptRAPF, respectively. It is easy to notice that

compared to FairILP, OptRAPF ranks the movies in a manner where different

genres are proportionally distributed in all ten ranked positions, thereby promoting

improved user experience.

2.3.6 Scalability experiment

We present the running times of RAPF, RandAlgRAPF, GrBinaryIPF,

ApproxMultiValuedIPF. We do not present these results wrt any other baselines

because of two reasons: first, we have shown that the baselinesDetConstSort [104]

30

(a) GrBinaryIPF
varying n

(b) ApproxMulti-
ValuedIPF varying n

Figure 2.5 Running time analysis of IPF.

(a) Fantasy football:
p-fairness: AlgRAPF vs
FairILP [134]

(b) MovieLens: p-fairness:
AlgRAPF vs
FairILP [134]

Figure 2.6 % of positions satisfying p-fairness (RAPF).

and FairILP [134] do not satisfy the p-fairness criteria; second, the baseline algorithm

FairILP [134] is inherently not scalable. We use synthetically generated data using

Mallows’ model for this purpose. We vary n and m. Figures 2.5, and 2.8 show these

results and demonstrate that our solution easily scale to 1 million items (n) and

10, 000 ranks (m). These results also corroborate our theoretical analysis and shows

that the running time of RandAlgRAPF is not dependent on m.

2.4 Related Work and Comparison

We primarily discuss four types of existing work that are related to our proposed

problem.

Rank Aggregation. The rank aggregation study was initiated in the early

2000s by Dwork et. al. [82]. Since then, rank aggregation and several of its

31

(a) Fantasy football:
AlgRAPF vs
RandAlgRAPFvs OptRA
vs FairILP [134]

(b) MovieLens:
AlgRAPF vs
RandAlgRAPF vs OptRA
vs FairILP [134]

Figure 2.7 Kemeny Distance RAPF.

variants have been well studied, including rank aggregation considering different

optimization functions, rank aggregation with partial ranking information, or with

ties [8, 9, 24, 47, 88]. Kemeny optimal rank aggregation which minimizes the

sum/average Kendall-Tau distances [127, 128] to the individually ranked lists is the

most popular variant. In [9,24], the authors show that computing the Kemeny optimal

rank aggregation is NP-hard for 4 or more rankings. There exist both randomized and

deterministic approximation algorithms for rank aggregation [9,186,187]. In [9], Ailon

et al. introduced a randomized approximation algorithm with a 4
3
approximation

factor. In [186, 187], the authors propose deterministic pivoting algorithms with

the same approximation factors. In [70] Conitzer et al. propose an exact integer

programming solution for the Kemeny optimal rank aggregation.

One of the early yet popular results in this space is the randomized algorithm

Pick-a-Perm [9,82] that is shown to admit a 1
2
approximation factor for the Kemeny

Rank Aggregation Problem in expectation. We adapt Pick-a-Perm in our proposed

solution for the RAPF problem.

Alternative rank aggregation measures. Other than Kemeny, alternative

measures of the quality of rank aggregations, such as, those based on Spearman’s

Footrule and Borda’s Method [82]. We note that finding an optimal rank aggregation

using Spearman’s Footrule based measure is computationally easy. However, it is open

32

Table 2.6 Approximation Factor of The Algorithms

Number of items 10 15 20 25 30

GrBinaryIPF (Football) 1.0 1.0 1.0 1.0 1.0

ApproxMultiValuedIPF

(MovieLens)
1.52 1.46 1.37 1.33 1.30

ApproxMultiValuedIPF (Credit

Score)
1.8 1.76 1.60 1.57 1.52

AlgRAPF (Football) 2.86 2.76 2.15 2.14 2.01

AlgRAPF (MovieLens) 1.90 1.21 1.18 1.11 1.10

RandAlgRAPF (Football) 2.98 2.77 2.15 2.13 2.06

RandAlgRAPF (MovieLens) 2.10 1.71 1.6 1.70 1.60

whether the RAPF problem using Spearman’s Footrule distance is computationally

tractable. On the other hand, the IPF problem using Spearman’s Footrule distance is

tractable. We design a polynomial time algorithm for the IPF problem in Spearman’s

Footrule distance and use it to approximate the IPF problem in Kendall-Tau distance.

Borda’s method [45] is a “positional” method. It assigns a score corresponding to the

position in which a candidate appears within each voter’s ranked list of preferences,

and the candidates are sorted by their total score. Rank aggregation using Borda’s

method is also computationally easy, however, it does not satisfy the Condorcet

criterion. Since Borda’s method does not induce a distance between rankings it is

unclear how to extend it to satisfy the p-fairness constraint.

Proportionate Fairness. Based on the Chairman assignment problem [184],

the idea of proportionate fairness (p-fairness) was studied in the context of resource

scheduling [26]. The Chairman assignment problem simply studies how to select a

chairman for a union from k states such that at any time the accumulated number

of chairmen from each state is proportional to its weight. In [26], Baruha et al.

33

Table 2.7 Case Study Results on MovieLens Dataset

Movie User1 User2 User3 User4 User5 OptRAPF FairILP Genre

Bad News Bears, The (1976) 9 7 7 7 4 7 3 Comedy

True Grit (2010) 7 5 1 9 3 9 6 Western

My Darling Clementine (1946) 2 3 3 3 10 4 4 Western

Last Picture Show, The (1971) 4 1 5 1 5 5 1 Drama

Man with the Golden Arm, The (1955) 6 8 4 10 6 8 10 Drama

Heaven Can Wait (1978) 10 10 8 8 8 10 9 Comedy

Rio Bravo (1959) 1 4 6 5 7 1 5 Western

Elephant Man, The (1980) 5 2 2 4 2 6 2 Drama

Buddy Holly Story, The (1978) 3 6 10 6 9 2 8 Drama

Animal House (1978) 8 9 9 2 1 3 7 Comedy

propose an algorithm for generating the p-fair schedule. Then, [27] introduces a

series of algorithms for different single resource p-fair scheduling problems. Note

that p-fairness is a group fairness criteria that is close to statistical or demographic

parity [67] studied in the context of group fairness. We note that for the rank

aggregation problem, p-fairness is more suitable and stronger than statistical parity,

because it ensures statistical parity for every position in the ranked order. This makes

the problem significantly harder and the existing solutions do not trivially adapt.

Social Choice Theory. Various ranking methods have been studied in the field

of social choice theory [17,93,127,148,150,210]. Early social choice theory literature

considered rank aggregation in the context of preference aggregation methods [127,

150, 210]. The social choice theory papers [17, 93] focus on Arrow’s impossibility

theorem. This theorem states that it is impossible to have a rank aggregation method

that simultaneously satisfies several conditions some of which relate to fairness. The

paper [148] seeks to identify rank aggregation methods that are “close” to satisfying

Arrow’s conditions, enabling decisions that are fairer in practice. However, the focus

of these works is to propose models, whereas, our primary goal is to develop efficient

computational framework by adapting some of these proposed models.

34

(a) Vary n, m = 100:
RandAlgRAPF

(b) Vary m, n = 1000 :
RandAlgRAPF

(c) Vary n, m = 100:
AlgRAPF

(d) Vary m, n = 1000 :
AlgRAPF

Figure 2.8 Running time analysis.

2.4.1 Fair ranking solutions

Several recent fair ranking studies focus on achieving fairness on a single rank [18,60,

104,214]. Celis et al. [60] introduce a top-k fairness measure that ensures a given upper

and lower bound of the representation of each of the protected attribute values in the

top-k, for fixed values of k. They use Spearman’s footrule-like distance which is easier

than Kendall-Tau distance since it can be modeled by a maximum weight perfect

matching problem in a bipartite graph. They provide a dynamic programming exact

algorithm, and efficient approximation algorithms. In [214], Zehlike et al. extend

group fairness using the standard notion of protected groups and ensure that the

proportion of protected candidates in every top-k ranking remains statistically above

a given minimum (while not ensuring any upper bound). Asudeh et al. [18] propose

sweep-line-based algorithms for a more general fairness ranking problem.

Next, we describe two related works in more detail: the first one is a recent

work DetConstSort [104] that studies a variant of the IPF problem. The other

35

(a) Movie Lens :
AlgRAPF vs
RandAlgRAPF
varying δ

(b) Fantasy Football
: AlgRAPF vs
RandAlgRAPF varying
δ

Figure 2.9 Varying δ analysis RAPF.

one is FairILP [134], which to the best of our knowledge is the only recent work

that studies some version of fair rank aggregation alas only with binary protected

attributes and thus can be compared to RAPF.

DetConstSort Geyik et al. [104] propose AlgorithmDetConstSort to produce

fairness-aware ranking given an input ranking. This algorithm ensures that for every

protected attribute value p, and for every k ∈ [1..n] the number of items with

protected attribute value p among the top k ranked items in the output ranking

is at least ⌊f(p) · k⌋, where f(p) is the fraction of items with protected attribute

value p, that is, f(p) = 1
n

∑
v∈V 1A(v)=p. Essentially, Algorithm DetConstSort

produces a ranking that only satisfies the lower bound of p-fairness.

Example 2.4.1. Statement: DetConstSort [104] does not produce the

closest ranking that satisfies the p-fairness lower bound. We simulate

the running of Algorithm DetConstSort on the ranking given by Member 1 in

Table 2.1 considering seniority level as the protected attribute. The algorithm scans

the ranked items in descending order starting at the top (k = 1), and checks at

each position, whether any value of the protected attribute becomes “tight” and thus

an item with this value needs to be inserted to the tentative output ranking. For

the ranking given by Member 1, no seniority level becomes tight at k = 1, 2. At

36

k = 3, ⌊f(Senior) · k⌋ = ⌊5/12 ∗ 3⌋ = 1 and ⌊f(Mid career) · k⌋ = ⌊4/12 ∗ 3⌋ = 1.

So, the top ranked Senior candidate (Damien) and the top ranked Mid career

candidate (Kim) are inserted to the tentative output ranking. Since Kim is ranked

higher than Damien in the input ranking, the tentative (ordered) output ranking is

[Kim,Damien]. At k = 4, ⌊f(Junior) · k⌋ = ⌊3/12 ∗ 4⌋ = 1 and the top Junior

candidate Molly needs to be inserted in the list. Since Molly is ranked higher than

both Kim and Damien in the input ranking and since both Kim and Damien can be

pushed to position 3 without violating the p-fairness lower bound, Molly is inserted

into position 1 of the tentative output ranking which is now [Molly,Kim,Damien].

Continuing in the same manner, the final output ranking is

[Molly,Kim,Lee,Damien,Amy, Park,

Andres, Abigail, Aaliyah,Kabir,Kiara, Jazmine]

The Kendall-Tau distance between the Member 1 ranking and the output ranking is

12. However, consider the following ranking.

[Molly, Amy,Kim,Damien,Abigail, Lee,

Andres, Park,Aaliyah,Kabir,Kiara, Jazmine]

It also satisfies the p-fairness lower bound and the Kendall-Tau distance between it

and the Member 1 ranking is only 8.

Example 2.4.2. Statement: DetConstSort [104] does not produce a p-fair

ranking. The ranking produced by DetConstSort in Example 2.4.1 violates the

upper bound of the p-fairness condition, since the seniority level of 2 out of the top 3

candidates is Mid career but ⌈f(Mid career) · 3⌉ = ⌈4/12 ∗ 3⌉ = 1 < 2.

37

FairILP Kuhlman and Rundensteiner [134] consider fairness aware rank aggre-

gation in a setting of a binary protected attribute. To measure fairness they propose

pairwise statistical parity.

Definition 6. Pairwise statistical parity. For a ranking σ with a binary protected

attribute, let Vi be the set of items with protected attribute value i, we define Rpar(σ)

as:

Rpar(σ) =
1

|V1||V2|

∣∣∣∣∣∣
∑

{u∈V1}

∑
{v∈V2}

(
1σ(u)<σ(v) − 1σ(v)<σ(u)

)∣∣∣∣∣∣ .
The ranking σ satisfies pairwise statistical parity if Rpar(σ) = 0. The relaxed

pairwise statistical parity requires that Rpar(σ) ≤ δ, for a given δ ≥ 0. The

unnormalized pairwise statistical parity is defined as |V1||V2|Rpar(σ).

Given m rankings ρ1, ρ2, . . . , ρm, FairILP finds a ranking σ whose pairwise

unnormalized statistical parity is bounded by a given δ ≥ 0 that is closest to the

input rankings in Kemeny distance.

Example 2.4.3. Statement: FairILP [134] is not necessarily p-fair even with

δ = 0.

Consider the running example and assume that the (binary) protected attribute

considered is gender.

Table 2.4 shows three aggregated rankings for the running example, the first

without fairness, with second subject to pairwise statistical parity with δ = 0, and

the third subject to p-fairness. Note that the first two rankings are identical, which

implies that pairwise statistical parity does not imply p-fairness. Intuitively, the reason

for this is that pairwise statistical parity just considers pairs of items with different

protected attribute value in an aggregated manner and does not consider the actual

positions of the items in the aggregated ranking.

In summary, IPF is stronger than any of the existing fairness aware single

rank problem [18, 60, 104, 214], because we consider proportionate representation

38

considering both lower and upper bound of the protected attributes for every position.

Similarly, RAPF promotes a stronger notion of fairness compared to FairILP [134],

as well as consider both binary and multi-valued protected attribute.

2.5 Conclusion and Future Work

We propose the RAPF problem to incorporate a group fairness criteria (p-fairness)

considering binary and multi-valued protected attributes with the classical rank

aggregation problem. We first study how to produce a p-fair ranking that is

closest to a single input ranking (IPF). IPF can be solved exactly using a greedy

technique when the protected attribute is binary. When the protected attribute is

multi-valued such an approach fails. We then present two solutions for multi-valued

IPF, ExactMultiValuedIPF is optimal and ApproxMultiValuedIPF admits

two approximation factor. Next, we design two computational frameworks to solve

RAPF:RandAlgRAPF andAlgRAPF that exhibit three and four approximation

factors when designed usingExactMultiValuedIPF andApproxMultiValuedIPF,

respectively. The effectiveness of our proposed solutions is demonstrated by

comparison to state-of-the-art solutions using multiple real world and large scale

synthetic datasets.

Our work opens up several interesting research directions.

A. Alternative models. There exist alternative ways to incorporate p-fairness

inside rank aggregation. As an example, one can study the problem of minimizing

“weighted” Kemeny distance where the weights are derived considering p-fairness

criteria. A slightly different problem is to ensure proportionate fairness not on every

position, but for every x (given as input) positions. This problem would be important

in applications where every x consecutive individuals in a ranked order are eligible

to get the same preferable outcome (such as, top-5% of employees get 100% bonus

39

of their base salary, etc). Studying RAPF considering Spearman’s Footrule remains

part of our ongoing investigation.

B. RAPF for Top-k or considering incomplete information. We are

studying how to adapt RAPF to produce only top-k aggregated rank. This will

require us to adapt Kendall-Tau and Kemeny Optimization for top-k results. One

possible approach is to consider all items in the individual rank starting at place k+1

as ties, and generalize Kemeny based on ties [8, 88]. We are also interested to study

how to obtain an aggregate p-fair ranking when each member inputs only a partial

ranking [8, 88].

C. Hardness of IPF. We note that IPF essentially finds a perfect matching

in a convex bipartite graph while minimizing crossings. The problem of minimizing

the number of crossings in a (geometric) bipartite matching is known to be NP-Hard

for general bipartite graphs [5]. For convex bipartite graphs, we currently explore

if and how existing works that aim at finding a maximum matching without any

crossing [64,146] can adapt to crossing minimization of a perfect matching.

40

CHAPTER 3

SATISFYING COMPLEX TOP-K FAIRNESS CONSTRAINTS BY
PREFERENCE SUBSTITUTIONS

3.1 Introduction

Preference aggregation is important in finding top-k outputs that represent plurality

preference [151] and has wide variety of applications in recommender systems,

search results listing [29], electoral systems [136, 152], or allocating resources among

candidates, such as, in hiring or admission [218]. A natural variant of the top-k

preference aggregation problem is defined as follows: given m users (voters) and n

items (candidates), each user (voter) casts her preference for a single item (candidate)

as a ballot, and the k items (candidates) from the n that have the highest number of

preferences are selected. However, this variant may not produce a desired outcome

when applications need to promote fairness by ensuring proportionate representation

of the items (candidates) in the top-k results based on their protected attributes.

We study how to guarantee fairness by single ballot substitutions, where each such

substitution replaces a vote for an item (candidate) i by a vote for an item (candidate)

j.

Our goal in this work is to optimize preference substitution to satisfy complex

top-k fairness constraints, where the fairness requirement is defined over a set R

of protected attributes. The objective is to minimize the number of single ballot

substitutions that guarantee fairness in the top-k results. In voting theory [56], the

concept of margin of victory (MOV) is designed to measure electoral competitiveness of

the candidates, that we formalize as the smallest number of single ballot substitutions

to promote a given set of k candidates as the top-k. To the best of our knowledge, we

are one of the first to formalize the computational problem - find margin via single

ballot substitutions to promote a set of k candidates as top-k, considering multiple

41

protected attributes of the candidates (Section 3.6 contains details on related

work).

Our first contribution is to formalize several variants of the margin finding

problem via single ballot (preference) substitutions considering complex fairness

constraints (Section 3.2). (i) In MFBinaryS, proportionate representation is

required over a single binary protected attribute, such as male and female of the

protected attribute gender; (ii) In MFMultiS, it is defined over a single multi-valued

protected attribute, such as, race that contains more than 2 different values; (iii)

Contrarily, in MFMulti2, proportionate representation is required over two different

protected attributes, such as gender and race; and finally, (iv) in MFMulti3+, we

study the margin finding problem via preference substitutions considering three or

more protected attributes, such as, race, gender, and ethnicity.

Our second contribution is to study the defined problems theoretically and

make principled algorithmic contributions (Sections 3.3 and 3.4). We prove that

both MFBinaryS and MFMultiS are computationally easy, i.e., finding margin

is polynomial time solvable and we design exact algorithms Alg1AttBOpt and

Alg1AttMOpt for both these variants that run in O(n log n). Next, we consider

MFMulti2 and MFMulti3+ in which two or more attributes are involved in

defining fairness requirement. Clearly, a trivial solution is to take a Cartesian product

over the attribute values, enumerate over all combinations of possible values of the

cells in the Cartesian product, and find the margin for each such combination by

converting the requirement to a single multi-valued protected attribute. However, if

the domain size of the involved protected attributes are not constant, the Cartesian

product may create an exponential number of possible combinations for the converted

multi-valued protected attribute, making the process computationally intractable.

When there are two different protected attributes involved in outlining the fairness

requirement, we prove that the decision version of that problem, i.e., MFMulti2,

42

is (weakly) NP-hard by reducing the well known NP-hard Partition problem to our

problem [102]. We design an efficient algorithm Alg2AttApx that obtains a 2

approximation factor and runs in O(n2ℓ logm) time, by casting this problem as a min

cost flow problem, where ℓ is the total number of possible attribute values. Finally,

for MFMulti3+, we prove that the satisfiability problem itself is (strongly) NP-hard

through a reduction from the 3-dimensional matching (3DM) problem [102]. Namely,

it is NP-hard just to decide whether there exists a feasible solution that satisfies the

fairness requirement defined over those 3 or more attributes. Our technical results are

summarized in Table 3.1. Our final contribution is experimental (Section 3.5). We

conduct rigorous large scale experiments involving 3 real world (involving election and

movie applications) and one synthetic datasets and compare multiple state-of-the-art

solutions [94,181] after appropriate adaptation. Despite non-trivial adaptation, these

related works fail to optimize margin values and do not turn out to be effective

choices. Our experimental results corroborates our theoretical analysis, the designed

algorithms match theoretical guarantees qualitatively, and demonstrate to be highly

scalable. We conclude in Section 3.7.

3.2 Data Model and Problem Definitions

In this section, we describe the data model and illustrate that with a running example,

following which we define the studied problems.

3.2.1 A toy running example

Table 3.2 describes the ballots of 12 voters and the outcome of a voting process

with 6 candidates (C1,C2,C3,C4,C5, C6). For example, V1, V2, V4 and V7 vote for

candidate C1, and C1 becomes the top candidate with 4 votes. Each candidate has

three protected attributes: Gender (M, F), Seniority Level (Senior and Junior,

abbreviated as Sr and Jr, respectively), and Marital status (Married, Single, and

Divorced, abbreviated as ma, si, and di, respectively.

43

Table 3.1 Summary of Technical Results

Problem
Protected

Attribute
Hardness Algorithm

Approx

Factor

Running

Time

MFBinaryS
single attribute

binary valued
p-time Alg1AttBOpt exact O(n log n)

MFMultiS
single attribute

multi (ℓ) valued
p-time Alg1AttMOpt exact O(n log n)

MFMulti2
2 attributes

ℓ possible values
Weak NP-hard Alg2AttApx 2 O(n2ℓ logm)

MFMulti3+ 3+ attributes NP-hard

MFMulti2

MFMulti3+

2+ attributes

const size (c) of

Cartesian prod

p-time AlgCartOpt exact O(nc+1)

An Example Complex fairness constraint. Imagine the goal is to select

k = 4 candidates from the voting outcome described in Table 3.2 with the following

fairness constraints described in Table 3.3.

Preference Elicitation and Aggregation. Each user (voter) casts her top-1

preference (vote) through a ballot, and the k items (candidates) who get the highest

number of votes are elected1.

Database. The database contains the outcome of a voting process based on the top-1

preference of m voters over n candidates. The set of candidates will be denoted as C,

individual candidate will be denoted by i and j. Considering the running example,

m = 12 voters provide preferences over a set of n = 6 candidates, and the aggregated

preference is shown in Table 3.2.

Note that the outcome may not be unique, and there may be more than one set

of k candidates who get the highest number of votes. We refer to such a situation as

1For the remainder of the paper, users and voters are synonymous, as well as items and
candidates are used interchangeably.

44

Table 3.2 Twelve Voters, Six Candidates, and a Voting Outcome

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12
∑

Vi

C1

(M,Sr,si)
1 1 0 1 0 0 1 0 0 0 0 0 4

C2

(M,Jr,si)
0 0 1 0 1 0 0 0 1 0 0 0 3

C3

(M,Jr,ma)
0 0 0 0 0 1 0 0 0 0 0 1 2

C4

(F,Jr,si)
0 0 0 0 0 0 0 0 0 1 1 0 2

C5

(F,Jr,ma)
0 0 0 0 0 0 0 1 0 0 0 0 1

C6

(F,Sr,di)
0 0 0 0 0 0 0 0 0 0 0 0 0

Table 3.3 Fairness Constraints in The
top-4 Results of Running Example

Attribute Value
Fairness

constraint

Gender
M 2

F 2

Seniority

Level

Sr 2

Jr 2

Marital

Status

ma 2

si 1

di 1

Table 3.4 Table of Notations

Notation Meaning

n,m, k #candidates, #voters,#results

Ai protected attribute

ℓi
#values of a protected

attribute Ai

LC list of candidates

LV

respective list of number

of votes

t threshold

a∗(t)
#candidates from group GA

with at least t votes

C, c set of candidates, Πℓ
i=1ℓi

a tie. A reasonable tie breaking is one in which none of the k elected candidates have

received less votes than any non-elected candidate.

45

Protected Attribute. Each candidate has one or more protected attribute, where

each protected attribute Ai can take any of ℓi different values. When ℓi = 2, it is a

binary protected attribute; when ℓi ≥ 2 it is a multi-valued protected attribute. As

an example, the attributes Marital Status and Gender are multi-valued and binary

protected attributes, respectively.

Top-k [115, 134, 181] Fairness Constraints. A fairness constraint defined over a

single protected attribute containing ℓ different groups G1, G2,.,Gℓ, requires that the

representation of each group Gi is ai in a fair top-k, where
∑ℓ

i ai = k. Generalizing

this, if fairness is defined over a set R of different protected attributes with a required

representation on each group of each attribute, a fair top-k result must simultaneously

satisfy proportionate representation for all attributes in R.

One such complex fairness constraint is described using Table 3.3. Based on this,

{C1, C3, C5, C6} is a feasible top-4 outcome, as it satisfies all these requirements.

3.2.2 Problem definitions

Definition 7. Given two candidates i and j, a single ballot substitution is defined

as removing one vote from candidate i and assigning it to candidate j; thus, after the

ballot change, the number of votes obtained by candidate i is decreased by one, and

the number of votes obtained by candidate j is increased by one.

Problem 1. MFBinaryS. Margin Finding for a Single Binary Protected

Attribute. Given a protected attribute A with ℓ = 2 different protected groups,

an outcome of a voting process, and a fairness constraint that requires to have a1

candidates from group G1 and a2 candidates from group G2 in the top-k, with a1+a2 =

k, find the margin that guarantees a fair outcome.

Using Example 3.2, consider a fairness constraint defined over the binary

protected attribute Gender, such that, aM = aF = 2. The top-4 (C1,C2,C3,C4)

46

candidates consist of 3 males and 1 female. To satisfy the fairness constraint, one

can remove a single vote from C3 and assign that it to C5. After the substitution,

C3 and C5 will have 2− 1 = 1 and 1 + 1 = 2 votes, respectively. The resulting top-4

(C1,C2,C4,C5) satisfies the fairness constraint and the margin is 1.

Problem 2. MFMultiS. Margin Finding for a Single Multi-valued Protected

Attribute. Given a protected attribute A with ℓ > 2 different protected groups, an

outcome of a voting process, and a fairness constraint that requires for every i ∈ [1..ℓ],

to have ai candidates from group Gi in the top-k, with
∑ℓ

i ai = k, find the margin

that guarantees a fair outcome.

Consider Table 3.2 again with Marital Status as the multi-valued protected

attribute, with ℓ = 3. Consider a top-4 fairness constraint such that, ama = 2∧ asi =

1 ∧ adi = 1. The top-4 candidates (C1,C2,C3,C4) consist of 1 married and 3 single

candidates. To satisfy the fairness constraint, remove two votes from C2 and one vote

from C4 and assign one vote to C5 and two votes to C6. After the substitutions the

votes of candidates C2, C4, C5, and C6 become 1, 1, 2, 2, respectively. The resulting

top-4 (C1,C3,C5,C6) satisfies the fairness constraint. In this case, the margin is 3.

Problem 3. Margin Finding over Multiple Protected Attributes. Given a set

R = {A1, . . . , A|R|} of protected attributes, where attribute Ai has ℓi different protected

groups, an outcome of a voting process, and fairness constraints that require for every

i ∈ [1..|R|], and j ∈ [1..ℓi] to have a[i, j] candidates from group Gj of attribute Ai in

the top-k, with
∑ℓi

j a[i, j] = k, for i ∈ [1..|R|], find the margin that guarantees a fair

outcome.

MFMulti2. Margin Finding for two Protected Attributes. When |R| =

2, this problem instantiates to finding the margin when the fairness constraints are

defined over two different attributes.

47

Consider Table 3.2 again, and let R consist of the two attributes Gender and

Seniority level. The top-4 fairness constraints are as follows: aM = 2∧aF = 2∧aSi =

2 ∧ aJr = 2. The top-4 candidates (C1,C2,C3,C4) consist of 1 female and 3 male

candidates, and 1 senior and 3 junior candidates. To satisfy the fairness constraints,

remove two votes from candidate C3 and assign them to candidate C6. After the ballot

substitutions, C3 has 0 votes, and C6 has 2 votes. The resulting top-4 candidates C1,

C2, C4, and C6 with 4, 3, 2, 2 votes, respectively, satisfy the fairness constraints.

It is easy to verify that a fair outcome cannot be obtained by performing a single

substitution. Thus, in this case, the margin is 2.

MFMulti3+. Margin Finding for More than two Protected Attributes.

When |R| > 2, this problem instantiates to finding the margin when the fairness

constraints are defined over three or more different attributes.

Consider Table 3.2 again and the fairness constraint presented in Table 3.3. To

satisfy the fairness constraints, perform 3 single ballot substitutions, by removing

2 votes from C2 and 1 vote from C4 and assigning 2 votes to candidate C6 and 1

vote to C5. After the substitutions the votes of candidates C2, C4, C5, and C6 are

1, 1, 2, 2, respectively. The resulting top-4 (C1,C3,C5,C6) with votes 4, 2, 2, 2

satisfy the fairness constraints. It is easy to verify that a fair outcome cannot be

obtained by performing less than 3 substitutions. Thus, in this case, the margin is

3.

3.3 Single Protected Attribute

We study two margin finding problems via single ballot substitutions, namely

MFBinaryS and MFMultiS, the first one considers fairness constraint defined

over a single binary protected attribute, and the second one for a single multi-valued

protected attribute.

48

3.3.1 Binary protected attribute

The inputs to the problem is an initial vote outcome, and a fairness constraint defined

by a single binary protected attribute. The binary attribute partitions the candidates

into two groups GA and GB. The fairness constraint requires that the top-k consists

of a candidates from GA and b candidates from GB, where k = a + b. The initial

vote outcome is represented by two lists, LC - the list of candidates and LV - the

respective list of the number of votes casted to each candidate. We sort both lists in

non increasing order of number of votes, implying that, LC(1) is a candidate with the

most number of votes LV (1), and so on. The output is, B, a set of ballot substitutions

of minimum size that guarantees a fair outcome (or guarantees, in case of a tie, that

all outcomes that can be produced by a reasonable tie breaking are fair).

Our algorithms use the notion of threshold defined as follows.

Definition 8. The threshold t of an election outcome is the number of votes, such that

each of the top-k candidates have got at least t votes and at least one such candidate

got exactly t votes.

Using the running example, GSr = {C1, C6}, GJr = {C2, C3, C4, C5}, LC =

[C1, C2, C3, C4, C5, C6] , LV = [4, 3, 2, 2, 1, 0]. For k = 4, threshold is t = 2 where

all top-4 candidates got at least 2 votes and both C3 and C4 got exactly 2 votes. We

note that for the original election outcome the threshold is LV (k), and that in case

of a tie any reasonable outcome will have the same threshold.

Intuitively speaking, our algorithms are based on the following two observations.

First, for any given election outcome and a given threshold t we can compute the

minimum number of single ballot substitutions that guarantee a fair outcome with

threshold t; that is, after performing these substitutions the top-k candidates will

consist of a candidates from GA and b candidates from GB, all these candidates will

get at least t votes, and at least one of these k candidates will get t votes. This is

shown in FindBallotSubB. Second, any optimal algorithm can be viewed as an

49

algorithm that searches for the optimal value of the threshold t, that is, the threshold

t that guarantees a fair outcome with the minimum number of ballot substitutions.

This is proven in Lemma 2. This implies that to find the optimal solution we need to

find the optimal threshold t. Naively, this can be done by checking all possible values

of t. To make the algorithms more efficient we prove several properties that enable

us to perform a binary search for the threshold in a relatively small space.

The pseudo code of FindBallotSubB and Alg1AttBOpt is shown in

Algotithms 1 and 2.

Let ia be the index in LC of the a-th candidate from GA. That is, LC(ia) ∈ GA

and the number of candidates from GA in LC(1), . . . ,

LC(ia) is exactly a. Similarly, let ib be the index of the b-th candidate from GB

in LC . Below, we assume that ia < ib and thus LV (ia) ≥ LV (ib). The other case is

symmetric. In Lemma 4 we prove that the optimal threshold t must be in the interval

[LV (ib), LV (ia)]. Thus, from now on we just consider this interval.

For any threshold t in the open interval (LV (ib), LV (ia)) the optimal set of ballot

additions and removals is determined in Case 3 of subroutine FindBallotSubB

(described below). For a specific t, ballots are added to candidates in group GB

and removed from candidates in group GA. Later we show how to replace the vote

additions and removals by single ballot substitutions. The number of these single

ballot substitutions is the maximum between the number of vote additions and vote

removals.

The number of votes subtracted from candidates in GA declines as t grows in

this interval and the number of votes added to candidates in GB grows as t grows

in this interval. The optimal t can thus be found using binary search. We can

make the binary search even more efficient, and instead of doing it on the interval

(LV (ib), LV (ia)) which may be Ω(m) we can do it on the interval (ia, ib). After

completing this binary search, we identify an index i ∈ (ia, ib), such that the optimal

50

Algorithm 1 FindBallotSubB

Inputs: t, LV , LC , a, b, ia, ib

Outputs: S = number of ballot Substitutions

1: Calculate a∗(t), b∗(t)

2: Ia = {(a∗(t) + b∗(t) + 1), . . . , ib}

3: Ba = t(b− b∗(t))−
∑

i∈Ia & LC(i)∈GB
LV (i)

4: Ir = {(ia + 1), . . . , (a∗(t) + b∗(t))}

5: Br =
∑

i∈Ir & LC(i)∈GA
LV (i)− (t− 1)(a∗(t)− a)

6: S = max{Ba, Br}

7: Return S

threshold is in the interval [LV (i), LV (i+1)). In our Technical Report we show how

the optimal threshold in this interval can be computed in constant time. However,

a∗(t) and b∗(t) are the same for every t ∈ [LV (i), LV (i + 1)), and thus the optimal

threshold in this interval can be computed in constant time.

3.3.2 Subroutine FindBallotSubB

Given a threshold t, FindBallotSubB finds the minimum number of single ballot

substitutions that result in a fair outcome with this threshold. For simplicity we first

assume that the fair outcome does not have a tie. Later, we show how to remove this

assumption.

Let a∗(t) and b∗(t) be the number of candidates from groups GA and GB

respectively who received at least t votes. Note that LV (a∗(t) + b∗(t)) = t and

LV (a∗(t) + b∗(t) + 1) < t.

This subroutine is designed by distinguishing the following cases.

Case 1: t ≤ LV (ib) (and LV (ib) > 0). In this case the numbers of candidates from

groups GA and GB who got at least t votes are at least a and b, respectively; namely,

a∗(t) ≥ a and b∗(t) ≥ b. We decrease the number of votes of the a∗(t)− a candidates

51

https://drive.google.com/file/d/1S-xz5SPMmRBLexPfAj5cxQVkkdaY_hgE/view?usp=sharing

Algorithm 2 Alg1AttBOpt

Inputs: LV , LC , a, b

Outputs: M = minimum number of ballot substitutions

1: Calculate ia, ib

2: Sa = num of single ballot substitution for threshold LV (ia)

3: Sb = num of single ballot substitution for threshold LV (ib)

4: Binary Search over all i ∈ (ia, ib)

t = LV (i)

Si = FindBallotSubB(t,LV ,LC ,a, b, ia, ib)

If found i such that M lies in Si, Si+1; break

5: Calculate M for thresholds in the range [LV (i), LV (i+ 1)]

6: Return min{Sa, Sb,M}

from GA in LC(ia + 1), . . . , LC(a∗(t) + b∗(t)) and the number of votes of the b∗(t)− b

candidates from GB in LC(ib + 1), . . . , LC(a∗(t) + b∗(t)) to t− 1. To reconcile for the

decrease of these votes, we add votes of the candidate in LC(1).

Case 2: t > LV (ia). In this case the numbers of candidates from groups GA and GB

who got at least t votes are less than a and b, respectively; namely, a∗(t) < a and

b∗(t) < b. We increase the number of votes of the a − a∗(t) candidates from GA in

LC(a∗(t) + b∗(t) + 1), . . . , LC(ia) and the number of votes of the b− b∗(t) candidates

from GB in LC(a∗(t) + b∗(t) + 1), . . . , LC(ib) to t. To reconcile for the increase, we

decrease the number of votes of the candidates from GA in LC(ia + 1), . . . , LC(n)

and the number of votes of the candidates from GB in LC(ib + 1), . . . , LC(n) to 0, as

needed. If this is not enough we can decrease the number of votes of the candidates

in LC(1), . . . , LC(a∗(t + 1) + b∗(t + 1)) to t, as needed. Note that for this case to be

feasible we must have n ≥ k · t.

Case 3: LV (ib) < t ≤ LV (ia). In this case the number of candidates from group GA

who got at least t votes is at least a and the number of candidates from group GB

52

who got at least t votes is less than b; namely, a∗(t) ≥ a, b∗(t) < b. We increase the

number of votes of the b−b∗(t) candidates from GB in LC(a∗(t)+b∗(t)+1), . . . , LC(ib)

to t. Then, we decrease the number of votes of the a∗(t) − a candidates from GA in

LC(ia + 1), . . . , LC(a∗(t) + b∗(t)) (if such exist) to t− 1. Finally, one has to reconcile

the increase in the votes of the candidates from GB with the decrease in the votes of

the candidates from GA. If this is not enough, further reconciliation is done similar

to the previous two cases. Note again that for this case to be feasible, one must have

n ≥ k · t.

Using the running example, consider the binary attribute Seniority Level and

a = 2, b = 2. We have iJr = 3, iSr = 6, LV (iJr) = 2, LV (iSr) = 0. Consider a

threshold, t = 1 then a∗(1) = 4 and b∗(1) = 1. To satisfy fairness constraint, one can

reduce votes of a∗(1) − a = 4 − 2 = 2 junior candidate to t − 1 = 1 − 1 = 0. When

these two candidates are C4 and C5, the minimum ballot reduction 2− 0+ 1− 0 = 3

is obtained for this threshold t = 1. Similarly, to obtain fairness, votes of b− b∗(1) =

2−1 = 1 senior candidate has to be increased to t = 1. The minimum ballot increase

will occur when candidate C6 vote is increased from 0 to 1. To reconcile the 3 ballots

that were removed from C4 and C5, one vote is matched to vote added to candidate

C6 and 2 of them are matched to two votes added to candidate C1. After the ballot

substitution the votes of candidates C1, C2, C3, C4, C5, C6 are 6, 3, 2, 0, 0, 1 and the

candidates who got at least t = 1 votes are C1, C2, C3, C6. For threshold t = 1, the

minimum number of ballot substitution that guarantees fairness is 3.

Handling ties. The optimal solution may have a tie only when the threshold is

either LV (ia) or LV (ib). For threshold t = LV (ia) we need to also consider the

possibility of increasing the number of votes of the b− b∗(t+ 1) candidates from GB

in LC(a∗(t+ 1) + b∗(t+ 1) + 1), . . . , LC(ib) to t+ 1. Note that after this increase we

may have more than a candidates from GA with at least t votes, but strictly less than

a candidates from GA with at least t+ 1 votes. On the other hand we have exactly b

53

candidates from GB with at least t+1 votes, but no candidates from GB with t votes.

Thus, we have a tie only if a∗(t)− a∗(t+ 1) > a− a∗(t+ 1), and any reasonable way

to break such a tie is by varying the subset of size a− a∗(t+ 1) of elected candidates

from GA with t votes. Similarly, for threshold t = LV (ib) we need to also consider

the possibility of decreasing the number of votes of the a∗(t)− a candidates from GA

in LC(ia + 1), . . . , LC(a∗(t) + b∗(t)) to t− 1.

Consider the binary attribute Seniority Level with GA and GB the Junior and

Senior groups, and a = 2, b = 2. At threshold t = 2, there is a tie situation for group

junior because a∗(2) − a∗(3) = 3 − 1 = 2 > a − a∗(3) = 2 − 1 = 1. One way of

achieving fairness is to increase the votes of candidate C6 from 0 to t+1 = 2+1 = 3.

After the increase there are 3 junior candidates with votes at least 2 and there is no

senior candidate with exactly 2 votes.

Running Time. We precompute a∗(t), a∗(t), for t ∈ (ia, ib) in O(n) time. We

can also precompute required ballot additions and removals for t in(ia, ib) which

also requires O(n). As a result Subroutine FindBallotSubB takes constant time.

This subroutine is called O(log n) times in Alg1AttBOpt. Overall running time

is O(n+ log n) = O(n). The time complexity is dominated by the O(n log n) time it

takes to sort the lists LC and LV .

Lemma 1. Alg1AttBOpt always produces a fair outcome.

Proof. Consider Case 3, where LV (ib) < t ≤ LV (ia). Before the substitution, the

number of candidates who got at least t votes were a∗(t) and b∗(t) from groups

GA and GB respectively. After the substitution, the number of candidates who got

at least t votes from group GB increased by b − b∗(t), and from GA decreased by

a∗(t) − a. The total number of candidates from GB who got at least t votes =

b∗(t) + (b − b∗(t)) = b. The total number of candidates from GA who got at least t

votes = a∗(t) − (a∗(t) − a) = a. The total number of candidates from both GA and

GB who got at least t votes = a+ b = k. Hence, candidates who got at least t votes

54

constitute the top-k results and the top-k has a and b candidates from group GA and

GB respectively. Similar arguments could be made for the other cases or for a tie.

Lemma 2. Any optimal algorithm for finding the minimum number of single ballot

substitutions that guarantee fairness can be viewed as a Alg1AttBOpt.

Proof. Any optimal algorithm will output a top-k set having a, b candidates from

group GA, GB respectively. We can define a threshold t such that, after the

substitutions, the number of candidates from GA (similarly from GB) who got at

least t + 1 votes is less than a (b for GB) but the number of candidates from GA

(similarly from GB) who got at least t votes is equal to or greater than a (b for

GB). Thus, any optimal algorithm is essentially finding a threshold t that requires

minimum number of ballot substitutions.

Lemma 3. For a threshold t, subroutine FindBallotSubB returns the minimum

number of ballot substitutions and satisfies fairness.

Proof. Consider Case 3, to achieve fairness we need to reduce votes of a − a∗(t)

candidates who already got t votes from group GA to t− 1. Algorithm decreases the

number of votes of the a∗(t)−a candidates from GA in LC(ia+1), . . . , LC(a∗(t)+b∗(t))

to t− 1. This is the minimum number of vote removals to satisfy a candidates in the

top-k. Because if we reduce votes of candidates who are not in the range of candidates

LC(ia +1), . . . , LC(a∗(t) + b∗(t)), it will either produce unfair result or the result will

not be minimum. If we reduce votes of candidates from GA in LC(1), . . . , LC(ia), then

the number of vote removals is not minimum because all candidates in that range have

higher votes than all the candidates in LC(ia + 1), . . . , LC(a∗(t) + b∗(t)). We can not

reduce votes of candidate from GA in LC(a∗(t)+b∗(t)+1), . . . , LC(n) to t−1, because

they got less than t votes. Similarly, to achieve fairness we need to increase votes of

b∗(t)− b candidates who got less than t votes from group GB to t. We can show that

number of vote additions is minimized when we add votes from GB in LC(a∗(t) +

55

b∗(t) + 1), . . . , LC(ib). As the number of vote substitutions is the maximum of vote

additions and vote removals, for a given threshold t, subroutine FindBallotSubB

returns the minimum number of ballot substitutions that guarantee fairness in Case

3. Similar arguments can be made for the other 2 cases and for tie.

Lemma 4. The optimal threshold is in interval [LV (ib), LV (ia)].

Proof. Consider a threshold t > LV (ia), to satisfy fairness, the number of votes of

the a− a∗(t) candidates from GA in LC(a∗(t)+ b∗(t)+ 1), . . . , LC(ia) and the number

of votes of the b− b∗(t) candidates from GB in LC(a∗(t) + b∗(t) + 1), . . . , LC(ib) need

to be increased to at least t. On the other hand vote removals are not needed. It

follows that the number of ballot substitutions equals the total number of ballot

additions. Clearly, the number of vote additions required to guarantee fairness in

case the threshold is LV (ia) is lower, and thus t cannot be optimal. Similarly, for

threshold t < LV (ib), the number of vote removals required to guarantee fairness is

more than this number when the threshold is LV (ib). Hence, the optimal threshold t

must be in the interval [LV (ib), LV (ia)].

Lemma 5. The minimum number of ballot additions to GB increases and the

minimum number of ballot removals from GA decreases monotonically with t in the

interval [LV (ib), LV (ia)].

Proof. We get minimum number of ballot additions when we increase votes of the

b−b∗(t) candidates from GB in LC(a∗(t)+b∗(t)+1), . . . , LC(ib) to t. When t increases,

both b − b∗(t) and distance from t to votes of candidates from GB in LC(a∗(t) +

b∗(t) + 1), . . . , LC(ib) increases. Hence, the minimum number of ballot additions to

GB increases monotonically with t in the interval [LV (ia), LV (ib)]. Similarly, we can

prove that the minimum number of ballot removals from GA decreases monotonically

with t in the interval [LV (ia), LV (ib)].

56

Theorem 1. Alg1AttBOpt produces optimal result.

Proof. We proved that for a given threshold t, FindBallotSubB calculates

minimum ballot substitutions required to satisfy fairness. Optimal threshold t is

in the interval of [LV (ib), LV (ia)]. Since the minimum number of ballot additions

to GB increases and the minimum number of ballot removals from GA decreases

monotonically with t in the interval [LV (ib), LV (ia)] the optimal number of ballot

substitutions can be found by performing a binary search in the range [LV (ib), LV (ia)].

Hence the optimality holds.

3.3.3 Multi-valued protected attribute

Next we consider a multi-valued protected attribute. Consider an attribute A with

ℓ possible values, denoted A[1], . . . , A[ℓ]. The fairness constraint requires that the

top-k consists of a[j] candidates with attribute value A[j], where
∑ℓ

j=1 a[j] = k.

We first describe the subroutine FindBallotSubM for multi valued attribute.

Then we use it to perform a binary search for the optimal threshold similar to

Alg1AttBOpt. For a given threshold t, the subroutine FindBallotSubM

computes the minimum number of single ballot substitutions that result in a fair

outcome. For simplicity we first assume that the fair outcome does not have a tie.

Later, we show how to remove this assumption. Define ia[j] as the index in LC of

the a[j]-th candidate with attribute value A[j]. That is, the candidate LC(ia[j])

has attribute value A[j] and the number of candidates with this attribute value

in LC(1), . . . , LC(ia[j]) is exactly a[j]. Below, we assume that ia[1] ≤ . . . ≤ ia[ℓ].

Other cases are symmetric. Define aj∗(t) as the number of candidates with attribute

value A[j] who received at least t votes (before any ballot changes). Note that

LV (a1∗(t) + . . .+ aℓ∗(t)) = t and LV (a1∗(t) + . . .+ aℓ∗(t) + 1) < t.

Below we distinguish several cases.

57

Case 1: t ≤ LV (ia[ℓ]). We decrease the number of votes of the aj∗(t)− aj candidates

with attribute value A[j] in LC(ia[j] + 1), . . . ,

LC(a1∗(t) + · · ·+ aℓ∗(t)) to t− 1 for all j ∈ [1..ℓ].

Case 2: t > LV (ia[1]). We increase the number of votes of the a[j]−aj∗(t) candidates

with attribute value A[j] in LC(a1∗(t) + . . . + aℓ∗(t) + 1), . . . , LC(ia[j]) to t for all

j ∈ [1..ℓ].

Case 3: LV (ia[j+1]) < t ≤ LV (ia[j]). We increase the number of votes of the a[q] −

aq∗(t) candidates with attribute value A[q] in LC(a1∗(t)+ · · ·+aℓ∗(t)+1), . . . , LC(ia[q])

to t for q ∈ [j+1..ℓ]. We decrease the number of votes of the ap∗(t)− a[p] candidates

with attribute value A[p] in LC(ia[p] + 1), . . . , LC(a1∗(t) + · · · + aℓ∗(t)) (if such exist)

to t− 1 for all p ∈ [1..j].

In all three cases, we reconcile the ballot additions and removals to obtain single

ballot substitutions the same way it is done in the binary case described previously.

Finally, we consider the case of a tie that may occur when the threshold is any

of LV (ia[j]) (or multiple of them). We find the maximum of the number of candidates

with the same attribute value who got exactly t votes (after the vote manipulations).

Let this attribute value be p. We do not change the votes of these candidates. For the

rest of the candidates we do the following. For all candidates with attribute value A[q],

for which q ̸= p and t ≥ LV (ia[q]), we increase the number of votes of the a[q]−aq∗(t+1)

candidates with attribute value A[q] in LC(a1∗(t+1)+· · ·+aℓ∗(t+1)+1), . . . , LC(ia[q])

to t+1. For all candidates with attribute value A[q], for which q ̸= p and t ≤ LV (ia[q]),

we decrease the number of votes of the aq∗(t)−a[q] bottom candidates with attribute

value A[q] in LC(ia[q] + 1), . . . , LC(a1∗(t) + · · ·+ aℓ∗(t)) (if such exist) to t− 1.

Running Time. The running time of Alg1AttMOpt is also dominated by the

O(n log n) time it takes to sort the lists LC and LV as in Alg1AttBOpt. We

note that we use a priority queue to implement FindBallotSubM efficiently. The

initialization of this priority queue takes O(n) time, and each iteration takes O(log ℓ)

58

time. Thus the overall running time of Alg1AttMOpt (excluding the sorting) is

O(n+ log n log ℓ) = O(n).

Theorem 2. Alg1AttMOpt always produces a fair outcome.

Proof. The proof is similar to the proof of Theorem 1.

3.4 Multiple Protected Attributes

In this section we assume that there are ℓ attributes, denoted A1, . . . , Aℓ. For i ∈ [1..ℓ],

attribute Ai has ℓi possible values, denoted A[i, j], for j ∈ [1..ℓi]. Each candidate is

associated with a specific value from each attribute. In addition, we are given target

quantities a[i, j], for i ∈ [1..ℓ], and j ∈ [1..ℓi], with property that all marginals some to

k. Namely, for every i ∈ [1..ℓ],
∑ℓi

j=1 a[i, j] = k. A fair election outcome should satisfy

the fairness condition that for i ∈ [1..ℓ], and j ∈ [1..ℓi], exactly a[i, j] candidates whose

Ai attribute value is A[i, j] are elected.

We begin the section by presenting a generic solution framework AlgCartOpt

that is exact and exponential in general. Next, we consider the general 3 attribute case

and show that even deciding the feasibility of a fair outcome is NP-Complete in this

case. Then, we consider the 2 attribute case and show that it is weakly NP-Complete.

On the positive side, we show a 2 approximation algorithm for this case by designing

an algorithm that minimizes the sum of ballot additions and removals.

3.4.1 Exact solution AlgCartOpt

We propose AlgCartOpt by first converting multiple protected attributes to a

single multi-valued attribute by enumerating all possible configurations. This step

is exponential in the general case. Then, for each such configuration, we check the

feasibility of the solutions. If the solution is feasible, then, Alg1AttMOpt is called

to produce the margin for that case. Finally, we return that feasible configuration

that has the smallest margin.

59

Suppose that Πℓ
i=1ℓi = c. This means that we have total number of c of

possible values of the ℓ-dimensional attribute vector. For i ∈ [1..c], let V⃗ [i] =

V [i, 1], V [i, 2], . . . , V [i, ℓ] be the i-th possible value of ℓ-dimensional attribute vector.

We enumerate over all c-tuples (n1, . . . , nc) such that
∑c

i=1 ni = k. Each such c-tuple

represents a possible outcome of the election in which ni candidates with attribute

vector V⃗ [i] are elected. For each such c-tuple, we first check that it is a feasible

outcome by making sure that there are at least ni candidates with attribute vector

V⃗ [i], for i ∈ [1..c]. If so, we further check if having ni candidates with attribute vector

V⃗ [i] results in the desired outcome. This is the case if the following is satisfied:

∀ j ∈ [1..ℓ] ∀ r ∈ [1..ℓj]
c∑

i=1

ni · 1V [i,j]=A[j,r] = a[j, r]. (3.1)

After that, we call Alg1AttMOpt that produces the margin required to guarantee

ni candidates with attribute vector V⃗ [i], for i ∈ [1..c], by reducing this to the single

attribute case, where the single attribute has c possible values corresponding to the

possible values of the attribute vector. Finally, we return that instance which has the

smallest margin.

Using the running example, consider the attributes Gender and Marital Status

where ℓGender = 2, ℓMaritalStatus = 3 and c = 3 × 2 = 6. The required numbers of

candidates with each attribute value are a[M] = 2 ∧ a[F] = 2 ∧ a[ma] = 2 ∧ a[si] =

1∧ a[di] = 1. Here, V [1] = {M, si}, V [2] = {M, si}, V [3] = {M,ma}, V [4] = {F, si},

V [5] = {F,ma}, and V [6] = {F, di}. One of the possible tuples that satisfy fairness

is (n1, . . . , n6) = (1, 0, 1, 0, 1, 1) where
∑6

i=1 ni = 4.

Running time. Since the number of c-tuples is O(nc), we can solve the c attribute

configurations by O(nc) calls to the single attribute case and then choosing the call

that produces the smallest margin. Alg1AttMOpt has a running time of O(n).

Overall running time is O(nc+1). Clearly, when c is a constant, AlgCartOpt takes

polynomial time to run.

60

Theorem 3. AlgCartOpt finds the optimal set of single ballot substitutions.

Proof. In AlgCartOpt, each c-tuple represents a possible outcome of the election

in which ni candidates with attribute vector V⃗ [i] are elected, and all c-tuples satisfy

Equation (3.1). As
∑c

i=1 ni = k, the output top-k has a[j, r] candidates from group

A[j, r]. Hence, AlgCartOpt always produces fair outcome. Since we enumerate

over all possible c-tuples (n1, . . . , nc) that satisfy fairness, AlgCartOpt produces

optimal result.

3.4.2 MFMulti3+- 3 attributes case

In the 3 attribute case, each candidate has 3 attributes A[1, j1], A[2, j2] and A[3, j3],

where ji ∈ [1..ℓi], for i ∈ {1, 2, 3}. The outcome needs to have exactly a[i, j]

candidates with attribute A[i, j], for i ∈ {1, 2, 3} and j ∈ [1..ℓi].

Theorem 4. Deciding the feasibility of a general instance of the 3 attribute case (and

thus any d ≥ 3 attributes as well) is NP-Complete.

Proof. Given a solution that specifies the ballot substitutions in an instance of the 3

attribute case it is easy to check whether the solution satisfies the fairness conditions.

To prove the hardness we reduce the 3-Dimensional Matching problem (3DM) to our

problem. In a nutshell, given a 3DM problem instance with vertex set X1 ∪X2 ∪X3,

each vertex in Xi corresponds to a distinct value of the i-th attribute. Each hyperedge

(x1,a, x2,b, x3,c) corresponds to a candidate with the attributes A[1, a], A[2, b], A[3, c].

An outcome with exactly one candidate for each attribute value is feasible iff the

3DM instance has a 3 dimensional matching. Our Technical Report contains further

details.

3.4.3 MFMulti2- 2 attributes case

In the 2 attribute case, each candidate has 2 attributes A[1, j1], A[2, j2], where j1 ∈

[1..ℓ1] and j2 ∈ [1..ℓ2]. A fair outcome needs to have exactly a[i, j] candidates with

61

https://drive.google.com/file/d/1S-xz5SPMmRBLexPfAj5cxQVkkdaY_hgE/view?usp=sharing

attribute A[i, j], for i ∈ {1, 2} and j ∈ [1..ℓi]. The problem is to find the minimum

number of ballot substitutions needed to guarantee a fair outcome.

Theorem 5. MFMulti2 is weakly NP-hard.

Proof. To prove the hardness, we reduce the weakly NP-Hard Partition problem

to our problem. The reduction is based on the fact that any solution with a ballot

additions and r ballot removals implies a solution with max{a, r} ballot substitutions.

For a given Partition problem instance we build an instance of the 2 attribute case

in which the total number of ballot additions and subtractions is at least the sum of

the n input integers in the Partition instance. The 2 attribute case instance has a

solution with an equal number of ballot additions and removals each of which equals

half of the sum of the n input integers iff a partition of the n integers exists. We refer

to our Technical Report for details.

3.4.4 Approximation algorithm for MFMulti2

We show a 2 approximation algorithm for computing the margin in the 2 attribute

case. For this we first show how to compute the minimum number of vote additions

and removals that guarantee a fair outcome in the 2 attribute case.

Computing the Minimum Number of Ballot Additions and Removals We

compute the minimum number ballot additions and removals that yield a fair outcome

by enumerating all possible thresholds and for each threshold t calling the subroutine

FindBallotA+R that is shown in Algorithm 3. Subroutine FindBallotA+R

computes the minimum number of ballot additions and removals that yield a fair

outcome with threshold t by casting the problem as a min-cost b matching problem.

The b-matching problem is defined on a bipartite graph G(X, Y,E), where the

nodes in X correspond to the possible values of the first attribute, the nodes in Y

correspond to the possible values of the second attribute, and the edges correspond

62

https://drive.google.com/file/d/1S-xz5SPMmRBLexPfAj5cxQVkkdaY_hgE/view?usp=sharing

to the candidates. Specifically, for i ∈ [1..ℓ1], node xi ∈ X corresponds to attribute

value A[1, i], for j ∈ [1..ℓ2], node yj ∈ Y corresponds to attribute value A[2, j], and

a candidate c with attributes A[1, i], A[2, j] corresponds to an edge ec = (xi, yj).

Note that we may have parallel edges in case there are more than one candidate with

the same attributes. Next, we define the weight of each edge. The weight of edge

ec, denoted w(ec) depends on the number of votes of the candidate c. Suppose that

c = LC(i) and thus this candidate has LV (i) votes. If LV (i) < t then w(ec) = t−Lv(i).

Otherwise, that is LV (i) ≥ t, then w(ec) = (t− 1)− LV (i) < 0.

Define a b-matching in the graph G as a collection of edges such that exactly

a[1, i] of them are adjacent to node xi ∈ X, for i ∈ [1..ℓ1], and exactly a[2, j] of them

are adjacent to node yj ∈ Y , for j ∈ [1..ℓ2]. Note that total number of edges in the

b-matching is
∑ℓ1

j=1 a[1, j] =
∑ℓ2

j=1 a[2, j] = k. Consider a b-matching M ⊆ E in the

graph G. Clearly, this matching corresponds to a subset of k candidates that satisfy

the fairness conditions. Let w(M) =
∑

e∈M w(e) denote the weight of the matching

M . Let M∗ ⊆ E be a minimum cost matching.

Using the running example, for the attributes Gender and Marital Status X =

{M,F} and Y = {ma, si, di}. The candidates correspond to edges: C1 to ec1 =

(M, si), C2 to ec2 = (M, si), C3 to ec3 = (M,ma), and so on. Notice that edges ec1

and ec2 are parallel as both connecting node M to si. Consider a threshold t = 2,

weight of edge eC1 is, w(eC1) = t− 1− LV (1) = 2− 1− 4 = −3 because in this case

LV (1) ≥ t. On the other hand, weight of edge eC5 is w(eC5) = t− LV (5) = 2− 1 = 1

since LV (5) < t. The weights of the 6 edges corresponding to candidates C1, C2,

C3, C4, C5, and C6 are {−3,−2,−1,−1, 1, 2}. To satisfy the fairness constraint that

requires 2 male and 2 female to be in the top-4, the b-matching has 2 edges adjacent

to each of the nodes M and F . Similarly, To satisfy the fairness constraint that

requires 2 married, 1 single, and 1 divorced to be in the top-4, the b-matching has 2

edges adjacent to node ma and 1 edge adjacent to each of the nodes si and di. The

63

total number of edges in b-matching is = 2+2 = 2+1+1 = 4 = k. A minimum cost

b-matching is M∗ = {eC1, eC3, eC5, eC6} and w(M∗) = −3 − 1 + 1 + 2 = −1. Here,

R = 3 + 2 + 1 + 1 = 7, and AplusR = −1 + 7 = 6.

Theorem 6. The number of ballot additions and removals needed to guarantee

the election of the candidates corresponding to the edges of M∗ with threshold t is

minimum among all fair outcomes obtained with threshold t.

Proof. Let R =
∑

e∈E max{−w(e), 0}. By our definition of the b-matching there is

one to one correspondence between the set of b-matchings and the set of fair outcomes.

Consider a matching M . We claim that w(M) +R is the number of ballot additions

and removals needed to guarantee the election of the candidates corresponding to the

edges of M with threshold t. To see this we consider the contribution of each edge

to the sum w(M) + R. For each edge ec ∈ M that corresponds to a candidate with

less than t votes, the weight w(ec) is exactly the number of vote additions required to

bring candidate c to the threshold t. Since this weight is non-negative the respective

term of ec in R is 0. For each edge ec ∈ M that corresponds to a candidate with

at least t votes, its weight is negative and thus its contributions to w(M) and R

cancel each other. Each edge ec ∈ E \M that corresponds to a candidate with at

least t votes contributes just to R and this contribution is exactly the number of vote

removals required to bring candidate c below the threshold t. Each edge ec ∈ E \M

that corresponds to a candidate with less than t votes does not contribute anything

to the sum.

Summing over all edges yields our claim. Since R is independent of any specific

matching, the matching M∗ minimizes w(M) +R over all feasible matching M ⊆ E.

The theorem follows.

To compute the minimum number of ballot additions and removals that

guarantee a fair outcome we need to iterate the min cost matching over all possible

64

threshold values. We show that it is enough to consider no more than 3n−2 threshold

values. It is easy to see that we just need to consider threshold values in the interval

[LV (1), LV (n)]. For i ∈ [1..n − 1] consider the open sub-interval (LV (i), LV (i + 1)).

Note that the set of candidates below this threshold and the set of candidates above

this threshold are identical for all thresholds in this sub-interval. We claim that it is

enough to just consider the two extreme threshold values in this sub-interval, namely,

LV (i) + 1 and LV (i + 1) − 1. Consider any threshold t ∈ [LV (i) + 2..LV (i + 1) − 2]

and the subset of candidates that yield a fair outcome with the minimum number

of ballot additions and removals with threshold t. If this subset of candidate has

more candidates that are below the threshold, then the number of of ballot additions

and removals required to elect this subset of candidates with threshold LV (i) + 1

is lower. Otherwise, that is, at least half the candidates in this subset are above

the threshold, then the number of of ballot additions and removals required to elect

this subset of candidates with threshold LV (i + 1) − 1 is not higher. It follows that

the only threshold values that need to be checked are the 3n − 2 threshold values

LV (i), LV (i) + 1, LV (i+ 1)− 1, for i ∈ [1..n− 1], and LV (n).

Approximating the Number of Single Ballot Substitutions Suppose that we

are given a ballot additions and r ballot removals that guarantee a fair outcome. We

show how to transform them to at most a+ r ballot substitutions that guarantee the

same outcome. We distinguish two cases.

Case 1: a ≤ r. In this case, we create a ballot substitutions by matching a ballot

addition with a ballot removal. We are left with r−a ballot removals that we convert

to ballot substitutions by adding r − a ballots all of them with votes to any of the

already elected candidates.

Case 2: a > r. In this case, we create r ballot substitutions by matching a ballot

removal with a ballot addition. We are left with a−r ballot additions. We match these

65

addition with ballot removals that subtract votes from some (or all) the unelected

candidates. Suppose that even after reducing the number of votes of all the unelected

candidates to 0 we still have some unmatched ballot additions. In this case we subtract

votes from some (or all) the elected candidates reducing their number of votes to the

threshold t. Suppose that this is still not enough to match all the ballot additions. In

this case we lower the threshold t. Note that as long as the threshold is not lowered

to 0 the outcome remains the same (since all the unelected candidates have now 0

votes). As we lower the threshold the number of ballot that needs to be added is

reduced and we can also reduce further the number of votes of the elected candidates.

We claim that if the number of ballots is at least k then this process has to stop when

all the ballot additions are matched at some threshold t′ > 0. Suppose that this is not

the case then at threshold 1 we still have unmatched ballot additions. However, since

in this case all the elected candidates have one vote and the there are still unmatched

additions then it must be the case that less than k candidates received even one vote.

Since we need to elect k candidates it is reasonable to assume at least k candidates

received at least one vote.

Let OA+R be the optimal number of ballot additions and removals that yield a

fair outcome. It follows that we can find a set of at most OA+R ballot substitutions

that yield a fair outcome as shown in algorithm Alg2AttApx (Algorithm 4). The

approximation ratio is proved in the following theorem.

Theorem 7. The size of the set of ballot substitutions output by Alg2AttApx is

at most twice the minimum number of ballot substitutions that yield a fair outcome.

Proof. A ballot substitution can be viewed as a single ballot addition and a single

ballot removal. Thus, any solution with x ≥ 0 ballot substitutions can be converted to

a solution with 2x ballot additions and removals. Let OPTC be the minimum number

of ballot substitutions that yield a fair outcome. It follows that there are 2OPTC

ballot additions and removals that yield a fair outcome. Hence, OPTA+R ≤ 2OPTC ,

66

and the solution with at most OPTA+R ballot substitutions output by Alg2AttApx

is a 2 approximation.

Running Time. The running time of Alg2AttApx is determined by the time

complexity of subroutine FindBallotA+R and specifically by the computation of

a minimum cost b-matching in G. The b-matching problem can be solved via a min

cost flow algorithm on a graph with ℓ = ℓ1 + ℓ2 nodes and n edges. It follows that

the min cost flow problem can be solved in O(nℓ logm) time [7]. The subroutine

FindBallotA+R is called O(n) times from Alg2AttApx. Thus, the running

time of Alg2AttApx is O(n2ℓ logm).

3.5 Experimental Evaluations

We evaluate both the quality and scalability of the proposed algorithms. The quality

studies focus on finding the margin values and comparing them to the implemented

(optimal) baselines for the problems MFBinaryS, MFMultiS, MFMulti2, and

MFMulti3+. The scalability measures the running time of the implemented

algorithms by varying appropriate parameters.

3.5.1 Experiment design

All the algorithms are implemented in Python 3.8 on a machine with Windows 11,

core i7 with 16gb memory. All numbers are presented as an average of 10 runs. Code

and data could be found in the github.

Datasets Description Algorithms are evaluated using multiple real world and a

synthetic datasets. The real world datasets are described in Table 3.5. MovieLens3Star

(similarly MovieLens5Star) datasets are created from the Movielens dataset by

converting all user ratings of 3 or more (similarly 5) ratings as a vote, and selecting

the movies accordingly.

67

https://github.com/MouinulIslamNJIT/BallotChange.git

Table 3.5 Real World Datasets

Dataset # candidates(n) # voters(m) protected attributes (ℓ)

New South Wales (NSW) Senate Elections 105 4, 695, 326 2 attributes on the political parties and the election history

Bronx Justice of the Supreme Court Election in New York City 6 343, 071 single binary - democrat and republican

MovieLens5Star 2, 926 382, 323 3 attributes on movie genre, production company and original language.

MovieLens3StarMore 17, 619 1, 613, 420 3 attributes on movie genre, production company and original language.

Synthetic dataset. We generate large scale synthetic data for m voters and

n candidates using normal distribution as voting outcomes tend to follow such

distributions [154]. The process runs as follows: a loop is repeatedm times to generate

an id in the range [0..n− 1] (top candidate choice of a voter), by sampling an integer

using the normal distribution with certain mean (mean) and standard deviation (sd),

and then taking this integer modulo n to ensure that the id is in range. Themean and

sd are integers chosen uniformly in the range [0..n − 1]. Additionally, the protected

attributes of the candidates are sampled uniformly within their range.

Implemented Algorithms We implement the following baseline algorithms.

The first two baselines are heuristics, whereas, the last one gives exact solution

of the problem. These algorithms are compared with our proposed solutions:

Alg1AttBOpt,

Alg1AttMOpt, Alg2AttApx, AlgCartOpt.

(1) LEXIMIN [94] + Alg1AttMOpt . This existing work is not designed to solve

the margin finding problem, but it produces a probability distribution of a set of

possible top-k candidates, where each set satisfies fairness constraints. We draw one

such top-k set from the output distribution based on the associated probability and

consider that to be the set of selected candidates in top-k. Given this top-k, we run

the Alg1AttMOpt to compute the margin.

(2) Fair-Topk-Set [181] + Alg1AttMOpt . This related work also does not

solve the margin finding problem. The best use of this algorithm is to study it in the

context of multiple protected attributes, where this algorithm first converts multiple

68

protected attributes to a single multi-valued protected attribute by computing joint

distribution over the attributes assuming their independence. Given the resultant

proportion, we run the Alg1AttMOpt to compute the margin. Fair-Topk-Set

is a heuristic, may not produce the smallest margin, or even a feasible solution, as we

demonstrate empirically.

(3) Integer Linear Programming. We implement an exact algorithm for

MFBinaryS, MFMultiS, MFMulti2, and MFMulti3+ problems using ILP. We

refer to these variants as ILPBinaryS, ILPMultiS, ILPMultiTwo, ILPMultiThree,

respectively.

3.5.2 Quality experiments results

Results for MFBinaryS Figure 3.1a shows the results from the election for 2021

Bronx Justice of the Supreme Court. There are six candidates (five Democrats and

one Republican), in which the candidate from Republican receives the least votes.

We set the Republican must be included in the top-k (otherwise, the margin would

be zero). We can observe that the margin decreases with increasing k.

In Figure 3.1b, we evaluate the effect of “vote gap” between the candidates to

decide the margin. Here the x axis shows a particular candidate who is at is at the

top y-th percentile (calculated as y% × n) after the initial vote outcome, and needs

to be promoted in the final top-k (k = 5) to ensure fairness. The y-axis shows the

margin value. Note that a large value of top y-th percentile produces higher vote gap

between the current top-k and the candidate at the top y-th percentile that needs to

be promoted to top-k.

Results for MFMultiS We present the results of MFMultiS in Figure 3.2.

We consider political parties (36 different parties) of the candidates in 2019 NSW

Senate Election, and the movie genres of the Movielens datasets (18 different genres)

69

(a) 2021 Bronx Justice
Election

(b) 2019 NSW Senate
Election

Figure 3.1 Results for MFBinaryS.

as the protected attribute. These results demonstrate similar pattern as that of

MFBinarySresults.

Results for MFMulti2 Figure 3.3 shows the results for MFMulti2. For the

NSW Senate Election dataset, the two protected attributes are: political party

of the candidates and whether the candidate has been elected before or not.

For the Movielens datasets, we use two protected attributes: genres (18 unique

values), and language (English or not). The results show that Alg2AttApx has

significantly lower margin compared to Fair-Topk-Set and LEXIMIN, and the

margins produced by Alg2AttApx are bounded by 2 times the margins produced

by ILPMultiTwo and AlgCartOpt that produce identical results. In fact, in

many cases, Fair-Topk-Set produces infeasible results.

Results for MFMulti3+ This is run on the MovieLens datasets only. In addition

of the two protected attributes genre and language, we consider the production

company (American or not) as the third protected attribute. The results are presented

in Figure 3.4, which is consistent with our previous observations.

70

(a) 2019 NSW Senate Election (b) MovieLens5Star

(c) MovieLens3StarMore

Figure 3.2 Results for MFMultiS.

3.5.3 Scalability results

For these experiments, we use the synthetically generated normally distributed data

to validate the effect of the parameters n, m, k on the running time of the proposed

algorithms, considering 1, 2, or 3 and more protected attributes.

Results for MFBinaryS, MFMultiS Figure 3.5 shows that our proposed

algorithms Alg1AttBOpt and Alg1AttMOpt are scalable up to millions of

candidates and voters. In Figure 3.5a, the running time increases log-linearly w.r.t

number of candidates n, whereas the running time does not change significantly while

varying number of voters m and the size of the result set k (Figures 3.5b, 3.5c). These

results are consistent with our theoretical analysis. Fair-Topk-Set is the best choice

scalability-wise (but fails to optimize margin or even gives infeasible results), whereas,

LEXIMIN does not scale because of its exponential nature.

71

(a) 2019 NSW Senate Election (b) MovieLens5Star

(c) MovieLens3StarMore

Figure 3.3 Results for MFMulti2.

Figures 3.7a and 3.7b show running times varying standard deviation sd and

mean. We observe non-significant change in running time due to varying mean and

sd.

Results for MFMulti2 The running time of Alg2AttApx w.r.t n, m, k are

shown in Figure 3.6. The running time of Alg2AttApx is sub-quadratic w.r.t

number of candidates n as shown in Figure 3.6a, while it increases linearly w.r.t

number of voters m (shown in Figure 3.6b) and does not change significantly with

the size of the result set k (Figure 3.6c). As before, Fair-Topk-Set is the fastest,

while LEXIMIN does not scale.

Results for MFMulti3+ We presentAlgCartOpt as the solution ofMFMulti3+.

It produces c = Πℓ
i=1ℓi as the number of attribute value configurations.

72

(a) Movielens5Star (b) Movielens3StarMore

Figure 3.4 Results for MFMulti3+ .

In Figures 3.8a and 3.8b, we see that the running time of AlgCartOpt

increases exponentially with n and c, as expected, whereas Fair-Topk-Set,

LEXIMIN run faster.

3.5.4 Summary of results

Our first and foremost observation is, consistent with our theoretical analysis

Alg1AttBOpt, Alg1AttMOpt, AlgCartOpt produce exact solutions of the

underlying problems, i.e., they satisfy the fairness constraints, while minimizing

the margin values, whereas, Alg2AttApx demonstrates better approximation

factors compared to the theoretical bound 2. Our second observation is that the

implemented state-of-the-art solutions LEXIMIN [94] and Fair-Topk-Set [181],

despite adapting them non-trivially to our problem, fail to optimize margin values and

do not turn out to be effective.As expected, Fair-Topk-Set [181] is highly scalable

but produces sub-optimal margin values or even infeasible results for MFMulti2,

and MFMulti3+, as it just becomes a heuristic for those problems. Consistent with

our theoretical analysis, Alg1AttBOpt, Alg1AttMOpt, and Alg2AttApx

are highly scalable, and run well on outcome consisting of a very large number of

candidates, ballots, or large k. We observe that the value of margin depends on

both k and the vote gaps between candidates: as k increases, the margin generally

decreases, while the margin increases with larger vote gaps. The ILP based baseline

73

(a) Vary n, k = 50,m =
10000k

(b) Vary m, k = 50,
n = 100k

(c) Vary k, n = 100k,m =
10000k

Figure 3.5 Running time for Alg1AttBOpt & Alg1AttMOpt.

solutions as well as LEXIMIN [94] give memory error when run on very large dataset.

Overall, our designed solutions turn out to be the unanimous choice.

3.6 Related Work

We primarily discuss three types of existing work that are related to our proposed

problem.

Preference Elicitation and Aggregation. Preference of the individual users

could be elicited as pairwise comparison [74], in form of a binary vector [173]

known as Approval Voting [46], in an ordinal scale [13, 132], or considering

Arrowian social choice, where users provide partial or complete preference order

over the items [40, 52, 130, 177]. Similarly, The properties of social welfare functions

for aggregating preferences have been studied by mathematicians since the 18th

century [51,63,66]. Different preference aggregation methods are proposed, including

majority voting, plurality voting [136, 152, 161], their weighted versions, as well as

74

(a) Vary n, m = 1000k, k = 50 (b) Vary m, n = 10k, k = 50

(c) Vary k, n = 10k, m = 100k

Figure 3.6 Running time for Alg2AttApx.

(a) Vary sd, m = 1000k, n =
100k,mean = 50k

(b) Vary mean, m =
1000k, n = 100k, sd = 30k

Figure 3.7 Varying distribution Alg1AttBOpt and Alg1AttMOpt.

aggregation methods that consider positional preference [40,52,177], such as Kemeny

rule [82, 127], Condorcet rule [69], or Borda Count [84]. Our adopted preference

elicitation model allows users to provide their top-choice and aggregate these choices

using plurality voting, which is natural for our problem setting.

Fairness in Preference Aggregation and Top-k. In [96,171], authors study the

fairness of preference aggregation in the context of Arrow’s Impossibility Theorem. In

a very recent work of ours [197], we study how to ensure proportionate fairness [26,27]

in aggregating preferences that are provided as ranked orders. Earlier, existing works

75

(a) Vary n, c = 8,m = 1000 (b) Vary c, n = 5,m = 1000

Figure 3.8 Running time for MFMulti3+.

study proportionate representation considering group fairness in the top-k ranked

order [104, 134]. Authors in [101] study how to strike a balance between individual

and group fairness in selecting top-k order. In [18], the authors study how to tune the

weights of the attributes to promote fairness in the top-k ranked results. We are also

aware of prior works that select top-k set [94, 181] to maximize fairness or diversity.

In a recent paper [59], the authors maximize a monotone submodular function given

only upper bound of fairness constraints. Unlike our work, it does not study ballot

substitution as well as does not consider exact fairness constraints. Kearns, Michael,

et al. prove that achieving subgroup level fairness is np-hard [126]. They propose

an approximate solution (FairFictPlay) for achieving subgroup level fairness based on

two-player zero-sum game between a Learner (finds best classifier) and an Auditor

(finds best subgroup distribution).

Preference Substitution. Preference substitution could done by adding a new

vote, deleting an existing vote, or substituting the original preference with another

choice. In the absence of adversaries, the last one is most realistic that we adopt

in this work. Preference substitution has received significant interests in electoral

systems, in particular, to understand the mechanism of Single Transferable Vote

(STV) [91, 183]. In [202], the authors study margin, to introduce a different election

result for different voting systems, including approval voting, all positional scoring

rules (which include Borda, plurality, and veto). In [41, 56, 176] margin is calculated

76

in STV setting. In [25], Orlin and Bartholdi prove margin finding is NP-hard even

for a single candidate selection for STV.

While we adopt popular preference aggregation models and group fairness

definitions, we are the first to formally study the margin finding problem under single

ballot substitutions considering complex fairness constraints and present principled

solutions.

3.7 Conclusion

We initiate the study of the margin finding problem of a top-k preference aggregation

model under single ballot substitutions, considering one and multiple protected group

attributes to promote fairness, present a suite of algorithms with provable guarantees,

and conduct rigorous experimental analysis to demonstrate the effectiveness of our

proposed solutions.

77

Algorithm 3 FindBallotA+R
Inputs: LC , LV , A, t

Outputs: The minimum number of ballot additions and removals required to yield

a fair outcome with threshold t, and the set of elected candidates in the resulting

fair outcome

1: X = {xi : xi ∈ A1}

2: Y = {yj : yj ∈ A2}

3: E = {ec = (xi, yj) : c ∈ LC with attributes A[1, i] A[2, j]. }

4: for i = 1 to n do

5: c = LC(i)

6: if LV (i) < t then

7: w(ec) = t− LV (i)

8: else

9: w(ec) = (t− 1)− LV (i)

10: end if

11: end for

12: Construct the graph G = (X, Y,E,w)

13: Set the constraints on the number of adjacent edges of nodes xi and yj to a[1, i]

and a[2, j] respectively

14: Find M∗ a min cost b-matching in G subject to the constraints on the number

of adjacent edges

15: R =
∑

e∈E max{−w(e), 0}

16: AplusR = w(M∗) +R.

17: C∗
t = the set of candidates corresponding to the edges in M∗

18: Return (AplusR,C∗
t)

78

Algorithm 4 Alg2AttApx
Inputs: LC ,LV ,A

Output: A set of at most OPTA+R ballot substitutions that yield a fair outcome

1: OPTA+R = k ·m

2: U = {LV (i), LV (i) + 1, LV (i+ 1)− 1 : i ∈ [1 . . . n− 1]} ∪ {LV (n)}

3: for t ∈ U do

4: (AplusR,C∗
t) = FindBallotA+R(LC , LV , A, t)

5: if OPTA+R > AplusR then

6: OPTA+R = AplusR

7: C∗ = C∗
t

8: end if

9: end for

10: Transform the OPTA+R ballot additions and removals needed to guarantee the

election of the candidates in C∗ to at most OPTA+R ballot substitutions that

guarantee the same outcome

79

CHAPTER 4

SELECT-K WINNERS BY SATISFYING QUERY CONSTRAINTS
USING IRV

4.1 Introduction

The task of finding the winner, i.e., the most favorable item or candidate from a given

a set of m users’ (voters’) preferences over n items (candidates), has found a wide

variety of applications in the search results listing, recommender systems, and even

in electoral voting systems. Compelling examples include, the problem of finding

the top choice movie, tweet, song, or news article, or even the winning candidate

in electoral voting systems. IRV (Instant Run-off Voting) is a ranked choice voting

mechanism, and has been gaining popularity lately as an electoral system in the

US [42,56,116,142,176]. In this paper, we study the applicability and computational

implications of adapting IRV in recommender systems and demonstrate its advantages

over existing positional [172] preference aggregation mechanism, such as plurality

voting. We study a settings where a query comes with multiple constraints on the

permissible set of the winning candidates.

Example 4.1.1. (Running example.)

Underlying preference database. Table 4.2 represents ranked order of up to

top-5 preferences over 7 movies (items or candidates in general, where each item is

represented by a unique id) provided by 10 users (voters). Each of these ranked orders

of preferences constitutes a ballot.

Query and Constraints. An example query comes with k = 3 constraints

(Table 4.1), one constraint per day, with the requirement of selecting a thriller movie

on Monday, a sci-fi movie on Tuesday, and a horror movie on Wednesday.

80

Goal. The goal is to return 1 movie each day that satisfies the constraint and is most

representative of the users’ preferences (in Table 4.2). The process has to recommend

one of the two thrillers: Inception and Fargo for Monday.

Preference aggregation. We propose to repeatedly invoke IRV to aggregate the

ballots and select the recommendation for each day.

The IRV process. The IRV process [113, 149] is multi-stage process [172] that

simulates n − 1 run-off rounds, where in each such round one item is eliminated.

The single item that survived the eliminations after all rounds is the winner. More

specifically, given the original preferences of the users (voters), an initial tally of the

first choice votes of every candidate is performed in round 1. The item that has the

lowest number of first choice votes is eliminated. Ties are broken arbitrarily. After the

elimination all the ranked orders that include the eliminated item are updated, and

the items following this eliminated item in the ranked order are advanced one place up.

This concludes round 1. This is iterated n−1 times, namely, the tally is recomputed,

and the item that has the lowest number of first choice votes is eliminated, where the

ties are broken arbitrarily.

Using the running example, the movie Scream has the highest number (3) of

first choice votes at the initial tally. Then, as shown in Table 4.3, the IRV process

eliminates Fargo in round 1, American Psycho in round 2 (and the respective vote gets

transferred to The Last Jedi), and Return of Jedi in round 3. This process continues

further making The Last Jedi the winner after 6 rounds.

Motivation for using IRV in recommendation. The resurgence of IRV is

motivated by a range of expected benefits, including, ensuring majority support for

the winner, reducing conflict within the electorate, reducing strategic voting, and

increasing diversity of the winners [149]. IRV is amenable to incomplete ranked order,

making the process further suitable to applications, where users are not obligated to

provide full order. A recent work [62] suggests IRV as a way to aggregate preferences

81

in recommendation applications, demonstrated the superiority of IRV over plurality

voting according to multiple fairness criteria, namely proportional representation

of solid coalition and anti-plurality, as we shall demonstrate in Subsection 4.2.2.

Referring to Table 4.2, note that plurality voting will choose Inception as the winner

among the movies in the Thriller genre, even though it is clear that between Inception

and Fargo, the latter is more preferred by the users. As we will demonstrate later

our IRV based process will indeed choose Fargo. Finally, it is known that finding

the margin (the number of ballots that must be substituted in order to change the

original winner [76,121,176,202]) for IRV is NP-hard [42], making IRV less susceptible

to manipulation.

Margin computation using IRV (Section 4.2). Recall that the IRV process

chooses The Last Jedi as the winner of the ballots given in Table 4.2. Clearly, The

Last Jedi is not a Thriller, i.e., it does not satisfy the query constraint for Monday.

Hence, some ballot modifications are needed. Table 4.4 shows one such modification,

where user Jack’s ballot is changed by replacing Scream with Fargo. After this, a

series of 6 run-off rounds are simulated, as listed in Table 4.5, which makes Fargo

the winner. If instead Inception is to be made the winner, this will require at least 3

ballot modifications, for example, by replacing the top choice of Alice, Monica, and

John with Inception. Intuitively too, Fargo is a better choice because it is liked as the

second choice for 3 out of 7 original users. A similar process must also be carried out

for Tuesday and Wednesday independently. Our goal is to study this problem - how

to modify the original ballots of IRV to satisfy all k query constraints such that the

total number of required ballot changes is minimized. Motivated by a recent work

studying this problem for plurality voting [121], we refer to this problem as a margin

computation to satisfy k query constraints using IRV (or MqKIRV in short). To

the best of our knowledge, we are the first to initiate a principled study on this topic.

82

Table 4.1 Query Constraints

Day Genre Movies

Monday Thriller Fargo, Inception

Tuesday Sci-Fi Return of Jedi, Star Wars, The Last Jedi

Wednesday Horror Scream, American Psycho

Table 4.2 Preferences Over 7(n) Movies by 10 Users(m) Upto 5-th Position (ℓ)

User 1st choice 2nd choice 3rd choice 4th choice 5th choice

Jack Scream American Psycho

Emma Inception Return of Jedi Fargo Star Wars Scream

Monica Scream Fargo Star Wars Return of Jedi The Last Jedi

Daniel Scream Fargo The Last Jedi Return of Jedi

Max American Psycho Fargo The Last Jedi Star Wars Scream

John The Last Jedi Return of Jedi Star Wars Scream

Amy Return of Jedi The Last Jedi Star Wars American Psycho Scream

Alice The Last Jedi Return of Jedi Star War Fargo Scream

Bob Star Wars Return of Jedi The Last Jedi Fargo Scream

Steve Star Wars Return of Jedi The Last Jedi

Table 4.3 IRV Rounds:The Last Jedi Winner

MovieId Movie Name Initial tally
End of

round 1

End of

round 2

End of

round 3

End of

round 4

End of

round 5

End of

round 6

0 Scream 3 3 3 3 3 3

1 The Last Jedi 2 2 3 4 5 7 9 (winner)

2 Star Wars 2 2 2 2 2

3 Inception 1 1 1 1

4 Return of Jedi 1 1 1

5 American Psycho 1 1

6 Fargo 0

83

Table 4.4 A single Ballot Modification for Monday

User 1st choice 2nd choice 3rd choice 4th choice 5th choice

Jack Fargo American Psycho

Emma Inception Return of Jedi Fargo Star Wars Scream

Monica Scream Fargo Star Wars Return of Jedi The Last Jedi

Daniel Scream Fargo The Last Jedi Return of Jedi

Max American Psycho Fargo The Last Jedi Star Wars Scream

John The Last Jedi Return of Jedi Star Wars Scream

Amy Return of Jedi The Last Jedi Star Wars American Psycho Scream

Alice The Last Jedi Return of Jedi Star War Fargo Scream

Bob Star Wars Return of Jedi The Last Jedi Fargo Scream

Steve Star Wars Return of Jedi The Last Jedi

Table 4.5 IRV Rounds After Ballot Modification:Fargo Winner

MovieId Movie Initial tally
End of

round 1

End of

round 2

End of

round 3

End of

round 4

End of

round 5

End of

round 6

0 Scream 2 2 2 2

1 The Last Jedi 2 2 3 3 3 5

2 Star Wars 2 2 2 2 2

3 Inception 1 1 1

4 Return of Jedi 1 1

5 American Psycho 1

6 Fargo 1 2 2 3 5 5 7 (winner)

84

Technical Contributions (Sections 4.3 and 4.4). We make multiple technical

contributions in terms of analyzing the studied problems as well as designing solutions

for them. We prove that MqIRV is NP-hard, even when the ballot size is at most

ℓ = 2 by reducing an instance of the known NP-complete problem Exact Cover by

3-Sets (X3C) to an instance of MqIRV. Inspired by [42, 142] we then design an

algorithmic framework AlgExact that needs to consider all possible permutations

over the candidates (i.e., n!), where each permutation represents an elimination

order simulating multiple run-off rounds of IRV, such that the last candidate in

the order is the winner. Solving AlgExact thus requires repeatedly solving a

sub-problemDistTo, which, given a permutation, finds the smallest number of ballot

modifications to satisfy that order. Unfortunately, we prove that even the decision

version of DistTo is NP-hard by reducing an instance of X3C to DistTo, even

when ℓ = 3. The basic idea behind AlgExact is to repeatedly invoke DistTo for

every possible permutation and retain the permutation that requires the smallest

number of ballot modifications overall as the answer. We further study efficiency

opportunities of AlgExact by enabling early terminations - basically, the idea is

to avoid making expensive DistTo calls, rather compute a lower bound of margin

for every possible suffix over all permutations, and eliminate a permutation in its

entirety if its lower bound of margin is not smaller than the current upper bound

of margin over the instance of MqIRV. To that end, we design a highly effective

lower bound computation algorithm DistToLB and an upper bound computation

algorithm MqIRVUB that are highly effective and computationally lightweight.

We also study the DistTo problem under different preference manipulation model -

for example, we study how to only add the smallest number of ballots to the existing

set of ballots, such that the query constraints are satisfied. We refer to this as the

DistToAdd problem. Clearly, this model varies the number of ballots, unlike

the modification model that we closely study in this work, which keeps this number

85

as an invariant. However, some applications may be flexible enough not to require

this invariance assumption. We present an efficient exact solution DistToAddAlg

for the DistToAdd problem. Moreover, we present an integer programming

formulation for MqIRV that is non-trivial. We finally design a highly scalable

heuristics AlgApprx that works well in practice.

Experimental Evaluations (Section 4.5). Our final contribution is experimental

- we use four real world large scale datasets motivated by different recommender

systems and electoral voting applications, as well as one synthetically generated

very large datasets. Our experimental evaluations have the following findings: (a)

we empirically show that MqIRV results in significantly smaller anti-plurality

index (meaning does not select candidates that are disliked by the majority of

voters), compared to alternative approaches, such as plurality voting based margin

computation. (b) Our results demonstrate that AlgExact is optimal, yet

more scalable compared to state-of-the-art solutions [142], [42] that we implement

after appropriate adaptation. (c) We empirically demonstrate the optimality of

DistToAddAlg and its scalability, as well as the effectiveness of our designed

approximate solutionAlgApprx qualitatively and scalability wise by varying several

pertinent parameters and comparing with appropriate additional baseline algorithms.

We present the discussion of related work in Section 4.6 and we conclude in Section 4.7.

4.2 Data Model and Problem

In this section, we describe the data model, following which we formally define the

problem, and prove its hardness.

4.2.1 Data model

Ballot/preference. Preference of a user is elicited using a ballot b containing a

ranking up to position at most ℓ, where ci is the i-th preferred candidate. Using

86

the running example, c1 and c5 are Return Of Jedi, and Scream, respectively of user

Amy’s ballot.

Database of ballot profiles. The database contains the preferences/ballots B of m

users/voters over a set C of n items/candidates. Using the running example, m = 10

, n = 7. The columns in Table 4.2 show B.

Preference aggregation satisfying query constraints. A preference aggregation

method F takes B as input and selects a winner from the candidates/items. A queryQ

comes with k constraints, and the goal is to make use of B and F multiple (k) times to

select k different winners. Table 4.1 shows k = 3 such constraints for recommending a

thriller, a sci-fi, and a horror movie on Monday, Tuesday, andWednesday, respectively.

We use IRV as F , as discussed in more detail in Subsection 4.2.2.

Preference manipulation models. We consider two different preference manip-

ulation models, where only the first one satisfies the number of ballot invariance

property and is our primary focus in this work.

1. By modification. Given a ballot b with ranking up to position j (j ≤ ℓ)
positions, update any number of entries in b considering candidates from C.
As an example, in Table 4.4 Jack’s ballot is changed from Scream, American
Psycho→Fargo, American Psycho. Contrarily, if Scream, Fargo, Return Of
Jedi, The Last Jedi→American Psycho, Star Wars, that also constitutes to a
single ballot modification.

2. By addition. Add a new ballot b with ranking up to position at most ℓ with
candidates from C.

4.2.2 IRV properties

IRV is known to satisfy properties [62] that other preference aggregation measures are

unable to accommodate. We briefly discuss why these properties may be important

in the recommendation application settings that we study.

IRV promotes proportionality for solid coalitions. Consider a scenario in which

two candidates with similar ideologies compete over the same pool of voters, resulting

87

in divided votes and potentially allowing a third candidate with a different ideology

that has fewer overall votes to win. In social choice theory, a solid coalition for a set of

candidates is defined as a set of voters who all rank every candidate in that set higher

than any candidates outside that set. This criterion requires that if the number of

such voters is at least half of the total number of voters, then one of that candidates

from that set must win. IRV fulfills this criterion, whereas plurality voting [108] fails

to do so. To demonstrate this property, notice that in our running example, there

exists a solid coalition of voters who like sci-fi (refer to Table 4.2 which shows 5 of

the 10 users, John, Amy, Alice, Bob, and Steve rank the three sci-fi movies Return

Of Jedi, The Last Jedi, Star Wars higher than any other movie). Clearly, if user

preferences are aggregated using plurality voting, none of the sci-fi movies will be

returned as the winner since Scream has the highest number of first place votes, and

will be selected as the winner. On the contrary, IRV will select The Last Jedi as the

winner, and hence it is resistant to the ballot splitting problem.

IRV promotes anti-plurality. In social choice theory, the majority loser criterion

was proposed to evaluate single-winner elections. It states that if a majority of voters

prefer every other candidate over a given candidate, then that candidate must not

win. IRV fulfills this criterion [62] (as there is a solid coalition for the rest of the

candidates). Indeed, the movie Scream is the last choice of 6 out of the 10 users

(Table 4.2), and thus IRV will not select it. Contrarily, plurality voting will select

Scream as the winner. In [62] this criterion is extended to require that no candidate

among the bottom x% of the ranked choices for the majority of the voters should be

selected. While this is not guaranteed by IRV, it is empirically shown in [62] that

IRV fulfills this extended criterion frequently.

Handling ties in IRV Recall that according to our definition ties during the

IRV process are broken arbitrarily. It is not difficult to see that the way these ties

88

are broken may impact the value of the margin. Indeed, in our example of ballot

modification movie Fargo is the winner after just a single modification only in case

the ties are broken in a very specific way. We made the design decision to compute

the margin assuming the “best case” of tie breaking, namely, compute the margin

under the assumption that ties are broken in an optimal way to ensure a low margin.

Certainly, we could also choose the “worst case” of tie breaking. We postulate that any

consistent choice would be effective in our case since we use the margin to distinguish

among choices and are not interested in the actual value of the margin. (This is in

contrast to worst case complexity analysis where the value of the complexity measure

is important.)

4.2.3 Problem definitions and hardness

Problem Definition 1. MqIRV(IRV Margin satisfying a single query constraint).

Given a set of ballots B eliciting m voters ranked preferences of up to ℓ positions over

a given set C of n candidates, and a query constraint that specifies a subset of the

candidates, find the minimum number of ballots that need to be modified in order to

ensure that the winner of the IRV election belongs to the subset specified in the query

constraint.

Running Example. Referring to Table 4.1, if the query constraint on Monday

specifies selecting a thriller, then the minimum number of ballot modifications

required to ensure that is 1, where Scream in Jack’s ballot is swapped by Fargo.

If instead Inception is to be made the winner, this will require 3 ballot modifications.

Hence, the margin to satisfy the query constraint of Monday is 1.

Theorem 8. MqIRVis NP-Complete, even when ℓ = 2.

Proof. (sketch). Consider an election in which m voters need to elect k = 1 candidate

out of n candidates. In the election, each voter casts his/her ballot for two candidates

in ranked order. The final candidate is determined using the IRV process. For a given

89

instance of the election, we define the margin as the number of ballot changes required

to ensure that a specific candidate wins.

We prove that computing the margin is NP-Complete. Our proof is inspired

by the NP-Hardness proof of [25]. It is straightforward that the problem is in NP

since the outcome of an IRV election can be computed in polynomial time. The

NP-hardness is proved by reduction from the 3-Exact Cover problem (3XC). In this

problem, we are given a universal set {e1, . . . , e3n}, and m ≥ n subsets S1, . . . , Sm

of size 3 each. We need to determine whether there are n sets whose union is the

universal set.

Suppose that we are given an instance of the 3XC problem. We show how to

define a related IRV margin problem and then prove that the IRV has a margin n if

and only if the answer to the respective 3XC problem is Yes.

The IRV problem has 2m+ 3n+ 2 candidates b1, . . . , bm, c1, . . . , cm, e1, . . . , e3n

and u, v. We must ensure that u wins the election. There are 6m+m2 +m(m+5)+

3n(2m+10)+ 2m+11+ 2m+13 = 2m2 +6mn+15m+30n+24 ballots as follows:

• For every i ∈ [1..m], let Si = {ex, ey, ez}. There are 6 ballots that we call “cover
ballots”. These ballots are two of each [bi, ex], [bi, ey], and [bi, ez]

• For every i ∈ [1..m] there are m ballots [bi, ci]

• For every i ∈ [1..m] there are m+ 5 ballots [ci, bi]

• For every i ∈ [1..3n] there are 2m+ 10 ballots [ei, v]

• There are 2m+ 11 ballots [v, u]

• There are 2m+ 13 ballots [u, v]

Suppose that the 3XC instance has an exact cover. Let the indices of the sets

in the cover be j1 . . . , jn. We change n ballots as follows. For every i ∈ [1..n] change

a ballot [bji , cji] to [cji , bji].

We successively eliminated all candidates who got the least number of votes,

which is initially m + 5. There are m candidates with this number of votes: m − n

90

candidates cx, for x ∈ [1..m]\{j1 . . . , jn}, and n candidates bx, for x ∈ {j1 . . . , jn}. As

a result of eliminating the m−n candidates cx, the number of votes of the candidates

bx, for x ∈ [1..m] \ {j1 . . . , jn} jumps to 2m + 11. As a result of eliminating the n

candidates bx, the number of votes of the candidates cx, for x ∈ {j1 . . . , jn}, jumps to

2m + 5. Also, since the union of the n sets Sx, x ∈ {j1 . . . , jn}, is the universal set,

the elimination of bx in the 6n “cover ballots” causes the number of votes of every ei

to jump to 2m+ 12.

Next, the n remaining candidates cx, for x ∈ {j1 . . . , jn}, with 2m + 5 votes

are eliminated. This does not change the vote of any other candidate. Lastly, the

m − n candidates bx, for x ∈ [1..m] \ {j1 . . . , jn}, and v each with 2m + 11 votes

are eliminated. None of the ei is eliminated at this point because all of them have

2m+ 12 votes. Then, all eis will be deleted, each with 2m+ 12 votes, and, finally, u

wins with 2m+ 11 + 2m+ 13 = 4m+ 24 votes.

We need to prove the other direction. Namely, if the margin is n then there is

an exact cover. Suppose that the outcome of the elections can be changed to be u by

at most n ballot changes. Since candidate v has one more vote than each of the 3n

candidates e1, . . . , e3n, we need to increase the votes of all the candidates e1, . . . , e3n

by at least 2 so that none of the ei is eliminated before v is eliminated. Because if

any of eis is eliminated before v is eliminated, then the second choice of ei’s ballot

goes to v and the votes of v increase to 4m+21. Then all ei and u will be eliminated,

and v wins the election, and u loses. The only way to ensure that none of eis is

eliminated before v is by eliminating some of the candidates bj. This can be done by

ballot changes that reduce the number of votes of some of the candidates bj by 1 and

increase the number of votes of the respective candidates cj. This will cause some

candidates bj to be eliminated and thus increase the votes of the resulting elements ei

in the “cover ballots” corresponding to these candidates bj. Since we can make only n

91

ballot changes and since the cover ballots of any candidate bj change the votes of only

the 3 candidates from {e1, . . . , e3n} that correspond to the set Sj, the n candidates

bj eliminated first must correspond to an exact set.

Problem Definition 2. MqKIRV(IRV Margin satisfying k query constraints.)

Given a set of ballots B eliciting m voters ranked preferences of up to ℓ positions

over a given set C of n candidates, and a query with k constraints, each specifies a

subset of the candidates, find the minimum number of ballots that need to be modified

in order to ensure that the winners of k independent invocations of the IRV election

(each starting from the original ballots) belong to the respective subsets specified k

query constraints.

Theorem 9. MqKIRVis NP-Complete, even when ℓ = 2.

Proof. (sketch.) Follows trivially from Theorem 8.

Running Example. Considering the running example again (Table 4.1), k = 3

and the ballots are shown in Table 4.2. The winner for thriller is Fargo (margin =

1), for sci-fi it is The Last Jedi (margin = 0), for horror it is Scream (margin = 1).

The minimum number of ballot modifications (margin) required to ensure all three

constraints is 1+0+1 = 2.

4.3 Algorithms for MqKIRV

In this section, we first show the relationship between MqKIRV and MqIRV.

Following this, we first focus on designing exact solutions for MqIRV.

Theorem 10. An optimal solution forMqKIRVcorresponds to solving MqIRV optimally

k times.

Proof. (sketch.) It follows from the problem definitions that an optimal solution of

MqKIRV can be expressed as a sum of k independent MqIRV instances. Therefore,

92

solving MqKIRVoptimally is equivalent to solving each of the k MqIRV instances

optimally.

We therefore turn our focus to designing exact solutions for MqIRV. In

Subsection 4.3.2, we discuss AlgExact, a branch-and-bound algorithm that is

capable of pruning effectively, following which we present a non-trivial integer

programming formulation of MqIRV in Subsection 4.3.3.

4.3.1 Required definitions

We first give some definitions that will be useful when discussing our algorithms.

Signature. Let S be the set of all possible partial or total rankings over C (including

those that do not appear in B). A signature s ∈ S is one such partial or total ranking.

The total number of possible signatures is |S| =
∑ℓ

x=1

(
n
x

)
· x!. For example, both

{Fargo, The Last Jedi} and {Scream, Fargo, The Last Jedi, Return Of Jedi} are valid

signatures even though the former is not present in Table 4.2.

Tally tr(c) or first choice votes. The tally or first choice votes of a candidate c at

round r, denoted as tr(c), is defined as the number of votes in round r, where c is the

first choice candidate. Using the running example, tally of The Last Jedi, Scream,

and Star Wars at the beginning of round 5 are: t5(The Last Jedi) = 5, t5(Scream)

= 3, and t5(Star Wars) = 2.

4.3.2 AlgExact for MqIRV

Next, we propose an algorithmic framework AlgExact that is an exact solution of

the MqIRV problem. The algorithmic solution is developed by creating a branch

and bound tree, akin to two prior works [42,142].

For a given winner w, the solution considers all possible permutations of the

candidates that need to be eliminated (i.e., (n − 1)!), where each permutation

93

represents an elimination order simulating n− 1 run-off rounds of IRV. The height of

the tree is at most n. Each node of the tree contains two values: (a) an elimination

order π, (b) a score that represents the number of ballot modifications to realize π (we

formalize that as DistTo below). Each edge of the tree represents the next candidate

to be eliminated. An artificial root node connects the branches of the subtree, where

each subtree represents a w ∈ W as the winner, where W is the constrained winner

set specified by the query. Except for the fake root node, the relationship between

any parent and child nodes in the tree is as follows: (i) At any parent node with

elimination order π, the child node has elimination order π′ = c+π where c ∈ C−π,

(ii) and DistTo(π) ≤ DistTo(π′) [142]. The leaf nodes end with a full permutation,

where the last candidate is from W . The maximum number of possible leaf nodes is

= |W |× (n−1)!. To that end, we formalize a sub-problem DistTo that AlgExact

needs to solve repeatedly.

Problem Definition 3. DistTo. Given an elimination order over the candidates

π (complete or partial order, |π| ≤ |C|) and a database of ballot profiles B, find the

minimum number of ballots that must be modified to achieve π.

Theorem 11. DistTo is NP-hard, even when ℓ = 3.

Proof. (sketch). First, we prove that DistTo is NP-hard when instead of ballot

modifications we consider ballot deletions. The proof is by reduction from the 3-Exact

Cover problem (3XC) described earlier. In the 3XC problem we are given a universal

set {v1, . . . , v3n}, and m > n subsets S1, . . . , Sm of size 3 each. We need to determine

whether there are n subsets whose union is the universal set. Given an instance of

the 3XC problem, we show how to reduce it to an instance of DistTo. The instance

of DistToconsists of 3n + 1 candidates v1, v2, . . . , v3n+1, and the elimination order

π = v1, v2, . . . , v3n+1 (π[1] = v1 is eliminated first, and π[3n + 1] = v3n+1 is the

winner). We show that this elimination order can be achieved with n ballot deletions

94

iff the 3XC instance has a positive answer. The polynomial number of ballots in the

instance varies in size from 3 to 1 and is described below.

Ballots of size 3: There are m ballots of size 3, one per every subset Si, 1 ≤ i ≤ m.

Consider a subset Si = {vx, vy, vz}. From now on, we assume that the subset is

“ordered”, that is, 1 ≤ x < y < z ≤ 3n. For every such subset Si, the ballot

(vx, vy, vz) is added, namely vx is the top candidate in the ballot, vy is the second

candidate, and vz is the bottom candidate.

Ballots of size 2: For 1 ≤ x < y ≤ 3n, let cxy be the sum of the following 2 numbers:

(1) number of ballots of size 3 in which vx is the top candidate and vy is the second

candidate and (2) the number of ballots of size 3 in which vx is the second candidate

and vy is the bottom candidate (note that the index of the top candidate in this case

is lower than x). Let maxcx = max3ny=x+1{cxy}. For every x < y ≤ 3n, there are

maxcx − cxy ballots of size 2 consisting of candidate vx as the top candidate and vy

as the second candidate. There are also maxci ballots consisting of candidate vi as

the top candidate and candidate v3n+1 as the second candidate.

The total number of size 2 ballots is bounded by 6nm − 2m since there are at

most (3n− 1) ·maxcx size 2 ballots with vx as the top candidate for 1 ≤ i ≤ 3n, and∑3n
x=1maxcx ≤ 2m.

Ballots of size 1: For 1 ≤ x ≤ 3n, let dx be the total number of ballots of size

3 and size 2 in which vx is the top candidate. Let maxd = max3ny=1{dy}. There are

maxd− dx ballots of size 1 consisting only of candidate vx as the top candidate and

the only candidate. There are also maxd − 1 ballots consisting of only candidate

v3n+1 as the top and only candidate. The number of ballots of size 1 is bounded by

18n2m − 3nm since at most 3n candidates have single ballots, and for each of these

candidates, there are at most m+ 6nm− 2m ballots of size 1, since this is an upper

bound on the number of ballots of size 2 and 3 per candidate.

95

We prove that if there is an exact cover, then the margin is n. Suppose that

the 3XC instance has an exact cover consisting of n sets. Each such set corresponds

to a ballot of size 3. We call these ballots the “cover ballots”. For 1 ≤ x ≤ 3n, let

b(x) be the unique cover ballot containing x. We prove below that after deleting the

n cover ballots the IRV process will result in the elimination order v1, v2...v3n+1.

By our construction, before the deletion of the cover ballots, each of the

candidates v1, . . . , v3n is the top candidate on the maxd ballots and v3n+1 is the

top candidate on the maxd − 1 ballots. Since the candidates on every ballot are

ordered, v1 must be the top candidate in ballot b(1) and thus after the removal

of this ballot, v1 is the top candidate in maxd − 1 ballots. Also, since no candidate

appears more than once in the cover ballots, after their removal, each of the candidates

v2, . . . , v3n is the top candidate on either maxd− 1 or maxd ballots. Recall that ties

are broken arbitrarily, and thus we can eliminate v1. As a result of the elimination

of v1 the top candidate in all ballots that included v1 (and are not of size 1) is

updated. By our construction, there are exactly maxc1 such ballots for each of the

candidates v2, . . . , v3n+1. After the elimination of v1, v2 must be the top candidate

in ballot b(2) and therefore after the removal of this ballot v2 is the top candidate in

maxc1+maxd− 1 ballots. Again, no candidate can be the top candidate in less than

maxc1 + maxd − 1 ballots and thus v2 can be eliminated. Continuing in the same

manner, after the elimination of v1, . . . , vx−1, candidate vx must be the top candidate

in ballot b(x) and thus after the removal of this ballot vx is the top candidate in∑x−1
y=1 maxcy + maxd − 1 ballots and can be eliminated as dictated by the required

elimination order.

In the other direction, we prove that if the margin is n then there is an exact

cover. To achieve this goal, we show that any set of ballots whose removal results in

the elimination order v1, v2...v3n+1 must include the candidates v1, v2...v3n. We prove

this by contradiction. Assume that this is not the case and that there exists a set

96

of ballots that do not include a candidate vx whose removal results in the required

elimination order. Let vx be the candidate with the minimum index that is not

included in the deleted ballots. In this case, by our construction, when vx is about to

be eliminated, it is the top candidate of
∑x−1

y=1 maxcy +maxd ballots, while v3n+1 is

the top candidate of
∑x−1

y=1 maxcy +maxd− 1 ballots. A contradiction. Clearly, the

only way to delete n ballots that include all 3n candidates v1, v2...v3n is by choosing

ballots of size 3 that correspond to an exact cover.

Next, we extend this proof to the case of ballot modifications. We use the same

ballot profile as before with only one difference: candidate v3n+1 has maxd − n − 1

ballots, that is, n + 1 fewer ballots than any other candidate (instead of having 1

ballot less than the others). By a similar reduction, it can be shown that in this

scenario, the 3XC problem instance has an exact cover iff the optimal solution to the

DistToinstance consists of n ballot modifications where the ballots removed in these

modifications include candidates v1, v2...v3n and each of the added n ballots includes

candidate v3n+1 as the top and only candidate.

AlgExact explores the tree level by level (refer to Figure 4.1) and makes

an attempt to prune part of the tree based on the lower bound of a branch (which

corresponds to an elimination order) and the MqIRVUB of the MqIRV instance.

Definition 9. Upper bound of an instance MqIRVUB. Given an MqIRV

instance, MqIRVUB is defined as an upper bound of the number of ballots that must

be modified to satisfy the query constraint, namely, MqIRV ≤ MqIRVUB.

Definition 10. Lower bound (DistToLB) of DistTo(π). Given π, DistToLB is

the number of ballots that must be modified so that each c[i] ∈ π is eliminated before

each c[j] ∈ π (where i < j) and DistToLB(π) ≤DistTo(π).

97

[0] , lb=0.0

[1,0] , lb=1.0

[5, 1, 0] ,
lb=1.0

[4, 2, 3, 5, 1, 0]
, lb=1.0

[4, 2, 3, 5, 1, 0] ,
lb=1.0

[6, 4, 2, 3, 5, 1, 0] ,
lb=1.0

[6,0] , lb=0

[4,6,0] ,
lb=3.0

[5] , lb=1.0

[0,5] , lb=3.0 [3,5] , lb=1.0

[0,3,5] ,
lb=3.0

[1,3,5] ,
lb=4.0

ub=2 ub=2

ub=2ub=2

ub=2 ub=2

ub=2

ub=2ub=2

......
ub=2ub=2

[], lb=0

...

Figure 4.1 Partially explored tree for AlgExact , the movies are represented with
their ids, where red nodes and their subtrees are pruned.

Running Example. Figure 4.1 shows one such partially constructed tree Example 4.1.1.

The movies are represented by their unique ids, and any red node and the sub-tree

under them are fully pruned. Each such red node has DistToLB(DistTo) that is

not smaller than theMqIRVUB of theMqIRV instance (e.g.,DistToLB(DistTo[1, 3, 5])

= 4 is larger than MqIRVUB = 2). Compared to prior works [42, 142], we propose

both effective as well as computationally efficient MqIRVUB and DistToLB

solutions, as we discuss in Section 4.4.

4.3.3 IP for MqIRV

MqIRV can be solved using integer linear programming. The objective function of

such a linear program measures the number of ballot modifications required such that

the winner is the preferred candidate. Next, we describe how to construct an integer

linear program to solve this problem.

For each ballot signature s ∈ S, let ms denote the number of ballots with

signature s in the original ballot profile. Define m =
∑

s∈S ms, so that m counts the

total number of ballots in the original election profile. Note that the values of ms

and m are determined by the original election profile. Let as denote the number of

ballots that are modified to s from a different ballot signature, ds denote the number

of ballots that are modified from s to another ballot signature, and ys denote the

98

Algorithm 5 AlgExact

Input: Ballot profile B, set of Candidates C, set of preferred candidates W .

Output: MqIRV

1: ub =∞

2: lb = 0

3: initialize priority queue with tuples (w, 0) where w ∈ W

4: while queue.notEmpty() do

5: π, lb = queue.pop()

6: for c ∈ C \ π do

7: π′ = c+ π

8: lb = DistToLB(B, C, π′)

9: if lb > ub then

10: prune π′

11: else

12: queue.add(π′, lb)

13: end if

14: if |π′| == n then

15: ub = min(ub,DistTo(B, C, π′))

16: end if

17: end for

18: end while

19: MqIRV = ub

20: Return MqIRV

99

total number of ballots with signature s. The basic inequalities of IP formulation are

as follows:

ms + as − ds = ys (4.1)

m ≥ ys ≥ 0 (4.2)

ms ≥ ds ≥ 0 (4.3)

as ≥ 0 (4.4)

Equation (4.1) requires that the number of ballots with a new signature s be

equal to the number of ballots that originally had the signature s, plus the number

that changed from something else to s, minus the number that changed from s to

something else. Equation (4.2) constrains that the number of ballots that end with

signature s cannot be more than the total number of ballots that were cast in the

election. The next two equation mandates: the number of ballots that are modified

to have signature s must be nonnegative, and one cannot change more ballots of

signature s than that were originally reported. The next constraint is that the total

number of ballots changed from any signature is equal to the total number of ballots

changed to any signature. ∑
s∈S

as =
∑
s∈S

ds (4.5)

The next two constraints correspond to the elimination order. Assume C is the

set of all candidates which is given to us. For every pair {ci, cj} ⊆ C, define uci,cj

as a binary variable that is 1 iff candidate cj is eliminated before candidate ci. The

following constraints guarantee that the variables uci,cj define an order. Equation (4.6)

constrains it to be antisymmetric and Equation (4.7) constrains it to satisfy the

100

triangle inequality.

uci,cj + ucj ,ci = 1 ∀ {ci, cj} ⊆ C (4.6)

uci,cj + ucj ,cr + ucr,ci ≥ 1 ∀ {ci, cj, cr} ⊆ C (4.7)

Let signature s = c1, c2, . . . , cℓ, where cx is the x-th candidate on the ballot, c1

is the top choice while cℓ is the bottom. For a signature s and candidates ci and cj

(which may be equal), define the bit vs,ci,cj to be 1 iff signature s is a ballot in which

ci is the top candidate when candidate cj is eliminated. Bit vs,ci,cj is trivially 0 if

ci does not appear in S. Bit vs,c1,c1 is trivially 1. Otherwise, we have the following

constraint that is written below as a product of bits. (Later, we show how to convert

it to linear constraints.) Let yi,j be uci,cj if i ̸= j and 1, otherwise.

vs,ci,cj = yi,j · Πi−1
x=1ucj ,cx (4.8)

This constraint ensures that all the candidates c1, c2, . . . , ci−1 are eliminated before cj

is eliminated, and in case i ̸= j ci is eliminated after cj is eliminated. Thus signature

s contributes to ci’s tally when cj is eliminated.

The next constraint is for every ordered pair of candidates ci ̸= cj. It guarantees

that if uci,cj = 1, namely ci is eliminated after cj, then in the round in which cj is

eliminated the number of ballots in which ci is the top candidate is at least the number

of ballots in which cj is the top candidate. The constraint is written as a product of

bits and an integer (later, we show how to convert it to linear constraints).∑
s

(
ys · vs,ci,cj

)
≥ uci,cj ·

∑
s

(
ys · vs,cj ,cj

)
(4.9)

If we want to force candidate ci to be the winner we need to add the constraints

uci,cj = 1, for every cj ̸= ci. Alternatively, if we want to force candidate ci not to be

the winner we need to add the constraint
∑

j ̸=i ucj ,ci ≥ 1. Also, we can change the

objective function to count only additions or only deletions or any linear combination

101

of additions, deletions, and modifications. Finally, we set the objective function to

be: minimize
∑

as, which is the number of ballots modifications.

In the last two constraints, we used (i) product of bits, and (ii) product of a

nonnegative number and bits. We show how to linearize these two constraints. Let

u1, . . . , ux be x bits. The constraints that replace z = Πx
i=1ui are as follows.

z ≤ ui for i ∈ [1, x]

z ≥
x∑

i=1

ui − (x− 1)

z ≥ 0

Similarly, we can linearize the product of a nonnegative number and a bit as

long as we have an upper bound on the number. Let A be a non-negative number,

and let u be a bit. Assume that M is an upper bound on A. The constraints that

replace Z = A · u are as follows.

z ≤ A

z ≤ uM

z ≥ A+ (u− 1)M

We can extend this method to linearize also the product of a nonnegative number

and several bits.

4.4 Efficient Algorithms

This section is dedicated to further investigation of computational efficiency. In

Subsection 4.4.1, we first discuss an improvedDistToLB calculation thatAlgExact makes

use of. In Subsection 4.4.2, we discuss an improved MqIRVUB algorithm that

is computationally efficient. Interestingly, this algorithm also serves as an efficient

heuristic for the MqIRVproblem. In Subsection 4.4.3, we discuss that when only

102

Table 4.6 Efficiency Improvement Using MqIRVUB and DistToLB For The
Running Example

Algorithm Efficient AlgExact Blom

Number of IP calls

Horror: 1

Sci-Fi: 1

Thriller: 2

Horror: 143

Sci-Fi: 108

Thriller: 107

Runtime (s) 0.057 0.626

ballot additions are allowed, DistTo becomes a computationally easy problem, for

which an efficient algorithm could be designed.

4.4.1 An improved DistToLB algorithm

In this section, we discuss an improved lower bound calculation algorithm for

DistTo(π). The intuition is the following: given π and two candidates c and c′,

if c needs to be eliminated before c′ in round i, where ti(c) and ti(c
′) are the number

of first choice votes of c and c′ in round i, respectively, then at least
⌈
ti(c)−ti(c

′)
2

⌉
number of first choice votes from c needs to go to c′. That is, lb, the lower bound of

round i is calculated as the half of the difference of tally between c and c′. Finally,

the maximum over all of these is returned as the output of the algorithm. Algorithm

6 has the pseudocode.

Running example. Lets assume, π = [Return Of Jedi, Fargo, Scream] = [4, 6, 0]

where 4 is eliminated first. Initially, t1(Return Of Jedi) = 6, t1(Scream) = 3, t1(Fargo)

= 1. To ensure Return Of Jedi is eliminated, at least max(
⌈
6−1
2

⌉
,
⌈
6−3
2

⌉
) = 3 ballot

modifications are required. After Return Of Jedi is eliminated, t2(Scream) = 5,

t2(Fargo) = 4. Required modifications of the ballot to ensure that Scream wins

=
⌈
5−6
2

⌉
= 0. Therefore, lb = max(3, 0) = 3.

Using the running example, Algorithm 6 reduces a significant number of

DistTo (which is solved using IP) calls. For example, lb = DistToLB([4, 6, 0]) =

103

3 ≤ DistTo([4, 6, 0]). Hence AlgExact prunes the branch [4, 6, 0] without having

to make an expensive DistTo call (this is because lb for this branch > ub). Table 4.6

shows efficiency improvement using DistToLB and MqIRVUB inside AlgExact

over prior work [42].

Algorithm 6 Algorithm for DistToLB

Input: Set of ballots B, an elimination order π

Output: DistToLB(DistTo(π))

1: lb = 0

2: while |π| > 1 do

3: c = π.pop front()

4: for c′ ∈ π \ e do

5: lb = max(lb,
⌈
ti(c)−ti(c

′)
2

⌉
)

6: end for

7: end while

8: Return lb

Theorem 12. Algorithm 6 returns a valid lower bound for DistTo(π).

Proof. (sketch.) Each round of the algorithm calculates the half of the difference of

the first choice votes between the eliminated candidate and other standing candidates

based on π. Notice that the eliminated candidate must have fewer or equal votes in its

tally than any of the standing candidates. For any pair of candidates, the minimum

number of ballot modifications required to ensure that the eliminated candidate

has less or equal votes than the standing candidate could be achieved by reducing

lb
⌈
ti(c)−ti(c

′)
2

⌉
number of votes from the eliminated one and adding that to the standing

one. This is true for all pairs of eliminated and standing candidates across all rounds.

Hence, the maximum of all lb’s serves is indeed DistToLB(DistTo(π)).

104

Running Time. The running time of Algorithm 6 has two components: (i) time

for calculating the tally (ii) time for finding maximum lb (line 4-6). Tally can be

calculated efficiently as follows: for each candidate, maintain the number of ballots

in which this candidate is the top choice as well as a linked list of all these ballots.

In every elimination round pick a candidate that appears as a top candidate in the

minimum number of ballots, and eliminate this candidate by going over its linked list

and adding each ballot in the linked list to the next surviving candidate (and update

this candidate’s number of ballots). While finding the next surviving candidate

delete the ones who are already eliminated from the ballot. This way the number of

operations done on a single ballot during the tally calculation is O(ℓ). Hence, the

running time for calculating the tally is O(mℓ). To find the maximum of lb in each

of the n rounds (line 4-6) the algorithm iterates over the remaining O(n) candidates.

This totals to O(n2) time. Hence, running time for Algorithm 6 is O(n2 +mℓ).

4.4.2 Algorithm AlgApprx

In this section, we discuss a highly scalable Algorithm AlgApprx which could be

used as a subroutine inside AlgExact to calculate MqIRVUB, as well as, could

serve as a standalone algorithm to solve MqIRV.

The basic idea of AlgApprx simply leverages the fact that for every possible

winner w ∈ W , w must have more first choice votes (tally) than the rest of the

candidates (e ∈ C \w). An upper bound of ballot modification to ensure the winning

of candidate w is thus the maximum difference in the first choice votes (tally) between

w and each e. Finally, given W , MqIRVUB is the smallest (minimum) over these

bounds considering w ∈ W .

Algorithm 7 has the pseudocode, which simulates n− 1 rounds of IRV run-offs

for each w ∈ W . In round i, the candidate e with the smallest tally is removed from

C. After that the remaining first choice votes of e are redistributed and the tally of

105

Algorithm 7 Algorithm AlgApprx: An Improved MqIRVUB

Input: B, candidate set C, winners W .

Output: MqIRVUBor margin

1: MqIRVUB= ∞

2: for w ∈ W do

3: ub = 0, C ′ = C

4: i = 1

5: while i ≤ n− 1 do

6: e = argminc∈C\w ti(c)

7: C.remove(e)

8: Distribute e’s vote following IRV rules and update tally of the remaining

candidates

9: ub = max(ub, [ti(e)− ti(w)])

10: end while

11: C = C ′

12: end for

13: MqIRVUB = min(MqIRVUB, ub)

14: Return MqIRVUBor margin

106

the remaining candidates is updated. The current upper bound ub is updated by the

difference ti[e] − ti[w] of tally between the eliminated candidate e and w (indeed, if

ti[e] − ti[w] number of extra votes could be added to w, it will never get eliminated

before e). Finally, if |W | > 1, Algorithm 7 runs for all w ∈ W and the minimum of

the ub’s is returned as the output of MqIRVUB problem.

Running example. Consider that American Psycho is the preferred winner (w =

American Psycho). Initially, it has 1 ballot in its tally. The movies Fargo, Return

Of Jedi, Inception (having ballot 0, 1 and 1 respectively) are eliminated in the first

three rounds. To ensure that Star Wars with ballot 2 gets eliminated, 1 ballot needs

to be added to American Psycho. Similarly, to ensure that Scream is eliminated

next, 2 ballots must be added to American Psycho. In the last round, The Last

Jedi will have 8 ballots in its tally and American Psycho will have 2 ballots. As a

result, 6 more ballots are required for American Psycho to avoid elimination. Hence,

the MqIRVUB(American Psycho) = max(0, 0, 0, 1, 2, 6) = 6. Using the running

example in Figure 4.1, for W ={American Psycho, Scream}, MqIRVUB(American

Psycho, Scream) =2, which is a tighter upper bound than ∞ and saves expensive

DistTo calls.

Theorem 13. Algorithm 7 returns a valid upper bound of MqIRV.

Proof. (sketch.) Each round of the algorithm calculates the difference of tally

between the eliminated candidate in that round and w. Let us assume that ub is the

maximum of those differences after n − 1 rounds. Indeed, if the tally of w increases

by ub, w will be the surviving candidate after n− 1 rounds of elimination. Modifying

a single ballot amounts to adding a new ballot and removing an existing ballot. This

could be facilitated starting from the candidate who is eliminated first, then repeat

the process for the next eliminated candidate, and so on, until ub number of ballot

additions has been accounted for. Similarly, the MqIRVUB will be the smallest of

ub’s for each candidate w ∈ W .

107

Theorem 14. Algorithm AlgApprxis an approximate solution for MqIRV.

Proof. (Sketch). Per Theorem 13, AlgApprx is an upper bound of MqIRV.

Therefore, AlgApprx also solves an instance of MqIRV approximately.

Running Time. The running time of Algorithm 7 has two components: (i) time

for calculating the tally (ii) time for finding the candidate with minimum tally.

Tally can be calculated efficiently in O(mℓ) time as explained in the analysis of

Algorithm 6. Finding the candidate with a minimum tally can be done using two

methods depending on the value of n and m. Method 1: Perform a linear search

over all remaining candidates to find the one with minimum tally in every round.

The linear search requires O(n) time per round, and thus total O(n2) time in n

rounds. Method 2: The candidate with minimum tally can be found using a min

heap to store the tally of the remaining candidates. Creating the heap takes O(n)

time. Finding the initial candidate with the smallest tally takes constant time. A

single update of the heap takes O(log n) time. The number of times heap needs to be

updated is bounded by the number of ballots that need to be redistributed when a

candidate is eliminated. Since we eliminate the candidate with the minimum tally, if

a round has x surviving candidates then the minimum tally is no more than m/x. So

summing over all elimination rounds we get that the number of heap updates is upper

bounded by m(1/n+1/(n− 1) + · · ·+1/2) which is O(m log n) (Harmonic number).

Hence, the total time for updating the heap is O(m(log n)2). and the running time

for Algorithm 7 is O(mℓ+min{n2, n+m(log n)2)}).

4.4.3 DistToAddAlg for DistToAdd

Algorithm DistToAddAlg (Pseudocode in Algorithm 8) takes B,C,ℓ as inputs, and

returns the minimum number of ballot additions to ensure π. The algorithm has two

main procedures: Add and Merge. Add finds the number of size 1 ballot needed

to ensure π. Merge merges multiple size 1 ballots and produces ballots up to size n.

108

Algorithm 8 first calls Subroutine Add which returns addone. Then it passes addone

to Subroutine Merge which returns the output of DistToAddAlg.

Algorithm 8 DistToAddAlg

Input: B,C, l, π = {c1, . . . , cn}

Output: DistToAdd

1: addone = Add(B, C, π)

2: DistToAdd = Merge(B, C, π, addone, l)

3: Return DistToAdd

Subroutine Add (Algorithm 9) returns a two dimensional array addone. Each

element addone[c][r] represents the number of ballots of size one added to candidate

c’s tally at round r. It repeats in |π| rounds. In round r, it computes the tally tr(c)

of candidates c ∈ π, as well as keeps track of the sum of ballot additions upto round

r− 1 in t′r−1[c] =
∑

x addone[c][x] (x ∈ 1, . . . , r − 1). To ensure c is not eliminated in

round r, max(0, tr(e) + t′r−1(e)− tr(c)− t′r−1(c)) number of ballots of size one ballot

additions is required for c. addone[c][r] is updated based on that. Finally when all

the candidates in π is popped, addone is returned.

SubroutineMerge (Algorithm 10) reduces the number of ballots by merging the

ballots of size 1 into ballots of size at most n. The intuition behind this subroutine

is as follows. A ballot of signature (cx1) corresponding to addone[cx1][ry1] can be

merged with a ballot (cx2) corresponding to addone[cx2][ry2] into a new ballot of

signature (cx1 , cx2) if π−1[cx1] < π−1[cx2] and π−1[cx1] ≤ ry2 . Since, first (cx1 , cx2)

will contribute to cx1 at round ry1 , and then after cx1 is eliminated, this ballot will

contribute to cx2 at round ry2 . After the merge we can reduce addone[cx1][ry1] by one,

keeping value of addone[cx1][ry1] the same. We can keep merging ballots this way as

long as it is feasible. The size of a merged ballot (cx1 , cx2 , . . . cxn) is at most n since

π−1[x1] < π−1[x2] < · · · < π−1[xn].

109

SubroutineMerge runs in n rounds. We maintain two variablemergeFrom and

mergeTo, initially they are 0 (line 1). In each round r, the sum of the addone entries

in the row corresponding to candidate π[r] is added to mergeFrom, and mergeTo is

set to the sum of the column r + 1 (line 2-4). If we merge ballots from mergeFrom

with the ballots counted in mergeTo then the resulting ballot will always satisfy the

conditions specified above. As we are merging in n rounds, the merged ballot length

will never be more than n. After the merge we reduce the mergeFrom by mergeTo,

making sure mergeFrom is not negative (line 5). Finally, we return mergeFrom.

Running example. Consider an elimination order π = {Fargo, American Psycho,

Return of Jedi, Star Wars, Inception, Scream, The Last Jedi}. To make sure Inception

is not eliminated before Star Wars at round 4, we need to add 1 ballot of signature

(Inception). Similarly, to make sure Scream is the winner, 4 ballots of signature

(Scream) have to be added at round 6. Total ballots of size one equals 4 + 1 = 5.

We can merge (Inception) and (Scream) to (Inception, Scream). When Inception is

eliminated this ballot counts towards Scream. Hence, required ballot additions = 4.

Lemma 6. The minimum number of ballots of size one required to be added to ensure

elimination order π is
∑

c∈C
∑|π|

r=1 addone[c][r].

Proof. (sketch.) Consider a round r where e is the eliminated candidate and c is

a standing candidate. To ensure c is not eliminated in round c, it must satisfy:

tr(e) + t′r−1(e) ≤ tr(c) − t′r−1(c). For a candidate c and round r, addone[c][r] is the

number of ballots of size one that are required to ensure c is not eliminated before e.

Hence,
∑

c∈C
∑|π|

r=1 addone[c][r] is the minimum number of ballots of size one required

to ensure π.

Theorem 15. DistToAddAlg returns an exact solution.

Proof. (sketch.) Using Lemma 6, addone (returned by Subroutine Add) represents

all the ballots of size one required to be added to ensure π. Next, we show

that Subroutine Merge merges maximum number of size one ballots of addone.

110

Algorithm 9 Subroutine: Add

Input: B, C, π

Output: addone

1: addone[c][x] = 0 , ∀ c ∈ C, x ∈ {1, . . . , |π|}

2: r = 1,

3: while |π|.notEmpty() do

4: tr(c) = determine tally of c at round r, ∀c ∈ π

5: t′r−1(c) =
∑r−1

x=1 addone[c][x],∀c ∈ C

6: e = π.pop front()

7: e’s first choice votes are redistributed according to IRV

8: for c ∈ {π − e} do

9: addone[c][r] = max(0, tr(e) + t′r−1(e)− tr(c)− t′r−1(c))

10: end for

11: r = r + 1

12: end while

13: Return addone

Algorithm 10 Subroutine: Merge

Input: B, C, π, addone

Output: margin

1: mergeFrom = 0, mergeTo = 0

2: for r = 1 to n do

3: mergeFrom = mergeFrom+
∑r−1

i=1 addone[π[r]][i]

4: mergeTo =
∑n

j=r+1 addone[π[j]][r]

5: mergeFrom = min(0,mergeFrom−mergeTo)

6: end for

7: Return mergeFrom

111

Subroutine Merge always produces a merged ballot such that after replacing the

original ballots with the merged ballot, the resulting elimination order of the election

does not alter. In each round the algorithm 10 merges the maximum number of ballots

possible. Repeating this process n times produces minimum number for mergeFrom.

Hence, DistToAddAlg returns optimum value of DistToAdd.

Runtime. (a) Add: the runtime for counting tally is O(mℓ), and for calculating

addone isO(n2). (b)Merge: each cell of addone is visited a constant number of times,

hence it takes O(n2) time. It follows that the total running time forDistToAddAlg

is O(mℓ+ n2).

Extension to ballots of bounded size. We remark that Subroutine Merge can

be generalized also to the case of ballots of bounded size ℓ < n. In this case we need

to optimize the way we merge ballots as it may not be beneficial to merge a ballot

(cx) corresponding to addone[cx][ry] where π[x] = n and ry << n to a ballot of length

<< ℓ as this will block us from using this ballot in future rounds (after round ry).

One way to compute the best way to merge the ballots is by modeling this problem

as a min cost flow problem where the (negative) cost rewards merged ballots and the

flow value is the total number of ballots of size 1.

4.5 Experimental Evaluations

In this section, we present experimental analysis and corresponding results. All

algorithms are implemented in Python 3.8 on a machine with Windows 11, core

i7 with 16gb memory. All numbers are presented as an average of 10 runs. Code and

data could be found in the github [15]. For brevity a subset of results are presented

that are representative.

112

Table 4.7 Real World And Synthetic Datasets

Dataset Name m n

MovieLens 100k 100k

Adressa News 100k 100k

Book Crossing 278k 217k

Restaurant Reviews 1k 100

Synthetic 1m 1m

4.5.1 Experiment design

We have three goals. (a) Assess the effectiveness of MqKIRV in recommendation

systems in comparison with margin finding based on plurality voting (Subsection 4.5.2).

(b) Evaluate the quality of our designed algorithms forMqIRV andMqKIRV problems

(Subsection 4.5.3).(c) Evaluate their scalability (Subsection 4.5.4).

Dataset Description There are 4 real world datasets and one synthetic dataset

used for comparison. (a) The Adressa Dataset is a news dataset, where users

preferences are constructed based on m = 100k users’ ratings over n = 100k news

articles. (b) MovieLens dataset contains a set of movie ratings from the MovieLens

website, containing preferences of of m = 100k users over n = 100k movies. (c)

Book crossing dataset contains m = 278k users providing 1, 149k ratings (explicit /

implicit) about n = 271k books. (d) The restaurant review dataset contains ratings

of 1000 users over 100 restaurants. (e) A large scale synthetic dataset is generated

by randomly generating m = 1M ballots over n = 1M candidates. The overview is

presented in Table 4.7.

Baseline Algorithms The following algorithms are implemented.

1. Blom [42]. Magrino et al. [142] propose a simple lower bound based on the

DistTo of any π of length n. Given two elimination orders if one is the suffix of

113

another, then, the DistTo of the suffix could be used as the DistToLB of DistTo

for the longer elimination order. Blom. et. al. [42] propose an improved lower bound

over [142] based on the last round margin l(c′, c) between any pair of candidates c

and c′ (to ensure c′ is eliminated before c), which is the half of the difference in their

respective tallys (first choice votes). This idea is generalized to generate lower bound

of margin to ensure an elimination order ending in π, which is max{l(c′, c)}, where

c′ ∈ C − π, c ∈ π.

2. Random. We implement an algorithm that runs iteratively. In the first iteration,

it randomly selects a ballot and modifies it. In the next iteration, it doubles the

number of selected ballots to be modified (and selects those ballots randomly), and

repeats the process until query constraints are satisfied.

3. IP for DistToAdd. We implement an integer programming based solution for

the DistToAdd problem.

These algorithms are compared against our proposedDistToLB andMqIRVUB

solutions inside AlgExact. We also compare AlgApprx against these solutions

and the implemented IP for MqIRV. Finally, we compare our designed solution

DistToAddAlg with its corresponding IP implementation.

Measures To evaluate Goal (1), we measure the anti-plurality index [62] (smaller

is better) of items selected by MqIRV and margin computation based on plurality

voting [90, 108]. We consider an item to be disliked by a user if it appears among

bottom 10 choices of the users, and then aggregate this over all the users to calculate

anti-plurality index for an item. To evaluate Goal (2), we compare approximation

factors of margins produced by different algorithms (margin produced by the proposed

algorithm/ exact margin), as well as compare the original margin values. We

finally compare the effectiveness of the proposed algorithms based on the number

114

of expensive DistTo calls they make (smaller is better). To evaluate Goal (3), we

evaluate pruning effectiveness of the algorithms and overall running time.

Query and Parameters Queries are generated randomly with varying constraints

for evaluating MqKIRV. For evaluating MqIRV, we vary the size of the ballot

(ℓ), number of users (m), and the number of candidates (n). We consider a various

combinations over these parameters to cover a wide range of recommendation settings.

The default values are n = 10, ℓ = 4 and m = 1000.

4.5.2 Goal 1: Analyzing anti-plurality

For these experiments, Movielens dataset is used, where we choose ballots such that

voters express their choices at least for 50 candidates. Set W is selected as follows:

10 randomly hated candidates form top 20 most hated candidates, plus 10 any other

randomly selected candidates. Anti-plurality index of MqKIRV and plurality voting

of the the winning candidates are presented in Figure 4.2. These results clearly

indicate that MqKIRV results in significantly smaller anti-plurality compared to

that of plurality voting.

4.5.3 Goal 2: Analyzing quality

Approximation factor. In Table 4.8, we present the approximation factors of the

MqIRV problems solved using different algorithms. The results are shown for four

real datasets. Two of the exact solutions are compared against the IP formulation

of MqIRV and exhibit approximation ratio of 1, as expected. AlgApprx has

an approximation ratio between 1.91 to 3.15. On the other hand, Random has an

approximation ratio between 3.61 to 4.21. As analyzed analytically,DistToAddAlg

is an exact solution of DistToAdd and has an approximation ratio of 1.

115

Margin. Figure 4.3 shows the box plot of difference in margin for AlgApprx and

AlgExact varying n for all four real datasets over ten different queries. These

results corroborate that AlgApprx is an effective solution across all four datasets.

We also analyze the margin difference between AlgApprx and Random using

one synthetic dataset and three real datasets varying n up to one million. For each

run, we keep the number of ballots m = n. Figure 4.4 shows AlgApprx always

returns smaller margin than Random. Using MovieLens data, Random margin is

about 20 times larger than AlgApprx.

Number of DistTo IP calls. Finally, we show that AlgExact requires

significantly less number of IP calls compared to Blom (Figure 4.5). On Adressa

News dataset on n = 10, AlgExact invokes about 17 times less number of IP calls

than what Blom does. These results demonstrate the effectiveness of our proposed

DistToLB and MqIRVUB solutions, compared to the state-of-the-art.

4.5.4 Goal 3: Analyzing scalability

Running time. In these experiments (Figure 4.6), we compare running time in

seconds forAlgExact, AlgApprx, and Blom on four real world datasets by varying

n, while keeping ℓ andm fixed. The exact algorithms show that running time increases

exponentially with increasing n. AlgApprx is almost 24333 times faster than Blom

for n = 12 using MovieLens dataset. While AlgExact is 7.6 times faster than

Blom for n = 12 using MovieLens dataset.

Figure 4.7 presents effect of varying ℓ and m on running time of AlgExact,

AlgApprx, and Blom on two real world datasets. As expected, running time

AlgExact does not significantly vary with increasing m and ℓ, as it is mostly driven

by exponential 2n cost of branch & bound tree exploration.

Running time in very large scale data. For these experiments, we compare

running time of our efficient solution AlgApprx and compare that with Random.

116

Table 4.8 Approximation Factor of The Algorithms

Dataset AlgExact DistToAdd AlgApprx Random

MovieLens 1 1 1.99 3.42

Adressa News 1 1 3.15 4.21

Book Crossing 1 1 1.91 3.61

Restaurant Reviews 1 1 1.94 3.67

50 75 100
candidates (n)

0

0.5

1.0
An

ti
-P

lu
ra

lit
y

In
de

x
IRV
Plurality

Figure 4.2 Anti-plurality index for MqKIRVand plurality voting.

Figure 4.8 shows that the running time of AlgApprx is significantly smaller than

Random. Using Adressa News dataset with n = 100k, m = 100k and l = 4, the

runtime for Random is about 100 times larger than AlgApprx.

Running time of DistToAddAlg. Figure 4.9 compares the running time between

our exact solution DistToAddAlg for DistToAdd with IP based implementation

(DistToIPADD). DistToIPAdd runtime increases exponentially with n as expected,

whereas, DistToAddAlg runs in n2. For MovieLens dataset with n = 10

DistToAddAlg is 53 times faster than DistToIPAdd.

4.5.5 Summary of results

Our first observation is that, MqKIRV significantly enables lower anti-plurality,

whereas, plurality voting does not. It indeed is an important observation, which

showcases that plurality voting may end up choosing less preferred candidates unlike

IRV, which is truly undesirable in recommendation settings. Our second major obser-

117

4 5 6 7 8 9 101112
candidates (n)

0

20

40

M
ar

gi
n

di
ff

er
en

ce

(a) MovieLens

4 5 6 7 8 9 10
candidates (n)

0.2k

0.6k

1.0k

M
ar

gi
n

di
ff

er
en

ce

(b) Adressa News

4 5 6 7 8 9 10
candidates (n)

0

10

20

M
ar

gi
n

di
ff

er
en

ce

(c) Book Crossing

4 5 6 7 8 9 10
candidates (n)

0

2

4

6

8

M
ar

gi
n

di
ff

er
en

ce

(d) Restaurant Reviews

Figure 4.3 Margin difference between AlgApprx and AlgExact varying n.

vation is that our designed AlgExact enabled by effective lower bound DistToLB

and upper bound MqIRVUB algorithm is highly effective as well as computationally

efficient compared to their counterparts Blom. Third, AlgApprx exhibits empirical

approximation factor around 2 (for 3 of the datasets) and runs significantly faster than

the exact solutions (order of magnitude faster) and the Random baseline. Finally,

consistent with our theoretical analysis, DistToAddAlgreturns an exact solution

for DistToAdd, runs in polynomial time, and is significantly faster (about 53 times

for some datasets) than the IP based solution.

4.6 Prior Work

We present three types of related work in this section.

Preference aggregation in recommender systems. Preference aggregation is

closely studied in the context of group recommendation [12, 13, 23, 30, 54, 129, 165,

173, 173], with the goal of selecting one or top-k items that are most suitable to the

118

50k 100k 500k 1000k
candidates

0

20

40

60

M
ar

gi
n

AlgApprx
Random

(a) Synthetic

200 500 800 1000
candidates

0

20

40

60

M
ar

gi
n

AlgApprx
Random

(b) MovieLens

5k 10k 50k 100k
candidates

5k

15k

30k

M
ar

gi
n

AlgApprx
Random

(c) Adressa News

5k 10k 15k
candidates

0

100

200

300

400

M
ar

gi
n

AlgApprx
Random

(d) Book Crossing

Figure 4.4 Margin for AlgApprx and Random.

preference of all users in the group. Preference aggregation models from social choice

theory [83] are adapted and related works study their computational implications, and

investigate efficiency opportunities. Related work also exists on modeling evolution

of users’ preference over time and adapting existing group recommendation models

to accommodate that [12]. In [28], the authors present a preference aggregation

algorithm designed for situations in which a limited number of users write review over

a large (but finite) set of candidates. [160] has illustrated a correspondence between

collaborative filtering (CF) and social choice theory. In [62], the authors empirically

demonstrate that multi-stage voting methods, such as STV and IRV offer benefits over

positional preference aggregation methods (e.g., plurality voting, approval voting) in

the recommendation contexts (recommending tweets, movies, hashtags), by handling

hyperactive users in a more equitable and fair way.

Changing original preferences. The second line of related work exists in how

to minimally update original preferences of the users so that the produced outputs

119

4 5 6 7 8 9 10 11 12
candidates (n)

1k

2k

3k

#
 IP

 c
al

ls

AlgExact
Blom

(a) MovieLens

4 5 6 7 8 9 10
candidates (n)

0.2k

0.6k

1.0k

1.4k

#
 IP

 c
al

ls

AlgExact
Blom

(b) Adressa News

4 5 6 7 8 9 10
candidates (n)

0

250

500

750

1000

1250

#
 IP

 c
al

ls

AlgExact
Blom

(c) Book Crossing

4 5 6 7 8 9 10
candidates (n)

5k

10k

15k

20k

#
 IP

 c
al

ls

AlgExact
Blom

(d) Restaurant Reviews

Figure 4.5 Number of IP calls for AlgApprx & AlgExact varying n.

satisfy additional criteria. Some leading criteria include, maximizing satisfaction of

some specific users considering rating based preference aggregation methods in top-k

recommendation [173], changing the original winner, that is, compute margin, or

produce Margin of victory (MoV), or satisfy fairness criteria, [121,197], to name a few.

Among these, the most relevant to this work is the prior work on computing MoV.

There exists two kinds of MoV: constructive and destructive. In the constructive

(destructive) version, the goal is to find the minimum number of changes to the ballots

which is needed so that a special candidate is (not) elected. [202] has investigated the

computational complexity and (in)approximability of computing MoV for various

voting rules, including approval voting, all positional scoring rules, etc. [37] has

introduced a sampling based probabilistic algorithm for finding the margin of victory,

which can be used for many voting rules.

Margin of victory of multi-stage preference aggregation methods. Multi-

stage methods, such as, STV and IRV, were introduced in the 19th century in electoral

120

4 6 8 10 12
candidates (n)

0

50

100

150

Ti
m

e
(s

)

AlgApprx
AlgExact
Blom

(a) MovieLen

4 6 8 10
candidates (n)

0

20

40

Ti
m

e
(s

)

AlgApprx
AlgExact
Blom

(b) Adressa News

4 6 8 10
candidates (n)

0

20

40

Ti
m

e
(s

)

AlgApprx
AlgExact
Blom

(c) Book Crossing

4 6 8 10
candidates (n)

0

200

400

600

Ti
m

e
(s

)

AlgApprx
AlgExact
Blom

(d) Restaurant Reviews

Figure 4.6 Runtime for AlgApprx , AlgExact and Blom varying n.

voting systems. [25] demonstrated that determining whether the MoV in an IRV

election is at most 1 is NP-hard for both constructive and destructive versions.

Moreover, there is no 2-approximation algorithm for it unless P = NP . In [71],

the coalitional weighted manipulation is investigated. In the coalitional weighted

manipulation, given a set of weighted ballots as the input such that each ballot with

weight w can be replaced by w votes with weight 1, and also a set of blank weighted

votes, the goal is to see whether it is possible to fill out the blank votes such that a

special candidate is selected (or not selected). It is shown that when the number of

candidates is 2, this problem is in P for both destructive and constructive versions is

in P ; otherwise, it is NP−complete. In [122], the authors have shown a branch and

bound algorithm that calculates possible winners when only some part of the ballots

are accessible, not all. The usage of [122] is to generate information on the result of

an election and to announce it on election night, when there are still some ballots

121

4 6 8
Maximum ballot size (l)

0

2

4

Ti
m

e
(s

)

AlgApprx
AlgExact
Blom

(a) MovieLens varying l

4 5 6 7
Maximum ballot size (l)

1

2

3

4

Ti
m

e
(s

)

AlgApprx
AlgExact
Blom

(b) Adressa News varying l

0 200 400
ballots (m)

0

2

4

6

Ti
m

e
(s

)

AlgApprx
AlgExact
Blom

(c) MovieLens varying m

0 10k 20k 30k
ballots (m)

0

5

10

Ti
m

e
(s

)

AlgApprx
AlgExact
Blom

(d) Adressa News varying m

Figure 4.7 Runtime for AlgApprx , AlgExact and Blom varying l and m.

that have not arrived at the specified place to count the votes. MoV of IRV [149] and

STV [113] are studied in many related works [142], [42], [20], [41].

In contrast, we study IRV, which is a multi-stage preference aggregation

procedures [172] that uses a choice function iteratively on diminishing sets of

alternatives. MqKIRV is different from MoV problem, we present non-trivial

hardness results and algorithmic solutions.

4.7 Conclusion

We study the suitability of Instant Run-off Voting (IRV) as a preference aggregation

method for selecting k different winners that satisfy the query constraints. We

formalize an optimization problem that aims at finding the margin, i.e., the smallest

number of modifications of original users’ preferences (ballots) so that the selected

k winners satisfy all these query constraints. We present principled models and

several non-trivial algorithmic and theoretical results. Our experimental analyses

122

100k 500k 1000k
candidates

0

200

400

600

Ti
m

e(
s)

AlgApprx
Random

(a) Synthetic

250 500 750 1000
candidates

0

1

2

Ti
m

e(
s)

AlgApprx
Random

(b) MovieLens

20k 60k 100k
candidates

0

100

200

Ti
m

e(
s)

AlgApprx
Random

(c) Adressa News

1k 10k 20k
candidates

0

25

50

75

Ti
m

e(
s)

AlgApprx
Random

(d) Book Crossing

Figure 4.8 Runtime for AlgApprx and Random.

demonstrate suitability of IRV as a preference aggregation method over plurality

voting, as well as corroborate our theoretical analysis.

This work opens up many interesting directions - as an ongoing work, we are

investigating how to design approximation algorithms with theoretical guarantees

for MqIRV. We are also studying how our proposed solution AlgExact could be

adapted to compute margin for single transferable voting (STV) schemes.

123

4 6 8 10 12
candidates (n)

0

200

400

Ti
m

e
(s

)

DistToAddAlg
DistToIPAdd

(a) MovieLens

4 6 8 10
candidates (n)

0

100

200

300

Ti
m

e
(s

)

DistToAddAlg
DistToIPAdd

(b) Adressa News

6 8 10
candidates (n)

0

2000

4000

Ti
m

e
(s

)

DistToAddAlg
DistToIPAdd

(c) Book Crossing

4 6 8 10 12
candidates (n)

0

200

400

600

Ti
m

e
(s

)

DistToAddAlg
DistToIPAdd

(d) Restaurant Reviews

Figure 4.9 Runtime for DistToAddAlg and DistToIPAdd.

124

CHAPTER 5

EQUITABLE TOP-K RESULTS FOR LONG TAIL DATA

5.1 Introduction

The proliferation of e-commerce platforms such as Amazon.com, Netflix, and

Spotify.com has given rise to the so-called “infinite-inventory”, which offer an order

of magnitude more records (products, movies, songs) than their brick-and-mortar

counter-parts [16]. This results in a long-tail market, where a handful of records

get heavily exposed to the end users and a long tail of “niche” records remain

relatively unknown. As a concrete example, the top-1000 highest rated movies in

IMDB [124] follow a long tail distribution in terms of number of views (refer to Y-axis

in Figure 5.1), even though they all have highly similar (average rating between 8.34

and 7.9)“utility” (IMDB ratings).

In Subsection 5.2.1 we describe the current process with a running example

on the aforementioned IMDB-1000 datasets, how it leads to inequitable exposure

of movies, and how we intend to redesign existing top-k algorithms to circumvent

that. Our proposed solution advocates to return one of the equivalent top-k sets to

the end users in a probabilistic manner, such that, after many such draws by many

end users, the exposure of the records are as equitable as possible. The same static

answer could still be returned if the application warrants - but when users pose generic

queries [153] (e.g., top-3 movies, books) on long tail data, this will unveil interesting

movies, songs, and products, that the users will not experience otherwise. To the best

of our knowledge, we are the first to study this aspect of unequal exposure inside top-k

algorithms that is agnostic to any specific scoring functions.

Problem Motivation and Models. We adapt a political theory, namely, the

Sortition Act [75, 180] and redesign existing top-k algorithms to have them compute

125

a set S of multiple top-k sets that are equivalent in utility as opposed to a fixed top-k

set. Given S, an end user still draws one of the sets at random. Hence, the goal

is to assign a probability distribution over S, i.e., PDF (S), such that after many

such draws from many end users, the records returned inside the top-k sets have as

uniform selection probability as possible. We formalize θ-Equiv-top-k-MMSP that

produces PDF (S) for a given query and a scoring function F . Each set s ∈ S

contains k number of records whose score is at most θ% (a tunable application

dependent input parameter) smaller than the optimum top-k score, and the PDF (S)

is computed such that the selection probabilities of the records in it are as uniform

as possible. Enabling equal selection probabilities promotes equal exposure of the

records. θ-Equiv-top-k-MMSP is rooted on maxmin fairness theory that maximizes

the minimum exposure. We are aware of a few related works that we borrow

inspirations from. [19] studies how to enable equal exposure in similarity search by

returning points within distance r from the given query with the same probability.

The bulk of the algorithmic fairness literature deals with group fairness along the lines

of demographic parity [134,197]: this is typically expressed by means of some fairness

constraint requiring that the top-k results (for any k) to contain enough records

from some groups that are protected from discrimination based on sex, race, age,

etc. In practice these group fairness constraints hurt equitable exposure [39, 94, 101]

owing to differential participation rates across sub population. Both [94, 101] study

how group fairness alone can hurt equitable exposure of the records and thus define

computational frameworks to promote equal selection probability in group fairness.

These existing works do not have any easy extension to top-k algorithms. We

study how θ-Equiv-top-k-MMSP alleviates exposure based fairness concerns that

demographic parity based group fairness (e.g., top-k parity [134], proportionate

fairness [197]) give rise to.

126

Technical Contributions. We formalize key definitions, such as, θ-equivalent

top-k sets, selection probability of records, and present θ-Equiv-top-k-MMSP

that has two steps (Section 5.2). (A) θ-Equiv-top-k-Sets generates S, the set

of θ equivalent top-k sets (where θ is a tunable parameter that can control how

much change is desirable across different top-k sets for different applications), (B)

MaxMinFair computes PDF (S) such that the minimum selection probability of a

record is maximized. We prove that the counting problem involved in θ-Equiv-top-

k-Sets is #P-hard, which makes θ-Equiv-top-k-MMSP an NP-Complete problem.

In Section 5.3, we first present an exact algorithm OptTop-k-θ that produces S,

all θ-equivalent top-k sets and is exact in nature. We also study efficient alternatives

later, which only computes a few θ equivalent top-k sets (as opposed to all). The

exact algorithm is inspired by the celebrated NRA algorithm [89] but not an easy

adaptation, because of the exponential nature of θ-Equiv-top-k-Sets. At the heart of

the process, OptTop-k-θ intends to maintain a set of candidate top-k sets, efficiently

compute and maintain their best and worst possible scores through upper and lower

bounds, and decide if it is safe to terminate and produce the exact S without

having to read any more records. However, because the number of possible size-k

sets increases exponentially with new records being read, OptTop-k-θ leverages

an efficient data structure based on the concept of item lattice that allows efficient

computation of the possible size-k sets and incremental updates of their score bounds

by reusing previously calculated scores. For producing PDF (S), we present a linear

programming-based exact solutionOpt-SP. ForOptTop-k-θ , the storage space and

computational cost of this lattice is O(
(
N
k

)
), which is the theoretical lower bound,

but the same structure could be made significantly lightweight, if approximation is

allowed, as we discuss in Section 5.4.

In Subsection 5.4.1, we present RWalkTop-k-θ that is highly scalable to solve

both θ-Equiv-top-k-Sets and MaxMinFair. It makes use of the same item lattice

127

8 . 3 4 6 7 . 9 7 6 7 . 9 2 4 7 . 9 0 5 7 . 9 1 7 7 . 8 9 4 7 . 9 2 2 7 . 8 9 3 7 . 9 0 7 7 . 9 1 8

0

2 0 0 0 0 0

4 0 0 0 0 0

6 0 0 0 0 0

8 0 0 0 0 0

1 0 0 0 0 0 0

1 2 0 0 0 0 0

A
ve

rag
e u

se
r v

ote
s

A v e r a g e I M D B R a t i n g

Figure 5.1 Viewership distribution of top-1000 IMDB movies.

structure described above, but builds it only partially on the go, making it significantly

lightweight. RWalkTop-k-θ is a probabilistic algorithm based on random walk on the

lattice that is backed by the Good Turing Test [100]. Good Turing Test is often used

in population studies to estimate the number of unique species in a large unknown

population [100], which we use to determine whenRWalkTop-k-θ could stop and still

discover all θ-equivalent top-k sets with high probability. Given S, RWalkTop-k-θ

calls a highly efficient greedy solution Gr-SP to produce a probability distribution

over it.

In Subsection 5.4.2, we finally design ARWalkTop-k-θ, an adaptive random walk

based approach that solves θ-Equiv-top-k-Sets andMaxMinFair at the same time.

The intuition comes from the fact (that we formally prove in the paper) that if S

contains records that only appears in one and exactly one set s ∈ S, then PDF (S) is

a uniform probability distribution which ensures equal selection probabilities for all

records. ARWalkTop-k-θ is similar to the random walk described in RWalkTop-

k-θ, except it performs the random walk adaptively, by lowering the probability of

the records that are already part of some valid s, and boosting the probability of the

remaining records that have not been part of any valid s yet. After that, PDF (S)

becomes a uniform probability distribution over the sets produced during the adaptive

random walk.

128

Experimental Evaluations (Section 5.5). Our final contributions are empirical.

As discussed above, equal exposure is orthogonal to demographic parity based

group fairness, such as, top-k-parity [134], proportionate fairness [197], or group

exposure [178]. We empirically demonstrate θ-Equiv-top-k-MMSP further alleviates

exposure biases of individual items in long tail data that group fairness alone gives

rise to by comparing it with two related works [134, 178]. We use 4 different large

scale real world datasets and two synthetic datasets to extensively evaluate our

designed solutions and compare them against several intuitive baseline algorithms.

Our experimental evaluations also corroborate our theoretical analysis, it terms of

the quality and the scalability of the designed solutions.

Section 5.6 contains the related work and we conclude in Section 5.7, giving

future research directions.

5.2 Data Model and Problem Definition

5.2.1 Running example

Consider the IMDB-1000 datbase D. The attributes are movie name, IMDB rating,

year, genre, and director. Assume that a user writes a query (q) to search for top-3

movies (k = 3) released in year 2022. Key notations are described in Table 5.1.

Imagine only 5 movies as described in Table 5.2 are released in 2022 and they

have highly similar IMDB ratings. Let the scoring/utility function F be the weighted

relevance and max sum diversity (WRMSD in short), as proposed below (with λ

= 0.5). Let IMDB ratings reflect the relevance scores of the records and diversity

be computed considering genre and director values. The sorted pairwise diversity is

given in Table 5.3.

In the set s1 = {r2, r3, r5}, the utility score of r2, r3, r5 are 6.75, 6.65, 6.45,

leading to the maximum utility score of top-3 movies to be 19.85, as shown in 5.4.

Static top-k algorithms will always return {r2, r3, r5}, whereas, s2 = {r1, r2, r3}, s3 =

129

{r2, r3, r4}, s4 = {r1, r3, r5}, may also be equally desirable (all have items with high

utility, leading to high set score above 19). However, if only s1 is always returned,

this leads to little to no exposure of movies r1, r4.

We advocate for an alternative process, where, there exists a tunable parameter

θ, which will empower the application designer to introduce variability in the top-k

results to the end users (if the application warrants the same static answer, θ could

be set to 0). For long tail data with generic queries [153], this process may bring

forth additional interesting movies, products, songs to the end users. If θ = 0.03,

the goal is to create a set S of top-k sets, such that each s ∈ S has utility score

≥ (19.85− [0.03× 19.85]) = 19.25. It is easy to notice that even with only 5 records,

there are three additional sets {s2, s3, s4} that satisfy this condition (Table 5.4).

The top-k interface however still allows users to see only one set of k results.

Thus, given S, our goal is to create a probability distribution over it, PDF (S). A user

draws one s from S corresponding to its associated probability, such that, after many

draws from many end users, the movies in S have as uniform selection probabilities

as possible. Creating PDF (S) is non-trivial - if one associates uniform probability

(0.25) to each of the 4 sets, then, r3 will always be over exposed (quantified by

its selection probability, which is also formalized in this section), as it will always

be returned to the end users, leading to 1 selection probability, whereas, r4 will be

heavily underexposed. The selection probabilities of r1 = 0.5, r2 = 0.75, r5 = 0.5,

and that of r4 is only 0.25, as r4 is present in only s3 out of the 4 sets. Our effort

here is thus to produce PDF (S) such that the movies in S have as uniform selection

probabilities as possible.

5.2.2 Data model

Database. A database D contains N records, where each record is represented as r.

130

Top-k Query. A top-k query q intends to return k answers fromD. We are especially

interested in generic queries (e.g., top vacation spots, top movies, good books, etc).

Utility Based Scoring Functions. Given a query q and D, a utility based scoring

function F scores each record with utility value F(r, q) and produces F(s, q), r ∈

s, |s| = k, which is the the aggregated utility score of set s with k records.

• Relevance: F(r, q) = Rel(r, q), where Rel is the relevance between record r and
query q.

• Diversity: Diversity is the dissimilarity between any two records, Div(ri, rj)
that is used to capture results that are representative of the population.

The attributes of the records could be used to calculate these values. Tables 5.2, 5.3

have some of those for Example 5.2.1.

Representative F . Some representative utility functions appear as follows.

• Sum-relevance. F(s, q) = Σr∈sRel(r, q)

• Weighted relevance and max sum diversity (WRMSD).
F(s, q) = λ× Σr∈sRel(r, q) + (1− λ)× Σr∈sMaxr,rj∈{s−r}
Div(r, rj), where λ is a weight between [0, 1].

• Maximal marginal relevance [55] or MMR. F(s, q) = λ × Σr∈sRel(r, q) + (1 −
λ)× Σr∈sMinr,rj∈{s−r}Div(r, rj)

The proposed framework is generic and extensible to any utility function,

however, as we shall see later that the exact solution θ-Equiv-top-k-Sets requires

the function to be monotonic.

Top-k Algorithms Given D, q, and an integer k, return a set s of k records from

D that has the highest F(s, q), i.e., |s| = k; and s has the highest utility score, i.e.,

for any other set of k records s′, F(s, q) ≥ F(s′, q).

131

Promoting Fairness inside Top-k Algorithms It is easy to see that there could

be more than one set of k-records that have highly similar utility score. To that end,

we define the notion of equivalent size-k sets.

Definition 11. Equivalent size k sets. Given a threshold θ, a query q and size k,

two sets si and sj each with k records are equivalent if the score of the set with lower

score is not smaller than a predefined threshold θ% of that with the higher score, i.e.,

si ≡ sj if F(si, q) ≥ (1− θ)×F(sj, q), when F(si, q) < F(sj, q)

Running Example. In the context of example 5.2.1, when WRMSD is

considered as the scoring function and θ = 0.03, two equivalent size k sets with

scores 19.85 and 19.7 are s1 = {r2, r3, r5}, s2 = {r1, r2, r3}, respectively.

Definition 12. Probability Distribution over size k sets. Given a set S of sets,

each with k records, a probability distribution PDF (S) assigns a probability P (s) to

each s ∈ S, such that
∑
s∈S

P (s) = 1.

Definition 13. Selection probability of a record. Given a probability distribution

PDF (S) of a set S containing many size k sets, the selection probability [94] of a

record r is the sum of probability values of all the sets that contain r.

P(r) =
∑

r∈s,s∈S

P (s) (5.1)

Running Example. Considering the running example, uniform probability

distribution P (s1) = P (s2) = P (s3) = P (s4) = 1/4, leads to selection probability

P(r4) = P (s3) = 1/4, whereas, P(r3) = P (s1)+P (s2)+P (s3)+P (s4) = 1. Indeed,

no matter which set the end users draw, r3 will always be returned, whereas, r4 will

be returned only 1/4 of the time.

132

5.2.3 Problem definition and hardness

Our overarching goal is to produce top-k set of sets that are “equivalent” in utility

w.r.t. the set with the highest utility (i.e., the optimum top-k set), and ensure that all

records present in any of the equivalent top-k sets have an equal selection probability.

Problem Definition 4. (θ-Equiv-top-k-MMSP)Maximize Minimum Selection

Probability in θ-Equivalent Top-k Sets.

Given a database D with N records, scoring function F , threshold θ, query q, and

integer k, produce a set S of equivalent top-k sets and a probability distribution

PDF (S) over S, such that, the minimum selection probability of a record present

in any s ∈ S is maximized. Specifically, we define the following two sub-problems.

• θ-Equiv-top-k-Sets. Produce a set S of all θ-equivalent top-k sets, such that,
s ∈ S satisfies:

F(s, q) ≥ (1 − θ)× argmaxs′∈SF(s′, q)

• MaxMinFair. Compute probability distributions S such that the smallest
selection probability P(r) of a record r ∈ s, s ∈ S is maximized. That is:

Maximize Min P(r), r ∈ s, s ∈ S, (5.2)

We note that equal selection probability of all the records is perhaps too ideal

to achieve in real world, resulting in finding no feasible solutions to many problem

instances. Thus, the reasons to strive for equality also motivate a more gradual version

of this goal: making selection probabilities as equal as possible [85], which adapts to

the Egalitarian Social Welfare notion from the optimization standpoint - maximizing

the lowest selection probability of the records present in any top-k sets. Indeed,

our proposed definition MaxMinFairaccommodates the properties of equal selection

probabilities in the most generic way, and is also used in related literature [94,101].

θ-Equiv-top-k-MMSP compared to existing fairness criteria. θ-Equiv-top-

k-MMSP is not designed to promote group fairness - it is more aligned to individual

133

fairness by promoting equitable exposure to records that satisfy long tail property.

Related works on item-side fairness in recommendation systems [38, 61, 133, 196]

is defined wrt ranked order of the top-k items, whereas, θ-Equiv-top-k-MMSP

focuses on a set based notion (if an item is present in top-k, it has exposure, else

not) which is suitable to only long tail data. As we empirically demonstrate in

Section 5.5, θ-Equiv-top-k-MMSP complements multiple group fairness criteria

that are suitable for ranking and top-k, such as top-k statistical parity [134] and

group exposure [178], Overall, θ-Equiv-top-k-MMSP is fundamentally different

from existing fairness criteria. Section 5.6 has further details.

In general, our proposed framework can accommodate any scoring function.

However, when the scoring function is non-monotone, such as, MMR [55], the designed

solutions become approximation.

Theorem 16. The problem of finding the number of θ-Equiv-top-k-Sets is #P-

hard.

Proof. We show a polynomial time reduction from the problem of computing all

maximal frequent itemsets of size at most t [109,204] to the problem of computing all

θ-equivalent top-k sets, that has a simple mapping between the number of solutions.

This suffices since the problem of finding the number of σ-frequent maximal itemsets

(threshold σ ∈ [0, 1]) with at most t items of a given 0-1 database D is known to be

#P-hard [204].

We take an instance of such 0-1 database with m transactions over N items.

The σ is set to be 1/m. Given one such instance of a 0-1 database, we create an

instance of our problem as follows: each item becomes a unique record r, such that

F(r, q) = 1, for an arbitrary query q. F(s, q) = Σ∀r∈sF(r, q). θ is set to be any

number between [0, 1]. A set of items is σ-frequent maximal itemset of size at most k,

iff the set of records corresponding to the itemset forms a set s with score F(s, q) = k.

134

Table 5.1 Table of Notations

Symbol Definition

N # records in D

k, q size of result sets, query

θ,s, S equivalence threshold, a top-k set, θ-equivalent top-k sets

C, L, F candidate set, sorted input lists, scoring function

P(r) selection probability of record r

Table 5.2 Records With Sorted Relevance (Example 5.2.1)

Record Movie Name IMDB Score

r1 Top Gun: Maverick 8.6

r2 K.G.F: Chapter 2 8.5

r3 Everything Everywhere All at Once 8.3

r4 RRR 8.1

r5 The Batman 7.9

Therefore, the number of θ-equivalent top-k sets is at least as many as the number

of σ frequent maximal itemsets of size at most k. This completes the reduction.

Theorem 17. The θ-Equiv-top-k-MMSP problem is NP-Complete.

Proof. (sketch) We omit the details for brevity. Intuitively, the hardness comes from

the fact that θ-Equiv-top-k-MMSP needs to enumerate all θ-equivalent top-k sets,

which is at least as hard as counting all such sets that is proved to be #P-hard.

5.3 Exact Algorithms

We first describe an exact solution that solves both the sub-problems θ-Equiv-top-

k-Sets and MaxMinFair exactly, thereby ensuring exact solution for θ-Equiv-top-

k-MMSP.

The framework is described in Algorithm 11. To solve θ-Equiv-top-k-Sets, it

runs in a loop and finds the i-th best top-k set in the i-th iteration - that is, F(s, q) =

TopkSets(i) ≥ F(s′, q) = TopkSets(j), where i < j. It maintains all records that

are seen throughout. This process continues until the utility score of a top-k set

falls θ% below from the optimum top-k. After that, it calls the MaxMinFair S to

produce PDF (S).

In Subsection 5.4.2, we will show how these two steps could be combined to

design a highly scalable solution.

135

Table 5.3 Sorted Diversity List Based on Example 5.2.1

Pair of records (r2,r3) (r3,r5) (r1,r3) (r3,r4) (r1,r4) (r4,r5) (r1,r2) (r2,r4) (r2,r5) (r1,r5)

Diversity Score 5 5 4 4 2 2 2 2 1 1

Table 5.4 WRMSD Scores of All Set of Sets, Each With Three Movies

sets s2:{r1,r2, r3} {r1,r2, r4} {r1,r2,r5} {r1,r3,r4} s4:{r1,r3,r5} {r1,r4,r5} s3:{r2,r3,r4} s1:{r2,r3,r5} {r2,r4,r5} {r3,r4,r5}

score 19.7 15.6 14.5 18.5 19.4 15.3 19.45 19.85 15.25 19.15

5.3.1 Algorithm for θ-Equiv-top-k-Sets

Our proposed algorithm OptTop-k-θ runs in a loop by performing sorted accesses

over the input lists through a cursor movement by calling DivGetBatch(),

gradually produces TopkSets(i) sets whose scores monotonically decreases, and

finally terminates when all θ equivalent top-k sets are found. θ-Equiv-top-k-Sets

requires the scoring functions to be monotonic, we demonstrate OptTop-k-θ using

one of the representative function WRMSD described in Subsection 5.2.2.

1. Generates and maintains a candidate set (C, i, j) of top-k sets as it reads j-th
records from the cursors. (C, i, j) is needed for deciding TopkSets(i).

2. Local stopping: if the TopkSets(i) is present in (C, i, j).

3. Global stopping: if all θ Equivalent top-k Sets are found.

OptTop-k-θ borrows inspiration from the celebrated NRA (No Random Access)

algorithm [89]. However, it is an not an easy adaptation of NRA, because of the

exponential nature of θ-Equiv-top-k-Sets. The algorithm leverages an efficient data

structure based on the concept of item lattice that allows efficient computation of

the possible size-k sets and incremental updates of their score bounds by reusing

previously calculated scores, as described in Subsections 5.3.1 and 5.3.1, respectively.

Analyzing Sorted Access Cost Sorted access (SA) is enabled by implementing

a getNext() interface, largely inspired by [89]. This cost is highly dependent on the

underlying scoring function F and we believe there does not exist an unified way

136

Algorithm 11 Generic Framework for θ-Equiv-top-k-MMSP

Inputs: q, k, θ, database D, F

Outputs: PDF (S): probability distribution over a set S of top-k sets

1: flag = 0

2: Opt =∞

3: s = TopkSets(1)(F , D, k)

4: Opt = s.score, Score = Opt

5: S ← {s}

6: i ← 2

7: while (Score ≥ (1-θ)×Opt)and(flag ̸= 1) do

8: s = TopkSets(i)(F , D, k)

9: S ← S
⋃

s

10: Score = s.score, i← i+ 1

11: end while

12: PDF (S)←MaxMinFair(S)

to express this cost that handles any arbitrary scoring function. For the purpose of

illustration, let us assume that the numeric attributes are indexed using B-trees [107]

and categorical attributes are indexed using inverted index [32]. For the simplicity of

exposition, let us assume that F is monotonic and p attributes involved in scoring a

record. Thus, getNext() is implemented as a series of sorted accesses over the indexes

of each of the p-attributes until the next best record is determined based on F (using

Fagin’s algorithm [89] like implementation). Thus, if SAw denotes the # SA’s on

attribute w in this process, the cost of getNext() is O(Σp
w=1SAw).

Generate i-th best top-k set The first two operations are done inside Algorithm

TopkSets(i), whose pseudo-code is presented in Algorithm 12. TopkSets(i) is

responsible for generating the i-th best top-k set. For the ease of exposition, we

137

assume there exists only one unique top-k set in each round, although ties could

be handled seamlessly in the framework. Given the set L of sorted input lists,

the algorithm sets a cursor on each list, and fetches the next record from those

lists through L DivGetBatch() calls. As an example, if the input lists consist

of both relevance and diversity, then DivGetBatch() fetches the next record from

sortedRelList list as well as that from the sortedDivList list and their corresponding

scores. The cursor points to the current position in the lists (let us assume that

position to be j). It keeps track of the all seen records upto j-th position. Then

createNewSets creates all possible size-k sets.

In order to accomplish (2), the other challenge involves score computations

of size-k sets that are encountered so far. Since, OptTop-k-θ performs only sorted

accesses, it may not be able to produce the exact score of a set of k records immediately

- rather has to consider upper and lower bounds of score to argue if this set is a

possible candidate for TopkSets(i). Upper bound score of a set s, ub(s) (similarly

lower bound score lb(s)) is the maximum possible (similarly the smallest) possible

score s can get. Moreover, when more records are being read, these bounds are to be

updated as well. Subsection 5.3.1 describes how that could be done efficiently.

Lower and upper bound score of a set. Clearly, the lower bound (upper bound)

score of a set s, lb(s) (similarly ub(s)) is the minimum (similarly maximum) possible

score of s that LowerBound and UpperBound calculate. LowerBound(s) is

calculated based on an objective function F and using the scores of any unseen

component of F(s) by the smallest possible value. UpperBound(s) is done

analogously, except the unseen component is replaced by the cursor reading at the

j-th position. Lines 5-7 do that task.

Illustration using WRMSD. Imagine F is (weighted rel, max div). In that case

L consists of two lists - a sorted relevance list sortedRelList and a sorted pairwise

diversity lists sortedDivList in decreasing order of relevance and diversity values,

138

respectively. Imagine the cursor is at the 2nd position of both these lists (i.e., j = 2)-

therefore, so far it has seen rel(r1), rel(r2), div(r2, r3), div(r3, r5). Clearly, 4 records

are seen so far, but all of their scores are not known - 4 different size-k (k = 3) sets

could be produced. But, because of sorted access, the score of none of these sets could

be calculated exactly. As an example, ub(r1, r2, r3) = 8.6+ 8.5+ 8.5+ 5+5+5 if the

weight λ is ignored. However, when the cursor reads another record, either from the

relevance or from the diversity list, the ub of all sets need to be updated.

Deciding the i-th top-k set. Line 8 of TopkSets(i) produces and maintains a

threshold and lines 9-12 decide if it needs to continue the computation any further or

it is safe to terminate.

Definition 14. Threshold is the maximum utility score of any unseen top-k set.

threshold[j] = Max[ub(C, i, j)]

Given the cursor is at the j-th position of the input lists, if threshold[j] falls

below Opt×(1-θ), there is no point of looking any further,TopkSets(i) can terminate

by returning the best set present in (C, i, j).

Lemma 7. s = TopkSets(i), if s = argmax(lb(C, i, j)) and lb(s) ≥ max(ub(C, i, j)−

s))

Lines 13-17 make another key calculation based on Lemma 7. It checks if there

exists a set s in (C, i, j) with the maximum lower bound, such that the lb(s) is not

smaller than the upper bound scores of all other remaining sets in (C, i, j). In that

case, s is the i-th best set and TopkSets(i) terminates upon returning that set and

its values. Indeed, when F is monotonic, no other unseen sets can have higher score

than s.

Lemma 8. s = TopkSets(i), if s = argmax(lb(C, i, j)) and lb(s) ≥

min(threshold[j],TopkSets (i− 1).score)

139

Similarly, based on Lemma 8, the algorithm makes another important decision

in Lines 22-27. If the maximum lb(s) of s is not smaller than the minimum of

threshold[j] and the score of the top-k set seen in the i − 1-th iteration, then lb(s)

is the top-k set in the i-th iteration. This lemma holds good, since the scores of the

returned top-k sets decrease monotonically over iterations.

Pruning sets. Even when TopkSets(i) can not terminate, it checks if all sets in

(C, i, j) are potential candidates to be the i-th best set - clearly, if the upper bound

score of a set s in (C, i, j) is not larger than the lower bound scores of all other sets

in C, s could be pruned.

Subroutine createNewSets Given N ′ < N number of items that are encountered

by TopkSets(i) already, when a new item r is read through a DivGetBatch() call,

OptTop-k-θ has to perform some hefty tasks.

• It needs to update (C, i, j) by adding additional size k sets that involve r.

• More importantly, it needs to update the lower and upper bound scores of the
sets in (C, i, j) - or see if the score could be calculated exactly, if all required
scores are read.

A naive idea is to regenerate all size
(
(N ′+1)

k

)
sets from scratch, which is compu-

tationally wasteful and exponential. To that end, we abstract the representation of

the size k sets over a hierarchically ordered space as a lattice, and store ub and lb

scores of the record sets there. This data structure offers a great benefit for doing

both of these aforementioned tasks efficiently enabling incremental computation.

Data Structure. Given N ′ seen records, the lattice data structure maintains all(
N ′

1

)
,
(
N ′

2

)
, . . .

(
N ′

k

)
sets, as well as their utility score. A node in the lattice represents

a possible set, singletons, pairs, triples, ..., size k sets, and so on. An edge represents

the membership between two size l and l + 1 sets. In order to solve θ-Equiv-top-

k-Sets exactly, this space requirement is indeed the lower bound. We also note the

140

r1 r2 r3 r4 r5

{r1,r2} {r1,r3} {r1,r4} {r1,r5} {r2,r3} {r2,r4} {r2,r5} {r4,r5}{r3,r4} {r3,r5}

{r1,r2,r3} {r1,r2,r4} {r1,r2,r5} {r1,r3,r4} {r1,r3,r5} {r1,r4,r5} {r2,r3,r4} {r2,r3,r5} {r2,r4,r5} {r3,r4,r5}

{r1,r2,r3,r4} {r1,r2,r3,r5} {r1,r3,r4,r5} {r2,r3,r4,r5}{r1,r2,r4,r5}

{r1,r2,r3,r4,r5}

Figure 5.2 A complete lattice based on Example 5.2.1.

lattice structure could be made significantly lightweight (both computationally and

storage-wise), if approximate solutions are acceptable, as we discuss in Section 5.4. A

complete lattice for our running example is shown in Figure 5.2 given N = 5, although

the data structure only stores information upto size k sets. The set {r1, r2, r3} at

level three is created by union of three sets in level two, which are {r1, r2}, {r1, r3},

{r2, r3}. Hence the edges represent the connection between these sets in level l and

l + 1.

Maintaining the structure. This data structure is updated incrementally as new

records are read by OptTop-k-θ. Take the running example again and imagine

rel(r1), and div(r2, r3) is read. So far, the data structure have the following nodes r1,

r2, r3, {r1, r2}, {r2, r3}, {r1, r3}, and {r1, r2, r3}. Next, imagine it reads div(r3, r5),

thus a new record r5 is encountered. This creates a singleton, 3 new pairs, and 3

additional size-3 sets. Clearly, r5 will include the following three additional size-k

sets in (C, i, j), {r1, r2, r5}, {r2, r3, r5}, {r1, r3, r5}.

Efficient bound computation and maintenance Imagine the cursor on the

diversity list now moves to the third position and reads div(r1, r3) = 4. The

upper bound scores of all of these following sets {r1, r2, r3}, {r1, r2, r5}, {r2, r3, r5},

{r1, r3, r5} are to be updated now. One can naively calculate these bounds from the

141

scratch - but there exists an opportunity of reusing previously done computation that

is clearly more efficient.

After reading div(r1, r3) = 4, our representation updates the score of the node

{r1, r3} in the lattice. All nodes that have a direct or indirect edge to {r1, r3}, their

scores are also updated.

Similar situation occurs, when a new record r is encountered - the lattice

representation allows us to quickly identify the new nodes that now contains r, as

well as how to efficiently reuse the previously computed score of a set s′ of size smaller

than k to compute score of set {s′
⋃
r}.

F(s′
⋃

r, q) = F(s′, q) + F(r, q) (5.3)

Formally, our effort is to study score update as an incremental process and reuse

sub-computations that are done before. We express the score (lb, ub, or exact) of a

set as a summation of scores over the subsets and retrieve the previously computed

scores and reuse it, as opposed to calculating the scores from scratch every time.

Indeed, the lattice representation over the seen records allows us to decompose the

score of a set as an aggregation over the sub-sets and reuse what has been done before.

Score reuse for WRMSD. Imagine an instance of OptTop-k-θ and

the DivGetBatch() call has just returned the second row in the diversity list,

namely div(r3, r5) = 4 and the goal is to produce top-k sets, where k = 4. A

brand new record r5 is just seen and this will add three additional size-3 sets

{r1, r2, r5}, {r2, r3, r5}, {r1, r3, r5}, three size-2 sets {r1, r5}, {r2, r5}, {r3, r5}, and

one singleton r5 on the lattice. The lattice structure facilitates score calculation of

WRMSD({r1, r2, r3, r5}) by reusing the scores that are calculated before. For the

purpose of illustration, lets just consider the diversity component of the WRMSD

calculation WRMSD−Div({r1, r2, r3, r5}) and see how upper bound of scores could

142

be calculated incrementally.

ub− div({r1, r2, r3, r5}) = Maxdiv[(r1, {r2, r3, r5})]

+Maxdiv[(r2, {r1, r3, r5})]

+Maxdiv[(r3, {r1, r2, r5})]

+Maxdiv[(r5, {r1, r2, r3})].

Now consider Maxdiv[(r3, {r1, r2, r5})] and note that this could simply be

expressed as follows:

Maxdiv[(r3, {r1, r2, r5})] = Max(div(r3, r5),Maxdiv[(r3, {r1, r2})] (5.4)

Maxdiv[(r3, {r1, r2})] is pre-calculated, hence Equation (5.4) could be efficiently

computed by taking a maximum over Maxdiv[(r3, {r1, r2})] score and div(r3, r5).

This allows sharing computation across sets.

Global stopping OptTop-k-θ halts when all θ-equivalent top-k sets are produced.

This is checked by when one of the following two conditions is satisfied; (i). the last

score received from TopkSets(i) is smaller than (1 − θ) × Opt, or (ii). the latest

threshold fell below (1− θ)×Opt (which sets a flag to 1). It is guaranteed that there

is no future unseen sets with score at most θ% smaller than the best top-k sets. At

that point, OptTop-k-θ safely terminates and produces the exact solution.

Theorem 18. OptTop-k-θ is an exact solution for θ-Equiv-top-k-Sets .

Proof. (sketch). Given a monotonic scoring function, it is easy to see that

TopkSets(i) produces the i-th best top-k set in the i-th iteration. OptTop-k-θ

maintains all records across iteration, forms all potential top-k sets. Finally, when

OptTop-k-θ terminates, the global stopping condition guarantees that no unseen set

of k records will be θ-equivalent of the top-k set. Hence the proof.

143

Running time of OptTop-k-θ. In Section 5.2, we prove that the counting

problem involved in θ-Equiv-top-k-Sets is #P-hard. In reality, the running time

is dominated by the number of records OptTop-k-θ reads before termination and is

dominated by the factor
(

seen records
k

)
, which is purely instance dependent. It could

be proved that OptTop-k-θ is instance optimal.

5.3.2 Algorithm for MaxMinFair

The last line of Algorithm 11 calls Algorithm MaxMinFair, which maximizes the

minimum selection probability of the records present in S. We propose a linear

programming based optimum solution Opt-SP that takes the set of sets S as input,

and produces PDF (S), such that MaxMinFair optimizes. The problem is formally

defined as,

Maximize: x

subject to:

P(ri) =
∑

∀ri∈s,s∈S

P (s)

P(ri) ≥ x, ri ∈ s, s ∈ S∑
∀s∈S

P (s) = 1

Given the linear objective function and constraints this could be solved using an

off-the-shelf linear programming solver using Simplex or Ellipsoid method.

Running Time. Opt-SP involves solving a linear program using Simplex or

Ellipsoid method. Since the feasible region of the objective function is a polytope,

these algorithms take polynomial time to the input size N and |S|.

Running Example. Using Example 5.2.1, PDF (S) is produced as follows:

P (s1) = 0, P (s2) = 0, P (s3) = 0.5, P (s4) = 0.5, leading to selection probability of

r3 = 1, and the remaining all 4 records each will have 0.5 selection probability.

144

5.4 Approximation Algorithms

We present two approximate solutions in this section. The first one is RWalkTop-

k-θ. To solve θ-Equiv-top-k-Sets, instead of designing a deterministic exact

solution that could be exponential, it leverages a random walk based approach

on the item lattice that is highly efficient and is backed by probability theory.

To solve MaxMinFair, it presents a highly efficient greedy solution Gr-SP.

ARWalkTop-k-θ solves both θ-Equiv-top-k-Sets and MaxMinFair at the same

time through an adaptive random walk. Both RWalkTop-k-θand ARWalkTop-k-θ

make use of the lattice structure described in Section 5.3, but it is computed

only partially on the fly, making it significantly lightweight computationally and

storage-wise.

5.4.1 Algorithm RWalkTop-k-θ

Algorithm 13 leverages probabilistic computation for producing θ-Equiv-top-k-Sets

by making random walks on the item lattice. Following that, it solves MaxMinFair

using a greedy technique.

Inputs to the algorithm are the query, k, objective function F , θ, and the items

in D. Additionally, it takes the optimum top-k set and its corresponding score from

TopkSets 1. It starts by assigning each record a uniform probability of 1/N . At

each step it does uniform random sampling without replacement to select a record

and repeats the process until a set has k records. This completes a single random

walk on the item lattice, where the walk consists of the edges that are traversed. After

it retrieves a size k set s, it computes F(s, q) and retains s, if F(s, q) ≥ Opt − θ. It

keeps repeating the process and stops when each retained s is visited atleast twice in

the process.

Termination Condition of the Random Walk The termination condition

used for random walk is inspired by the Good Turing Test that is often used in

145

population studies to determine the number of unique species in a large unknown

population [100]. Consider a large population of individuals drawn from an unknown

number of species with diverse frequencies, including a few common species, some

with intermediate frequencies, and many rare species. Let us draw a random sample

of Nsamp individuals from this population, which results in n1 individuals that are

the lone representatives of their species, and the remaining individuals belong to

species that contain multiple representatives in the sample population. Then, P0,

which represents the frequency of all unseen species in the original population can be

estimated as follows:

Lemma 9. (Good Turing Test). P0 = n1/Nsamp .

The assumption here is that the overall probability of hitting one rare species

is high while the probability of hitting the same rare species is low. Therefore, the

more the sample hits the rare species multiple times, the less likely there are unseen

species in the original population. We apply Lemma 9 to the θ-equivalent top-k

sets construction, where a valid θ-equivalent top-k sets maps to the species and the

probabilities of finding each such set in RWalkTop-k-θ are the frequencies. The set

of θ-equivalent top-k sets discovered during RWalkTop-k-θ is the sample population.

By ensuring this process visits each constructed set at least twice, we are essentially

ensuring that n1 is 0. Thus, using Lemma 9, P0 can be estimated to be 0, which

means it is highly likely that all θ-equivalent top-k sets are discovered.

Illustrative Example. Figure 5.2 shows the complete lattice involving Example 5.2.1.

To solve θ-Equiv-top-k-Sets, the algorithm uniform randomly adds a record and

continues the process until a size-3 is obtained. This way the set s1:{r1, r2, r3} is

formed. If s1 is a valid answer, it is retained. The process continues until all valid

sets are discovered at least twice.

146

Subroutine Gr-SP Subroutine Gr-SP is designed by leveraging the following

lemma.

Lemma 10. If every record r in S appears in only one set s ∈ S, the PDF (S) is a

uniform distribution that guarantees equal selection probability of the records.

Proof. Lemma 10 demonstrates an ideal scenario, where a record r ∈ s, s ∈ S appears

in only one s. If the PDF (S) is a uniform distribution, that is, P (s) = 1/|S|,∀s ∈ S,

by leveraging the definition of selection probability of a record (Definition 13), then,

P(r) = 1/|S|. Clearly, this guarantees that each records r to have the same selection

probability.

Basically, the greedy algorithm is iterative and attempts to select a subset of

sets from S that contains different records. Those subset of sets become part of O

and gets a non-zero probability value. Specifically, It selects a set s from S in each

iteration and adds to O, which includes the highest number of records that are not yet

present in O but present in S. The process terminates when O contains all records in

S. After that, each set that is present in O gets uniform probability of 1
|O| . Any set

s ∈ {S − O}, gets probability 0. We conjecture that this simple yet highly efficient

algorithm accepts a 2-approximation factor, the formal proof is left to be explored in

the future.

Illustrative Example. Imagine S contains the following 5 sets (k = 2), s1: {r1, r2},

s2: {r3, r4}, s3: {r1, r5}, s4: {r3, r5}, s5: {r1, r3}. If Gr-SP first adds s1 to O, then,

in the next iteration it will add s2, and finally s3/s4. One possible solution will be

O = {s1, s2, s3}. Each of these sets will get a probability of 1/3 and the remaining

two sets will have probability 0. The minimum selection probability of the records

will be 1/3.

Running time. With an appropriate data structure, such as bucket queue, Gr-SP

takes O(N × |S|) to run.

147

5.4.2 Algorithm ARWalkTop-k-θ

The last algorithm ARWalkTop-k-θ we discuss does not separately compute θ-

Equiv-top-k-Sets, and then, MaxMinFair - instead, solves these two problems

together. It makes use of Lemma 10 to design an adaptive random walk.

The adaptive random walk based algorithm ARWalkTop-k-θ is similar to the

random walk part of RWalkTop-k-θ, except it performs the random walk adaptively,

by lowering the probability of the records that are already part of some valid s, and

boosting the probability of the remaining records that have not been part of any valid

s yet. The goal is to discover θ-equivalent top-k sets where the same record r repeats

as few times as possible across the sets - ideally appears in one and only one s. The

stopping condition is still guided by the Good Turing Test as described above. Once

the process terminates, each set s in S gets uniform probability, and accordingly the

selection probability of the records are calculated.

For each record r ∈ N , the algorithm keeps track of the sets in S that contain r

(r.seenCnt). Instead of picking a record uniformly at random, it then, selects r with

a probability that is inversely proportional to r.seenCnt. The intuition is that if a

record r has already appeared in many s ∈ S, picking it again will hurt the minimum

selection probability of other records r′ that did not appear as frequently. Therefore,

in the i-th iteration of the random walk, it is likely to discover a set of k records that

contains new records that are not present in S yet.

Illustrative Example. Imagine Example 5.2.1 again and assume that s1: {r1, r2, r3}

is discovered. After that, the r1.seenCnt, r2.seenCnt, r3.seenCnt are increased

to 1, and the probabilities of these records are readjusted proportional to their

1/r.seenCnt. Consequently r1, r2, r3 now have smaller probabilities, whereas, r4, r5

have higher probability. Then the random walk is repeated again and the process

terminates based on the Good Turing Test. Once S is obtained, each s ∈ S is

assigned uniform probability to produce PDF (S).

148

Table 5.5 Dataset Statistics

Dataset Size Used Attributes

Yelp 112,686 latitude, longitude, review count

IMDB-top 1000 1,000 numVotes, genre,rating

IMDB 10,000 numVotes

Airbnb 39,882 price

Synthetic 10,000 power law distribution

Makeblobs 1,000,000 random samples from Gaussian distribution

B e g i n n i n g A f t e r 3 0 k0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

To
p-k

 pa
rity

 p o p u l a t i o n
 t o p - k s e t s

(a) Top-k statistical
parity [134]

0 . 0
0 . 5
1 . 0

Ite
m

ex
po

su
re

M o v i e i d

 b e g i n n i n g
 a f t e r 3 0 k w i t h [3 6] o n l y
 a f t e r 3 0 k w i t h [3 6]

� � � � � � � � � �
 � � 	 � � � � � �

(b) Individual exposure

B e g i n n i n g A f t e r 3 0 k0 . 0
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5
3 . 0

Gr
ou

p e
xp

os
ure

 h o r r o r
 c o m e d y

(c) Group exposure [178]

0 . 0
0 . 5
1 . 0

Ite
m

ex
po

su
re

M o v i e i d

 b e g i n n i n g
 a f t e r 3 0 k w i t h [4 8] o n l y
 a f t e r 3 0 k w i t h [4 8]

� � � � � � � � � �
 � � 	 � � � � �

(d) Individual exposure

Figure 5.3 Comparison of θ-Equiv-top-k-MMSP with Group Fairness
Models [134], [178].

5.5 Experimental Evaluations

Our experimental evaluations have five primary goals.

Goal (1) (Subsection 5.5.1).We compare θ-Equiv-top-k-MMSP with two recent

related works on group fairness. Related work [134] studies top-k statistical parity,

whereas, [178] studies exposure based group fairness. These works are applicable when

the produced output is a rank. We study when θ-Equiv-top-k-MMSP is integrated

inside these related works [134]m [178], how they promote both equal exposure and

the respective group fairness criteria.

149

0 . 0 0 1 0 . 0 2 0 . 0 4 0 . 0 6 0 . 0 8 0 . 1 0
0

2 0
4 0
6 0
8 0

1 0 0

%
top

-k-
se

ts
�

(a) Success rate of forming θ-
Equiv-top-k-Sets varying α

0 . 0 0 0 . 0 2 0 . 0 4 0 . 0 6 0 . 0 8 0 . 1 0
0

2 0
4 0
6 0
8 0

1 0 0

%
un

iqu
e i

tem
s

�

(b) % of unique records varying
θ (IMDB-top 1000)

0 1 2 3
0 . 0
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5

Ac
ce

ss
 tim

e (
ms

)

p r e d i c a t e s
(c) Sorted access cost varying
query predicates (IMDB-top
1000)

Figure 5.4 Impact of data, problem parameter and cost of sorted access.

Goal (2) (Subsection 5.5.2). Examine the impact of data and problem parameter

θ. First, we analyze the impact of data distribution on the success rate of forming

top-k sets. Then, we analyze the impact of θ on the probability of selecting the long

tail.

Goal (3)(Subsection 5.5.3). Examine cost of sorted access that OptTop-k-θ

requires by varying # query predicates.

Goal (4) (Subsection 5.5.4). Examine quality of the approximate algorithms. For

θ-Equiv-top-k-Sets , we present recall [112] of the efficient alternativesRWalkTop-

k-θ andARWalkTop-k-θ compared toOptTop-k-θ. ForMaxMinFair, we present

approximation factors (objective function of approximate solution/ objective function

of exact solution) of Gr-SP and H-SP wrt Opt-SP.

Goal (5) (Subsection 5.5.5). Investigate scalability. For θ-Equiv-top-k-Sets, we

150

0.001 0.005 0.01 0.015 0.02

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

 IMDB
 Airbnb
 Yelp

(a) RWalkTop-k-θ recall
varying θ

0.001 0.005 0.01 0.015 0.02

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

 IMDB
 Airbnb
 Yelp

(b) ARWalkTop-k-θ recall
varying θ

0.001 0.005 0.01 0.015 0.02

99

99.2

99.4

99.6

99.8

100

%
 re

co
rd

 p
ru

ni
ng

 IMDB
 Airbnb
 Yelp

(c) Record pruning of OptTop-
k-θ

Figure 5.5 Recall and record pruning percentage.

present pruning capabilities of OptTop-k-θ , as well as study the scalability of the

different algorithms designed for θ-Equiv-top-k-Sets and MaxMinFair .

1. Experimental setup. All algorithms are implemented in Python 3.8. All

experiments are conducted on a server machine with 128GB RAM memory, OS:

windows server 2019 datacenter, version: 1809, CPU: Processor 11th Gen Intel(R)

Core(TM) i9-11900K @ 3.50GHz, 3504 Mhz, 8 Core(s), 16 Logical Processor(s).

Obtained results are the average of three separate runs. Github has further details

[120].

2. Datasets.Experiments are conducted on fix datasets, four real and two synthetic

datasets. For real datasets, we use Yelp [209], IMDB-top 1000 [124], IMDB [119],

and Airbnb [10]. Our first synthetic dataset is MakeBlobs [144] from the sklearn

package that produces data points from a normal distribution, the other dataset is

synthetically generated using power law distribution. Table 5.5 has an overview.

151

1k 5k 10k 20k 50k
0

50

100

150

200

250 RWalkTop-k-q
 ARWalkTop-k-q
 OptTop-k-q

Dataset Size
Ru

nn
in

g
tim

e
(s

)

(a) Airbnb

10k 100k 500k 1M

0

5000

10000

15000

20000

25000

30000 RWalkTop-k-q
 ARWalkTop-k-q
 OptTop-k-q

Dataset Size

Ru
nn

in
g

tim
e

(s
)

(b) MakeBlobs

1k 10k 50k 100k 200k
0

50

100

150

200

250

Dataset Size

Ru
nn

in
g

tim
e

(s
)

 RWalkTop-k-q
 ARWalkTop-k-q
 OptTop-k-q

(c) Yelp

1k 2k 5k 10k
0

20
40
60
80

100
120
140 RWalkTop-k-q

 ARWalkTop-k-q
 OptTop-k-q

Dataset Size

Ru
nn

in
g

tim
e

(s
)

(d) IMDB

Figure 5.6 RWalkTop-k-θ vs ARWalkTop-k-θ vs OptTop-k-θ scalability by varying
dataset size N .

3. Implemented Algorithms.

We note that existing works [19, 94, 101] do not have an easy extension to solve

θ-Equiv-top-k-MMSP because the solution frameworks do not adapt to solve θ-

Equiv-top-k-Sets.

• θ-Equiv-top-k-Sets. We compare the exact algorithm OptTop-k-θ with the
two approximate solutions RWalkTop-k-θ and ARWalkTop-k-θ.

• MaxMinFair. We implement a simple baseline H-SP first. It goes over the
sets in S one by one and checks if all records in a set s are present in other
sets in {S − s}. If yes, s is deleted from S. After that, the remaining sets are
returned, each associated with uniform probability. We compare the LP-based
exact solutions Opt-SP, with approximate solutions Gr-SP and H-SP.

• Group fairness. Two representative related works [134,178] on group fairness
are implemented.

4. Representative utility functions.

1. Maximize relevance. Σ∀r∈sRel(r, q)

152

5 10 15 20 25
0

100
200
300
400
500
600
700
800
900

k

 RWalkTop-k-q
 ARWalkTop-k-q
 OptTop-k-q

Ru
nn

in
g

tim
e

(s
)

(a) Airbnb

5 10 15 20 25
0

20

40

60

80

100

Ru
nn

in
g

tim
e

(s
)

 RWalkTop-k-q
 ARWalkTop-k-q
 OptTop-k-q

k

(b) MakeBlobs

5 10 15 20 25
0

25

50

75

100

125

150

175

200
 RWalkTop-k-q
 ARWalkTop-k-q
 OptTop-k-q

Ru
nn

in
g

tim
e

(s
)

k

(c) Yelp

5 10 15 20 25
0

20
40
60
80

100
120
140
160
180

Ru
nn

in
g

tim
e

(s
)

k

 RWalkTop-k-q
 ARWalkTop-k-q
 OptTop-k-q

(d) IMDB

Figure 5.7 RWalkTop-k-θ vs ARWalkTop-k-θ vs OptTop-k-θ scalability by varying
k.

2. Weighted relevance and max sum diversity (WRMSD)
Maximize λ×Σr∈sRel(r, q) + (1− λ)×Σr∈sMaxr,rj∈{s−r}Div(r, rj), where λ is
a weight between [0, 1].

3. Maximize diversity. Maximize Σr∈sMaxr,rj∈{s−r}Div(r, rj)

5. Query & Parameters. Queries are selected randomly. Unless specified, the

default parameters are N = 10k, k = 5, F = WRMSD with λ = 0.99, θ = 0.01.

5.5.1 Goal 1: Comparison with group fairness

Results in Figure 5.3 present comparison between θ-Equiv-top-k-MMSP with two

existing works on group fairness - top-k parity [134] and exposure-based group fairness

[178] using IMDB-1000 movie dataset. These results empirically demonstrate five

things. i. group fairness at the beginning using respective group fairness measure. ii.

group fairness using respective group fairness measures + θ-Equiv-top-k-MMSP

after the query is executed 30k times. iii. individual exposure at the beginning.

iv. individual exposure after 30k if only the respective group fairness criteria is

153

0.01 0.05 0.1 0.2

0

10

20

30

40

50

q
Ru

nn
in

g
tim

e
(s

)

 RWalkTop-k-q
 ARWalkTop-k-q
 OptTop-k-q

(a) Airbnb

0.01 0.05 0.1 0.2
0

10

20

30

40
 RWalkTop-k-q
 ARWalkTop-k-q
 OptTop-k-q

q

Ru
nn

in
g

tim
e

(s
)

(b) MakeBlobs

0.01 0.05 0.1 0.2
10
15
20
25
30
35
40
45
50

 RWalkTop-k-q
 ARWalkTop-k-q
 OptTop-k-q

q

Ru
nn

in
g

tim
e

(s
)

(c) Yelp

0.01 0.05 0.1 0.2
5

10
15
20
25
30
35
40
45
50

q

Ru
nn

in
g

tim
e

(s
)

 RWalkTop-k-q
 ARWalkTop-k-q
 OptTop-k-q

(d) IMDB

Figure 5.8 RWalkTop-k-θ vs ARWalkTop-k-θ vs OptTop-k-θ scalability by varying
θ.

considered . v. individual exposure after 30k if the respective group fairness criteria

+ θ-Equiv-top-k-MMSP is considered. Individual exposure of an item is measured

as how many times it is present in top-k and it is max-min normalized. Group fairness

is imposed using genre (comedy and horror) attribute. The goal of these experiments

is to demonstrate that when the query is returned multiple times (in this case to 30k

different users), the related works preserve their respective group fairness constraints,

but heavily compromise individual exposures. However, when the respective related

works + θ-Equiv-top-k-MMSP is implemented, both group fairness and individual

exposures are satisfied consistently throughout. Figure 5.3a shows top-k parity [134]

at the beginning and after 30k. The red bar represents parity value for the entire

population, and the blue represents parity for top-k sets. Figure 5.3c presents similar

results for group exposure [178] which imposes equal exposure for each group. Notice,

both of these group fairness criteria remain unchanged at the beginning and after

30k. Figures 5.3b and 5.3d, on the other hand, compare the individual exposure

154

of the items at the beginning (red line), individual exposure after 30k iterations

satisfying respective group fairness criteria only (blue line), and individual exposure

after 30k iterations satisfying respective group fairness criteria + θ-Equiv-top-k-

MMSP (black line). From both of these figures, it is evident that the exposure of

the individual records remain unchanged when θ-Equiv-top-k-MMSP is combined

with the the specific group fairness criteria (because black lines completely overlap

with red lines), whereas, records get inequitable exposure when only the respective

group-fairness is considered (red and blue lines do not overlap). Indeed, θ-Equiv-

top-k-MMSP , when integrated inside existing group fairness models, ensures both

fair group fairness and equal item exposure.

5.5.2 Goal 2: Impact of data distribution and θ

Figure 5.4a shows the success rate of forming θ-Equiv-top-k-Sets varying data

distribution. We synthetically generate long tail data using function x−α satisfying

power law, and vary α < 1, which is the length of the tail. When α < 1, with

increasing α, the length of the tail decreases; the success rate of forming top-k sets

also decreases.

Figure 5.4b shows the impact of θ on percentage of unique records present in

θ-Equiv-top-k-Sets using IMDB-1000 dataset. When θ = 0.07, i.e., it is allowed

to tolerate only 7% smaller score than that of the top-1 set, θ-Equiv-top-k-Sets

contains the entire long tail. This is a key observation, as these results demonstrate

that θ-Equiv-top-k-MMSP retrieves and enables equal exposure of all the movies

on the long tail, which will not happen otherwise.

5.5.3 Goal 3: Cost of sorted access (SA)

Figure 5.4c shows SA time varying #query predicates. B-tree [107] and and

inverted indexes are created on numerical (e.g.,ratings) and categorical attributes

155

(e.g., genre) [32], respectively. The SA cost increases with increasing number of

predicates, as expected, and how it increases depends on the score distribution over

those predicates, but it always takes a few milliseconds.

5.5.4 Goal 4: Quality analysis

We first present the quality study related to the algorithms designed for θ-Equiv-

top-k-Sets , following which, we present those results for the algorithms designed

for MaxMinFair .

Quality Analysis of θ-Equiv-top-k-Sets We study the algorithms designed

for θ-Equiv-top-k-Sets from the quality standpoint. We present the Recall

percentage [112], which is the percentage of equivalent top-k sets returned by the

underlying algorithm w.r.t. the exact solution OptTop-k-θ(ground truth).

A. Recall of RWalkTop-k-θ . We measure the quality of RWalkTop-k-θ by

presenting the Recall value as described above, which produces the ratio of the top-k

sets returned by RWalkTop-k-θ compared to that of the exact solutionOptTop-k-θ

by varying θ. Figure 5.5a shows that the recall of RWalkTop-k-θ stays steady

mostly (close to 80% for almost all real datasets) or increases with increasing θ. At

some point it becomes as high as 91%. When data distribution is uniform (synthetic

data), clearly RWalkTop-k-θ becomes more effective with increasing θ, which is

unsurprising. These results also validate the applicability of the Good Turing Test

for our studied problem, informing that for almost all of the datasets, the random

walk is returning around 80% of the θ equivalent top-k sets, while being significantly

computationally efficient.

B. Recall of ARWalkTop-k-θ. Figure 5.5b shows the Recall value for the

ARWalkTop-k-θ algorithm. As expected, ARWalkTop-k-θ is inferior to solve

θ-Equiv-top-k-Sets compared to RWalkTop-k-θ , as it only produces sets

that are highly different from each other, giving rise to fewer number of sets.

156

ARWalkTop-k-θ reaches up to 60% recall for Airbnb dataset. Recall decreases

with increasing θ here, since more top-k sets with common items become eligible

with increasing θ, which ARWalkTop-k-θ does not return.

Quality analysis of MaxMinFair A. Approximation Factor. We calculate

the approximation factor by dividing the minimum selection probability of the records

returned by Gr-SP with that of Opt-SP. Since MaxMinFair is a maximization

problem, hence the approximation factor is always ≤ 1. Similarly, the approximation

factor of H-SP is also computed. As we shall demonstrate in Subsection 5.5.5,

despite being an exact solution, Opt-SP is not highly scalable, since it involves

a linear program. Figure 5.9 (a) shows the approximation factor using the sets

returned by RWalkTop-k-θ algorithm for Gr-SP and H-SP. Since minimum

selection probability for Gr-SP is higher than H-SP, its approximation factor is

larger. The approximation factors demonstrate an encouraging facts. the minimum

approximation factor value for Gr-SP is 0.74 and that of H-SP is 0.68, where as the

maximum is 0.84 and 0.75, respectively. Figure 5.9 (b) present the approximation

factor by varying k on 1000 sets returned by RWalkTop-k-θ algorithm for Gr-SP

and H-SP. The minimum value of approximation factor of Gr-SP is 0.77, and for

H-SP is 0.60, and the maximum values are 0.81 and 0.74, respectively.

5.5.5 Goal 5: Scalability analysis

We first present the scalability study related to the algorithms designed for θ-Equiv-

top-k-Sets , following which, we present those results for the algorithms designed

for MaxMinFair .

Scalability Analysis for θ-Equiv-top-k-Sets We compare the scalability

aspects of the three designed algorithms by varying pertinent parameters.

A. Pruning Effectiveness. We show thatOptTop-k-θ solves θ-Equiv-top-k-Sets

by accessing a very few records in the sorted lists. Figure 5.5c shows effective

157

100 1k 5k 10k
0.4
0.5
0.6
0.7
0.8
0.9
1

|S|
Ap

pr
ox

im
at

io
n

fa
ct

or

 Gr-SP
 H-SP

(a) Approx factor varying |S|

5 10 15 20 25
0.4
0.5
0.6
0.7
0.8
0.9
1

Ap
pr

ox
im

at
io

n
Fa

ct
or

k

 Gr-SP
 H-SP

(b) Approx factor varying k

1k 5k 10k 20k

0

100

200

300

400

500 Opt-SP
 Gr-SP
 H-SP

|S|

Ru
nn

in
g

tim
e

(s
)

(c) Scalability by varying |S|

5 10 15 20 25
0

1

2

3

4

5

k

Ru
nn

in
g

tim
e

(s
)

 Opt-SP
 Gr-SP
 H-SP

(d) Scalability by varying k

Figure 5.9 MaxMinFair approx factor and scalability.

record pruning of OptTop-k-θ varying θ. Record pruning percentage is =

(N − number of seen records)

N
. OptTop-k-θ is able to prune 99% of the dataset

to exactly solve θ-Equiv-top-k-Sets. Also with θ, more equivalent sets are to be

found, OptTop-k-θ needs to read more records, thereby pruning percentage slightly

decreased by increasing θ.

B. Running time varying N . Figure 5.6 shows the scalability of the three

proposed algorithms for θ-Equiv-top-k-Sets by increasing N . As expected, due

to the exponential nature of θ-Equiv-top-k-Sets , OptTop-k-θ is not scalable

over large value of N . In contrast, the other two proposed algorithms are scalable.

ARWalkTop-k-θ is more scalable than RWalkTop-k-θ since it finds less number

of sets because of its adaptiveness, it stops earlier. With 1M records in MakeBlobs,

ARWalkTop-k-θ takes only a few minutes to finish.

C. Running time varying k. Figure 5.7 demonstrates the scalability of the three

proposed algorithms by varying k. As expected, OptTop-k-θ does not scale well.

158

Consider Figure 5.7(c) using Yelp dataset. When k = 5, OptTop-k-θ takes 34.02

seconds to run, and the number of seen records is 28.
(
28
5

)
= 98280 sets are generated

and examined only to produce 12 final top-k sets. Now consider that it is increased

to k = 10. This may end up producing
(
28
10

)
= 13123110 sets even with only 28 seen

records, which is 133× larger than before. This exponential increase is expected

due to the computational nature of θ-Equiv-top-k-Sets . On the other hand,

RWalkTop-k-θ and ARWalkTop-k-θ are highly scalable, and not very sensitive

to increasing k.

D. Running time varying θ. Figure 5.8 demonstrates the scalability of the

three proposed algorithms by varying θ. Increasing θ increases the size of |S|. As

expected, OptTop-k-θ is highly sensitive to this parameter and does not scale

well. In comparison, the random walk based algorithms RWalkTop-k-θ and

ARWalkTop-k-θ are less sensitive and scale reasonably well with increasing θ.

E. Running time varying F . Wemeasure the running time of RWalkTop-k-θ and

ARWalkTop-k-θ using three representative utility functions, described in Section

5.5, by varying parameters N , θ and k. The figures are excluded for space restriction.

We observe that the nature of the underlying objective function does not as such

impact the running time.

Scalability Analysis of MaxMinFair In this section, we present the scalability

analysis of the three algorithms designed for MaxMinFair. We evaluate the

scalability varying |S|, N , k.

A. Running time varying |S|. Figure 5.9 (c) shows running time of the

Opt-SP, Gr-SP, H-SP with k = 5. The heuristic H-SP exhibits the highest

scalability among all and the linear programming based exact algorithm Opt-SP

has the least scalability, as expected. Similar observation holds when N is varied.

159

Nevertheless, both Gr-SP and H-SP are highly scalable and the results corroborate

their theoretical running time.

B. Running time varying k. Figure 5.9 (d) shows the scalability with varying

k and |S| = 1000. Similar observation holds as before that agorithms Gr-SP and

H-SP are highly scalable to increasing k. This observation is also consistent to their

theoretical analysis.

5.5.6 Summary of results

(a) Our first observation is θ-Equiv-top-k-MMSP alleviates a fairness limitation

inherent to existing group fairness models, such as, top-k statistical parity [134]

and exposure based group fairness [178]. (b) Consistent with our motivation,

we empirically demonstrate that with a very small θ θ-Equiv-top-k-MMSP

allows exposure of most of the records in long tail data. (c) Our third obser-

vation demonstrates the computational effectiveness of OptTop-k-θ - despite the

fact θ-Equiv-top-k-MMSP is computationally intractable, our designed solution

OptTop-k-θ is highly effective in pruning the vast majority of the records from

the input database to produce the exact solution for θ-Equiv-top-k-Sets. The

pruning effectiveness is at times as high as 99%. (d) We experimentally observe that

RWalkTop-k-θ is a highly scalable algorithm that is several order of magnitude

faster than the exact solutions OptTop-k-θ and Opt-SP, yet the produced results

are highly comparable qualitatively. This solution achieves high recall, sometime, as

high as 91% recall value, while taking a few seconds to run. These results demonstrate

the efficiency as well as effectiveness of RWalkTop-k-θ to be used and deployed inside

real world applications. (e) Our final observation is thatARWalkTop-k-θ is a highly

efficient solution that can easily scale to a very large N with millions of records, and

is suitable for applications that can accommodate modest inaccuracy.

160

5.6 Related Work

Group Fairness. Most approaches to algorithmic fairness interpret fairness as lack

of discrimination [99] seeking that an algorithm should not discriminate against its

input entities based on attributes that are not relevant to the task at hand. Such

attributes are called protected, or sensitive, and often include among others gender,

religion, age, sexual orientation and race. Demographic parity is a classical group

fairness notion originally studied in the machine learning literature [81, 212, 216] to

ensure that the designed classification models give rise to similar false positive and

false negative rates across different protected attribute groups.

W.r.t ranking and top-k results, the algorithmic fairness literature deals with group

fairness along the lines of demographic parity this is typically expressed by means

of some fairness constraint requiring that the top − k results (for any k) to contain

enough records from some groups that are protected [18, 94, 104, 123, 139, 163, 175,

178, 197, 207, 214, 217]. Two representative surveys on ranking and recommendation

are [162,215].

In [178], authors propose a framework that allows the formulation of fairness

constraints on rankings in terms of exposure allocation. The optimization problem is

formalized to maximize utility of the returned items given a probabilistic ranking

function subject to equal exposure of different protected attribute groups. The

proposed approach does not lend itself to satisfy individual exposure of items, unless

k = 2. [178] is implemented in Section 5.5.

Individual Fairness. Individual fairness, on the other hand, as proposed by Dwork

et al [81], intends to ensure “similar individuals are treated similarly”. Dwork et

al. explain that a classifier is individually fair if the distance between probability

distributions mapped by the classifier is not greater than the actual distance between

the records [81]. Biega et al. propose measures that identify unfairness at the level of

individual subjects considering position bias in ranking [38]. Mahabadi et al. study

161

the individual fairness in k-clustering. Their goal is to develop a clustering algorithm

of the records so that all records are treated (approximately) equally [143]. Patro et

al. [159] investigate the fair allocation problem and study individual fairness in two-

sided platforms consisting of producers and customers on opposite sides. Fish et al.

study individual fairness in social network [92] to maximize the minimum probability

of receiving the information for poorly connected users. In the context of item-

fairness in recommender systems [133], the authors define item-fairness requirement

as that the coverage of all items must exceed a given threshold. Similar definition is

proposed later on in [61] to ensure that items should receive the amount of exposure

proportional to their relevance. In [193], the authors propose item-fairness notions

that require minimum coverage for all items, so that, similar items must have similar

coverage.

Authors in [38] also study exposure of individual items and intend to make that

fair. This work intends to minimize the absolute difference between attention and

relevance “subject to” an NDCG threshold. For this related work, the number of

rankings m is an input parameter, whereas, the number of Equivalent Top-k sets for

us is “subject to” an Equivalence threshold θ wrt utility. There is no easy way to

translate between their “subject to” constraints and ours. [38] is suitable to ensure

positional exposure of items considering multiple queries, whereas, we study it for

a single query. [38] does not study which of the m outputs should be returned to

an end user (as opposed to our process of returning an answer associated with its

probability). Consequently, [38] does not adapt to solve θ-Equiv-top-k-MMSP .

It has been recognized that group fairness alone has its deficiencies [95]. In two

independent efforts, Flanigan et. al. [94] and Garcia-Soriano et. al. [101] study how to

enable equitable selection probability of the records under group fairness constraints

and propose maxmin-fair distributions of ranking. Zemel et al. develop a learning

algorithm for fair classification that ensures both group fairness and individual

162

fairness [216]. [19] studies individual fairness in similarity search to ensure points

within distance r from the given query have the same probability to be returned.

In [65], the authors propose a new ranking function that deals with web pages with

hyperlinks and alleviates their unequal exposure. Due to this specific nature, the

solution does not extend to θ-Equiv-top-k-MMSP .

Top-k Algorithms. Given a user query, a top-k result contains k records that

have the highest scores [167]. Designing effective scoring functions as well as efficient

algorithms [1, 2] lend to numerous applications in recommendation and search [4, 50,

53,86,138,168,192,195] and is an active area of research.

These related works are defined wrt ranked order, whereas, θ-Equiv-top-k-

MMSP focuses on a set based notion (if an item is present in top-k, it has exposure,

else not). Neither these problems nor their designed solutions extend to our problem.

5.7 Conclusion

We formalize θ-Equiv-top-k-MMSP to redesign existing top-k algorithms for long

tail data to ensure fairness. Given a query, it computes a set of top-k sets that are

equivalent and assigns a probability distribution over these sets, such that, after many

users draw a set from these sets according to its assigned probability, the selection

probabilities of the records present in these sets are as uniform as possible. We present

multiple algorithmic results with theoretical guarantees as well as present extensive

experimental evaluation. One of the directions that we are currently exploring lies

in understanding pre-processing techniques that can speed up the computation of

θ-Equiv-top-k-Sets.

163

Algorithm 12 TopkSets (i)

Inputs: a set L of input lists, i, F , k, TopkSets(i− 1).score, θ, Opt

Outputs: nextBest: i-th best set

1: cursor ← 0, seenR← ∅

2: for j = cursor to Maxl∈LLen(l) do

3: seenR = {seenR
⋃

DivGetBatch()(l1(j)),DivGetBatch()(l|L|(j))}

4: (C, i, j)← createNewSets(seenR[j])

5: for s in (C, i, j) do

6: lb(s), ub(s) ← LowerBound(s), UpperBound(s)

7: end for

8: threshold[j] ← max(ub)

9: if threshold[j] < Opt× (1− θ) then

10: nextBest = argmax(C, i, j), flag = 1

11: return nextBest

12: end if

13: for s in (C, i, j) do

14: if lb[s] ≥ max(ub((C, i, j)− s)) then

15: nextBest ← s

16: return nextBest

17: end if

18: if ub[(C, i, j)] ¡ max(lb((C, i, j)− s)) then

19: Prune {(C, i, j)− s}

20: end if

21: end for

22: if max(lb[(C, i, j) ≥ min(threshold[j], TopkSets(i− 1).score then

23: nextBest ← argmax(lb(C, i, j))

24: Break

25: end if

26: cursor ← j + 1

27: end for

28: return nextBest

164

Algorithm 13 RWalkTop-k-θ

Inputs: query q, D, k, F , θ

Outputs: PDF (S)

1: while true do

2: s = {}, S = {}

3: while |s| ≤ k do

4: pick a uniform random r ∈ {D − s},

5: s← {s
⋃

r}

6: end while

7: if F(s, q) ≥ (1− θ)×Opt then

8: S ← S
⋃
{s}

9: end if

10: visit.s← visit.s+ 1

11: if visit.s ≥ 2,∀s ∈ S then

12: break

13: end if

14: end while

15: PDF (S)← Gr-SP(S)

165

CHAPTER 6

ACCESS PRIMITIVE FOR TOP-K DIVERSITY COMPUTATION

6.1 Introduction

Diversity has a wide variety of applications in search, recommendation [1, 2, 86, 166,

188, 193] and data exploration. The goal of diversification algorithms is to return

results that are relevant as well as cover user intent. In the data management

community, returning top-k diverse results of a query has been extensively studied,

and there exists many seminal works [55, 106, 211] that propose objective functions

and efficient algorithms to achieve a trade-off between relevance and diversity.

The original implementation of many representative algorithms, such as, GMM

[106], MMR [106], SWAP [211] that do not make any assumptions on the nature of the

diversity functions are iterative in nature and make the decision of updating the top-k

set by making a greedy choice based on the current top-k set and the remaining records

that are not yet in top-k. These representative algorithms go through the cumbersome

step of pairwise diversity computation of records between and across these two sets

even to make a single update in the top-k set. Indeed, for a large database containing

N records, this repetitive computation is expensive O(N), since typically k << N .

We are also aware of a handful of existing works [98,156] that are specifically designed

on geometric space and avoid this repetitive computation. However, to the best

of our knowledge, most of the existing works assume this expensive computation

to be necessary, when diversity is designed for arbitrary non-metric functions or

even studied in general metric space. Contrarily, our effort here is to reduce that

computation without making any explicit assumptions about the diversity function,

that is, considering diversity functions to be fully arbitrary or even non-metric.

166

Our first contribution lies in identifying one major computational bottleneck

in existing popular diversification algorithms and how to accelerate that process.

We identify the basic ingredients of developing DivGetBatch() as an access

primitive such that it remains agnostic to any specific underlying diversity or distance

computation function. This primitive is also guaranteed to produce identical top-k

results as of the original diversity algorithms. The fundamental idea is to make the

comparison go over a group of records, as opposed to record pairs, thereby accelerating

the computation. In other words, the large number of N records are to be grouped

in a small number of C nodes and some higher level diversity aggregates are to be

maintained between the nodes. Towards that, we develop a generic computation

framework that builds an index I-tree offline and maintains two other auxiliary

data-structures (MinsimMatrixNode and MaxsimMatrixNode) that are highly generic

in nature and suitable to handle updates. Indeed, the design of I-tree is rather simple

and may appear to share resemblance with existing indexing techniques (Section 6.7

contains detailed discussion and empirical evaluation towards that). Our primary

contribution lies in proposing a simple enough indexing technique that could be

easily designed using off-the-shelf popular record partitioning algorithms, such as,

K-Means [112], but study how to make it generic enough to work on a variety of

diversification algorithms over arbitrary diversification functions. In fact, existing

popular indexing techniques, such as K-B-D-tree [170], kd-tree [34], M-Tree [68],

Ball-Tree [135], R-tree [110] assume that coordinate information of the records are

available and used to create data structures to answer a large spectrum of distance

queries, where distance may be based on Euclidean, cosine similarity, or general Lp

norms. However, I-tree assumes the records to be atomic and the diversity

function to be arbitrary.

Our second contribution is to develop query processing algorithms forMMR,

GMM, and SWAP [55, 106, 211] using DivGetBatch() (Sections 6.3, 6.4, 6.5).

167

Fundamentally, we have redesigned the original algorithms to run over pairs of groups

of records as opposed to pairs of records to save up processing time. We make

theoretical claims and proofs on the exactness and the running time of the

augmented algorithms in expectation (assuming uniform data and query

distributions) and in the worst case. As an example, we prove that augmented

SWAP (Aug-SWAP) takes O(N/C ∗ k ∗ log k +N) time in expectation compared

to O(N ∗k ∗ log k) time of the original algorithm. It is easy to notice that augmented

SWAP is guaranteed to run faster than the original algorithm, as Max(N/C ∗ k ∗

log k,N) (C is the number of groups) is smaller than N ∗ k ∗ log k. The summary of

the complexity results are presented in Tables 6.1 and 6.2.

Our third contribution is developing principled solutions for creating

and maintaining I-tree (Section 6.6). I-tree is a complete m-ary tree [72]

with height l. There exists many ways to build I-tree (e.g., hierarchical graph

partitioning or clustering could be used). We identify that the main computational

bottleneck of I-tree under batch updates lies in updating MinsimMatrixNode and

MaxsimMatrixNode. Therefore, we formalize the index maintenance problem as an

optimization problem, with the goal of minimizing the number of updates in these

data structures. We present an integer programming-based exact solution OPTMn

for that, and a greedy heuristic GrMn that is highly scalable in nature.

Our final contribution is experimental (Section 6.7). We use large

real-world datasets, one large publicly available synthetic dataset to show that

the augmented algorithms return results identical to their originals, while ensuring

between a 3× to 24× speedup on large datasets. We study the effects of different

parameters empirically and provide guidance for appropriate design choice. We

empirically present exhaustive results to pre-process and maintain I-tree. Our

empirical results corroborate our theoretical analyses.

168

Table 6.1 Technical Results For Running Time Analysis w.r.t. |CandR|

Algorithm Variant Expected time w.r.t |CandR|

MMR
Original

Augmented

O(N ∗ k2)

O(C ∗ k2 +N +
k∑

i=1

|CandRi| ∗ k)

GMM
Original

Augmented

O(N ∗ k)

O(C ∗ k +
k∑

i=1

|CandRi|)

SWAP
Original

Augmented

O(N ∗ k ∗ log k)

O(N +
∑N

i=1
|CandRi|

N
∗ (C + k ∗ log k))

Moreover, we compare the proposed index I-tree with a set of existing indexing

structure, such as, M-Tree [68], KD-Tree [34], and Ball-Tree [135]. These latter trees

are primarily designed for the Euclidean space. Our experimental results unanimously

selects I-tree as the winner. The augmented algorithms implemented using I-tree

is at least 18× faster in query processing and as much as 170× faster for certain

configuration. I-tree achieves more than 1.5× speedup during the index construction

and at times it is more than 20× faster w.r.t. the baselines.

To summarize, we make the following contributions:

• We develop DivGetBatch(), an access primitive and show how to integrate it
inside popular diversity algorithms to save up running time (Sections 6.3, 6.4, 6.5).
We present in depth theoretical analyses of the augmented algorithms.

• We propose a computational framework to supportDivGetBatch()(Section 6.6.
The framework consists of a pre-computed index I-tree and a query processing
step. We also present non-trivial solutions to maintain I-tree under dynamic
updates.

• We run an extensive experimentation that demonstrates the effectiveness of
building and maintaining I-tree and DivGetBatch(), and corroborates our
theoretical claims (Section 6.7).

169

Table 6.2 Technical Results for Running Time Analysis w.r.t. C, m, l

Algorithm Variant Expected time w.r.t C Expected time w.r.t m and l

MMR
Original

Augmented

O(N ∗ k2)

O((N/C + C) ∗ k2 +N)

O(N ∗ k2)

O((N/ml +ml) ∗ k2 +N)

GMM
Original

Augmented

O(N ∗ k)

O(N/C + C) ∗ k)

O(N ∗ k)

O(N/ml +ml) ∗ k)

SWAP
Original

Augmented

O(N ∗ k ∗ log k)

O(N/C ∗ k ∗ log k +N)

O(N ∗ k ∗ log k)

O(N/ml ∗ k ∗ log k +N)

Index Activity Time Space Time Space

I-tree
Construction

Maintenance

O(N ∗ C2 ∗ t+N2)

O(N ∗ |Y |)

O(C2)

O(C2)

O(N ∗m2l ∗ t+N2)

O(N ∗ |Y |)

O(m2l)

O(m2l)

6.2 Background and Approach

This section is organized in two parts. In Subsection 6.2.1, we present the background

of the studied problem and define it. In Subsection 6.2.2, we present the fundamental

ideas of our approach.

6.2.1 Motivating example and problem definition

The basic principle of existing diversification algorithms, such as MMR, GMM, and

SWAP is either to incrementally build a top-k set of diverse results or to greedily

replace records in a top-k list to find the most diverse ones. In both cases, the leading

cost directly depends on the number of pairwise record comparisons. Imagine a toy

database D containing N = 10 records. Since the records are considered atomic,

Table 6.4 shows a record-record similarity matrix, simMatrixRecord, normalized

between [0-1] for our example. Diversity between ri, rj is simply 1 − sim(ri, rj).

Given a query Q, in order to produce k = 2 results, an algorithm such as MMR [55]

first assigns all 10 records in D to a potential candidate set R. Then it iterates over

all 10 records once to find the best record in terms of MR score (based on diversity

and relevance), and adds that to the result set S and discards that from R. It repeats

170

the same process once more to produce the resulting set S = {r10, r8}. In particular,

there is a repeated pairwise computation of the following kind:

While k ≤ 2 :

rec← R[1]

For i = 2; i <= |R|; i++

i f MR(Q ,R[i], S) ≥ MR(Q , rec, S)

rec← R[i]

EndFor

S ← S
⋃

rec, R← R− rec

k ← k + 1

EndWhile

Problem Definition 5. Develop an access primitive DivGetBatch() and integrate

it inside existing popular diversity algorithms.DivGetBatch() satisfies the following

three criteria:

• It guarantees identical top-k results as that of the original algorithms.

• It is generic, i.e., it works for any diversity functions - diversity being metric
or not. A function is metric if it satisfies three properties: identity, symmetry,
and triangle inequality.

• When integrated inside existing algorithms, it accelerates the computation and
returns the results faster.

The proposed primitive simplifies the aforementioned implementation as follows

- instead of iterating over the entire R set (which is O(N)), it returns potentially a

much smaller set of records CandR, from which the result set S would be updated.

171

CandR← DivGetBatch(R,Q,S)

While k ≤ 2 :

rec←Max(MR(CandR,Q, S))

S ← S
⋃

rec, CandR← CandR− rec

k ← k + 1

EndWhile

6.2.2 Approach

DivGetBatch() is designed by developing a computational framework, described in

Figure 6.1. The basic idea is to store “higher level aggregates”’, such as minimum

and maximum diversity scores of a group of records instead of keeping individual

pairwise diversity scores between the records. We formally define the minimum and

maximum diversity scores as bounds in later sections. As an example, if the same set

of records are grouped in three nodes, as shown inside the indexing box of Figure 6.1

and the maximum and minimum diversity scores are preserved between them, node2

and node3 can be discarded in the first iteration of processing of MMR pruning 6

out of the 10 records and returning only {r1, r2, r4, r10} in R. This indeed leads to a

significant speedup.

Offline vs. Online.

In this work, we assume that both data and query follow uniform distributions.

A keen reader may notice that to accelerate diversity computation using I-tree, one

has to “group” records and maintain some higher level aggregates between them.

Grouping a large database of N records is time-consuming, as that would require

partitioning them based on pairwise diversity. Indeed, this process of grouping must

happen once and offline.

172

Data

Indexing

Design

Augmented

Algorithms

+

DivGetBatch

API

Top-k

Results

Diversity

Algorithms

Offline Phase Online Phase

Node 2

{r3, r8,
r9}

Node 1

{r1, r2,
r4, r10}

Node 3

{r5, r6,
r7}

Min

sim:

0.065

Max

sim:

0.075

Min

sim:

0.047

Max

sim:

0.063
Min sim:

0.092
Max sim:

0.116

Figure 6.1 Proposed computational framework.

Precisely because of this, we resort to pre-process the records to group them

and develop index I-tree, and use that later for processing diversity queries. This is

the offline computation of the proposed framework.

Just like DivGetBatch(), I-tree is a general purpose complete tree like

structure and could be designed in more than one way. It needs to satisfy three

properties.

• I-tree has m arity and l height or levels (user inputs).

• Two highly important auxiliary data structures maintain similarity bounds
between the nodes in I-tree: MinsimMatrixNode and MaxsimMatrixNode for
maintaining minimum and maximum similarity bounds 1.

• For three nodes n, n′, and nj in I-tree, if n is a parent of n′, and nj is part of
a different subtree and at the same level as n, the following relationship holds:
Min sim(n, n′) ≥ Min sim(n, nj), and Max sim(n, n′) ≥ Max sim(n, nj),
(basically nodes that are part of the same subtree have higher min and max
similarity bounds compared to the nodes that are not).

The indexing algorithm BuildTree (Algorithm 18) partitions (refer to the

Subroutine Partition) the records. It also maintains additional data structures that

contain similarity scores between nodes for efficient query processing. An example

1Diversity between a pair of records is simply 1− similarity between them.

173

Table 6.3 Notations & Interpretations

Notations

D Database containing N records

S Result set

Z Set of nodes that contain S

R Remaining records in the dataset

Q Query

k Number of records in resulting set

m, l Arity & Total number of levels in the I-tree

C Number of nodes in the I-tree

CandR Candidate record set returned by API

Y A batch of new records to be updated in I-tree

of a two-level index tree is shown in Figure 6.2. At the first level, BuildTree creates

a root node containing all N records and m children of the root node. From the

point of abstraction, it is not important at this stage to describe how the data is

partitioned. Basically, the goal is to keep similar records together while separating

non-similar ones. There are multiple off-the-shelf techniques such as clustering and

graph partitioning to carry out this task.

In our implementation, we use the popular k-means algorithm [112] for

partitioning. The algorithm repeats the partitioning procedure until it reaches l

levels. We refer to Section 6.6 for further details.

Next, we present the generic recipe of using DivGetBatch() online or during

the query processing time.

Generic Online Algorithm using DivGetBatch() The inputs to

DivGetBatch() is I-tree, query Q, current candidate set of answers S, remaining

records R, as well as the algorithm specific objective function f . The output is

174

Algorithm 14 Generic DivGetBatch() API

1: Inputs: I-tree, S, R, Q, f

2: Outputs: CandR: remaining eligible set of records for next iteration

3: for y = 1 to l do

4: for n in I-tree [y].nodes do

5: uB, lB ← Calculate-Bounds(I-tree, n, y, f , S, Q, R)

6: uBs ←
⋃

uB, lBs ←
⋃

lB

7: end for

8: M ← Skip-Nodes(I-tree, y, uBs, lBs)

9: V ← { I-tree [y].nodes−M}

10: end for

11: CandR = {r | r ∈ n, n ∈ V }

12: return CandR

CandR, a set of candidate records that cannot be eliminated and require further

processing by the original algorithm. DivGetBatch() explores I-tree level by level

during query time and exploits two of its higher-level constructs: a. Calculate-

Bounds: it computes similarity bounds 2 between Q and the nodes in I-tree based

on a specific algorithm and objective function f . In particular, it computes an upper

and a lower bound of diversity scores of the node. The goal is to decide if it is

beneficial to go inside the node and explore the subtree under it. b. Skip-Nodes:

based on the previous decision, the algorithm either skips the node and its entire

subtree or explores the node.

Algorithm 14 shows the pseudo-code of the DivGetBatch() API.

2Please note diversity could be easily calculated from similarity bounds.

175

6.3 MMR Query Processing with DivGetBatch()

The first algorithm we study isMMR [55] algorithm. We describe the original version

of the algorithm and our augmented version and provide theoretical analysis on how

our augmented version outperforms the original one.

6.3.1 MMR algorithm

Maximal Marginal Relevance (MMR) algorithm is a seminal work on result

diversification [55]. MMR is based on Marginal Relvance (MR) score (Equation (6.1))

that it maximizes in each iteration. Given a query, MR introduces a λ coefficient to

strike a balance between the relevance score, computed between the records and the

query, and the diversity score, computed between the records themselves.

MMR is greedy in nature that grows the size of the top-k set by adding records

one by one in the top-k set by considering the relevance of the record and diversity

with the previously selected records, using the formula below:

MMR(r)← argmaxr∈R\SMR(r),

MR(r)← λsim(r,Q)− (1− λ)maxrj∈Ssim(r, rj), (6.1)

where Q is the query, S is the previously selected items, R is the remaining records

in the dataset, r is a candidate record from R, and rj is another record from S. λ

is a tunable parameter. The time-consuming part of the algorithm lies in computing

the MR score for each r ∈ {R \ S} and returning the one with the highest MR score.

The MMR algorithm takes O(|R| × |S|), when we add one new record to set

S, demonstrating that it has an order of N × k. The algorithm repeats k times and

produces top-k results.

176

Table 6.4 Similarity Matrix for Records

r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 Q

r1 1.000 0.979 0.065 0.989 0.105 0.110 0.092 0.066 0.068 0.969 0.187

r2 0.979 1.000 0.070 0.992 0.107 0.112 0.092 0.071 0.074 0.999 0.190

r3 0.065 0.070 1.000 0.068 0.057 0.061 0.048 0.982 0.986 0.071 0.052

r4 0.989 0.992 0.068 1.000 0.111 0.116 0.096 0.069 0.072 0.986 0.180

r5 0.105 0.107 0.057 0.111 1.000 0.976 0.880 0.055 0.058 0.106 0.039

r6 0.110 0.112 0.061 0.116 0.976 1.000 0.783 0.059 0.063 0.112 0.041

r7 0.092 0.092 0.048 0.096 0.880 0.783 1.000 0.047 0.049 0.092 0.036

r8 0.066 0.071 0.982 0.069 0.055 0.059 0.047 1.000 0.986 0.072 0.054

r9 0.068 0.074 0.986 0.072 0.058 0.063 0.049 0.986 1.000 0.075 0.054

r10 0.969 0.999 0.071 0.986 0.106 0.112 0.092 0.072 0.075 1.000 0.191

6.3.2 Aug-MMR algorithm

Aug-MMR algorithm is designed to circumvent this aforementioned time consuming

computation by leveraging DivGetBatch(). The general idea is to return a small

subset of records, as opposed to all |R| records (which is O(N)) in each iteration,

thereby saving computation. The rest of the algorithm is identical to its original

version and is presented in Algorithm 15.

We now describe subroutine 15, how DivGetBatch() exactly works in Aug-

MMR. Inputs toDivGetBatch() are I-tree, S, R, Q, and f (i.e., objective function

of MMR). The output is CandR, the candidate set of records for which MR scores

are to be computed to retain the best record. Based on Algorithm 14, we now describe

the specifics of two higher-level constructs for Aug-MMR.

Calculate-Bounds: This function leverages

MinsimMatrix-Node and MaxsimMatrixNode to calculate lower (lBMR) and

upper bounds (uBMR), respectively. The bounds essentially represent the score of a

node based on f (Equation (6.1)) and mathematically can be expressed as follows:

lBMRnode ← λMin sim(node,Q)−

maxnode′∈Z(1− λ)Max sim(node, node′), (6.2)

177

Algorithm 15 Aug-MMR

Inputs: I-tree, D, MMR, Q, k

Outputs: S: final top-k result set.

1: R← D, S = ϕ

2: for t = 1 to k do

3: CandR ← DivGetBatch(I-tree, R, S, Q, MMR)

4: S = {S
⋃

MMR(r)r∈CandR}

5: end for

6: return S

uBMRnode ← λMax sim(node,Q)−

minnode′∈Z(1− λ)Min sim(node, node′), (6.3)

where Z is the set of nodes that contain S,

Min sim(node,Q) and Max sim(node,Q) are the minimum and the maximum

similarity between any records in node andQ, respectively, andMin sim(node, node′)

and Max sim(node, node′) are the minimum and the maximum similarity between

any two records in node and node′, respectively. Since lBMR is the smallest score

of node, it is calculated by taking the minimum of sim score in the first part of the

equation and subtracting that from the maximum of sim score in the second part.

Contrarily, uBMR refers to the maximum MR score of node (Equation (6.3)) and

can be calculated by reversing the min and max of the (Equation (6.2)).

Skip-Nodes: The argument of node skipping is simple - if the uBMR score

of a node is not larger than the lBMR of another node, then the former node and

its entire subtree could be pruned. The records from the remaining nodes form the

178

CandR set.

CandR← {N − {r ∈ I− tree.n | uBMRn < (6.4)

max
∀n′

(lBMRn′)}}

this is done by finding the maximum value of lBMRn′ of all nodes and

then discard ones with uBMR less than it. Running Example: A step by

step calculation of DivGetBatch() is shown in Table 6.5. The maximum and

minimum similarity between node1 and query Q is 0.180 and 0.191. In first iteration

of Calculate-Bounds, lower bound of MR of node1 which is lBMRnode1 =

0.8 ∗ 0.180− (1− 0.8) ∗ 0 = 0.144, and upper bound of MR of node1, uBMRnode1 =

0.8 ∗ 0.191 − (1 − 0.8) ∗ 0 = 0.153. Similarly, lBMRnode2 , uBMRnode2 , lBMRnode3 ,

and uBMRnode3 are −0.047, 0.044, 0.029, and 0.033, respectively. In Skip-Nodes,

the maximum of all lBMRs is found 0.144 which is lBMRnode1 .

uBMRnode2 and uBMRnode3 are smaller than

lBMRnode1 . Therefore, node2 and node3 are discarded from further calculation in

iteration 1. Records of node1 {r1, r2, r4, r10} are returned by DivGetBatch() to

Aug-MMR algorithm. Aug-MMR performs calculation similar to original MMR

on {r1, r2, r4, r10} which results in S = {r10}. Likewise, the maximum and minimum

similarity between node1 and node1 are 0.969 and 1.0. In the second iteration of

Calculate-Bounds, lBMRnode1 = 0.8 ∗ 0.180 − (1 − 0.8) ∗ 0.969 = −0.050 and

uBMRnode1 = 0.8 ∗ 0.191 − (1 − 0.8) ∗ 1.0 = −0.047. Similarity, lBMRnode2 ,

uBMRnode2 , lBMRnode3 , and uBMRnode3 are 0.028, 0.029, 0.010, and 0.009,

respectively. In Skip-Nodes, the maximum of all lBMRs is lBMRnode2 = 0.028.

uBMRnode1 and uBMRnode3 are smaller than lBMRnode2 . Thus, node1 and node3

are discarded from further calculation in iteration 2. Records of node2 {r3, r8, r9}

are returned by DivGetBatch() to Aug-MMR algorithm. Aug-MMR performs

calculation similar to original MMR on {r3, r8, r9} which results in S = {r10, r8}

179

Table 6.5 First Two Iterations of DivGetBatch() in Aug-MMR

Functions Nodes Bounds Iteration 1 Iteration 2

Calculate-Bounds

node1
lBMR 0.8 ∗ 0.180− (1− 0.8) ∗ 0 = 0.144 −0.050

uBMR 0.8 ∗ 0.191− (1− 0.8) ∗ 0 = 0.153 −0.047

node2
lBMR 0.8 ∗ 0.0191− (1− 0.8) ∗ 0 = 0.0152 0.028

uBMR 0.8 ∗ 0.054− (1− 0.8) ∗ 0 = 0.044 0.029

node3
lBMR 0.8 ∗ 0.036− (1− 0.8) ∗ 0 = 0.029 0.010

uBMR 0.8 ∗ 0.041− (1− 0.8) ∗ 0 = 0.033 0.009

Skip-Nodes

lBMR array: 0.144, 0.041, 0.029

uBMR array: 0.153, 0.044, 0.033

node2, node3 are skipped.

CandR= {r1, r2, r4, r10}.

MMR(r1, r2, r4, r10)← r10

Number of records discarded is 6

lBMR array:

-0.050, 0.028, 0.010

uBMR Array:

-0.047, 0.029 , 0.009

node1, node3 are skipped.

CandR = {r3, r8, r9}

MMR(r3, r8, r9)← r8

top-2 set = {r10, r8}

Aug-MMR algorithm proofs

Claim 1. Aug-MMR returns identical top-k results as that of original MMR.

Proof. The proof is constructed using one helper lemma and one observation:

Lemma 11 proves that DivGetBatch() never prunes a record that is part of

the original top-k; Observation 1 shows that once the control comes back from

DivGetBatch(), Aug-MMR works exactly as the original MMR in each iteration.

Combining these lemma and observation, Aug-MMR returns identical top-k results

as that of the original MMR.

Lemma 11. DivGetBatch() never prunes a record that is part of the original top-k.

Proof. As part of this proof, we first prove that Skip-Nodes never discards the record

which has the highest MR score in that iteration.

Recall Property 1 and note that for every two nodes n and n′ in the same

subtree, if n is a parent of n′, then n contains all records in n′, thereby having larger

180

uBMR and lBMR values. Therefore, if a node n is skipped, any child of n is also

safe to be skipped.

We use helper Lemma 12 to prove that the actual MR score of any record in a

node node is bounded between uBMRnode and lBMRnode. Let us assume, the next

desired record rd ∈ noded produces maximum MR value among all R \ S records.

MRrd is greater than minMRnode for ∀node. Using Equation (6.6):

MRrd ≥ maxnode∈I−tree[l].nodesminMRnode

≥ maxnode∈I−tree[l].nodes(lBMRnode),

Using Equation (6.6), MRrd = MaxMRnoded ≤

uBMRnoded . As a result,

uBMRnoded ≥MRrd

≥ maxnode∈I−tree[l].nodes(lBMRnode). (6.5)

According to Equations (6.5) and (6.4), noded will not be discarded, and all records

inside noded including rd will be returned by DivGetBatch() or send to the next

level for further processing. This logic extends for all the iterations. Therefore,

DivGetBatch() never prunes a record that is part of the original top-k.

Lemma 12. MR score of any record r ∈ node (say MRr) is bounded by upper and

lower bound uBMRnode and lBMRnode, respectively. That is,

lBMRnode ≤MRr∈node ≤ uBMRnode. (6.6)

Proof. We will first prove that maximum relevance value (say MRrmax) of any record

(say rmax ∈ node) is less than equal to uBMRnode. Where, MRrmax can be expressed

as:

MRrmax = λsim(rmax, Q)− (1− λ)maxrj∈Ssim(rmax, rj)]. (6.7)

181

First part of the Equation (6.7) is always less than equals to first part of the

Equation (6.3). That is:

λsim(rmax, Q) ≤ λmaxri∈nodesim(ri, Q)

= λMax sim(node,Q),

(6.8)

Next, we show that second part of the Equation (6.7) is always greater than

second part of the Equation (6.3).

Let us assume; rw ∈ S produces max value for the second part of Equation (6.7).

That second part can be rewritten as (1 − λ)sim(rmaxnode
, rw). Let us assume, rw ∈

nodew where nodew ∈ Z. For any node′ ∈ Z, we can write:

(1− λ)sim(rmax, rw) ≥ (1− λ)minri∈node,rj∈node′

sim(ri, rj)

≥ minnode′∈Z(1− λ)Min sim(node, node′),

(6.9)

From these two inequalities (6.8) and (6.9), we can conclude MRrmax ≤

uBMRnode or, MRr∈node ≤ uBMRnode.

Similarly, the lower bound lBMRnode can be shown as follows: lBMRnode ≤

minMRnode.

Thus, any record in node is certain to have MR value in between uBMRnode

and lBMRnode.

Observation 1. Once the control comes back from DivGetBatch(), Aug-MMR

works exactly as the original MMR in each iteration.

Aug-MMR has identical MR score calculation and MMR selection as that of

the original MMR.

Claim 2. Aug-MMR requires O((N/C + C) ∗ k2 +N) time in expectation.

182

Proof. In the original MMR algorithm, each iteration for finding one record takes

O(N ∗k) times. For k iterations, the overall running time is therefore O(N ∗k2). The

running time of Aug-MMR does not need to go over all N records in each iteration.

Instead, it relies on DivGetBatch() to obtain a smaller set CandR records.

Part 1. Running time of the API: A single iteration of DivGetBatch() needs

to go over all the nodes in I-tree and takes O(C ∗ k) time. DivGetBatch() has to

compute two subroutines:

Calculate-Bound and Skip-Nodes. To compute these two functions, it takes O(N)

time. Therefore, the overall running time is O(C ∗ k2 + N), where C is the total

number of nodes.

Part 2. Running time of the rest of computation: The rest of the computation

depends on the size of CandR. Let us assume, DivGetBatch() returns |CandRi|

records in the i-th iteration. Accordingly, we have:

TAug−MMR = O(C ∗ k2 +N +
k∑

i=1

|CandRi| ∗ k).

The expected case analysis basically delves deeper into the analysis of Part 2

and studies the expected running time considering different size of CandRi and its

corresponding probability.

Let us assume, in iteration i, the |CandRi| records touch x number of nodes in

I-tree. Indeed, xi is the number of nodes with |CandRi| records in I-tree, that the

augmented algorithms have to access during the query processing. Let us also assume

node ni contains vi records. We start the proof assuming there is only one level in

I-tree (i.e., l = 1), and then generalize it later on. If l = 1, the expected running

time of Part 2 calculation of Aug-MMR in the i-th iteration is:

E = O(
C∑
i=1

prob(xi)× computation costAug−MMR(xi)).

183

Now, probability of returning x nodes =
(
C
x

)
* probability of x nodes getting

selected * probability of (C − x) nodes not getting selected.

We assume that both data and query follow uniform distributions, thereby,

each node has an equal probability of getting selected or skipped. The probability of

choosing a node is 1/C. Therefore, the probability of not getting selected is (1−1/C).

The size of the returned record set, i.e., |CandR|, if x = i nodes are accessed:

|CandR|i = (1/C)i ∗ (1− 1/C)C−i ∗ [(v1 + v2 + ...+ vi)

+ (v1 + v3 + ...+ vi+1) + (v2 + v3 + ...+ vi+1)

+ (v3 + v4 + ...+ vi+2) + . . .]

= (1/C)i ∗ (1− 1/C)C−i ∗
(
C − 1

i− 1

)
∗ (v1 + v2 + . . .+ vC)

= (1/C)i ∗ (1− 1/C)C−i ∗
(
C − 1

i− 1

)
∗N.

Therefore, the overall expected cost of Part 2 is:

|CandR| = N ∗
C∑
i=1

(1/C)i ∗ (1− 1/C)C−i ∗
(
C − 1

i− 1

)

= N ∗ (1/C)/(1− 1/C) ∗
C∑
i=1

(1/C)i−1∗

(1− 1/C)C−(i−1) ∗
(
C − 1

i− 1

)
.

Let j = i− 1 :

= N ∗ (1/C)/(1− 1/C) ∗
C−1∑
j=0

(1/C)j∗

(1− 1/C)C−j ∗
(
C − 1

j

)
= N ∗ (1/C)/(1− 1/C) ∗ (1− 1/C)∗

184

C−1∑
j=0

(1/C)j ∗ (1− 1/C)(C−1)−j ∗
(
C − 1

j

)
= N ∗ (1/C)/(1− 1/C)∗

(1− 1/C) ∗ (1/C + 1− 1/C)C−1 = N/C.

Expected running time of Aug-MMR algorithm considering both Part 1 and Part

2 computation is:

EAug−MMR = O((N/C + C) ∗ k2 +N).

Now consider the case when l > 1. Probability of selecting a node in first level

is 1/m, given m is the arity of I-tree. Probability of selecting a node in second level

= probability of selecting that node out of m node in that branch * probability of

selecting it’s parent = 1/m2. Similarly, Probability of selecting a node at leaf node

is 1/ml = 1/C. Thus, in the general case, when l > 1, expected running time of

Aug-MMR is O((N/C + C) ∗ k2 +N), which is same as before.

Worst-case Aug-MMR . In the worst-case, all N records are returned by

DivGetBatch() in each iteration, which makes
k∑

i=1

|CandRi| = N ∗ k. Thus, the

worst-case running time is O((N + C) ∗ k2).

6.4 GMM Query Processing with DivGetBatch()

The second algorithm we study is GMM algorithm. We describe the original version

of the algorithm and our augmented version and similar to the previous section. We

also provide proofs on how our augmented version outperforms the original one.

185

6.4.1 GMM algorithm

The next algorithm we study isGMM [106] that tries to find a subset of k most diverse

records among N records by maximizing the minimum pairwise distance. GMM does

not require any external query. Based on the original design, the first two records

in the result set S are provided in constant time by an oracle. Then, the algorithm

iteratively goes through all records in R and finds a record whose minimum diversity

(maximum similarity) with the previously selected records is the largest (smallest).

It continues until |S|=k. The objective function is:

GMM(r)← argmaxr∈R\Sminrj∈SDiv(r, rj), (6.10)

where Div(r, rj) is the diversity score between record r and rj. A keen reader may

notice that GMM uses diversity (Div) in the objective function, whereas, in our

study, we store similarity between records. Unless specified otherwise, Div = 1−sim.

The two similarity matrices, one that captures the similarity between every pair of

records, and the other that captures that of between nodes, could be used to calculate

Div.

6.4.2 Aug-GMM algorithm

Aug-GMM leverages the DivGetBatch() API to reduce the number of records

to iterate on. Algorithm 16 describes the pseudo-code, where the DivGetBatch()

returns a small subset of records CandR which later on is fed to the original GMM

algorithm to get the nextBest record.

Calculate-Bounds: This function keeps track of the upper and lower bounds

of scores between nodes (uBGMM and lBGMM , respectively) using the same

principles as that of the original GMM objective function (Equation (6.10)).

186

lBGMMnode ← minnode′∈Z minDiv(node, node′), (6.11)

uBGMMnode ← minnode′∈Z maxDiv(node, node′), (6.12)

where Z is the set of nodes containing S, minDiv(node,

node′) and maxDiv(node, node′) are the minimum and the maximum diversity scores

between any two records in node and node′, respectively. In Equation (6.11),

minimum of the minimum diversity over all nodes in Z ensures the lower bound

of GMM , such that all records in node will have equal or greater value than

lBGMMnode. Conversely, in Equation (6.12), minimum of the maximum diversity

over all nodes in Z ensures the upper bounds, such that all records in node will have

equal or lower GMM value than uBGMMnode.

Skip-Nodes : This function is identical to Skip-Nodes of MMR in principle.

The skip-rationale of Aug-GMM is:

CandR← {N − {r ∈ I− tree.n | uBGMMn < (6.13)

max
∀n′

(lGMMn′)}}

Running Example: Let us assume k = 3 and the first two records of S are

arbitrarily chosen as r1 and r3. Initially, S = {r1, r3}. From Figure 6.1, r1 and r3

are inside node1 and node2, respectively. Hence, Z = {node1, node2}. Node-Node

diversity Div(node, node′) can be calculated using Div = 1 - Sim. Div(node3, node1)

= (0.884, 0.908) and Div(node3, node2) = (0.937, 0.9530). By using Equations (6.11)

and (6.12), lBGMMnode3 = 0.884 (as min of min div) and uBGMMnode3 = 0.908 (as

min of max div). Similarly, lBGMMnode1 , uBGMM

node1 , lBGMMnode2 , and uBGMMnode2 are 0, 0.031, 0, and 0.018. lBGMMnode3

(0.884) is greater than uBGMM

187

node1 (0.031) and uBGMMnode2 (0.018). Using Equation (6.13), node1 and node2 can

be discarded. Obtaining records from node3 , candR = {r5, r6, r7} is returned from

DivGetBatch(). Finally, GMM(r5, r6, r7) = r5 is called and the result set S =

{r1, r3, r5} is achieved.

Aug-GMM algorithm proofs

Claim 3. Aug-GMM returns identical top-k results as that of original GMM .

Proof. Akin to MMR proof, this proof is also constructed using one helper lemma

and one observation: Lemma 13 proves that DivGetBatch() never prunes a record

that is part of the original top-k; Observation 2 shows that in each iteration, once the

control comes back from DivGetBatch(), Aug-GMM works exactly as the original

GMM . Combining these lemma and observation,Aug-GMM returns identical top-k

results as that of the original GMM .

Lemma 13. DivGetBatch() never prunes a record that is part of the original top-k.

Proof. As part of this proof, we first prove that Skip-Nodes never discards the record

which has the highest GMM score in that iteration.

We use helper Lemma 14 to prove that the actual GMM score of any record

in a node node is bounded between uBGMMnode and lBGMMnode. The rest of the

proof is identical to Lemma 11 of Aug-MMR.

Lemma 14. GMM score of any record r ∈ node (say GMMr) is bounded by upper

and lower bound

uBGMMnode and lBGMMnode, respectively. That is,

lBGMMnode ≤ GMMr∈node ≤ uBGMMnode.

Proof. Let us first consider uBGMMnode, by assuming

F (node, rj) = maxri∈nodeDiv(ri, rj), it can be re-written as:

188

uBGMMnode ← minnode′∈Z [maxrj∈node′F (node, rj)], (6.14)

Let us assume, maximum GMM value produced by any record in node is

maxGMMnode. According to Equation (6.10), maxGMMnode is expressed as follows:

maxGMMnode = maxri∈node[minrj∈SDiv(ri, rj)],

= minrj∈S[maxri∈nodeDiv(ri, rj)],

= minrj∈SF (node, rj),

≤ minnode′∈Z [maxrj∈node′F (node, rj)],

= uBGMMnode, [using Equation (6.14)].

similarly, it can be proved that, minGMMnode ≥ lBGMMnode.

Observation 2. Once the control comes back from DivGetBatch(), Aug-GMM

works exactly as the original GMM in each iteration.

Aug-GMM does exactly same calculation as the original GMM does on a

set of records as a result it will produce the same record as GMM does in a single

iteration.

Claim 4. Aug-GMM requires O(N/C + C) ∗ k) time in expectation.

Proof. In the GMM algorithm, each iteration for finding one record takes O(N)

times. For k iteration, the overall running time is O(N ∗ k). Similar to Aug-MMR,

Aug-GMM does not need to go over all N records in each iteration, instead relies

on DivGetBatch() to obtain a smaller set CandR records.

Part 1. Running time of the API: A single iteration of DivGetBatch() needs

to go over all the nodes in I-tree and takes O(C) time. DivGetBatch() has to

189

compute two subroutines:

Calculate-Bound() and Skip-Nodes(). To compute these two functions, it takes O(C)

time. Therefore, the overall running time is O(C ∗ k), where C is the total number

of nodes.

Part 2. Running time of the rest of computation: Similar to Aug-MMR,

The rest of the computation depends on the size of CandR. Let us assume,

DivGetBatch() returns |CandRi| records in the i-th iteration. Hence, we have:

TAug−GMM = O(C ∗ k +
k∑

i=1

|CandRi|).

The expected case analysis basically delves deeper into the analysis of Part 2

and studies the expected running time considering different size of CandRi and its

corresponding probability. By performing similar calculation as that of Aug-MMR

as shown before, the expected cost of Aug-GMM is:

EAug−GMM = O((N/C + C) ∗ k).

Worst-case Aug-GMM . In the worst-case, all N records are returned by

DivGetBatch() in each iteration, which makes
k∑

i=1

|CandRi| = N ∗ k. Then the

worst-case running time is: O((N + C) ∗ k).

6.5 SWAP Query Processing with DivGetBatch()

The last algorithm we study is SWAP [211]. We describe the original version and our

proposed augmented version. Similar to the previous sections, we provide theoretical

analysis.

190

Algorithm 16 Aug-GMM

Inputs: I-tree, D, GMM , k

Output: S: final top-k result set

1: S ← two records selected by an oracle

2: R← {D − S}

3: for t = 1 to k − 2 do

4: CandR ← DivGetBatch(I-tree, R, S,GMM)

5: S = {S
⋃

GMM(r)r∈CandR}

6: end for

7: return S

6.5.1 SWAP algorithm

SWAP [211] is a greedy algorithm that produces top-k results based on a given query

Q and a tunable parameter that controls how much relevance could at most drop

between any two records in the top-k results. The algorithm starts by sorting the

records w.r.t. relevance and initializing the top-k result set S with the k-records with

the highest relevance score with Q. It finds a candidate record from the current top-k

set that has the smallest diversity contribution based on Equation (6.15). Indeed, in

each iteration, it attempts to swap one record from R \ S with the candidate record.

It starts scanning the remaining sorted relevance list from the top. In every iteration,

it attempts to swap one record from the current top-k set with another from sorted R

if the latter record has a higher contribution to diversity while ensuring the threshold

of relevance drop. The algorithm terminates when the relevance drop is below the

threshold, or R is fully scanned.

Divcont(ri, S) =
∑
rj∈S

Div(ri, rj). (6.15)

191

6.5.2 Aug-SWAP algorithm

Aug-SWAP is identical to the SWAP, i.e., it scans the sorted relevance list R, after

initializing the top-k set S. It calls the DivGetBatch() API to retrieve a smaller

set of candidate records CandR. These CandR records are eligible to be considered

during the next swap. If a record in R is not in CandR, then it is skipped. The rest

of the process is identical to the original SWAP algorithm. Algorithm 17 contains

the pseudo-code.

Calculate-Bounds: Once the records are sorted w.r.t. relevance score, the

diversity computation becomes query independent, and only between the records.

This function calculates the upper and lower bounds of diversity contribution of

nodes by leveraging

MinsimMatrixNode and MaxsimMatrixNode considering the set of nodes Z that

contains S, as below:

uBSWAPnode ←
∑

node′∈Z

maxDiv(node, node′), (6.16)

lBSWAPnode ←
∑

node′∈Z

minDiv(node, node′), (6.17)

where maxDiv(node, node′) and minDiv(node, node′) are the max and the min

diversity between node and node′. Naturally, the maximum (minimum) diversity

is the maximum (minimum) of node diversities between node and the nodes in Z.

Skip-Nodes: This function will then check if

uBSWAPnode is less than the diversity contribution of the candidate record (6.18);

If the condition is true, it will prune the node and the entire subtree under it. In

such a case, none of the records inside this node are eligible for swap because they

will not increase the overall diversity of S. DivGetBatch() returns the records for

192

all non-pruned nodes:

CandR← {N − {r ∈ I− tree.n | uBSWAPn < (6.18)

minri∈S
∑
rj∈S

Div(ri, rj)}}

Running Example: Lets say, k = 2, UB = 0.9, sorted R = {r8, r7, r2, r1, r4, r9, r3, r6,

r10}, and initial top-2 records selected as S={r8, r7}. Using Equation 6.15,

Divcont(r7, S) = 0.953 and the candidate is r7. From Figure 6.1, Z = {node2, node3}.

Using Equations (6.16), (6.17), and Figure 6.1, if Div = 1 - sim, we have:

uBSWAPnode1 = maxDiv(node1, node2) = 0.935,

lBSWAPnode1 = minDiv(node1, node2) = 0.925.

Then, Equation 6.18 is applied and node1 is discarded, node2, node3 are returned by

DivGetBatch(), and CandR = {r3, r9, r5, r6}. Next record in the sorted list is r2,

which is not in CandR. As a result, r2 will be skipped.

Aug-SWAP algorithm proofs

Claim 5. Aug-SWAP returns identical top-k results as that of original SWAP.

Proof. This proof is constructed using one helper lemma and one observation.

Lemma 15 proves that DivGetBatch() does not skip a record that has a higher

diversity contribution than that of the candidate record. Observation 3 shows that

once all records returned in CandR, Aug-SWAP is identical to SWAP . Combining

these lemma and observation, Aug-SWAP returns identical top-k results as that of

the original SWAP .

Lemma 15. DivGetBatch() never prunes a record that is part of the original top-k.

193

Algorithm 17 Aug-SWAP

Inputs: I-tree, D, UB, k, SWAP

Output: S: final top-k result set.

1: R ← Sort D on score;

2: S ←topkItems(R, k)

3: candidate← argminri∈SEquation 6.15

4: CandR ← R

5: pos ← k + 1

6: while candidate.score - R[pos].score < UB do

7: if R[pos] in CandR then

8: if Divcont(R[pos], S) > Divcont(candidate, S) then

9: S ← {S − candidate
⋃
R[pos]}

10: CandR ← DivGetBatch(I-tree, R, S, Q, SWAP)

11: candidate← argminri∈SEquation 6.15

12: end if

13: end if

14: pos++

15: end while

16: return S

Proof. As part of this proof, we first prove that in each iteration Skip-Nodes

never discards a record which has the higher diversity contribution than that of the

candidate record. Let us assume, rcand ∈ S has lowest diversity contribution in S.

Divcont(rcand, S) = minri∈S
∑
rj∈S

Div(ri, rj)}

= minri∈SDivcont(ri, S).

194

We use helper Lemma 16 to prove that the actual DivCont score of any record

in a node node is bounded between uBSWAPnode and lBSWAPnode. Let us assume,

rd ∈ noded is a record inside node, therefore,

uBSWAPnoded ≥ Divcont(rd, S)

≥ Divcont(rcand, S)

= minri∈S
∑
rj∈S

Div(ri, rj),

as a result,

uBSWAPnoded ≥ minri∈S
∑
rj∈S

Div(ri, rj). (6.19)

From Equations (6.18) and (6.19), it is evident that noded containing rd will not be

skipped by Skip-Nodes. This logic extends to all the iterations Skip-Nodes calls.

Hence the proof.

Lemma 16. Divcont score of any record r ∈ node is bounded by upper and lower

bound uBSWAPnode and lBSWAPnode respectively. That is,

lBSWAPnode ≤ Divcont(r, S)r∈node ≤ uBSWAPnode. (6.20)

Proof. By replacing the value of maxDiv(node, node′), the upper bound can be

written as:

uBSWAPnode ←
∑

node′∈Z

maxri∈node,rj∈node′Div(ri, rj). (6.21)

For any record r ∈ node and rj ∈ S, rj ∈ noded and nodej ∈ Z,

Div(r, rj) ≤ maxri∈nodeDiv(ri, rj),

Or, ∑
rj∈S

Div(r, rj) ≤
∑

node′∈Z

maxri∈node,rj∈node′Div(ri, rj),

195

As a result, Divcont(r, S) ≤ uBSWAPnode. similarly, we can prove: Divcont(r, S) ≥

lBSWAPnode.

Observation 3. Once the control comes back from DivGetBatch(), Aug-SWAP

works exactly as the original SWAP does in each iteration.

Aug-SWAP performs identical calculation of SWAP on the records that are

not pruned by DivGetBatch().

Claim 6. Aug-SWAP requires O(N/C ∗ k ∗ log k +N) time in expectation.

Proof. In the original SWAP algorithm, each iteration to select a new record to be

swapped with the candidate record takes O(k ∗ log k) time. Therefore, for going over

all records in R, it takes O(N ∗ k ∗ log k). Aug-SWAP does not need to perform

O(N ∗ k ∗ log k), instead relies on DivGetBatch() to obtain a smaller set CandR

records.

Part 1. Running time of the API: A single iteration of DivGetBatch() needs

to go over all the nodes in I-tree. DivGetBatch() has to compute two subroutines:

Calculate-Bound and Skip-Nodes. By updating only the most recent swapped records

and using dynamic programming, the two subroutines’ overall running time is O(C),

where C is the total number of nodes. However, how many times the API gets called

depends on the number of times the swap condition gets satisfied (recall lines 8-10 in

Aug-SWAP algorithm).

Part 2. Running time of the rest of computation: The other major computation

of this algorithm is the running time of a record be swapped, which is O(k ∗ log k)

and Divcont running time in the Algorithm 5 line 8, which is O(k). How many times

Divcont gets executed depends on Line 7 in the Aug-SWAP algorithm is satisfied.

The number of times SWAP gets executed depends on swap condition, which is Line

8 in the Aug-SWAP algorithm. Finally, the entire R needs to be exhausted (as long

196

as the bound drop threshold is satisfied), which takes O(N) time. As a result, we

have:

TAug−SWAP = O(Number of times swap is satisfied

∗DivGetBatch() runtime+

Number of times swap is

satisfied ∗ SWAP runtime+

number of times line 7 is satisfied∗

Divcont runtime+N).

By considering running time of single Divcont,

SWAP , and DivGetBatch() call, overall running time of Aug-SWAP becomes:

TAug−SWAP = O(Number of times swap is satisfied

∗ C +Number of times swap is satisfied

∗ k ∗ log k + number of times line 7

is satisfied ∗ k +N).

= O(
N∑
i=1

[probability of swap satisfied

∗ C + probability of swap satisfied

∗ k ∗ log k + probability ofnumber of

times line 7 is satisfied ∗ k] +N)

Expected size of CandR is
∑N

i=1
|CandRi|

N
. Probability of line 7 satisfied =

probability that R[pos] is in CandR =
∑N

i=1
|CandRi|

N

N
. Without further information,

197

the probability of a record getting swapped is 1/2 (same as not getting swapped).

Probability of SWAP = 1/2∗line 7 is satisfied = 1/2∗
∑N

i=1
|CandRi|

N

N
. Expected running

time (cost) of Aug-SWAP is:

EAug−SWAP =
N∑
i=1

[1/2 ∗
∑N

i=1
|CandRi|

N

N
∗ (C + k ∗ log k)

+

∑N
i=1

|CandRi|
N

N
∗ k] +N

= 1/2 ∗
N∑
i=1

|CandRi|
N

∗ (C + k ∗ log k)

+
N∑
i=1

|CandRi|
N

∗ k +N

= O(
N∑
i=1

|CandRi|
N

∗ (C + k ∗ log k) +N)

First, we study the Part 2 computation having two costs associated with it, cost of

Divcont and cost that of SWAP . Based on Line 7 of Algorithm 5, if CandR is

large, it is likely to have R[pos] inside it. In fact, if CandR contains all R records,

R[pos] will always be there. For the purpose of illustration, let us assume, in the i-th

iteration, |CandRi| records touch x number of nodes in I-tree and node ni contains

vi records. Therefore, the probability that R[pos] is in CandRi =
∑x

q=1 vq

N
.

The expected running time of SWAP in terms of C is:
(
C
x

)
* probability of x

nodes getting selected * probability of (C−x) nodes not getting selected * probability

of R[pos] is in CandRi * probability of swap * cost of swap.

The probability of x = i and R[pos] is in CandRi is:

= (1/C)i ∗ (1− 1/C)C−i ∗ [(v1/N + v2/N + · · ·+ vi/N)

+ (v1/N + v3/N + · · ·+ vi/N) + . . .

+ (vC−i/N + · · ·+ vC/N)]

= (1/C)i ∗ (1− 1/C)C−i ∗
(
C − 1

i− 1

)
∗ (v1 + v2 + · · ·+ vc

N
).

198

= (1/C)i ∗ (1− 1/C)C−i ∗
(
C − 1

i− 1

)
.

Therefore, the expected running time (cost) of SWAP is,

ESWAP = 1/2 ∗N ∗ k ∗ log k ∗
C∑
i=1

(1/C)i ∗ (1− 1/C)C−i∗(
C − 1

i− 1

)
= 1/2 ∗N/C ∗ k ∗ log k.

Expected running cost of Divcont is
(
C
x

)
* probability of x nodes getting selected *

probability of (C−x) nodes not getting selected * probability of R[pos] is in CandRi

* cost of Divcont. Therefore, the expected running time (cost) of Divcont is:

EDivcont = N ∗ k ∗
C∑
i=1

(1/C)i ∗ (1− 1/C)C−i ∗
(
C − 1

i− 1

)
= N/C ∗ k.

The expected cost of Part 2 becomes:

EPart2 = 1/2 ∗N/C ∗ k ∗ log k +N/C ∗ k.

The expected running time (cost) of Part 1 is =
(
C
x

)
* probability of x nodes getting

selected * probability of (C − x) nodes not getting selected * probability of R[pos] is

in CandRi * probability of swap * cost of DivGetBatch(). Using similar calculation

as above, expected cost of part 1 is:

Epart1 = 1/2 ∗N ∗
C∑
i=1

(1/C)i ∗ (1− 1/C)C−i∗(
C − 1

i− 1

)
∗ C = N/2.

Expected running time of Aug-SWAP algorithm considering both Part 1 and Part

2 computation is:

199

EAug−SWAP = 1/2 ∗N/C ∗ k ∗ log k +N/C ∗ k +N/2

+N = O(N/C ∗ k ∗ log k +N)

Now consider the case when l > 1 for Aug-SWAP. Probability of selecting a

node in first level is 1/m, givenm is the arity of I-tree. Probability of selecting a node

in second level = probability of selecting that node out of m node in that branch *

probability of selecting it’s parent = 1/m2. Similarly, Probability of selecting a node

at leaf node is 1/ml = 1/C. As the records are only returned from leaf nodes,

the expected probability that R[pos] is in CandRi does not change for l > 1. The

running time of DivGetBatch() = O(ml) = O(C) also stays same . The rest of the

computation does not directly depend on l. As a result, expected running time of

Aug-SWAP for l > 1 is same as before.

Worst-case Aug-SWAP. In the worst-case, none of the records are skipped, so the

number of swap isO(N). Therefore, the worst-case running time is: O(N∗C∗k∗log k).

Our technical results are summarized in Tables 6.1 and 6.2.

6.6 I-tree

The index is a hierarchical complete tree-like structure [131] that partitions D into

multiple groups of records. Each node in I-tree consists of a group of similar records.

The index structure maintains a higher level aggregate similarity between nodes 3.

I-tree is applicable not only to the studied three algorithms, but also to any content-

based algorithm that is either based on replacing items in the top-k or building the

top-k in an incremental fashion.

3Diversity between a pair of records is simply 1− similarity between them.

200

Algorithm 18 Indexing Algorithm BuildTree(node)

Inputs: database D of N records, m: arity of the tree, l: number of levels,

Outputs: I-tree, simMatrixNode: node-node similarity matrix, recordMap: a

mapping of all records and their belonging node id for each level.

1: rootnode ← N records, y = 0

2: nodelist[y] ← rootnode

3: while y ≤ l do

4: for node in nodelist[y] do

5: cnodes ← Partition(node, m)

6: I-tree [y][node].addChild(cnodes)

7: w ←
⋃

cnodes

8: recordMap[y][r] ← node id containing record r in y

9: end for

10: MinsimMatrixNode[y][i][j] ← Use Equation (6.23)

11: MaxsimMatrixNode[y][i][j] ← Use Equation (6.24)

12: nodelist[y] ← w

13: y ← y + 1;

14: end while

6.6.1 Index construction

The input to the indexing step is a N × N matrix, named simMatrixRecord. It

represents the similarity scores between every pair of records, ri and rj, in the database

and two additional parameters, l and m, which are the number of levels and arity of

the tree, respectively. The output is a complete m-ary tree with l levels, referred to

as I-tree.

The indexing algorithm BuildTree (Algorithm 18) partitions (refer to the

Subroutine Partition) the records. It also maintains additional data structures that

contain similarity scores between nodes for efficient query processing. An example of

201

a two-level index tree is shown in Figure. 6.2. At the first level, BuildTree creates

a root node containing all N records and m children of the root node. From the

point of abstraction, it is not important at this stage to describe how the data is

partitioned. Basically, the goal is to keep similar records together while separating

non-similar ones. There are multiple off-the-shelf techniques such as clustering and

graph partitioning to carry out this task.

In our implementation, we use the popular k-means algorithm [112] for

partitioning. The algorithm repeats the partitioning procedure until it reaches l

levels. Therefore, I-tree contains a total of C nodes such that:

C =
l∑

i=0

mi =
ml+1 − 1

m− 1
= O(ml) (6.22)

Inside I-tree, additional data structures are maintained:

a. A recordMap of size N × l that maps the id of a record with the id of its node in

each level from 1 . . . l. b. MinsimMatrixNode and MaxsimMatrixNode that contain

inter-node minimum and maximum similarities between any two nodes in the same

level, respectively. Particularly, for two nodes n and n′ in level y, MinsimMatrixNode

and MaxsimMatrixNode contain:

MinsimMatrixNode[i, j] = Minr∈i,r′∈jsim(r, r′), (6.23)

MaxsimMatrixNode[i, j] = Maxr∈i,r′∈jsim(r, r′), (6.24)

where, r ∈ n, r′ ∈ n′. Figure 6.1 contains these scores for 3 nodes of our running

example.

202

{r2, r10} {r1} {r3}{r4} {r5} {r6} {r7}{r8} {r9}

Node

2 1

Node

2 2

Node

2 3

Node

2 4

Node

2 5

Node

2 6

Node

2 7

Node

2 8

Node

2 9

Node 1 1 Node 1 2 Node 1 3

Root node

{r1, r2,
r3,…, r10}

{r1, r2,
r4, r10}

{r3, r8,
 r9}

{r5, r6,
 r7}

Level 0

Level 1

Level 2

Figure 6.2 I-tree.

6.6.2 Index maintenance

Even for a single insertion or deletion, I-tree requires the following two activities: a.

insertion/deletion of that record from/into I-tree; b. updating MinsimMatrixNode

and MaxsimMatrixNode, if these insertion/deletion require updating the minimum

and maximum similarity scores between nodes. One can easily see that (a) could be

achieved in a constant time when l =1 and O(l) when l greater than 1. However, a

single insertion/deletion may require as many as 2 × (C − 1) updates in these two

matrices.

Batch Update We study how to maintain I-tree considering both insertions and

deletions.

Batch Deletion. Let us assume a batch of R records are to be deleted from

I-tree. The process deletes these R records one by one and then checks how many

entries in MinsimMatrixNode and MaxsimMatrixNode need update (if the deleted

records contribute to these aggregate values, then that require updates in those two

matrices, else not). The overall process takes O(|Y | × C ×N) time.

Batch Insertion. This problem is more complicated. If the records are inserted

arbitrarily inside I-tree, then, each insertion may potentially cause a total of 2×(C−

203

1) updates in theMinsimMatrixNode andMaxsimMatrixNode data structures. This is

the leading computational cost of batch insertion. Moreover, when a batch of records

are inserted, it is possible to have multiple records to get inserted inside the same node,

and that should not be double-counted in the process. Finally, one needs to insert

the records to those nodes, such that the aggregates stored in MinsimMatrixNode

and MaxsimMatrixNode remain “tight” to enable effective pruning. These nuances

are explored in formalizing the batch insertion problem.

Problem Definition 6. (Batch Insert.) Let Minsim

MatrixNode[i, j] (similarly MaxsimMatrixNode[i, j]) denote the value after |Y |

insertions at the [i, j]-th entry at the MinsimMatrixNode (similarly MaxsimMatrix

Node matrix). Let Minsimij and Maxsimij be two binary variables, such that which

Minsimij = 1 (similarly Maxsimij) , if it requires an update after insertions,

0 otherwise. Our goal is to insert a batch of records Y such that, it minimizes∑
i,j Minsimij +

∑
i,j

Maxsimij, i.e., the total number of updates in these two matrices.

Algorithms. We present an integer programming-based solution OPTMn

for solving the batch insert problem. While OPTMn indeed produces the optimal

solution, due to its exponential nature, it does not scale to a very large dataset

considering a large number of insertions. As an alternative, we present GrMn

a greedy heuristic algorithm which makes greedy choices and indirectly attempts

to minimize the number of updates in MinsimMatrixNode and MaxsimMatrixNode

matrices. The idea is to make a greedy decision by inserting each of the incoming

records to that node which it is closest to (based on the underlying similarity measure)

and then check if that insertion requires any updates in MinsimMatrixNode and

MaxsimMatrixNode matrices. The running time of this algorithm is O(|Y | ×N).

204

5 k 1 0 k 2 0 k 6 0 k 1 0 0 k
0

5

1 0

1 5

2 0

D a t a s e t s i z e
Ru

nni
ng

tim
e (

s) A u g - M M R
 M M R

(a) Yelp

5 k 1 0 k 5 0 k 1 0 0 k 5 0 0 k 1 M
0

5 0

1 0 0

1 5 0

D a t a s e t s i z e

Ru
nni

ng
tim

e (
s) A u g - M M R

 M M R

(b) MakeBlobs

1 M 2 M 5 M 1 0 M
0

1 0 0 0 0
2 0 0 0 0
3 0 0 0 0
4 0 0 0 0
5 0 0 0 0 A u g - M M R

 M M R

D a t a s e t s i z e

Ru
nni

ng
tim

e (
s)

(c) MakeBlobs, large scale

5 k 1 0 k 5 0 k 1 0 0 k 5 0 0 k 1 M
0

5 0

1 0 0

1 5 0

D a t a s e t s i z e
Ru

nni
ng

tim
e (

s) A u g - M M R
 M M R

(d) MovieLens

Figure 6.3 Aug-MMR vs MMR scalability.

6.7 Experimental Evaluation

Our experimental evaluations have three primary goals. First, we analyze if the

augmented algorithms return identical results to their original counterparts using

multiple large-scale datasets. Second, we examine the efficiency and scalability of

the augmented algorithms and compare them with multiple baselines. Finally, we

empirically study the cost of building and maintaining I-tree. For brevity, we present

a subset of results that are representative.

Experimental setup. All algorithms are implemented in Python 3.8. All

experiments are conducted on a cluster server OSL machine with 32GB RAMmemory,

OS: Scientific Linux release 7.8 (Nitrogen), CPU: Intel(R) Xeon(R) CPU E3-1245 v6

@ 3.70GHz. Obtained results are the average of three separate runs. 4

4The code and data could be found at https://github.com/MouinulIslamNJIT/divGetBatch,
Retrieved on 4/7/2023

205

0 1 0 2 0 3 0 4 0 5 0
0

1 0

2 0

3 0

4 0

5 0

Ru
nni

ng
tim

e (s
)

k

 A u g - M M R
 M M R

(a) Varying k

1 2 3 4 5
1 0

2 0

3 0

4 0

5 0

Ru
nni

ng
tim

e (
s)

l

 A u g - M M R

(b) Varying l

1 0 0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 01 . 5

2 . 0

2 . 5

3 . 0

Ru
nni

ng
tim

e (
s)

m

 A u g - M M R

(c) Varying m

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
2
4
6
8

1 0
1 2
1 4
1 6

Ru
nni

ng
tim

e (
s)

�

 A u g - M M R
 M M R

(d) Varying λ

Figure 6.4 Aug-MMR vs MMR varying parameters.

Table 6.6 Dataset Statistics

Dataset Size
#Total

features

#Features

used

Dataset

type

Yelp 112,686 12 3 Real

MovieLens 1,000,209 3 2 Real

MovieLens non-metric 8,453 3 2 Real

UCI Gas dataset 13,911 128 128 Real

MakeBlobs 10,000,000 varied 20 Synthetic

206

Table 6.7 Aug-MMR vs MMR Running Time (s) on MakeBlobs with l = 2, m =
6

Dataset Size

Algorithm 5k 10k 50k 10k

Aug-MMR 4.33 8.69 43.57 306.11

MMR 19.77 40.16 197.28 1206.90

Diversity and Similarity. We use normalized Euclidean distance (dist)

as diversity to validate our designed solutions in the geometric space, Cosine

similarity [112] in general metric space. For non-metric distance, we use Movielens

datasets and quantify the diversity between a pair of movies as the number of users

who have rated either of these two movies but not both. We additionally use an

arbitrary diversity function generated synthetically on Makeblobs dataset, such that

it does not satisfy triangle inequality. Thus, diversity values are atomic for the last two

cases, and are not derived from the feature vectors. For all these cases, sim = 1−dist.

Query selection. In our experiments, queries are chosen randomly.

Performance Measures. We measure precision@k [112] for qualitative

analysis. Efficiency of the proposed method is demonstrated with |CandR|/N

× 100, pruning = 1− |CandR|/N × 100, as well as by presenting the running times

of the algorithms in seconds and computing speedup as follows:

speedup =
Toriginal−algorithm

Taugmented−algorithm

(6.25)

where T denotes running time in seconds. Finally, we present time to build I-tree

and the space required for that.

207

5 k 1 0 k 2 0 k 5 0 k 1 0 0 k
0

1

2

3

D a t a s e t s i z e
Ru

nni
ng

tim
e (

s) A u g - G M M
 G M M

(a) Yelp

5 k 1 0 k 5 0 k 1 0 0 k 5 0 0 k 1 M
0

5

1 0

1 5

2 0

D a t a s e t s i z e

Ru
nni

ng
tim

e (
s) A u g - G M M

 G M M

(b) MakeBlobs

5 k 1 0 k 5 0 k 1 0 0 k 5 0 0 k 1 M
0

5

1 0

1 5

2 0
 A u g - G M M
 G M M

D a t a s e t s i z e

Ru
nni

ng
tim

e (
s)

(c) MovieLens

Figure 6.5 Aug-GMM vs GMM scalability.

Datasets. Experiments are conducted on five datasets, four real and one

publicly available synthetic data. For real datasets, we useYelp5, UCI Gas dataset 6

that is high dimensional, MovieLens 1M records, and MovieLens non-metric

dataset7. For synthetic data, we use MakeBlobs from the sklearn package.8 An

overview of the datasets is given in Table 6.6.

6.7.1 Baselines

In this section, we introduce diversity-based algorithms and index structure baselines

that we compare to our proposed solutions.

5https://www.yelp.com/dataset/documentation/main, Retrieved on 4/7/2023
6https://archive.ics.uci.edu/ml/datasets/gas+sensor+array+drift+dataset,
Retrieved on 4/7/2023
7https://grouplens.org/datasets/movielens/,Retrieved on 4/7/2023
8https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_

blobs.html,Retrieved on 4/7/2023

208

https://www.yelp.com/dataset/documentation/main
https://archive.ics.uci.edu/ml/datasets/gas+sensor+array+drift+dataset
https://grouplens.org/datasets/movielens/
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.html

5 1 0 1 5 2 0 3 0 4 0 5 0
0

1

2

3

Ru
nni

ng
tim

e (s
)

k

 A u g - G M M
 G M M

(a) Varying k

1 2 3 4 5
0

2

4

6

8

Ru
nni

ng
tim

e (
s)

l

 A u g - G M M

(b) Varying l

1 0 0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0
0 . 0 2
0 . 0 4
0 . 0 6
0 . 0 8
0 . 1 0
0 . 1 2

Ru
nni

ng
tim

e (
s)

m

 A u g - G M M

(c) Varying m

Figure 6.6 Aug-GMM vs GMM performance varying parameters.

Diversity Baselines For diversity-based methods, three representative algorithms

are implemented.

MMR [55]: computes an objective score based on two parameters: relevance

to the query and diversity with other records. As shown in Equation (6.1), they

are combined in a linear expression with a λ coefficient. The algorithm repeats this

computation k times to produce top-k.

GMM [106]: finds the k most diverse records by selecting the maximum of

minimum distances between undiscovered records and previously selected ones at

each iteration (Equation (6.10)). Like MMR, it also iteratively builds the top-k set.

SWAP [211]: This greedy algorithm first finds the initial top-k records, then

greedily interchanges records that are part of the current top-k with the ones that

are remaining, if the swap improves diversity contribution (Equation (6.15)).

SPP [98]: Space Partitioning and Probing (SPP in short) is an algorithm that

minimizes the number of accessed objects while finding exactly the same result as

209

1 0 k 2 0 k 4 0 k 6 0 k 1 0 0 k

0 . 5

1 . 0

1 . 5

2 . 0

2 . 5
 A u g - S W A P
 S W A P

D a t a s e t s i z e
Ru

nni
ng

tim
e (

s)

(a) Yelp

5 k 1 0 k 5 0 k 1 0 0 k 5 0 0 k 1 M
0

5

1 0

1 5

2 0

D a t a s e t s i z e

Ru
nni

ng
tim

e (
s) A u g - S W A P

 S W A P

(b) MakeBlobs

5 k 1 0 k 5 0 k 1 0 0 k 5 0 0 k 1 M
0
5

1 0
1 5
2 0
2 5
3 0
3 5

D a t a s e t s i z e

Ru
nni

ng
tim

e (
s) A u g - S W A P

 S W A P

(c) MovieLens

Figure 6.7 Aug-SWAP vs SWAP scalability.

MMR. SPP belongs to a family of algorithms that rely only on score-based and

distance-based access methods, and does not require retrieving all the relevant objects.

SPP is designed only for the geometric space.

Index Structure Baselines We implement three additional baselines to compare

against I-tree. These indexing techniques are limited to metric space, and can not

be applied on arbitrary diversity function not satisfying triangular inequality.

KD-tree [34]:KD-tree is a multidimensional Binary Search Tree. The tree is

created by bisecting each dimension and finding the median. KD-tree can perform

searches in multidimensional space for efficient nearest neighbor search.

Ball-tree [135]: Ball-tree is a binary tree in which every node defines a D-

dimensional hypersphere or ball, containing a subset of the points to be searched.

Each node in the tree defines the smallest ball that contains all data points in its

210

5 1 0 1 5 2 0 3 0 4 0 5 0
0
1
2
3
4
5

Ru
nni

ng
tim

e (s
)

k

 A u g - S W A P
 S W A P

(a) Varying k

1 2 3 4 50 . 0

0 . 5

1 . 0

1 . 5

2 . 0

Ru
nni

ng
tim

e (
s)

l

 A u g - S W A P

(b) Varying l

1 0 0 2 0 0 5 0 0 1 0 0 0
0 . 4
0 . 6
0 . 8
1 . 0
1 . 2
1 . 4

Ru
nni

ng
tim

e (
s)

m

 A u g - S W A P

(c) Varying m

Figure 6.8 Aug-SWAP vs SWAP varying parameters.

subtree. This gives rise to the useful property that for a given test point t outside

the ball, the distance to any point in a ball B in the tree is greater than or equal to

the distance from t to the surface of the ball. Ball-tree only supports binary splits.

The arity of the tree in both KD-tree and Ball-tree is fixed to 2.

M-Tree [68]: M -tree is similar to Ball-tree, but supports multiple splits. Every

node n and leaf lf residing in a particular node N is at most distance r from N , and

every node n and leaf lf with node parent N keeps the distance from it. It also has

the similar property of Ball-tree, which is for a given test point t outside the node,

the distance to any point in a node in the tree is greater than or equal to the distance

from t to the surface of the node.

We are incorporating Node-Node distance matrix to these baseline tree index

structures so that they can be used for I-tree API.

Cover-Tree [36]: Another popular indexing structure is cover tree which is used

to enable efficient nearest neighbor search in metric space. To be able to work with

211

DivGetBatch(), the indexing technique must work in a fashion that the parent

nodes of the index structure (in this case a tree) covers the records that are present

in their sub-tree. This allows us to effectively maintain the inter-diversity bounds

across the nodes and when a node gets pruned, all its children also does. Contrarily,

in a cover tree, only the leaf nodes together contain and cover all the records and

no other intermediate/ higher level nodes does. Therefore, it is not obvious how to

adapt this indexing technique and integrate it inside our proposed access primitive.

Index Maintenance Baselines OPTMn and GrMn are compared with two

baselines.

NonIncrMn Algorithm: In NonIncrMn, I-tree is built from scratch after

every |Y | insertions. NonOlMn Algorithm: This algorithm makes a local decision

to insert each record based on Problem 6, without accounting for overlapping updates

inside the same node in I-tree.

6.7.2 Summary of results

Our first set of experiments verify that our results from all three augmented algorithms

are identical to their original counterparts. We measure precision@k [112] for different

k, and our empirical results obtain 100% precision score.

Our next set of experimental results demonstrate that the running time of the

augmented algorithms are consistent with our theoretical analyses. We achieve a

19× and 24× speedup for Aug-MMR and Aug-GMM, on Makeblobs 10M and

MovieLens 1M data, respectively. We achieve a 3× speedup for Aug-SWAP on

MakeBlobs 1M dataset. These results corroborate that our proposed framework

is suitable to scale on large datasets. We also show that I-tree works on any

arbitrary distance functions while other baselines are designed for only metric

distance functions. We have conducted experimental analysis on two different

non-metric distance functions (one obtained from the real data), these experimental

212

0 2 0 k 4 0 k 6 0 k 8 0 k 1 0 0 k0

5 0

1 0 0

1 5 0

2 0 0
 I - t r e e

D a t a s e t s i z e
Ru

nni
ng

tim
e (

s)

(a) Yelp

5 k 1 0 k 5 0 k 1 0 0 k 5 0 0 k 1 M
0

2 0 0 0
4 0 0 0
6 0 0 0
8 0 0 0

1 0 0 0 0 I - t r e e - M o v i e L e n s
 I - t r e e - M a k e B l o b s

D a t a s e t s i z e

Ru
nni

ng
tim

e (
s)

(b) MovieLens, MakeBlobs

1 2 3 4 50

2 0

4 0

6 0

8 0

1 0 0
 Y e l p
 M o v i e L e n s

l

Ru
nni

ng
tim

e (
s)

(c) varying l

1 0 0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0

0

1 0 0

2 0 0

3 0 0

Ru
nni

ng
tim

e (
s)

m

 Y e l p
 M o v i e L e n s

(d) varying m

Figure 6.9 I-tree construction time.

results demonstrate that Aug-MMR attains 82% pruning compared to the baseline

solutions, resulting in about 2.7 times speed up on an average. On the other hand,

the results obtained from high dimensional UCI Gas dataset demonstrate that the

proposed framework is still effective even in higher dimension, as Aug-MMR attains

about 1.7 speed up on an average.

Figures 6.11 demonstrate the index construction and the query processing

time trade-off of I-tree and we compare that with our implemented baseline

indexes, KD-tree, Ball-Tree, M-Tree. These results convincingly demonstrate that

I-tree enables the fastest query processing time, while requiring comparable index

construction time. The results demonstrate that I-tree is always more than 18×

faster in query processing and as much as 170× faster for certain configurations.

For preprocessing, it is always more than 1.5× faster and at times it is more than

20× faster. We also present |CandR| percentage and pruning percentage of I-tree

213

1 0 1 0 0 1 k 1 0 k 1 0 0 k
0

5 0 0 0

1 0 0 0 0

1 5 0 0 0

| Y |
Ru

nni
ng

tim
e (

s) G r M n
 N o n O l M n
 N o n I n c r M n

(a) MakeBlobs

1 0 1 0 0 1 k 1 0 k 1 0 0 k
0

5 0 0 0

1 0 0 0 0

1 5 0 0 0

| Y |

Ru
nni

ng
tim

e (
s) G r M n

 N o n O l M n
 N o n I n c r M n

(b) MovieLens

Figure 6.10 I-tree maintenance time varying |Y |.

compared to other index baselines in Tables 6.9 and 6.10 which shows that I-tree

outperforms all baselines with having 90% pruning.

The results convincingly demonstrate that I-tree is lightweight to compute and

space efficient (for the largest dataset, it takes 109 minutes to build the index, which

is acceptable because it is done offline and only once). Finally, we demonstrate that

our proposed solution OPTMn is an ideal choice for incremental index maintenance,

while the greedy heuristic GrMn is highly scalable while being not too inferior from

the optimal solution OPTMn qualitatively. GrMn takes 22 minutes to insert

100k data into 1M dataset, while building I-tree from scratch is unrealistic as

NonIncrMn takes 2 hours.

6.7.3 Quality analysis

The goal of these experiments is to empirically validate if the augmented algorithms

produce the same results as their original counterparts. Additionally, we present how

effective DivGetBatch() is in pruning records by presenting the size of CandR.

We have calculated precision@k while varying k from 10 to 50, considering the

original and augmented algorithms. We obtain the precision@k equal to 100% always.

214

5 k 1 0 k 5 0 k 1 0 0 k
0

5

1 0

1 5

2 0

2 5 w . r . t . K D - t r e e
 w . r . t B a l l - t r e e
 w . r . t . M - t r e e

I-tr
ee

Pre
pro

ces
sin

g S
pee

dup

D a t a s e t S i z e

(a) I-tree Index Preprocessing
speedup w.r.t baselines

5 k 1 0 k 5 0 k 1 0 0 k
0

2 0
4 0
6 0
8 0

1 0 0
1 2 0
1 4 0
1 6 0
1 8 0

I-tr
ee

que
ry

pro
ces

sin
g S

pee
dup w . r . t . K D - t r e e

 w . r . t B a l l - t r e e
 w . r . t . M - t r e e

D a t a s e t S i z e

(b) I-tree Query Processing
speedup w.r.t baselines

Figure 6.11 Index Construction and Query Processing time for tree baselines and
I-tree.

6.7.4 Scalability analysis

We run two types of scalability experiments. (i) demonstrate the efficacy of the

augmented diversification algorithms and compare them appropriately with the

baselines; (ii) demonstrate the efficacy of the indexing technique - present index

construction and maintenance time, and compare them appropriately with the

baselines. Additionally, we also present the memory requirements of I-tree. We

analyze these effects by increasing dataset size and other pertinent parameters.

Augmented Diversification Algorithms We first vary dataset size, then additional

parameters that impact the query processing time. To demonstrate efficacy,

we present two things. (1) The percentage of remaining records returned by

DivGetBatch(), which is which is |CandR|/N×100 and pruning (1−|CandR|/N×

100. (II) Query processing time in seconds.

Effectiveness in Pruning. In Table 6.8, we present the number of remaining

records returned by DivGetBatch(), which is |CandR| using MovieLens dataset.

We can observe that there is a remarkable reduction compared to the original dataset.

For example, Aug-MMR returns only 814 records. The biggest number is for Aug-

SWAP with 66513 records, but still returning only 6% of the records.

215

Table 6.8 |CandR| Percentage Returned by DivGetBatch() on MovieLens

Dataset Size

Algorithm 5k 10k 50k 100k 500k 1M

Aug-MMR 13% 5.21% 0.56% 0.09% 0.08% 0.08%

Aug-GMM 59.96% 15.48% 4.16% 2.67% 0.31% 0.4%

Aug-SWAP 14.96% 28.11% 10.07% 48.74% 9.27% 0.66%

Table 6.9 |CandR| Percentage Returned by DivGetBatch() Using Different Index
Structures for Aug-MMR on MakeBlobs

Dataset Size

Algorithm 5k 10k 50k 100k

I-tree 10% 10% 10% 10%

KD-tree 96.72% 96.72% 96.87% 97.34%

Ball-tree 96.7% 95.62% 96.56% 96.56%

M-tree 97.92% 97.19% 98.32% 98.07%

Table 6.9 and Table 6.10 show |CandR| and pruning percentage returned by

DivGetBatch() for Aug-MMR algorithm using different index structures and

MakeBlobs dataset. We can see that by fixing C = 32, KD-tree, Ball-tree, and

M -tree pruning are below 5%, while I-tree pruning considerably outperforms all

baseline which is 90%.

Effectiveness in Number of Accesses. In order to perform a fair comparison

between our augmented algorithms and SPP , we compare the number of I/O accesses

SPP does and present that number for Aug-MMR (SPP is designed to optimize

that access). We calculate the number of accesses in DivGetBatch() by counting

the distinct records present in CandR in k rounds. The results are presented in Table

6.11. We can see that Aug-MMR has less number of access. For example on 100k

data, I-tree has 2799 number of access while SPP has 26521 number of access.

216

Table 6.10 Pruning Percentage by DivGetBatch() Using Different Index Structures
for Aug-MMR on MakeBlobs

Dataset Size

Algorithm 5k 10k 50k 100k

I-tree 90% 90% 90% 90%

KD-tree 3.3% 3.3% 3.1% 2.6%

Ball-tree 3.3% 4.3% 3.4% 3.4%

M-tree 2% 2.8% 1.6% 1.9%

Table 6.11 Number of Access Percentage for Aug-MMR and SPP on MakeBlobs

Dataset Size

Algorithm 5k 10k 50k 100k

I-tree 10% 10% 5.2% 2.79%

SPP 20.44% 9.57% 27.31% 26.52%

Varying Dataset. Figures 6.3, 6.5, and 6.7 compare the running times of our three

augmented algorithms and their baselines using our three datasets. As N increases,

the running times of each algorithm and its baseline increase, but we observe that

our algorithms are consistently faster and they scale significantly better. Figure 6.3

shows Aug-MMR’s scalability on all three datasets. We fix m to 1000, k = 20 and

l = 1 for all dataset sizes while N is increased from 5000 up to 1M. We can see that

on MovieLens, varying N from 5000 to 1M, Aug-MMR is 5× faster than MMR.

Figure 6.5 shows Aug-GMM ’s scalability. On MovieLens, varying N from 5000 to

10M, Aug-GMM is 24× faster than GMM. Consistent with the theoretical analysis,

Aug-GMM is faster than Aug-MMR for the same settings because Aug-MMR

has an additional k term in the expected cost equation. Figure 6.7 showsAug-SWAP

’s scalability on all three datasets. For the 1M data of MakeBlobs we obtain a 3×

speedup over SWAP. We obtain a 1.33× speedup for Movielens because the total

number of swaps in MovieLens are higher.

217

Table 6.12 Index Comparisons

Index Metric Functions Non metric Functions 90% Pruning

I-tree ✓ ✓ ✓

KD-tree [34] ✓ × ×

Ball-tree [135] ✓ × ×

M-tree [68] ✓ × ×

Table 6.13 Aug-MMR vs MMR Running Time on MakeBlobs 100k Records

Distance function

Algorithm Euclidean Cosine Non-metric

Aug-MMR 3.08 4.64 13.06

MMR 13.12 15.36 15.27

We also measure the scalability of Aug-MMR compared to MMR using large

scale data sizes of 2M, 5M, and 10M using makeBlobs dataset. The results are shown

in Figure 6.3(c) in which with m = 1000 and l = 1, we have up to 19× speedup.

Moreover, we runAug-MMR on high-dimensional euclidean distance considering

more number of features using 1M and 2M makeBlobs dataset. for 1M data, 1M and

20 features, MMR takes 12492.64 (s), and Aug-MMR takes 2817.14 (s). For 2M

data and 20 features, MMR takes 25812.43 9 (s), Aug-MMR takes 6317.20 (s)

which in both case show 4× speedup.

Additionally, Figure 6.12 presents the scalability of the proposed Aug-MMR

algorithm compared to MMR using UCI Gas dataset with 10k records and 128

Table 6.14 Aug-MMR vs MMR on Movielens Non-metric Data

Algorithm Running time (s) Average Pruning

Aug-MMR 0.19 82.66%

MMR 0.52 0

218

Table 6.15 I-tree Maintenance on MakeBlobs 10k Records

|Y | Algorithm # updates running time (s)

10

OPTMn 14 3.59

GrMn 76 0.007

NonOlMn 14 0.29

NonIncrMn 2446 1.30

100

OPTMn 59 512.42

GrMn 76 0.05

NonOlMn 142 2.97

NonIncrMn 2447 1.44

1000

OPTMn 59 18768.68

GrMn 76 0.43

NonOlMn 1068 34.58

NonIncrMn 2449 1.45

features. We set λ = 0.8 and vary k from 10 to 25. By increasing k, Aug-MMR

shows more scalability than MMR. Aug-MMR is about 1.7 times faster than the

baseline implementation.

Finally, we run Aug-MMR on l more than 1 to show the efficiency of our

proposed algorithm using multi-level I-tree. Table 6.7 shows that for l=2, Aug-

MMR speedup is almost 4× for all dataset sizes.

Varying Parameters. We study the effect of different parameters on running time.

Some parameters belong to the offline indexing algorithm, such as the number of levels

(l) and arity of I-tree (m) and the total number of nodes (C). Other parameters are

part of the online augmented algorithms. For example, k for the number of returned

records and λ coefficient forAug-MMR . In Figures 6.4, 6.6, 6.8, we vary parameters

using Yelp dataset with a fixed size of 50000 records. In our experiment, optimum

219

1 0 1 5 2 0 2 50

2 0

4 0

6 0
 M M R
 A u g - M M R

Ru
nn

ing
 tim

e (
s)

k
Figure 6.12 Aug-MMR vs MMR running time on UCI Gas data.

parameter settings for offline indexing are obtained by performing multiple runs and

selecting the best. The index created using those parameter settings can be used in

multiple runs of the online phase.

Varying k. Figures 6.4(a), 6.6(a), and 6.8(a) present how running time

changes as we vary k from 5 to 50 for different baselines while fixing l, m, and λ

to 1, 500, and 0.8, respectively. The running time increases quadratically for MMR

and Aug-MMR, linearly for GMM and Aug-GMM, and in O(k ∗ log k) fashion

for SWAP and Aug-SWAP. These results are as consistent with our theoretical

analysis, because of the presence of k2 term in the MMR and Aug-MMR’s expected

cost, k in GMM and Aug-GMM’s expected cost, and k ∗ log k of that of SWAP

and Aug-SWAP. Varying m. Figures 6.4(c), 6.6(c), and 6.8(c) show the impact of

varying m on the running time of the three algorithms. While varying m, we fix other

parameters: k = 20, l = 1. The choice ofm depends on the distribution of the dataset.

As we increase m, the bounds for augmented algorithms become tighter while time

for DivGetBatch() increases. We can see that there is a drop in running time and

which indicates the optimum value for m for these three algorithms. For example, in

Aug-MMR and Aug-GMM, the ideal value is m = 500 and for Aug-SWAP, it

is m = 100.

Varying l. Figures 6.4(b), 6.6(b), and 6.8(b) show the impact of varying l

on the running time of the three algorithms. We fix other parameters: k = 20,

220

Table 6.16 I-tree Maintenance Algorithm GrMn vs Construction from Scratch
Algorithm NonIncrMn Running Time on MakeBlobs 10k Records

|Y | Insertion Algorithm Preprocessing time-offline (s) query processing time-online (s)

10
GrMn

NonIncrMn

0.007

1.30

1.25

0.55

100
GrMn

NonIncrMn

0.05

1.44

1.33

0.60

1000
GrMn

NonIncrMn

0.43

1.45

1.96

0.80

10000
GrMn

NonIncrMn

1.02

4.65

8.18

1.61

and setting m to 2. C, the total number of nodes in I-tree becomes 2, 7, 15, 31, 63,

respectively for l = 1, 2, 3, 4, 5. In general, by fixing m and increasing l, C increases,

and overall running time decreases. This is consistent with our theoretical analysis,

as the expected running time contains a 1/C term.

Varying λ. Figures 6.4(d), 6.6(d), and 6.8(d) show that varying λ in MMR and

Aug-MMR does not significantly change the running time. We have fixed k = 20,

l = 1, and m = 500. The result is evident by observing the expected cost equations

of MMR and Aug-MMR algorithms which do not contain a λ term. Though MR

scores changes with λ, it has very little effect on the overall running time of MMR

and Aug-MMR algorithms.

Varying diversity Functions Table 6.13 shows the results for Aug-MMR

compared to MMR using different distance measures: euclidean distance measure,

cosine similarity as general metric, and a non-metric distance function. Using 100k

data from MakeBlobs dataset and m= 1000, l = 1 and number of features = 2, we

can see that Aug-MMR performs 4× better than MMR using both euclidean and

cosine similarity metrics. For non-metric arbitrary distance function, the distance

between records do not satisfy triangular inequality. Using this method, we see 15%

221

improvement, since the relevance and diversity scores are created arbitrarily and the

result depends on the data distribution.

Table 6.12 shows overall comparison for I-tree and other baselines. SPP uses

KD-tree as its index so we did not add it to the table. We can see that, unlike

other baselines, I-tree can be used in non-metric functions and outperforms with

90% pruning of the original dataset.

Table 6.14 shows the results for Aug-MMR compared to MMR using non-

metric distance function computed from MovieLens non-metric dataset. The total

number of movies is 8,453, λ = 0.8, and k = 20. The diversity between a pair of

items (movies) is calculated as the number of users that have rated either of those

movies, but not both. Table 6.14 demonstrates that Aug-MMR outperforms MMR

with 82.66% pruning of the original dataset, resulting in about 2.7 times speed up on

an average.

Index construction and maintenance

Comparison with Baselines - Index Construction vs. Query Processing.

In these set of experiments, we compare the index construction and query processing

time trade-off of I-tree and compare that with of KD-tree, Ball-tree, and M -tree

considering Aug-MMR. We adapt k-means and k-medoids [112] for building I-tree

with number of iterations set to 300. The dataset that is used in this experiments is

MakeBlobs. Figure 6.11 presents the I-tree speedup compared to other baselines for

index preprocessing and query processing time. The results demonstrate that I-tree

is always more than 18× faster in query processing and as much as 170× faster for

certain configurations. For preprocessing, it is always more than 1.5× faster and at

times it is more than 20× faster.

222

Index Construction. Now that it is obvious that I-tree outperforms the other

indexing baselines, we further profile its efficacy.

In Figures 6.9(a) and (b), we vary dataset size and fix other parameters,

m = 1000, l = 1. As we can observe in Figure 6.9(a), on the 100K Yelp dataset,

indexing time is 172.69 seconds. In Figure 6.9(b), indexing time is 105 minutes on the

1M MakeBlobs dataset, and 109 minutes on the 1M MovieLens. Figures 6.9(c)

and (d) show that the running time increases linearly when parameters m and l are

systematically increased. In Figure 6.9(c), by varying l, we fix dataset size to 50000,

and m to 2 (since C = ml, by increasing l, the total number of nodes will increase).

Finally, in Figure 6.9(d), we vary m, while fixing dataset size to 50000 and l = 1.

These figures demonstrate that the preprocessing time increases linearly with varying

parameters. I-tree takes 253 MB of space for 1M data with m = 1000 and l = 1.

Index Maintenance. For analyzing the index maintenance, we use two datasets,

MakeBlobs and MovieLens. We compare OPTMn and its efficient counterpart

GrMn with the baselines NonOlMn, and NonIncrMn. As expected, OPTMn

has the least number of updates, but due to its inherent exponential nature, it does

not scale beyond 10k dataset size with more than |Y | = 1000 records. Table 6.15

presents these results. We also seeGrMn, even though not the optimal one, but stays

consistently close to OPTMn. This table also shows that GrMn is better than the

baselines in both running time and number of updates.Figures 6.10(a) and (b) present

running time comparisons on very large datasets. GrMn is highly scalable, and the

other two baselines take more time than GrMn. These results corroborate that

GrMn is a suitable alternative to solve the index maintenance problem.

Incremental Index Maintenance vs Maintenance from Scratch. Table 6.16

shows comparison between GrMn and NonIncrMn index update algorithms. We

present index preprocessing time in the offline phase, and query processing time in

223

the online phase for the Aug-MMR algorithm. Clearly, GrMn requires smaller

preprocessing time and higher query processing time compared to NonIncrMn. As

it could be seen from Table 6.16, with 10,000 updates, the query processing time

of GrMn becomes almost 5× slower than that of NonIncrMn. Contrarily, the

preprocessing time of GrMn is about 4.5× faster than that of NonIncrMn at that

setting. Since query processing time is more important and must be optimized, it

seems, for 10,000 updates, it is better to build the index from scratch instead of

maintaining it incrementally.

6.8 Related Work

6.8.1 Results diversification

Result diversification remains to be an active research topic with extensive appli-

cations in recommendation and search [1, 2, 4, 50, 86, 141, 157, 166, 167, 185, 188,

189, 193, 195], including very recent works that study diversity for fairness and

popularity [147,178,214].

6.8.2 Content based algorithms

Content-based algorithms, which are our primary focus here, are of two kinds:

Interchange algorithms first select k relevant records and then exchange selected

records with remaining records to increase the overall diversity (SWAP [211] is an

example). Incremental greedy algorithms iteratively build the top-k set by selecting

the best record at each round. Notable examples of this latter kind are Maximal

Marginal Relevance (MMR) method [55], Greedy Max-Min (GMM) [106], Max-Sum

[105], IA-SELECT [6], and dLSH [1].

SPP [98] is a bounded diversification algorithm that produces same result

as MMR while minimizing the number of accessed records. In [78], Drosou et al.

introduce both greedy and interchange algorithms for the diversity over continuous

data. In [80], the authors propose greedy algorithms for considering diversity

224

over dynamic data by presenting Insert and Delete operations over the cover tree

indexing structure. They also exploit the GMM algorithm for returning diversified

top-k results. In [79], the authors propose greedy algorithms for diversity over a

representative subset of objects, DisC, which is a mapping of the original data.

They also present a degree of diversification, radius r, instead of k size results. Their

proposed algorithms exploit the M -tree [68] indexing structure.

From a different perspective, one can categorize diversification algorithms into

three groups: record-level, feature-level, and category-level. In record-level algorithms

(MMR, GMM, and SWAP), the input is the distance value between records regardless

of which record feature is more important. The score value is calculated based on

an objective function that calculates distances/diversity. The inputs of feature-level

algorithms are record features. Examples are DivGen and GenFilt [14]. The feature

with the highest score is obtained from all records based on a ranking, and the

goal is to skip some features and prune records having low scoring features. In

the category-level algorithms, records are grouped into multiple categories. Such

algorithms apply some constraints that will return no more than one or two records

from the same category [3, 213].

6.8.3 Comparison with existing indexes

Compared to our proposed I-tree, existing indexing techniques are vector space

based methods where coordinate information of the records are used to create data

structures to answer a large spectrum of distance queries, where distance may be based

on Euclidean, cosine similarity, general Lp norms, and so on. Popular solutions in low

to moderate dimensional space include K-B-D-tree [170], kd-tree [34], R-tree [110],

R∗-tree [33], SS-tree [199] or more recent X-tree [35], UB-tree [31], SR-tree [125]. All

these methods use the domain object feature vectors to measure the distance between

objects and create a similarity index. As opposed to that, we consider the records to

225

be atomic (and not a collection of vectors), and the diversity function could be metric

or not. Therefore, these methods do not extend to solve our problem.

There exists other popular tree data structures like Cover-tree [36], Ball-tree

[135] and M -tree [68] that are used for nearest neighbor search. Unlike our I-tree,

these trees can only be used for metric distance functions.

In summary, we present an access primitive DivGetBatch() that leverages a

precomputed data structure I-tree to integrate MMR, GMM, and SWAP to expedite

their processing time. The design of our primitive is independent of features and

categories and is applicable with any distance measure, making it generic and useful.

We study MMR, GMM, and SWAP, since we believe these are notable choices in the

existing diversity literature space, and many more recent works adapt these algorithms

[1,22,78–80,117,158,169,200,201,208].

6.9 Conclusion

We propose an access primitiveDivGetBatch() to expedite diversification algorithms

while returning their exact top-k results. We present a computational framework to

develop DivGetBatch() that contains a pre-computed index structure I-tree and

describe how to rewire popular diversification algorithms using DivGetBatch().

Unlike existing indexes that primarily work on vector spaces (assuming the records

have co-ordinates), we consider the records to be atomic as opposed to a collection

of vectors. We make rigorous theoretical analysis of the exactness and running times

of the augmented algorithms. We present principled solutions to maintain I-tree

under batch updates. Our experiments on large real-world datasets corroborate

our theoretical analysis, and show that our solution yields a 24× speedup on large

datasets.

In the future, we are interested to study how to enable approximate top-k result

diversification with guarantees leading to even faster running times. We also intend

226

to explore how to adapt our proposed framework if diversity is assumed to satisfy

metric property, in particular, the triangle inequality.

227

CHAPTER 7

SUMMARY AND FUTURE WORK

7.1 Summary

In this dissertation, we have addressed various aspects of promoting diverse and

fair query results inside top-k and ranking. Our research covered a range of

problems and presented practical solutions with provable guarantees. Firstly, we

introduced the RAPF problem, which incorporates group fairness criteria (p-fairness)

into the classical rank aggregation problem. We provided solutions for both

binary and multi-valued protected attributes, demonstrating the effectiveness of

our proposed methods through extensive experiments on real-world and synthetic

datasets. Our work in this area opens up promising research directions, such as

exploring alternative models and extending RAPF for top-k or considering incomplete

information scenarios. Secondly, we tackled the margin finding problem in top-k

preference aggregation models under single ballot substitutions, considering multiple

protected group attributes to promote fairness. Our suite of algorithms with provable

guarantees and rigorous experimental analysis demonstrated the effectiveness of our

proposed solutions. Thirdly, we studied the suitability of Instant Run-off Voting

(IRV) as a preference aggregation method for selecting k different winners that

satisfy query constraints. Through formalization and optimization, we explored

the margin finding problem and presented principled models and algorithms. Our

experimental analyses supported the suitability of IRV as a preference aggregation

method and sparked ongoing research on adapting AlgExact for single transferable

voting schemes. Next, we introduced θ-Equiv-top-k-MMSP to redesign existing

top-k algorithms for long-tail data to ensure fairness. The proposed method computed

a set of top-k sets that are equivalent and assigned a probability distribution over

228

these sets, promoting uniform selection probabilities for records in these sets. Our

algorithmic results and experimental evaluations showcased the positive impact of

our fairness notion on downstream applications and complementing group fairness

considerations. Future research directions include exploring pre-processing techniques

to expedite the computation of θ-Equiv-top-k-Sets. Lastly, we proposed an access

primitive, DivGetBatch(), to expedite diversification algorithms while returning exact

top-k results. We presented a computational framework with a pre-computed index

structure (I-tree) and rewired popular diversification algorithms using DivGetBatch().

Our theoretical analysis and extensive experiments on real-world datasets confirmed

the effectiveness and speedup achieved by our solution. Future research aims to

enable approximate top-k result diversification with guarantees for even faster running

times and adapting the framework to metric property assumptions. Overall, our

dissertation contributes a comprehensive set of models and algorithms for promoting

diverse and fair query results. The proposed solutions open up multiple interesting

research directions for the ongoing investigation, addressing challenges and advancing

the field of fair and diverse ranking and preference aggregation.

7.2 Future Work

As an ongoing problem, this research investigates how to select top-k features

(predictors) for different subgroups considering datasets that are heavily incomplete.

Top-k Subgroup Feature Selection in Heavily Incomplete Datasets. Feature

selection is the process of selecting attributes in the raw data that are highly

informative to determine the class label, and is an important step in supervised

learning [137,182,205]. While there exists multiple methods [140,179,191] for selecting

attributes that are effective to determine the class label, the usefulness of these

traditional methods heavily depends on the completeness of the underlying data. On

the other hand, data incompleteness is a pervasive problem, especially when dealing

229

with hard-to-reach subgroups, such as, racial minorities, ethnicities, and individuals

from low socioeconomic backgrounds [44, 198]. Here, a subgroup is defined as a

set of individuals who meet specific social demographic attribute criteria [97, 126].

Furthermore, data integration processes often lead to loss due to human error or

the complexities of migration [155]. This ongoing work aims to address these

challenges and proposes novel methodologies guided by machine learning techniques

to generate top-k features for specific subgroups, even in the presence of substantial

incompleteness. Given the incomplete nature of data, traditional techniques for

feature selection like wrapper-based and filter-based [11, 43, 164] methods are not

effective.

Running Example: credit risk analysis. Consider a database of n = 1000

candidates who have applied for a loan (Table 7.1). Each candidate has a set

of 3 (x) demographic attributes: gender, ethnicity, and age. The combination of

values of these attributes determines a subgroup. Additionally, the raw data contains

m = 100 predictors of these candidates, such as income, credit history, education

level, house rent, and more. Finally, there is a decision variable called ”loan status”

associated with each candidate. However, the dataset contains limited information

of specific subgroups - as an example, Asian females over 40 years old are heavily

underrepresented in the data. Only 30% of income data and 20% of credit history

data is available for this subgroup. Furthermore, for the decision variable ”Loan

status,” no data is present. The goal is to identify the top-k (=5) most important

predictors for the Asian females over 40 years old. The missing class labels and the

predictor values make the traditional feature selection process inapplicable to this

setting.

Problem Definition 7. Given a database D comprisingm predictors F : {f1, f2, . . . , fm},

n records, and an additional class label or decision variable Z (continuous or discrete),

a set of x attribute value combinations derives ℓ subgroups as G = {g1, g2, . . . , gℓ}.

230

Table 7.1 Credit Risk Analysis Dataset Where Little Information About Asian
Females Over Forty Years Old Present

Group defining attributes Predictors Decision veriables
records

Gender Ethnicity Age Income Credit history ... House rent Loan status

300 Male White Over 40 100% data present 100% data present ... 100% data present 100% data present

350 Male White Under 40 100% data present 100% data present ... 100% data present 100% data present

50 Female Asian Under 40 20% data present 30% data present ... 30% data present 0% data present

150 Female white Over 40 100% data present 100% data present .. 100% data present 100% data present

150 Male Hispanic Over 40 100% data present 100% data present ... 100% data present 100% data present

However, the data in D is heavily incomplete, particularly concerning Z or the

predictors (F ’s) for subgroups that are underrepresented in the dataset. Given one

such subgroup gi, produce k features from F that are most useful to predict Zi.

f_{i,1}

Subgroup i

f_{i,2} f_{i,4}

f_{i,3}

Intra layer edge

f_{i’,1}

f_{i’,2} f_{i’,4}

f_{i’,3}

Intra layer edge

Subgroup i’

Inter layer edge

Figure 7.1 Multiplex graph for estimating feature importance of unknown (red)
nodes.

Proposed Direction. Motivated by a recent work [103], which does entity resolution

using machine learning approach, we explore how to develop a solution based on

Graph Neural Network (GNN). The basic intuition of the approach is the following -

capture informativeness (how much one can estimate about one variable if the other

variable is known) between predictors inside and across subgroups, as well as that

of the predictors and the class label via a multiplex graph [111] , which is a special

type of a multi-relational graph, and estimates missing relationship values by using

representation of the relationships that are currently present.

Quantifying informativeness. There are more than one way to quantify

informativeness of two variables - either both are predictors inside or across subgroups,

231

or one is a predictor and the other is a class label inside or across subgroups. As an

initial approach, we consider Mutual Information (MI) [87,174,191] which captures

information-theoretic “correlation” between two random variables and quantifies the

amount of information obtained about one through the other. When f1 and f2 are

discrete, MI(f1, f2) is defined as follows: P (f1, f2)
P (f1,f2)

P (f1)×P (f2)
. where P (f1, f2) is the

joint probability distribution function of f1 and f2, and P (f1) and P (f2) are the

marginal probability distribution functions of f1 and f2 respectively.

Constructing the GNN. Formally, a multi-relational graph is a triplet G =

(V,E,R), where V is a set of nodes, E is a set of edges, and R is a set of typed edges

that connect pairs of nodes. To construct an ℓ-layer graph, each layer represents a

subgroup where a node ni
j ∈ V in each layer i represents a predictor f i

j for subgroup

gi, the value of the node represents its “importance” to the class label Zi
j. An edge

(ni
j, n

i
j′ , r) is a triplet, where ni

j, n
i
j′ ∈ V and r ∈ E. We define two types of edges:

E = { inter-layer edges, intra-layer edges }. Inter-layer edges connect a node from

subgroup i to its peer, the node representing the same feature, of subgroup i′. On

the other hand, intra-layer edges connect a given node from layer i to its closest

counterparts among the nodes of the same subgroup i. An intra-layer edge between

two predictors f i
j and f i

j′ represents how much informative the two predictors are to

each other for subgroup gi, and an inter-layer edge between f i
j and f i′

j represents how

informative f i
j is to learn about f i′

j (or vice versa). The weights of the edges are

determined by Mutual Information (MI) [174], as described above (Figure 7.1).

Message propagation. The multiplex graph forms the foundation for

employing a GNN model to acquire informativeness. In the context of GNNs, a

”layer” refers to the process of receiving messages from neighboring nodes, aggregating

these messages, and subsequently applying a fully connected neural network with an

activation function. In the multiplex graph setting, a layer specifically denotes a

collection of nodes corresponding to the same subgroup.

232

Hidden Vectors

GATConv

ReLU & Dropout

Linear

Input

Output

M
ul

tip
le

 G
AT

 la
ye

rs

Figure 7.2 Proposed GNN architecture for generating feature importance.

A general GNN architecture is composed of q layers, each producing a hidden

state vector, which is generated by aggregating the vectors of adjacent nodes.

Using the multi-layer GNN, each node iteratively transmits its current information

to itself and its neighboring nodes (connected by outgoing edges). Numerous

GNN models have been introduced in recent years. In this work, we follow the

model Graph Attention Network (GAT) [49, 190]. Initially, the hidden vectors

h = {h1, h2, . . . , hm} of nodes are created using the mutual information of the node

and their closest counterparts. The GAT layer produces a new set of hidden vectors

h′ = {h′
1, h

′
2, . . . , h

′
m}, as its output. A shared linear transformation, parametrized by

a weight matrix, W is applied to every node. A shared attentional mechanism αj,j′

computes attention coefficients that indicate the importance of node j’s features to

node j′. The aggregated hidden vector is represented as: h′
j = σ(

∑
αj,j′Whj′), where

σ is a nonlinear function.

Training the GNN. Figure 7.2 provides an overview of the GNN model

architecture designed to predict the unknown mutual information value. The model

comprises multiple GAT layers, each consisting of a GAT convolution, a ReLU

activation function, and a dropout layer. The GATConv operation enables each node

233

to attend to its neighbors using its own representation as a query, while the ReLU

activation function introduces non-linearity, thereby enhancing the model’s expressive

capacity. The dropout layer ensures that each node experiences a stochastically

sampled neighborhood. Subsequently, a linear layer, acting as a bias-free feed-forward

neural network, is integrated into the architecture. This layer learns the average

rate of correlation between the hidden vectors from the GAT layers and the target

mutual information value, effectively fine-tuning the predictions based on the learned

representations to achieve the desired mutual information estimation. During

training, the model employs a Mean Square Error (MSE) loss function, defined as

MSE =
∑

(M̂I(f j
i) −MI(f j

i))
2, where M̂I(f j

i) and MI(f j
i) represent the true and

predicted mutual information values of feature f j
i , respectively. The model’s primary

goal is to predict the informativeness of unknown features, and as a result, the top-k

highest-scored features are selected based on the model’s predictions.

Currently, we are in the process of implementing and evaluating the effectiveness

of the proposed model using different datasets and understanding further data

management opportunities.

234

REFERENCES

[1] Sofiane Abbar, Sihem Amer-Yahia, Piotr Indyk, and Sepideh Mahabadi. Real-time
recommendation of diverse related articles. In Proceedings of the 22nd
International Conference on World Wide Web, pages 1–12, 2013.

[2] Sofiane Abbar, Sihem Amer-Yahia, Piotr Indyk, Sepideh Mahabadi, and Kasturi R
Varadarajan. Diverse near neighbor problem. In Proceedings of the Twenty-
ninth Annual Symposium on Computational Geometry, pages 207–214, 2013.

[3] Zeinab Abbassi, Vahab S Mirrokni, and Mayur Thakur. Diversity maximization under
matroid constraints. In Proceedings of the 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 32–40, 2013.

[4] Pankaj K Agarwal, Stavros Sintos, and Alex Steiger. Efficient indexes for diverse top-k
range queries. In Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, pages 213–227, 2020.

[5] Akanksha Agrawal, Grzegorz Guspiel, Jayakrishnan Madathil, Saket Saurabh, and
Meirav Zehavi. Connecting the dots (with minimum crossings). In 35th
International Symposium on Computational Geometry (SoCG 2019). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

[6] Rakesh Agrawal, Sreenivas Gollapudi, Alan Halverson, and Samuel Ieong.
Diversifying search results. In Proceedings of the Second ACM International
Conference on Web Search and Data Mining, pages 5–14, 2009.

[7] Ravindra K. Ahuja, Andrew V. Goldberg, James B. Orlin, and Robert Endre Tarjan.
Finding minimum-cost flows by double scaling. Math. Program., 53:243–266,
1992.

[8] Nir Ailon. Aggregation of partial rankings, p-ratings and top-m lists. Algorithmica,
57(2):284–300, 2010.

[9] Nir Ailon, Moses Charikar, and Alantha Newman. Aggregating inconsistent
information: ranking and clustering. Journal of the ACM (JACM), 55(5):1–27,
2008.

[10] Airbnb. Dataset, san francisco, ca, 2023. Available at: http://insideairbnb.com/
get-the-data, retrieved on 4/7/2023.

[11] Mohammed A Ambusaidi, Xiangjian He, Priyadarsi Nanda, and Zhiyuan Tan.
Building an intrusion detection system using a filter-based feature selection
algorithm. IEEE Transactions on Computers, 65(10):2986–2998, 2016.

235

http://insideairbnb.com/get-the-data
http://insideairbnb.com/get-the-data

[12] Sihem Amer-Yahia, Behrooz Omidvar-Tehrani, Senjuti Basu, and Nafiseh Shabib.
Group recommendation with temporal affinities. In International Conference
on Extending Database Technology (EDBT), 2015.

[13] Sihem Amer-Yahia, Senjuti Basu Roy, Ashish Chawlat, Gautam Das, and Cong Yu.
Group recommendation: Semantics and efficiency. Proceedings of the VLDB
Endowment, 2(1):754–765, 2009.

[14] Albert Angel and Nick Koudas. Efficient diversity-aware search. In Proceedings of
the 2011 ACM SIGMOD International Conference on Management of Data,
pages 781–792, 2011.

[15] Anonymous. Git link. https://anonymous.4open.science/r/selection_queries_
using_irv-5AD0/README.md, 2023.

[16] Robert Armstrong. The long tail: Why the future of business is selling less of more.
Canadian Journal of Communication, 33(1):127, 2008.

[17] Kenneth J Arrow. A difficulty in the concept of social welfare. Journal of Political
Economy, 58(4):328–346, 1950.

[18] Abolfazl Asudeh, HV Jagadish, Julia Stoyanovich, and Gautam Das. Designing
fair ranking schemes. In Proceedings of the 2019 International Conference
on Management of Data, pages 1259–1276, 2019.

[19] Martin Aumuller, Sariel Har-Peled, Sepideh Mahabadi, Rasmus Pagh, and Francesco
Silvestri. Fair near neighbor search via sampling. ACM SIGMOD Record,
50(1):42–49, 2021.

[20] Manel Ayadi, Nahla Ben Amor, Jérôme Lang, and Dominik Peters. Single
Transferable Vote: Incomplete Knowledge and Communication Issues.
In 18th International Conference on Autonomous Agents and MultiAgent
Systems (AAMAS 19), pages 1288–1296, Montreal QC, Canada, May 2019.
International Foundation for Autonomous Agents and Multiagent Systems.

[21] Pieter Cornelis Baayen and Z Hedrlin. On the existence of well distributed sequences
in compact spaces. Stichting Mathematisch Centrum. Zuivere Wiskunde, 1964.

[22] Krisztian Balog, Filip Radlinski, and Shushan Arakelyan. Transparent, scrutable and
explainable user models for personalized recommendation. In Proceedings of
the 42nd International ACM SIGIR Conference on Research and Development
in Information Retrieval, pages 265–274, 2019.

[23] Linas Baltrunas, Tadas Makcinskas, and Francesco Ricci. Group recommendations
with rank aggregation and collaborative filtering. In Proceedings of the Fourth
ACM Conference on Recommender Systems, pages 119–126, 2010.

236

https://anonymous.4open.science/r/selection_queries_using_irv-5AD0/README.md
https://anonymous.4open.science/r/selection_queries_using_irv-5AD0/README.md

[24] John Bartholdi, Craig A Tovey, and Michael A Trick. Voting schemes for which
it can be difficult to tell who won the election. Social Choice and Welfare,
6(2):157–165, 1989.

[25] John J. Bartholdi and James B. Orlin. Single transferable vote resists strategic voting.
Social Choice and Welfare, 8(4):341–354, 1991.

[26] Sanjoy K Baruah, Neil K Cohen, C Greg Plaxton, and Donald A Varvel.
Proportionate progress: A notion of fairness in resource allocation.
Algorithmica, 15(6):600–625, 1996.

[27] Sanjoy K Baruah, Johannes E Gehrk, C Greg Plaxton, Ion Stoica, Hussein Abdel-
Wahab, and Kevin Jeffay. Fair on-line scheduling of a dynamic set of tasks on
a single resource. Information Processing Letters, 64(1):43–51, 1997.

[28] Jacob P. Baskin and Shriram Krishnamurthi. Preference aggregation in group
recommender systems for committee decision-making. In Proceedings of the
Third ACM Conference on Recommender Systems, RecSys ’09, page 337–340,
New York, NY, USA, 2009. Association for Computing Machinery.

[29] Senjuti Basu Roy and Kaushik Chakrabarti. Location-aware type ahead search on
spatial databases: semantics and efficiency. In Proceedings of the 2011 ACM
SIGMOD International Conference on Management of data, pages 361–372,
2011.

[30] Senjuti Basu Roy, Laks VS Lakshmanan, and Rui Liu. From group recommendations
to group formation. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, pages 1603–1616, 2015.

[31] Rudolf Bayer. The universal b-tree for multidimensional indexing: General concepts.
In International Conference on Worldwide Computing and Its Applications,
pages 198–209. Springer, 1997.

[32] Rudolf Bayer and Edward McCreight. Organization and maintenance of large
ordered indices. In Proceedings of the 1970 ACM SIGFIDET (Now SIGMOD)
Workshop on Data Description, Access and Control, pages 107–141, 1970.

[33] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger. The
R*-tree: An efficient and robust access method for points and rectangles.
In Proceedings of the 1990 ACM SIGMOD International Conference on
Management of Data, pages 322–331, 1990.

[34] Jon Louis Bentley. Multidimensional binary search trees used for associative
searching. Communications of the ACM, 1975.

[35] S Berchtold, D Keim, and HP Kriegel. The X-tree: An efficient and robust access
method for points and rectangles. In Proc. 1996 International Conference Very
Large Data Bases, pages 28–39, 1996.

237

[36] Alina Beygelzimer, Sham Kakade, and John Langford. Cover trees for nearest
neighbor. In Proceedings of the 23rd International Conference on Machine
Learning, pages 97–104, 2006.

[37] Arnab Bhattacharyya and Palash Dey. Predicting winner and estimating margin of
victory in elections using sampling. Artificial Intelligence, 296:103476, 2021.

[38] Asia J Biega, Krishna P Gummadi, and Gerhard Weikum. Equity of attention:
Amortizing individual fairness in rankings. In The 41st International ACM
SIGIR Conference on Research and Development in Information Retrieval,
pages 405–414, 2018.

[39] Reuben Binns. On the apparent conflict between individual and group fairness.
In Proceedings of the 2020 Conference on Fairness, Accountability, and
Transparency, pages 514–524, 2020.

[40] Julian H Blau. The existence of social welfare functions. Econometrica: Journal of
the Econometric Society, pages 302–313, 1957.

[41] Michelle Blom, Peter J Stuckey, and Vanessa J Teague. Towards computing victory
margins in stv elections. arXiv preprint arXiv:1703.03511, 2017.

[42] Michelle Blom, Peter J Stuckey, Vanessa J Teague, and Ron Tidhar. Efficient
computation of exact irv margins. arXiv preprint arXiv:1508.04885, 2015.

[43] Avrim L. Blum and Pat Langley. Selection of relevant features and examples in
machine learning. Artificial Intelligence, 97(1):245–271, 1997. Relevance.

[44] Anneliese C Bolland, Sara Tomek, John M Bolland, et al. Does missing data in studies
of hard-to-reach populations bias results? not necessarily. Open Journal of
Statistics, 7(02):264, 2017.

[45] JC de Borda. Mémoire sur les élections au scrutin. Histoire de l’Academie Royale des
Sciences pour 1781 (Paris, 1784), 1784.

[46] Steven J Brams and Peter C Fishburn. Approval voting. American Political Science
Review, 72(3):831–847, 1978.

[47] Bryan Brancotte, Bo Yang, Guillaume Blin, Sarah Cohen-Boulakia, Alain Denise,
and Sylvie Hamel. Rank aggregation with ties: Experiments and analysis.
Proceedings of the VLDB Endowment (PVLDB), 8(11):1202–1213, 2015.

[48] Gerth Stølting Brodal, Loukas Georgiadis, Kristoffer Arnsfelt Hansen, and Irit
Katriel. Dynamic matchings in convex bipartite graphs. In International
Symposium on Mathematical Foundations of Computer Science, pages 406–
417. Springer, 2007.

[49] Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention
networks? arXiv preprint arXiv:2105.14491, 2021.

238

[50] Zhi Cai, Georgios Kalamatianos, Georgios J Fakas, Nikos Mamoulis, and Dimitris
Papadias. Diversified spatial keyword search on rdf data. The VLDB Journal,
29(5):1171–1189, 2020.

[51] Donald E Campbell and Jerry S Kelly. Information and preference aggregation. Social
Choice and Welfare, 17(1):3–24, 2000.

[52] Donald E Campbell and Jerry S Kelly. Impossibility theorems in the arrovian
framework. Handbook of Social Choice and Welfare, 1:35–94, 2002.

[53] David Campos, Tung Kieu, Chenjuan Guo, Feiteng Huang, Kai Zheng, Bin Yang,
and Christian S Jensen. Unsupervised time series outlier detection with
diversity-driven convolutional ensembles–extended version. arXiv preprint
arXiv:2111.11108, 2021.

[54] Da Cao, Xiangnan He, Lianhai Miao, Yahui An, Chao Yang, and Richang Hong.
Attentive group recommendation. In The 41st International ACM SIGIR
Conference on Research & Development in Information Retrieval, pages
645–654, 2018.

[55] Jaime Carbonell and Jade Goldstein. The use of mmr, diversity-based reranking for
reordering documents and producing summaries. In Proceedings of the 21st
Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval, pages 335–336, 1998.

[56] David Cary. Estimating the margin of victory for instant-runoff voting. In Conference
on Electronic Voting Technology/Workshop on Trustworthy Elections, San
Francisco, CA, 2011. USENIX Association.

[57] Elisa Celis, Vijay Keswani, Damian Straszak, Amit Deshpande, Tarun Kathuria,
and Nisheeth Vishnoi. Fair and diverse dpp-based data summarization. In
International Conference on Machine Learning, pages 716–725. PMLR, 2018.

[58] L Elisa Celis, Amit Deshpande, Tarun Kathuria, and Nisheeth K Vishnoi. How to be
fair and diverse? arXiv preprint arXiv:1610.07183, 2016.

[59] L Elisa Celis, Lingxiao Huang, and Nisheeth K Vishnoi. Multiwinner voting with
fairness constraints. arXiv preprint arXiv:1710.10057, 2017.

[60] L Elisa Celis, Damian Straszak, and Nisheeth K Vishnoi. Ranking with fairness
constraints. arXiv preprint arXiv:1704.06840, 2017.

[61] Abhijnan Chakraborty, Aniko Hannak, Asia J Biega, and Krishna Gummadi.
Fair sharing for sharing economy platforms. In Fairness, Accountability
and Transparency in Recommender Systems-Workshop on Responsible
Recommendation, 2017.

239

[62] Abhijnan Chakraborty, Gourab K. Patro, Niloy Ganguly, Krishna P. Gummadi,
and Patrick Loiseau. Equality of voice: Towards fair representation in
crowdsourced top-k recommendations. In Proceedings of the Conference on
Fairness, Accountability, and Transparency, FAT* ’19, page 129–138, New
York, NY, USA, 2019. Association for Computing Machinery.

[63] Christopher P Chambers and Takashi Hayashi. Preference aggregation under uncer-
tainty: Savage vs. pareto. Games and Economic Behavior, 54(2):430–440,
2006.

[64] Danny Z Chen, Xiaomin Liu, and Haitao Wang. Computing maximum non-crossing
matching in convex bipartite graphs. Discrete Applied Mathematics, 187:50–
60, 2015.

[65] Junghoo Cho, Sourashis Roy, and Robert E. Adams. Page quality: In search of an
unbiased web ranking. In Proceedings of the 2005 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’05, page 551–562, New York,
NY, USA, 2005. Association for Computing Machinery.

[66] Yong-Gon Cho and Keun-Tae Cho. A loss function approach to group preference
aggregation in the ahp. Computers & Operations Research, 35(3):884–892,
2008.

[67] Alexandra Chouldechova and Aaron Roth. The frontiers of fairness in machine
learning. arXiv preprint arXiv:1810.08810, 2018.

[68] Paolo Ciaccia et al. M-tree: An efficient access method for similarity search in metric
spaces. In Very Large Data Bases, volume 97, pages 426–435, 1997.

[69] Marquis de Condorcet. Essay on the application of analysis to the probability of
majority decisions. Paris: Imprimerie Royale, 1785.

[70] Vincent Conitzer, Andrew Davenport, and Jayant Kalagnanam. Improved bounds
for computing kemeny rankings. In AAAI, volume 6, pages 620–626, 2006.

[71] Vincent Conitzer, Tuomas Sandholm, and Jérôme Lang. When are elections with few
candidates hard to manipulate? J. ACM, 54(3):14:1–14:33, Jun 2007.

[72] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein.
Introduction to Algorithms. MIT Press, 2009.

[73] Gautam Das, Dimitrios Gunopulos, Nick Koudas, and Dimitris Tsirogiannis.
Answering top-k queries using views. In Proceedings of the 32nd International
Conference on Very Large Data Bases, pages 451–462, 2006.

[74] Luca de Alfaro and B. Thomas Adler. Content-driven reputation for collaborative
systems. In Mart́ın Abadi and Alberto Lluch-Lafuente, editors, Trustworthy
Global Computing - 8th International Symposium, TGC 2013, Buenos Aires,
Argentina, August 30-31, 2013, Revised Selected Papers, volume 8358 of
Lecture Notes in Computer Science, pages 3–13. Springer, 2013.

240

[75] Gil Delannoi and Oliver Dowlen. Sortition: Thoery and Practice, volume 3. Andrews
UK Limited, 2016.

[76] Palash Dey and Y. Narahari. Estimating the margin of victory of an election using
sampling, 2015.

[77] Persi Diaconis and Ronald L Graham. Spearman’s footrule as a measure of disarray.
Journal of the Royal Statistical Society: Series B (Methodological), 39(2):262–
268, 1977.

[78] Marina Drosou and Evaggelia Pitoura. Diversity over continuous data. IEEE Data
Eng. Bull., 32(4):49–56, 2009.

[79] Marina Drosou and Evaggelia Pitoura. Disc diversity: result diversification based on
dissimilarity and coverage. arXiv preprint arXiv:1208.3533, 2012.

[80] Marina Drosou and Evaggelia Pitoura. Diverse set selection over dynamic data. IEEE
Transactions on Knowledge and Data Engineering, 26(5):1102–1116, 2013.

[81] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard
Zemel. Fairness through awareness. In Proceedings of the 3rd Innovations
in Theoretical Computer Science Conference, pages 214–226, 2012.

[82] Cynthia Dwork, Ravi Kumar, Moni Naor, and Dandapani Sivakumar. Rank
aggregation methods for the web. In Proceedings of the 10th International
Conference on World Wide Web, pages 613–622, 2001.

[83] Jon Elster and Aanund Hylland. Foundations of social choice theory. Cambridge
University Press, Cambridge, UK, 1989.

[84] Peter Emerson. The original borda count and partial voting. Social Choice and
Welfare, 40(2):353–358, 2013.

[85] Ulle Endriss. Lecture notes on fair division. arXiv preprint arXiv:1806.04234, 2018.

[86] Mohammadreza Esfandiari, Ria Mae Borromeo, Sepideh Nikookar, Paras Sakharkar,
Sihem Amer-Yahia, and Senjuti Basu Roy. Multi-session diversity to improve
user satisfaction in web applications. In Proceedings of the Web Conference
2021, pages 1928–1936, 2021.

[87] Pablo A Estévez, Michel Tesmer, Claudio A Perez, and Jacek M Zurada. Normalized
mutual information feature selection. IEEE Transactions on Neural Networks,
20(2):189–201, 2009.

[88] Ronald Fagin, Ravi Kumar, Mohammad Mahdian, D Sivakumar, and Erik Vee.
Comparing partial rankings. SIAM Journal of Discrete Mathematics,
20(3):628–648, 2006.

[89] Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation algorithms for
middleware. Journal of Computer and System Sciences, 66(4):614–656, 2003.

241

[90] Piotr Faliszewski, Piotr Skowron, Arkadii Slinko, and Nimrod Talmon. Multiwinner
voting: A new challenge for social choice theory. Trends in Computational
Social Choice, 74(2017):27–47, 2017.

[91] David M Farrell, Malcolm Mackerras, and Ian McAllister. Designing electoral insti-
tutions: Stv systems and their consequences. Political Studies, 44(1):24–43,
1996.

[92] Benjamin Fish, Ashkan Bashardoust, Danah Boyd, Sorelle Friedler, Carlos
Scheidegger, and Suresh Venkatasubramanian. Gaps in information access
in social networks? In The World Wide Web Conference, pages 480–490,
2019.

[93] Peter C Fishburn. Arrow’s impossibility theorem: Concise proof and infinite voters.
Journal of Economic Theory, 2(1):103–106, 1970.

[94] Bailey Flanigan, Paul Gölz, Anupam Gupta, Brett Hennig, and Ariel D Procaccia.
Fair algorithms for selecting citizens’ assemblies. Nature, 596(7873):548–552,
2021.

[95] Will Fleisher. What’s fair about individual fairness? In Proceedings of the 2021
AAAI/ACM Conference on AI, Ethics, and Society, pages 480–490, 2021.

[96] Marc Fleurbaey, Kotaro Suzumura, and Koichi Tadenuma. The informational basis of
the theory of fair allocation. Social Choice and Welfare, 24(2):311–341, 2005.

[97] James R Foulds, Rashidul Islam, Kamrun Naher Keya, and Shimei Pan. An intersec-
tional definition of fairness. In 2020 IEEE 36th International Conference on
Data Engineering (ICDE), pages 1918–1921. IEEE, 2020.

[98] Piero Fraternali, Davide Martinenghi, and Marco Tagliasacchi. Top-k bounded
diversification. In Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data, pages 421–432, 2012.

[99] Sorelle A Friedler, Carlos Scheidegger, and Suresh Venkatasubramanian. The (im)
possibility of fairness: Different value systems require different mechanisms for
fair decision making. Communications of the ACM, 64(4):136–143, 2021.

[100] William A Gale and Geoffrey Sampson. Good-turing frequency estimation without
tears. Journal of Quantitative Linguistics, 2(3):217–237, 1995.

[101] David Garćıa-Soriano and Francesco Bonchi. Maxmin-fair ranking: individual fairness
under group-fairness constraints. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pages 436–446, 2021.

[102] Michael R Garey and David S Johnson. Computers and intractability, volume 174.
freeman San Francisco, 1979.

242

[103] Bar Genossar, Roee Shraga, and Avigdor Gal. Flexer: Flexible entity resolution for
multiple intents. Proc. ACM Manag. Data, 1(1), may 2023.

[104] Sahin Cem Geyik, Stuart Ambler, and Krishnaram Kenthapadi. Fairness-aware
ranking in search and recommendation systems with application to linkedin
talent search. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 2221–2231, 2019.

[105] Sreenivas Gollapudi and Aneesh Sharma. An axiomatic approach for result diversi-
fication. In Proceedings of the 18th International Conference on World Wide
Web, pages 381–390, 2009.

[106] Teofilo F Gonzalez. Clustering to minimize the maximum intercluster distance.
Theoretical Computer Science, 38:293–306, 1985.

[107] Goetz Graefe et al. Modern b-tree techniques. Foundations and Trends® in
Databases, 3(4):203–402, 2011.

[108] Bernard Grofman, Guillermo Owen, and Scott L Feld. Thirteen theorems in search
of the truth. Theory and Decision, 15(3):261–278, 1983.

[109] Dimitrios Gunopulos, Roni Khardon, Heikki Mannila, Sanjeev Saluja, Hannu
Toivonen, and Ram Sewak Sharma. Discovering all most specific sentences.
ACM Transactions on Database Systems (TODS), 28(2):140–174, 2003.

[110] Antonin Guttman. R-trees: A dynamic index structure for spatial searching,
volume 14. ACM, 1984.

[111] William L Hamilton. Graph representation learning. Morgan & Claypool Publishers,
2020.

[112] Jiawei Han, Micheline Kamber, and Jian Pei. Data mining concepts and techniques
third edition. The Morgan Kaufmann Series in Data Management Systems,
5(4):83–124, 2011.

[113] Wm. H. Hare. Application of mr. hare’s system of voting to the nomination
of overseers of harvard college. Journal of Social Science: Containing the
Transactions of the American Social Science Association, 3-4:192–198, 1871.

[114] Hao He, Haixun Wang, Jun Yang, and Philip S Yu. Blinks: ranked keyword searches
on graphs. In Proceedings of the 2007 ACM SIGMOD International Conference
on Management of Data, pages 305–316, 2007.

[115] Corinna Hertweck, Christoph Heitz, and Michele Loi. On the moral justification of
statistical parity. In Proceedings of the 2021 ACM Conference on Fairness,
Accountability, and Transparency, pages 747–757, 2021.

[116] Steven Hill and Robert Richie. Success for instant runoff voting in san francisco.
National Civic Review, 94(1):65–69, 2005.

243

[117] Tom Hope, Joel Chan, Aniket Kittur, and Dafna Shahaf. Accelerating innovation
through analogy mining. In Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages
235–243, 2017.

[118] Ihab F Ilyas, George Beskales, and Mohamed A Soliman. A survey of top-k query
processing techniques in relational database systems. ACM Computing Surveys
(CSUR), 40(4):1–58, 2008.

[119] IMDB. Dataset, 2023. Available at: https://www.kaggle.com/datasets/

isaactaylorofficial/imdb-10000-most-voted-feature-films-041118,
Retrieved: 4/7/2023.

[120] Md Mouinul Islam, 2023. Codes and data are available at: https://anonymous.

4open.science/r/FairSelectionInsideTopk-2F4F/README.md, Retrieved
on 4/7/2023.

[121] Md Mouinul Islam, Dong Wei, Baruch Schieber, and Senjuti Basu Roy. Satisfying
complex top-k fairness constraints by preference substitutions. Proceedings of
the VLDB Endowment, 16(2):317–329, 2022.

[122] Alborz Jelvani and Amelie Marian. Identifying possible winners in ranked choice
voting elections with outstanding ballots. Proceedings of the AAAI Conference
on Human Computation and Crowdsourcing, 10(1):114–123, Oct. 2022.

[123] Zhongjun Jin, Mengjing Xu, Chenkai Sun, Abolfazl Asudeh, and HV Jagadish.
Mithracoverage: a system for investigating population bias for intersectional
fairness. In Proceedings of the 2020 ACM SIGMOD International Conference
on Management of Data, pages 2721–2724, 2020.

[124] Kaggle. Top-1000 IMDB Movies. https://www.kaggle.com/datasets/

harshitshankhdhar/imdb-dataset-of-top-1000-movies-and-tv-shows,

Retrievedon4/7/2023.

[125] Norio Katayama and Shin’ichi Satoh. The sr-tree: An index structure for high-
dimensional nearest neighbor queries. ACM SIGMOD Record, 26(2):369–380,
1997.

[126] Michael Kearns, Seth Neel, Aaron Roth, and Zhiwei Steven Wu. An empirical study of
rich subgroup fairness for machine learning. In Proceedings of the Conference
on Fairness, Accountability, and Transparency. ACM, jan 2019.

[127] John G Kemeny. Mathematics without numbers. Daedalus, 88(4):577–591, 1959.

[128] Maurice G Kendall. A new measure of rank correlation. Biometrika, 30(1/2):81–93,
1938.

244

https://www.kaggle.com/datasets/isaactaylorofficial/imdb-10000-most-voted-feature-films-041118
https://www.kaggle.com/datasets/isaactaylorofficial/imdb-10000-most-voted-feature-films-041118
https://anonymous.4open.science/r/FairSelectionInsideTopk-2F4F/README.md
https://anonymous.4open.science/r/FairSelectionInsideTopk-2F4F/README.md
https://www.kaggle.com/datasets/harshitshankhdhar/imdb-dataset-of-top-1000-movies-and-tv-shows , Retrieved on 4/7/2023
https://www.kaggle.com/datasets/harshitshankhdhar/imdb-dataset-of-top-1000-movies-and-tv-shows , Retrieved on 4/7/2023
https://www.kaggle.com/datasets/harshitshankhdhar/imdb-dataset-of-top-1000-movies-and-tv-shows , Retrieved on 4/7/2023

[129] Jae Kyeong Kim, Hyea Kyeong Kim, Hee Young Oh, and Young U Ryu. A group
recommendation system for online communities. International Journal of
Information Management, 30(3):212–219, 2010.

[130] Craig W Kirkwood and Rakesh K Sarin. Ranking with partial information: A method
and an application. Operations Research, 33(1):38–48, 1985.

[131] Donald E. Knuth. The Art of Computer Programming, volume 1 of Fundamental
Algorithms. Addison Wesley Longman Publishing Co., Inc., 3rd edition, 1998.
(book).

[132] Yehuda Koren and Joe Sill. Ordrec: an ordinal model for predicting personalized
item rating distributions. In Proceedings of the fifth ACM conference on
Recommender systems, pages 117–124, 2011.

[133] Iordanis Koutsopoulos and Maria Halkidi. Efficient and fair item coverage in recom-
mender systems. In 2018 IEEE 16th Intl Conf on Dependable, Autonomic and
Secure Computing, 16th Intl Conf on Pervasive Intelligence and Computing,
4th Intl Conf on Big Data Intelligence and Computing and Cyber Science
and Technology Congress (DASC/PiCom/DataCom/CyberSciTech), pages
912–918. IEEE, 2018.

[134] Caitlin Kuhlman and Elke Rundensteiner. Rank aggregation algorithms for fair
consensus. Proceedings of the VLDB Endowment, 13(12), 2020.

[135] Neeraj Kumar et al. What is a good nearest neighbors algorithm for finding similar
patches in images? In European Conference on Computer Vision, pages 364–
378. Springer, 2008.

[136] Jean-François Laslier. And the loser is. . . plurality voting. In Electoral Systems, pages
327–351. Springer, 2012.

[137] David D. Lewis. Feature selection and feature extraction for text categorization. In
Proceedings of the Workshop on Speech and Natural Language, HLT ’91, page
212–217, USA, 1992. Association for Computational Linguistics.

[138] Chang Li, Haoyun Feng, and Maarten de Rijke. Cascading hybrid bandits: Online
learning to rank for relevance and diversity. In RecSys 2020: The ACM
Conference on Recommender Systems, pages 33–42. ACM, September 2020.

[139] Yunqi Li, Hanxiong Chen, Zuohui Fu, Yingqiang Ge, and Yongfeng Zhang. User-
oriented fairness in recommendation. In Proceedings of the Web Conference
2021, pages 624–632, 2021.

[140] Pasi Luukka. Feature selection using fuzzy entropy measures with similarity classifier.
Expert Systems with Applications, 38(4):4600–4607, 2011.

245

[141] Rischan Mafrur, Mohamed A Sharaf, and Hina A Khan. Dive: diversifying view
recommendation for visual data exploration. In Proceedings of the 27th ACM
International Conference on Information and Knowledge Management, pages
1123–1132, 2018.

[142] Thomas Magrino, Ronald Rivest, Emily Shen, and David Wagner. Computing the
margin of victory in irv elections. In 2011 Electronic Voting Technology
Workshop/Workshop on Trustworthy Elections (EVT/WOTE 11), pages 4–4,
San Francisco, CA, 08 2011. USENIX Association.

[143] Sepideh Mahabadi and Ali Vakilian. Individual fairness for k-clustering. In
International Conference on Machine Learning, pages 6586–6596. PMLR,
2020.

[144] Makeblobs. Dataset, 2023. Available at: https://scikit-learn.org/stable/

modules/generated/sklearn.datasets.make_blobs.html.

[145] Colin L Mallows. Non-null ranking models. i. Biometrika, 44(1/2):114–130, 1957.

[146] Federico Malucelli, Thomas Ottmann, and Daniele Pretolani. Efficient labelling
algorithms for the maximum noncrossing matching problem. Discrete Applied
Mathematics, 47(2):175–179, 1993.

[147] Stella Maropaki, Sean Chester, Christos Doulkeridis, and Kjetil Nørv̊ag. Diversifying
top-k point-of-interest queries via collective social reach. In Proceedings
of the 29th ACM International Conference on Information and Knowledge
Management, pages 2149–2152, 2020.

[148] Christopher McComb, Kosa Goucher-Lambert, and Jonathan Cagan. Impossible by
design? fairness, strategy, and arrow’s impossibility theorem. Design Science,
3, 2017.

[149] Eamon McGinn. Rating rankings: Effect of instant run-off voting on participation
and civility. Unpublished manuscript. Retrieved from http://eamonmcginn.
com/papers/IRV in Minneapolis. pdf, 2020.

[150] Iain McLean. The borda and condorcet principles: three medieval applications. Social
Choice and Welfare, 7(2):99–108, 1990.

[151] Reshef Meir. Plurality voting under uncertainty. In Twenty-Ninth AAAI Conference
on Artificial Intelligence, 2015.

[152] Reshef Meir, Maria Polukarov, Jeffrey Rosenschein, and Nicholas Jennings.
Convergence to equilibria in plurality voting. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 24, pages 823–828, 2010.

[153] Alberto O Mendelzon and Tova Milo. Formal models of web queries. In Proceedings
of the Sixteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, pages 134–143, 1997.

246

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.html

[154] Samuel Merrill III. A comparison of efficiency of multicandidate electoral systems.
American Journal of Political Science, pages 23–48, 1984.

[155] Ardalan Mirzaei, Stephen R Carter, Asad E Patanwala, and Carl R Schneider. Missing
data in surveys: Key concepts, approaches, and applications. Research in
Social and Administrative Pharmacy, 18(2):2308–2316, 2022.

[156] Kyriakos Mouratidis. Geometric aspects and auxiliary features to top-k processing.
In 2016 17th IEEE International Conference on Mobile Data Management
(MDM), volume 2, pages 1–3. IEEE, 2016.

[157] Sepideh Nikookar, Mohammadreza Esfandiari, Ria Mae Borromeo, Paras Sakharkar,
Sihem Amer-Yahia, and Senjuti Basu Roy. Diversifying recommendations on
sequences of sets. The Very Large Data Bases Journal, pages 1–22, 2022.

[158] Francisco Parreño, Ramón Álvarez-Valdés, and Rafael Mart́ı. Measuring diversity. a
review and an empirical analysis. European Journal of Operational Research,
289(2):515–532, 2021.

[159] Gourab K Patro, Arpita Biswas, Niloy Ganguly, Krishna P Gummadi, and Abhijnan
Chakraborty. Fairrec: Two-sided fairness for personalized recommendations
in two-sided platforms. In Proceedings of The Web Conference 2020, pages
1194–1204, 2020.

[160] David M. Pennock, Eric Horvitz, and C. Lee Giles. Social choice theory and
recommender systems: Analysis of the axiomatic foundations of collaborative
filtering. In Proceedings of the 17th National Conference on Artificial
Intelligence and 12th Conference on Innovative Applications of Artificial
Intelligence, page 729–734. AAAI Press, 2000.

[161] Lionel S Penrose. The elementary statistics of majority voting. Journal of the Royal
Statistical Society, 109(1):53–57, 1946.

[162] Evaggelia Pitoura, Kostas Stefanidis, and Georgia Koutrika. Fairness in rankings and
recommendations: an overview. The VLDB Journal, pages 1–28, 2021.

[163] Evaggelia Pitoura, Panayiotis Tsaparas, Giorgos Flouris, Irini Fundulaki, Panagiotis
Papadakos, Serge Abiteboul, and Gerhard Weikum. On measuring bias in
online information. ACM SIGMOD Record, 46(4):16–21, 2018.

[164] R Porkodi. Comparison of filter based feature selection algorithms: An overview.
International journal of Innovative Research in Technology & Science,
2(2):108–113, 2014.

[165] Abinash Pujahari and Dilip Singh Sisodia. Aggregation of preference relations to
enhance the ranking quality of collaborative filtering based group recommender
system. Expert Systems with Applications, 156:113476, 2020.

247

[166] Shameem A Puthiya Parambath, Nicolas Usunier, and Yves Grandvalet. A
coverage-based approach to recommendation diversity on similarity graph. In
Proceedings of the 10th ACM Conference on Recommender Systems, pages
15–22, 2016.

[167] Lu Qin, Jeffrey Xu Yu, and Lijun Chang. Diversifying top-k results. arXiv preprint
arXiv:1208.0076, 2012.

[168] Davood Rafiei, Krishna Bharat, and Anand Shukla. Diversifying web search results.
In The Web Conference, 2010.

[169] Pengjie Ren, Zhumin Chen, Zhaochun Ren, Furu Wei, Jun Ma, and Maarten de Rijke.
Leveraging contextual sentence relations for extractive summarization using a
neural attention model. In Proceedings of the 40th International ACM SIGIR
Conference on Research and Development in Information Retrieval, pages 95–
104, 2017.

[170] John T Robinson. The KDB-tree: a search structure for large multidimensional
dynamic indexes. In Proceedings of the 1981 ACM SIGMOD International
Conference on Management of Data, pages 10–18, 1981.

[171] Francesca Rossi, Kristen Brent Venable, and Toby Walsh. Aggregating preferences
cannot be fair. Intelligenza Artificiale, 2(1):30–38, 2005.

[172] Senjuti Basu Roy. Returning top-k: Preference aggregation or sortition, or is there a
better middle ground? SIGMOD Blog, 2022.

[173] Senjuti Basu Roy, Saravanan Thirumuruganathan, Sihem Amer-Yahia, Gautam
Das, and Cong Yu. Exploiting group recommendation functions for flexible
preferences. In 2014 IEEE 30th International Conference on Data Engineering,
pages 412–423, Chicago, IL, USA, 2014. IEEE.

[174] Md Abdus Salam, Senjuti Basu Roy, and Gautam Das. Efficient approximate top-k
mutual information based feature selection. Journal of Intelligent Information
Systems, pages 1–33, 10 2022.

[175] Babak Salimi, Bill Howe, and Dan Suciu. Database repair meets algorithmic fairness.
ACM SIGMOD Record, 49(1):34–41, 2020.

[176] Anand D Sarwate, Stephen Checkoway, and Hovav Shacham. Risk-limiting audits
and the margin of victory in nonplurality elections. Statistics, Politics, and
Policy, 4(1):29–64, 2013.

[177] Amartya Sen. Social choice theory. Handbook of Mathematical Economics, 3:1073–
1181, 1986.

[178] Ashudeep Singh and Thorsten Joachims. Fairness of exposure in rankings. In
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 2219–2228, 2018.

248

[179] Robinson Spencer, Fadi Thabtah, Neda Abdelhamid, and Michael Thompson.
Exploring feature selection and classification methods for predicting heart
disease. Digital health, 6:2055207620914777, 2020.

[180] Peter Stone. Sortition, voting, and democratic equality. Critical Review of
International Social and Political Philosophy, 19(3):339–356, 2016.

[181] Julia Stoyanovich, Ke Yang, and HV Jagadish. Online set selection with fairness and
diversity constraints. In Proceedings of the EDBT Conference, 2018.

[182] Jiliang Tang, Salem Alelyani, and Huan Liu. Feature selection for classification: A
review. In Data Classification: Algorithms and Applications, 2014.

[183] Nicolaus Tideman. The single transferable vote. Journal of Economic Perspectives,
9(1):27–38, 1995.

[184] Robert Tijdeman. The chairman assignment problem. Discrete Mathematics,
32(3):323–330, 1980.

[185] Chun-Hua Tsai and Peter Brusilovsky. Beyond the ranked list: User-driven
exploration and diversification of social recommendation. In 23rd International
Conference on Intelligent User Interfaces, pages 239–250, 2018.

[186] Anke Van Zuylen and David P Williamson. Deterministic algorithms for rank
aggregation and other ranking and clustering problems. In International
Workshop on Approximation and Online Algorithms, pages 260–273. Springer,
2007.

[187] Anke Van Zuylen and David P Williamson. Deterministic pivoting algorithms for
constrained ranking and clustering problems. Mathematics of Operations
Research, 34(3):594–620, 2009.

[188] Saúl Vargas, Linas Baltrunas, Alexandros Karatzoglou, and Pablo Castells. Coverage,
redundancy and size-awareness in genre diversity for recommender systems.
In Proceedings of the 8th ACM Conference on Recommender Systems, pages
209–216, 2014.

[189] Saúl Vargas and Pablo Castells. Rank and relevance in novelty and diversity metrics
for recommender systems. In Proceedings of the fifth ACM Conference on
Recommender Systems, pages 109–116, 2011.

[190] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. Graph attention networks. arXiv preprint
arXiv:1710.10903, 2017.

[191] Jorge R Vergara and Pablo A Estévez. A review of feature selection methods based on
mutual information. Neural Computing and Applications, 24:175–186, 2014.

249

[192] Sanne Vrijenhoek, Gabriel Bénédict, Mateo Gutierrez Granada, Daan Odijk, and
Maarten de Rijke. Radio – rank-aware divergence metrics to measure
normative diversity in news recommendation. In RecSys 2022: The ACM
Conference on Recommender Systems. ACM, September 2022.

[193] Dongjing Wang, Shuiguang Deng, and Guandong Xu. Sequence-based context-aware
music recommendation. Information Retrieval Journal, 21(2-3):230–252, 2018.

[194] Haixun Wang and Charu C Aggarwal. A survey of algorithms for keyword search on
graph data. Managing and Mining Graph Data, pages 249–273, 2010.

[195] Lina Wang, Xuyun Zhang, Tian Wang, Shaohua Wan, Gautam Srivastava, Shaoning
Pang, and Lianyong Qi. Diversified and scalable service recommendation with
accuracy guarantee. IEEE Transactions on Computational Social Systems,
8(5):1182–1193, 2020.

[196] Yue Wang, Alexandra Meliou, and Gerome Miklau. Rc-index: Diversifying answers
to range queries. Proceedings of the VLDB Endowment, 11(7):773–786, 2018.

[197] Dong Wei, Md Mouinul Islam, Schieber Baruch, and Senjuti Basu Roy. Rank
aggregation with proportionate fairness. In Proceedings of the 2022 ACM
SIGMOD International Conference on Management of Data, 2022.

[198] Bruce Western, Anthony Braga, David Hureau, and Catherine Sirois. Study retention
as bias reduction in a hard-to-reach population. Proceedings of the National
Academy of Sciences, 113(20):5477–5485, 2016.

[199] David A White and Ramesh Jain. Similarity indexing with the ss-tree. In Proceedings
of the Twelfth International Conference on Data Engineering, pages 516–523.
IEEE, 1996.

[200] Wen Wu, Li Chen, and Yu Zhao. Personalizing recommendation diversity based on
user personality. User Modeling and User-Adapted Interaction, 28(3):237–276,
2018.

[201] Yingying Wu, Yiqun Liu, Fei Chen, Min Zhang, and Shaoping Ma. Beyond greedy
search: pruned exhaustive search for diversified result ranking. In Proceedings
of the 2018 ACM SIGIR International Conference on Theory of Information
Retrieval, pages 99–106, 2018.

[202] Lirong Xia. Computing the margin of victory for various voting rules. In Proceedings
of the 13th ACM Conference on Electronic Commerce (EC ’12), page 982–999,
New York, NY, USA, 2012.

[203] Himank Yadav, Zhengxiao Du, and Thorsten Joachims. Fair learning-to-rank from
implicit feedback. In SIGIR, 2020.

250

[204] Guizhen Yang. The complexity of mining maximal frequent itemsets and maximal
frequent patterns. In Proceedings of the tenth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 344–353, 2004.

[205] Howard Hua Yang and John Moody. Data visualization and feature selection: New
algorithms for nongaussian data. In Proceedings of the 12th International
Conference on Neural Information Processing Systems, NIPS’99, page
687–693, Cambridge, MA, USA, 1999. MIT Press.

[206] Ke Yang, Vasilis Gkatzelis, and Julia Stoyanovich. Balanced ranking with diversity
constraints. arXiv preprint arXiv:1906.01747, 2019.

[207] Ke Yang and Julia Stoyanovich. Measuring fairness in ranked outputs. In Proceedings
of The 29th International Conference on Scientific and Statistical Database
Management, pages 1–6, 2017.

[208] Jin-ge Yao, Xiaojun Wan, and Jianguo Xiao. Recent advances in document
summarization. Knowledge and Information Systems, 53(2):297–336, 2017.

[209] Yelp. Dataset, 2023. Available at: https://www.yelp.com/dataset/

documentation/main.

[210] Peyton Young. Optimal voting rules. Journal of Economic Perspectives, 9(1):51–64,
1995.

[211] Cong Yu, Laks Lakshmanan, and Sihem Amer-Yahia. It takes variety to make a
world: diversification in recommender systems. In Proceedings of the 12th
International Conference on Extending Database Technology: Advances in
Database Technology, pages 368–378, 2009.

[212] Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rodriguez, and Krishna P
Gummadi. Fairness beyond disparate treatment and disparate impact:
Learning classification without disparate mistreatment. In Proceedings of the
26th International Conference on World Wide Web, pages 1171–1180, 2017.

[213] Michele Zanitti, Sokol Kosta, and Jannick Sørensen. A user-centric diversity by
design recommender system for the movie application domain. In Companion
Proceedings of the The Web Conference 2018, pages 1381–1389, 2018.

[214] Meike Zehlike, Francesco Bonchi, Carlos Castillo, Sara Hajian, Mohamed Megahed,
and Ricardo Baeza-Yates. FA*IR: A fair top-k ranking algorithm. In
Proceedings of the 2017 ACM on Conference on Information and Knowledge
Management, pages 1569–1578, 2017.

[215] Meike Zehlike, Ke Yang, and Julia Stoyanovich. Fairness in ranking, part ii:
Learning-to-rank and recommender systems. ACM Computing Surveys,
55(6):1–41, 2022.

251

https://www.yelp.com/dataset/documentation/main
https://www.yelp.com/dataset/documentation/main

[216] Rich Zemel, Yu Wu, Kevin Swersky, Toni Pitassi, and Cynthia Dwork. Learning
fair representations. In International Conference on Machine Learning, pages
325–333. PMLR, 2013.

[217] Hantian Zhang, Xu Chu, Abolfazl Asudeh, and Shamkant B Navathe. Omnifair: A
declarative system for model-agnostic group fairness in machine learning. In
Proceedings of the 2021 International Conference on Management of Data,
pages 2076–2088, 2021.

[218] Xiaohang Zhang, Guoliang Li, and Jianhua Feng. Crowdsourced top-k algorithms: An
experimental evaluation. Proceedings of the VLDB Endowment, 9(8):612–623,
2016.

252

	Models and algorithms for promoting diverse and fair query results
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	TItle Page
	Copyright Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgments (1 of 2)
	Acknowledgments (2 of 2)

	Table of Contents (1 of 5)
	Table of Contents (2 of 5)
	Table of Contents (3 of 5)
	Table of Contents (4 of 5)
	Table of Contents (5 of 5)
	Chapter 1: Introduction
	Chapter 2: Rank Aggregation with Proportionate Fairness
	Chapter 3: Satisfying Complex Top-K Fairness Constraints by Preference Substitutions
	Chapter 4: Select-K Winners by Satisfying Query Constraints Using IRV
	Chapter 5: Equitable Top-K Results for Long Tail Data
	Chapter 6: Access Primitive for Top-K Diversity Computation
	Chapter 7: Summary and Future Work
	References

	List of Tables (1 of 2)
	List of Tables (2 of 2)

	List of Figures (1 of 2)
	List of Figures (2 of 2)

