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ABSTRACT

CONTINUUM MODELING OF ACTIVE NEMATICS VIA
DATA-DRIVEN EQUATION DISCOVERY

by
Connor Robertson

Data-driven modeling seeks to extract a parsimonious model for a physical system

directly from measurement data. One of the most interpretable of these methods is

Sparse Identification of Nonlinear Dynamics (SINDy), which selects a relatively sparse

linear combination of model terms from a large set of (possibly nonlinear) candidates

via optimization. This technique has shown promise for synthetic data generated

by numerical simulations but the application of the techniques to real data is less

developed. This dissertation applies SINDy to video data from a bio-inspired system

of mictrotubule-motor protein assemblies, an example of nonequilibrium dynamics

that has posed a significant modelling challenge for more than a decade. In particular,

we constrain SINDy to discover a partial differential equation (PDE) model that

approximates the time evolution of microtubule orientation. The discovered model is

relatively simple but reproduces many of the characteristics of the experimental data.

The properties of the discovered PDE model are explored through stability analysis

and numerical simulation; it is then compared to previously proposed models in the

literature.

Chapter 1 provides an introduction and motivation for pursuing a data driven

modeling approach for active nematic systems by introducing the Sparse Identification

of Nonlinear Dynamics (SINDy) modeling procedure and active nematic systems.

Chapter 2 lays the foundation for modeling of active nematics to better understand

the model space that is searched. Chapter 3 gives some preliminary considerations

for using the SINDy algorithm and proposes several approaches to mitigate common

errors. Chapter 4 treats the example problem of rediscovering a governing partial



differential equation for active nematics from simulated data including some of the

specific challenges that arise for discovery even in the absence of noise. Chapter

5 details the procedure for extracting data from experimental observations for use

with the SINDy procedure and details tests to validate the accuracy of the extracted

data. Chapter 6 presents the active nematic model extracted from experimental data

via SINDy, compares its properties with previously proposed models, and provides

numerical results of its simulation. Finally, Chapter 7 presents conclusions from the

work and provides future directions for both active nematic systems and data-driven

modeling in related systems.
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CHAPTER 1

INTRODUCTION

1.1 Background

Fitting a mathematical model to data is ubiquitous in the sciences and enables

analytical machinery to be applied to the study of physical phenomena. Common

terms for the practice include “statistical inference,” “system identification,” “inverse

problems,” and “data-driven modeling.” For systems in which a continuum approx-

imation for many interacting particles is appropriate, partial differential equations

(PDEs) provide parsimonious models and powerful analytical tools. While fitting a

PDE of known form to data is a classical problem, the discovery of a PDE of unknown

form has only recently received significant attention. This is largely due to the fact

that the process is sensitive to noise in the data and the space of possible models is

large. Owing to recent computational and algorithmic advances and the availability

of larger and higher quality data sets, sparse regression methods show significant

promise for the discovery of PDEs of unknown form from data.

There has also been interest from the biology and physics communities in the

field of “active matter,” which seeks to extend the framework of statistical mechanics

to incorporate non-equilibrium phenomena. A celebrated example is the so-called

active nematic system studied by Zvonimir Dogic and colleagues, which consists of

rod-like filaments called microtubules coupled by motor proteins called kinesins [16,

46, 75]. The motor proteins consume energy and thus exert extensile forces on the

microtubules, leading to self-organized collective motion. When the concentration

of microtubules is relatively high, the microtubule-kinesin bundles form an active

nematic phase characterized by dynamic creation and annihilation of topological

defects. Many phenomenological models for this system have been proposed, some of
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which are inspired by the theory of liquid crystals [21,34,35,67,89,90] and others by

kinetic theory from statistical mechanics [31, 32, 96]. However, it has proven difficult

to determine which, if any, of these models provides the most accurate description

for the available data.

This dissertation outlines the ideas behind current data-driven modeling

strategies and the results of applying these strategies to the modeling of the active

nematic system. The final outcome of this work is the construction of a relatively

simple PDE model that reproduces key qualitative and quantitative features of the

experimental data.

1.2 Sparse Identification of Nonlinear Dynamics

Scientific discovery often builds on the fundamental practice of comparing obser-

vations with proposed mathematical models. Recent improvements in data collection

and computational power have enabled a more automated approach in which the form

of the model is derived more directly from the data.

For the remainder of this dissertation, we will focus on the data-driven discovery

method introduced for ordinary differential equations (ODEs) by Brunton et al. [9],

named Sparse Identification of Nonlinear Dynamics (SINDy), and extended for PDEs

by Rudy et al. [73], where it was called PDE-Find. This dissertation will use the term

SINDy in reference to both the ODE and PDE formulations of the problem. This

method is selected because of the interpretability of the results, which can be analyzed

using PDE and simulation techniques. For an overview of other model discovery

methods and the relationship of SINDy to these methods, see Appendix A.1.

We will consider the SINDy paradigm as it is applied to vector-valued data

which depends on both space and time coordinates. Let our data be represented

by u(x, t) ∈ Rn, where x = (x1, x2, . . . , xd) are spatial coordinates and t is time.

Suppose that we have N samples of the system uℓ = u(xℓ, tℓ) for ℓ = 1, . . . , N . We
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then seek a model of the form:

∂tu(x, t) = Θ(u,∇u, . . . ,∇Mu,x, t)ξ , (1.1)

where M is some maximum order for the spatial derivatives,

Θ(u,∇u, . . . ,∇Mu,x, t) =[
f1(u,∇u, . . . ,∇Mu,x, t) f2(u,∇u, . . . ,∇Mu,x, t) . . . fm(u,∇u, . . . ,∇Mu,x, t)

]
,

(1.2)

and ξ ∈ Rm are coefficients. We call Θ ∈ R(n·N)×m the “library” of terms where

each column is a (possibly nonlinear) function of the field u and its derivatives. For

example, if f j = u · ∇u is a nonlinear advection, as arises in the material derivative

of u, the ijth entry of Θ would be:

Θij(u,∇u, . . . ,∇Mu,x, t) = [f j(u,∇u, . . . ,∇Mu,x, t)]i = (u · ∇u)i .

Remark 1.2.1. In a slight abuse notation, we will use Θ, without its dependence on

the field and its derivatives, to refer to the (n ·N)×m matrix given by

Θ =


Θ(u1,∇u1, . . . ,∇Mu1,x1, t1)

...

Θ(uN ,∇uN , . . . ,∇MuN ,xN , tN)

 .

Similarly, we will use ∂tu to refer to the vector made up by stacking the values

∂tu(xℓ, tℓ) for ℓ = 1, . . . , N .

A visual summary of the method from [73] is shown in Figure 1.1. To summarize

the process, we seek the optimal combination of nonlinear functions f i that best

correlates with the time derivative of our data, ∂tu. Ultimately, this yields a closed

form PDE that models the data. This approach allows the modeler to incorporate

terms inspired by known physics and directly observe their relevance. The PDE-Find
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methodology requires numerical derivatives of the data in time to form ∂tu, and in

space to form Θ. Further discussion on numerical differentiation of data is included

in Section 3.2.

Figure 1.1 Flowchart of the PDE-Find algorithm [73].

Since we can have an arbitrary number of basis functions f i, we usually desire

a sparse solution to ξ, meaning that the majority of entries in ξ are zero. This can

be accomplished by solving (or approximately solving) a regularized least squares

problem of the form

ξ̂ = argmin
ξ
∥∂tu−Θξ∥2 + γR(ξ) (1.3)

where R is a regularizing function (commonly a norm). Methods for solving this

problem are discussed in Section 3.3.

The PDE-Find method has been shown to successfully recover the governing

equation for simulated data with additive noise [25, 42, 73, 100] and for experimental

data on colloidal microrollers [87]. However, its application to the active nematic
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system [36,44] brought to light several methodological hurdles that must be overcome

in order to extract a successful model. Chapter 3 explores these challenges in more

depth.

1.3 Microtubule-Kinesin Active Nematic System

Active nematics comprise an “active matter” system that is composed of “nematically

ordered” constituents. In active matter, internal or external mechanisms contribute

energy to a system, pushing it out of equilibrium [58,71]. For example, a flock of birds

or a school of fish convert food into movement via chemical processes and demonstrate

organized collective motion [11]. Nematic ordering is the state of having orientational

order without positional order, wherein the constituents are aligned along an axis but

are not arranged in a spatial pattern such as a grid. Systems with nematic order

have been studied extensively in the context of liquid crystals [54], which are made

up of elongated molecules suspended in a fluid and which themselves flow like a fluid.

These molecules retain their orientational order either due to shape or external fields

(e.g. magnetic fields). Figure 1.2 shows some observed liquid crystal phases.

Figure 1.2 Schematic of observed liquid crystal phases. The nematic phase
(leftmost) will be the focus of this dissertation.
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While there have been studies of active nematic phases in elongated granular

rods [1, 63, 81], this dissertation will focus on the biophysical system of microtubules

(MTs) and motor proteins (kinesin) discovered by Zvonimir Dogic and colleagues [75].

In this system, pairs of MTs are connected via a kinesin molecule which uses adenosine

triphosphate (ATP) to unbind and bind from the MTs, resulting in a motion that

resembles walking. As it does, the MTs “slide” alongside one another in opposite

directions. In isolation, this individual motion has little effect; however, in dense

suspensions of MTs and motor proteins, bundles of MTs form and create long moving

chains whose collective motion causes patterns to form at a scale much larger than

the individual MTs [30]. MTs and motor proteins are both found in the cytoplasm

of eukaryotic cells, and Dogic’s experiments showed that these constituents can

self-organize into an active liquid crystal capable of generating coherent fluid flows

reminiscent of cytoplasmic streaming in cells [75].

Although active nematics share many properties with liquid crystals, the

main difference is the consumption of energy by the constituent particles. This

energy production causes global motion which can in turn spontaneously create

or destroy discontinuities in the orientation of the molecules, breaking long range

nematic ordering and causing chaotic behavior. These discontinuities are one of the

defining features of active nematic systems and are known as “defects” (Figure 1.3).

Defects are known to occur in liquid crystals and other materials [47, 83]. Defects

may be assigned a topological “charge,” which denotes the angle through which

the orientation field rotates along a small loop encircling the defect. In two

dimensions +1/2 and −1/2 defects are observed, as shown in Figure 1.3a-c. Pairs of

oppositely-charged defects may also annihilate when they meet (Figure 1.3d).

The pioneering experiments of [75] have been profitably extended by Dogic

and collaborators to other configurations. Specifically, the MT-kinesin assembly was

encapsulated inside a shape-changing lipid vesicle, resulting in exotic defect dynamics
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Figure 1.3 Example of the defects observed in the MT-kinesin active nematic
system. (a) Diagrams of +1/2 (left) and −1/2 (right) defects. (b) +1/2 defect
observed in experiment. (c) −1/2 defect observed in experiment. (d) Time sequence
illustrating the creation of a positive-negative pair of defects, which is caused by the
buckling of MT bundles.
Source: [75]
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and the emergence of protrusions from the vescicle [46]. Defects were observed to

exhibit long-range orientational order in 2D [16], and 2D confinement transformed the

chaotic dynamics of MTs into regular patterns [65]. More recently, active nematics

were studied in three dimensions, where it was observed that defect “loops” exhibit

complex dynamics [22].

Several continuum models for this system have been proposed and are discussed

in Chapter 2. The complexity of the multiscale and nonlinear interactions of the

microtubules, proteins and fluid has made it difficult to arrive at a consensus for

a model for this system. However, this complexity makes this system an excellent

candidate for a data-driven modeling approach.

1.4 Notation

The mathematical notation used for the remainder of this dissertation will be as

follows:

• Lowercase bold symbols represent vectors (order one tensors).

Example: Vector a

a =


a1

a2
...


• Uppercase bold symbols are tensors of order greater than one

Example: Order 2 tensor A

A =


A11 A12 . . .

A21
. . .

...


• Contractions of tensors are written using Einstein summation notation

Example: Contraction of tensor A with tensor B along dimension j

AijBjk =
∑
j

Aij ·Bjk
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• Indexing of data for tensors is written using subscripts of bold variables

Example: Data points of tensor A at position i, j

Aij

• Gradients of tensors are derivatives along a new first dimension

Example: Gradient of tensor A

(∇A)kij = ∂kAij

• Divergences of tensors are derivatives along the first dimension

Example: Divergence of tensor A

(∇ ·A)j = ∂iAij

• Tensor products represent concatenations

Example: Concatenation of tensors A and B

(A⊗B)ijkl = AijBkl

• Symmetrized terms are represented with a text superscript S

Example: Symmetrized version of A

(
AS
)
ij
=

1

2
(Aij + Aji)

• Terms that are made symmetric and traceless are represented with a text

superscript ST

Example: Symmetric and traceless version of A

AST = AS − 1

d
Tr(AS)I

where d is the space dimension. Most of the results herein are presented for

d = 2.
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• Transpose of a second order tensor is written with a superscript ⊺

Example: Transpose of tensor A

(A⊺)ij = Aji

• Dot products of first and second order tensors are contractions over the first

index

Example: Dot product of vector a and tensor A

(a ·A)j = aiAij

• Dot products of two second order tensors are contractions over the last and first

indices respectively

Example: Dot product of tensor A and tensor B

(A ·B)ik = AijBjk

• Double dot products of two second order tensors are contractions over all indices

Example: Double dot product of tensor A and tensor B

A : B = AijBij

• The tensor commutator is defined with square brackets

Example: Commutator applied to A and tensor B

[A,B] = A ·B −B ·A

• The tensor anticommutator is defined with curly braces

Example: Anticommutator applied to A and tensor B

{A,B} = A ·B +B ·A

• The support of a vector is the set of indices corresponding to non-zero entries,

supp(a) = {i : ai ̸= 0}.
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CHAPTER 2

MODELING PRELIMINARIES

As briefly outlined in Section 1.3, this work presents a data-driven modeling approach

to active nematic systems using the SINDy framework. Though the method is a

more automated approach than modeling from first principles, it requires identifying

the most important state variables and physical constraints of the system in order

to construct an over-complete library of nonlinear candidate terms. Section 2.1

introduces the Landau-de Gennes continuum theory for liquid crystals from which

the microtubule-kinesin system can be approached. Section 2.2 presents an overview

of previously proposed models of the system and discusses their similarities and

differences. Section 2.3 utilizes the previous material in this chapter to outline a

procedure for generating an overcomplete library of nonlinear tensor terms which

could be included in an equation for the orientation or velocity evolution of the

microtubules (MTs).

2.1 Microtubule Orientation

The celebrated Landau-de Gennes theory of liquid crystals [2,5,72,95] is a continuum

field theory that describes the orientation of rod-like molecules in terms of the tensor

order parameter Q = Q(x, t) ∈ Rd×d, where x ∈ Rd. Specifically, let p ∈ Rd be

a unit vector describing the orientation of a “headless” molecule, and let P(p) be a

probability measure on the unit sphere S = {p : |p| = 1}. Since the molecules do not

have head or tail, this probability measure must satisfy

P(p) = P(−p).
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By this property, the first moment of the measure vanishes:∫
S
p dP(p) = 0.

However, the second moment

D =

∫
S
p⊗ p dP(p) (2.1)

is generally nonzero, and is a symmetric positive semi-definite d× d matrix for which

Tr(D) = 1. Note that, if the molecules are “isotropic” in orientation (equally oriented

in all directions), then dP0(p) =
1
|S| dp is the uniform measure, which yields

D0 =
1

|S|

∫
S
p⊗ p dp =

1

d
I.

The Landau-de Gennes tensor Q measures the deviation of D from its isotropic state:

Q = D −D0 =

∫
S

(
p⊗ p− 1

d
I

)
dP(p). (2.2)

This “tensor order parameter” is a symmetric and traceless d × d matrix. In two

dimensions (d = 2), Q can be written as [21]:

Q =

λ µ

µ −λ

 = S

(
n⊗ n− I

2

)
, (2.3)

where

S = 2
√
λ2 + µ2 (2.4)

is the so-called “scalar order parameter” and

n =
1√

(λ+ S/2)2 + µ2

λ+ S/2

µ

 (2.5)

is the so-called “director,” the average orientation of the rods [4]. The larger

eigenvalue of Q is S/2, and the corresponding eigenvector is n. Given the relation

Tr(Q2) = S2/2 (2.6)
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we use Equation (2.2) to deduce that

S2

2
= Tr(Q2) =

∫
S

∫
S
Tr

[(
p⊗ p− 1

2
I

)(
p̃⊗ p̃− 1

2
I

)]
dP(p)dP(p̃)

=

∫
S

∫
S
(p · p̃)2 dP(p) dP(p̃)− 1

2
≤ 1

2
. (2.7)

That is, values of S near zero (unity) signify low (high) orientational order of the

molecules. Note that S = 0 at a defect and Q is continuous across defects, while the

director n is not.

2.2 Previously Proposed Models

Active nematic systems have drawn a range of modeling interest due to their

nonequilibrium nature and their seemingly close relationship to passive liquid crystal

systems. In fact, a large contingent of modeling approaches have looked to bridge

the well understood dynamics of passive liquid crystals to these active systems. As a

result, there exist strong similarities between previously proposed models, though it is

challenging to reconcile the assumptions inherent in each model and their associated

dimensionless parameters. However, all of the terms presented in these models can

be included in the library used with the SINDy procedure.

2.2.1 The Beris-Edwards Model

A commonly used continuum model [14, 20, 21, 90, 102] for the MT-kinesin active

nematic system is based on the Beris-Edwards equations for nematic liquid crystals [6]:

∂

∂t
Q+ u · ∇Q− S = ΓH , (2.8)

where u is the velocity of the fluid. In three dimensions (d = 3), the generalized

co-rotation S has the form

S = (φE −Ω) ·
(
Q+

I

3

)
+

(
Q+

I

3

)
· (φE +Ω)− 2φ

(
Q+

I

3

)
(Q : ∇u)

= [Q,Ω] + 2φ

(
1

3
E −Q(Q : ∇u) + [E ·Q]ST

)
, (2.9)
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where

Eij =
1

2
(∂iuj + ∂jui) and Ωij =

1

2
(∂iuj − ∂jui) (2.10)

are the rate of strain and vorticity tensors, respectively; and φ is the so-called flow-

alignment parameter. We note that our definition of the vorticity in Equation (2.10)

differs by a sign from that used by some authors (e.g. [21]). The molecular tensor H

drives the relaxation of Q:

H = −δF
δQ

+
I

3
Tr

(
δF
δQ

)
, where

F =

∫
dxTr

(
A

2
Q2 +

B

3
Q3 +

C

4
Q4 +

K

2
(∇Q)2

)
(2.11)

is the phenomenological Landau-de Gennes free energy. For A < 0 and C > 0, the

free energy has a phenomenological double-well shape that captures the tendency of

the system to depart from the isotropic state (Q = 0) and converge to a nematically

ordered state (Q ̸= 0). Distortions from the uniformly-aligned state are penalized for

positive values of the elastic constant, K > 0.

The orientation evolution equation (2.8) is coupled with an incompressible

Navier-Stokes equation:

ρ

(
∂

∂t
u+ u · ∇u

)
= ∇ · σ, ∇ · u = 0, (2.12)

where ρ is the fluid density, and the stress tensor σ = σviscous + σelastic + σactive is

made up of viscous, elastic and active contributions:

σviscous = 2ηE,

σelastic = −PI + 2φ

(
Q+

I

3

)
(Q : H)− φH

(
Q+

I

3

)
− φ

(
Q+

I

3

)
H

−∇Q δF
δ∇Q

+QH −HQ,

= −PI + [Q,H ]− 2φ

(
1

3
H −Q(Q : H) + [Q ·H ]ST

)
−∇Q δF

δ∇Q
,

σactive = −ζQ. (2.13)
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Here, η is the viscosity and ζ is the microtubule activity coefficient, with ζ > 0 (< 0)

signifying extensile (contractile) stresses [82]. It is important to note that for ζ = 0,

Equations (2.8)–(2.13) are the nematohydrodynamic equations of motion for passive

nematic liquid crystals [21], as σelastic describes the stresses on the fluid due to the

passive movement of the rods.

2.2.2 Incorporating Density Fluctuations

Equations (2.8)–(2.13) assume that the MT density is constant in space and time.

However, variations in MT density can be substantial in experiments (seen for one

experimental system in Figure 5.2). These pockets of low density also frequently

correlate with defects and nearby “cracks” that are formed as they are created or

annihilated. It is possible that the interplay of density, velocity, and orientation plays

a significant role in the observed dynamics, as was conjectured by Giomi et al. [35].

Their model incorporates density fluctuations and has the form (for d = 2)

Qt + u · ∇Q = φSE + [Q,Ω]− ΓH ,

ρut = ∇ · σ, ∇ · u = 0,

ρt + u · ∇ρ = ∇ · [(D0I +D1Q)∇ρ+ α1ρ
2∇ ·Q],

where σ = −PI + 2ηE − φSH + [Q,H ] + α2ρ
2Q,

H =

[(
−A+

1

2
S2C

)
Q−K∆Q

]
. (2.14)

In addition to incorporating density fluctuations and anisotropic diffusion (for D1 >

0), Equation (2.14) differs from Equations (2.8)–(2.13) in a few ways. First, the

flow-alignment parameter φ is multiplied by the scalar order parameter S wherever

it appears. Second, in the velocity equation, the Reynolds number Re ≡ ρL|u|/η is

assumed to be small for MTs of length L ∼ 100µm, so the convective term u · ∇u

is omitted. It should be noted that the molecular tensor H in Equation (2.14) is

simply Equation (2.11) expressed in two dimensions (d = 2), since Q2 = S2

4
I in 2D.
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Moreover, the terms [E·Q]ST and [H ·Q]ST in Equations (2.9) and (2.13), respectively,

vanish in 2D since [A ·B]ST = 0 for symmetric and traceless 2 × 2 matrices A and

B.

2.2.3 A Minimal Model in 2D

Oza & Dunkel [67] proposed a minimal model for active nematics that built off of the

models described in Sections 2.2.1 and 2.2.2, but with a few notable changes. While

the system is often modeled in two dimensions (2D) [20, 34, 35], the experiments are

three-dimensional with a shallow depth. As such, upwellings or sinks in the MTs could

invalidate the assumption of incompressibility (∇ · u = 0). If this were the case, the

incompressible Navier-Stokes equations would need to be replaced their compressible

counterpart, and the orientation evolution equation (2.8) would have to be modified

to read

∂

∂t
Q+ u · ∇Q→ ∂

∂t
Q+∇ · (uQ).

Furthermore, a common feature noted in experiments is the buckling of long

strands of MT bundles. This particular feature is somewhat difficult to capture

in continuum models. However, one possibility is to replace the gradient of the

elastic energy term, ∆Q from Equation (2.14), which penalizes inhomogeneities in

the orientation field, with the higher-order term

−γ2∆Q+ γ4∆
2Q.

The addition of such a term leads to patterns with a characteristic length scale√
γ4/γ2. Similar terms have been used to describe buckling processes in elastic

materials [84] and pattern formation in bacterial suspensions [23].
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The minimal model [67] thus has the form

∂

∂t
Q+∇ · (uQ)− κ[Q,Ω] = −δF

δQ
= AQ− CQ3 − γ2∆Q− γ4∆2Q,

u = −ζ
ν
∇ ·Q,

where F =

∫
dxTr

{
−A

2
Q2 +

C

4
Q4 − γ2

2
(∇Q)2 +

γ4
4
(∇∇Q)2

}
. (2.15)

We note that Navier-Stokes equation for the velocity field u has been simplified to

a relatively simple relation between u and Q, which may be derived from the Hele-

Shaw (thin-film) approximation applied to the Stokes equations (see Appendix A.5).

Note that the velocity field is not divergence-free, as fluid exchange between the

bulk and the quasi-2D active nematic layer is permitted (Figure 5.1b). Despite its

relative simplicity, Equation (2.15) is able to capture defect creation and annihilation

dynamics, and exhibits good agreement with experimental data on defect lifetimes

and speed distributions [67].

2.2.4 A Kinetic Theory

Finally, a kinetic theory approach from the Smoluchowski equation for statistical

mechanics have been proposed by Gao et al. [31, 32]. In its dimensionless form, the

equations are

D∇ + 2E : S[D] = 4ζ (D ·D − S[D] : D) + A∆D − 2B
(
D − ρ

d
I
)
, (2.16)

∇p−∆u = ∇ · σB[D],

∇ · u = 0,

σB[D] = αD + βS[D] : E − 2ζβ (D ·D − S[D] : D) ,

S[D] =

∫
S

p⊗ p⊗ p⊗ p dP(p), (2.17)

where D is the non-centered tensor order parameter defined in Equation (2.1), the

upper-convective derivative is given as D∇ = Dt+u·∇D−(∇u·D+D ·∇u⊺) and S

is the fourth moment of the probability density P. The left hand side of the equation
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differs from the Beris Edwards approach in that it uses a transport mechanism based

on microscopic modeling including the second term on the left hand side which arises

from Jeffery’s equation for ellipsoidal bodies in linear flow. The terms on the right

hand side of the equation follow a similar structure as the Beris Edwards equations

with differences in the diffusion coefficient for the ∆D term and the nonlinearities

governing the ordering (D, D2, and S[D] rather than Q,Q2, and Q3). Though this

formulation has a strong connection to the Beris-Edwards formulation, the model

requires a closure assumption for evaluation of the fourth moment. As such, S can

be approximated using the so-called Bingham closure [31, 32]. A fast algorithm for

evaluating S under this closure assumption is described in [96].

2.3 Constructing a Library of Model Terms

The state variables present in the models of Section 2.2 are orientation Q,D,S,

velocity u, and density ρ. Given the constant translation difference between tensor

order Q and D in Equation (2.2), a complete library can be constructed without

considering D.

When constructing one dimensional (1D) systems for use with SINDy, it is

common to consider polynomial interactions between state variables and their spatial

derivatives [73]. However, generation of an over-complete library of polynomial terms

complicates as the dimension of the system increases due to combinatorial complexity

of tensor contractions. As such, a computational algebra system (CAS) is required

to algorithmically generate a sufficiently large library of possibilities. Additionally,

tensor equations can contain a variety of properties that need to be incorporated into

the library structure (e.g. Qt is symmetric and traceless).

With these constraints in mind, we propose a multistep process for generating

a tensor library of order p:
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1. Collect common state variables as a starting set of symbols for the library:
E.g. Q,S,u.

2. Expand the starting set of symbols by prepending derivative operators to the symbols,
up to a given maximum derivative order:
E.g. Q,∇Q,∇∇Q,u,∇u, . . .
Note: In practice, each term has a “derivative order” d, e.g. Q has d = 0, while ∇Q
has d = 1. Given the commonly considered active stress relationship of u = −∇ ·Q,
it is assumed that u has d = 1.

3. Take all (unordered) outer-products of the expanded set of base terms with tensor
order 2ℓ+ p, ℓ ∈ N0, up to a given total polynomial order in state variables:
E.g. Q,∇u,u⊗∇Q,S ⊗∇u, . . .
Note: In practice, we assign a “Q-order” q to each term. Specifically, Qn has q = n,
u has q = 1 and S has q = 2. The Q-order and derivative order of a composite term
(e.g. u⊗∇Q) is the sum of the individual orders (e.g. q = 2 and d = 2). Terms with
Q-order greater than a prescribed value qmax = 3 or a derivative order greater than
a prescribed value dmax = 2 are eliminated from the library.

4. For any order 2ℓ + p tensor produced in step 3, form all tensors of order p that can
be obtained by successively contracting pairs of indices and permuting the remaining
p:
E.g. from ui1∂i2Qi3i4 we obtain the second order tensors u ·∇Q, by contracting i1, i2,
(∂jQℓk)uℓ, by contracting i1, i3, (∂jQkℓ)uℓ, by contracting i1, i4, u∇·Q, by contracting
i2, i3, u∇· (Q⊺), by contracting i2, i4, and u∇Tr(Q), by contracting i3, i4, as well the
transposes of all of these by permuting the indices.

5. (Optional) Ensure that the terms satisfy physical constraints (symmetric, traceless,
etc.). If the term does not immediately satisfy a condition, transform it to ensure it
satisfies the necessary conditions:
E.g. the term ∂jQkℓuℓ is not necessarily traceless or symmetric.

6. Compare terms to ensure symbolic uniqueness. For equivalent terms, keep the term
with the shortest symbolic representation (keeping the first term generated in the
case of a tie):
E.g. the terms ∂jQℓkuℓ and ∂jQkℓuℓ are equivalent because Q is symmetric and the
term u∇Tr(Q) is zero because Q is traceless.

Examples of the terms yielded via this procedure for both orientation and velocity

evolution equations are shown in Table 2.1. Following (2.15) we assume an

overdamped Hele-Shaw limit (see Appendix A.5) in which the velocity u is determined

directly by the divergence of the stress tensor.

Remark 2.3.1. Note that due to the symmetries of the fourth moment tensor, S,

the contractions that occur within this term are removed from the library by hand.
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For example, Sijkk = Dij is removed because the traceless version of this term is Q.

This redundancy would not be apparent in the symbolic library generating procedure

outlined above but would be apparent in the actual library terms.

The procedure described above produces a large library of polynomial tensor

interactions between state variables and their gradients. The library terms can be

linearly combined to attain all common terms in the Beris-Edwards equations (2.8)–

(2.13), a few of which are shown in Table 2.2. We note that some terms are not directly

present in the library but can be constructed via linear combination of terms in the

library. For example, [Q,Ω] can be obtained via the linear combination [Q,Ω] =

2[Qki∂kuj]
ST − 2[Qki∂juk]

ST. Since the [Q,Ω] term is present in many previously-

proposed models (e.g. Equations (2.8), (2.14), (2.15)), the terms 2[Qki∂kuj]
ST and

2[Qki∂juk]
ST are replaced in the library with their sum and difference:

2[Qki∂kuj]
ST − 2[Qki∂juk]

ST

2[Qki∂kuj]
ST + 2[Qki∂juk]

ST
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Table 2.1 Terms generated via the procedure described in Section 2.3 for the Q
evolution equation Qt = . . . and velocity equation u = ∇ · σ, where σ is the stress.

Qt Equation u Equation (stress (σ) terms)

State variables: Q,S,u State variables: Q

Maximum derivative order: 2 Maximum derivative order: 2

Maximum order in Q: 3 Maximum order in Q: 3

Conditions: symmetric, traceless Conditions: symmetric

Total number of terms: 46 Total number of terms: 52

Qij Qij

∂k∂kQij [∂k∂iQkj]
S

[∂iuj]
ST ∂k∂kQij

[Qki∂k∂lQlj]
ST QkiQkj

[Qkl∂i∂jQkl]
ST [Qlj∂k∂kQil]

ST

QklQijlk Qji∂k∂lQkl

[Qki∂juk]
ST Qlk∂j∂iQkl

Qij∂kuk QkjQlkQli

[QlkSlijk]
ST [QmiQlk∂j∂mQkl]

S

[uiuj]
ST [QlkQml∂m∂jQki]

S

...
...
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Common Term Term in Library

u · ∇Q uk∂kQij

(∇ · u)Q ∂kukQij

EST [∂iuj]
ST

(Q : ∇u)Q QijQkl∂kul

Q Qij

Q3 QikQklQlj

∇2Q ∂k∂kQij

...
...

Table 2.2 Table of commonly considered terms in the Beris-Edwards equation (2.8)
for the orientational order parameter Q. Note that EST = E for an incompressible
velocity field, ∇ · u = 0.
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CHAPTER 3

MODEL DISCOVERY PRELIMINARIES

As briefly outlined in Section 1.2, this dissertation applies the SINDy framework to

discover a model from data. Given a library of nonlinear candidate terms, the original

SINDy framework identifies the correct k term model as the solution of the k-sparse

least squares problem:

ξ̂ = argmin
ξ,∥ξ∥0=k

||Θξ − ∂tu||22 ,

where

∥ξ∥0 = |{i : ξi ̸= 0}| = |supp(ξ)| .

This problem is equivalent to the regularized least squares problem:

ξ̂ = argmin
ξ
||Θξ − ∂tu||22 + γ||ξ||0 , (3.1)

for some γ depending on k. The model is then given to be the linear combination of

the corresponding (possibly nonlinear) library terms with non-zero coefficients in ξ̂.

There are several challenges in applying SINDy to real data that have been

recognized in the literature [36, 44, 60, 74, 87]. The library must be constructed in a

way that the target quantity, ut above, is approximately in the range of the library

matrix, Θ. Typically, the library is constructed using a standard basis, such as

polynomials. An active nematic model is a tensor-valued PDE and thus requires a

non-standard library construction. We outline a general approach to tensor-valued

PDE library construction in Section 2.3 and show there that it contains the standard

active nematic model terms. It is known that the quality of the data impacts SINDy’s

ability to recover a PDE model which captures the dynamics of the system [8]; we
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discuss the effect of data quality in more detail in Section 3.1. This is followed by an

exploration of numerical differentiation of potentially noisy data in Section 3.2 which

has been identified in the literature as a key challenge for SINDy [3,17,40,52,60,78].

Finally, the challenge of selecting a sparse subset from hundreds or possibly thousands

of candidate terms is discussed in Section 3.3 even if the linear system does not satisfy

the usual assumptions of linear regression (lack of multicollinearity, non-Gaussian

residuals, etc. [79]).

3.1 Data Quality

It is known that data must be resolved to the scale of the underlying dynamics

of the system in order to successfully recover the governing equation [8]. In fact,

insufficiently dynamic data often yields a linear system which is not sparse, ultimately

yielding a wide range of possible models that capture the dynamics [9]. This is

demonstrated for simulated active nematic data in Section 4.2.3. However, once the

resolution is sufficient to accurately compute derivatives of the state variables, the full

dataset may be subsampled to reduce the computational burden. Several previous

works applying SINDy to PDE discovery have used such sparsely sampled sets of the

data library. This amounts to reducing the number of rows used in Equation (1.3).

There have also been works demonstrating different sampling methods that can be

applied to resolve multi-scale dynamics that may be present in the data [7, 12].

These techniques demonstrate accurate equation recovery but also demonstrate the

fragility of SINDy to insufficient data and the danger of unknowingly overlooking

small scale dynamics. These works also reference the need for “dynamic” data with

sufficient variation in time to give stable numerical derivatives and a well-conditioned

system [73,97].

In the context of experimental data, each of the above represents a need for

accurate extraction of state variables from experimental observations. The procedure
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for this extraction will vary from application to application but will likely depend on

the selection of several parameters in the extraction procedure. Working to ensure

the extracted state variables satisfy physical constraints will help ensure accurate

recovery of the governing equations. In this dissertation, we consider a physically

motivated approach to selecting these parameters based on the conservation of mass

and other physical constraints [87]. See Sections 5.3.1 and 5.3.2 for more details.

3.2 Fitting and Differentiating Noisy Data

There are a variety of well-established methods for numerical differentiation of

data. However, guaranteeing the accuracy of derivatives without knowledge of the

underlying generating function or the level of noise remains a challenge. Rudy et

al. [73] identified that, in the absence of noise, classical numerical differentiation

methods such as finite differences are adequate for the linear system in Equation (1.3).

In the case of noisy data, these local methods are severely limited, and it is instead

more practical to fit a differentiable basis of functions or first smooth the data. There

are a few general principles from which most common methods for fitting noisy data

emerge:

Differentiation via interpolation is not reasonable for noisy data due to the

danger of over-fitting. As such, a new metric for “best fit” needs to be established.

Usually, this amounts to considering the best L2 fit of the data with least squares.

Additionally, the least squares formulation can be augmented with regularization

to reduce spurious higher order modes [48] or weighted to more closely fit certain

segments of the data [13].

A natural (and popular) method is to locally fit a low order polynomial to data

points using either least squares or weighted least squares in order to approximate

the centermost point of the local grid. As the basis is known, the fitted polynomial

can be differentiated prior to evaluation to approximate derivatives at that point. In
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econometrics and signal processing, this method is called LOESS (locally estimated

scatterplot smoothing), LOWESS (locally weighted scatterplot smoothing), or the

Savitsky-Golay filter [13, 76]. Due to the lower order of the derivatives and the lack

of boundary conditions between neighboring polynomials, it is not guaranteed to

have smooth derivatives [64]. Yet it has been previously shown to be effective for

SINDy [73].

Alternatively, fitting noisy data with a global basis of functions can also be

effective. Several popular and well-established methods for this exist including

fitting orthogonal polynomials via least squares [33], smoothing splines [69], and

truncated Fourier series [49]. Additionally, more modern methods such as fitting

with neural networks made up of composed nonlinear functions have been shown to

have promising robustness to noise [97]. This approach has also shown promise for

performing SINDy on experimental data [87].

It was more recently proposed that differentiation of noisy data for SINDy could

be partially avoided by considering instead a weak formulation of partial differential

equation [60]. This approach has shown impressive noise robustness for simulated data

and has also been applied for equation discovery in experimental settings [61,62].

A final approach to consider is to first smooth data after which a simpler

numerical differentiation method such as finite differences can be applied. Indeed,

this method captures data variation and shape well and can be very computationally

efficient. Furthermore, with an appropriately selected basis, it can be represented as

a convolution of the original data, which strongly resembles the weak formulation of

SINDy and thus presents great potential for noise robustness. However, it is hard to

determine smoothing parameters which can guarantee accurate results. Given known

physical conditions or characteristic features of the data, smoothing parameters can

be chosen in order to recover a trustworthy and smooth data representation which

can be accurately differentiated, an approach which is demonstrated in Section 5.3.
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One global approach to smoothing the data is to apply a filter on the data after

being transformed into Fourier space. This allows for the removal of highly oscillatory

information from the data. Consider the spectral filter:

f(k) = e−(k/s)2 = e−(k1/s)2 ⊗ e−(k2/s)2 ⊗ . . .⊗ e−(kn/s)2 (3.2)

where k is the wavenumber and s is a tunable smoothing parameter. Given data

u(x, t), the filtered data can then be written as

ũ(x, t) = F−1(f(k)F(u(k, t)))

where F is the Fourier transform. For smaller values of s, this filter will increase the

number of dampened high modes. This approach is similar to an integral approach

to SINDy presented in [3, 77] which has a similar effect in smoothing the nonlinear

library and improving coefficient estimation. Section 6.4 discusses the use of this

filtering approach to assist in the use of non-periodic experimental data as initial

conditions for forward simulation of a discovered model. As an additional benefit,

this filtration opens up the possibility of using spectral differentiation for which the

condition of a divergence free field can be imposed. This approach is described and

used in Section 6.2.

3.3 Variable Selection and Sparse Regression

Equation (3.1) is a nonsmooth and nonconvex optimization problem which requires

combinatorial effort to find a global minimizer; finding the true solution is only

plausible if the library is relatively small. It is thus common to use a less

computationally intensive method to find an approximate solution. We review some

common methods below in Sections 3.3.1, 3.3.2, and 3.3.3.

It is also common to consider slight variations of the original SINDy framework.

See 3.3.5 for a randomized variant and Section 3.3.4 for a variant based on total least

squares.
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3.3.1 Convex Relaxation and LASSO

It is common to consider a nonsmooth but convex approximation to Equation (3.1).

Most common is to use the least absolute shrinkage and selection operator (LASSO)

[91]:

ξ̂ = argmin
ξ
||Θξ − ∂tu||22 + γ||ξ||1. (3.3)

This classical formulation has been shown to reduce some elements of ξ̂ to 0 due to

the geometry of the L1 penalty, ultimately reducing the size of the term library.

The LASSO method is known to solve the original sparse regularized problem,

Equation (3.1), under certain conditions [10]. However, these conditions are not

met in most SINDy applications.

By varying the parameter γ, the LASSO method can return models which are

less sparse (small γ) or more sparse (large γ). The range of models produced by

varying γ are sometimes referred to as the LASSO path. See Section 6.1.1 where this

approach was used on experimental data.

The LASSO regularization term, i.e. ∥ξ∥1, biases all coefficients in ξ̂. Because

the interest in using LASSO and other approximate methods for the solution of

Equation (3.1) in SINDy is to discover the support of the optimal sparse library,

the biased coefficients are usually discarded and new coefficients are computed via a

standard least squares solve for the reduced library [15].

Suppose that ξ̂ is the vector of coefficients computed by the LASSO or another

sparse solution procedure. Let J = supp(ξ̂) be the support of ξ̂. Unbiased versions of

the non-zero coefficients can then be computed as an ordinary least squares solution

of the system

ξ⋆ = argmin
ξ
||Θ(:, J)ξ − ∂tu||22 . (3.4)

This two-stage procedure of first discovering the support of the reduced library and

then computing the coefficients in the library can be applied to the other approximate
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methods below. It is also convenient in allowing for other post-processing methods;

see Section 3.3.4.

3.3.2 Sequentially Thresholded Ridge Regression

Like the LASSO, the ridge regression is a convex relaxation of Equation (3.1) [101].

ξ̂ = argmin
ξ
||Θξ − ∂tu||22 + γ||ξ||2 . (3.5)

In contrast to the LASSO, this method rarely constrains elements of ξ̂ to 0 but

instead reduces the size of coefficients for independent variables which don’t contribute

strongly to resolving ∂tu.

The original SINDy algorithm is known as Sequentially Thresholded Ridge

Regression (STRidge). The idea of STRidge is to find an approximate solution

to Equation (3.1) by iteratively solving the ridge regression regularized problem in

Equation (3.5) and forcing any element of ξ below a threshold (τ) to 0 [9, 73]. See

Algorithm 1 for the full procedure. STRidge is known to converge to a local solution

of Equation (3.1); see [99].

Algorithm 1 STRidge(Θ,U t, γ, τinit,M)
τ ← τinit

n← number of columns in Θ

J ← {1, . . . , n}

for i = 1, . . . ,M do

ξ̂ ← argminξ:supp(ξ)⊂J ∥Θξ −U t∥22 + γ∥ξ∥22

J ← {i : |ξ̂i| ≥ τ}

τ ← update as defined in [73]

end for

return J

STRidge requires the selection of the γ and τ parameters. A heuristic procedure

to determine the optimal threshold parameter given a regularization parameter is
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presented in [73]. To do so, it separates a portion of the rows of the library Θ as a

“test set” and uses the remainder to find a sparse set of terms. Once the terms have

been determined, it evaluates the linear model’s efficiency to predict the values in

the test set and updates the threshold parameter according to its performance when

compared with the previous parameter.

As with the LASSO, new unbiased coefficients can be computed once the library

has been selected. The regularization parameter, γ, can be adjusted in order to

determine models of varying sizes, creating something similar to a LASSO path; this

is done for real data in Section 6.1.1.

3.3.3 Forward Selection and Other Greedy Methods

Some other popular techniques to approximate the solution to Equation (3.1) are

greedy methods. Examples include forward and backward variable selection and

orthogonal basis pursuit, which were developed independently in the fields of statistics

and signal processing [41, 68]. While these methods are known to recover exact

solutions under some restrictive conditions on the library [19, 92], these conditions

are not typically met in SINDy applications. Nonetheless, greedy methods have been

shown to identify terms that correlate or capture the variance of the time evolution

of the system and were effective in selecting the correct library for the synthetic data

examples in Section 4.2.1 and showed good agreement with brute force solutions of

Equation (3.1) for the real data examples in Section 6.1.

The majority of greedy methods iteratively add or remove terms from the library

(or columns from the matrix of independent variables) by considering which term

maximizes or minimizes some fitness or loss function. For forward selection, the most

common success metric is to maximize the coefficient of determination R2:

R2 = 1−
∑

i(ui − ûi)2∑
i(ui − u)2

, (3.6)
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where ui is the data, ûi is the model’s output, u is the sample mean of the data. For

the R2 metric, forward selection is mathematically equivalent to orthogonal matching

pursuit. The forward selection process is detailed in Algorithm 2.

Algorithm 2 ForwardSelection(Θ,U t,M)

n← number of columns in θ

J ← {}

for i = 1, . . . ,min(M,n) do

ebest ←∞

jbest ← {}

for j ∈ {1, . . . , n} \ J do

Jtemp ← J ∪ {j}

ξ̂ ← argminξ ∥Θ(:, Jtemp)ξ −U t∥22

etemp ← ∥Θ(:, Jtemp)ξ̂ −U t∥22

if etemp < ebest then

jbest ← j

ebest ← etemp

end if

end for

J ← J ∪ {jbest}

end for

return J

Forward matching pursuit computes the solution on a reduced library as in

Equation (3.4) at each step, so unbiased coefficients are computed as part of the

process. However, new coefficients can still be computed for the sparse library

found by forward selection using a different error metric, like total least squares.

See Section 3.3.4.
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Remark 3.3.1. In some applications, both the support of the library and an optimal

value for the level of sparsity (k) are determined using a single metric. One such

metric is the Akaike Information Criterion (AIC):

AIC = 2k − 2 ln(L̂), (3.7)

where k is the number of columns in the model, and L̂ is the maximum likelihood

estimator for the model. In the present work, we consider all models obtained as k

ranges and use a more heuristic approach to determine k based on the improvement

in the R2 and the apparent uncertainty of the terms.

3.3.4 Errors-in-Variables Models

A variety of linear solution methods can be used to determine coefficients once the

support of the reduced library has been determined using one of the methods above.

One such approach which is appropriate for the application treated in this dissertation

is an errors-in-variables approach [94]. In this formulation, error is assumed to be

present for both the dependent and independent variables of the regression. Such

methods are common in the field of system identification and inverse problems, and

may be more appropriate for PDE discovery. Given that the linear system in SINDy

is constructed using combinations of experimentally observed state variables and their

derivatives, it is expected that there will be significant error in both sides of the linear

relationship. The general form of an errors-in-variables model is

b+ ϵ1 = (A+ ϵ2)ξ.

This can be compared to ordinary regression methods which assume a model form of

b+ ϵ = Aξ.
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The most common of these errors-in-variables models is called “total least

squares”, which can be formulated as the following optimization problem:

min
Â,b̂,ξ

∥(A, b)− (Â, b̂)∥F

subject to Âξ = b̂,

where ∥ · ∥F denotes the Frobenius norm. This problem amounts to finding the

smallest L2 shift of both the dependent and independent variables such that there is

a set of coefficients ξ that exactly solves the shifted system.

In practice, total least squares has been shown to perform less well than

ordinary least squares for prediction, but frequently superior for determining the

correct coefficients of a linear model [59] due to the increased number of degrees of

freedom of the method. However, this property also makes the method sensitive to

the noise distribution of the terms in the term library. Appendix A.2.2 contains an

example demonstrating that ill-posed systems with skewed error distributions cause

an increase in the relative size of coefficients returned by total least squares, resulting

in inflated coefficient magnitudes as compared to those returned by ordinary least

squares. Although Appendix A.2 also contains a formulation for regularization of total

least squares to mitigate these large coefficients, selecting a regularization parameter

is not trivial in the context of model discovery and is thus not explored further in

this dissertation.

3.3.5 Ensemble Methods

Recent work has demonstrated that considering ensembles of SINDy models can result

in increased robustness to noise when selecting a sparse subset of terms [28]. This

procedure uses the LASSO regression with a range of regularizing parameters γ on

subsets of the data samples (rows Θ), sampled with replacement. The frequency of

terms in the resulting collection of sparse models can then be used to determine the
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likelihood of that term’s inclusion in the complete model. This procedure requires

parameter selection for the regularization parameters of LASSO and the size and

number of subsets as well as an averaging procedure to determine the term likelihoods.

Specifically, consider B random subsets of 10% of the rows of Θ and a range

γ = (γ1, γ2, . . . , γG) of regularization parameters in Equation (3.3) such that ||ξ||0 = 1

for γ1 and γG = γ1/10. For random subset i and regularization parameter γj, compute

the solution of the corresponding LASSO problem to obtain the vector ξ(ij). After

computing the ξ(ij) vectors, the probability of inclusion for the kth term Pk can be

computed as an average

Pk =

∣∣∣{(ij) : ξ(ij)k ̸= 0
}∣∣∣

BG
.

The final subset of terms in the model is then selected using a predetermined threshold

τ after which coefficients can be determined using an alternative method as was

demonstrated for the LASSO in Equation (3.4).
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CHAPTER 4

DISCOVERY ON SIMULATED DATA

This chapter describes the procedure for validating the use of the SINDy equation

discovery algorithm for active nematic systems by first recovering the partial

differential equation used to generate active nematic simulation data. Section 4.1

discusses the numerical methods used to simulate two models of active nematics.

Section 4.2 outlines the results and insights gained by applying SINDy to that

simulated data.

4.1 Simulating Active Nematic Systems

As a prototype for active nematic PDE models, and inspired by the discovery for

experimental data discussed later in Chapter 6, consider the model:

Qt = −u · ∇Q+ [Q,Ω] + c3E
ST − c8∆2Q,

u = −D∇ ·Q. (4.1)

Note that the symmetric and traceless structure of Q as given in Equation (2.3)

allows Equation (4.1) to be written in terms of two independent fields λ = λ(x, t)

and µ = µ(x, t):

λt = D(λ2x − λ2y + λxµy + λyµx) +D(µxx − 2λxy − µyy)µ−
c3D

2
(λxx + λyy)

− c8(λxxxx + 2λxxyy + λyyyy),

µt = D(λxµx + 2µyµx − λyµy) +D(µxx − 2λxy − µyy)λ−
c3D

2
(µxx + µyy)

− c8(µxxxx + 2µxxyy + µyyyy). (4.2)

The equations are solved on a 2D periodic domain. This system of equations is

nonlinear and stiff due to the hyperdiffusion terms. A Fourier pseudospectral method
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is thus employed in space and a fourth order integrating factor Runge-Kutta (IFRK4)

scheme in time to solve the initial value problem [29,55]. Specifically, the integrating

factor method solves the linear component of the evolution equation exactly and thus

allows us to sidestep a severe (fourth-order) time-step restriction that would arise if

using a Runge-Kutta scheme directly on Equation (4.2). To illustrate the method

consider a generic PDE for the variable u = u(x, t) of the form

ut = Lu+N (u, t),

where L and N are linear and nonlinear operators, respectively. The spatially-

discretized form of this equation is

ut = Lu+N (u, t). (4.3)

We can then multiply Equation (4.3) by an integrating factor e−Lt to obtain

vt = e−LtN (eLtv, t), (4.4)

where v = e−Ltu and L is the matrix form of the discretized linear operator L. The

integrating factor can be computed cheaply for a spectral discretization because it

is diagonal in the Fourier basis. This reformed and discretized PDE can be evolved

forward in time using a fourth order Runge-Kutta method:

a = N (vn, tn), b = N (vn + a/2, tn +∆t/2),

c = N (vn + b/2, tn +∆t/2), d = N (vn + c, tn +∆t),

vn+1 = vn +
∆t

6
(a+ 2b+ 2c− d).

We implemented this method in MATLAB and verified that it exhibits fourth-order

convergence in the time step ∆t and spectral convergence in the number of grid points

N (Figure 4.1).

We note that care must be taken to properly preserve the properties of odd

and even derivatives in Fourier space [43]. Specifically, for a 1D spatial grid with
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(b) Convergence in the grid size ∆x = 2π/N .

Figure 4.1 Demonstration of the fourth order convergence in ∆t and exponential
convergence in the grid size ∆x of the numerical method described in Section 4.1.
The parameters are those given in Section 4.1.

N points, where N is even, the wavenumbers k assume integer values in the range

−N/2 + 1 ≤ k ≤ N/2. The so-called “Nyquist mode” k = N/2 must be made zero

for terms with an odd number of derivatives, while this mode is nonzero for terms

with an even number of derivatives. The extension to 2D follows naturally.

It is well known that spectral schemes for nonlinear PDEs suffer from aliasing

errors unless certain decay conditions are met for the Fourier coefficients [66]. For

a quadratic nonlinearity, the Fourier coefficients should have decayed to zero (to

some numerical tolerance) for modes with wave number |k| > N/3. Likewise, for

cubic nonlinearities, the coefficients |k| > N/4 should be zero. This condition is

sometimes imposed by filtering the coefficients as the simulation proceeds. Such

filtering was not necessary for the simulations presented in this thesis; i.e. the decay

conditions were met by the simulations without intervention. Filtering was applied

in later sections to initial conditions obtained from the data but never as part of the

simulation procedure; cf. Sections 6.4 and 6.5.
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4.2 Rediscovering Active Nematic PDEs from Simulated Data

Although the SINDy method has been used on a variety of simulated data from

canonical models, its applications on real data and more complex models are only

beginning to appear [39, 42, 57]. A recent paper has successfully used the method

to obtain a continuum PDE description of a driven colloidal suspension of Quincke

rollers [87]. To get a sense of the ability and sensitivity of this method as applied to

the active nematic system, the SINDy discovery was first tested on clean simulation

data.

4.2.1 Accuracy of Term Recovery

An advantage of SINDy compared to other data-driven modeling approaches and

parameter estimation methods is its ability to extract a closed form equation from

inputted data. To verify that this would be effective for the active nematic system,

governing PDEs equations were “rediscovered” from simulated data using multiple

models: the model given in Equation (4.1) and the dimensionless form of the model

given in Equation (2.15), the latter of which can be written as [67]

Qt +D∇ · (uQ) = Q

(
N2

γ

4
−N2

γQ
2

)
− γ2∆Q− 1

N2
γ

∆2Q,

u = −∇ ·Q. (4.5)

A random Fourier series for both λ and µ is used as a smooth initial condition for

simulation. For each test, the procedure from Section 2.3 was used to construct

a term library with state variables Q,u, a maximum derivative order of 2, and a

maximum order of Q of 3. Additional checks for symbolic uniqueness were used

after substituting u using the relationship u ∝ −∇ · Q which is present for both

simulated models (4.1) and (4.5). As both models also include a particularly high

order derivative in the form of the bilaplacian ∆2Q, this term was manually added
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to the library of candidate terms. Ultimately, the library contained 24 terms which

were numerically constructed using finite differences.

4.2.1.1 Model 1 We first considered the simplest model suggested by the data-

driven discovery (Section 6.1), as given in Equation (4.1) and shown in component

form in Equation (4.2). This model is simple in that it includes a relatively small

number of terms: advection, vorticity and rate of strain. We note that EST = −D
2
∆Q

for this velocity equation, so the higher-order term proportional to c2 is required to

ensure linear well-posedness of the equation. This model is compared to previously

proposed models in Chapter 6.

As we will see in Section 6.1, the discovery process on experimental data on

a square domain of length LE = 312.4µm yields coefficients c3 = 0.3, c8 = 3.3 ×

104 µm4/s and D = 420 µm2/s. We non-dimensionalize Equation (4.1) according

to the length scale L = LE/(2π) and time scale T = L2/D, and thus simulate

Equation (4.1) on a 2D domain of size [0, 2π]2 with coefficients c3 = 0.3, c8 →

c8L
4/T ≈ 0.03 and D → DT/L2 = 1. The simulations were conducted using the

method detailed in Section 4.1, and the dynamics were sufficiently resolved with 2562

points in space and ∆t = 2−10. Simulation data was collected at intervals of ∆t = 0.25

until tmax = 100. After constructing the full nonlinear library of candidate terms

for the evolution of Q as described in Section 4.2.1, forward selection was used to

determine potential candidate models as detailed in Algorithm 2. This approach was

able to identify the correct model terms within the first ten selected, but was not able

to cleanly identify the model as shown in Table 4.1. Specifically, while the advection

(uk∂kQij) and vorticity ([Q,Ω]) terms are identified correctly as the first two terms,

the third and fourth terms are spurious. However, continuing the procedure allows us

to recover the correct equation: the fifth (∆2Q) and sixth (∆Q) terms are correct, the

latter being proportional to EST as noted above, and the coefficients of the spurious
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R2 Qt = Coefficients

0.19 uk∂kQij -0.15 -0.58 -0.58 -0.56 -0.61 -0.97

0.62 [Q,Ω] 0.53 0.53 0.52 0.56 0.97

0.68 Qml∂kQij∂mQkl -0.88 -1.26 -1.06 0.01

0.74 Qkl∂kQji∂mQml 0.94 0.91 -0.00

0.76 ∆2Q -0.00 -0.03

0.99 ∂k∂kQij -0.15

Table 4.1 Greedy forward selection results for data generated using simulations of
Equation (4.1). Each row represents the next term added in order to maximize the
R2 of the equation.

Subset size R2 Terms

1 0.19 uk∂kQij

2 0.62 [Q,Ω], uk∂kQij

3 0.70 [Q,Ω], uk∂kQij, Qml∂kQij∂mQkl

4 0.99 [Q,Ω], ∆2Q, ∂k∂kQij, uk∂kQij

Table 4.2 Best subset selection results for data generated using simulations of
Equation (4.1). Row n represents the optimal collection of n terms in order to
maximize the R2 of the equation. The data was subsampled in time and space,
so only 50% of the data was used, to make the problem computationally feasible.

terms are made small. Using the original sequential thresholding approach of SINDy

corroborates these results.

Due to the limited size of the library (24 terms), the subset of terms that

maximizes the R2 of the recovered equation after determining the coefficients via

ordinary least squares can be computed up to size four. The results of this best

subset selection are shown in Table 4.2. As expected, the advection and vorticity

terms are selected in the best subsets of size one and two, matching the results of

the forward selection. While the best subset of size 3 contains a spurious cubic term,
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the best subset of size four indeed recovers the correct terms and their coefficients.

Although this combinatorial procedure is feasible for libraries with a small number

of terms, it is only reasonable after subsampling the term library in time and space.

Our numerical experiments revealed that random subsampling has minimal effect on

the model recovered, a result consistent with prior literature [73].

It is challenging to identify the exact cause of the emergence of spurious

terms in the forward selection. However, this method relies on terms being easily

distinguishable to avoid spurious correlations [10]. Unfortunately, the procedure in

Section 2.3 generates a library which is complete but also full of correlated terms.

Some of these correlations can be attributed to the particular matrix structure of

Q and the relationship u = −D∇ · Q. This issue is discussed in more detail in

Section 4.2.2.

The result of this correlation is that regression methods, including greedy

selection methods, struggle to distinguish the contribution of individual terms and

instead use incorrect or multiple correlated terms to best fit the time evolution.

Though this challenge has not been fully discussed in the literature of SINDy or

related methods, we note that it could be a generic property of a set of features

generated from a common set of base data. This idea is more fully discussed in

Section 4.2.2 for simulated data and for experimental results in Section 6.1.

4.2.1.2 Model 2 For another example, we apply the discovery procedure to the

model proposed by Oza & Dunkel [67] (Equation (4.5)). To generate the data the

parameters γ2 = 1.5, D = 1.5, Nγ = 3 were used, and simulations were conducted

on a domain [0, 2π]2 with 2562 points in space and time step ∆t = 2−10. Data was

collected at intervals of ∆t = 0.125 until a final time tmax = 50.

The results of greedy forward selection and best subset selection for this model

are shown in Tables 4.3 and 4.4, respectively. Specifically, Table 4.3 shows that

41



forward selection misidentifies spurious terms. Though the terms ∂k∂kQij, QklQljQik,

uk∂kQij, ∆
2Q, and Qij are identified, at first glance it appears that the advection

term Qij∂kuk is missing. However, it should be noted that

[Q,Ω] + 2[Qkl∂l∂jQik]
ST − 2[Qlk∂i∂jQkl]

ST = (∇ · u)Q.

Thus, the correct equation is recovered via this composition of alternative terms

in the library. It should be noted that this composition is only possible given the

relation u = −∇ · Q. Specifically, the level of linear dependence present in this

library is increased by this equality and could be mitigated but not entirely resolved

by generating terms as in Section 2.3 with a base variable of only Q. As was the case

for the previous example, the coefficients for the two truly spurious terms are zero

when the set of terms includes the correct model.

In comparison, the best subset selection of size six was able to fully recover the

model terms including the advection terms uk∂kQij and Qij∂kuk. It is evident that

the best subsets of size n = 1, 2 do not contain terms that are present in the governing

equation, an example of a spurious term being [uu]ST. However, the best subset of

size n = 3 does contain the correct terms, and a substantial increase in R2 is seen

when the best subset of size n = 5 is used which contains only terms present in the

model.

There are several factors that contribute to this difficulty, including the

increased number of terms and the increased correlation between correct terms.

This additional correlation is demonstrated in Figure 4.3 and is further discussed

in Section 4.2.2.

4.2.2 Correlation in Nonlinear Library

There are key challenges that arise when generating an overcomplete polynomial

library of nonlinear terms which can hamper the success of the sparse regression or

parameter estimation. Foremost among these is the potential for multicollinearity in
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Table 4.4 Best subset selection results using 50% of the data generated using
simulations of Equation (2.15). Row n represents the optimal collection of n terms
in order to maximize the R2 of the equation. In order to reduce the computational
burden, Qij∂kuk is manually included for the set of size 6.

Subset size R2 Terms

1 0.10 [uiuj]
ST

2 0.16 [Qkl∂l∂jQik]
ST , [uiuj]

ST

3 0.21 Qlk∂l∂kQji , Qij∂kuk , [uiuj]
ST

4 0.41 ∆2Q , ∂k∂kQij , Qij∂kuk , uk∂kQij

5 0.94 ∆2Q , ∂k∂kQij , Qij∂kuk , uk∂kQij , QklQljQik

6 0.99 ∆2Q , Qij , ∂k∂kQij , uk∂kQij , QklQljQik , Qij∂kuk

the generated library. This is an issue for libraries constructed for scalar terms, but

is potentially more salient in tensor libraries due to the range of possible contractions

for each set of base tensor terms. Though care is taken to make sure that terms are

not symbolically equivalent, numerical experimentation has demonstrated that there

is a wide range of data for which the generated library will have numerically similar

terms. The easiest approach to examine this similarity is to consider the Pearson

correlation coefficient between two vectors x and y:

ψx,y =
cov(x, y)

σxσy
=

E[xy]− E[x]E[y]√
E[x2]− (E[x])2

√
E[y2]− (E[y])2

. (4.6)

This standard correlation metric measures the correlation between two vectors relative

to the size of their variance.

Figure 4.2 shows the Pearson correlation coefficient between all generated library

terms, using values of Q obtained by simulating Equation (4.1). In the figure, only

symbolically unique terms are kept after substituting u = −D∇ · Q. Figure 4.2

demonstrates the prevalence of correlated terms even for simulated data with no noise

pollution. For example, the term uk∂kQij, which is in the equation and thus enclosed
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in a green box, is highly correlated with the term ∂lQji∂kQlk which is not. Although

this in and of itself does not invalidate the SINDy method, it is known that strong

correlations in the set of independent variables of a linear regression cause issues in

coefficient calculation and in turn with sparse selection [27]. Although there is no

immediate fix for this issue in the context of generating or manipulating SINDy’s

library of terms, it can be acknowledged and accounted for when considering the

discovery results.

Figure 4.3 demonstrates the correlations between the generated library terms

using values of Q generated by simulating Equation (4.5). In agreement with the

results of Figure 4.2, this equation also suffers from strong correlations between library

terms. Note in particular that the majority of terms which are built using the base

variablesQ⊗∇∇Q are correlated strongly with each other. The same is true for those

built from u⊗∇Q or Q⊗∇Q⊗∇Q. These consistent patterns can be accounted for

when examining the results of either the forward selection or best subset selection.

A notable difference between the two sets of results is that the correct terms (boxed

in green) in Figure 4.2 are correlated mainly with terms outside the correct set,

whereas correct terms in Figure 4.3 are more strongly correlated with each other. As

an example of the latter, term ∆Q (which is in the governing equation) is strongly

correlated with Q, Q3 and ∆2Q which are also in the governing equation.

4.2.3 Accuracy of Parameter Estimation

If the correct terms in the governing PDE can be recovered, the second phase of the

discovery would be to accurately determine the corresponding coefficients. Using data

collected via simulation of Equation (4.5), the SINDy linear system was constructed

using only the correct terms and derivatives computed with finite differences. The

system was then solved using ordinary least squares in order to find the parameters

of the model.
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The accuracy of the coefficients in the recovery as the model parameters D

and γ2 are varied is shown in Figure 4.4. From Figure 4.4(a), we observe that the

coefficients are recovered more accurately for relatively large values of D. The phase

diagram in Figure 4.4(b), which was obtained using numerical simulations in [67],

shows that smaller (larger) values of D generally correspond to ordered (chaotic)

states. Taken together, these panels show that the coefficients can be accurately

recovered only if the data is sufficiently dynamic to present the key features of the

system. In regimes in which the data converges to a steady or patterned state, the

dynamics are not sufficiently apparent to achieve an accurate regression.

(a) (b)

Figure 4.4 (a) Accuracy of coefficient recovery from simulated data of Equation (4.5)
for different values of dimensionless model parameters D and γ2. (b) Phase diagram
from [67] that shows ordered states (blue and green) and chaotic states (red) for
different choices of the dimensionless parameters D and γ2. Comparing panels (a)
and (b), we note that SINDy is less accurate when the system achieves a relatively
static ordered state. The simulations are conducted for Nγ = 3 and 2562 grid points
in space.
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CHAPTER 5

DATA EXTRACTION

This chapter treats the process of extracting the key state variables of the microtubule

(MT)-kinesin system from experimental videos. Specifically, we extract the coarse-

grained density, orientation and velocity of MTs. The approach is notable in that the

videos are the only input and the extraction and subsequent smoothing is carefully

tuned to satisfy known physical constraints. Section 5.1 describes the origin of the

experimental videos used. Section 5.2 describes the procedure for approximating

the state variables from pixel intensity of the video frames. In Section 5.3, the

approximated state variables are smoothed and the resulting data is validated to

ensure accuracy for the application of SINDy.

5.1 Experimental Data

The microtubule (MT)-kinesin active nematic system was created and studied by

Zvonimir Dogic and colleagues in their pioneering experiments [16, 75]. In these

experiments, extracted bovine brain cell MTs were bundled using a polymer (PEG)

and spun onto an oil-water interface using a centrifuge. The polymer induces the

so-called “depletion attraction” between MTs and thus binds them into bundles

(Fig. 5.1a). ATP was then added to the mixture and the system was observed

and photographed using fluorescence microscopy. A schematic of the experimental

setup is shown in Figure 5.1b and some sample experimental images are shown in

Figure 5.2. Analogous experimental platforms have also been developed by several

other groups [24,36,88].

In this dissertation, the experimental video will be Supplemental Movie 1 in

DeCamp et al. [16]. Key features of experimental observations for this system are:
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(a) (b)

Figure 5.1 (a) Diagram of MTs and kinesin clusters binding, reproduced from [75].
Kinesin clusters exert sliding forces between the MTs, and PEG polymers induce
attractive “depletion” interactions between MTs. (b) Schematic of the experimental
setup, reproduced from [67]. A thin oil film (thickness ∼ 3 µm) separates a 2D active
nematic film (thickness 0.2–1.0 µm) at the oil-water interface from a solid glass cover.

(a) Time 10 seconds (b) Time 100 seconds (c) Time 190 seconds

Figure 5.2 Snapshots of Supplemental Video 1 in [16].
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1. Topological defects (Figure 1.3) which are created and annihilated in pairs.

2. Chaotic flow patterns.

3. Strands in MT bundles are distinct enough to extract MT orientation using image
processing techniques.

4. The intensity of the image roughly correlates with the density of MTs in that area,
i.e. brighter areas generally have more MTs.

5. The total intensity is roughly constant in time, implying that MT mass is roughly
conserved in this system.

6. The MT density is uniform in most areas away from defects.

5.2 Approximating State Variables from Image Intensity

The only direct observable from the experimental images is image intensity or

brightness, which we denote Iijk at frame i and pixel j, k. However, there are

established approaches for extracting key state information such as orientation from

these images. Below we describe our procedure for extracting density (Section 5.2.1),

velocity (Section 5.2.2) and (Section 5.2.3).

5.2.1 Density

Given the dark background of the experimental setup and the reflective capacity of

the microtubules, the image intensity can be viewed as a direct approximation to

microtubule density. However, there are pitfalls to this approximation. For example,

an experimental adjustment partway through collection in [16] caused an increase in

brightness, which would translate to an illusion of increased density. This is illustrated

in the left panel of Figure 5.3, which shows the spatially averaged image intensity over

time for the experiment. We thus normalized the image intensity after the abrupt

jump, resulting in the relatively constant average intensity depicted in the right panel

of Figure 5.3. We thus conclude that the number of MTs remains roughly constant

in the field of view for the duration of the experimental video.
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Figure 5.3 Left panel shows the image intensity, averaged over the domain, as a
function of time. The right panel shows the same, but with the intensity normalized
so as to remove the abrupt increase in brightness at time t ≈ 200 s.

5.2.2 Velocity

The experimental video images contain a reasonable amount of variation in shadow

and granularity, which provides an opportunity to approximate velocity using a patch-

based particle image velocimetry (PIV) approach.

ConsiderM sequential 2D images (frames) equispaced in time by an interval ∆t.

The images have N pixels in both directions, with a spacing ∆x between them. The

velocity v̂ijk at a given pixel (j, k) at frame i can be approximated by comparing a

“patch” of the image around that pixel with patches of the same size in the subsequent

frame [80], as illustrated in Figure 5.4. Mathematically, the velocity approximation

with a square patch of side length p can be written as:

v̂ijk =
1

∆t

(
x(i+1)ĵk̂ − xijk

)
=

∆x

∆t

(
ĵ − j, k̂ − k

)
, (5.1)

ĵ, k̂ = argmin
1≤m,n≤N

p/2∑
r=−p/2

p/2∑
s=−p/2

(
Ii(j+r)(k+s) − I(i+1)(m+r)(n+s)

)2
(5.2)

for 1 ≤ i, j ≤ N . The edges of the image are handled using reflections such that

I(−i)(−j)(−k) = Iijk and I(N+i)(N+j)(N+k) = I(N−i)(N−j)(N−k). (5.3)
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(a) Time t = 0 s (b) Time t = 7 s (c) Time t = 14 s

Figure 5.4 Particle image velocimetry via patch tracking over several time frames,
as described in Section 5.2.2. The red box represents the image patch being tracked.

It is important to note that the velocity obtained through Equation (5.2) is based on

the pixel locations; a discrete number of velocity vectors are thus permitted, making

the velocity field nonsmooth. We remedy this issue by using Gaussian smoothing,

as described in Section 5.3.2. The approximation in Equation (5.2) also assumes

sufficiently fine experimental sampling; specifically, data must be sampled sufficiently

frequently in time to minimize patch changes between frames while also sufficiently

sampled in space to provide unique identifying detail. References to additional more

rigorous methods from the study of “optical flow” are described in Appendix A.3.

5.2.3 Orientation

The experimental images considered herein include a reasonable amount of contrast

between microtubule bundles due to shadowing and small non-uniformities in density.

These contrasts allow for a local orientation to be computed using the intensity

gradients of the image. This approach is standard and makes use of the image

“structure tensor” [14,50]

J(x, t) = ∇I∇I⊺ =

 Ix(x, t)
2 Ix(x, t)Iy(x, t)

Ix(x, t)Iy(x, t) Iy(x, t)
2

 , (5.4)
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(a) (b)

Figure 5.5 The local MT orientation is extracted from experimental images
by measuring the local gradient of the image intensity I(x, t), as described in
Section 5.2.3. (a) The boxed segment demonstrates the zoomed area in (b). (b) The
intensity gradient and its perpendicular component which is used to approximate the
director n̂.

where subscripts denote partial derivatives of the image intensity I(x, t). Due to the

symmetry of this matrix, the eigenvector J corresponding to the smaller eigenvalue

represents the least intensity variation and hence an approximation to the director

n̂(x, t). The eigenvectors of the structure tensor are shown for a zoom-in of a single

experimental image in Figure 5.5. Figure 5.8(a) shows a plot of the resulting director

n̂(x, t) for a single experimental image.

5.3 Smoothing the State Variables

As discussed in Section 3.2, SINDy suffers when the input data is not sufficiently

smooth, as numerical derivatives of the data become overcome with noise. To

circumvent this issue, smoothing is applied to the density, velocity v̂ and director

n̂ obtained from experimental images as described in Section 5.2.1, Section 5.2.2 and

Section 5.2.3, respectively. Inspired by kinetic theories of the form considered by Gao
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et al. [31, 32], an appropriately smoothed density function Ψ(x,n, t) that represents

the density of MTs with a given director n at a given spacetime location (x, t) is

constructed. The state variables of the system can then be recovered as the moments

of the density function.

Specifically, let I(x, t), n̂(x, t) = (cos θ̂, sin θ̂) and v̂(x, t) be the intensity,

director and velocity field obtained from experimental data. We define Ψ as

Ψ(x,n(θ), t) =

∫ ∞

−∞
dt′
∫
R2

dx′ I(x′, t′)gQ(x− x′, t− t′)τσn(θ − θ̂(x′, t′)), (5.5)

where gQ is a spacetime smoothing function for the MT orientations to be specified in

Section 5.3.1, and τσn is a modification of the so-called wrapped Gaussian distribution

with standard deviation σn. As discussed in Appendix A.4, τσn is invariant under

θ → θ + π, the symmetry appropriate for nematics.

Remark 5.3.1. While Eq. 5.5 involves an integral over all of space and time,

the Gaussian density gQ makes the integral effectively local. The result is that

Ψ(x,n(θ), t) is an empirical distribution, based on the values of I and n̂ in a

neighborhood of (x, t). Because gQ is a Gaussian, Ψ is smooth in space-time.

Using this formulation, the filament density is

ρ(x, t) =

∫
S1

dnΨ(x,n, t) =

∫ ∞

−∞
dt′
∫
R2

dx′ I(x′, t′)gQ(x− x′, t− t′). (5.6)

The second moment tensor defined in Equation (2.1) is then

D(x, t) =

∫
S1

dnΨ(x,n, t)nn

=

∫ ∞

−∞
dt′
∫
R2

dx′ I(x′, t′)n̂n̂(x′, t′)gQ(x− x′, t− t′), (5.7)

where the second line follows from taking σn = 0. That is, the orientations

are not directly smoothed; doing so would simply lead to a constant prefactor in

Equation (5.7), as shown in Appendix A.4. The Q-tensor, or the centered second
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moment defined in Equation (2.2) is then

Q(x, t) =
D(x, t)

ρ(x, t)
− I

2
. (5.8)

The velocity of the microtubules can be obtained from the filament flux

j(x, t) =

∫ ∞

−∞
dt′
∫
R2

dx′I(x′, t′)v̂(x′, t′)gv(x− x′, t− t′), (5.9)

where gv is a spacetime smoothing function for the velocity field to be specified in

Section 5.3.2. The smoothed filament velocity field can thus be expressed as

u(x, t) =
j(x, t)

ρ(x, t)
(5.10)

These continuous representations provide a structure for approximating smoothed

versions of the state variables ρ(x, t), Q(x, t) and u(x, t) that will be ultimately

used for the equation discovery in Chapter 6. Specifically, the image intensity I,

microtubule orientation n̂, and velocity v̂ obtained from experimental images are

made smooth through integration with the densities gQ and gv.

Remark 5.3.2. The definition of the smoothed filament flux, Equation 5.9, uses a

different weighting than the density and orientation use, gv instead of gQ, to define

the empirical distribution of the filament flux near (x, t). It was found that these

quantities needed different amounts of smoothing to effectively satisfy the physically

motivated validation methods described below. While it is possible to achieve the same

results using a consistent smoothing for the empirical distributions, this requires a pre-

processing step in which the velocity data is first smoothed or sharpened. Equation 5.9

is preferred for the simplicity of the notation.

5.3.1 Smoothing Density and Q-tensor

Given a frame i and a pixel location (j, k), we first wish to obtain a smooth density

ρijk. The discrete analogue of Equation (5.6) can be written for 1 ≤ i ≤ M , 1 ≤
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(a) (b)

Figure 5.6 (a) The experimental image at time t = 10 seconds and (b) the
corresponding smoothed density ρ.

j, k ≤ N as

ρijk =

wtQ∑
l=−wtQ

wxQ∑
m=−wxQ

wxQ∑
n=−wxQ

gQ(l,m, n)I(i+l)(j+m)(k+n), (5.11)

where

gQ(l,m, n) = GσtQ
(l)GσxQ

(m)GσxQ
(n), Gσ(i) =

exp
(
− i2

2σ2

)
∑w

l=−w exp
(
− i2

2σ2

) (5.12)

and w = 4σ + 1/2 is the window size. That is, the spacetime smoothing function

g is assumed to be a product of 1D Gaussians G with possibly different standard

deviations σ in space (σxQ
) and time (σtQ). We note that reflections were used on the

spatial and time boundaries, as specified by Equation (5.3). The extracted density

at a single frame is compared with the experimental image in Figure 5.6.

We proceed by obtaining a smoothed Q-tensor Qijk, reminding the reader

that Qijk refers to the tensor Q evaluated at the ith time point and (j, k) pixel

location as described in Section 1.4. Given the local director n̂ijk, as obtained from

experimental images using the procedure described in Section 5.2.3, Equation (5.7)
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can be discretized as

Dijk =

wtQ∑
l=−wtQ

wxQ∑
m=−wxQ

wxQ∑
n=−wxQ

gQ(l,m, n)I(i+l)(j+m)(k+n)n̂(i+l)(j+m)(k+n)n̂(i+l)(j+m)(k+n),

(5.13)

and Equation (5.8) implies that

Qijk =
Dijk

ρijk
− I

2
. (5.14)

The accuracy of data-driven modeling is highly dependent on the accuracy of

the underlying data. The most salient feature of the microtubule orientation field are

the defects or discontinuities, at which Q = 0. It has been proposed that the presence

and behavior of these defects are the main driver behind the observed dynamics in the

system [16]. We thus determined the smoothing parameters σtQ and σxQ
by ensuring

that the resulting smooth field Q faithfully captures the number of defects, and their

creation and annihilation dynamics. Specifically, we explored a range of values for σtQ

and σxQ
between 0 and 20 (in units of pixels) and identified the defects by locating

the intersections of the zero-contours of the components of Q, as described in [67].

The considered experimental data includes between 2-8 defects at any given time.

We found the optimal values to be σtQ = 1 and σxQ
= 10, which yielded roughly 6

defects per frame. Moreover, the creation and annihilation dynamics were represented

reasonably well. See Figure 5.7 for a comparison of several different smoothing values

and the corresponding defects at a fixed time. Upon close inspection of this figure, it

can be observed that in panel (a) there are too many defects identified and in panel

(c) there is a missing defect in the top right, while the defects are identified correctly

in panel (b). Plots of the resulting director n and order parameter S for a single

experimental image are shown in Figure 5.8(b,c). As can be observed, the director

field before smoothing displays wild and random fluctuations in many areas while

the smoothed final result demonstrates good agreement with the underlying MTs.

Additionally, the order parameter S accurately reflects the defect crack through the
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(a) (b) (c)

Figure 5.7 A comparison of the positive (red) and negative (orange) defects
identified for several different levels of smoothing of the approximated orientation
field at time t = 290 seconds. Defects for smoothing parameters (a) σtQ = 0, σxQ

= 4,
(b) σtQ = 1, σxQ

= 10, and (c) σtQ = 2, σxQ
= 16.

middle of the image; moreover, despite the low density at the top right of the image,

there is no defect there, a feature correctly reflected in the plot of S.

5.3.2 Smoothing Velocity

We proceed by determining the smoothed velocity values uijk from the velocity data

v̂ijk obtained using patch tracking, as described in Section 5.2.2. Equations (5.9)

and (5.10) can be combined and written in the discrete form

uijk =
1

ρijk

wtv∑
l=−wtv

wxv∑
m=−wxv

wxv∑
n=−wxv

gv(l,m, n)I(i+l)(j+m)(k+n)v̂(i+l)(j+m)(k+n), (5.15)

To verify the effectiveness of the velocity extraction procedure, the parameters

used to determine velocities uijk, namely the standard deviations σxv and σtv implicit

in Equation (5.15) and the patch window size p in Equation (5.2), were determined

by their ability to the mass conservation law

ρt +∇ · (ρu) = 0. (5.16)
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(a) (b) (c)

Figure 5.8 (a) Local director n̂ for a single experimental image, as obtained using
the procedure described in Section 5.2.3. (b, c) The smoothed Q-tensor, obtained
using the procedure described in Section 5.3.1, yields a smooth director field n (b)
and order parameter S (c) through the formulas (2.5) and (2.4), respectively.

We considered a range of values of σtv (0-5 pixels), σxv (0-20 pixels), and p (1-15) and

sought to minimize the quantity

∥ρt +∇ · (ρu)∥
∥ρt∥

, (5.17)

thus obtaining the optimal values σtv = 2, σxv = 12, and p = 3. Centered second-

order finite differences were used to evaluate both the time and space derivatives in

Equation (5.17). After determining the parameters, we used ordinary least squares

to find the optimal value of c in the equation

ρt = −c∇ · (ρu).

We obtained c = 0.94 which had an R2 of 0.72. The obtained value of c is quite close

to unity and the R2 value is adequate, indicating that mass conservation is satisfied

reasonably well by our extraction and smoothing procedure.

The final velocity extracted from the experimental data in [16] at several frames

is shown in Figure 5.9. From this figure, we observe that the velocity extracted via

particle image velocimetry (Figure 5.9a) contains some noise. The smoothed velocity

in Figure 5.9b corrects for this randomness and demonstrates an accurate description

of the movement of MTs over the three presented time steps.
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(a) (b) (c)

Figure 5.9 (a) Local velocity v̂ for a single experimental image, as obtained using
the patch-tracking procedure described in Section 5.2.2. (b) The velocity field u
obtained after smoothing, using the procedure described in Section 5.3.2. (c) The
corresponding vorticity ω = ∇× u. The values of time are given in seconds.
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Figure 5.10 Plot of the relative size of the L2-norms of ∇ · u and u
√
N/A, where

A is the experimental area and N = 8 is the number of defects averaged over time.

It should be noted that the extracted velocity data can also be used to examine

the approximate compressibility of the system. Specifically, ∇·u can be computed at

each spacetime point using finite differences and compared against u
√
N/A, where A

is the experimental area and N the number of defects averaged over time. Figure 5.10

shows the ratio of the L2 norms of these two quantities as a function of time. Note

that it is fairly constant though not particularly small, implying that the velocity field

is not divergence free, ∇ · u ̸= 0 in general. As discussed in Section 2.2.3, while the

system is compressible in 3D it may not be so in 2D due to upwelling or sinks caused

by the exchange of fluid between the quasi-2D active nematic film and the bulk fluid

underneath (Fig. 5.1). Practically, the fact that ∇ · u is not small motivates the use

of the traceless rate of strain EST in the term library (Table 2.1) instead of the rate

of strain E, since Tr(E) = ∇ · u.
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CHAPTER 6

DISCOVERY ON EXPERIMENTAL DATA

In this chapter we present the main result of this dissertation: a continuum PDE

model for the active nematic system discovered from experimental video data. In

Section 6.1 we describe a PDE discovered for the evolution of the Q-tensor. In

Section 6.2 we describe a similarly discovered equation for the velocity field. In

Section 6.3, we show that, taken together, the corresponding system of equations is

linearly ill-posed and propose an augmentation to the system with a higher-order

regularizing term. In Section 6.4 we present a way to recover the coefficients of some

of the more uncertain terms in the proposed system by using a temporally nonlocal

forecasting procedure which compares simulated results with the experimental data.

In Section 6.5 we perform further numerical simulations of the discovered equation

and qualitatively compare our results with the experiments.

Before proceeding we briefly comment on the units used in this section: for

the sake of brevity dimensional quantities will typically not be written with their

associated units. A parameter value c with dimensions of length to the power ℓ and

time to the power τ shall be understood to mean c × 10ℓ micronsℓ· secondsτ . For

example, a diffusivity D = 4 is understood to be 400µm2/s.

6.1 Orientation Evolution Equation for Microtubule-Kinesin System

Once validated state variable data has been extracted from the experimental video

data, using the procedure detailed in Chapter 5, the library of terms is constructed

using the procedure described in Section 2.3. The Gaussian smoothing used in the

probability density formulation of the extraction (Section 5.3) yields smooth state

variables, which allows for the use of centered finite differences instead of one of the

more noise robust methods detailed in Section 3.2. However, data near boundaries

63



was removed after differentiation to avoid inaccuracies incurred by the reflection of the

Gaussian kernels in the data smoothing (see Equation (5.3)) or by the directional finite

differences on the boundary points. Given the values of the smoothing parameters

σxQ
, σtQ , σxv and σtv determined in Sections 5.3.1 and 5.3.2, we found it sufficient to

remove 30 edge pixels in both space and time. Finally, the constructed library was

randomly sampled across space-time to improve computational efficiency.

Section 3.3 presented the idea of a two-stage regression process for approx-

imating solutions of Equation (3.1); first, a sparse subset of the library terms is

determined and second, the optimal (in some norm) coefficients are computed for

that reduced library. Table 6.1 shows the results of using forward selection (see

Algorithm 2) on the experimental data, in which terms were selected up to a library

of size 10. After these k-sparse libraries were determined, for 1 ≤ k ≤ 10, the

coefficients for each sparse model were computed using ordinary least squares.

The results of forward selection with ordinary least squares (Table 6.1) exhibit

several notable features. First, the coefficient of determination R2 increases until

reaching an inflection point at the fourth term, indicated by the dashed line, after

which any additional terms add little to the reconstruction accuracy. This inflection

point indicates that there is indeed a sparse subset of terms in the library that

can account for the majority of the features of Qt. Second, the first two selected

terms both have coefficients of magnitude roughly unity for models up to size ten.

These terms, which correspond to advection and rotation, are included in almost

all previously proposed models and are expected to have coefficients of −1 and

+1, respectively. Finally, although most of the selected terms are present in the

Beris-Edwards equation (2.8) for Q, there is a notable absence of the elastic energy

term ∆Q. Moreover, the alignment energy termsQ andQ3 are only selected after the

inflection point, and the sign of theQ (Q3)-term is negative (positive), the opposite to

what is expected from the phenomenological argument given below Equation (2.11).
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As was noted in the numerical experiments to recover the governing PDE from

simulation data (Chapter 4), the constructed library may be prone to correlations

which can hinder the accuracy of the forward selection method [92, 93]. Figure 6.1

shows the Pearson correlation coefficient for the terms in the library, as computed

with respect to the experimental data. There are strong correlations between several

of the selected terms and other terms which are common to the Beris-Edwards

equations. For example, the bulk alignment energy terms Q and Q3 are not included

in the discovered equation, but are correlated with the discovered terms EST and

[QikQlj∇ukl]ST.

Given the size of the library for the orientation evolution (46 terms), a brute

force approach to computing the true k-sparse solution of Equation (3.1) is feasible

for k ≤ 6 if a smaller portion of the data is considered. The results for a brute force

computation of the best k-sparse library are presented in Table 6.2. The best subset

of size 4 agrees with the forward selection results. The R2 values for the subsets

of size 5 and 6 are similar to that for size 4, indicating that little is gained in the

R2-metric from including more terms in the governing equation.

Comparing the forward selection (Table 6.1) and brute force (Table 6.2) results,

we settled on an evolution equation with k = 4 terms:

Qt = −1.04u · ∇Q+ 1.18[Q,Ω]− 0.26EST − 2.28
(
Q(Q : ∇u)−Q⊥(Q⊥ : ∇u)

)
,

(6.1)

where we have expressed the cubic term in a somewhat compact form by introducing

the notation

Q⊥ = ϵQ =

 µ −λ

−λ −µ

 for ϵ =

 0 1

−1 0

 . (6.2)

We note that the cubic flow-alignment term Q(Q : ∇u) is also present in the Beris-

Edwards equation (2.8); while this term is in our library, both the forward selection
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and best subset selection approaches select instead the composite term Q(Q : ∇u)−

Q⊥(Q⊥ : ∇u).

The coefficients in Equation (6.1) are determined using ordinary least squares.

However, given the known error in both dependent and independent variables of the

linear system Θ, an errors-in-variables approach (Section 3.3.4) may be more suited

to determining the parameters of the model. The coefficients determined using total

least squares are:

Qt = −1.22u · ∇Q+ 1.49[Q,Ω]− 0.37EST − 3.24
(
Q(Q : ∇u)−Q⊥(Q⊥ : ∇u)

)
.

(6.3)

We recall that the coefficients of the advection and vorticity terms are expected to be

−1 and +1, respectively, and we choose the remaining coefficients to be in between

those given in Equations (6.1) and (6.3). We thus obtain the evolution equation for

Q that we will use going forward:

Qt = −u · ∇Q+ [Q,Ω]− 0.3EST − 3
(
Q(Q : ∇u)−Q⊥(Q⊥ : ∇u)

)
. (6.4)

6.1.1 Alternative Sparse Regression Approaches

A variety of methods were presented in Chapter 3 for use in constructing a sparse

solution to the linear system in Equation (6.9). Although all methods aim to

approximate the same zero-norm regularized problem given in Equation (3.1), they

are not guaranteed to yield equivalent sparse selections. However, in the case of the

active nematic system considered herein, numerical experimentation showed that all

of the common methods agreed on a few terms. Foremost among these common

methods is brute force “best-subset” selection which truly finds the subset of a given

size which maximizes the R2 to give a “best-fit” model as seen in Table 6.2. As a

comparison, Table 6.3 demonstrates sparse selection results using the more traditional

LASSO method, see Equation (3.3), in which the regularization parameter γ is varied

in order to find potential sparse models of different sizes. Table 6.4 demonstrates
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Table 6.2 Best subset selection results on experimental data. A random subset of
5% of the data in spacetime is sampled for the sake of computational feasibility. Each
row contains the model of that size which maximizes the R2.

R2 Terms

0.66 [∂iuj]
ST, uk∂kQij, [Q,Ω]

0.76 [QikQlj∂kul]
ST, [∂iuj]

ST, uk∂kQij, [Q,Ω]

0.76 [∂iuj]
ST, [uk∂iQkj]

ST, [QikQlj∂kul]
ST, uk∂kQij, [Q,Ω]

0.76 [uk∂iQkj]
ST, [∂kulSljik]

ST, QklQlj∂m∂mQki, [QikQlj∂kul]
ST,

uk∂kQij, [Q,Ω]

Table 6.3 LASSO path results using experimental data. A random subset of 50% of
the data in spacetime is sampled. Each row represents the term added to the model
as the LASSO regularization parameter γ is decreased.

γ Terms

13.00 uk∂kQij

12.32 uk∂kQij, [uj∂kQki]
ST

11.63 uk∂kQij, [uj∂kQki]
ST, [Q,Ω]

10.95 uk∂kQij, [uj∂kQki]
ST, [Q,Ω], [Qjl∂l∂kQki]

ST

10.26 uk∂kQij, [uj∂kQki]
ST, [Q,Ω], [Qjl∂l∂kQki]

ST, [∂iuj]
ST

9.58 uk∂kQij, [uj∂kQki]
ST, [Q,Ω], [Qjl∂l∂kQki]

ST, [∂iuj]
ST,

[∂lQki∂kQlj]
ST, [QklQlj∂iuk]

ST, [QikQlj∂kul]
ST
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Table 6.4 Sequentially thresholded ridge regression results using experimental data.
The data is randomly sampled in spacetime (50%). Each row represents the terms
selected by STRidge for the given regularization parameter γ.

γ Terms

7.94 [Q,Ω]

3.98 [Q,Ω] , uk∂kQij

2.51 [Q,Ω] , [Qjl∂l∂kQki]
ST , [uj∂kQki]

ST , uk∂kQij , [∂lQki∂kQlj]
ST

1.26 [Q,Ω] , [uj∂kQki]
ST , uk∂kQij

comparable selection results using the STRidge algorithm described in Section 3.3.2.

Finally, Table 6.5 gives the results of the ensemble model approach described in

Section 3.3.5.

Taking Tables 6.3-6.5 together, we observe that the advection u · ∇Q and

rotation [Q,Ω] terms are selected in each of the methods considered. Additionally,

the flow alignment terms EST andQ(Q : ∇u)−Q⊥(Q⊥ : ∇u) are selected by LASSO

(Table 6.3) and ensemble SINDy (Table 6.5), but not so by STRidge (Table 6.4). All

three methods considered in this section discover the term [ui∂kQkj]
ST; this term is

highly correlated with the advection u·∇Q (see Figure 6.1), as is the term [uk∂iQkj]
ST

that is part of the best subset of size 5 (Table 6.2). Again, although these methods

do not provide a perfect consensus, they each lend support to the small set selected

for inclusion in Equation (6.4).

It should also be noted that terms involving the second derivative ofQ are rarely

selected, or are selected at late stages of each of the sparse regression approaches

considered. A similar phenomenon has been observed in prior data-driven discovery

methods using experimental [87] and synthetic data [73]. It is yet unknown whether

the relative absence of higher-order derivatives stems from inaccurate differentiation,

sparse selection methods, or their lack of importance in the experimental system.
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Table 6.5 Ensemble SINDy results using experimental data for discovery of terms
in equation for Q. Each row represents the probability of inclusion of that term using
the procedure outlined in [28] and described in Section 3.3.5. We used B = 250
subsets and G = 20 regularization parameters on a dataset that is randomly sampled
in spacetime (50%).

Probability of Inclusion Term

0.971 uk∂kQij

0.9 [Q,Ω]

0.9 [uj∂kQki]
ST

0.6 [Qjl∂l∂kQki]
ST

0.45 [∂iuj]
ST

0.399 [∂lQki∂kQlj]
ST

0.351 [QikQlj∂kul]
ST

0.176 [Qik∂l∂jQkl]
ST

0.145 [∂jQlk∂kQli]
ST

0.099 [QklQlj∂iuk]
ST
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6.2 Velocity Equation for Microtubule-Kinesin System

Although the evolution equation for Q has been the subject of the most active debate

in the literature, there are some outstanding questions related to the stress terms

present in the velocity evolution equation as noted in Chapter 2. The library of

potential terms for the discovery of the velocity equation is outlined in Table 2.1, in

which the procedure described in Section 2.3 is employed. The equation is postulated

to have the overdamped Hele-Shaw flow form u = ∇ · σ described in Section A.5.

The results of forward selection, see Algorithm 2, to maximize R2 for this equation

can be seen in Table 6.6 where coefficients are calculated using ordinary least squares.

An immediate observation is that the R2 for the recovery of the velocity equation

is lackluster as compared with that of the Q-equation. This is likely due to poor

extraction of the fluid velocity from the experimental images. However, the most

common “active stress” term proportional to Q, as originally derived by Simha &

Ramaswamy [82], is identified as the most important and possibly the only term

which correlates well with the velocity u. Given the inflection in the R2, it could be

supposed that the second stress term ∇ · (∆Q) should also be included. However,

the higher order of differentiation and low R2 make the term particularly suspect.

Validation using an ensemble method identifies a low probability for its inclusion as

demonstrated in Table 6.7. Thus, it is concluded that the discovered velocity equation

takes the form

u = −D∇ ·Q (6.5)

with D > 0 (Table 6.6), as would be expected for extensile nematics.

To further validate our result, we use spectral differentiation to compute the

value of D in Equation (6.5), and its incompressible counterpart

u = −D∇ ·Q−∇p, ∇ · u = 0. (6.6)
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Table 6.7 Ensemble SINDy results using experimental data for discovery of stress
terms in the velocity equation. Each row represents the probability of inclusion of
that term using the procedure outlined in [28] and described in Section 3.3.5 with
B = 250 subsets and G = 20 regularization parameters on a dataset that is randomly
sampled in spacetime (50%).

Probability of Inclusion Term

0.972 ∂i(Qij)

0.273 ∂i(∂k∂kQij)

0.185 ∂i(QmkQki∂l∂lQjm)

0.079 ∂i([QmlQmk∂i∂lQkj]
S)

0.062 ∂i(∂m∂mQklSijlk)

0.0 ∂i([∂k∂iQjk]
S)

Using a Gaussian filter in Fourier space as described in Equation (3.2), the data can

be made pseudo-periodic and spectral differentiation can be used. Equations (6.5)

and (6.6) can be solved straightforwardly in Fourier space, the latter as

ũ = −iD
(
I − k̂k̂

)
· k · Q̃, (6.7)

where tildes denote Fourier transformed quantities, k is the wavevector and k̂ = k/|k|.

Figure 6.2 shows the best fit value of D and the corresponding R2 using spectral

differentiation. Ultimately, Figure 6.2 demonstrates a range of potential values for the

parameterD and highlights the uncertainty in its value due to the poor reconstruction

quality in the linear system. This uncertainty is explored further in Section 6.4.

Additionally, the R2 of the recovery and the consistency of the results supports the

claim that incompressibility should not be enforced, as is also suggested from the

experimental data (Figure 5.10).
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Figure 6.2 Dependence on the filtering parameter s (see Equation (3.2)) of the best
fit values of the coefficient D in the velocity equations (6.5) (open circles) and (6.6)
(filled circles). Black lines represent derivatives computed spectrally while blue lines
represent the results using finite differences and subsequently filtering. The dashed
red line marks the D and R2 values obtained using finite differences without filtering
(see the first row of Table 6.6).

6.3 Linear Stability of Discovered Equation

One of the main advantages of the SINDy methodology is that traditional analysis can

be performed on the resulting equations. This facilitates analyzing the relationships

between the physical quantities in the system and understanding the mechanisms

which govern it. One such analysis is to consider the linear stability of the system.

This is particularly important because the equations recovered via the SINDy

procedure have no constraints to guarantee that the equation is linearly well-posed.

The discovered model, with a velocity determined by the active stress, is

Qt = c1u · ∇Q+ c2[Q,Ω] + c3E
ST + c6

(
Q(Q : ∇u)−Q⊥(Q⊥ : ∇u)

)
,

u = −D∇ ·Q ,
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which can be expressed in terms of the matrix elements λ and µ as

λt = −Dc1(λ2x + λxµy − λ2y + λyµx)−Dc2 (−µxx + µyy + 2λxy)µ

−Dc3
2
(λxx + λyy)−Dc6

(
(λxx + λyy)(λ

2 − µ2) + 2λµ(µxx + µyy)
)
,

µt = −Dc1(λxµx − λyµy + 2µxµy)−Dc2 (µxx − µyy − 2λxy)λ

−Dc3
2
(µxx + µyy)−Dc6

(
(µxx + µyy)(µ

2 − λ2) + 2λµ(λxx + λyy
)
. (6.8)

Consider perturbations of Q around a uniformly aligned state of rods oriented with

angle θ with constant order parameter S0 > 0. That is, assume that the entries of Q

are of the form

λ =
S0

2
cos(2θ) + ϵλ̂(t)eik·x, µ =

S0

2
sin(2θ) + ϵµ̂(t)eik·x, x = x cos(ϕ) + y sin(ϕ) .

After substituting this form into Equation (6.8) and removing higher order terms in

ϵ, we arrive at the system λ̂t

µ̂t

 =
Dk2

2

M11 M12

M21 M22


λ̂
µ̂

 ,
where k = |k| and

M11 = S0c2 sin(2ϕ) sin(2θ) + c3 +
S2
0

2
c6 cos(4θ),

M12 = −S0c2 sin(2θ) cos(2ϕ) +
S2
0

2
c6 sin(4θ),

M21 = −S0c2 sin(2ϕ) cos(2θ) +
S2
0

2
c6 sin(4θ),

M22 = S0c2 cos(2ϕ) cos(2θ) + c3 −
S2
0

2
c6 cos(4θ). (6.9)

The eigenvalues of this system are given by

γ1 =
D

2

(
c3 +

S2
0

2
c6

)
k2

and γ2 =
D

2

(
c3 + S0c2 cos(2(θ − ϕ))−

S2
0

2
c6

)
k2. (6.10)
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Note that for c2, D > 0, as is the case in with our fitted values for these parameters

(see Equation (6.4) and Table 6.6, respectively), γ2 is largest for ϕ = θ, or when the

perturbation is co-aligned with the rods. The maximum value of the eigenvalue is

γmax
2 =

D

2

(
c3 + c2S0 −

S2
0

2
c6

)
k2. (6.11)

For c6 < 0, as in the discovered equation (6.4), γmax
2 > γ1 for all wavenumbers k.

Since γmax
2 →∞ as k →∞, we conclude that Equation (6.4) is linearly ill-posed.

As previously proposed in [67], the equation can be regularized by augmenting

it with a higher-order derivative term ∆2Q, which will also prescribe a characteristic

length scale. Doing so results in the equation

Qt = c1u · ∇Q+ c2[Q,Ω] + c3E
ST + c6

(
Q(Q : ∇u)−Q⊥(Q⊥ : ∇u)

)
− c8∆2Q,

u = −D∇ ·Q . (6.12)

The eigenvalues (6.10) and (6.11) are thus modified to read

γ1 =
D

2

(
c3 +

S2
0

2
c6

)
k2 − c8k4,

γmax
2 =

D

2

(
c3 + c2S0 −

S2
0

2
c6

)
k2 − c8k4. (6.13)

Figure 6.3 shows the dependence of γ1 and γmax
2 on k, both with and without the

higher-order regularization.

From this analysis, the discovered Equation (6.4) can be augmented as:

Qt = −1.04u · ∇Q+ 1.18[Q,Ω] + 0.26EST

− 2.28
(
Q(Q : ∇u)−Q⊥(Q⊥ : ∇u)

)
− 0.01∆2Q (6.14)

where the the coefficients are again determined via ordinary least squares, or

Qt = −1.22u · ∇Q+ 1.50[Q,Ω] + 0.37EST

− 3.23
(
Q(Q : ∇u)−Q⊥(Q⊥ : ∇u)

)
− 0.02∆2Q (6.15)

77



1 0 1 2 3 4
k

2

1

0

1

2

3

4

5

1(k), c8 = 0
1(k), c8 = 0.3
max
2 (k), c8 = 0
max
2 (k), c8 = 0.3

Figure 6.3 Eigenvalues γ1(k) and γ
max
2 (k) of the linear stability problem (6.9) for the

uniformly aligned state with constant order parameter S0 = 0.3, both without (solid
curves, Equation (6.11)) and with (dashed curves, Equation (6.13)) the higher-order
regularization term −c8∆2Q. The parameter values c2 = 1, c3 = −0.3, c6 = −3 are
taken from Equation (6.4), and D = 3 from Figure 6.2. Note that the eigenvalue γ1
is subdominant to γmax

2 .
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where the coefficients are determined via total least squares. Some simple calculus

can be used to determine the wavenumber of maximum growth kmax, for which γ
max
2

achieves its maximum value:

kmax =

√
D

4c8

(
c3 + c2S0 −

S2
0

2
c6

)
. (6.16)

Using the previously considered parameters, c2 = 1, c3 = −0.3, c6 = −3, D = 3 and

including c8 = 0.02 yields a dominant kmax = 2.25. Given that the experimental

domain is a square of side length LE = 31.24, this would yield on average ∼

(kmaxLE/2π)
2 ≈ 125 defects in the domain at any given time. This is far beyond

the number observed in experimental data and demonstrates that both regression

approaches estimate an anomalously small coefficient for the bi-Laplacian term while

the other coefficients remain virtually unchanged. The small coefficient can likely be

explained by the fact that the bi-Laplacian must be approximated by taking several

derivatives of the smoothed data and thus has high variance. An alternate method is

thus necessary to determine an adequate value of c8, which we peruse in Section 6.4.

6.4 Determining Parameters via Non-Local Penalties

SINDy has shown accuracy in recovering accurate coefficients for high order derivatives

in the context of simulation data. However, several works have demonstrated that

higher order derivative terms are often left out of discovered equations when working

with highly noise polluted or experimental data [73,87]. As such, alternative methods

should be used to estimate parameters in the discovered equation whose values are

especially uncertain.

Specifically, in the augmented model (6.12), the coefficient of the bi-Laplacian

c8 in the orientation evolution equation and the activity coefficient D in the velocity

equation are less certain than the other coefficients, which are in Equation (6.4). The

analysis in Section 6.3 suggests that the value of c8 selected by both ordinary and

total least squares is not large enough to impose a reasonable characteristic length

79



scale. Additionally, the low R2 value in the discovery of the velocity equation and

the sensitivity of D to data smoothing (see Figure 6.2) indicate a poor fit and less

certainty. This poor fit brings into question the value of the coefficient D computed

via regression techniques.

The SINDy methodology only seeks a PDE model that is accurate locally in

time, i.e. it only imposes that the residual of the model is small at any instant, not

that the model accurately simulates the data. This explains why the non-augmented

model system shown in Equations (6.4) and (6.5) is selected by SINDy even though

it is linearly ill-posed. To remedy this problem, we propose a more global approach

to parameter estimation. Specifically, a temporally non-local penalty was devised

that imposes that a simulation of Equation (6.12) with the parameters c8 and D

and an appropriate initial condition should approximately match the experimental

data. Because the boundary conditions for the experiment are unknown, the PDE

must be simulated with approximate boundary conditions. We elect to impose

periodic boundary conditions in each space dimension, which allows us to simulate the

equations using the simple and effective numerical apparatus described in Section 4.1.

An initial condition must also be imposed, which we obtain from the experimental

data.

In particular, the simulation domain is [0, 2π]2 with periodic boundary conditions

and the same resolution as the experimental images (220×220). As above, each frame

of the video corresponds to one unit of time. The timestep for simulations was selected

to be ∆t = 10−3. Filtered snapshots of the data were used as initial conditions: i.e.

if λ(xij, t0), µ(xij, t0) are the values at time t0 obtained using the data extraction

methods from Section 5.2.3, the initial conditions are obtained by filtering these values

using the Gaussian filter in Equation (3.2) with parameter s = 5. This filtering helps

ensure that the 1/3 aliasing law is enforced [66] and removes artifacts caused by the

fact that the data is not periodic. The values of the simulation at simulation time
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tk starting with filtered data taken from the snapshot at experimental time t0 are

denoted by λ̂(xij, tk; t0, c8, D), µ̂(xij, tk; t0, c8, D).

Because the periodic boundary condition is artificial, the simulation is compared

only at the center-most 100 × 100 grid of the 220 × 220 experimental data. The set

of indices ij corresponding to the points xij in this 100 × 100 grid is denoted by I

below. The model error we propose is then based on the relative root mean squared

error (RMSE) between the simulation and the snapshots of the data for these grid

points:

ERMSE(tk; t0, c8, D) =(∑
ij∈I

(λ̂(xij, tk; t0, c8, D)− λ(xij, t0 + tk))
2

+ (µ̂(xij, tk; t0, c8, D)− µ(xij, t0 + tk))
2

)1/2

⧸

(∑
ij∈I

λ(xij, t0 + tk)
2 + µ(xij, t0 + tk)

2

)1/2

. (6.17)

Boundary information in the experiment propagates from the edges into I in fairly

short time, so this error measure is only reasonable for moderate values of tk.

Specifically, a defect at the boundary can enter the comparison region within 12-16

seconds, so we only consider tk ≤ 20.

The parameter estimation problem for c8 and D can then be phrased as:

min
c8,D

ERMSE(tk; t0, c8, D) .

This problem is nonlinear and non-convex in c8 and D. To obtain a rough estimate

of the optimal c8 and D, we compute the error for a 14 × 14 evenly spaced grid of

c8 and D values between 0.1 and 7.3. The resulting c8 and D values are somewhat

sensitive to t0 and tk as seen in Figure 6.4 but show a general trend toward increased

hyperdiffusion for larger values of tk. The large variation in optimal c8 and D can also

be attributed to the low variation in loss near the optimal points as is demonstrated
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in Figure 6.5. This figure shows the loss values for a range of parameter combinations

of D and c8 at three comparison times (tk) averaged over the range of starting points

(t0) shown in Figure 6.4. It demonstrates that as time progresses, the loss landscape

becomes flatter, thus making several parameters near-optimal.

Remark 6.4.1. The non-local penalty above is related to some methods considered

previously in the literature. A similar penalty was proposed in [74] for fitting neural

network models to time series data. This penalty was also applied within the SINDy

framework in [45] to identify sparse models and noise probability distributions for

ordinary differential equation simulations with added noise. In [18], a penalty based

on simulation is used, though the error is checked over relatively short horizons and

reasonable boundary conditions are known. In [14], the horizon for comparison is

explored via the Lyapunov time of the system.

6.4.1 Comparison with Linear Stability

The results of the mean squared comparison of simulations using c8 andD (Figure 6.4)

can also be validated using the linear stability analysis presented in Section 6.3.

Specifically, we may rearrange Equation (6.16) to obtain a relation between c8 and

the most unstable wavenumber kmax:

c8 =
D

4k2max

(
c3 + S0c2 −

S2
0

2
c6

)
.

Substituting kmax = 2π
√
Nd

LE
where LE is the length of the experimental domain and

Nd is the expected number of defects in the domain at any given point in time, we

obtain a relation between c8 and the expected number of defects:

c8 =
DL2

E

(4π)2Nd

(
c3 + S0c2 −

S2
0

2
c6

)
. (6.18)

Figure 6.6 shows two lines in the (D, c8)–plane as defined by Equation (6.18) for the

values Nd = 2 and Nd = 9, where we use the fact that the experimental data has

between two and nine defects at any given time. The optimal values of D and c8
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Figure 6.4 Optimal values of the bilaplacian coefficient c8 and activity parameter D
in the discovered equation (6.12). The remaining parameters in the Q-equation are as
in Equation (6.4). The optimal values are determined by the mean squared difference
of the Q-values between experiment and simulation, as written in Equation (6.17).
The simulations were performed on the time interval [t0, t0+tk] across a range of values
for both c8 and D, using a range of spectrally filtered initial conditions obtained from
the extracted experimental data at the times t0 indicated in the legend (different
colors). The black curves indicate the average of the colored curves, and the orange
shaded region marks the time after which boundary information could pollute the
comparison region.
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Figure 6.5 Root mean squared error difference between simulation and experiment
for a range of parameter values (D, c8) averaged over all starting times t0 as shown
in Figure 6.4. Red dots indicate the minimum loss for the parameter grid.

obtained from the black curve in Figure 6.4 are superimposed, and are found to be

roughly consistent with the predictions of the linear stability analysis.

6.5 Numerical Experiments on the Discovered Equation

There are a range of metrics that can be used to demonstrate a model’s ability

to capture physical phenomenon as observed in active nematic experiments. These

include the characteristic orientational order parameter S (Equation (2.4)) of the

system and the expected number of defects. Though not comprehensive, these

comparisons capture some of the key statistical features of the system.

The simulations were performed using Equation (6.12) using three pairs of

values (D, c8) which were chosen to be consistent with the optimal values presented

in Figure 6.6 and the remaining coefficients from Equation (6.4). A filtered version of

the first frame of experimental data using the filter described in Equation (3.2) was

used as the initial condition. The simulations were run for T = 300, the duration of

the experimental data, with a time step of ∆t = 10−3 using the scheme presented in

Section 4.1 and used in Section 6.4.

Figure 6.7 shows the value of the spatially-averaged S over time, compared

between experiment and simulations performed for three pairs of values (D, c8). These
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Figure 6.6 Validation of the inferred values ofD and c8 using linear stability analysis,
as described in Section 6.4.1. The solid lines denote the prediction of the linear
stability analysis (6.18) for Nd = 2 (red) and Nd = 9 (orange) defects. The black dots
indicate the optimal values of c8 and D, as obtained by averaging the mean squared
difference between experiment and simulation (black curve in Figure 6.4).
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Figure 6.7 Comparison of the spatially averaged scalar order parameter S from
simulations with several values of D and c8 across the full experimental time. Shaded
regions represent the standard deviation of S.

values are chosen to be consistent with the optimal values presented in Figure 6.6. It

should be noted that variations in c8 or D do not seem to affect the value of the scalar

order parameter S strongly, and its spatially averaged value remains roughly steady

throughout the simulation. Further insight is needed to understand the mechanism

which prescribes this order as is discussed in Section 7.1.

To identify defects, we compute the intersections of the zero contours of λ and

µ (the matrix elements of Q), and determine its sign via contour integration [67].

Figure 6.8 demonstrates defects as they appear in both simulation and experimental

data. Figure 6.9 shows the proportional of time for which a given number of defects is

present, comparing the results from experiments and simulations with the three pairs

of values (D, c8) considered in Figure 6.7. We observe that, among the three pairs of

values considered, the values D = 2.4, c8 = 2.4 (green) capture the experimental data

best. While the pair D = 1.7, c8 = 0.9 (blue) better approximates the width of the

distribution, the predicted average number of defects is about twice that observed in

experiments. Similarly, the pair D = 3.1, c8 = 5.0 (pink) predicts too few defects.
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Figure 6.8 Defects in both experiment (left) and simulation (right) are identified by
numerically computing the intersections of the zero-contours of the matrix elements
of Q, as detailed in [67].
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Figure 6.9 The proportion of time (vertical axis) for which a given number of defects
is present (horizontal axis), in both experiments (orange) and simulations (blue, green,
pink). The simulations are conducted for the three pairs of values (D, c8) considered
in Figure 6.7.
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6.6 Discussion

We conclude by discussing the relationship between our augmented model (6.12),

other models previously considered in the literature (Section 2.2) and those discovered

recently by Joshi et al. [44] and Golden et al. [36] using data-driven equation discovery

techniques. Beginning with the Q-evolution equation, we note that the coefficients of

the advection u · ∇Q and vorticity [Q,Ω] terms are roughly −1 and +1, as posited

in the Beris-Edwards equations (2.8). A similar result was obtained by both Joshi

et al. [44] and Golden et al. [36]. While the velocity field u reconstructed from

the experimental data is not divergence free, (∇ · u ̸= 0, Figure 5.10), our equation

discovery process does not select the term (∇·u)Q hypothesized by Oza & Dunkel [67].

Moreover, the terms S : Q and S : ∇u that are present in previously proposed

kinetic theories (Equation (2.17), [31,32,96]) are not discovered by forward selection

(Table 6.1), although the latter is an element of the best subset of size six (Table 6.2).

As noted in Section 6.1, the bulk alignment energy terms Q and Q3 posited in

the Beris-Edwards equations (2.8) are not included in the discovered equation, a result

that is consistent with Joshi et al. [44] and Golden et al. [36]. Moreover, this result

is consistent with the conjecture of Thampi et al. [89], who argued that the terms Q

and Q3 could be discarded as the ordering of the system can arise naturally from its

activity. We note that the bulk alignment energy terms are highly correlated with the

flow alignment terms EST and Q(Q : ∇u) −Q⊥(Q⊥ : ∇u) (Figure 6.1), which are

selected by both forward selection (Table 6.1) and best subset selection (Table 6.2).

The cubic flow alignment term Q(Q : ∇u) is also present in the Beris-Edwards

equation (2.8); while this term is in our library, both the forward selection and best

subset selection approaches select instead the composite term Q(Q : ∇u)−Q⊥(Q⊥ :

∇u). Interestingly, the term Q(Q : ∇u) is discovered by Joshi et al. [44], while

cubic terms are absent from the equation discovered by Golden et al. [36]. We did

simulate Equation (6.12) without theQ⊥ term and found that the system consistently
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converged to a defect-free striped state, suggesting that the Q⊥ term is necessary to

drive the system away from this state and towards active turbulence.

While the flow alignment term EST was neglected in the work of Oza & Dunkel

(Equation (2.15), [67]), our results suggest that it plays a prominent role in the

dynamics, a result consistent with those of Joshi et al. [44] and Golden et al. [36].

However, both Joshi et al. [44] and Golden et al. [36] obtain values c3 ≈ 1, which

would be expected for slender (high aspect ratio) rods. We note that prior simulations

of active nematics have used values of c3 less than unity, e.g. c3 = 0.7 in [20, 90].

The linear flow alignment term in our model can be expressed as c̃3S0E
ST, a form

reminiscent of that proposed by Giomi et al. [34,35] (Equation (2.14)), where c̃3 = 0.74

is closer to unity and S0 = 0.405 is the orientational order parameter in experiment,

averaged over time and space (Fig. 6.7). Moreover, since EST = −D
2
∆Q provided

u = −D∇·Q, our discovered model (for c1 = −1, c2 = 1) is mathematically equivalent

to the system

Qt = −u · ∇Q+ [Q,Ω] +EST +
(1− c3)D

2
∆Q

+ c6
(
Q(Q : ∇u)−Q⊥(Q⊥ : ∇u)

)
− c8∆2Q,

u = −D∇ ·Q . (6.19)

That is, our discovered equation (6.12) is equivalent to one in which the coefficient

of EST is unity, but augmented by a bulk elastic energy term proportional to

∆Q, as is typically assumed in Landau-de Gennes liquid crystal theory (see e.g.

Equation (2.14)).

Our velocity equation u = −D∇ · Q has a value D > 0, corresponding to

extensile (as opposed to contractile) stresses [82]. Both Joshi et al. [44] and Golden

et al. [36] also discovered velocity equations with extensile stresses. Joshi et al. [44]

discovered an incompressible Stokes equation and regularized their equation with

a Laplacian term ∆Q. A linear stability analysis of their equation, analogous to
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Table 6.8 Forward selection results for the velocity equation, in which the library
is augmented by the quadrupole term in Equation (6.20). The data is randomly
sampled in spacetime (50%), and the coefficients are determined using ordinary least
squares.

R2 u = Coefficients

0.27 ∂i(Qij) -2.29 -3.18 -3.57

0.35 ∂i(∂k∂kQij) -2.50 -2.69

0.38 Qji∂kQki -4.08

that conducted in Section 6.3, yields a dominant eigenvalue of the form γ(k) ∼

a− bk2 for a, b > 0, implying that their equation does not predict the emergence of a

characteristic length scale [31]. We plan to explore alternative velocity formulations

in future work, as detailed in Section 7.1.2.

Moreover, Golden et al. [36] derive a constraint equation E : Q = constant for

the velocity and thus do not conduct simulations of their model. We note that this

constraint is equivalent to saying that E and Q are highly correlated, which we also

observe (Figure 6.1). We conclude by noting that recent work [56] has suggested that

a “quadrupolar force” may be important in 2D active nematic systems. Sultan et

al. [85] studied the influence of such a force by considering the velocity equation

u = −D1∇ ·Q−D2Q · (∇ ·Q). (6.20)

The D2-term is not the divergence of a stress and thus is not part of our library.

However, after manually adding it to the library we found that, while it was selected

as the third-most important term, it increases the R2-value by a small amount

(Table 6.8).
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CHAPTER 7

CONCLUSIONS

Though many models have been proposed for active nematic systems, capturing and

understanding the full dynamics has remained a challenge. This dissertation has

explored the use of the Sparse Identification of Nonlinear Dynamics (SINDy) modeling

approach and presented a novel and concise model for the microtubule-kinesin active

nematic system. This data-driven result has presented a new perspective with which

to view previous models and lent a more objective opinion as to the form of a governing

partial differential equation.

Chapters 1, 2, and 3 laid the foundations which motivate the need for a data-

driven approach, the previous modeling work that inspires the approach, and the

unique challenges that can arise when using the SINDy approach. Notably, special

considerations are required when expanding the SINDy method to higher-dimensional

systems and a new procedure is proposed for generating overcomplete nonlinear terms

in higher dimensions using tensor concatenations followed by tensor contractions of

state variables and their derivatives. Popular methods for sparse linear regression are

reviewed, including a common two-stage approach to model discovery in which the

selection of the sparse terms and the estimation of their parameters are separated

into two individual calculations. This two stage approach allows sufficient freedom to

combat issues caused by multicollinearity and noisy derivative values in the library

of terms, as explored in the later chapters.

Chapter 4 presents the specific considerations that arise when performing

SINDy on simulated active nematic systems. Most importantly, it is discovered

that correlations in the generated nonlinear library are a fundamental feature of

the model discovery process and must be accounted for in both the sparse selection
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and parameter estimation phases of modeling. Notwithstanding this challenge,

it is demonstrated that the correct governing equations can be recovered for

active nematics given sufficiently dynamic and representative data and with careful

consideration of multicollinearity.

Chapters 5 and 6 present the main contribution of this work: appropriately

extracting and validating state variable data and using this data to discover a PDE

model for the microtuble-kinesin active nematic system. The linear stability of the

model as returned by the original SINDy method is analyzed, suggesting the addition

of a bi-Laplacian hyper-diffusion term. Parameters for this augmented model are

then determined using a simulation-based metric for goodness of fit. The proposed

model is compact and has parallels with previously proposed models. Numerical

experiments confirm that the proposed model reproduces large-scale qualitative

features of the experimental data, including the characteristic order parameter and

number of topological defects.

This work functions as an additional demonstration that data-driven modeling

can provide new insights and perspectives for complex systems which have posed

significant challenges for previous modeling attempts [36, 44,87].

7.1 Future Directions

The work presented in this dissertation raises a few questions about the nature of

active nematic models and highlights new considerations for data-driven modeling

with SINDy.

7.1.1 Characteristic Orientation for the Discovered Model

Foremost among these is the question of enforcing or encouraging a characteristic

orientation of the system. The phenomenological bulk energy terms Q and Q3 which

are present in the majority of proposed models, Qt = aQ− bQ3+ . . . for a, b > 0 (see
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Figure 7.1 The spatially averaged value of the nematic order parameter S in
experiment (orange) and simulations (green, blue and red) for three different values
of the coefficient c3 in Equation (6.12).

Equations (2.8), (2.14), and (2.15), for example) were introduced in order to drive

the system away from the isotropic state with S = 0 to a nematically aligned state

with S = 2
√
a/b. In contrast, the discovered equation presented in Equation (6.12)

does not have an apparent mechanism for determining this characteristic order

parameter. However, numerical experimentation has shown that the average value

of S is controlled via the coefficient c3 in Equation (6.12). Indeed, Figure 6.7 shows

that the spatially averaged value of S is relatively consistent across the three pairs of

coefficients (D, c8). Figure 7.1 shows the spatially averaged value of S as the coefficient

c3 from Equation (6.12) is varied in simulations. Note that increasing the value of c3

also increases the spatially averaged value of S, which is roughly constant through the

duration of the simulation. Some analysis could be pursued to identify a potentially

nonlinear mechanism in the model (6.12) which can explain this phenomenon.
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7.1.2 Comparing Velocity Equation Forms

Though the SINDy method is meant to provide an automated tool for modeling, this

dissertation has demonstrated that it requires some physical intuition in order to set

up the problem appropriately. A finite library of nonlinear candidate terms must be

determined a priori, including the selection of appropriate state variables (e.g. Q, u,

and S in our setting) and the order of derivative operators and polynomial degree

used to generate the library. More subtly, the left-hand-side that is selected for the

regression problem has implications for the model physics. Though some adjustments

to SINDy have been proposed to avoid this prescription [38], it is not clear whether

this step of the process can be avoided. In this dissertation, a notable assumption was

used in that the velocity equation was assumed to be an overdamped Hele-Shaw flow

as described in Appendix A.5 and used in Section 6.2. However, other data-driven

approaches have determined that the velocity form should instead be that of a Stokes

flow [44], and it has also been proposed that the equation should impose a velocity

form which incorporates interfacial friction [32].

While both compressible and incompressible overdamped Hele-Shaw flows are

considered in Figure 6.2, in the future we plan to consider the incompressible Stokes

flow and interfacial friction models. Specifically, the two models with extensile active

stresses σ = −D∇ ·Q may be written in Fourier space as

ũStokes = −iDStokes
(I − k̂k̂)

k2
· (k · Q̃) (7.1)

and

ũint = −iDint
(I − k̂k̂)

2k
· (k · Q̃). (7.2)

These forms, though minimal changes for the SINDy procedure, can have vastly

different physical implications. As noted by Gao et al. [31], linear stability analysis of

the models associated with both Equations (7.1) and (7.2) can be regularized using
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a Laplacian term ∆Q, as opposed to the higher-order ∆2Q required in our work.

However, (7.1) does not produce a characteristic length scale while (7.2) does.

We undertook a preliminary investigation of Equations (7.1) and (7.2) and their

compressible counterparts, as obtained by removing the term (I − k̂k̂). Specifically,

we calculated the best fit values of the coefficients DStokes and Dint, respectively, and

their associated R2-values. Using filtered experimental values for λ and µ and spectral

differentiation as was used for Figure 6.2, we obtain the results shown in Figure 7.2.

These figures demonstrate a level of uncertainty in the form of the velocity equation

as they all produce a reasonable fit (as determined by R2). While the overdamped

Hele-Shaw model is the conceptually simplest model, we conclude that the resolution

of the data is insufficient to truly distinguish which model form should be imposed.

Further efforts could be focused on collecting and examining data which could assist

in distinguishing the results of these varied model forms.

7.1.3 Enforcing Well-posedness in Discovered Equations

This dissertation has demonstrated that though SINDy is capable of determining

insightful nonlinear PDEs, it is not constrained to provide well-posed models.

Unfortunately, this attribute of a discovered model cannot always be directly identified

until the equation is subject to theoretical or numerical exploration. In this work,

Section 6.3 described an analysis of the discovered PDE which revealed the instability

and clearly provided a method to stabilize the equation. Section 6.4 then explored a

temporally non-local method for estimating the parameters of the imposed stabilizing

term and other uncertain terms.

It appears that SINDy is limited in its ability to enforce well-posedness of

discovered models due to its temporal locality. More specifically, Equation (6.9)

enforces that the data should approximately satisfy a PDE at any instant rather

than approximating the solution of a PDE. To our knowledge, this shortcoming has
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Figure 7.2 The resulting coefficients D and their corresponding R2 using ordinary
least squares with assumed velocity equation forms of (a) Stokes flow (7.1) and
(b) an interfacial friction model (7.2). As in Figure 6.2, the dependence on the
filtering parameter s is shown (see Equation (3.2)). Incompressibility enforced in
the filled points and not in the open ones, the latter obtained by removing the
(I − k̂k̂)–prefactor in Equations (7.1) and (7.2). Black lines represent derivatives
computed spectrally while blue lines represent the results using finite differences and
subsequently filtering.

.
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not been fully addressed in applications of SINDy to PDE models. However the

parameter estimation method in Section 6.4 suggests that incorporating simulation

into the discovery procedure could result in more accurate parameters and more

stable discovered models. Similar improvements were observed by other authors using

similar penalties [45,74].

As observed in [45], automatic differentiation (or a simpler procedure) allows

for the simulation-based penalty to be incorporated directly into a sparse linear

regression solver. However, there are a number of challenges in extending this idea.

The first is that the simulation-based penalty simply increases the computational

burden of the regression procedure, particularly in higher dimensions. Further, in

many applications, appropriate boundary conditions are unknown, so there may not

be a well-defined PDE boundary value problem to simulate. Similarly, it is likely

that the simulation-based penalty will be evaluated for intermediate PDE models

which are unstable or otherwise difficult to simulate. These challenges suggest that

the design of effective and robust algorithms for simulation-based penalties are an

interesting frontier in data-driven model discovery.
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APPENDIX

A.1 Overview of Data-driven Discovery Methods

Recent advances in computational power and machine learning have brought a

renewed interest in modeling physical phenomena directly from data. Classically, data

is incorporated into models as a means to determine the correct model parameters

for a given model form. In comparison, modern data-driven modeling and discovery

methods aim to automatically determine both the model form and coefficients in

order to match the data. Prediction has long been a goal for traditional scientific

simulation and these methods present the potential for both data interpolation and

extrapolation, especially in time. They also promise to facilitate new understanding

of physical phenomena via novel model forms and new insights into previous models.

Some common data-driven modeling methods are:

1. Sparse Identification of Nonlinear Dynamics (SINDy) [9] [73], Figure A.1

curve fitting, linear regression

This method is the method of choice for this dissertation and is outlined in Section 1.2.
As a brief overview, data is transformed into various “terms” which are usually
combinations of polynomials and numerical derivatives. A linear regression is then
performed to quantify the contribution of these terms to the numerical time derivative
of the data. Thus, this method aims to give a parsimonious closed form ordinary or
partial differential equation governing the system.

2. Weak SINDy [60]

weak curve fitting, linear regression

This method follows the same general procedure as SINDy but instead of numerically
differentiating the data it uses the concept of a weak PDE solution by multiplying the
terms by test functions and then integrating by parts to transfer derivatives to the
test functions. Thus, direct numerical derivatives are avoided in exchange for some
obfuscation of the interpretation of each term in the system.

3. Deep learning PDE (DL-PDE, DLG-PDE) [97] [98], Figure A.2

deep feed-forward neural networks, linear regression

This method also follows the general outline of the SINDy method but substitutes
the data fitting and numerical differentiation with a neural network. First, it aims
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Figure A.1 Outline of the SINDy/PDE-Find method.
Source: [73]

Figure A.2 Overview of DLGA-PDE Method.
Source: [98]

to fit a neural network to the raw data and uses this representation to construct
the terms by relying on automatic differentiation of the network itself to get the
numerical derivatives. It also can use genetic algorithms to determine the exact form
for terms rather than explicitly constructing them. Overall, the aim is to provide a
more flexible basis of possible term contributions for the regression procedure at the
expense of more computation.

4. PDE Net [52], Figure A.3

specialized convolutional neural networks

Another neural network variation on the concepts introduced in SINDy, this method
constructs a network which combines all aspects of the process: differentiating the
data, creating various possible terms, and determining a sparse set of probable
terms. It does so by using constrained but tunable convolutional filters which by
connection to wavelets are guaranteed to approximate derivatives. After passing the
data through these “derivative” filters, there are specially designed layers that can
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Figure A.3 Overview of symbolic regression network in PDE-Net.
Source: [52]

Figure A.4 Overview of PINNs.
Source: [53]

produce combinations of the terms and ultimately combine them. By these constraints
and architecture, the network layers can be examined and interpreted to determine
what constructed terms ultimately contribute to the final output.

5. Physics informed neural networks (PINNs) [70], Figure A.4

deep feed-forward neural networks, specialized loss functions

This method is less focused on discovering a new model structure and more on fitting
the parameters of a given model. It aims to fit a neural network to given data
representing the solution to some PDE and is trained by verifying that the neural
network satisfies a given PDE form in its loss function. As such, it is fitting a highly
nonlinear function to data but imbuing it with physical constraints.

A distinctive feature of SINDy is its level of interpretability. As an example, a

neural network model fitted to data outputs a function made up of compositions
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of nonlinear functions and linear transformations which each have tuned parameters.

The parameter space is usually so large as to make the network unwieldy to analysis

and render the network a “black-box” transformation that gives almost no information

beyond its output, which makes it difficult to interpret. On the other hand, SINDy

results in a linear combination of known functions that can be analyzed to determine

the contribution and sensitivity of each function with respect to the output, making

the method very interpretable.

A.2 Total Least Squares

The TLS problem looks for the smallest L2 shifts Â and b̂ that give an exact solution

to the linear problem (A+ Â)x = b+ b̂, where A ∈ RN×M , x ∈ RM and b ∈ RN . The

problem can then just be viewed as a projection of the original data onto the convex

set Ax = b. This can be written in the form of an optimization problem as:

minimize
Â,b̂,x

∥∥[Â, b̂]∥∥
F

(A.1)

subject to (A+ Â)x = b+ b̂.

where [Â, b̂] is the horizontal concatenation of the Â matrix with the b̂ vector and∥∥ · ∥∥
F
is the Frobenius norm:

∥∥A∥∥
F
=

√√√√ N∑
i=1

M∑
j=1

|Aij|2 =
√
Tr(AA⊺).

Now this optimization problem has a closed form solution which can be concisely

found by using the singular value decomposition of [Â, b̂] = UΣV ⊺: If we consider the

SVD of the concatenated matrix [A, b] (which has dimension N × (M + 1)):

[A, b] = UΣV ⊺,

we know that the closest projection onto an N ×M matrix can be found by setting

the smallest eigenvalue of Σ to 0. Thus,

[A+ Â, b+ b̂] = UΣ̂V ⊺.
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where Σ = Σ̂ except that Σ̂M,M = 0. Then,

[Â, b̂] = [A, b] + [Â, b̂]− [A, b] = [A+ Â, b+ b̂]− [A, b]

= UΣ̂V ⊺ − UΣ̂V ⊺ = −uMσMv⊺M .

where uM is the M th column of U and σM is the corresponding singular value. Now,

we can see that

[A, b] = UΣV ⊺ =⇒ [A, b]V = UΣ =⇒ [A, b]vM = uMσM

and [Â, b̂] = −uMσMv⊺M = −[A, b]vMv⊺M .

This gives:

[A+ Â, b+ b̂] = [A, b]− [A, b]vMv
⊺
M

=⇒ [A+ Â, b+ b̂]vM = [A, b]vM − [A, b]vM = 0

=⇒ (A+ Â)v1:M−1,M = −vM,M(b+ b̂),

where v1:M−1,M is the M th column of V with rows up to the (M − 1)th row. This

gives us a solution of

xTLS =
1

vM,M

v1:M−1,M ,

where v1:M−1,M is the M th column of V with rows up to the (M − 1)th row.

A.2.1 Regularized Total Least Squares

Regularization is added when a problem is somewhat ill-posed and enforced regularity

can stabilize the solution. Total least squares can suffer from this problem because,

when compared with the OLS solution, the TLS solution has inherently more variance,

which can be expressed as

E[xTLS − E[xTLS]]

where E is the expected value. This translates to a tendency of the solution to have

unreasonably large numbers in certain ill-posed scenarios.
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A modification to the standard TLS problem in Equation A.1 can be derived

by adding a constraint on the size of the coefficients ∥Lx∥2 < δ (where L is a

weighting matrix) which is usually called “Tikhonov regularization.” Our problem

then becomes:

minimize
Â,b̂,x

∥∥[Â, b̂]∥∥
F

(A.2)

subject to (A+ Â)x = b+ b̂,

∥Lx∥2 ≤ δ.

This problem can help to control the size of the elements in the solution but also

introduces a significant computational challenge as inequality constraints are much

more difficult to work with than equality constraints.

However, this problem can also be expressed as the solution to a nonlinear

equation by using a few substitutions which was given as a Theorem in [37]. To show

this, we first absorb the equality constraint into the objective function as:

∥∥[Â, b̂]∥∥
F
and (A+ Â)x = b+ b̂

=⇒
∥∥[Â, b̂]∥∥

F
=
∥∥[A+ Â, b+ b̂]− [A, b]

∥∥
F
=
∥∥[A+ Â, (A+ Â)x]− [A, b]

∥∥
F

=
∥∥[Â, (A+ Â)x− b]

∥∥
F
.

We now square our objective function and write the KKT conditions. First, the

gradient with respect to Â is:

0 = ∇Â

(∥∥[Â, (A+ Â)x− b]
∥∥2
F
+ λ(∥Lx∥2 − δ)

)
= ∇Â

([ N∑
i=1

M∑
j=1

Â2
ij + (Aijxj + Âijxj − bi)2

]
+ λ(∥Lx∥2 − δ)

)
=
[ N∑

i=1

M∑
j=1

2Âij + 2(Aijxj + Âijxj − bi)xj
]

=⇒ (b− Ax)∥x∥22 = (1 + ∥x∥22)Âx.
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The gradient with respect to x is:

0 = ∇x

([ N∑
i=1

M∑
j=1

Â2
ij + (Aijxj + Âijxj − bi)2

]
+ λ((

N∑
i=1

M∑
j=1

(Lijxj)
2)− δ)

)
=
[ N∑

i=1

M∑
j=1

2(Aijxj + Âijxj − bi)(Aij + Âij) + 2λLijxjLij

]
=⇒ A⊺b = A⊺Ax+ Â⊺Ax+ Â⊺(Ax− b) + A⊺Âx+ Â⊺Âx+ λL⊺Lx.

Now, combining these:

A⊺b = A⊺Ax+ Â⊺Ax+ Â⊺(Ax− b) + Â⊺Âx+ A⊺Âx+ λL⊺Lx

= A⊺Ax+ Â⊺Ax+ Â⊺

(
Ax− b+ ∥x∥22

b− Ax
1 + ∥x∥22

)
+ A⊺Âx+ λL⊺Lx

= A⊺

(
Ax+

(b− Ax)∥x∥22
1 + ∥x∥22

)
+ Â⊺Ax+ Â⊺

(
Ax− b
1 + ∥x∥22

)
+ λL⊺Lx

(1− ∥x∥22)A⊺b

1 + ∥x∥22
=

A⊺Ax

1 + ∥x∥22
+ Â⊺Ax+ Â⊺

(
Ax− b
1 + ∥x∥22

)
+ λL⊺Lx

A⊺b = A⊺Ax+ Â⊺Ax(1 + ∥x∥22) + Â⊺Ax− Â⊺b+ A⊺b∥x∥22 + λ(1 + ∥x∥22)L⊺Lx

A⊺b = A⊺Ax− ∥b− Ax∥
2
2

1 + ∥x∥22
Ix+ λ(1 + ∥x∥22)L⊺Lx .

This is a surprising result since the Tikhonov regularized OLS solution can be

written as:

A⊺b = A⊺Ax+ λL⊺Lx.

Thus, in principle, we see that they are not that far apart.

A.2.2 Computational Examples

For a simple computational example, we consider the system (Figure A.5):

y = c1x
5 + c2x

4, x ∈ (−1.1, 0.5), (A.3)

which gives A =

(
x5 x4

)
. Setting up this problem, we can see that TLS

far outperforms OLS when noise is added to the matrix A (Figure A.6), which
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Figure A.5 Example function for feature identification with total least squares as
described in Equation A.3 where c1 = 1.85, c2 = 1.95.

Figure A.6 Demonstration of the improved accuracy of total least squares for cases
when noise is present in the independent variables.
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Figure A.7 Comparison of regularized versions of ordinary and total least squares
to identify the coefficients described in Figure A.5.

is the reason that TLS was originally formulated. However, using the Newton’s

implementation from the previous section, we can see that the regularized TLS

solution behaves very similarly to the regularized OLS solution as we constrain the

size of the coefficients (Figure A.7).

Now, originally, we considered this problem because we noticed that in ill-posed

scenarios when the correct terms (usually high order) were either partially represented

or not present in A, the OLS coefficients tended toward zero and the TLS coefficients

tended toward infinity. In order to recreate this setting, we consider an incorrect

matrix A =

(
x7 x6

)
. Although these terms are incorrect, they represent (roughly)

the same dynamics (Figure A.8).

As expected, using these incorrect terms in our regression biases the OLS

coefficients toward zero while biasing the TLS coefficients toward infinity (Figure

A.9). Since the OLS coefficients are get smaller with more noise, we cannot use

regularization to bring them closer to the true solution. However, we can use our

regularized TLS method to bring the total least squares coefficients toward the correct
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Figure A.8 Comparison of the example function given in Equation A.3 with an
equation which is qualitatively similar but incorrect.

solution (Figure A.10). Thus, we see that total least squares can be used as a potential

solution for ill-posed system identification or parameter recovery problems.

A.3 Optical Flow

Optical flow is tracking the flow of a feature in an image through time. Generally,

you can consider pixel intensity as the most specific feature we want to watch flow

through time: I(x, y, t). If it is unchanging, we can have:

I(x, y, t) = I(x+∆x, y +∆y, t+∆t)

= I(x, y, t) +
∂I

∂x
∆x+

∂I

∂y
∆y +

∂I

∂t
∆t

=⇒ 0 =
∂I

∂x
∆x+

∂I

∂y
∆y +

∂I

∂t
∆t

∂I

∂t
= −∇I · V.

This general form is underdetermined as we need to solve for two components of

velocity V =

u
v

 with only information from one value, pixel intensity: I(x, y, t).
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Figure A.9 The variance of calculated coefficients for the ill-posed least squares
problem in which the correct term is not present.

Figure A.10 Improvements to coefficient accuracy using regularization on ill-posed
problem.
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As a result, we need to make an assumption to close the system. Some common ideas

are:

• Using least squares to solve the underdetermined problem above

• Horn Schunck method: Assume smoothness in the flow and minimize variation

• Account for lack of temporal smoothness [26]

• Scalar invariant feature transform which is the most common feature detection
method [51]

• Tracking patches between frames [80]

A variety of methods are illustrated in the review in [86].

A.4 Circular Gaussian

Given that the domain of orientation p is over the half-circle in 2D, a standard

Gaussian is replaced with a two-peaked variation of the wrapped Gaussian in terms

of angle θ which relates to orientation p as p = (cos θ, sin θ):

τσp(θ) =
1

2σp
√
2π

∞∑
k=−∞

exp

[
−(θ + πk)2

2σ2
p

]
.
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This distribution has peaks at θ = 0, π,−π and standard deviation σp. Now, since

the distribution is a multiplication of Gaussians Ψ(x,p) = Ψ(x)τ(θ), we have:

Q(x) = Ψ(x)

∫
τσp(θ − θ̂)


cos θ
sin θ

[cos θ sin θ

]
− I

2

 dθ

=
1

2
Ψ(x)

∫
τσp(θ − θ̂)


cos 2θ sin 2θ

sin 2θ − cos 2θ


 dθ

=
1

4
Ψ(x)

∫
τσp(θ − θ̂)


 ei2θ + e−i2θ 1

i
(ei2θ − e−i2θ)

1
i
(ei2θ − e−i2θ) −(ei2θ + e−i2θ)


 dθ

=
1

2
Ψ(x)e−2σ2

p


cos 2θ̂ sin 2θ̂

sin 2θ̂ − cos 2θ̂




= Ψ(x)e−2σ2
p

(
p̂p̂− I

2

)
where θ̂ = θ(x) which is the observed orientation at position x and thus p̂ =

(cos θ̂, sin θ̂).

A.5 Thin Film Approximation

If the flow velocity in a thin plate is written as (u, w) where u ∈ R2, x ∈ [0, L]2,

z ∈ [0, H], H ≪ L, the Stokes equations can be written as:

0 = ∇ · σ + η (∆u+ uzz) ,

0 = η (∆w + wzz) ,

0 = ∇ · u+ wz,

u, w = 0 on z = 0, H. (A.4)

Here, the gradient ∇ = (∂x, ∂y) and ∆ = ∂xx+∂yy are defined to be in the plane with

the assumption that there is no stress acting in the z–direction.
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Averaging in the z-direction by integrating the equations in the z-direction from

z = 0 and z = H and dividing by H, the equations are written:

0 = ∇ · σ̂ + η

(
∆û+

uz(x, H)− uz(x, 0)

H

)
0 = η

(
∆ŵ +

wz(x, H)− wz(x, 0)

H

)
0 = ∇ · û, (A.5)

where hats denote quantities that are averaged in the z-direction. These equations

can be solved using the ansatz:

u(x, z) = 6û(x)
z

H

(
1− z

H

)
, w = 0, (A.6)

which is valid for H ≪ L. Velocity in the plane, û, can then be written:

0 = ∇ · σ̂ + η

(
∆û− 12

H2
û

)
0 = ∇ · û. (A.7)

Thus, the depth-averaged equation for the horizontal velocity is the Stokes equation

with a friction term proportional to û. In the limit L≫ H, L being the characteristic

lengthscale of velocity fluctuations, Eq. (A.7) reduces to an equation in which u is

directly determined by the stress σ̂, as proposed in [67].
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