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ABSTRACT

MOTION-RESISTANT PULSE OXIMETRY

by
Ludvik Alkhoury

The measurement of vital signs – such as peripheral capillary oxygen saturation

(SpO2) and heart rate (HR) levels – by a pulse oximeter is studied. The pulse

oximeter is a non-invasive device that measures photoplethysmography (PPG) signals

and extracts vital signs from them. However, the quality of the PPG signal measured

by oximetry sensors is known to deteriorate in the presence of substantial human

and sensor movements contributing to the measurement noise. Methods to suppress

such noise from PPG signals measured by an oximeter and to calculate the associated

vital signs with high accuracy even when the wearer is under substantial motion are

presented in this study.

The spectral components of the PPG waveform are known to appear at a

fundamental frequency that corresponds to the participant’sHR and at its harmonics.

To match this signal, a time-varying comb filter tuned to the participant’s HR

is employed. The filter captures the HR components and eliminates most other

artifacts. A significant improvement in the accuracy of SpO2 calculated from the

comb-filtered PPG signals is observed, when tested on data collected from human

participants while they are at rest and while they are exercising.

In addition, an architecture that integrates SpO2 levels from multiple PPG

channels mounted on different parts of the wearer’s arm is presented. The SpO2

levels are integrated using a Kalman filter that uses past measurements and modeling

of the SpO2 dynamics to attenuate the effect of the motion artifacts. Again, data

collected from human participants while they are at rest and while they are exercising

are used. The integrated SpO2 levels are shown to be more accurate and reliable than

those calculated from individual channels.



Motion-resistant algorithms typically require an additional noise reference signal

to produce high quality vital signs such as HR. A framework that employs PPG

sensors only – one in the green and one in the infrared spectrum – to compute

high quality HR levels is developed. Our framework is tested on experimental

data collected from human participants while at rest and while running at various

speeds. Our “PPG-only” framework generates HR levels with high accuracy and low

computational complexity as compared to leading HR calculation methods in the

literature that require the availability of a noise reference signal.

The methods for SpO2 and HR calculation presented in this study are desirable

since (1) they yield high accuracy in estimating vital signs under substantial level of

motion artifacts and (2) they are computationally efficient, (and therefore are capable

to be implemented in wearable devices).
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CHAPTER 1

INTRODUCTION

Photoplethysmography (PPG) is a noninvasive [1, 2], electro-optic method for

detecting the cardiovascular pulse wave generated by the elastic nature of the

peripheral vascular arteries excited by the quasi-periodic contractions of the heart [3].

Vital signs such as heart rate (HR), respiratory rate (RR), and peripheral capillary

oxygen saturation (SpO2) are usually extracted from PPG waveforms.

In conventional oximetry, simple methods are employed to calculate vital

signs such as SpO2 and HR. However, when the measured individual experiences

substantial motion, sensor readings become noisier, and the conventional methods for

vital sign calculation sometimes fails, providing false and inaccurate readings [4].

In this dissertation, our objective is to develop a robust and computationally

efficient oximetry system that:

(1) is capable of suppressing motion artifacts from the noise contaminated PPG
signal,

(2) can compute high-quality vital signs such as SpO2 and HR, and

(3) is computationally efficient, and hence, can be implemented into wearable
devices.

In Chapters 2 to 5, we address the challenges we mentioned above.

Chapter 2. Background and Literature Review. This chapter provides

some history and background about pulse oximetry along with the fundamentals

behind this technology. The conventional methods used in oximeters to extract

SpO2 and HR are presented.
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Chapter 3. ECG HR-Tuned Comb Filter for Peripheral Blood

Oxygen Saturation Estimation. A motion-resistant framework for SpO2 level

calculation is presented. This method is driven by the observation that the spectral

components of the PPG waveform appear at a fundamental frequency that

corresponds to the person’s HR and at its harmonics. An electrocardiography

(ECG) heart-rate-tuned comb filter is employed to clean up the PPG waveform

before extracting an SpO2 level.

Chapter 4. Mitigation of Motion Artifacts in Pulse Oximetry

through Redundant Sensors. This chapter shows, using experimental data, the

benefits of integrating SpO2 level calculated from multiple channels (two channels in

this case) using a Kalman filter. Integrating multiple channels is beneficial since if

the data for the two channels are collected at sufficient physical distance from one

another, the motion artifacts affecting the two channels are uncorrelated. The

kalman filter is then able to use past measurements and modeling of the SpO2

dynamics to attenuate the effect of the motion artifacts.

Chapter 5. Dual Wavelength Photoplethysmography Framework for

Heart Rate Calculation. The systems proposed in chapters 3 and 4 use HR levels

extracted from an ECG lead, since ECG signals are less susceptible to motion artifacts

than PPG signals. Therefore, the availability of an ECG signal is necessary in these

systems. However, the acquisition of an ECG waveform is more challenging than a

PPG waveform. Moreover, ECG readings are sometimes unavailable, especially in

wrist sensors, which are widely used in the fitness industry. Chapter 5 proposes an

alternative to the use of ECG sensors for HR calculation. Here, we aim to calculate

high-quality HR levels from PPG signals contaminated with high intensity repetitive

“macro-motion” noise. The method uses PPG signals of different wavelengths,
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namely, infrared and green PPG signals. We test the performance of this framework

on real experimental data by comparing the HR levels we calculate using our method

to (1) ground truth manually computed from an ECG lead and (2) the leading HR

calculation methods in the literature.

Wearable sensors are very desirable due to their ability to monitor the health

of their wearer non-invasively. This makes them widely used in medical, military,

and fitness fields. The major drawback of this technology is that the quality of the

vital signs extracted from these devices deteriorates in the presence of substantial

motion artifacts. The systems proposed in this dissertation (chapters 3 to 5) present

possible solutions that improve the accuracy of vital sign calculation from PPG

sensors in the presence of substantial motion artifacts. In addition to high quality

vital signs calculation, the proposed SpO2 and HR motion-resistant methods are

computationally efficient, and hence, they can be implemented into wearable devices.
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CHAPTER 2

BACKGROUND OF PULSE OXIMETRY

2.1 Oxygenated and Deoxygenated Hemoglobin

Hemoglobin is a protein present in the red blood cells that plays a fundamental role

in (1) transporting oxygen molecules from the lungs to tissues and organs of the body

and (2) collecting carbon dioxide and returning it back to the lungs. When it is

bound to an oxygen atom, hemoglobin molecules are called oxygenated hemoglobin

(HbO2). Deoxygenated hemoglobin (Hb) is a name given to hemoglobin molecules

without any oxygen bound. These two hemoglobin groups, namely, HbO2 and Hb,

are referred to as functional1 hemoglobin [5].

Figure 2.1 Cycle of oxygen transportation from the lungs to body organs.

We illustrate in Figure 2.1 the cycle of oxygen transportation from the lungs to

body organs. Oxygen atoms arrive from the lungs and bind to hemoglobin molecules.

Oxygen is then transported (via oxygenated hemoglobin) and released to the body

organs, tissues, and cells (steps 2 and 3 of Figure 2.1).

1Methaemoglobin (MetHb) and Carboxyhemoglobin (COHb) are the other groups of

hemoglobin which do not participate in the oxygen transport. Therefore, MetHb and COHb

are called dysfunctional hemoglobin.
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Figure 2.2 Illustration of the arterial oxygen saturation (SaO2) calculation process.

The arterial oxygen saturation (SaO2) is a measure of oxygen concentration in

blood. This measurement is obtained by analyzing blood drawn from the patient.

SaO2 is calculated using Equation (2.1). SaO2 calculation process is illustrated

in Figure 2.2. In the left-most sample in Figure 2.2, all hemoglobin molecules are

bound to oxygen. Therefore, the arterial oxygen saturation SaO2 is 100%. When

less hemoglobin molecules are bound to oxygen, the arterial oxygen saturation SaO2

decreases. The right-most image of Figure 2.2 shows a sample with low SaO2. In

this example, SaO2 is 25% since only four out of sixteen (4 out of 16) hemoglobin

molecules are bound to oxygen atoms.

SaO2(%) =
C(HbO2)

C(Hb) + C(HbO2)
, (2.1)

where C(HbO2) and C(Hb) is the concentration of oxygenated and deoxygenated

hemoglobin molecules.

2.2 Invention of the Pulse Oximeter

A pulse oximeter is device that detects and calculates the absorption of light by

functional hemoglobin (oxygenated and deoxygenated hemoglobin) to produce an

SpO2 measurement – which is an estimate of SaO2 [5]. The first pulse oximeter was
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invented by Dr. Takuo Aoyagi (see Figure 2.3), a Japanese engineering and inventor

at Nihon Kohden. Dr. Aoyagi’s dream was to detect oxygen saturation levels without

having to draw blood. In 1974, Nihon Kohden applied for a Japanese patent2, for

its pulse oximeter – and Dr. Aoyagi’s dream came true [6]. In 1975, Nihon Kohden

launched “Oximeter OLV-5100” – a pulse oximeter that uses the principle developed

by Dr. Aoyagi’s [7]. Dr. Aoyagi died on April 18, 2020 at the age of 84.

Figure 2.3 Dr. Takuo Aoyagi, inventor of the pulse oximeter.
Source: J. Goodrich, “Takuo Aoyagi, inventor of the pulse oximeter, dies at age 84,” IEEE
Spectrum, 2022. [Online]. Available: https://spectrum.ieee.org/takuo-aoyagi-inventor-of-
the-pulse-oximeter-dies-at-age-84. [Accessed: 20 February 2023].

2.3 Principles of Pulse Oximetry

2.3.1 Beer-Lambert Law

The principles of the pulse oximetry obey the Beer-Lambert Law shown in Equation

(2.2) which is used to describe the light absorption phenomenon in biological tissues

[8]. Io and Ii are the intensities of the reflected and incident lights, respectively. µλ,j,

cj, and dj are the absorption coefficient of light of wavelength λ, concentration, and

2The patent was granted in 1979.
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reflective light path length of layer j of the skin. Equation (2.2) assumes that the

light is shining through a body that comprises J different type of layers.

Io = Ii.exp

(
−

J∑
j=1

µλ,jcjdj

)
. (2.2)

The intensity of the reflected light Io varies as the volume of blood in the cite

of measurement changes. The ratio between the maximum light intensity at diastole

and the minimum at the systole at wavelength λ can be computed as following:

Imax,λ

Imin,λ

= exp

((
E(HbO2, λ).C(HbO2) + E(Hb, λ).C(Hb)

)
.∆l

)
, (2.3)

where ∆l is amount by which the arterial radius expands during the systole and

diastole. E(HbO2, λ) and E(Hb, λ) are the extinction coefficients of HbO2 and Hb at

wavelength λ, respectively. C(HbO2) and C(Hb) are the concentrations of oxygenated

and deoxygenated hemoglobin, respectively [9, 10]. The ∆l term of Equation (2.3)

can be removed by taking the ratio
Imax,λ

Imin,λ

for two different wavelengths. The choice

of the two wavelengths is important since it should have some physical meaning linked

to it.

Figure 2.4 shows the molar extinction (or light absorption) of the HbO2 and

Hb molecules for lights with various wavelengths ranging from ultraviolet (250 nm)

to the infrared spectrum (1000 nm) [11]. The molar extinction of HbO2 and Hb is

somewhat similar for wavelengths ranging from 250 nm to 600 nm. However, we

can observe a difference in the light absorption for HbO2 and Hb in the red (around

650 nm) and infrared (around 900 nm) spectra. For instance, HbO2 absorbs more

infrared light than red light. Oppositely, Hb absorbs more red light than infrared

light. Therefore, if we shine two lights – one of wavelength in the red spectrum and

the other of wavelength in the infrared spectrum – we can obtain information about
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the functional hemoglobin molecules. This wavelength choice (red and infrared) can

also remove the ∆l term of Equation (2.3). We define optical density ratio ‘R’ as

following:

Figure 2.4 Molar extinction coefficient of HbO2 and Hb. Subplot (a) shows the
molar extinction coefficient for lights in the ultraviolet (250 nm) to the infrared
spectrum (1000 nm). Subplot (b) is the zoomed version of subplot (a) for lights
ranging from the red (650 nm) to the infrared spectrum (1000 nm).
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R =

loge

(Imax,λr

Imin,λr

)
loge

(Imax,λir

Imin,λir

) =

(
E(HbO2, λr).C(HbO2) + E(Hb, λr).C(Hb)

)
.∆l(

E(HbO2, λir).C(HbO2) + E(Hb, λir).C(Hb)
)
.∆l

, (2.4)

where λr and λir are the wavelengths of red and infrared lights, respectively. SpO2

can be obtained by plugging Equation (2.4) into Equation (2.1). SpO2 can be written

as following:

SpO2(%) =
R.E(Hb, λir)− E(Hb, λr)

R.
(
E(Hb, λir)− E(HbO2, λir)

)
+ E(HbO2, λr)− E(HbO, λr)

× 100.

(2.5)

If we use the extinction coefficients available in [11], namely, E(Hb, λr) =

3226.6 cm−1(moles/l)−1, E(Hb, λir) = 761.84 cm−1(moles/l)−1, E(HbO2, λr) = 319.6

cm−1(moles/l)−1, and E(HbO2, λir) = 1198 cm−1(moles/l)−1, then we get the

relationship between SpO2 and R of Equation (2.6). Equation (2.6) associates the

volume change in red and infrared lights (R) with an SpO2 level. This type of

relationships is called Beer-Lambert “calibration curve.”

SpO2(%) =
761.84R− 3226.6

−436.16R− 2907
× 100. (2.6)

For simplicity, Beer-Lambert curve of Equation (2.6) is approximated by a first

order polynomial. For example, the Texas Instruments AFE4490 – analog front-

end for the pulse oximetry system – uses two diodes of wavelength of λr = 660

nm for the red light source and λir = 900 nm for the infrared light source. They

provide the calibration curve shown in Equation (2.7) in the manufacturer manual

[12]. This calibration curve is an approximation of Equation (2.6) for the specific

red and infrared lights they employed in their sensor. We show the Beer-Lambert

calibration curve along with the AFE4490 calibration curve in Figure 2.5.
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SpO2(%) = 110− 25R. (2.7)

Next, we discuss the calibration process that is typically used to generate a

calibration curve that links an R value to an SpO2 level for an oximetry sensor.
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Figure 2.5 Calibration curves obtained by Beer-Lambert and AFE4490
manufacturer manual.

2.3.2 Calibrating oximetry sensors

As mentioned in Subsection 2.3.1, two lights, one of wavelength in the red spectrum

and the other of wavelength in the infrared spectrum, are required in order to

generate an SpO2 value. Theoretically, the optical density ratio R is related to SpO2

using Equation (2.5). However, sensor calibration on a large population of people is

required. Optimally, the calibration is achieving in an oxygen controlled environment.

It is done by comparing SaO2 obtained from blood samples drawn from a human

volunteer to the optical density ratio R that is simultaneously calculated from the

oximetry sensor that is mounted on the volunteer. First, the volunteer is given a high
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Figure 2.6 Oximetry sensor calibration. SaO2 and optical density ration R are
calculated simultaneously when the volunteer is breathing a mixture with high
oxygen concentration.

oxygen concentration mixture to breathe. The arterial oxygen saturation, SaO2,

is measured by analyzing a blood sample drawn from the volunteer. Concurrently,

an optical density ratio R value is measured from the oximetry sensor. Figure 2.6
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Figure 2.7 Oximetry sensor calibration. SaO2 and optical density ration R are
calculated simultaneously as the concentration of oxygen in the mixture that the
volunteer breathes decreases.

illustrates the initial step in the oximeter sensor calibration process. In the example

for Figure 2.6, we obtained an SaO2 value of 100% and an R of 0.4. We draw a

point on the graph of Figure 2.6 that corresponds to the pair (R, SaO2). Next,
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the concentration of the oxygen in the mixture that the volunteer breathes gradually

decreases (until reaching a low safe value). At each time step, a new pair (R, SaO2)

is generated and drawn on the same graph of Figure 2.6. Figure 2.7 continues the

example of Figure 2.6. In Figure 2.7, the volunteer is breathing a mixture with a low

oxygen concentration. This results in a low SaO2 level and a high R value. Finally,

all the points that represent the pairs (R, SaO2) are connected to form a calibration

curve.

After constructing the calibration curve, the oximeter generates an SpO2 level

by first measuring the optical density ratio R and then plugging its value in the

calibration relationship that is obtained at the end of the sensor’s calibration.

2.3.3 Transmittance vs. reflectance oximetry

There are two types of pulse oximeters – transmittance and reflectance oximeters.

In both methods, a red and an infrared Light Emitting Diode (LED) are used.

A photo-detector is used in order to capture the transmitted (in the case of

transmittance oximetry) or back-scattered (in the case of reflectance oximetry) light.

In a transmittance oximetry, the red and infrared LEDs and the photo-detector

are placed on opposite sides of the measured site. In this case, the light is shone

through the measured site and the photo-detector collect the light that traversed the

measured side. Transmittance oximetry is commonly used in the clinical settings

and the oximeter is mounted the patient’s finger, earlobe, or toe. In reflectance

oximetery, both the LEDs and the photo-detector are placed at the same side of the

measured tissue. In this case, the light emitted by the LEDs trans-illuminates the

tissue and the back-scattered light is detected by the photo-detector. Reflectance

oximetery can measure SpO2 at any place on the body. Usually, the sensor is

mounted the forehead, wrist, or temple of the patient [13]. Figure 2.8 illustrates
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the transmittance and reflectance sensors. The signal collected by the photo-detector

is called photoplethysmography (PPG) signal.

Figure 2.8 Oximetry illustration (a) transmittance and (b) reflectance.
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2.3.4 Photoplethysmography (PPG) signal

PPG is a noninvasive [1, 2], electro-optic method for detecting the cardiovascular

pulse wave generated by the elastic nature of the peripheral vascular arteries excited

by the quasi-periodic contractions of the heart [3]. PPG signals are collected by the

photo-detector of the pulse oximeter. Vital signs such as HR, respiratory rate (RR),

and SpO2 are usually extracted from PPG waveforms. In Figure 2.9, we show a clean

PPG signal obtained from experimental data in the time domain (Figure 2.9 (a)) and

in the frequency domain (Figure 2.9 (b)). This clean PPG signal was taken from a

healthy male human in the course of intensive exercise regime3.
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Figure 2.9 Subplot (a) is the time domain representation of a PPG signal
extracted from experimental data. Subplot (b) is the frequency domain
representation of a PPG signal extracted from experimental data.

We can observe in Figure 2.9 (b), that the spectral components of the PPG

waveform appear at a fundamental frequency and at its harmonics (also, see Figure

3This PPG signal was collected from a exercise profile under an experimental

protocol that is approved by Naval Air Warfare Center Aircraft Division IRB, protocol

FWR21070114H, original approval date: 12 June 2017. Air Force Research Lab (AFRL)

IRB protocols comply with DoD Directive 3216.02, Title 25, CFR 46, and are in compliance

with the Declaration of Helsinki Revision 6, 2008.
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6 in [14]). The fundamental frequency of the PPG signal corresponds to the person’s

heart rate. In order to study behavior, performance, and trade-offs in the design of

SpO2 estimators, we developed a synthetic PPG signal generator. We modeled the

PPG red (Equation (2.8a)) and infrared (Equation (2.8b)) waveforms as the sum of

a constant DC component and an AC component. The AC component is the sum of

four sinusoids of different amplitude Ai∈{1,2,3,4} (Equation (2.9)). The first sinusoid

is at a frequency f0, ranging from 0.5 to 3.5 Hz (corresponding to the person’s heart

rate and serving as the fundamental frequency). The three other sinusoids are its

second, third, and fourth harmonics. The values of Ai were empirically derived from

clean PPG waveforms taken from human volunteers at rest. The DC component was

a constant value. In our simulation, we set the DC level of red and infrared PPG

signals to 0.4 and 0.7, respectively. Figure 2.10 is an example of the synthetic red

(red trace) and infrared (blue trace) PPG signals.

Red(t) = DCred + ACred (2.8a)

Infrared(t) = DCinfrared + ACinfrared (2.8b)

ACred(t) =
4∑

i=1

−Ai sin(2π × i× f0 × t) (2.9)

where A1=1.242 ×10−3, A2=0.835 ×10−3, A3=1.899 ×10−4, and A4=0.786 ×10−4.

Heart Rate from PPG Signals: There are two conventional approaches to

calculate HR from a PPG signal. The first method is a frequency domain

approach based on the observation that the fundamental frequency of the PPG signal

corresponds to the person’s heart rate. Therefore, HR corresponds to the frequency

that exhibit the highest magnitude in the frequency spectrum of the PPG signal. In
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Figure 2.10 Synthetic red (red trace) and infrared (blue trace) PPG signals.

Figure 2.9, the spectral’s highest magnitude appear at f0 = 1.47 Hz. Therefore, the

person’s HR can be obtained using Equation (2.10) and is equal to 88 bpm.

HR (in bpm) = f0 × 60, (2.10)

where f0 is the PPG signal’s fundamental frequency in Hz.

The second approach is a time domain approach. First, peaks are detected in

the PPG signal during a set time interval. Thereafter, the distance between each

two consecutive peaks is computed. The distance between two consecutive peaks is

the period of the quasi-period PPG signal. HR is obtained by taking the average

distance between two consecutive peaks. Note that in order to exhibit a high

performance in HR levels calculation, the time domain approach requires the use of

sophisticated peak detection methods. We show in Figure 2.11 all the peaks

detected from the clean PPG signal of Figure 2.9. Red circles are added at the

detected peaks. In this example, the average distance between each two consecutive
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peaks is 0.67 seconds – this can translate into a frequency of 1.49 Hz (or 89.4 bpm).

Note that this value is very close to the heart estimated using the frequency domain.
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Figure 2.11 Peaks detected (red circles) from the clean PPG signal of Figure 2.9.

Peripheral Blood Oxygen Saturation from PPG Signals: Raw PPG (red

and infrared) waveforms have two main components, namely: an AC component

due to the light absorbed by pulsatile arterial blood, and a DC component due

to the light absorbed by non-pulsatile components, such as tissues, venous, and

capillary blood [15]. The AC component is obtained by applying a bandpass filter of

passband frequency of 0.5 Hz to 10 Hz. The DC component is obtained by appyling

a lowpass filter of bandpass filter of 0.5 Hz. Since the DC component varies from one

person to another (depending on variables such as skin tone and tissue thickness), a

normalization process is commonly used. The normalization is done by dividing the

signal’s AC component by its constant DC component. Figure 2.12 illustrates the
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normalization process on a red and an infrared PPG synthetic signals. As discussed

previously in Subsection 2.3.1, we need two lights – one in the red spectrum and

another in the infrared spectrum – in order to obtain an SpO2 level. The optical

density ratio R, can be obtain using Equation (2.4). In practice, Equation (2.4) is

estimated and replaced by a normalization technique [10]. The optical density ratio

R can be estimated and re-written as:

R =
ACred/DCred

ACir/DCir

=
Normalizedred

Normalizedinfrared
. (2.11)

The ratio R of Equation (2.11) is plugged into the sensor’s calibration equation – for

example Equation (2.7) is AFE4490 oximetry system is used – in order to obtain an

SpO2 level. This method is referred to as “Red-over-Infrared” (RoI) approach.

Figure 2.12 Illustration of the normalization process of synthetic red (red trace)
and infrared (blue trace) PPG signals.

The time and frequency domain approaches for HR calculation and the RoI

approach for SpO2 calculation are effective when the person is steady during

measurement. However, when the measurement happen while the person is

experiencing substantial motion, the estimates become noisier, and the conventional

approaches used for vital signs calculation sometimes fails, providing false and
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inaccurate readings [4]. In the following chapters, we will introduce motion-resistant

methods for SpO2 and HR calculation.
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CHAPTER 3

ECG HR-TUNED COMB FILTER FOR PERIPHERAL BLOOD

OXYGEN SATURATION ESTIMATION

Calculation of SpO2 levels in humans is often made with a pulse oximeter, using

PPG waveforms. However, measurements of PPG waveforms are susceptible to

motion noise due to human and sensor movements. In presence of substantial motion

artifacts, the conventional methods of vital signs calculations fail. Motion resistant

algorithms are needed in order to provide accurate vital sign estimate in presence of

motion. In this chapter, we introduce a pre-filtering method, that uses a heart-rate

tuned comb peak filter to clean the PPG signals. We compare two SpO2-level

calculation techniques, and measure the effect of pre-filtering (by a heart-rate tuned

comb peak filter) on their performance. These techniques are:

1. Red over Infrared (RoI) method, calculating the ratios of AC and DC
components of the red and infrared PPG signals, followed by the use of a
calibration curve to determine the SpO2 level [1].

2. A motion-resistant algorithm which uses the Discrete Saturation Transform
(DST) [2]. The DST algorithm isolates individual “saturation components”
in the optical pathway, which allows separation of components corresponding
to the SpO2 level from components corresponding to noise and interference,
including motion artifacts.

The comparison we provide here (employing the two techniques with and without

pre-filtering) addresses two aspects: (1) accuracy of the SpO2 calculations; and

(2) computational complexity. We used both synthetic data and experimental data

collected from human participants. The human participants were tested at rest and

while exercising; while exercising, their measurements were subject to the impacts

of motion. Our main conclusion is that if an uninterrupted high-quality heart rate

measurement is available, then the RoI approach preceded by a heart-rate tuned comb

filter provides the preferred trade-off between SpO2-level accuracy and computational

21



complexity. A modest improvement in SpO2 estimate accuracy at very low SNR

environments may be achieved by switching to the pre-filtered DST-based algorithm

(up to 6% improvement in SpO2 level accuracy at -10 dB over unfiltered DST

algorithm and the filtered RoI approach). However, this improvement comes at a

significant computational cost.

3.1 Motion Resistant Algorithms for SpO2 Level Calculation

In presence of substantial motion, measurements become noisier, and the RoI

approach – the conventional approach for SpO2 calculation – sometimes fails,

providing false and inaccurate readings [4]. A Discrete Saturation Transform (DST)

based algorithm [2] that uses an adaptive noise cancellation filter [16, 17] was

proposed to suppress some motion artifact effects on SpO2 level calculations, thereby

improving pulse oximetry. A 2002 study [18] reviewed the performance of twenty

(20) commercial oximeters, and compared SpO2 readings from stationary “control

hand” of each of the seventy (70) healthy human participants to readings from the

participant’s other hand, which was in motion. In this study, a Masimo SET (Signal

Extraction Technology) pulse oximeter, which uses the DST algorithm, exhibited the

best performance over all other tested oximeters. Other comparisons of oximeter

performances were reported in [19] (from 2016) and [20] (from 2018). The study in

[20] also included a DST-based oximeter (Masimo Radical-7). It concluded that in

the face of motion artifacts, the DST-based oximeter performed at a similar level to

other FDA-cleared pulse oximeters1.

In this study we are motivated by the observation that the spectral components

of the PPG waveform appear at a fundamental frequency that corresponds to the

person’s heart rate and at its harmonics (see Figure 2.9 (b)). A comb filter tuned

to these (possibly time-varying) frequencies thus may have the potential to “clean

1The pulse oximeters reported upon in [20] were the following: Masimo Radical-7, Nihon

Kohden OxyPal Neo, Nellcor N-600, and Philips Intellivue MP5.
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up” the PPG waveform prior to applying the SpO2 calculation algorithm. The low

computational complexity of a comb filter (when realized in software) may offer a

viable alternative to the use of the more computationally complex realization of DST

algorithm based systems.

3.2 Methods of ECG-HR Tuned Comb Filter

A block diagram of a processing module for PPG signals towards SpO2 level

calculation is shown in Figure 3.1. The module is subdivided into three main stages:

(1) pre-processing, (2) filtering, and (3) SpO2 calculation. The inputs are raw PPG

(red and infrared signals) and ECG waveforms, and the outputs are SpO2 levels. The

virtual switch enables comparison of the performance of the SpO2 calculation module

with and without the comb filter.

Figure 3.1 SpO2 calculation procedure.

(1) In the pre-processing stage, raw PPG signals are normalized (Subsection 3.2.1).
Concurrently, HR is calculated from an ECG waveform which is assumed to be
available (Subsection 3.2.2).

(2) In the filtering stage, the normalized PPG waveforms are processed with a
heart-rate tuned peak comb filter (Figure 3.2 (b)) that uses the calculated HR
as a reference signal (Subsection 3.2.3). The filter presents its lowest attenuation
at the HR frequency and its principal harmonics, and higher attenuation
otherwise.

(3) The virtual switch (in Figure 3.1) allows us to compare the SpO2 estimate that
uses the normalized PPG signals to the estimate that uses these signals after
comb filtering.

(4) In the SpO2 calculation stage, we use one of two different algorithms RoI
approach [4] or a DST-based algorithm [2].
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3.2.1 Normalization

Raw PPG (red and infrared) waveforms have two main components, namely: an AC

component due to the light absorbed by pulsatile arterial blood, and a DC component

due to the light absorbed by non-pulsatile components, such as tissues, venous, and

capillary blood [15]. Since the DC component varies from one person to another

(depending on variables such as skin tone and tissue thickness), a normalization

process is commonly used. The normalization is done by dividing the signal’s AC

component by its constant DC component.

3.2.2 Heart rate calculation

We assume that we have access to the electrocardiography (ECG) waveform of the

participant whose SpO2 level we measure. The ECG waveform is known to be less

susceptible to motion noise than the PPG waveform [21, 22]. HR (in beats per

minute (BPM)) was calculated in our study from an ECG signal through the Pan

and Tompkins algorithm [23]. Since the fundamental frequency of the PPG signal

is the HR, we use the HR to tune the comb filter. The comb filter discriminates

against the portion of the PPG input signals which are not at the HR frequency or

one of its principal harmonics.

3.2.3 Comb filter

The spectral components of the PPG waveform appear at a fundamental frequency

(corresponding to the person’s HR) and its harmonics (see Figure 2.9 (b)). The use

of a comb peak filter tuned to these frequencies may therefore serve to clean up the

PPG waveform. The filter exhibits low attenuation at the fundamental frequency

and its harmonics, and high attenuation in the intermediate regions between these

frequencies (see Figure 3.2 (b)). In this manner, the filter reduces noise that resides

in the intermediate regions. In order to reject as much noise as possible, we want
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the ‘peaks’ of the filter to be narrow. On the other hand, overly narrow peaks are

likely to miss the PPG harmonics if the tuning is not exact (if the filter is not tuned

exactly to the HR). Therefore, a compromise is needed between tuning accuracy and

noise-rejection capability. We employed an IIR comb filter with the transfer function

Hc(z) = βc
1 + z−Kc

1− γcz−Kc
, (3.1)

where γc and βc are two positive scalars and Kc is the comb filter’s order. The design

equations are shown in Table 3.1. We have selected the 3 dB bandwidth, fc,BW , to be

0.2 Hz (capturing 97.5% of the total power of the signal of interest). For this fc,BW

selection, if we tune the comb filter to the person’s HR frequency (PPG signal’s

fundamental frequency), f0=1 Hz, the null-to-null bandwidth of the filter’s lobes is 1

Hz and the 10 dB bandwidth is 0.49 Hz. The sampling rate was fs = 256 Hz.

Table 3.1 Comb Filter Design Equations

Kc =
fs
f0

(dimensionless)
f0 is the fundamental frequency (HR) in
Hz. fs is the sampling frequency.

βc =
1− γc

2
(dimensionless)

Gain at fundamental frequency and its
harmonics set to 1.

fc,BW = cos−1

(
2γc

γ2
c + 1

)
× f0

180
(Hz) 3 dB bandwidth set.

Figure 3.2 shows a frequency domain plot of a noise contaminated PPG signal

measured on a healthy male participant during aerobic exercise (see Subsection 3.3.2

for more details). The signal is passed through a heart-rate tuned comb filter whose

transfer function (magnitude response) is shown in Figure 3.2 (b). The fundamental

frequency (HR frequency) of the participant is f0 = 2.29 Hz. The parameters of the

comb filter are Kc = 112, γc = 0.7570, and βc = 0.1215. Figure 3.2 (c) shows the

clean PPG signal emerging from the comb filter.
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Figure 3.2 (a) Frequency domain representation of a noise contaminated
experimental PPG waveform of fundamental frequency f0=2.29 Hz. (b) Magnitude
response of a tuned comb filter. (c) Frequency domain representation of the
comb-filtered PPG waveform.
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3.2.4 SpO2 level calculation

The “Red over Infrared” (RoI) approach

In the RoI approach, two light sources of different wavelengths, λr and λir (red and

infrared light, respectively), are used. The optical density ratio R is defined as the

ratio of the normalized red to the normalized infrared waveforms. In our study,

we have used the Texas Instruments AFE4490 as the analog front-end for the pulse

oximetry system – using diodes of wavelength of λr = 660 nm for the red light source

and λir = 900 nm for the infrared light source. In order to calculate SpO2 levels,

we employed first the calibration curve of Equation (2.7) which was provided by the

manufacturer as the standard model [12]. This calibration curve is re-shown in this

chapter as Equation (3.2).

SpO2(%) = 110− 25R. (3.2)

To study the sensitivity of our statistical results and main conclusions (Subsection

3.4.2 and Table 3.7) to the specification of the calibration curve, we have also

employed two alternate calibrations curves in this study (viz., we calculated the

statistics separately for each one of three different calibration curves, see Figure 3.3).

The first alternate curve is provided by the Beer-Lambert method [24], shown

in Figure 3.3 as a black trace. Notably, the AFE4490 calibration curve (red trace)

shows a relationship between SpO2 and R which is “to the right and above”

Beer-Lambert curve (black curve of Figure 3.3)2. Hence, the AFE4490 calibration

model overestimates the SpO2 level when compared ot the Beer-Lambert estimate

at the same value of R.

The second alternate curve is “to the left and below” (magenta curve of Figure

2The Beer-Lambert equation of Equation (2.6) is re-shown as Equation (3.3) in this

chapter.
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Figure 3.3 Calibration curves used for sensitivity study.

3.3) the Beer-Lambert curve, and hence underestimates the SpO2 level when

compared to the Beer-Lambert estimates. We denote this curve of Equation (3.4)

“underestimation calibration curve” (it has the same slope (-25) as the standard

model). The equations of the alternate calibration curves are as follows.

Beer-Lambert estimation calibration curve:

SpO2(%) =
761.84R− 3226.6

−436.16R− 2907
× 100. (3.3)

Underestimation calibration curve:

SpO2 = 94− 25R. (3.4)

The Discrete Saturation Transform (DST) algorithm

The DST algorithm [2] was derived to measure SpO2 levels in the face of motion

noise. In developing the algorithm, it was assumed that the clean PPG signal of

28



interest is contaminated by additive noise, uncorrelated with the signal. The red and

infrared PPG signals are the inputs and the SpO2 level is the output. A family of

reference signals is generated for each optical density ratio corresponding to SpO2

values ranging from 50% to 100% at a resolution of 0.5%. The reference signal is

defined as

reference signal(t) = infra(t)× r − red(t) . (3.5)

Here, ‘r’ is an arbitrary optical density ratio value that corresponds to SpO2 levels

ranging from 50% to 100% (we use the calibration curve Equation (3.2), which gives

the corresponding values of ‘r’ of 0.4 to 2.4). “red(t)” and “infra(t)” are the time-

dependent red and infrared PPG signals collected on a range of t∈[0,Ts] (Ts is typically

10 seconds); they serve as the two inputs of the DST algorithm. Figure 3.4 is the

block diagram of the DST algorithm. The inputs of the DST algorithm are a red and

an infrared PPG signal. The output is an SpO2 estimate. The red ‘x’ in Figure 3.4

is the SpO2 level estimated by the DST algorithm. The blue ‘*’ is the SpO2 ground

truth.

According to Goldman et al. [2], noise contaminated red and infrared PPG

signals can be written as

red(t) = Sred(t) +Nred(t), (3.6)

and

infra(t) = Sinfra(t) +Ninfra(t) . (3.7)

Using Equations (3.6) and (3.7), we can redefine Equation (3.5) as

reference signal(t) = (r − rSpO2)× Sinfra(t) + (r − rNoise)×Ninfra(t), (3.8)
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Figure 3.4 DST algorithm block diagram and DST spectrum for a
noise-contaminated synthetic PPG signal of SNR of 0 dB. The SpO2 level calculated
by the algorithm corresponds to the right-most peak in the DST spectrum (output
power vs. SpO2 level) and is represented by a red ‘x.’ The blue ‘*’ is the SpO2

ground truth.

where Sinfra(t) andNinfra(t) are the desired signal component and noise component of

the infrared PPG signal, respectively. rSpO2 , the optical density ratio that corresponds

to the correct SpO2 value, is defined in Equation (3.9). Additionally, rNoise, the ratio

of the noise component of the red and infrared PPG signals, is defined in Equation

(3.10) [2].

rSpO2 =
Sred(t)

Sinfra(t)
. (3.9)

rNoise =
Nred(t)

Ninfra(t)
. (3.10)

The DST algorithm employs Adaptive Noise Cancellation (ANC) filters [16, 17]

to remove noise, and provide a “clean” SpO2. For each arbitrary ‘r’ (corresponding

to an SpO2 level between 50% and 100%), the reference signal and the infrared signal

are fed into an ANC filter which identifies and removes frequency components which
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are in common between the two signals [2]. The power of the signal collected at the

output of the ANC is calculated for each reference signal. The “DST spectrum” shows

the SpO2 values (or ‘r’ value) used to generate the reference signals on the abscissa,

and the power of the ANC’s output for each reference signal on the ordinate. As we

vary the values of ‘r,’ we observe three distinct cases, namely;

Case 1: r ̸= rNoise ̸= rSpO2 ,

Case 2: r = rNoise, and

Case 3: r = rSpO2 .

Figure 3.5 Illustration of case 1, namely, r = rA ̸= rNoise ̸= rSpO2 . In this case, the
noise reference signal contains the desired signal component as well as a noise
component. Therefore, the output of the ANC is a signal of a weak power PA. The
point (rA, PA) (red square) is used to construct the DST spectrum. The blue ‘*’ is
the SpO2 ground truth.
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To better understand how the ANC filters are used in the DST algorithm, we

developed an example where two PPG signals, a red and an infrared, are contaminated

with an bandpass filtered (0.5 to 5 Hz) AWGN noise. The Signal-to-Noise (SNR) (see

Equation (3.11)) ratio is 0 dB. The ratio between the desired component of red and

infrared signals, rSpO2 , is preset to 0.5, which yields into an SpO2 ground truth of

97.5%. The ratio between the noise component of red and infrared signals, rNoise is

set to 1.

SNR =
V ar(S)

V ar(N)
, (3.11)

where S is the desired signal and N is the noise component.

Case 1 is illustrated in Figure 3.5. In this illustration, the arbitrary optical

density ratio taken a value r = rA = 2. When plugged in the calibration curve

Equation (3.2), r = rA = 2 (rA ̸= rNoise ̸= rSpO2) will correspond to an SpO2 value of

60%. At this instance, the reference signal calculated using Equation (3.8) is

reference signal(t) = (rA − rSpO2)× Sinfra(t) + (rA − rNoise)×Ninfra(t). (3.12)

We can see from Equation (3.12) that the reference signal contains both, desired signal

components, (rA− rSpO2)×Sinfra(t), and noise components, (rA− rNoise)×Ninfra(t).

The input signal, infra(t), and the reference signal of Equation (3.12) are used as

inputs to the ANC. Since both signals contain desired signal components and noise

components, the output of the ANC will be a very weak signal. We calculate the

power of the output signal and denote it PA. The pair (rA, PA), represented as a red

square in Figure 3.5, is one of points used to construct the DST spectrum.

We keep decreasing the value of ‘r’ until we reach the value r = rB = 0.94 which

is very close to rnoise (r = 0.94 corresponds to 86.5% when plugged in Equation (3.2)).
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Figure 3.6 Illustration of case 2, namely, r = rB which is very close to rNoise. In
this case, the noise reference signal contains only the desired signal component.
Therefore, the output of the ANC is the noise component of power PB. The point
(rB, PB) (green square) is the noise peak in the DST spectrum. The blue ‘*’ is the
SpO2 ground truth.

Figure 3.6 is used for illustration of this case (case 2). At this instance, the reference

signal calculated using Equation (3.8) is

reference signal(t) = (rB − rSpO2)× Sinfra(t) + (rB − rNoise)×Ninfra(t), (3.13)

and since rB is very close to rNoise, Equation (3.13) can be re-written as

reference signal(t) = (rnoise − rSpO2)× Sinfra(t). (3.14)

Note from Equation (3.14) that the reference signal contains only the desired

signal components, (rnoise − rSpO2) × Sinfra(t). The ANC will remove the signal
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Figure 3.7 Illustration of case 3, namely, r = rC which is very close to rSpO2 . In
this case, the noise reference signal contains only the noise component. Therefore,
the output of the ANC is the desired signal component of power PC . The point (rC ,
PC) (magenta square) is the SpO2 peak in the DST spectrum. The blue ‘*’ is the
SpO2 ground truth.

component from the input signal, infra(t). Therefore, the output of the ANC will be

the noise component. We calculate the power of the output signal (noise component

in this case) and denote it PB. The pair (rB, PB), represented as a green square in

Figure 3.6, correspond to the noise peak in the DST spectrum.

We continue decreasing the value of ‘r’ until we reach the value r = rC = 0.56

which is very close to rSpO2 (r = 0.56 corresponds to 96% when plugged in Equation

(3.2)). Figure 3.7 is used for illustration of this case (case 3). At this instance, the

reference signal calculated using Equation (3.8) is

reference signal(t) = (rC − rSpO2)× Sinfra(t) + (rC − rNoise)×Ninfra(t), (3.15)
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and since rC is very close to rSpO2 , Equation (3.15) can be re-written as

reference signal(t) = (rSpO2 − rNoise)×Ninfra(t). (3.16)

Note from Equation (3.16) that the reference signal contains only the noise

components, (rSpO2 − rNoise)×Ninfra(t). The ANC will remove the noise component

from the input signal, infra(t). Therefore, the output of the ANC will be the desired

signal component. We calculate the power of the output signal (desired signal in this

case) and denote it PC . The pair (rC , PC), represented as a blue square in Figure 3.7,

correspond to the SpO2 peak in the DST spectrum. Note that the SpO2 estimated

using DST algorithm was 96% while the ground truth was 97.5%. This error is caused

by noise that contaminated the red and infrared PPG signals.
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Figure 3.8 (a) DST spectrum for a clean synthetic PPG signals – (b) DST
spectrum for a noise-contaminated synthetic PPG signals (SNR = 0 dB). The blue
‘*’ is the SpO2 ground truth and the red ‘x’ is the SpO2 level that the DST
algorithm calculates. The SpO2 ground truth for both subplots was 97.5%.

Figure 3.8 shows the DST spectrum for clean (Figure 3.8 (a)) and noise-

contaminated (Figure 3.8 (b)) synthetic PPG signals (for the way synthetic PPG

signals were generated, see Subsection 3.3.1). In the case of a clean PPG signal,

the DST spectrum shows only one peak. Its location corresponds to the SpO2 level

estimate (Figure 3.8 (a)). The SpO2 level calculated by the DST algorithm for this
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synthetic PPG signals (the red ‘x’ on Figure 3.8 (a)) matches the SpO2 ground truth

(blue ‘*’ on Figure 3.8 (a)). For the noisy signal, two distinct peaks will typically

appear, as shown in Figure 3.8 (b). One peak corresponds to SpO2 level and the other

peak is due to noise. The right-most peak is considered to correspond the SpO2 peak.

The SpO2 level calculated by the DST algorithm in the example used for Figure 3.8

(b) (the red ‘x’) slightly deviates from the ground truth (blue ‘*’). This difference is

caused by noise.

3.3 Generation of PPG and ECG Signals

3.3.1 Synthetic data generation

Photoplethysmography (PPG) signals: As mentioned in Subsection 2.3.4, in

order to study behavior, performance, and tradeoffs in the design of SpO2 estimators,

we developed a synthetic PPG signal generator. We modeled the PPG red and

infrared waveforms as the sum of a constant DC component and an AC component.

The AC and DC components are shown in Equations (2.8a) and (2.8b), respectively.

Electrocardiography (ECG) signals: The ECG signal is generally composed of

P, QRS, T, and U waves [25]. Islam et al. [26] modeled a synthetic clean ECG

waveforms by assuming that the QRS, Q, and S portions of the ECG signal can be

represented by triangular waveforms, and the P, T, and U portions can be represented

by the positive half period of a sinusoidal waveform. Their model was used in this

study to generate the synthetic ECG waveforms [27]. Figure 3.9 shows a synthetically

generated ECG signal at a fundamental frequency (HR frequency) of 1 Hz.

3.3.2 Human participant data – NAWCAD experiment

We have used human participant data collected from an experiment conducted

in 2018-2019 by the United States Naval Air Warfare Center Aircraft Division

(NAWCAD). Data were collected from fourteen (14) test participants who were
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Figure 3.9 Synthetic ECG signal.

briefed and provided informed consent. All participants were volunteers, military or

civil-service personnel in the employ of the US federal government. All participants

were non-smokers and were reviewed by a medical monitor to ensure that they were

physically fit to participate3.

Each participant was exposed to the following profile of activities (Figure 3.10).

1. Warm-up – a warm-up and stretching session, designed to raise and maintain
Target Heart Rate (THR)4 intensity of 50% - 60% (approximately 5 minutes).

2. Aerobic – run on treadmill/bike session to raise and maintain THR of 60% -
80% (approximately 12 minutes), followed by active recovery (approximately 6
minutes), designed to decrease the heart rate by a reduced-intensity jog/walk
or cycling activity.

3. Anaerobic – two sessions, each consisting of three 90-second periods of strenuous
effort (treadmill/bike) designed to raise and maintain THR of 80% - 90%,
separated from each other by one (1) minute of active recovery, designed to
decrease heart rate by a reduced-intensity jog/walk or cycling; the two sessions
were separated from each other by a period of active recovery (approximately 6
minutes). Next, the participant undertook a period of active recovery (around
4 minutes).

3Study approved by Naval Air Warfare Center Aircraft Division IRB, protocol

FWR21070114H, original approval date: 12 June 2017. Air Force Research Lab (AFRL)

IRB protocols comply with DoD Directive 3216.02, Title 25, CFR 46, and are in compliance

with the Declaration of Helsinki Revision 6, 2008.
4The target Heart Rate (THR) is determine using the Karvonen formula [28] THR =

((HRmax – HRrest) × (%intensity)) + HRrest, where HRmax = 208 - 0.7 × age [29]

37



Figure 3.10 Illustration of the phases of the exercise experimental profile along
with Target Heart Rate (THR) intensity. Black boxes indicate the range of THR in
each exercise phase.

4. Cool-down – a cool-down and stretching session to maintain a THR of 50% -
60% (about 5 minutes).

Figure 3.10 shows all stages of this regime, marked stage 0 to stage 15.

During the experimental runs, signals were recorded from a prototype dual pulse

oximeter system with an accelerometer worn on the arm developed by Athena GTX

(Holistic Modular Aircrew Physiologic Status (HMAPS) Monitoring System), and

ECG electrodes affixed to the chest. Additionally, a Nonin 8000R reflectance pulse

oximetry sensor was mounted on the participant’s temple and connected by wires to

the Nonin Wrist-Ox 3150 for data processing. The 8000R sensor was mounted on the

participant’s temple in a solid and stable manner that minimized sensor movements

or dislocations on the temple surface even during strenuous exercise. SpO2 levels

calculated by the temple Nonin 8000R sensor were considered the “ground truth” due

to the high accuracy of this sensor5. Performance of the arm-mounted oximeters was

5In general, reflectance pulse oximetry, such as the method used by Nonin 8000R

is known to be much less vulnerable to artifacts (including motion artifacts). The
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assessed with respect to the readings of the temple-mounted 8000R sensor (Subsection

3.4.2).

3.4 Impact of a Heart-Rate Tuned Comb Filter on Peripheral Blood

Oxygen Saturation Measurement Performance

3.4.1 Peripheral blood oxygen saturation level calculations on
synthetic data6

We set out to assess the effect of the heart-rate tuned comb filter on accuracy of

calculated SpO2 levels. To this end, we employed the RoI approach and the DST-

based algorithm on a 10-second long synthetic PPG waveforms, with and without

pre-filtering of the PPG signal by a comb filter. SpO2 level and HR were set to

97.5% and 60 bpm, respectively. We modeled the motion artifact noise, N, as a

bandpass (0.5-5 Hz) filtered AWGN (as was done in [29]), added to the clean PPG

signal, S.

In Figure 3.11 we show the Root Mean Square Error (RMSE) of SpO2 levels

calculated from synthetic PPG signals for an SNR ranging from -10 dB to +10 dB.

We used the RoI approach and the DST-based algorithm, both before and after

processing the synthetic PPG signals with the heart-rate tuned comb filter. The

RMSE is defined as

RMSE(s) =

√√√√ 1

R

R∑
r=1

(SpO2cal(r)− SpO2GT )
2, (3.17)

where ‘SpO2cal(r)’ is one value (out of the 1000 realizations) of the SpO2 level

calculated using one of the tested methods (RoI or DST-based algorithm, with and

manufacturer reports that SpO2 accuracy of the Model 8000R sensor was determined

through an induced hypoxia study on healthy participants over the range of 70% to 100%

[30]. The resulting SpO2 accuracy was ±2Arms in the range 80-100% and ±3Arms in the

range 70-80%. ±1Arms encompasses 68% of the population at zero bias.
6In this section we have used calibration curve Equation (3.2). We have repeated the

calculation for calibration curves of Equations (3.3) and (3.4) and the trends and conclusion

remain the same.
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Figure 3.11 SpO2 Root Mean Square Error using RoI approach and the
DST-based algorithm, with and without a comb filter.

Figure 3.12 Histogram of 1000 SpO2 levels calculated from red and infrared PPG
signal with SNR=-10 dB using a) RoI approach – b) RoI approach preceded by a
heart-rate tuned comb filter – c) DST-based algorithm – d) DST-based algorithm
preceded by a heart-rate tuned comb filter.

without comb filtering); ‘SpO2GT ’ is the ground truth SpO2 value; ‘R’ is the number

of SpO2 levels calculated for each SNR, and ‘s’ the SNR value at which the RMSE

is calculated. In our study, SpO2GT=95%, R=1000 realizations, and s = -10, -9, . . . ,

-1, 0, 1, . . . , 9, 10 (dB).
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Figure 3.13 Histogram of 1000 SpO2 levels calculated from red and infrared PPG
signal with SNR=0 dB using a) RoI approach – b) RoI approach preceded by a
heart-rate tuned comb filter – c) DST-based algorithm – d) DST-based algorithm
preceded by a heart-rate tuned comb filter.

Figure 3.14 Histogram of 1000 SpO2 levels calculated from red and infrared PPG
signal with SNR=10 dB using a) RoI approach – b) RoI approach preceded by a
heart-rate tuned comb filter – c) DST-based algorithm – d) DST-based algorithm
preceded by a heart-rate tuned comb filter.
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The main conclusion from Figure 3.11 is that the unfiltered RoI approach

is inferior to the other approaches (namely filtered RoI and DST-based algorithm

(filtered or unfiltered)). The filtered RoI approach and the unfiltered DST-based

algorithm are comparable. The best performance was obtained by the filtered

DST-based algorithm.

Figures 3.12, 3.13, and 3.14 are the histograms of SpO2 levels (1000 SpO2

calculations each) calculated using RoI approach and the DST-based algorithm, both

with and without processing the synthetic PPG signals with the heart-rate tuned

comb filter. We show results for a SNR of -10 dB (Figure 3.12), 0 dB (Figure 3.13),

and 10 dB (Figure 3.14). The histograms get closer to the SpO2 ground truth (SpO2

of 95%) when the synthetic PPG signals are preprocessed by the heart-rate tuned

comb filter for both SpO2 calculation methods (RoI and the DST). We conclude

that (1) the use of a heart-rate tuned comb filter has improved the performance of

both methods (RoI and the DST), and (2) the best performance is obtained with the

DST-based algorithm preceded by a heart-rate tuned comb filter. Next best is the

RoI approach with comb filtering and unfiltered DST-based algorithm (SpO2 levels

estimated with these two techniques are comparable); the worst performance was the

unfiltered RoI approach.

3.4.2 Peripheral blood oxygen saturation level calculations on
experimental data

Data analysis using the AFE4490 manufacturer calibration curve
Equation (3.2)

We tested the RoI approach and the DST-based algorithm on data collected from

human participants, with and without comb filtering. Data were collected from

fourteen (14) human participants for the regime described in Subsection 3.3.2 and

Figure 3.10. Every two seconds, the preceding 10-second long data segment was

processed. We show the results of one of the fourteen (1 of 14) participants on
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Figure 3.15 (we covered the time period from 5 to 35 minutes of the exercise profile,

corresponding to stages 1 to 8 in Figure 3.10). A detailed description of the traces

in Figure 3.15 is provided in Tables 3.2, 3.3, 3.4, and 3.57. In all cases, the standard

against which the various methods were assessed was the readings of the Nonin 8000R

sensor (light blue trace in Figure 12 (b), (c), (d)).

Table 3.2 Detailed Description on all Traces Shown in Subplot (a) of Figure 3.15

Trace
label

Trace
color

Trace name Description

F
ig
u
re

3
.1
5
(a
) a1 Blue X x-axis accelerometer

a2 Red Y y-axis accelerometer

a3 Orange Z z-axis accelerometer

Table 3.3 Detailed Description on all Traces Shown in Subplot (b) of Figure 3.15

Trace
label

Trace
color

Trace name Description

F
ig
u
re

3
.1
5
(b

)

b1 Light blue Nonin SpO2
SpO2 levels calculated by
Nonin 8000R sensor

b2
Green
(top curve)

SpO2 “RoI”
SpO2 levels calculated using
“RoI” approach before comb
filter.

b3
Black
(top curve)

SpO2 “RoI” +
Comb Filter

SpO2 levels calculated using
“RoI” approach after comb
filter.

b4

Green
(bottom
curve)

SpO2 Difference
between Nonin
and “RoI”

SpO2 Difference between levels
calculated by Nonin 8000R
sensor and “RoI” approach
before comb filter.

b5

Black
(bottom
curve)

SpO2 Difference
between Nonin
and “RoI” +
Comb Filter

SpO2 Difference between levels
calculated by Nonin 8000R
sensor and “RoI” approach
after comb filter.

7Data for all 14 participants are available at https://github.com/moshekam/PPG-

Exercise-Experimental-Data, retrieved on 20 February 2023.
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Table 3.4 Detailed Description on all Traces Shown in Subplot (c) of Figure 3.15

Trace
label

Trace color Trace name Description
F
ig
u
re

3
.1
5
(c
)

c1 Light blue Nonin SpO2
SpO2 levels calculated by Nonin
8000R sensor

c2
Dark blue
(top curve)

SpO2 DST-based
SpO2 levels calculated using DST-
based algorithm before comb filter.

c3
Magenta
(top curve)

SpO2 DST-based
+ Comb Filter

SpO2 levels calculated using DST-
based algorithm after comb filter.

c4

Dark blue
(bottom
curve)

SpO2 Difference
between Nonin
and DST-based

SpO2 Difference between levels
calculated by Nonin 8000R sensor
and DST-based algorithm before
comb filter.

c5

Magenta
(bottom
curve)

SpO2 Difference
between Nonin
and DST-based
+ Comb Filter

SpO2 Difference between levels
calculated by Nonin 8000R sensor
and DST-based algorithm after
comb filter.

Table 3.5 Detailed Description on all Traces Shown in Subplot (d) of Figure 3.15

Trace
label

Trace color Trace name Description

F
ig
u
re

3
.1
5
(d

)

d1 Light blue Nonin SpO2
SpO2 levels calculated by Nonin
8000R sensor

d2
Magenta
(top curve)

SpO2 DST-based
+ Comb Filter

SpO2 levels calculated using DST-
based algorithm after comb filter.

d3
Black (top
curve)

SpO2 “RoI” +
Comb Filter

SpO2 levels calculated using “RoI”
approach after comb filter.

d4

Magenta
(bottom
curve)

SpO2 Difference
between Nonin
and DST-based
+ Comb Filter

SpO2 Difference between levels
calculated by Nonin 8000R sensor
and DST-based algorithm after
comb filter.

d5

Black
(bottom
curve)

SpO2 Difference
between Nonin
and “RoI” +
Comb Filter

SpO2 Difference between levels
calculated by Nonin 8000R sensor
and “RoI” approach after comb
filter.
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Figure 3.15 SpO2 level calculations for an exercising participant on stages 1 to 8
(see Subsection 3.3.2 and Figure 3.10). We used the RoI approach and DST-based
algorithm with and without preprocessing of the PPG signals with the heart-rate
tuned comb filter. SpO2 levels calculated using the abovementioned algorithms is
compared to the SpO2 levels calculated by Nonin 8000R sensor. The legends are
fully explained in Tables 3.2, 3.3, 3.4, and 3.5.
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The gaps in SpO2 curves on Figure 3.15 (for example: In subplots b, c, and d

from 19.5 to 20 minutes for the “Red over Infrared” approach and the DST-based

algorithm, and from around time 20.5 minutes for Nonin 8000R sensor) indicate a

failure in calculating the SpO2 level caused by physical loss of the PPG signal. We

skipped these gaps in our analysis.

Examination of Figure 3.15 suggests that the addition of a comb filter improved

performance for both oximeters based on RoI and oximeters based on DST algorithm

(Figure 3.15 second and third trace). Also, performance of oximeters employing RoI

+ comb filter was very close to performance of oximeters employing DST + comb

filter (Figure 3.15 fourth trace).

Table 3.6 Overall Mean and Standard Deviation (SD) of the SpO2 Absolute Error
Calculated for RoI Approach and DST-based Algorithm With and Without Comb
Filtering for all 14 Exercise Participants

RoI RoI + Comb DST DST + Comb

Mean SD Mean SD Mean SD Mean SD

Stage 1 14.03 1.54 9.71 1.72 11.34 1.52 7.56 1.64

Stage 2 7.05 1.37 4.74 1.15 4.76 1.1 3.34 0.93

Stage 3 10.49 0.87 7.59 1.04 8.82 1.02 5.64 1.04

Stage 4 9.82 1.56 6.18 1.29 5.85 1.23 4.07 1.13

Stage 5 11.6 1.11 7.49 1.09 8.32 1.03 5.01 0.99

Stage 6 9.01 1.42 4.86 1.11 5.52 1.19 3.09 0.9

Stage 7 11.2 0.96 7.72 1.49 7.91 1.02 4.46 1.03

Stage 8 8.14 1.49 5.03 1.02 6.1 1.58 3.45 0.99

Table 3.6 provides the overall mean and standard deviation of the SpO2 error for

all fourteen (14) participants we studied in all eight (8) exercise profile stages (stages

1 to 8 in Figure 3.10). The SpO2 error is defined as absolute difference between SpO2

levels measured by Nonin 8000R sensor sensor mounted on the participant’s temple

(the standard) and SpO2 levels calculated by the two algorithms. We performed

six (6) two-samples t significance tests with level of significance α=0.01. The tested
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hypotheses and their corresponding p-values are shown in Table 3.7 and Table 3.8,

respectively.

Table 3.7 Tested Hypotheses and Results

Is the SpO2

mean absolute
error of ...

SpO2 mean
absolute error of
...?

Test
I:

RoI without comb
filter (ν1,A)

greater
than

RoI with comb
filter (ν2,A)

H0: ν1,A - ν2,A = 0
Ha: ν1,A - ν2,A > 0

Yes. (test I, Tables 3.8,
3.9, and 3.10)

Test
II:

RoI without comb
filter (ν1,A)

greater
than

DST without comb
filter (ν3,A)

H0: ν1,A - ν3,A = 0
Ha: ν1,A - ν3,A > 0

Yes. (test II, Tables 3.8,
3.9, and 3.10)

Test
III–a:

RoI with comb
filter (ν2,A)

different
than

DST without comb
filter (ν3,A)

H0: ν2,A - ν3,A = 0
Ha: ν2,A - ν3,A ̸= 0

Noa. (test III-a, Tables
3.8, 3.9, and 3.10)

Test
III-
b:

DST without comb
filter (ν3,A)

greater
than

RoI with comb
filter (ν2,A)

H0: ν3,A - ν2,A = 0
Ha: ν3,A - ν2,A > 0

Nob. (test III-b, Tables
3.8, 3.9, and 3.10)

Test
IV:

RoI with comb
filter (ν2,A)

greater
than

DST with comb
filter (ν4,A)

H0: ν2,A - ν4,A = 0
Ha: ν2,A - ν4,A > 0

Yes. (test IV, Tables
3.8, 3.9, and 3.10)

Test
V:

DST without comb
filter (ν3,A)

greater
than

DST with comb
filter (ν4,A)

H0: ν3,A - ν4,A = 0
Ha: ν3,A - ν4,A > 0

Yes. (test V, Tables 3.8,
3.9, and 3.10)

a For calibration curve of Equation (3.2), the answers are:
For stages 1, 2, 4, 5, 6, 7, and 8, the answer is No. For stage 3, the answer is Yes. Overall
answer: No

For calibration curve of Equations (3.3) and (3.4), the answer is No for all stages.

b For calibration curve of Equation (3.2), the answers are:
For stages 2, 4, 5, 6, 7, and 8, the answer is No. For stages 1 and 3 the answer is Yes.
Overall answer: No

For calibration curve of Equations (3.3) and (3.4), the answers are:
For stages 2 through 8, the answer is No. For stage 1, the answer is Yes. Overall answer: No

We concluded from Table 3.7 and Table 3.8 the following:

� The mean absolute error using RoI was larger than the mean absolute error
using RoI + Comb in all eight (8) stages;

� The mean absolute error using RoI was larger than the mean absolute error
using DST in all eight (8) stages;

� The mean absolute error using RoI + Comb was larger than the mean absolute
error using DST + Comb in all eight (8) stages;

� The mean absolute error using DST was larger than the mean absolute error
using DST + Comb in all eight (8) stages.
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Additionally, we concluded from Table 3.7 and Table 3.8 (tests III-a and III-b) that

the mean absolute errors using RoI + Comb and using DST are comparable during

most stages.

Table 3.8 P-values of all Six Tests

p-value (significance level was α = 0.01)

Test I Test II Test III-a Test III-b Test IV Test V

Stage 1 < 0.001 <0.001 0.020 <0.010 0.002 < 0.001

Stage 2 < 0.001 < 0.001 0.010 0.482 0.002 0.001

Stage 3 < 0.001 < 0.001 0.008 0.004 <0.001 < 0.001

Stage 4 < 0.001 < 0.001 0.251 0.250 < 0.001 <0.001

Stage 5 < 0.001 < 0.001 0.059 0.029 <0.001 < 0.001

Stage 6 < 0.001 < 0.001 0.152 0.077 <0.001 <0.001

Stage 7 < 0.001 < 0.001 0.351 0.350 < 0.001 < 0.001

Stage 8 0.0011 0.002 0.026 0.265 < 0.001 <0.001

Data analysis using alternate calibration curves Equations (3.3) and (3.4)

We replicate Table 3.8 (p-values) for the alternate calibration curves, namely;

the Beer-Lambert calibration curve of Equation (3.3); and the underestimation

calibration curve of Equation (3.4). The results are shown in Tables 3.9 and 3.10,

respectively. Tables 3.9 and 3.10 support the conclusions in Table 3.7 for the alternate

calibration curves as well (see Table 3.7 footnotes a and b). The relative performance

of the SpO2 calculation techniques and impact of the comb filter are qualitatively the

same, regardless of the specific calibration curve (whether we used Equation (3.2),

(3.3), or (3.4)).
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Table 3.9 P-values of all Six Tests for “Beer-Lambert Calibration Curve”
(Equation (3.3))

p-value (significance level was α = 0.01)

Test I Test II Test III-a Test III-b Test IV Test V

Stage 1 < 0.001 < 0.001 0.011 0.006 <0.001 < 0.001

Stage 2 < 0.001 < 0.001 0.961 0.481 < 0.001 < 0.001

Stage 3 < 0.001 < 0.001 0.079 0.040 < 0.001 < 0.001

Stage 4 < 0.001 < 0.001 0.515 0.258 < 0.001 < 0.001

Stage 5 < 0.001 < 0.001 0.110 0.055 < 0.001 < 0.001

Stage 6 < 0.001 < 0.001 0.268 0.134 < 0.001 < 0.001

Stage 7 < 0.001 < 0.001 0.164 0.082 < 0.001 < 0.001

Stage 8 < 0.001 < 0.001 0.289 0.145 < 0.001 < 0.001

Table 3.10 P-values of all Six Tests for “Underestimation Calibration Curve”
(Equation (3.4))

p-value (significance level was α = 0.01)

Test I Test II Test III-a Test III-b Test IV Test V

Stage 1 < 0.001 < 0.001 0.010 0.005 0.001 < 0.001

Stage 2 < 0.001 < 0.001 0.983 0.491 < 0.001 < 0.001

Stage 3 < 0.001 < 0.001 0.073 0.036 < 0.001 < 0.001

Stage 4 < 0.001 < 0.001 0.494 0.247 < 0.001 < 0.001

Stage 5 < 0.001 < 0.001 0.156 0.078 < 0.001 < 0.001

Stage 6 < 0.001 < 0.001 0.284 0.142 < 0.001 < 0.001

Stage 7 < 0.001 < 0.001 0.189 0.095 < 0.001 < 0.001

Stage 8 < 0.001 < 0.001 0.244 0.122 < 0.001 < 0.001

3.4.3 Computational complexity

Red over Infrared approach: For red and infrared signals of length B (B

sampled values) the number of operations required for a typical RoI calculation

is 2B multiplications, 2(B − 1) additions, three divisions and two square root

operations. For each B (in our case in the thousands), the required computation

time is proportional to B.
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Figure 3.16 Comparison of computational time of the RoI approach and the
DST-based algorithm with and without comb filtering.

DST algorithm: At every time instance, the DST algorithm generates a family of

D reference signals (in our study we used D = 101 reference signal for each optical

density ratio of SpO2 level, ranging from 50% to 100% with an increment of 0.5%).

For each one of the D SpO2 levels, the DST algorithm uses an ANC filter and

additional computations to create one point on the DST graph of power vs. SpO2

level (e.g., Figure 3.8 (b) in this document and Figure 3 in [2]). For the ANC we

have used the QR-decomposition-based least-squares lattice (QRD-LSL) adaptive

filter algorithm, on account of its relative computational efficiency. The QRD-LSL

requires O(T ) operations per time instance (we use B instances for block of data),

where T is the number of taps in the adaptive filter [31]. The computational times

(in seconds) of RoI approach and the DST-based algorithm (with and without comb

filtering) are shown on the ordinate of Figure 3.16. The abscissa of Figure 3.16 is

the red and infrared signals’ length in second. In Table 3.11 we show the

computational time and the SpO2 RMSE (in %) calculated on a 10-second long

synthetic PPG signals. We use the RoI approach and the DST-based algorithm,
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both before and after comb filtering in each case, for different SNR values (-10dB,

0dB, and 10dB)8. Results presented in Figure 3.16 and Table 3.11 indicate that the

computational cost of the DST-based algorithm is considerably larger than that of

the RoI approach. The effects of adding the comb filter are much smaller.

Table 3.11 Computational Time and SpO2 RMSE Calculated on a 10-second Long
PPG Signals Using RoI Approach and DST-based Algorithm Before and After
Comb Filtering for a SNR of -10dB, 0dB, and 10dB

SpO2 RMSE (%)
Comput.
Time (s)

SNR = -10 dB SNR = 0 dB SNR = 10 dB

RoI 17.4811 5.1564 0.7301 2.463× 10−5

RoI + Comb 9.4388 1.7844 0.4425 7.248× 10−2

DST-based 10.2173 1.8191 0.4135 2.017

DST-based + Comb 4.6482 1.1431 0.4056 2.092

3.5 Discussion and Conclusion

Preprocessing PPG signals with a heart-rate tuned comb filter improved the

performance of the two tested SpO2 calculation algorithms (namely, RoI approach

and DST-based algorithm). We tested both algorithms on synthetic and experimental

data.

� The most accurate technique was the filtered DST-based algorithm. At very low
signal to noise (SNR) environments the filtered DST-based algorithm performed
somewhat better on synthetic data compared to the other methods (up to
6% improvement in accuracy at minus 10 dB SNR over the unfiltered DST
algorithm and the filtered RoI approach). However, this technique was costly
in computations.

� Next best were the filtered RoI approach and the unfiltered DST-based
algorithm, which provided similar accuracies. However, the DST-based
algorithm was much costlier in computations compared to the filtered RoI
approach.

8The results were generated by MATLAB R2018a on a personal computer, with an Intel

CoreTM i5-8500 CPU running at 3.00 GHz, 8GB RAM and Windows 10 operating system.
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� The least accurate performance was of the unfiltered RoI approach.

The overall conclusion is that if an uninterrupted high-quality heart rate

measurement is available, then the pre-filtered RoI approach (using a heart-rate

tuned comb filter) provides a preferred trade-off between SpO2-level accuracy and

computational complexity.
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CHAPTER 4

MITIGATION OF MOTION ARTIFACTS IN PULSE OXIMETRY

THROUGH REDUNDANT SENSORS

In this chapter, using field data collected from human participants during rest and

while exhibiting medium to high-intensity physical exercises, we show how sensor

redundancy can mitigate motion effects by employing two channels of red and infrared

(IR) PPG signals. We demonstrate the advantage of redundancy using two SpO2

calculation methods. These methods are widely used “Red over Infrared” (RoI)

method and the Discrete Saturation Transform (DST) algorithm both, assisted

by pre-filtering by a heart-rate tuned comb filter. The data were collected from

individuals while at rest and while exercising. SpO2 levels are calculated from two

channels, each using a red and an IR PPG signal. We integrated the SpO2 computed

from the two channels with a Kalman filter (KF) and computed the SpO2 mean

absolute error (MAE) from each channel individually and after integrating the two

channels. The SpO2 MAEs of each one of the two channels separately were greater

(and statistically significant) than the SpO2 MAE obtained from the two channels

integrated with a KF. We observed that when two channels of PPG (red and IR)

signals were available, then combining SpO2 levels obtained from these two channels

exhibited a smoother and more reliable estimate of the blood oxygen saturation level

as compared the SpO2 levels computed from each channel separately. The reason is

that if the data for the two channels are collected at sufficient physical distance from

one another, the motion artifacts affecting the two channels are uncorrelated. The

KF is then able to use past measurements and modeling of the SpO2 dynamics to

attenuate the effect of the motion artifacts.
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Figure 4.1 The impacts of motion artifacts on PPG signals when measured from
two different sites on the person’s upper arm region.

4.1 Motivation Behind Integrating Two Channels of SpO2 Levels

The impact of person motion manifests itself differently in PPG sensors that are

mounted on different parts of the body. The impacts are only weakly correlated,

for example, when measured on the two different locations on the person’s arm.

For instance, we show on Figure 4.1 the IR PPG signal collected from two different

channels (channels A and B) mounted on two different locations of a person’s upper

arm where the person was in motion. We see in Figure 4.1 that the IR signal of channel

B was corrupted by noise around time 19.79 minutes. However, at the same time

instance, no disruption appears in the IR signal of channel A. In general, integrating
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SpO2 levels computed by multiple sensors, each mounted on different part of the

body, may result in a more reliable and smoother estimates as compared to individual

sensor readings. In a different but relevant setting, Acharya et al. [32] showed that

integrating SpO2 levels measured from three commercial oximeters leads to a more

reliable detection of the onset of Hypoxia. In Acharya et al. [32], participants were

placed in an altitude chamber and exposed to a varying altitude profile ranging from

0 to 18,000 ft. SpO2 levels were measured using three commercial oximeters, namely,

Respironics Novametrix 515B, Nonin forehead pulse oximeter 9847, and Masimo Rad-

87. The authors integrated the SpO2 levels measured from the three sensors using a

KF. In Acharya et al. [32], however, the effect of motion artifact was not studied, and

the system’s noise was dominated by other mechanisms having to do with the error

profile of commercial oximeters measuring low SpO2 levels. In this chapter, we study

the effect of sensor redundancy on the impact of motion artifacts that contaminates

the PPG signals when the person is engaged in medium to high intensity exercises

(aerobic and anaerobic).

4.2 Methods of SpO2 Integration

The methods we propose to compute SpO2 levels from PPG waveforms are RoI

method and DST-based algorithm, both preceded by a heart rate tuned comb filter

(per Chapter 3). We assume the availability of an ECG waveform. The inputs are

two channels of PPG red and IR signals and an ECG waveform. The output is SpO2

levels. Figure 4.2 illustrates the SpO2 calculation methods and is divided into four

stages: (1) pre-processing, (2) filtering, (3) SpO2 calculation, and (4) data fusion.

1. In the pre-processing stage, raw PPG signals of each channel are normalized
(see Subsection 3.2.1 titled “normalization”). Simultaneously, HR is computed
from an ECG waveform (see “heart rate calculation” Subsection 3.2.2).

2. In the filtering stage, a heart-rate tuned peak comb filter is applied to the
normalized PPG signals. The comb filter exhibits its lowest attenuation at the
heart rate frequency (which is computed from the ECG signal) and its principal
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harmonics, and higher attenuation otherwise (see Subsection 3.2.3 titled “comb
filter”).

3. SpO2 levels are computed from RoI method and DST-based algorithm, both
preceded by a heart rate tuned comb filter (see Subsection 3.2.4 titled “SpO2-
level calculation”).

4. At stage four, SpO2 levels computed from the two channels are integrated using
a KF. The integrated SpO2 levels are obtained at the output of this stage (see
Subsection 4.2.1 titled “Data Integration using a KF”).

Figure 4.2 Block diagram of the proposed SpO2-level calculation method for two
PPG channels.

4.2.1 Data integration using a Kalman filter

We adopt the same model used by Galli et al. [21] to represent the dynamic behavior

of human SpO2. The model is based on discrete-time random walk process. Equations

(4.1) and (4.2) represent the state and measurement equations, respectively, of the

KF used to integrate the SpO2 levels computed from two PPG channels.

x(k) = x(k − 1) + w(k). (4.1)

z(k) = x(k) + v(k). (4.2)
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In Equations (4.1) and (4.2), x(k) is the current SpO2 value, z(k) is the

measured SpO2, w(k) is the state zero-mean white Gaussian noise with variance

σ2
w, and v(k) is the measurement zero-mean white Gaussian noise with variance σ2

v .

We tune the KF parameters, namely, σ2
w and σ2

v , to obtain the best performance on

our experimental data.

Figure 4.3 Histogram of the difference time series of the Nonin SpO2 ground truth
calculated for all fourteen (14) participants.

The state noise variance, σ2
w, is obtained by examining the Nonin SpO2 ground

truth. The difference time series of the Nonin SpO2 ground truth is calculated for all

fourteen (14) participants. The distribution of this series is shown in the histogram

of Figure 4.3. The majority of the values of the difference time series range between

-1 and 1 (values greater than 1 or less than -1 occur with lower frequency – see the

red box of Figure 4.3 which is a magnification of the right hand-side of Figure 4.3).

We assume that the data of Figure 4.3 range between -1.45 and 1.45. As proposed by

Galli et al. [21], we take a conservative approach and assume that the data of Figure

4.3 are distributed uniformly. The variance of the uniform distribution, denoted σ2
U.D.,
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is obtained as following:

σ2
U.D. =

1

12
(b− a)2, (4.3)

where b is the maximum value in the distribution and a is the minimum value. By

applying Equation (4.3) to the data of Figure 4.3, we obtained σ2
w = 1

12
(1.45 −

(−1.45))2= 0.7.

Figure 4.4 Boxplot of the time series that corresponds to the difference between
the ground truth SpO2 and the SpO2 calculated from channels A and B for all
fourteen (14) participants.

The measurement noise variance, σ2
v , is estimated in a similar fashion by

considering the time series that corresponds to the difference between the ground

truth SpO2 measured by the Nonin sensor and the SpO2 levels obtained from channels

A and B for all fourteen (14) participants. Figure 4.4 shows the boxplot of the time

series that corresponds to the difference between the ground truth SpO2 and the

SpO2 calculated from channels A and B. We calculate the 25th and 75th percentiles

and found them to be 1.1 and 9.7, respectively. We consider the data ranging from
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-3 and 12. As proposed by Galli et al. [21], we take a conservative approach and

assume that the data of Figure 4.4 are distributed uniformly. The variance of the

measurement noise is estimated using Equation (4.3) and found to be σ2
v= 18.7.

In summary, we found that σ2
w= 0.7 and σ2

v= 18.7 are the optimal values for

our experiment data. The KF equations used for SpO2 estimation at each iteration

are summarized in Table 4.1.

Table 4.1 KF Equations Used for SpO2 Estimation

Equation Function

x−(k) = x+(k − 1) State prediction

P−(k) = P+(k − 1) + σ2
w State prediction variance

y(k) = z(k)− x−(k) Innovation

S(k) = P−(k) + σ2
v Innovation variance

G(k) =
P−(k)

P−(k) + σ2
v

Kalman gain

x+(k) = x−(k) +G(k)y(k) Updated state estimate

P+(k) = G(k)σ2
v Updated state estimate variance

At each KF iteration, one SpO2 raw value is obtained from channel A (SpO2-A)

and another SpO2 raw value is obtained from channel B (SpO2-B). SpO2-A and SpO2-

B at iteration k are denoted z1(k) and z2(k), respectively. As shown in Galli et al.

[21], z1(k) and z2(k) go through a selection process where only the best measurement

is passed onto the KF for smoothing. First, the variance of z1(k) and z2(k) values

that had been computed over the last 3 minutes. If either one of the two variances

is greater than two times the other variance, then the SpO2 level computed from the

channel with the highest variance is discarded and not considered from the following
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steps. Next, the innovation of each one of the two measurements, z1(k) and z2(k),

is calculated. The measurement is accepted if and only if it satisfies the following

condition:

|zn(k)− x−(k)| ≤ ζ
√

S(k), where n = 1, 2. (4.4)

Here, “ζ” corresponds to a confidence level. In this work we used ζ = 2 which

corresponds to a confidence level of 95% under the assumption that the innovation

follows a Gaussian distribution. After checking the condition in Equation (4.4) for

both measurements z1(k) and z2(k), one of three cases will take place:

Case 1 – if both measurements satisfy the condition in Equation (4.4): The
measurement with the smaller innovation is passed to the KF for smoothing.

Case 2 – if only one of the measurements satisfy the condition in Equation
(4.4): The measurement that satisfies the condition in Equation (4.4) is passed to
the KF for smoothing. The other measurement is discarded.

Case 3 – if none of the measurements satisfies the condition in Equation (4.4):
Both measurements are discarded, and the updated state estimate is passed to the
next iteration (e.g., x+(k) = x−(k) and P+(k) = P−(k)).

If case 3 reoccurs five times consecutively, then the updated state estimate

(x+(k)) is obtained by averaging the predicted state estimate (x−(k)) and all available

new measurements. This step is performed to bring KF estimates progressively back

to correct values [21].

4.3 Results

4.3.1 SpO2 level calculation on experimental data

Data were collected from fourteen (14) participants for the regime described in

Subsection 3.3.2 titled “Human Participant Data – NAWCAD Experiment.” Every 2

seconds, the preceding 10-second-long data segment is used to compute an SpO2 value.
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SpO2 levels are computed using the RoI approach and the DST-based algorithm,

both preceded by a heart-rate tuned comb filter, from two channels of PPG signals –

channel A and channel B – where each channel contains a set of one red and one IR

sensors. In this chapter, SpO2 values are calculated using the calibration Equation

(3.2).

We show in Figure 4.5 the SpO2 levels computed for two of the fourteen (2

out of 14) participants that covered the period from 5 to 35 minutes of the exercise

profile (that correspond to stages 1 to 8 in Figure 3.10) described in Subsection 3.3.2

titled “Human Participant Data – NAWCAD Experiment.” SpO2 levels are calculated

using the RoI approach preceded by a heart-rate tuned comb filter. The red and blue

curves in Figure 4.5 are SpO2 levels computed from channels A and B, respectively.

The black curve is the result of integrating SpO2 levels of channels A and B using

the Kalman filter. The cyan curve is the readings of the Nonin 8000R sensor (our

ground truth). We show the results of participant 1 and 2, in Figure 4.5 (a) and

(b), respectively. The gaps in SpO2 level curves on Figure 4.5 indicate that the PPG

signal was physically lost and hence we were not able to computer an SpO2 level at

these times. By examining the traces of Figure 4.5 we conclude that the SpO2 levels

computed by integrating the SpO2 levels of channels A and B are closer to the ground

truth and exhibit less fluctuations as compared to the SpO2 levels of channels A and

B separately. We compute the overall mean and standard deviation of the SpO2 error

for all fourteen (14) participants in all eight (8) exercise profile stages (stages 1 to 8 in

Figure 3.10). We defined SpO2 error as the absolute difference between SpO2 levels

measured by Nonin 8000R sensor mounted on the participant’s temple (the standard)

and SpO2 levels calculated by channel A, B, and KF. Tables 4.2 and 4.3 summarize

the overall mean and standard deviation of the SpO2 error for RoI approach and

DST-based algorithm both preceded by a ECG-HR-tuned comb filter, respectively.
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Table 4.2 Overall Mean and Standard Deviation (SD) of the SpO2 MAE
Calculated Using RoI + Comb for Channel A, B, and KF for all 14 Participants

RoI + Comb SpO2

MAE channel A
RoI + Comb SpO2

MAE channel B
RoI + Comb SpO2

MAE KF

Mean SD Mean SD Mean SD

Stage 1 9.71 1.72 8.55 1.37 8.13 1.47

Stage 2 4.74 1.15 4.88 1.55 3.17 0.62

Stage 3 7.59 1.04 7.92 0.93 5.54 0.73

Stage 4 6.18 1.29 6.28 1.23 5.05 0.58

Stage 5 7.49 1.09 6.79 0.89 5.9 0.35

Stage 6 4.86 1.11 4.37 1.31 3.62 0.45

Stage 7 7.72 1.49 6.11 0.97 5.11 0.47

Stage 8 5.03 1.02 4.16 1.23 3.2 0.49

Table 4.3 Overall Mean and Standard Deviation (SD) of the SpO2 MAE
Calculated Using DST + Comb for Channel A, B, and KF for all 14 Participants

DST + Comb SpO2

MAE channel A
DST + Comb SpO2

MAE channel B
DST + Comb SpO2

MAE KF

Mean SD Mean SD Mean SD

Stage 1 7.56 1.64 6.74 1.39 6.64 1.26

Stage 2 3.34 0.93 3.35 1.29 1.87 0.42

Stage 3 5.64 1.04 5.35 1.1 4.2 0.82

Stage 4 4.07 1.13 4.13 1.15 2.6 0.45

Stage 5 5.01 0.99 4.98 0.76 3.88 0.39

Stage 6 3.09 0.9 2.4 0.78 2.15 0.36

Stage 7 4.46 1.03 4.18 0.66 3.24 0.42

Stage 8 3.45 0.99 2.89 0.91 1.99 0.4
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We perform four (4) two-samples t significance tests, with level of significance

α=0.05. Test I is on the SpO2 error for RoI between channel A and the KF, Test II

is on the SpO2 error for RoI between channel B and the KF, Test III is on the SpO2

error for DST between channel A and the KF, and Test IV is on the SpO2 error for

DST between channel B and the KF. The conclusions of hypothesis testing (using

α=0.05) and the p-values are shown in Tables 4.4 and 4.5, respectively.

Table 4.4 Tested Hypotheses and Results

Is SpO2

MAE ...
the SpO2

MAE ... ?

Test I computed from
channel A using
RoI + Comb
(ν2,A)

greater
than

computed from
the KF
(ν2,KF )

H0 : ν2,A − ν2,KF = 0
Ha : ν2,A − ν2,KF > 0

Yes.

Test II computed from
channel B using
RoI + Comb
(ν2,B)

greater
than

computed from
the KF
(ν2,KF )

H0 : ν2,B − ν2,KF = 0
Ha : ν2,B − ν2,KF > 0

Yes. Except for
stage 1 (yellow
region of Figure 3.10)
where we fail to
reject the null
hypothesis.

Test III computed from
channel A using
DST + Comb
(ν4,A)

greater
than

computed from
the KF
(ν4,KF )

H0 : ν4,A − ν4,KF = 0
Ha : ν4,A − ν4,KF > 0

Yes. Except for
stage 1 (yellow
region of Figure 3.10)
where we fail to
reject the null
hypothesis.

Test IV computed from
channel B using
DST + Comb
(ν4,B)

greater
than

computed from
the KF
(ν4,KF )

H0 : ν4,B − ν4,KF = 0
Ha : ν4,B − ν4,KF > 0

Yes. Except for
stages 1 and 6
(Figure 3.10)
where we fail to
reject the null
hypothesis.

Table 4.5 P-values of All Tests of Table 4.4

p-value (significance level was α = 0.05)

Test I Test II Test III Test IV

Stage 1 0.011 0.225 0.06 0.422

Stage 2 < 0.001 0.001 < 0.001 < 0.001

Stage 3 < 0.001 < 0.001 < 0.001 0.004

Stage 4 0.005 0.002 < 0.001 < 0.001

Stage 5 < 0.001 0.002 < 0.001 < 0.001

Stage 6 < 0.001 0.032 0.002 0.148

Stage 7 < 0.001 0.002 < 0.001 < 0.001

Stage 8 < 0.001 0.009 < 0.001 0.002
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From Tables 4.4 and 4.5, we have strong evidence to reject the null hypothesis for

test I which means that the SpO2 mean absolute error of channel A (calculated using

RoI proceded by a HR-tuned comb filter) is greater than the SpO2 mean absolute

error of the KF (obtained by integrating both channels A and B). We also have

strong evidence to reject the null hypothesis for test II which means that the SpO2

mean absolute error of channel B (calculated using RoI proceded by a HR-tuned

comb filter) is greater than the SpO2 mean absolute error of the KF, except for stage

1 where we fail to reject the null hypothesis. Additionally, for Test III, the SpO2

MAE computed from channel A (using the DST-based algorithm preceded by a heart

rate tuned comb filter) is greater than the SpO2 MAE computed from the KF. The

only exception is stage 1 (yellow region of Figure 3.10). As for Test IV, SpO2 MAE

computed from channel B (using the DST-based algorithm preceded by a heart rate

tuned comb filter) is greater than the SpO2 MAE computed from the KF (obtained

by integrating both channels A and B), except for stages 1 and 6 (check Figure 3.10).

Therefore, overall, integrating SpO2 levels computed from the two channels of PPG

signals (red and IR) produces a more reliable estimate as compared the SpO2 levels

computed from each channel separately.

4.4 Discussion and Conclusion

We study the potential advantage of integrating SpO2 levels calculation from PPG

signal (red and IR) measured from two separate sensors (as opposed to using the

separate sensors without integration). The methods we use for SpO2-level calculation

are the RoI approach and the DST-based algorithm, both preceded by a heart rate

tuned comb filter. SpO2 levels from both channels were integrated using a KF. We

show the performance of integrating two SpO2 sources on experimental real exercise

data, where we compute the SpO2 MAE for fourteen participants studied over eight

exercise stages. We conclude that when SpO2 levels are calculated using RoI approach
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preceded by a heart rate tuned comb filter, the SpO2 MAE of channel A is greater (and

statistically significant) than the SpO2 MAE of the KF. Similarly, the SpO2 MAE

of channel B is greater (and statistically significant) than the SpO2 MAE of the KF,

except for one of the stages (stage 1) where both errors are the same. We drew similar

conclusion when we calculated SpO2 levels using DST-based algorithm preceded by

a heart rate tuned comb filter. The overall conclusion is that if two channels of PPG

(red and IR) signals are available, then combining SpO2 levels obtained from these

channels is likely to exhibits a smoother and more reliable estimate of the blood

oxygen saturation level as compared to the SpO2 levels computed from each channel

separately.
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CHAPTER 5

DUAL WAVELENGTH PHOTOPLETHYSMOGRAPHY

FRAMEWORK FOR HEART RATE CALCULATION

5.1 Introduction

Much effort has been exerted to suppress motion artifacts in order to extract high-

quality vital signs, especially heart rate (HR), from noise contaminated PPG signals

[2, 33, 34, 35, 21]. In this chapter, we contribute to this effort by proposing a PPG-only

motion-resistant framework for HR calculation.

There are two main sources of motion artifacts that could contaminate a PPG

signal collected from a human in motion [35]. The first source of noise is the sensor

displacement relative to its original point of contact with the skin. This displacement

could change the path of light, and hence modify the signal collected by the photo-

detector [36]. The second source of noise is skin and tissue deformations caused by

the sensor’s movement.

Figure 5.1 Block diagram of a possible implementation of the HR algorithm by
Zhang et al. (2019).
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Zhang [35] proposed an HR calculation method that uses a dual-wavelength

sensor that comprises a green and an infrared (IR) PPG signal. The IR PPG signal

was used to develop a noise source. A block diagram of an implementation of Zhang’s

algorithm is shown in Figure 5.1. The inputs are green and IR PPG signals. Both

green and IR signals are collected from a wrist-worn PPG sensor unit. The output

is a heart rate estimate. Zhang’s algorithm provides a clean version of the raw green

signal as another output. In [35], the raw green and IR PPG signals are first filtered

with a second order IIR bandpass filter (0.4-4 Hz) to suppress noise components

that are outside the normal range of human heart rate (block A of Figure 5.1). The

presence of motion in the system is obtained using two parameters namely; (1) peak

to noise ratio of the green PPG signal in the frequency domain; and (2) the ratio

(AC/DC) between the AC and DC components of the green PPG signal and the

AC/DC ratio of the IR PPG signal (block B of Figure 5.1 and Section 4.1 in [35]).

If noise is detected in the PPG signals, the noise frequencies are removed from the

green PPG signal by subtracting the scaled frequency spectrum of the IR signal from

the frequency spectrum of the green signal. Frequency spectra are generated using

Continuous Wavelet Transform (CWT) (block C in Figure 5.1 and Section 4.2 in

[35]). An HR estimate is calculated from the green frequency spectrum (bandpass

filtered green spectrum when there is no noise and denoised green spectrum if noise

if detected in the signals) using a mechanism that integrates the heart rate values

calculated from the current and previous time intervals (block D in Figure 5.1 and

Section 4.3 in [35]).

The HR calculation algorithm presented in [35] was tested on “micromotion

artifacts” such as finger tapping and fist opening and closing. In the current study,

we examined the applicability of a related approach for more substantial movements

and dynamic scenarios. Motivated by the sensor architecture proposed in [35], we

expanded the HR calculation technique to high-intensity full body repetitive “macro-
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motion” exercise data. The resulting Dual Wavelength (DWL) method collects green

and IR PPG data from a dual-wavelength wrist unit and processes them to estimate

the participant’s heart rate. Performance of DWL was documented in an extensive

motion experiment involving fourteen (14) human participants1.

Figure 5.2 Summary of the DWL method.

Figure 5.2 shows the essentials of the DWL method. It consists of five (5)

stages; 1. Pre-processing, 2. Motion-artifact detection, 3. Motion-artifact frequency

components identification, 4. Denoising, and 5. Heart rate estimation. The inputs

to the DWL system are green and IR PPG channels measured from wrist-unit

constructed for this study (see Section 5.2). The output is an HR level. First, the

green and IR PPG signals are normalized by dividing the signal’s AC component by its

DC component. We then check if significant motion noise is present in the PPG signals

(Subsection 5.4.2). If the signals appear noise-free, the normalized green PPG signal

is directly used to calculate anHR value. If the signals appear noise contaminated, we

then extract the noise components from the IR PPG signal. These noise components

are removed from the noisy green PPG signal. We employ a Cascading Adaptive Noise

1There were three separate experiments. In the first (SNR experiment), we used all

fourteen (14) participants. In the second experiment (wrist-based heart rate calculation),

we used eleven (11) participants due to sensor failure on three of the participants. In the

third experiment (palm-based heart rate calculation), we used twelve (12) participants due

to sensor failure on two of the participants.
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Cancellation (C-ANC) architecture that uses a QR-decomposition-based least-squares

lattice (QRD-LSL) algorithm [37] to denoise the green PPG signal before it is used

for HR calculation. A separate decision mechanism validates the HR estimate, and

corrects it when noise levels are too high to produce a meaningful estimate.

The rest of this chapter is organized as follows. Section 5.2 describes the

experimental settings along with the sensors suite. In Section 5.3, we use experimental

data to present the rationale for choosing the IR PPG signal as noise reference signal.

In Section 5.4, we introduce a method for (1) denoising the green PPG using the

noise components extracted from an IR PPG signal, and (2) computing HR levels.

Section 5.5 reviews alternative HR calculation methods that use auxiliary sensors,

namely, accelerometers, as a noise source. These methods are TROIKA [33] and JOSS

[34]. In Section 5.6, we compare the performance of the DWL method to that of our

implementation of TROIKA and JOSS. The comparison we provide is with respect to

(1) the HR ground truth computed from an electrocardiography (ECG) signal, and

(2) the HR levels obtained using TROIKA and JOSS. In Section 5.7, we validate our

framework by testing its performance on experimental data collected from the palms

(instead of wrists) of the same participants during a second run (validation run). We

conclude that the DWL method provides several desirable features, including; (1)

the DWL framework uses only PPG signals; auxiliary signals (such as accelerometers

used by TROIKA and JOSS) are not needed; and (2) the DWL framework appears

to exhibit high accuracy and lower computational burden in the presence of motion

artifacts as compared to TROIKA and JOSS.

5.2 Experimental Protocol and Sensors Suite

We conducted a high-intensity full body exercise experiment where we collected

PPG, electrocardiography (ECG), and tri-axial accelerometer data. Accelerometers

measured accelerations in three orthogonal directions X, Y, and Z, simultaneously
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[38]. Readings were obtained from fourteen (14) human participants while they were

standing or running on a split-belt instrumented treadmill (Bertec Corp., Columbus,

OH) [39]. First, a multi-wavelength wrist oximeter unit was strapped around the

participant’s wrist. The wrist unit encloses two blue LEDs (of wavelength λB = 460

nm), two green LEDs (of wavelength λG = 520 nm), and two IR LEDs (of wavelength

λIR = 940 nm), as well as a photo-detector. Additionally, a tri-axial accelerometer

sensor was placed on the participant’s arm (right above the PPG wrist-unit) and

secured in place using athletic tapes. Lastly, an ECG sensor was mounted onto the

participant’s chest using adhesive electrodes. Athletic tape was wrapped around each

participant’s chest to ensure sensor’s stability and good skin contact. Table 5.1 shows

all the instruments and sensors used in the experiment. Both ECG and accelerometer

data were recorded using the Delsys EMGworks Software. Multi-wavelength PPG

wrist-unit data were recorded using an Arduino UNO. All signals were sampled at

100 Hz. Raw data were processed using MATLAB 2022b (Mathworks, Natick, MA)

[40]. All raw data are available through the GitHub repository in [41].

We observed that the quality of the blue PPG signals collected from the wrist

was very poor for some participants, even at rest (when the participant was not

performing any physical activities). The poor quality of blue PPG signals was also

reported in [42], and two possible reasons were presented. The first reason is the

use of a photo-detector with low sensitivity to lights in the blue spectrum (which is

probably the case for the photo-detector used in our study). The second reason is

that signals collected from measuring sites closer to the periphery (such as fingertips,

toes, and ears) exhibit more stable readings as compared to sites that are farther from

the periphery (such as the wrist and forehead). Due to the unstable readings from

the blue PPG sensor, the blue PPG signals we collected were not used in our study.

However, they are reported in the GitHub repository [41].
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The ECG signal was used to calculate the HR “ground truth” values. We

manually labeled the R-peaks for all ECG signals. The HR ground truth at time

step l, HRGT (l), is obtained using the relationship

HRGT (l) =
1

δR−R(l)
, (5.1)

where δR−R(l) is the average time difference between each two consecutive R peaks

present within the 8-second-long window, at time step l.

Table 5.1 Instruments Used for Data Collection in the Exercise Experiment

Instrument/Sensor Manufacturer Reference

Split-belt Instrumented
Treadmill

Bertec Corp. (Columbus,
OH, USA)

Catalog in [39]

IR LED (TSAL6100)
Vishay Intertechnology Inc.
(Malvern PA. USA)

Datasheet in [43]

Green LED (A-U5MUGC12)
Light House LEDs LLC
(Medical Lake, WA, USA)

Datasheet in [44]

Blue LED (A-U5MUBC12)
Light House LEDs LLC
(Medical Lake, WA, USA)

Datasheet in [45]

Photo-detector (OPT101)
Texas-Instrument Inc.
(Dallas, TX, USA)

Datasheet in [46]

Delsys Trigno Avanti (tri-axial
accelerometer)

Delsys Inc. (Natick, MA,
USA)

Catalog in [47]

Trigno EKG Biofeedback
sensor (ECG)

Delsys Inc. (Natick, MA,
USA)

Catalog in [48]

The experimental protocol we followed during data collection was conducted

in accordance with the Declaration of Helsinki, and approved by the Institutional

Review Board of the New Jersey Institute of Technology (protocol code 2108010504;

approved on September 14th, 2021). All participants were physically fit, healthy, and

athletic volunteers. Each participant was exposed to the following profile of treadmill

activities:
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� Stage 1: The participant stood steady on the treadmill for 1 minute. During
this stage, clean physiological signals were collected.

� Stage 2: The participant ran at a speed of 6 km/h (about 3.7 mph) for 1
minute.

� Stage 3: If the participant was comfortable, the speed was increased gradually
to 12 km/h (about 7.5 mph), for 1 minute. At any time, if the participant was
not comfortable, the speed was reduced to the participant’s comfort zone.

� Stage 4 (same as stage 2): The participant ran at a speed of 6 km/h (about
3.7 mph) for 1 minute.

� Stage 5 (same as stage 3): If the participant was comfortable, the speed was
increased gradually to 12 km/h (about 7.5 mph), for 1 minute. At any time, if
the participant was not comfortable, the speed was reduced to the participant’s
comfort zone.

� Stage 6: The participant stood steady on the treadmill for a duration of 1
minute.

5.3 Infrared PPG Signal as Noise Reference Signal

According to [35], IR PPG signals are more affected by motion artifacts than green

PPG signals. To verify this behavior in our experiment, we calculated the Signal-

to-Noise (SNR) ratios for both the green and IR PPG signals. The SNR is defined

as

SNR(in dB) = 10 log10

(
Pdesired signal

Pnoise

)
, (5.2)

where Pdesired signal and Pnoise are the power of the participant’s heart rate component

and motion artifact components, respectively. In order to calculate an SNR value, the

desired and noise signal components should be identified and separated. At this stage,

we used the participant’s HR ground truth (obtained from an ECG signal, collected

simultaneously with the PPG signals) using Equation (5.1), in order to determine the

desired signal component.
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The desired signal and noise components were obtained, respectively, from the

green and IR PPG signals. First, the green and IR signals were normalized by dividing

their AC component by their DC component. The desired signal component (the

component that contains heart rate information) of the normalized PPG signal was

obtained by applying two bandpass filters centered at the participant’s heart rate

frequency and its first harmonic [35]. During this step the participant’s heart rate

was obtained from the ECG signal. The noise component was obtained by subtracting

the desired signal component from the normalized signal.

We calculated the SNR values of the green and IR PPG signals for all fourteen

(14) subjects in the following manner. Every 2 seconds, the preceding 8-second-long

PPG segment was used to obtain an SNR value. In total, each subject had between

175 and 177 SNR values for each PPG signal (green and IR signals). The first and

last minute of the collected PPG data were omitted since these data segments were

noise-free. SNR values for all subjects were grouped together – their distribution

is presented in Figure 5.3 as boxplots. A boxplot depicts the distribution of a

variable [49] (in this case we show the distribution of SNR values computed for IR

and green PPG signals for all fourteen (14) experimental subjects). The lower and

upper limit of the black box in Figure 5.3 represent the 25th percentile (denoted Q1)

and 75th percentiles (denoted Q3) of the data, respectively. The difference between

Q3 and Q1 defines the interquartile range (IQR). The red bar is the 50th percentile

(denoted Q2) or the median value of the distribution. The black bar at the end of the

lower and upper whiskers determine the minimum and maximum limits, respectively.

Typically, the minimum and maximum values are Q1−1.5×IQR and Q3+1.5×IQR,

respectively. If an SNR value falls outside these limits, it is considered an outlier and

shown as a red plus ‘+’ sign on the boxplot. The green dot (green PPG boxplot) and

black dot (IR PPG boxplot) are the mean values of the corresponding distributions.
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In our experiment, the SNR mean value of the IR PPG, υIR
SNR, wrist = −8.5 dB

(black dot in Figure 5.3), was less than the SNR mean value of the green PPG

signal, υG
SNR, wrist = −4.8 dB (green dot in Figure 5.3). These results are statistically

significant for a level of significance α = 0.01. This difference supports the choice of

IR PPG as a noise reference signal using experimental data.

Figure 5.3 SNR values of IR and green PPG signals, respectively, calculated from
all fourteen (14) subjects. The dots represent the mean value of SNR. The red bars
represent the median value of SNR. The red ‘+’ signs represent outliers.

5.4 DWL Framework

The proposed DWL framework consists of the following stages (Figure 5.2), A. Pre-

processing, B. Motion-artifact Detection, C. Motion-artifact Frequency Components

Identification, D. Denoising, and E. Heart Rate Estimation. The inputs to the system

are raw green and IR PPG signals measured using the dual-wavelength PPG wrist-

unit sensor (described in Section 5.2). The output is an HR estimate, ĤR(l) at time

step l (the initial time step is l = 1). We refer to the average of the latest Z estimates

of the heart rate as ĤR
(Z)

(l), namely

ĤR
(Z)

(l) =
1

Q

Q−1∑
q=0

ĤR(l − q) | Q = min{Z, l}. (5.3)
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Figure 5.4 is a block diagram of the DWL method. The system produced a new

estimate of HR at every time step (ĤR(l) at time step l). The time between two

subsequent windows in our study was 2 seconds. In addition, the system produces

three search ranges. They are; the “narrow search range,” ∆n(l + 1); the “medium

search range,” ∆m(l+1); and the “wide search range,” ∆w(l+1). Ranges ∆m(l+1) and

∆n(l+ 1), which are used in the motion-artifact frequency components identification

process of Subsection 5.4.3, are centered at ĤR(l). The range ∆w(l + 1), which is

used in the heart rate estimation process of Subsection 5.4.5, is centered at ĤR
(6)
(l),

the average of the 6 previous heart rate estimates. The ranges satisfy ∆n(l + 1) <

∆m(l + 1) < ∆w(l + 1). Moreover, ∆n(l + 1) =
∆m(l + 1)

2
. The three ranges are

calculated as following:

Wide search ranges, ∆w(l+1): ∆w(l+1) is adopted from [50] and employed in the

heart rate estimation process (Subsection 5.4.5) as the range in which we search for

the participant’s heart rate. At time step l + 1, the search for ĤR(l + 1) is confined

to

[ĤR
(6)
(l)− ∆w(l + 1)

2
, ĤR

(6)
(l) +

∆w(l + 1)

2
] Hz , (5.4)

∆w(l) is defined as

∆w(l) =


c1 + 2×max

(
ĤR(j)− ĤR(j − 1)

∣∣∣ l − c3 ≤ j ≤ l − 1
)

, if l > c3

c0 , if l ≤ c3 ,

(5.5)

where max(.) is the maximum value. ∆w(l) is updated based on the maximum

value of the differences between two consecutive heart rate values calculated over c3

previous time steps. For the first c3 iterations, ∆m(l) is equal to c0. In this work, c0

was set to 0.33 Hz (or 20 BPM), c1 was set to 0.37 Hz (or 22 BPM), and c3 = 15
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(which is equivalent to 30 seconds).

Medium and narrow search range, ∆m(l + 1) and ∆n(l + 1): ∆m(l + 1) and

∆n(l + 1) are employed in the motion-artifact frequency components identification

process (Subsection 5.4.3). At time step l + 1, the medium search range is the range

confined to

[ĤR(l)− ∆m(l + 1)

2
, ĤR(l) +

∆m(l + 1)

2
] Hz , (5.6)

where ĤR(l) is the HR estimated at the time step l. ∆m(l) is defined as

∆m(l) =


c1 + 2× SD

(
ĤR(j)− ĤR(j − 1)

∣∣∣ l − c3 ≤ j ≤ l − 1
)

, if l > c3

c0 , if l ≤ c3

,

(5.7)

where SD(.) is the standard deviation. ∆m(l) is updated based on the standard

deviation of the differences between two consecutive heart rate values calculated

over c3 previous time steps. For the first c3 iterations, ∆w(l) is equal to constant c0.

In this work, the parameters c0, c1, and c3 are same defined for the wide search

range, namely; c0 = 0.33 Hz (or 20 BPM), c1 = 0.37 Hz (or 22 BPM), and c3 = 15

(which is equivalent to 30 seconds).

The narrow search range is defined as ∆n(l + 1) =
∆m(l + 1)

2
.

In addition to the three search ranges, we calculate a short-term 3-point-average

heart rate, ĤR
(3)
(l), that we provide to the users and employ in Section 5.6 for

assessing the performance of DWL.
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Figure 5.4 Block diagram of DWL method. The inputs for calculating heart rate
are raw green and IR PPG signals. The output is an estimate of the HR.

Figure 5.5 is an illustration of a typical IR PPG spectrum. The magenta dashed

line in Figure 5.5 (a) is the heart rate estimated at time step l, ĤR(l). The black

dotted line in Figure 5.5 (b) is the average of the 6 previous heart rate estimates

at time step l, ĤR
(6)
(l). In this example, ĤR(l) is 1.5 Hz and ĤR

(6)
(l) is 1.45 Hz.

Additionally, we present in Figure 5.5 the “wide search range,” ∆w(l+ 1), as a green

dashed rectangle, the “medium search range,” ∆m(l + 1), as a red dashed rectangle,

and the “narrow search range,” ∆n(l + 1), as a blue dashed rectangle.

5.4.1 Pre-processing

First, both green and IR PPG signals are normalized (block A of Figure 5.4).

Normalization is done by dividing the signal’s AC component by its DC component

[51]. The AC component is obtained by passing the raw PPG signal through a

Chebyshev Type II bandpass filter of order 5 and bandpass frequency range of 0.5 to

10 Hz. The DC component is obtained by passing the raw signal through a Chebyshev

Type II lowpass filter of order 5 and passband frequency of 0.5 Hz.
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Figure 5.5 Illustration of the frequency spectrum of typical IR PPG signal. In this

example, ĤR(l) = 1.5 Hz and ĤR
(6)
(l) = 1.45 Hz. Three search ranges are declared

at time step l. They are the narrow search range, ∆n(l + 1) (blue dashed rectangle);
the medium search range, ∆m(l + 1) (red dashed rectangle); and the wide search
range, ∆w(l + 1) (green dashed rectangle). The narrow and medium search ranges

are centered at ĤR(l) (magenta dashed line) and used for noise frequency

component search. The wide search range is centered at ĤR
(6)
(l) (black dotted line)

and is used to search, at time step l + 1, for ĤR(l + 1).

5.4.2 Motion-artifact detection

Motion artifact detection is used to find out whether the PPG signals are

contaminated by motion noise (if they are not, we can bypass noise suppression

operations that are not needed). The PPG signals go through the following three
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(3) local detectors to determine if appreciable levels of noise motion are present

(block B of Figure 5.4):

Local Detector 1 (D1) – number of peaks: The number of dominant peaks

(whose magnitude exceeds 30% of the maximum peak for this example) in the

frequency spectrum of the green PPG signal, denoted Np, is calculated. If Np

exceeds two (2), D1 indicates that the signal is contaminated with motion noise. If

Np is 1 or 2, then we conclude that no appreciable motion noise is present, since the

frequency of the heart rate and sometimes its first harmonic component are

typically observed in the spectrum of a clean PPG signal.

Local Detector 2 (D2) – power of green signal: The power of the green PPG

signal calculated at the beginning of the experiment (when the participant is at

rest) is considered the reference power, denoted P ref . At each time step l, the power

of the green PPG, PG(l), is calculated and compared to the reference power P ref . If

PG(l) is more than (1 + κ)P ref , D2 indicates that the green PPG signal is

contaminated with motion noise2. In this study we used κ = 0.2.

Local Detector 3 (D3) – Pearson correlation between green and IR PPG

signals: The correlation between the green and IR PPG signals is also used to

assess noise contamination in the green signal. If the correlation between the green

and IR PPG signals, ρgreen, IR, is below a certain threshold (we used 0.8), then D3

will decide that the green PPG signal is contaminated with motion noise.

2The amplitude of the PPG signal might change over time [52]. Therefore, the reference

power P ref is updated whenever no motion is detected in the system for five (5) consecutive

time steps (global detector D0 return ‘1’). In this case, the updated value of P ref is set to

the power of the green PPG signal calculated at the current time step, l.
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Global Detector – noise detector: The decisions of the three local detectors are

fed into a global detector that will decide whether the signal is noise contaminated

or not. The global detector is shown as:

D0 = D1 ∨D2 ∨D3 =


1 (noise is present) , if D1 ∨D2 ∨D3 = 1

0 (no noise) , if D1 ∨D2 ∨D3 = 0

(5.8)

where “∨” represents the OR logic operator.

5.4.3 Motion-artifact frequency components identification

If motion artifacts are detected in the normalized green PPG signal, we use the

normalized IR signal to build the motion noise component set Nnoise (block C of

Figure 5.4). Nnoise can be written as Nnoise = {fni
|1 ≤ i ≤ Nn} where fni

is the ith

discrete noise frequency components and Nn is the number of elements in the set

Nnoise. The set Nnoise, which contains all the noise frequency components that we

aim to remove from the normalized green PPG signal, is obtained using the following

five (5) steps in sequence. The first three steps capture noise with relatively high

intensity, usually harmonically-related frequency pairs that contaminate the PPG

signals. The last two steps compare the IR and green signal spectra to discover

additional noise components of reduced-intensity presence in the IR spectrum.

Step 1 – Identification of dominant frequency components. First, we capture

the dominant frequency components in the spectrum of the normalized IR PPG signal.

Those are the frequencies (between 0.5 to 4 Hz) whose magnitude exceeds 50% of the

highest peak in the IR PPG spectrum. Figure 5.6, which is an image that was

created for illustration purposes, depicts how we capture dominant peaks from a

typical IR signal. In this scenario, the highest peak (which actually corresponds to
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the participant’s heart rate) is F1. Two other dominant peaks are shown as red

circles (F2 and F3). Typically, the peaks captured in step 1 include the frequency of

the participant’s heart rate, as well as the frequencies of dominant noise components.

We add all of them (F1, F2, and F3 in our example) to Nnoise with the understanding

that one of them may correspond to the participant’s HR and may therefore need to

be removed from Nnoise later.
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Figure 5.6 Illustration of the frequency spectrum of a typical IR PPG signal. The
red circles correspond to the dominant peaks, denoted F1, F2, and F3 (extracted in
step 1 of Subsection 5.4.3). The highest peak, F1, corresponds to the participant’s
HR.

Step 2 – Identification of harmonic frequency components. Noise components

created by repetitive motion (e.g., when the participant is walking or running)

typically occur in harmonically-related pairs [53]. It is possible, however, that the

PPG signal contains pairs of harmonically-related noise components whose magnitude

is smaller than the 50% threshold used in step 1 to identify dominant frequencies.

Step 2 is used to capture pairs of fundamental frequencies and their first harmonics

present in the spectrum of the normalized IR PPG signal. Here, we look at all

peaks whose magnitudes are above 30% of the highest peak in the IR PPG spectrum.

For each such peak, we search for a harmonic at double its frequency. If a pair of

harmonically-related frequencies is thus discovered, its component(s) that were not
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flagged in step 1 are added to the noise frequency set Nnoise. Again, Nnoise may still

contain at this stage a component that corresponds to the participant’s true HR.

Figure 5.7 uses the same spectrum shown in Figure 5.6 to illustrate how a pair of

harmonically-related components (FA, FB = F3) was discovered. Of this pair, FB

was known to us already from step 1 (it is the same as F3 in Figure 5.6), and FA,

discovered by step 2, is added to Nnoise. So now, Nnoise = {F1, F2, F3, FA}.

Figure 5.7 Illustration of the frequency spectrum of a typical IR PPG signal. The
red triangles correspond to the pair of frequencies, FA and FB, that has a harmonic
relationship. Frequency FB is the same as frequency F3 from Figure 5.6.

Step 3 – Removal of the heart rate from noise set. As mentioned in our

setting in Section 5.4, our system creates a new estimate of the heart rate, ĤR(l) at

every time step l. A new time step starts every 2 seconds when l is incremented by

1. Moreover, in step l + 1 we calculate ∆w(l + 1) (the “wide search range”) which is

where we search for ĤR(l + 1).

Next, frequency components in Nnoise which we captured during steps 1 and 2,

and are close to the heart rate estimated at time step l (ĤR(l)) are removed from

Nnoise, as we suspect they do not represent noise but rather represent the participant’s

heart rate. To be precise, at time step l + 1, we remove from Nnoise all the noise

components in the “medium search range” ∆m(l + 1).
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Figure 5.8 continues the examples of Figure 5.6 and Figure 5.7 to illustrate

step 3. In Figure 5.8 (a) and Figure 5.8 (b), we show the estimate of the

participant’s heart rate at time step l, denoted ĤR(l). We also show ∆m(l + 1), the

“medium search range”, [ĤR(l) − ∆m(l + 1)/2, ĤR(l) + ∆m(l + 1)/2], from which

we remove dominant frequencies deposited earlier into Nnoise. The red squares in

Figure 5.8 (a) represent the frequency components that we obtained from steps 1

and 2 all of which are currently in Nnoise = {F1, F2, F3, FA}. We now discard the

frequency around 1.2 Hz (labeled F1) since it falls in ∆m(l+ 1), the “medium search

range” (region represented by a red dashed rectangle in 5.8). Figure 5.8 (b) show

(in red squares) the noise frequency components that are left in the noise set

Nnoise = {F2, F3, FA}. Nnoise no longer contains the participant’s heart rate.

The next two steps seek additional noise components, often attributed to

repetitive movements by the participant, through comparison of the IR and green

spectra.

Step 4: Step 4 focuses on instances where the noise set Nnoise, after step 3, has only

one noise component, fn1 . In this case, we look at the green spectrum. If we find a

component at half fn1 (fn1/2) or twice fn1 (2 × fn1) in the green spectrum, we add

this component to Nnoise. The only exception is if the component we seek to add

falls into the narrow search range, ∆n(l + 1), around ĤR(l),

[ĤR(l) − ∆n(l + 1)/2, ĤR(l) + ∆n(l + 1)/2]; in this case, we refrain from adding it

to set Nnoise.
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Figure 5.8 Frequency spectrum of a typical IR PPG signal. ĤR(l) is the heart-rate
estimate at time step l. ∆m(l + 1) is the “medium search range” represented by a
red dashed rectangle. The frequency components we obtained from step 1 and 2,
namely, F1, FA, F2, and F3 = FB, are represented by red squares. In Figure 5.8 (a)
frequency F1 falls within ∆m(l + 1). In Figure 5.8 (b) we discard the frequency F1

since it falls within ∆m(l + 1) and leave the rest in Nnoise (FA, F2, and F3 = FB).

Step 5: This step addresses spectra that are dominated by vigorous limb swinging

by the participant, which may cause displacement of the sensor. In this scenario, the

green PPG signal is typically dominated by two high intensity harmonically-related

noise frequencies which may dwarf the component at the heart rate frequency. If

these frequency components are not already placed in Nnoise after steps 1-3, they

are added to Nnoise at this step. This step is automatically triggered when all

the following conditions are met, namely; (a) the IR spectrum contains only one

significant frequency component that dominates the spectrum; (b) the green spectrum

contains only one pair of significant harmonically-related frequencies; and (c) the

dominant frequency component present in the IR spectrum matches with one of the

harmonically-related frequencies discovered in the green spectrum.

Figure 5.9 is a real-life example that illustrates this scenario (signals were

collected from participant 10 in our experiment, around time 136 seconds). We show

the spectrum of participant 10’s IR signal in Figure 5.9 (a) and green signal in Figure

5.9 (b). We show in magenta the heart rate estimate at time step l, ĤR(l). The
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Figure 5.9 IR and green spectra from participant 10 around 136 seconds. We show
in magenta the heart rate estimate at time step l, ĤR(l). (a) Frequency spectrum
of participant 10’s IR PPG signal. The red circle labeled FA = F2 represent the
dominant noise frequency. (b) Frequency spectrum of participant 10’s green PPG
signal around time 136 seconds. The two red triangles labeled F1 and F2 represent
high intensity harmonically-related frequencies. Note that the frequency FA from
Figure 5.9 (a) is the same of the frequency F2 from subplot 5.9 (b). Both F1 and
FA = F2 are put into Nnoise.

green signal captures the high intensity harmonically-related frequency pairs F1 and

F2 of Figure 5.9 (b). The IR spectrum (Figure 5.9 (a)) is dominated by the frequency

FA that is equal to frequency F2 from the green spectrum, but does not capture a

noise component at F1. Here, frequencies F1 and FA = F2 are put into Nnoise.

At the end of this stage, the set Nnoise will contain Nn elements that correspond

to the noise frequencies that we wish to remove from the normalized green PPG

signal.

5.4.4 Denoising stage

Adaptive Noise Cancellation (ANC) filters are often employed to eliminate in-band

motion artifacts [54, 55]. In-band noise in our case occurs when the spectra of motion

artifacts overlap significantly with that of the PPG signal [56]. An ANC filter for

our environment would use as inputs (1) a noise contaminated signal, and (2) a noise

reference signal. The ANC filter seeks to eliminate the noise components (measured by
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the reference signal) from the input noise contaminated signal and provide a noise-free

version of the input signal.

Motivated by the architecture in [50], we employ a Cascading Adaptive Noise

Cancellation (C-ANC) architecture to remove all the elements of the set Nnoise =

{fni
|1 ≤ i ≤ Nn} (developed in Subsection 5.4.3) from the green PPG signal, one

element at the time. The block diagram of the proposed C-ANC is shown in Figure

5.10. We show the frequency spectrum of the input signal in Figure 5.10 (spectrum

A). This is the green signal collected from participant 3 around time 66 seconds. The

spectrum contains three noise frequency components that we wish to eliminate from

the signal. The signal collected at the output of the C-ANC (spectrum D in Figure

5.10) does not contain any of the noise components; only the heart rate frequency

component remained in the spectrum.

Figure 5.10 Cascading Adaptive Noise Canceler (C-ANC) block diagram.

A total of Nn C-ANC were used to remove the noise components of Nnoise from

the green PPG signal. At the ith stage (1 ≤ i ≤ Nn), the noise reference signal

is a pure sinusoid of frequency fni
. For instance, the first ANC filter block shown

in Figure 5.10 removes the first noise frequency component fn1 from the normalized

green PPG signal (see spectrum B of Figure 5.10). The output of the first block is

denoted GPPG, 1. GPPG, 1 is fed to the next block where the second noise frequency

component fn2 is removed (see spectrum C of Figure 5.10). The process is repeated
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until all noise components are removed from the normalized green PPG signal. The

final output, GPPG, Nn , is a noise-free version of the green PPG signal. In the proposed

method, the QR-decomposition-based least-squares lattice (QRD-LSL) adaptive filter

algorithm was used to remove noise components from the green PPG signal [57].

The method incorporates the desirable features of recursive least-square estimation

(fast convergence rate), QR-decomposition (numerical stability), and lattice structure

(computational efficiency) [37]. The implementation of the QRD-LSL filter in our

study used the built-in MATLAB function “AdaptiveLatticeFilter” [58] with 10 filter

taps and forgetting factor of 0.99.

5.4.5 Heart rate estimation

In this stage (see block E of Figure 5.4), the green PPG signal is used to compute

an HR value. If no noise was detected in the green PPG (D0 = 0), then the

normalized green PPG is used for heart rate calculation. When noise was detected

in the green PPG signal, an HR value is obtained from the denoised green signal

(obtained at the output of block D in Figure 5.4, also shown in Figure 5.10). The

“Heart Rate Estimation” stage comprises two steps, namely, “Initialization” and

“Heart Rate Calculation.”

Initialization (block E1 of Figure 5.4). This is a process of capturing a baseline

heart rate at rest. In our experiment, it was a one-minute phase during which

participants were asked to remain steady in order to capture noise-free green and IR

PPG signals. To calculate the initial HR estimate, ĤR(1) at time step l = 1, we

used the frequency spectrum of the normalized green PPG signal. ĤR(1)

corresponds to the highest peak within the initial search range 0.5 to 3 Hz (which

corresponds to 30 to 180 BPM).
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Heart rate calculation (block E2 of Figure 5.4).

At time step l + 1, the heart rate calculation method we propose employs the

following variables in order to generate an HR estimate, ĤR(l + 1):

1. The heart rate estimated from the previous time step l, ĤR(l).

2. A heart rate candidate HRcand(l + 1) which is obtained from the spectrum of
the green PPG signal.

3. A heart rate prediction, HRpred(l + 1) which is obtained from the long-term
(LT) trend of the past six (6) HR estimates. The LT trend is obtained using
the Seasonal-Trend decomposition using LOESS3 (STL) method [59]. In this
study, we used the MATLAB implementation, trenddecomp.

First, we seek to find a heart rate candidate, HRcand(l + 1), within the wide

search range ∆w(l + 1), which corresponds to the highest peak in the green

spectrum (HRcand(l + 1) ∈ [ĤR
(6)
(l) ±∆w(l + 1)/2]). If HRcand(l + 1) is available,

we calculate δe(l + 1), which is the absolute difference between HRcand(l + 1) and

ĤR(l) (in Hz) at time step l + 1. We distinguish between four (4) cases.

Case 1: If a peak was found in [ĤR
(6)
(l)±∆w(l + 1)/2] and D0 = 0 (“no

noise”)

or

If a peak was found in [ĤR
(6)
(l)±∆w(l + 1)/2] and D0 = 1 (“noise is

present”) and δe(l + 1) < 0.1 Hz

In this case, HRcand(l+1), corresponds to the highest peak in the green spectrum,

within the wide search range ∆w(l+1) (HRcand(l+1) ∈ [ĤR
(6)
(l)±∆w(l+1)/2]).

The estimated heart rate, ĤR(l + 1) is calculated as

ĤR(l + 1) = HRcand(l + 1). (5.9)

3Locally estimated scatterplot smoothing (LOESS).
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Case 2: If a peak was found in [ĤR
(6)
(l)±∆w(l + 1)/2] and D0 = 1 and

δe(l + 1) > 0.1 Hz.

In this case, we follow the procedure recommended in [33] to consider at most

three dominant peaks in the green spectrum, whose magnitude exceed 50% of the

maximum peak. Here, HRcand(l + 1) is obtained by averaging all the peaks that

we considered. The estimated heart rate, ĤR(l + 1) is calculated as

ĤR(l + 1) = η ×HRcand(l + 1) + (1− η)×HRpred(l + 1), (5.10)

where η is a constant we set to 0.9.

Case 3: If no peak was found in [ĤR
(6)
(l)±∆w(l + 1)/2].

In this case, we extend the wide search range, ∆w(l+1). The extended wide search

range is ∆+
w(l + 1) = (1 + τ)×∆w(l + 1) (τ = 0.25 in this study). We seek to find

at most three dominant peaks within the extended wide search range, ∆+
w(l + 1)

(the range [ĤR
(6)
(l) ±∆+

w(l + 1)/2]). If we find at least one peak, we consider at

most three dominant peaks, whose magnitude exceed 50% of the maximum peak.

HRcand(l + 1) is obtained by averaging all the peaks that we considered. The

estimated heart rate, ĤR(l + 1) is calculated as

ĤR(l + 1) = η ×HRcand(l + 1) + (1− η)×HRpred(l + 1), (5.11)

where η is a constant we set to 0.9.

Case 4: If no peak was found in [ĤR
(6)
(l)±∆w(l + 1)/2] or in

[ĤR
(6)
(l)±∆+

w(l + 1)/2].

In this case, ĤR(l + 1) is calculated as

ĤR(l + 1) = HRpred(l + 1). (5.12)
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The heart rate calculation process we used requires the availability of the

previous six heart rate estimates in order to generate a heart rate prediction,

HRpred(l + 1) at time step l + 1. Therefore, from time steps l = 2 to l = 6,

the heart rate estimates ĤR(2) through ĤR(6) corresponds to the highest peak

in the green spectrum, within the wide search range ∆w(l + 1) (ĤR(l + 1) ∈

[ĤR
(6)
(l)±∆w(l + 1)/2])4. In this case, ĤR

(6)
(l) is the average of all the previously

calculated heart rate estimates (see Equation (5.3)).

5.5 Alternative HR Calculation Methods

In most studies involving PPG signals collected from humans in motion, suitable

reference signals, representing motion artifacts, were obtained through additional

hardware [56]. For example, when the PPG sensor is mounted on the wrist of a

running participant, accelerometer sensors mounted on the participant’s wrist are

often used as noise reference signals [60, 61, 62].

TROIKA is an HR calculation framework proposed by Zhang et al. [33].

TROIKA is based on Singular Spectrum Analysis (SSA) [63] followed by Sparse

Signal Reconstruction (SSR) [64] to eliminate the noise dominant components present

in PPG signals. The inputs to TROIKA are a green PPG signal and X, Y, and Z

accelerometer data. The output is a heart rate estimate. In our implementation of

TROIKA, the noise components were obtained from a tri-axial accelerometer. In

[33], TROIKA was tested on data collected from a wrist-worn sensor (that encloses a

green PPG channel and X, Y, and Z accelerometer data) from twelve (12) participants,

during fast running at peak speed of 15 km/h. The heart rate average absolute error

of TROIKA in this test was 2.34 beat per minutes (BPM).

A related method is based on Zhang’s Joint Sparse Spectrum Reconstruction

(JOSS). It was shown in [34] to exhibit a heart rate average absolute error as small as

4If no such peak is detected, we increment ∆w(l + 1) by 0.02 Hz (or 1.2 BPM) and we

search again for a peak. This process repeats until a peak is found.
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1.28 BPM when tested on the same twelve (12) participants used in Zhang’s TROIKA

study [33]. In JOSS, the input signals are a green PPG signal and X, Y, and Z

accelerometer data. The accelerometer data are considered the noise signals. The

output is a heart rate estimate. Compared to TROIKA where PPG and accelerometer

signals were sampled at 125 Hz, JOSS’s low sampling rate, namely 25 Hz, is an

attractive feature that gives JOSS the potential to be implemented in Very Large-

Scale Integration (VLSI) or Field Programmable Gate Array (FPGA) in wearable

devices [34].

Figure 5.11 is a block diagram of a possible implementation of TROIKA (Figure

5.11-a) and JOSS (in Figure 5.11-b).

The heart rate calculation mechanism of the DWL method was inspired by that

of TROIKA and JOSS. We compare the quality ofHR calculated by the DWLmethod

which does not require accelerometers, to our implementation of the accelerometer-

dependent TROIKA and JOSS. The TROIKA and JOSS experimental results were

obtained from the same participants that we employed in the analysis of the DWL

method.

5.6 Results

5.6.1 Performance metrics

To assess, evaluate, and compare the heart rate estimation performance of DWL

method to TROIKA and JOSS, we used four metrics, namely; Mean Absolute Error

(MAE) (Equation (5.13)); Mean Absolute Error Percentage (MAEP ) (Equation

(5.14)); a specific performance index (PI) (Equation (5.15)) which is the frequency,

in percent, of obtaining an HR estimate that is within ± 5 BPM of the HR ground

truth; and computation time (CT ). We defined CT to be the total time duration

(in seconds) that an algorithm takes to generate heart rate levels from the entire

360-second-long off-line data that has already been collected during the experimental
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(a)

(b)

Figure 5.11 Block diagram of a possible implementation of (a) TROIKA algorithm
and (b) JOSS algorithm.

run. We compare the HR values calculated by the three tested methods to ground

truth values obtained from an ECG signal that is simultaneously recorded, hence

synced, with the green and IR PPG waveforms and the X, Y, and Z accelerometer

data. All R peaks in the ECG signal were manually labeled. The ground truth HR

was obtained using Equation (5.1). The relevant definitions are:
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MAE (in BPM) =
1

L

L∑
l=1

∆(l) (ideally 0 BPM) (5.13)

MAEP (in %) =
1

L

L∑
l=1

∆(l)

BPMGT (l)
× 100 (ideally 0 %) (5.14)

PI (in %) =
L∑
l=1

1(∆(l)<ϵ1)

L
× 100 (ideally 100%) (5.15)

In Equations (5.13), (5.14), and (5.15), ∆(l) is defined as

∆(l) (in BPM) =
∣∣BPMHR method(l)−BPMGT (l)

∣∣ , (5.16)

where
∣∣.∣∣ is the absolute value. BPMHR method(l) is the heart rate in beat per minutes

(BPM) calculated using each one of the tested methods (DWL, TROIKA, and JOSS)

at time step l. BPMGT (l) is the HR ground truth value in BPM obtained as

BPMGT (l) = HRGT (l) × 60, where HRGT (l) is calculated using Equation (5.1).

In Equation (5.15), 1 is the indicator function that returns 1 if ∆(l) < ϵ1 and 0

otherwise. ϵ1 was set to 5 BPM. The heart rate estimated using DWL at time step

l (in BPM) is calculated as BPMDWL(l) = ĤR
(3)
(l) × 60, where ĤR

(3)
(l) is the

3-point-averaged heart rate estimate (see Equation (5.3)).

5.6.2 DWL performance on wrist data

Data were collected from fourteen (14) participants while standing, walking, and

running on the treadmill, following the experimental protocol described in Section

5.2. In this section, we analyze data collected from participants 1 to 11. Data from

participants 12, 13, and 14 are not included in our analysis since for these participants,
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the system suffered from physical malfunction (intermittent readings due to loss of

sensor contact). However, we still provide the data for these participants in the

repository in [41]. Every 2 seconds, the preceding 8-second-long green and IR PPG

data were used to generate a short-term 3-point-averageHR estimate, ĤR
(3)
(l), using

the DWL method. Heart rate levels obtained using DWL are compared to those of

TROIKA5 [33] and JOSS6 [34].

As examples, we show in Figure 5.12 the HR calculated for the whole

experimental run for two participants, participant 3 (Figure 5.12 (a)) and participant

10 (Figure 5.12 (b)). We use red circles, green squares, and blue triangles to represent

the HR values calculated using DWL, TROIKA, and JOSS, respectively. The ground

truth HR is the solid black line. In Figure 5.12 (a) all three methods generate

accurate HR estimates (the magnitude of the noise level present in the signals of

participant 3 was small). For participant 10 (see Figure 5.12 (b)), however, TROIKA

lost track of the correct heart rate from 120 to 175 seconds and from 250 to 325

seconds. This phenomenon (losing track of the correct heart rate) is referred to as

Lock Loss. Similary, JOSS suffered from a Lock Loss from 225 seconds until the end

of the experimental run. During these intervals, the DWL method was still able to

estimate the participants’ HR accurately (see red circles of Figure 5.12 (b)).

We calculate MAE, MAEP , PI, and CT for all eleven (11) experimental

participants and present them in Tables 5.2, 5.3, 5.4, and 5.5, respectively. In Table

5.2, we show the MAE for DWL, TROIKA, and JOSS. We calculate and report the

MAE mean and standard deviation for each method in the second to last row of

5For the TROIKA’s implementation, we used a sampling rate of 100 Hz. We recreated

the TROIKA code using MATLAB. Our code was tested on the same dataset of the

TROIKA paper and compared to the results presented in [33]. The results using our code

are very close to the results presented in the TROIKA paper [33].
6For the JOSS’s implementation, we used a sampling rate of 25 Hz, as suggested in the

JOSS paper [34]. We recreated the JOSS code using MATLAB. Our code was tested on

the dataset used in JOSS paper and compared to the results presented in [34]. The results

using our code are very close to the results presented in the JOSS paper [34].
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Figure 5.12 HR calculated for the whole experimental run using DWL method
(red circles), TROIKA (green squares), and JOSS (blue triangles). (a) HR values
for participant 3. DWL, TROIKA, and JOSS were able to calculate accurate heart
rate levels. (b) HR values for participant 10. TROIKA lost track of the correct
heart rate from 120 to 175 seconds and from 250 to 325 seconds. Similary, JOSS
lost track of the correct heart rate from 225 seconds until the end of the
experimental run. DWL methods was able to estimate the participant’s HR
accurately during the whole experimental run.

Table 5.2. In the last row of Table 5.2, we calculate the MAE mean and standard

deviation of all participants that do not suffer from Lock Loss. Lock Loss happens if

MAE exceeds 5 BPM. participants who suffer Lock Loss are underlined. Table 5.3

summarizes the MAEP for DWL, TROIKA, and JOSS. We calculate and report the
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MAEP mean and standard deviation for each method in the last row of Table 5.3.

Moreover, we calculate PI for DWL, TROIKA, and JOSS, and report it in Table 5.4.

In the last row of Table 5.4, we calculate the PI mean and standard deviation of all

participants.

Table 5.2 MAE in BPM for all Eleven (11) Experimental Participants, using
DWL, TROIKA, and JOSS (ideal MAE is 0)

HR Calculation Methods

Participants TROIKA1 JOSS1 DWL2

Participant 1 1.09 1.39 0.74

Participant 2 4.3 87.61 1.48

Participant 3 1.21 1.41 0.63

Participant 4 1.96 1.72 2.36

Participant 5 7.85 5.49 1.86

Participant 6 2.57 2.73 1.18

Participant 7 1.83 2.03 1.64

Participant 8 1.08 0.84 0.61

Participant 9 1.73 1.86 0.76

Participant 10 9.34 21.8 0.85

Participant 11 2.72 4.87 1.31

Average∗ 3.24|2.82 BPM 11.98|25.79 BPM 1.22|0.57 BPM

Average without
Lock Loss∗∗

2.05|1.03 BPM 2.11|1.24 BPM 1.22|0.57 BPM

1 JOSS and TROIKA use tri-axial accelerometer data as noise reference.

2 DWL method uses an IR PPG signal as noise reference.

∗ The second to last row shows the MAE average of all eleven (11) participants shown as
“mean|standard deviation.”

∗∗ The last row shows the MAE average of participants that do not suffer from Lock Loss
(MAE value is less than 5 BPM). All MAE values that exceed 5 BPM are underlined and
not included into the calculation of the average performance.

As shown in Tables 5.2 the average MAE for all eleven participants using the

DWL method is MAE of 1.22|0.57 BPM (“mean|standard deviation”) (see Table

5.2), which is smaller than average MAE of TROIKA (3.24|2.82 BPM) and JOSS

(11.98|25.79 BPM), respectively. When we exclude participants who suffer from Lock
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Table 5.3 MAEP in % for all Eleven (11) Experimental Participants, Using DWL,
TROIKA, and JOSS (Ideal MAEP is 0%)

HR Calculation Methods

Participants TROIKA JOSS DWL

Participant 1 0.92 1.19 0.66

Participant 2 3.88 59.22 1.47

Participant 3 1.03 1.23 0.5

Participant 4 1.43 1.31 1.61

Participant 5 4.96 3.41 1.19

Participant 6 2.06 2.24 0.85

Participant 7 1.38 1.49 1.16

Participant 8 0.77 0.62 0.42

Participant 9 1.94 2.08 0.81

Participant 10 7.91 19.53 0.83

Participant 11 2.07 3.19 1.00

Average∗ 2.58|2.19 % 8.68|17.6 % 0.95|0.38 %

∗ The last row shows the MAEP average of all eleven (11) participants shown as
“mean|standard deviation.”

Loss (shown in the last row of Table 5.2), DWL (with the same average MAE =

1.22|0.57 BPM) still yields a smaller average MAE than that of TROIKA (with

average MAE = 2.05|1.03 BPM) and JOSS (with average MAE = 2.11|1.24 BPM).

Note that the MAE calculated using DWL method did not exceed 5 BPM for any

of the participants. However, this was not the case for TROIKA and JOSS method.

participant 10 is an example where the MAE of TROIKA (9.34 BPM) and JOSS

(21.8 BPM) exceeds 5 BPM, whereas the MAE of the DWL method is 0.85 BPM.

In addition to MAE, we calculate average MAEP of all three methods for all

eleven participants. Average MAEP of DWL method of 0.95|0.38 % is smaller than

average MAEP of TROIKA (2.58|2.19 %) and JOSS (8.68|17.6 %) (see Table 5.3).

Table 5.4 summarized the PI values for all eleven (11) participants. The PI of

DWL is larger than the PI of TROIKA and JOSS. For instance, on average, the PI
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Table 5.4 PI in % for all Eleven (11) Experimental Participants, Using DWL,
TROIKA, and JOSS (Ideal PI is 100%)

HR Calculation Methods

Participants TROIKA JOSS DWL

Participant 1 96.02 93.75 98.36

Participant 2 72.57 6.86 94.29

Participant 3 96.02 93.75 100

Participant 4 88.07 90.91 86.93

Participant 5 61.58 80.79 88.7

Participant 6 80.68 84.66 100

Participant 7 90.96 88.7 91.53

Participant 8 97.18 98.31 100

Participant 9 90.91 89.2 100

Participant 10 63.84 57.63 99.44

Participant 11 84.75 80.23 95.48

Average∗ 83.87|12.75 % 78.62|26.16 % 95.88|4.9 %

∗ The last row shows the PI average of all eleven (11) participants shown as “mean|standard
deviation.”

of DWL method is 95.88|4.9 % that is larger than that of TROIKA with 83.87|12.75

% and JOSS with 78.62|26.16 %.

The CT is an indication of the algorithm’s computational complexity. In order

to be implement in wearable devices, the algorithm should be able to run in

real-time and be energy efficient. A desirable algorithm should have a small CT .

Table 5.5 shows the CT of DWL, TROIKA, and JOSS for participants 1 to 11. The

average CT of DWL is smaller than that of TROIKA and JOSS. For instance, the

average CT of DWL is 3.0|0.3 seconds is smaller than the average CT of TROIKA

with 247.7|43.8 seconds and JOSS with 8.5|0.24 seconds.

Additionally, we show the Bland-Altman plot (Figure 5.13 (a)) of the HR values

computed using DWL method for participants one (1) through eleven (11). The

Bland-Altman plot describes the agreement between two quantitative measurements
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Table 5.5 CT in Seconds for all Eleven (11) Experimental Participants, Using
DWL, TROIKA, and JOSS

HR Calculation Methods

Participants TROIKA JOSS DWL

Participant 1 243.6 8.5 2.8

Participant 2 238.0 8.3 3.0

Participant 3 294.6 8.6 3.1

Participant 4 259.7 8.4 2.7

Participant 5 246.5 8.5 3.1

Participant 6 239.7 9.2 3.7

Participant 7 237.0 8.5 2.7

Participant 8 326.4 8.5 2.8

Participant 9 278.3 8.3 2.8

Participant 10 194.3 8.5 3.3

Participant 11 166.9 8.5 3.1

Average∗ 247.7 | 43.8 s 8.5 | 0.24 s 3.0 | 0.3 s

Note: the results shown in this table were generated by MATLAB R2022b on a personal
computer, with an Intel®CoreTM i9-10900K CPU running at 3.70 GHz, 32GB RAM, and
Windows 11 operating system.

∗ The last row shows the CT average of all eleven (11) participants shown as “mean|standard
deviation.”

(A and B) by constructing the Limits of Agreements (LOA). These statistical limits

are calculated by using the mean and the standard deviation of the differences between

the two measurements. The resulting graph is a scatter plot, in which the y-axis shows

the difference between the two paired measurements (A-B) and the x-axis represents

the average of these measures ((A+B)/2) [65]. The LOA we use is [µ − 1.96 × σ ,

µ + 1.96 × σ] where µ is the average difference between each HR estimate and the

associated ground-truth HR against their average, and σ is the standard deviation

(95% of all differences are within this range) [33]. The LOA in Figure 5.13 (a) is [-4.9,

4.8] BPM. Moreover, we construct the scatter plot of the HR estimated using DWL

method versus the associated ground truthHR for participants one (1) through eleven

(11). The scatter plot is shown in Figure 5.13 (b). We construct a linear regression
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Figure 5.13 (a) Bland-Altman plot of HR estimated using DWL method and the
ground truth HR for participants one (1) to eleven (11). The LOA = [-4.9, 4.8]
BPM. (b) Scatter plot of HR estimated using DWL method (on the y-axis) vs. the
ground truth HR (x-axis) for participants one (1) to eleven (11). The linear
regression line that fits the data is shown in black. The line is y = x - 0.2
(R2 = 0.99). The Pearson correlation is found to be 0.99.

for the data points of Figure 5.13 (b). The fitted line is y = x - 0.2 (R2 = 0.99),

where x is the ground truth HR and y is the HR estimated using DWL method.

The Pearson correlation between the HR estimated using DWL method and ground
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truth HR is also calculated and found to be 0.99. The high R2 value and Pearson

correlation indicate that DWL method is able to compute accurate HR levels.

5.7 Validation of the DWL Method on Palm Data

In order to validate the performance of the DWL framework, we ran a second

experiment (validation run). During the second experiment, we asked the same

volunteers who participated in our previous experiment to run on the treadmill again,

following the experimental protocol described in Section 5.2. We reused the same

ECG, accelerometer, and PPG sensors. The only difference was that we mount the

dual wavelength sensor onto the participant’s palm (instead of wrist). Both wrist and

palm experiments took place on the same day. There was a break of approximately

15 minutes between the first and the second run during which the dual-wavelength

PPG sensor was relocated from the wrist to the palm of the participant. Data for all

participants are provided in the repository in [41].

We observed that the quality of the PPG signals collected during the second run

(palm run) is better than that of the PPG signals collected during the first run (wrist

run). For instance, the SNR mean value of the palm IR PPG is υIR
SNR, palm = −7 dB

and the SNR mean value of the palm green PPG signal, υG
SNR, palm = −2.2 dB (as

opposed to υIR
SNR, wrist = −8.5 dB and υG

SNR, wrist = −4.8 dB for wrist-collected PPG

signals). Data for all participants are provided in the repository in [41].

Participants 5 and 13 deviated from the data collection protocol by interfering

with the sensor during collection. Their measurements were excluded from the

analysis we provide (but are available in the repository in [41]). In the following

analysis, the DWL framework parameters derived in Sections 5.4 are kept unchanged.

MAE, MAEP , and PI were calculated from the twelve (12) participants of

the “palm run” for DWL, TROIKA, and JOSS, and presented in Tables 5.6, 5.7, and

5.8, respectively. As shown in Tables 5.6, 5.7, and 5.8, DWL succeeds in generating
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accurate HR estimates when tested on the PPG data collected from the second run

(palm run) for all the twelve (12) subjects.

Table 5.6 MAE in BPM for all Twelve (12) Participants During the Palm Run,
Using DWL, TROIKA, and JOSS (Ideal MAE is 0)

HR Calculation Methods

Participants TROIKA JOSS DWL

Participant 1 0.84 0.89 0.7

Participant 2 1.06 1.01 0.71

Participant 3 0.78 0.64 0.68

Participant 4 1.2 1.32 0.79

Participant 6 2.64 3.18 1.76

Participant 7 2.34 2.16 1.89

Participant 8 1.22 1.11 0.9

Participant 9 1.42 1.56 0.68

Participant 10 1.34 1.21 0.82

Participant 11 2.96 2.65 2.05

Participant 12 2.08 52.32 1.57

Participant 14 3.6 86.52 3.1

Average∗ 1.79|0.92 BPM 12.88|27.41 BPM 1.3|0.77 BPM

Average without
Lock Loss∗∗

1.79|0.92 BPM 1.57|0.83 BPM 1.3|0.77 BPM

∗ The second to last row shows the MAE average of all eleven (11) participants shown as
“mean|standard deviation.”

∗∗ The last row shows the MAE average of participants that do not suffer from Lock Loss
(MAE value is less than 5 BPM). All MAE values that exceed 5 BPM are underlined and
not included into the calculation of the average performance.

As shown in Tables 5.6 the average MAE for all twelve ‘palm run’ participants

using the DWL method 1.3|0.77 BPM (“mean|standard deviation”) (see Table

5.6), which is smaller than average MAE of TROIKA (1.79|0.92 BPM) and JOSS

(12.88|27.41 BPM), respectively. When we exclude participants who suffer from Lock

Loss (shown in the last row of Table 5.6), DWL (with the same average MAE =

1.3|0.77 BPM) still yields a smaller averageMAE than that of TROIKA (with average

MAE = 1.79|0.92 BPM) and JOSS (with averageMAE = 1.57|0.83 BPM). Note that
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the MAE calculated using DWL and TROIKA method did not exceed 5 BPM for any

of the participants. However, this was not the case for JOSS method. For articipants

12 and 14, the MAE of JOSS exceeds 5 BPM.

Table 5.7 MAEP in % for all Twelve (12) Participants During the Palm Run,
Using DWL, TROIKA, and JOSS (Ideal MAEP is 0%)

HR Calculation Methods

Participants TROIKA JOSS DWL

Participant 1 0.74 0.81 0.58

Participant 2 0.81 0.73 0.52

Participant 3 0.57 0.47 0.49

Participant 4 0.96 1.06 0.61

Participant 6 2.17 2.63 1.38

Participant 7 1.8 1.66 1.39

Participant 8 0.85 0.77 0.63

Participant 9 1.47 1.54 0.7

Participant 10 1.38 1.25 0.77

Participant 11 2.1 1.96 1.37

Participant 12 1.48 32.72 1.13

Participant 14 2.84 56.51 2.56

Average∗ 1.43|0.69 % 8.51|17.62 % 1.01|0.6 %

∗ The last row shows the MAEP average of all Eleven (11) participants shown as
“mean|standard deviation.”

In addition to MAE, we calculate average MAEP of all three methods for all

eleven participants. Average MAEP of DWL method of 1.01|0.6 % is smaller than

average MAEP of TROIKA (1.43|0.69 %) and JOSS (8.51|17.62 %) (see Table 5.7).

Table 5.8 summarized the PI values for all twelve (12) participants of the ‘palm

run.’ The PI of DWL is larger than the PI of TROIKA and JOSS. For instance, on

average, the PI of DWL method is 95.33|6.46 % that is larger than that of TROIKA

with 90.23|8.94 % and JOSS with 80.93|29.18 %.

Moreover, we show the summary of the performance metrics (MAE, MAEP ,

and PI) obtained for the first run (the “wrist run”) in Table 5.9 and for the second
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run (the “palm run”) in Table 5.10. The results are presented as “mean|standard

deviation.”

Table 5.8 PI in % for all Twelve (12) Participants During the Palm Run, Using
DWL, TROIKA, and JOSS (Ideal PI is 100%)

HR Calculation Methods

Participants TROIKA JOSS DWL

Participant 1 98.29 97.71 100

Participant 2 94.89 98.3 100

Participant 3 100 99.43 100

Participant 4 96.59 94.89 98.3

Participant 6 82.49 80.79 89.83

Participant 7 88.7 89.83 94.35

Participant 8 96.59 97.16 97.16

Participant 9 92.66 92.66 100

Participant 10 95.45 96.02 99.43

Participant 11 80.11 83.52 88.64

Participant 12 86.93 30.68 97.16

Participant 14 70.06 10.17 79.1

Average∗ 90.23|8.94 % 80.93|29.18 % 95.33|6.46 %

∗ The last row shows the PI average of all eleven (11) participants shown as “mean|standard
deviation.”

Tables 5.9 and 5.10 show that the DWL method performs as well when the

measurements were taken from the wrist as when they were taken from the palm.

5.8 Conclusion

We presented a framework for heart rate calculation under motion using a dual-

wavelength (green and IR) PPG sensor. We used PPG data collected from fourteen

(14) individuals engaged in high-intensity full body exercise. Analysis of green and IR

PPG signals indicates that the IR PPG signal is a good noise reference signal. We used

this observation to develop a motion-resistant HR calculation method derived from
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Table 5.9 Summary of Performance Metrics for Run 1 (Wrist Run) – For Run 1,
the Average Performance of Eleven (11) Participants is Shown; Results Are
Represented as “Mean|Standard Deviation”

Run 1 (wrist run)

TROIKA JOSS DWL

Average MAE (BPM) of all participants 3.24|2.82 11.98|25.79 1.22|0.57
Average MAE (BPM) of participants
without Lock Loss

2.05|1.03 2.11|1.24 1.22|0.57

Average MAEP (%) of all participants 2.58|2.19 8.68|17.6 0.95|0.38
Average PI (%) of all participants 83.87|12.75 78.62|26.16 95.88|4.9

Table 5.10 Summary of Performance Metrics for Run 2 (Validation Palm Run) –
For run 2, the Average Performance of Twelve (12) Participants is Shown; Results
Are Represented as “Mean|Standard Deviation”

Run 2 (palm run)

TROIKA JOSS DWL

Average MAE (BPM) of all participants 1.79|0.92 12.88|27.41 1.3|0.77
Average MAE (BPM) of participants
without Lock Loss

1.79|0.92 1.57|0.83 1.3|0.77

Average MAEP (%) of all participants 1.43|0.69 8.51|17.62 1.01|0.6
Average PI (%) of all participants 90.23|8.94 80.93|29.18 95.33|6.46

[35] that measures noise components from the IR PPG signal. Afterwards, a green

PPG signal is denoised and used for HR calculation. The proposed method, Dual

Wavelength (DWL), was tested on experimental data collected from participants’

wrists while the participants were standing, walking, and running on a treadmill. The

performance of the method, using several measures of accuracy and computational

effort, was then compared to popular methods in the literature that use data from

a tri-axial accelerometer for denoising, namely, TROIKA and JOSS. Using the

experimental wrist-data we collected, we showed that the DWL method exhibits

good performance in the face of motion artifacts. For instance, DWL yielded a

Mean Absolute Error (MAE) of 1.22|0.57 BPM, Mean Absolute Error Percentage
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(MAEP ) of 0.95|0.38 %, and performance index (PI) (which is the frequency in

percent of the event that we obtain a HR estimate that is within ± 5 BPM of the HR

ground truth) of 95.88|4.9 %. Moreover, DWL yielded a short computation period of

3.0|0.3 seconds to process a 360-second-long run. We validated the performance of the

DWL method by testing it on data collected from the participants’ palms, obtaining

similar behavior. The DWL method is desirable since (1) it performed well under

high-intensity full body repetitive “macro-motion,” exhibiting high accuracy in the

presence of motion artifacts (as compared to the leading accelerometer-dependentHR

calculation techniques TROIKA and JOSS); (2) it used only PPG signals; auxiliary

signals such as accelerometer signals were not needed; and (3) it was computationally

efficient, hence implementable in wearable devices.
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CHAPTER 6

CLOSING REMARKS – ADDRESSING MOTION ARTIFACTS IN

PULSE OXIMETRY

In this dissertation, we studied the problem of motion artifacts in the pulse oximetry

systems. We developed motion-resistant methods for high-quality SpO2 and HR

calculation, under significant level of motion noise. We first employed a comb filter,

tuned to the participant’s heart rate (as a pre-processing step), to capture the heart

rate components in the PPG signal and suppress motion artifacts. We then showed

the benefits of integrating vital signs calculated from multiple PPG channels (when

available). Lastly, we developed a motion-resistant HR calculation framework that

uses PPG signals only.

Study and testing of the motion-resistant methods we developed in this thesis

can be expanded. Next, we list a few challenges that call for future research.

� All tested datasets were collected from healthy and physically fit participants.
Therefore, irregular heart rhythms and their effect on SpO2 level calculation
using our methods were not studied.

� The SpO2 ground truth level we employed in chapters 3 and 4 was obtained
using the highly-accurate Nonin 8000R sensor [30], mounted on the participant’s
temple. It may have been preferable to draw blood samples from the
participants and measure arterial oxygen saturation directly. However, this
invasive procedure was not permitted under the IRB-approved experimental
protocol.

� The ECG-derived HR of chapter 3 can be replaced by the PPG-derived HR of
chapter 5. In this case, the ECG-HR-tuned comb filter will be substituted by
a PPG-HR-tuned comb filter. The proposed system will generate high quality
HR and SpO2 levels using green, red, and infrared PPG signals only.
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[9] S. Kästle, F. Noller, S. Falk, A. Bukta, E. Mayer, and D. Miller, “A new family of
sensors for pulse oximetry,” Hewlett-Packard Journal, vol. 48, no. 1, pp. 39–61,
1997.

[10] J. Ghairat and H. Mouhsen, “Motion artifact reduction in PPG signals,” Ph.D.
dissertation, Lund University, Lund, Sweden, 2015.

[11] S. Prahl, “Tabulated Molar Extinction Coefficient for Hemoglobin in Water,” 1998.
[Online]. Available: https://omlc.org/spectra/hemoglobin/summary.html.
Accessed on 20 February 2023.

[12] S.-S. Oak and P. Aroul, “How to Design Peripheral Oxygen Saturation
(SpO2) and Optical Heart Rate Monitoring (OHRM) Systems
Using the AFE4403,” Tech. Rep. March, 2015. [Online]. Available:

109



http://www.ti.com/lit/an/slaa655/slaa655.pdf. Accessed on 20 February
2023.

[13] P. Kyriacou, K. Budidha, and T. Y. Abay, “Optical techniques for blood and tissue
oxygenation,” Encyclopedia of Biomedical Engineering, vol. 1-3, no. April, pp.
461–472, 2019.

[14] J. M. Cho, Y. K. Sung, K. W. Shin, D. J. Jung, Y. S. Kim, and N. H. Kim, “A
preliminary study on photoplethysmogram (PPG) signal analysis for reduction
of motion artifact in frequency domain,” in IEEE-EMBS Conference on
Biomedical Engineering and Sciences. Langkawi, Malaysia: IEEE, 2012, pp.
28–33.

[15] B. M. Jayadevappa, G. H. Kiran Kumar, L. H. Anjaneya, and S. H. Mallikarjun,
“Design and Development of Electro-Optical System for Acquisition of Ppg
Signals for the Assessment of Cardiovascular System,” International Journal
of Research in Engineering and Technology, vol. 03, no. 06, pp. 520–525, 2014.

[16] B. Widrow, C. S. Williams, J. R. Glover, J. M. McCool, R. H. Hearn, J. R.
Zeidler, J. Kaunitz, E. Dong, and R. C. Goodlin, “Adaptive Noise Cancelling:
Principles and Applications,” Proceedings of the IEEE, vol. 63, no. 12, pp.
1692–1716, 1975.

[17] J. C. Stapleton and S. C. Bass, “Adaptive noise cancellation for a class of non-linear
IIR filters,” IEEE Transactions on circuits and systems, vol. 32, no. 2, pp.
143–150, 1985.

[18] S. J. Barker, “”Motion-resistant” pulse oximetry: A comparison of new and old
models,” Anesthesia and Analgesia, vol. 95, no. 4, pp. 967–972, 2002.

[19] M. S. Lipnick, J. R. Feiner, P. Au, M. Bernstein, and P. E. Bickler, “The Accuracy
of 6 Inexpensive Pulse Oximeters Not Cleared by the Food and Drug
Administration,” Anesthesia and Analgesia, vol. 123, no. 2, pp. 338–345,
aug 2016. [Online]. Available: http://journals.lww.com/00000539-201608000-
00009

[20] A. Louie, J. R. Feiner, P. E. Bickler, L. Rhodes, M. Bernstein, and J. Lucero,
“Four Types of Pulse Oximeters Accurately Hypoxia during Low Perfusion
and Motion,” Anesthesiology, vol. 128, no. 3, pp. 520–530, 2018.

[21] A. Galli, C. Narduzzi, and G. Giorgi, “Measuring Heart Rate during Physical Exercise
by Subspace Decomposition and Kalman Smoothing,” IEEE Transactions on
Instrumentation and Measurement, vol. 67, no. 5, pp. 1102–1110, 2018.

[22] Q. Zhang, X. Zeng, W. Hu, and D. Zhou, “A Machine
Learning-Empowered System for Long-Term Motion-Tolerant Wearable
Monitoring of Blood Pressure and Heart Rate With Ear-ECG/PPG,”
IEEE Access, vol. 5, pp. 10 547–10 561, 2017. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/7933339

110



[23] J. Pan and W. J. Tompkins, “A Real-Time QRS Detection Algorithm,” IEEE
Transactions on Biomedical Engineering, vol. BME-32, no. 3, pp. 230–236,
1985.
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