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Abstract

Microbial populations live and grow in spatially structured environments. These struc-
tures lead to spatial patterns in populations and alter the course of their natural evolu-
tion. Such phenomena are theoretically studied using spatially explicit models. How-
ever, these models are still poorly understood due to their analytical and numerical
complexity. In this thesis, we study two systems of microorganisms living and pro-
liferating in different spatially structured environments. The first system consists of
populations of Escherichia coli growing in rectangular microchannels with two open
ends. We study such populations with a lattice model in which cells shift each other
along lanes as they reproduce. The model predicts rapid diversity loss along the lanes,
with neutral mutations appearing in the middle of the channel being the most likely
to fixate. These theoretical predictions are in agreement with our experimental ob-
servations. The second system is constituted by planktonic microorganisms that are
transported by chaotic oceanic currents. To replicate their dynamics, we employ an
individual-based coalescence model. The model predicts the effect of oceanic currents
on the biodiversity of planktonic communities, as observed in metabarcoding data
sampled from oceans and lakes around the world.
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Chapter 1

Introduction

1.1 Outline of the Thesis

In this thesis, we study two systems of microorganisms evolving in spatially structured
environments. First, we study populations of bacteria E. coli growing in rectangular
microchannels with two open ends. Second, we explore the evolution of planktonic
communities living in aquatic environments with and without advection.

In Chapter 1, we introduce the main concepts of the field. In Section 1.2, we
introduce the biodiversity of a population from the ecological and genetic point of
view. In Section 1.3, we motivate why we focus on populations of microorganisms.
In particular, we discuss dense populations of bacteria and freely moving plankton
microorganisms in aquatic environments. In Section 1.4, we provide a brief historical
overview and the main theoretical concepts of population genetics.

Chapter 2 is devoted to the mathematical modeling of population dynamics and
genetics. In Section 2.1, we introduce the main terminology and notations. We start
with introducing the models for well-mixed populations in Section 2.2. Then, we
introduce the lattice models in Section 2.3. In Section 2.4, we briefly discuss the
concept of the coalescent theory and introduce the basic coalescent model. Finally, we
introduce off-lattice forward and backward models in Section 2.5.

In Chapter 3, we briefly introduce neutral populations of E. coli growing in rect-
angular microchannels with two open ends and provide references to our papers.

In Chapter 4, we theoretically study the competition of two non-neutral strains of
E. coli in rectangular microchannels with two open ends. We find their fixation times
and probabilities for different initial distributions of mutants. In Section 4.1, we study
one mutant at a random location. In Section 4.2, we explore a cluster of mutants
located at an open end. In Section 4.3, we investigate the case of randomly distributed
mutants in a channel.

In Chapter 5, we briefly discuss our results on the evolution of planktonic commu-
nities in aquatic environments with and without advection and provide a reference to
our paper.

Finally, in Chapter 6, we provide concluding discussions and further perspectives
on both systems studied in the thesis.
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2 Introduction

1.2 Biodiversity of populations

Life forms on our planet are astonishingly diverse. This diversity is a result of a complex
interplay between individuals and the environment they live and reproduce in. A group
of interacting individuals inhabiting a particular environment forms a population. The
“diversity” of a population is a term with different meanings, depending on the level of
biological organization one is interested in.

On the population level, individuals are subdivided into species. Individuals be-
longing to a species have common characteristics and are capable of interbreeding. The
number of different species in a given population is a main measure of species diversity.
Species emerge and become extinct as a consequence of ecological factors acting on
them, such as food, water, shelter, predation and so on. This interplay between indi-
viduals and their environment shapes the species diversity and is studied by population
ecology, see Fig. 1.1. Within one species, individuals may differ by variants of the same
gene called alleles. The number of distinct alleles within a population of species con-
stitutes its genetic diversity. New alleles emerge due to random mistakes in the DNA
replication called mutations. Some of these mutations are more likely to survive in the
next generation than others, due to the action of natural selection. Moreover, due to
random events, such as natural disasters, some individuals can die and not pass their
alleles to the next generations. This phenomenon results in a loss of alleles and is called
genetic drift. Finally, due to gene migration, populations of species can exchange alle-
les between each other, thereby increasing their genetic diversity. Mutations, genetic
drift, natural selection, and gene migration are usually thought to be the four main
evolutionary forces. The way in which these forces shape the genetic diversity of a
population of species is studied by population genetics, see Fig. 1.1.

Both population ecology and population genetics are conceptually similar, i.e. they
study how a group of biological forms change under external factors acting on them.
From this point of view, there is a natural correspondence between the two theories:
individuals and species in population ecology can be associated with genes and alleles
in population genetics [5]. Because of this correspondence, the mathematical formalism
of population ecology and population genetics are similar as well. For this reason, we
use the term “biodiversity” in a broad sense, meaning either the ecological or genetic
diversity. By “evolution” of a population we understand a change of its biodiversity in
time, under the influence of ecological and evolutionary factors. In addition to ecolog-
ical and evolutionary factors, spatial structures affect the biodiversity of a population
[9, 92]. Such structures are formed by spatial inhomogeneities in the environment that
the population inhabits. Due to the variety of different spatial environments observed
in nature, and the difficulty in their study, this aspect still remains poorly understood.
Understanding of the role of spatially complex environments in the biodiversity of
populations is the main focus of this thesis.

1.3 Populations of microorganisms

In this thesis, we restrict our attention to microorganisms. There are three main
reasons for this.
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Figure 1.1: Ecological and genetic concepts of biodiversity. The biodiversity
of a population can be understood as either species or genetic diversity. The corre-
spondence “individuals ↔ genes”, and “species ↔ alleles” makes the species and genetic
diversity conceptually similar.

First, microorganisms are found everywhere in nature and play a leading role in
numerous biogeochemical processes [35]. For example, bacteria living in soil provide
plants with the chemical elements that are critical for their survival, and are responsi-
ble for about 90% of all biomass decomposition [57, 62]. Marine microorganisms, such
as phytoplankton, are responsible for virtually all the photosynthesis that occurs in
the ocean, and form the basis of aquatic food webs [39]. Despite the central role of mi-
croorganisms in various biological processes, we know very little about their diversity
and underlying evolutionary dynamics [83]. Understanding the evolution of microor-
ganisms has countless applications and can shed light on some possible solutions to
global issues, such as climate change [15] and antibiotic resistance [75].

Second, microorganisms are simple and convenient model systems for studying evo-
lution in action [23, 26, 61]. Specifically, they enable us to test predictions of math-
ematical models of large populations evolving over many generations. In particular,
microorganisms have a short lifetime, which enables us to study their dynamics in real
time for many generations [34]. Also, the small size of microorganisms allows an anal-
ysis of large samples with millions of individuals. Moreover, microorganism genomes
are often simple, which makes them easier to sequence, classify and modify if necessary
[65]. The findings of such studies can be extended to populations of different sizes and
nature.

Finally, microorganisms have a small dispersal distance, i.e. the distance traveled
by an individual in one generation. This helps to explore how the populations expand
in their habitat, and how the spatial structure of the habitat shapes the evolution of
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such populations.

Figure 1.2: E. coli in spatially structured environments. (a) E. coli prolif-
erating on a surface, taken from [97]. (b, c) Highly ordered populations of E. coli
proliferating in narrow microchannels, originally found in [17] and [89], respectively.
(d) Disordered population of E. coli growing in a wide rectangular microchannel with
one open end, taken from [7]. (e) E. coli in a narrow microchannel with one open end,
called “the mother machine”, [91]. (f) E. coli in a microchannel with two open ends,
taken from [37]. (g) Schematic representation of a microfluidic device.

In this thesis, we study two different spatially structured populations of microorgan-
isms living at radically different spatial scales: dense populations of tightly packed bac-
teria in microchannels, and planktonic microorganisms that freely move in an aquatic
environment. We aim at understanding how the environment shapes the biodiversity of
such communities, and what effect it has on the course of their evolution. We introduce
these systems in details in the following sections.

1.3.1 Dense populations of bacteria

Bacteria tend to live in dense populations of closely interacting individuals. Due to
the lack of free space between cells, each newborn individual shifts the others in order
to make space for itself. In some cases, this shifting dynamics is the only mechanism
that makes individuals move in such populations. Moreover, the freedom of movement
of each individual is restricted by the surface the population resides on. These two
factors result in formation of complex spatial structures in populations. For instance,
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rod-shaped bacteria E. coli proliferating on a surface form patches of co-aligned cells
[97], see Fig.1.2, (a). The formation of such dense and sessile populations is important
to withstand environmental stresses and maintain quorum sensing [70].

In nature, bacteria often live in environments characterized by spatial barriers.
Often, bacteria actively seek shelter in small cavities and channels to survive in a
harsh environment. For example, the soil consists of micropores and channels that
are inhabited by microbes [69]. Micropores retain fluid which supply microbes with
nutrients [20] and act as a shelter against larger predators [98].

The boundaries of such pores and channels create extra limitations for bacteria
movement and affect the spatial organization of the entire population. For instance,
E. coli proliferating in narrow channels reach a high global ordering of cells co-aligned
with the walls of the channels [17, 89], see Fig.1.2, (b) and (c). In contrast, bacteria
inhabiting a wide channel are persistently disordered due to a buckling instability [7],
see Fig.1.2, (d). Shifting dynamics in combination with the size and shape of a channel
are the key elements that determine the spatial structure of such populations, and,
therefore, their evolution.

The simplest example of a population with shifting dynamics is a single lane of cells
proliferating in a rectangular channel with one open end. In this case, cells reproduce
and shift each other towards the open end. As the result, a cell at the open end of the
channel is pushed out from the population. In applications, such channels are called
“the mother machine” and the cell at the close end is called “the mother cell” [91],
see Fig.1.2, (e). This is due to the fact that the mother cell is never eliminated from
the population, and at some point, it becomes the ancestor of all individuals in the
population [68].

A more complex case is that of microorganisms growing in rectangular channels
with two open ends [37], see Fig.1.2, (f). In such populations, bacteria shift each other
towards either the right or the left open end as they reproduce. The direction of the
shift depends on the cell’s position along the channel and the ordering of the other
cells. Similarly to the mother machine, cells at the open ends are pushed out from the
channel.

Such populations of bacteria are experimentally studied with microfluidic devices
[81]. These devices consist of multiple microchannels that harbor populations of cells.
Microchannels are connected with flow channels through which the nutrients are de-
livered to the growing populations. The flows in the flow channels remove the expelled
cells and cell waste from the microchannels, preventing clogging, see Fig. 1.2, (g). The
main advantage of microfluidic devices is their design flexibility [100]. In particular, mi-
crochannels can be designed in different shapes and sizes of interest, to mimic spatially
complex habitats of bacteria observed in nature.

Microfluidic devices are also used in studying population dynamics and properties
at a single-cell level [58, 60]. For example, the mother machine has been widely used
for studying the variability of properties of cells born from the same ancestor [91]. A
device with microchannels with two open ends has been employed for studying the
interplay between the population growth rate and the single-cell doubling time [37].
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Figure 1.3: Biodiversity of planktonic communities in different environ-
ments. (a) SADs (species abundance distributions) of planktonic populations sam-
pled in oceans (top) and lakes (bottom). The figure is taken from [88]. (b) Planktonic
communities sampled in oceans and lakes (left) are sequenced with metabarcoding
technique (right). The leftmost figures are originally found in [85] and [6].

1.3.2 Freely moving plankton microorganisms

Plankton microorganisms can be transported across very large distances by currents
and can be found everywhere in the global ocean [28]. The biodiversity of planktonic
communities is extremely rich [22].

The cause of plankton biodiversity remains unclear. In relatively-homogeneous
aquatic environments, plankton microorganisms compete for a few limited resources
such as nutrients and light. The niche theory of biodiversity predicts that such an
environment can be inhabited only by a limited number of species, each of which would
occupy its own niche. This prediction is not consistent with the astronomical number
of planktonic species observed in nature. This conflict is known as the “paradox of the
plankton”, as formulated by Hutchinson in 1961 [42].

The paradox suggests that additional mechanisms, besides niches, promote plank-
tonic biodiversity. Several possible mechanisms have been proposed, such as the sea-
sonal cycle of the environment, intrinsically chaotic dynamics, incomplete mixing, and
so on [82]. Notably, it has been shown that spatial heterogeneity of aquatic environ-
ments is an important reason for coexistence of species [8, 45].

Chaotic oceanic flows act like barriers and limit dispersal of plankton microorgan-
isms. This reduces competition among microorganisms at opposite sides of barriers.
As a result, more competitive species can coexist with each other, and rare species
have more chances to survive in such an environment. In contrast, the absence of
flows increases competition between species and positively affects the diversity of very
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abundant species. This phenomenon can be quantified via the species abundance dis-
tributions (SADs), defined as the relationship between the frequency of species P (n)
observed in a sample as a function of their observed abundance n. SADs of plankton
sampled in oceans are steeper than the ones of plankton sampled in lakes, see Fig. 1.3,
(a). This phenomenon has been extensively studied experimentally and theoretically
[85, 88].

Studying such diverse populations as planktonic communities in their natural habi-
tats requires sampling and sequencing a large number of individuals. In the TARA
ocean expedition, millions of protist microorganisms were sampled from 121 different
locations in the global ocean [85]. Another example is a study in which plankton
microorganisms were sampled in 218 European freshwater lakes [6], see Fig. 1.3, (b)
left.

Such biological samples are sequenced with DNA metabarcoding techniques. DNA
metabarcoding relies on high-throughput DNA sequencing technology and allows iden-
tification of millions of species within one sample [38]. The technique is based on
targeted amplification and sequencing of specific highly conserved DNA regions, called
DNA barcodes. Since those regions are highly conserved, sequences in the sample with
a high degree of genetic similarity are likely to originate from individuals within the
same taxonomic group. These groups, identified by genetic similarity, are called oper-
ational taxonomic units (OTUs). The biodiversity of a population can be estimated
from the number and abundance of OTUs found in a sample, see Fig. 1.3, (b) right.

1.4 Theoretical frameworks in population genetics

1.4.1 Emergence of evolutionary biology

The origin and cause of the great biodiversity of species we observe around us have
been puzzling the greatest minds for centuries. The first attempts at understanding
the diversity of animals and plants have roots in ancient Greek philosophy, and the
controversial theory of essentialism (around 600 BC) [13]. According to this theory, the
species are determined by a series of attributes, that had always been present and that
can not be changed or modified over time. However, in 1859, Charles Darwin proposed a
new revolutionary idea in his monumental work “The Origin of Species” [21]. He stated
that all species evolved from a common ancestor due to natural selection through a
branching pattern of evolution. Despite the initial criticism, Darwin’s ideas became
the backbone of current evolutionary biology.

Only a few decades later, in 1900, Mendel’s Principles of Heredity have been ac-
cepted in the scientific community [4]. Mendel proposed the idea of discrete traits
determined by a combination of recessive and dominant “factors” inherited from two
parents. Whereas, Darwin explained inheritance through pangenesis - a mechanism
that continuously blends the traits of each parent [41]. At that time, these two the-
ories were incompatible and led to a split in the scientific society. Moreover, neither
Mendel’s, nor Darwin’s theories were individually sufficient to fully explain all the
phenomena observed in the natural world.
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1.4.2 Population genetics

Mendel’s and Darwin’s ideas were reconciled in the 1920s by a statistician, R. Fisher.
He proposed the idea of cumulative Mendelian factors that explain the distribution of
human traits [63]. The next significant steps were taken at the beginning of 1930s by
Fisher, Haldane and Wright. They developed the first mathematical model, called the
Wright-Fisher model, to explore the effect of population size on random fluctuations of
gene frequency under the influence of evolutionary forces (natural selection, mutation
and random drift) [94]. Almost 20 years later, another model was formulated, called
the Moran model as a modification of the Wright-Fisher model for overlapping popu-
lations [64]. These two models started the new field called population genetics. They
remain the dominant methodology of modern population genetics and find numerous
applications beyond this field.

The Wright-Fisher and Moran models describe evolution of well-mixed populations,
i.e. populations with no spatial structure where each individual can interact with any
other, see Fig. 1.4, (a). In part, this is because mathematical predictions are possible
for such simplified models. Well-mixed population models are useful reference points
to which spatial models can be compared to understand the impact of the spatial
structure.

1.4.3 Spatial population genetics

Real biological populations are often subject to constraints and are far from being
well-mixed. Gravity, physical barriers, availability of food, and many other factors
result in the formation of complex spatial structures in such populations. The effect
of spatial structure on evolution might be so severe that the theory obtained for well-
mixed populations cannot be directly applied to such populations. As a result, a new
sub-branch arose called spatial population genetic [9]. It studies the interplay between
the evolutionary forces and spatial structures of populations.

Originally, spatial models considered populations that are subdivided into “islands”
or “demes” of well-mixed populations, with individuals migrating between the demes.
This concept is based on the “isolation by distance” (IBD) principle proposed by Wright
in 1940s [95, 96]. He formulated the idea that distance between populations can act
as a barrier and restrict gene flows. As a consequence, populations that live in close
proximity to each other are more genetically linked, whereas distant populations are
genetically more different.

This idea was further extended by Kimura in the so-called stepping-stone model
[47, 93]. Kimura formalized the IBD principle by placing populations on a lattice
and restricting migration of individuals in each generation to nearby demes only, see
Fig. 1.4, (b), (c). The model was solved by Kimura and Weiss in one-, two- and three-
dimensions [50]. They demonstrated that the decrease of genetic relatedness with
distance highly depends on dimensionality. The genetic relatedness is stronger in one
dimension and becomes weaker as the dimensionality increases.

A stepping stone model with a single individual (“voter”) in each deme reduces to
the voter model [40]. The individuals can assume one of N states (“opinions”). The
connections between individuals indicate that they can interact and adopt the state



9

of each other, see Fig. 1.4, (c). The voter model represents an idealized description
for the evolution of opinion formation [14]. However, the model has been thoroughly
investigated also in population genetics for studying competition between species [25,
72, 99].

Models with population structure have been further generalized in evolutionary
graph theory, introduced by E. Lieberman et al. [2, 56]. In this framework, a population
is represented as a graph with individuals occupying vertices, and edges representing
spatial structure, see Fig. 1.4, (d). In contrast to the previous models, this approach
allows the study of complex irregular hierarchical organization with heterogeneous
connectivity.

In the last half of the 20th century, technologies that enable the study of populations
at a single-cell level emerged and started a new era in spatial population genetics. With
more insights into how populations of cells actually grow, targeted models of their
dynamics were proposed [27]. One class of such models implements shifting dynamics,
which can be observed in densely packed populations of cells discussed in Section 1.3.1.
The second class is individually-based models of plankton microorganisms living in
chaotic aquatic environments discussed in Section 1.3.2. We discuss these models in
the following sections.

1.4.4 Populations with shifting dynamics

Models with shifting dynamics constitute a new paradigm for spatial population genet-
ics. In the spatial models introduced in Section 1.4.3, the location of each individual
remains the same from its birth to death. In models with shifting dynamics, each new
reproduction changes the position of existing individuals, shifting them in some direc-
tion. If a population grows in a confined area, individuals can be pushed out of the
area and eliminated from the population. This creates competition among individuals
to remain within the growth area.

Due to the complex interplay between the individuals, models with shifting dy-
namics are challenging to solve analytically. There are exact results only for a few
simple models. An important example is the linear array process, which replicates the
architecture of epithelial compartments and cells proliferating in the mother machine
[68]. In this model, a population is arranged into an array of cells that inhabit a space-
limited area. Each cellular reproduction shifts existing individuals to the right in order
to accommodate a newborn individual, see Fig. 1.4, (e). As a result, the rightmost cell
is expelled from the population. A similar model with a population arranged in a cycle
has been studied in [1].

Models with shifting dynamics have been mostly investigated with computational
approaches. For example, Hashimoto et al. proposed a two-dimensional lattice model
with shifting dynamics for studying reproduction rates of cells proliferating in rectan-
gular microchannels with two open ends [37]. In this model, a newborn cell can take
any neighboring position to its mother cell in any direction, see Fig. 1.4, (f). Each
reproduction is followed by a shift of the other cells either to the left or to the right,
causing the expulsion of a cell at the corresponding end of a microchannel. A similar
model for three-dimensional populations has been employed for studying competition
between two strains of bacteria [86].
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Lattice models offer a simplified representation of population dynamics. They can
be a good approximation of small and highly-ordered populations but might not be
suitable for populations of disordered cells. For such cases, computational tools that
model off-lattice populations of bacteria at a single-cell level are used. In an off-lattice
model, individuals move continuously in space according to force laws governing the
mechanical interactions between cells, see Fig. 1.4, (g). Such models were employed to
simulate dense populations of cells growing on a surface [80] and in wide microchannels
[60].

1.4.5 Populations in velocity fields

The transport of marine microorganisms under the influence of oceanic currents can
be described with off-lattice models. In such models, each plankton microorganism
is assigned to a tracer, i.e. a spatial trajectory moving in time with currents, see
Fig. 1.4, (h), top. Such tracers are modeled with a system of ordinary differential
equations, which explicitly incorporate the velocity field of the aquatic environment.
In the absence of any currents, individuals freely diffuse, mimicking movements in
small-scale turbulence, see Fig. 1.4, (h), bottom.

The standard way of modeling such populations is forward in time. In “forward”
models, individuals displace, reproduce and die. Since such forward models are chal-
lenging to solve analytically due to their complexity, their analysis is often limited
to numerical simulations. However, planktonic communities are composed of many
rare species, which requires simulations of a huge number of individuals in order to
reconstruct their biodiversity. This is not always feasible even with state-of-the-art
computational approaches.

Coalescence theory offers a solution to this problem [67, 90]. The main idea of
coalescent theory is to consider the evolution of a sample of a population backward in
time [78]. The models of such samples are called “backward” models. With such an
approach, the ancestry of a sample is reconstructed. Each individual is represented as
a particle that can coalesce with any other one if they happen to be close to each other.
Such coalescence events indicate that these two individuals have a common ancestor,
and correspond to reproduction events in the forward model. Therefore, there is a
mapping between the forward and backward models. In other words, we say that these
two models are dual.

Backward models have advantages over forward models. First, they are easier
to solve analytically. For example, many analytical results for the voter model have
been obtained using its dual backward representation - coalescing random walkers
[10, 19, 72]. Second, since backward models simulate a sample of individuals rather
than the entire population, and do not consider individuals that do not contribute to
the final biodiversity, they are more computationally efficient [16, 77].

A backward model was employed to reconstruct the biodiversity of planktonic com-
munities living in aquatic environments with and without currents [88]. The model
predicts a positive effect of oceanic currents on rare planktonic species.
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Figure 1.4: Models of population genetics. (a) Wright-Fisher model. (b) 2D
stepping-stone model. (c) 1D stepping-stone model or Voter model. (d) Evolutionary
graphs: one-root graph (top), super-star graph (bottom). (e) Linear array process.
(f) Model of a population of cells in a channel with two open ends. (g) Off-lattice
population of cells on a surface. (h) Off-lattice population of microorganisms in a
velocity field (top) and without a velocity field, i.e. freely diffusing (bottom).





Chapter 2

Mathematical formalism

This chapter is devoted to mathematical modelling of population genetics. We in-
troduce the main concepts and notations that we use in this thesis. We start with
introducing simple models of well-mixed populations. Then, we discuss lattice models
of spatially organized populations, such as stepping-stone models, evolutionary graphs,
and models with shifting dynamics. Finally, we introduce the coalescent theory and
off-lattice models of populations evolving in a force field.

2.1 Terminology

In this section, we introduce basic terminology and notations for this chapter.
We consider a population that consists of two types of individuals: A and B. These

types can represent either different species or gene alleles, as discussed in Section 1.2.
Individuals die and reproduce in such a way that the total population size remains
always constant and equal to N . We focus on haploid populations, i.e. each individual
carries one copy of a gene (type) and passes it to its offspring after a reproduction.
We denote by Xt the total number of individuals of type A at time t. Consequently,
the total number of individuals of type B at time t is (N − Xt). The frequencies of
individuals of type A and B at time t are then equal to ft = Xt/N and (1 − ft),
correspondingly.

We focus on models in which the number of individuals of a given type in the
next generation conditionally depends on the number of individuals of that type in
the present generation, not on the previous generations. This property is called the
Markov property and, therefore, Xt is called a Markov chain.

At some point, the population will reach a fixation state, i.e. a state in which there
is only one remaining type in the population. There are two possible fixation state:
Xt = 0 and Xt = N . They are also called absorbing states of the Markov chain Xt.
The time at which the fixation state is reached is called the fixation time and is defined
as:

τ = inf{t ≥ 0 : Xt = 0 or Xt = N}.

The probabilities of reaching either of the absorbing states P (Xτ = N) and P (Xτ = 0)
are called the fixation probabilities.

If both types of individuals A and B reproduce at the same rate b, the population

13
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is called neutral. If the two types reproduce at different rates, the population is called
non-neutral. In such a case, we denote the reproduction rate of individuals A as b(s+1),
where s > 0 is a selective advantage coefficient. We call individuals of type A and B
mutants and wild-types, correspondingly.

The fixation probability of mutants depends on the coefficient s. The higher this
dependence, the stronger the effect of natural selection in the evolution of a popula-
tion. If fixation probabilities are largely independent of s, this means that random
drift dominates. We explore this selection-drift balance in the mathematical models
considered in this chapter.

Also, we consider diffusion approximations of the process {Xt} in the limit N ≫
1. In this case, the dynamics of the system is described with a partial differential
equation that contains a standard Brownian motion Wt term. Such equations are not
well defined because Wt is discontinuous at every point. For this reason, we need to
specify a discretization rule for the stochastic integration. In this thesis, we use the Ito
convention [32, 54], which defines a stochastic integral as

I =

∫ T

0

f(t′)dW = lim
dt→0

T/dt∑
ti=0

f(ti)[W (ti + dt)−W (ti)],

where f(t) is an arbitrary continuously differentiable function and ti = idt.

2.2 Models for well-mixed populations

We start with introducing the simplest models for well-mixed populations: Wright-
Fisher and Moran models.

2.2.1 Wright-Fisher model

In the Wright-Fisher model, a population of N individuals evolves in discrete genera-
tions. At each generation, an individual samples a parent uniformly and independently
from the previous generation and inherits its type, see Fig. 2.1, (a). The individuals
sample their parent with replacement, i.e. the same parent can be chosen by multiple
offsprings. As a result, the entire generation is renewed with no overlapping with the
previous one. Therefore, the number Xn of individuals of type A in the nth generation
is binomial:

P (Xn+1|Xn = i) ∼ Binom
(
n = N, p =

i

N

)
.

In a neutral population, the fixation probability of individuals of type A is simply
equal to their initial frequency:

P (Xτ = N) =
i0
N

= f0. (2.1)
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Figure 2.1: Models of well-mixed populations. (a) Wright-Fisher model. At each
generation, an individual randomly chooses a parent from the previous generation and
inherits its type. (b) Moran model. At each generation, one random individual dies,
and one random individual reproduces. (c) Fixation probabilities of mutants with the
selective advantage coefficients s = 0.001, 0.003, and 0.01 in the Wright-Fisher model
(solid lines, Eq. (2.3)) and Moran model (dashed lines, Eq. (2.7)). The initial frequency
of the mutants is p0 = 0.25.

The average fixation time of the entire population linearly depends on the population
size N and is expressed by

E(τ) = −2N
(
f0 log(f0) + (1− f0) log(1− f0)

)
, (2.2)

where the time τ is measured in generations, [49].
In the non-neutral case, the fixation probability of mutants reproducing at rate

b(s+ 1) with initial frequency f0 has the form

P (Xτ = N) =
1− e−2Nsf0

1− e−2Ns
≈ 1− (s+ 1)−2Nf0

1− (s+ 1)−2N
, (2.3)

[48]. In this case, the fixation probability depends on the compound parameter Ns.
Therefore, even small selective differences can have a decisive effect on fixation proba-
bility, provided the population is large enough. This indicates a strong effect of natural
selection in populations evolving according to the Wright-Fisher model.

For large population sizes (in the limit N ≫ 1), the Wright-Fisher process converges
to a limiting unbiased process which traces out a continuous path as time evolve. This
limiting process is called Wright-Fisher diffusion and has the form

dft =
√
ft(1− ft)dWt (Ito), (2.4)

where Wt is a standard Brownian motion.
The Wright-Fisher process for non-neutral mutants reproducing at rate b(s + 1),

s > 0 converges to a diffusion with a non-zero drift term for N ≫ 1, which has the
form

dft = Nsft(1− ft)dt+
√
ft(1− ft)dWt (Ito). (2.5)
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2.2.2 Moran model

In contrast to the Wright-Fisher model, the Moran model represents populations with
overlapping generations. At each time step, two individuals are sampled at random
with replacement, i.e. the same individual can be chosen twice. One of the two
individuals is chosen to reproduce and another one is chosen to die, see Fig. 2.1, (b).
The reproducing individuals passes its type to the offspring. Thus, the Moran process
is a simple birth and death process which makes it more tractable analytically.

Similarly to the Wright-Fisher model, the fixation probability of a neutral allele is
simply equal to its initial frequency f0 in a population, see Eq. (2.1). The fixation time
of neutral individuals having the initial frequency f0 is equal to

E(τ) = −2
(
f0 log(f0) + (1− f0) log(1− f0)

)
, (2.6)

where the time τ is measured in units of N generations. Converting the time to the
units of generations in Eq. (2.6), the Moran model is characterized by exactly the same
fixation time as the Wright-Fisher model, see Eq. (2.2).

In the non-neutral case, the individuals reproducing at rate b(1 + s), s > 0 fixates
with a probability given by

P (Xτ = N) =
1− e−Nsf0

1− e−Ns
≈ 1− (s+ 1)−Nf0

1− (s+ 1)−N
. (2.7)

Notably, in the fixation probability given by Eq. (2.7) there is a factor s rather
than 2s comparing to the fixation probability formula for the Wright-Fisher model,
see Eq. (2.3). This is due to different samplings in these two models and, accordingly,
different rates of random genetic drift, see Fig. 2.1, (c).

2.3 Lattice models

In the simplest scenario, a spatially structured population can be represented by a
lattice model. Here, we consider lattice models, in which each site is occupied either
by a well-mixed population or one individual. We consider lattice models in one-, two-,
and three-dimensional Euclidean space.

2.3.1 Stepping-Stone models

The stepping-stone model is represented as an infinite one-dimensional array of demes
indexed by an integer i. Each deme is inhabited by a well-mixed population with M
individuals of type A and B. We denote the frequency of individuals of type A within
deme i by fi. Individuals can migrate between adjacent colonies at the migration rate
per generationm. Therefore, from each deme, (mM)/2 individuals migrate to the deme
on the right and (mM)/2 individuals migrate to the deme on the left, see Fig. 2.2, (a).
We assume that individuals of both types have the same migration rate. Therefore,
the stepping-stone model is a system of interacting Wright-Fisher diffusions.

In the general case, in the limit M ≫ 1, if individuals of type A reproduce at rate
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Figure 2.2: Stepping-stone models. (a) One-dimensional stepping stone model of
an infinite number of interacting demes with M individuals within each deme. The
individuals migrate at rate mM/2 between the neighboring demes, where m is the
migration rate per generation. (b) One-dimensional voter model on a circle (one-
dimensional torus). (c) Two-dimensional voter model on a two-dimensional torus.

b(s+ 1), their frequency obeys the stochastic differential equation

dfi(t) =
m

2
(fi−1 + fi+1 − 2fi)dt+Nsfi(1− fi)dt+

√
fi(1− fi)dWt (Ito). (2.8)

The voter model is equivalent to a stepping-stone model with M = 1. In such a
case, one randomly chosen individual is replaced by an offspring of one of the neigh-
boring individuals at each step. A population in a voter model can have different
geometric configurations with different connectivity between individuals. We consider
the simplest cases of finite voter models with N individuals on a torus in Zd, d = 1, 2
and 3 with periodic boundary conditions, see Fig. 2.2, (b), (c). For such models, the
average fixation time heavily depends on their dimensionality [19]:

E(τ) ∼


N2, d = 1

N log(N), d = 2

N, d = 3

(2.9)

The fixation probabilities of mutants are equal to those for the Moran model. In
the neutral case, they are equal to the initial frequency f0 of the mutants. In the non-
neutral case, the fixation probabilities are given by Eq. (2.7). This fact is explained in
the next Section 2.3.2.

2.3.2 Evolutionary graphs

Evolutionary graphs represent populations as directed, weighted networks. Individuals
occupy the vertices of a graph. The edges of the graph are specified by a matrix
W = {wij} satisfying

∑
iwij = 1 for all j, where the quantity wij defines the weight of

the directed edge from a vertex vi to a vertex vj, see Fig 2.3, (a). A spatial organization
of a population is determined via the structure of the graph: the connectivity of the
vertices and the distribution of the weights of edges.

We call a graph isothermal if
∑

j wij = 1, i.e. all the vertices are equally likely
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Figure 2.3: Evolutionary graphs. (a) An example of an evolutionary graph with
vertices {vi} and weights {wij}. (b) Fixation probabilities of a mutant with s = 0.1 in
on graphs depicted on the left. Points represent simulations. Dashed lines represent the
theoretical predictions (dashed lines) obtained using Eq. (2.10). The figure is adopted
from [56].

to be replaced. In this terminology, the Moran model corresponds to an isothermal,
fully connected graph with evenly weighted edges. For such a structure, a fixation
probability of a mutant with a reproduction rate b(s + 1) is given by Eq. (2.3) for
p0 = 1/N . Lieberman et. al. demonstrated that the fixation probability of a mutant in
any isothermal graph is equal to that in the Moran model given by Eq. (2.7) [56]. The
voter models on torus in Zd, d = 1, 2, 3 introduced in Section 2.3.1 are also isothermal
graphs, which makes their fixation probabilities equal to the ones of the Moran model
as well.

For non-isothermal graphs, this drift-selection balance tilts to either of the sides
depending on the structure of the graph. For example, in graphs with one root, i.e.
one vertex with no incoming edges, a mutation fixates with probability 1 irrespective
of its selective advantage if and only if it arises in the root vertex, see Fig. 1.4, (d),
top. Therefore, selection is completely suppressed in such a graph and random drift
dominates. In contrast, the star and funnel graph structures amplify selection and
suppress drift. An example of a star graph is shown in Fig. 2.3, (b), left. In such
graphs, the fixation probability of a mutant is given by

P (Xτ = N) =
1− exp−2Ks

1− exp−2NKs
, (2.10)

where the parameter K represents the complexity of a graph structure. For instance,
the super-star graph shown in Fig. 2.3, (b), left has K = 3. The fixation probabilities
of any advantageous mutant in Eq. (2.10) converge to one as N → ∞, see Fig. 2.3, (b).

2.3.3 Models with shifting dynamics

The simplest example of a model with shifting dynamics describes a one-dimensional
linear array of N cells [68]. Cells reproduce at a constant rate b. After the reproduction
of the ith cell in the array, a newborn cell is placed on the (i + 1)th position with
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Figure 2.4: Models with shifting dynamics. (a) Array of N cells proliferating in a
channel with one open end. After each reproduction, cells are shifted to the right with
probability qi = 1. (b) Array of N cells proliferating in a channel with two open ends.
After each reproduction, cells are shifted either to the left (dashed arrow) or to the
right (solid arrow) with probabilities pi and qi, correspondingly. (c) A two-dimensional
M ×N array of cells in a channel with two open ends. A newborn cell can take any of
the neighboring positions (shown with dashed outlines) with probabilities ki′,j′ , where
i′ = (i− 1, i, i+ 1) and j′ = (j − 1, j, j + 1).

probability qi = 1, see Fig. 2.4, (a). Reproduction is followed by a shift of the existing
cells to the right by one position. As a result, the Nth cell is eliminated from the
population. A mutant that reproduces at rate b(s + 1), s > 0 can reach fixation if
and only if it arises at the first position in the array, regardless of the value of s.
Therefore, similarly to the one-root graph discussed in Section 2.3.2, the strength of
natural selection is completely suppressed.

Now, we consider a one-dimensional linear array of N cells reproducing in a channel
with two open ends. A newborn of the ith cell in the array can take either the (i−1)th or
(i+1)th positions with probabilities p(i) and q(i) respectively, such that p(i)+q(i) = 1
for any i, see Fig. 2.4, (b). Depending on the chosen direction, the existing cells are
shifted by one position either to the right or to the left. Consequently, either the 1st
or the Nth cell is expelled from the population.

A more complex case is a two-dimensional M × N array of cells proliferating in a
rectangular microchannel with two open ends [37]. After a reproduction of a cell at
(i, j)th position, a newborn individual can take one of the neighboring positions either
within the ith lane or in the neighboring (i+ 1) and (i− 1) lanes, see Fig. 2.4, (c). If
the mother cell is located at the boundary of a channel, i.e. i = 1 or M , a newborn cell
has 6 positions to take. Otherwise, there are 8 possible positions to take. Each position
can be taken with a probability ki′,j′ , with i′ = (i− 1, i, i+1) and j′ = (j − 1, j, j +1).
In the simplest case, the reproduction probabilities are uniform: p(i) = q(i) = 1/2 for
the one-dimensional model, and ki′,j′ = 1/6 or 1/8 for the two-dimensional model.
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We employ this model for studying E. coli proliferating in rectangular microchan-
nels with two open ends. Based on experimental observations, we generalize the re-
production probability distributions and represent them as functions of the positions i
of cells in a one-dimensional population, and (i, j) in two-dimensional populations, see
Chapter 3.

2.4 Coalescent theory
A coalescent process is a model of a population that traces genetic ancestors of individ-
uals in a population. Such series of ancestors are called genetic ancestral lineages. The
coalescent process on a sample of n individuals consists of (n − 1) coalescent events.
After each coalescence, the number of genetic ancestral lineages decreases by one until
there is the last single remaining lineage. This last lineage is called the most common
recent common ancestor (MRCA) of a population. The process can be represented as
a tree structure, with the main parameters being the coalescence times 0 < Ti < ∞,
2 ≤ i ≤ n, i.e. the times during which there were exactly i lineages.

The duality between a retrospective coalescent model and a standard model means
that there is a mapping between the trajectories predicted by the two models [40, 72].

Kingman coalescent

The Kingman coalescent is the simplest coalescent model for well-mixed populations
[52]. It describes the ancestral genetic process for a sample of fixed size n in the limit
of the population size as N → ∞ in the Wright-Fisher and Moran models [51]. The
coalescent process is an approximation to the behavior of a relatively small sample
from a large population, i.e we assume n≪ N .

Kingman showed that, as N → ∞, the coalescent times Ti are independent and
exponentially distributed as

fTi(ti) =

(
i

2

)
e−(

i
2)ti , ti ≥ 0, i = 2, . . . , n, (2.11)

where time is measured in units of N generations. Eq. (2.11) implies that the coalescent
times Ti has mean 2/(i(i− 1)). Therefore,

E(TMRCA) = 2
n∑
i=2

1

i(i− 1)
. (2.12)

This time requires a scaling factor of N to convert time units to generations so that
TMRCA linearly depends on the population sizeN , similarly to the Wright-Fisher model,
see Eq. (2.3). Also, Eq. (2.12) predicts that the last coalescence time in which the
remaining two lineages coalesce into the MRCA is expected to be the longest among
the others, see Fig. 2.5, (a).

A sample of size n from a population evolving according to the Wright-Fisher model
with time measured in units of N generations can be approximated by the Kingman
coalescent with (n−1) coalescent events. Notably, we do not assign types to individuals
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Figure 2.5: Coalescence models. (a) Kingman coalescence model. (b) Coalescence
model of planktonic microorganisms in oceanic currents, adapted from [88].

in the initial sample in the Kingman coalescent. Instead, we assign the types to the
ancestral lineages at some time point in the past and then trace genealogy to the
present.

Coalescing random walks

The voter model discussed in the Section 2.3.1 is dual to a system of coalescing random
walkers [11, 19]. Suppose there is one particle located at each lattice site [1, N ] at
t = 0. At each discrete time step, a randomly chosen walker is moved to a one of
the neighboring sites that are chosen randomly with equal probabilities. If the site is
already occupied, the two walkers coalesce into one.

The particular example of a voter model with speciation (i.e. the model in which
individuals can mutate a become a new species) is dual to a system of coalescing
random walkers with annihilation [72].

2.5 Off-lattice populations in a force field
Plankton microorganisms moving in aquatic environments are modeled as passive par-
ticles driven by flows. Each individual is associated with a Lagrangian tracer with
spatial coordinates (x, y). We briefly introduce forward and backward (coalescent)
models for such populations in the following sections. Both of the models can predict
biodiversity of a population in the presence and absence of oceanic currents.

The detailed discussion of the models, their predictions, and duality can be found
in Chapter 5.

2.5.1 Forward approach

Initially, individuals are homogeneously distributed in a square L×L. Each time step
of the forward model consists of three events.
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First, individuals reproduce at a constant rate λ. A newborn cell is placed in a l× l
neighborhood of its mother cell. Second, the tracers move in space according to the
following system of advection-diffusion Langevin equations:

d

dt
x = vx(x, y, t) +

√
2Dξx(t),

d

dt
y = vy(x, y, t) +

√
2Dξy(t),

(2.13)

where the terms proportional to
√
2D represent effective diffusion, the functions ξx(t), ξy(t)

are independent white noise sources such that ⟨ξi(t)⟩ = 0 and ⟨ξi(t)ξi(t′)⟩ = δijδ(t− t′).
The functions vx and vy represent an advecting fluid flow. Finally, individuals die at
rate λn̂, where n̂ is the number of other individuals in the l × l neighborhood. Such
density-dependent death events represent competition between individuals for common
resources.

The two-dimensional velocity field can be defined in terms of a stream function
ϕ(x, y, t). The components of the field are related to the stream function by the fol-
lowing equations:

vx(x, y, t) = − d

dy
ϕ(x, y, t),

vy(x, y, t) =
d

dx
ϕ(x, y, t),

(2.14)

which automatically imply the incompressibility condition ∇⃗ · v⃗ = 0, where v⃗ = (vx, vy)

and ∇⃗ = (∂/∂x, ∂/∂y). Details of the model are discussed in Chapter 5.
In order to model individual movement under diffusion only, one needs to impose

vx(x, y, t) = vx(x, y, t) = 0 in Eqs. (2.13). Such a model is used as a reference to reveal
the effect of oceanic currents on the predicted biodiversity.

2.5.2 Backward approach

With the backward approach, we model a sample of individuals rather than the entire
population. Initially, individuals are homogeneously distributed in a sample square
Ls × Ls, where Ls ≪ L. In contrast to the forward model, the backward model has
only two events at each time step. First, individuals displace with respect to the
backward advection-diffusion equations

d

dt
x = −vx(x, y, t) +

√
2Dξx(t),

d

dt
y = −vy(x, y, t) +

√
2Dξy(t),

(2.15)

where all the terms have the same definitions as in Eqs. (2.13). Second, tracers are
selected one by one and removed from a population with a probability µdt, which
represents immigration events. Then, a pair of tracers coalesce at a rate λdt if they
are in the same l × l neighborhood at time t.
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The population is evolved until all individuals are assigned to species via either
coalescence or immigration event, see Fig. 2.5, (b).





Chapter 3

Population genetics in microchannels

The main results of this chapter have been published as:

• Koldaeva, A., Tsai, H.F., Shen, A.Q. and Pigolotti, S. “Population genetics in
microchannels”, Proceedings of the National Academy of Sciences, 2022,

see Appendix A. The experimental protocol has been published as:

• Tsai, H.F., Carlson, D.W., Koldaeva, A., Pigolotti, S. and Shen, A.Q. “Opti-
mization and Fabrication of Multi-Level Microchannels for Long-Term Imaging
of Bacterial Growth and Expansion”, Micromachines, 2022,

see Appendix B.

Outline of the project and results
In this project, we study populations of rod-shaped bacteria E. coli growing in rect-
angular microchannels with two open ends. Our experiments with two strains of E.
coli tagged with green and red fluorescent protein reveal a striking effect: the strains
segregate into lanes along the channel, see Fig. 3.1, (a). This observation demon-
strates a strong influence of the boundaries of a channel in the underlying dynamics
in a population and, therefore, its evolution. We aim at understanding the dynam-
ics of such populations by combining theory, numerical simulations, and experimental
observations.

Our analysis is based on a lattice model of a population with shifting dynamics,
see Fig. 3.1, (b). The population consists of M lanes with N cells within each lane.
We discussed the simplest version of this model with uniform reproduction probability
distributions in Section 2.3.3. However, our experimental observations demonstrate
that such distributions are not uniform and have two main sources of bias. First, within
each lane, cells tend to reproduce towards the closest open ends due to the smaller mass
of cells to be shifted. Second, due to the rod shape, cells tend to reproduce within their
original lane rather than in the neighboring lane. We incorporate these two effects in
the lattice model and evaluate all its parameters from experimental data with E. coli
proliferating in microchannels.
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Figure 3.1: E. coli in microchannels with two open ends. (a) An experiment
with two competing strains of E. coli. The strains segregate into four stripes in a chan-
nel of width 3 µm harboring four lanes of cells. (b) M×N lattice model of a population
of E. coli in a microchannel with two open ends and its numerical simulation. Different
colors represent different neutral mutants.

Our model predicts two regimes of biodiversity loss. The first regime is characterized
by the fast fixation of one of the mutant strains within each lane. The second regime
is characterized by slow competition between the lanes. Moreover, our model predicts
that the mutants located in the middle of a channel and next to the boundaries have
higher fixation probabilities. We find analytical forms of the biodiversity loss in time
and fixation probabilities and run extensive numerical simulations of the model.

We run experiments with E. coli proliferating in microchannels that fit one, two,
three, and four lanes of cells. We process the experimental recording with a custom-
developed single-cell tracking algorithm. The theoretical predictions are in quantitative
agreement with experimental observations.



Chapter 4

Selective advantage in microchannels

In this chapter, we study the competition of two non-neutral strains of cells in mi-
crochannels with two open ends. In particular, we aim at understanding the effect of
the spatial structure on the strength of selection in such populations.

As we showed in Chapter 3, the fixation probability of a single neutral mutation
heavily depends on its initial position in a microchannel. For this reason, we consider
three different choices of the initial distributions: one mutant at a random position,
a cluster of mutants concentrated at an open end, and randomly distributed mutants
in a channel, see Fig. 4.1. As previously, the wild-type cells reproduce at rate b and
mutants reproduce at rate b(s + 1), s > 0. We focus on the values of the selection
coefficients in the range from s = 0.01 to s = 0.05 comparable with typical beneficial
mutations in E. coli observed in the lab [43].

4.1 One mutant

In the neutral case, the fixation probabilities of a single neutral mutant can be approxi-
mated by Gaussian distributions with mean µ = (N−1)/2 and variance σ2 = (N−1)/4,
see Chapter 3 and Appendix A. Therefore, the fraction of mutants that accounts for
more than 90% of the fixation probability mass is concentrated in the middle of a

Figure 4.1: Initial distributions of two non-neutral strains.
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Figure 4.2: One mutant in a channel. (a) Fixation probability as a function on the
initial position k of a mutant and different value of the selective advantage coefficient
s in a population of N = 30 cells. (b) Fixation probability of a mutant located in the
middle of a population as a function ofN . Dotted curves represent fixation probabilities
given by Eq. (2.7) for one mutant in the Moran model for different values of coefficient
s.

channel and decreases as 1/
√
N as N → ∞. Due to this, only a small portion of mu-

tants have a chance to fixate, whereas the majority of them have almost zero fixation
probability. For this reason, selection has an effect only on the mutants in the narrow
region in the middle, see Fig. 4.2, (a). It has the highest effect on the mutant with the
highest fixation probability, i.e. the mutant located in the middle of a channel. We fix
k = N/2 and study this case in more detail in the rest of the section.

The fixation probability of a neutral mutant at the position k = N/2 is equal to
2/
√
2π(N − 1). This value is larger than the fixation probability of a neutral mutant

in a well-mixed population, which is equal to 1/N . However, this situation drastically
changes in the non-neutral case. In a well-mixed population, a mutant with reproduc-
tion rate b(s+ 1) fixates at the probability

P =
1− (s+ 1)−1

1− (s+ 1)−N
→ 1− (s+ 1)−1 as N → ∞,

see Eq. (2.7). Whereas, our numerical simulations of populations with one non-neutral
mutant in the middle of a channel demonstrate a much weaker effect of s > 0 on
the fixation probability, see Fig. 4.2, (b). For example, in a well-mixed population
of N = 2000 cells, a selective advantage coefficient s = 0.05 increases the fixation
probability by almost 95 times. For the same mutant located in the middle of a
population growing in a channel, the fraction probability increases by about 1.5 times.
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Figure 4.3: Population with the “one-end” initial condition. (a) Schematic
representation of a population and the interface between the strains. (b) The fixation
probabilities Eq. (4.4) as a function of x0 forN = 30 and different values of the selection
coefficient s. Solid lines represent the theoretical solution, the triangle-shape points
represent numerical simulations. (c) Fixation probabilities Eq. (4.4) as a function of
the number of cells N for different numbers of mutants that result in the fixation
probabilities Pfix = 0.1, 0.5 and 0.9 in the neutral case and different values of the
selection coefficient s. Solid lines represent the theoretical solution; triangle-shape
points represent numerical simulations. (d) Fixation probabilities from (c) plotted as
a function of Ns2.

4.2 One-end initial condition

Eventually, a mutant population will reach one of the open ends and compete for
fixation with the wild-type cells. Therefore, we consider a scenario in which the two
populations occupy a portion of the channel adjacent to each open end. Without loss
of generality, we assume that the population on the right is the wild-type population,
with reproduction rate b. The population on the left is constituted by mutants with
reproduction rate b(1 + s).

Since the two strains can not mix, the state of the population can be described by
the position of the boundary between the strains, called the interface. We denote the
position of the interface at time t by x(t), 0 ≤ x(t) ≤ N , see Fig. 4.3, (a). The interface
x(t) moves to the left or right as cells reproduce. Therefore,

x→ x+ 1 with rate
xb(s+ 1)

2
,

x→ x− 1 with rate
(N − x)b

2
.

The process x(t) has two absorbing states: 0 and N . If the process x(t) reaches the



30 Selective advantage in microchannels

absorbing state N , it means that the mutant fixates. The absorbing state 0 corresponds
to the fixation of the wild-type.

4.2.1 Fixation probabilities

In order to find the fixation probabilities, we use the Langevin equation associated with
the process x(t)

dx

dt
= v(x, t) + σ(x, t)ξ(t), (4.1)

where
v(x, t) =

(x(2 + s)−N)b

2
, σ2(x, t) =

(N + xs)b

2
,

and ξ(t) is a Gaussian white noise term. The Langevin equation (4.1) is interpreted in
the Ito sense.

We calculate the fixation probabilities by finding a transformation y = F (x) such
as y(t) is a martingale [76]. By substituting y to (4.1), we obtain the expression

dy

dt
=
dy

dx
[v(x, t) + σ(x, t)ξ(t)] +

d2y

dx2
D(x). (4.2)

Since y is a martingale, we need to assume that the drift term in Eq. (4.2) is zero.
Therefore,

dy

dx
v(x) +

d2y

dx2
D(x) = 0. (4.3)

We solve Eq. (4.3) and use the Doob’s optional stopping theorem to find fixation
probabilities of the process x(t). We find that for large N the probability that the
mutants take over the channel is expressed by

πN(f0) =
γ (z, w(f0s+ 1))− γ (z, w)

γ (z, w(s+ 1))− γ (z, w)
, (4.4)

where f0 = x0/N is the initial frequency of mutants, γ(x, y) =
∫ y
0
tx−1e−tdt is the lower

incomplete gamma function, w = 2N(2+s)/s2, and z=1+4N(1+s)/s2, see Appendix C.
Equation (4.4) predicts that the fixation probability as a function of the fraction f0

of the channel occupied by mutants is a steep function, see Fig. 4.3, (b). If this fraction
is much smaller than 0.5, mutants are very likely to be expelled, whereas if it is much
larger than 0.5 they are very likely to take over. This conclusion is rather insensitive
to the value of s and is related to the fact that cells at the center of the channel have
a high positional advantage.

If s is assumed to be small such that (1 + s) ≈ 1, then Eq. (4.4) predicts that the
fixation probability depends on the compound parameter Ns2. In order to visualize
it, we need to understand the connection between the initial frequency f0 of mutants
and their fixation probability Pfix in the neutral model, i.e. when s = 0. In contrast
to the neutral Moran, Voter and stepping-stone models, Pfix is not equal to f0 in this
case, see Sections 2.2.2, 2.3.1. According to our results for the neutral model of N
cells proliferating in a microchannel, the fixation probabilities of one neutral mutation
have a Gaussian distribution with mean µ = (N − 1)/2 and variance σ2 = (N − 1)/4,
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see Chapter 3. Due to the symmetry of this Gaussian distribution function, we have
that f0 = Pfix = 1/2. For f0 ̸= 1/2, we use the quantile function of the Gaussian
distribution. We find that the frequency of mutants needed to achieve the fixation
probabilities Pfix is equal to

f0 =
µ+ σ

√
2erf−1(2Pfix − 1)

N
, (4.5)

where erf(z) = 2π−1
∫ z
0
e−t

2
dt is the error function. We find the frequencies f0 given by

Eq. (4.5) for different N and a fixed value of Pfix. Then, we calculate the fixation prob-
abilities given by Eq. (4.4) for the found frequencies f0. For the fixation probabilities
found in such a way, the rescaling Ns2 holds, see Fig. 4.3, (c), (d).

The dependence on the parameter Ns2 means that the fixation probability is largely
insensitive to the value of the selective advantage. For comparison, in well-mixed pop-
ulations, the classic expression for the fixation probability derived by Kimura depends
on the parameter Ns, see Eq. (2.3) in Section 2.2.1. In this case, if Ns≫ 1, the selec-
tive advantage significantly biases the fixation process. In the opposite regime Ns≪ 1,
fluctuations due to finiteness of the population dominate. In other words, mutations
conferring selective advantages smaller than 1/N are not likely to be fixated and con-
tribute to the evolution of the population. In microchannels instead, the same line of
thought leads to conclude that selective advantages need to be larger than 1/

√
N in

order to reach fixation. In practice, our result implies that evolution in a microchannel
should be much slower than in a well-mixed system.

4.2.2 Fixation time

To find the average fixation time of the process x(t), we use the Fokker-Plank equation

∂tP (x, t) = −∂x[A(x, t)P (x, t)] + ∂2x[B(x, t)P (x, t)], (4.6)

where
A(x) =

(x(2 + s)−N)b

2
, B(x, t) =

1

2
σ2(x, t) =

(N + xs)b

4
.

The average fixation time of the process x(t) with absorbing states 0 and N can be
found by integration the Fokker-Plank equation (4.6). The resulting formula for the
fixation time is [31]

T (x0) =

( ∫ x0
0
ψ(y)dy

) ∫ N
x0
ψ(y′)dy′

∫ y′
0

dz
B(z)ψ(z)

−
( ∫ N

x0
ψ(y)dy

) ∫ x0
0
ψ(y′)dy′

∫ y′
0

dz
B(z)ψ(z)∫ N

0
ψ(y)dy

,

(4.7)
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Figure 4.4: Fixation times for populations with the “one end” initial con-
dition. (a) Fixation time given by Eq. (4.7) as a function of the initial number of
mutants x0 for different values of the selection coefficient s. (b) Fixation time given
by Eq. (4.7) as a function of N for different values of the selection coefficient s. The
value of x0 is fixed and equal to N/2. In both figures, triangle-shaped points represent
simulations and curves represent numerical simulations of the analytical solutions.

where ψ(x) = e
−

∫ x
0

A(x′)
B(x′)dx

′
. Substituting A(x) and B(x) from Eq. (4.6) and performing

integration, we obtain

ψ(x) =

e
− (x−N/2)2

N/2
+N/2, if s = 0(

N
N+sx

)−4N(s+1)

s2

e−
2(2+s)

s
x, if s ̸= 0.

(4.8)

We solve the integrals in Eq. (4.7) numerically, using the QUADPACK integration [71].

First, we explore how the average fixation time varies depending on the initial
number of mutants x0 in a population. Eq. (4.7) demonstrates that the average fixation
time is maximal for populations with the initial number of mutants and wild-types close
to N/2, see Fig. 4.4, (a). These observations agree with the results obtained in [79].

In order to understand how the fixation time given by Eq. (4.7) depends on N , we
fix x0 = N/2 further on in the section. For neutral mutants with s = 0 and the initial
number x0 = N/2, we find that Eq. (4.7) transforms to

T
(N
2

)
=

√
π

b

∫ √
N/2

0

e−t
2

erfi(t)dt = Γ(3/2)
∞∑
n=1

(−N/2)n

Γ(1/2 + n)n
, (4.9)

see Appendix D for more details. The fixation time given by Eq. (4.9) has a slow
logarithmic growth as N → ∞, see Fig. 4.4, (b). For the non-neutral mutants with
s > 0, we find T

(
N
2

)
given by Eq. (4.4) numerically. The solution agrees with numerical

simulations, see Fig. 4.4, (b).
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4.3 Random initial condition

In this section, we consider a population of randomly distributed wild-type cells and
mutants. Each cell can be either a wild-type or a mutant with equal probabilities 0.5.

Our analysis is based on a theoretical guess. Instead of finite populations of size
N , we consider populations of randomly distributed wild-type cells and mutants pro-
liferating in an infinitely long channel. In such a case, the domains of wild-type and
mutant cells grow exponentially, as no cells can be removed from the channel. We focus
on the growth of two adjacent domains of mutants and wild-type cells. We study the
competition between the two strains as the events when one of the strains grows up to
N individuals before the other one. Our theoretical results for such populations are in
good agreement with our numerical simulations of finite populations with N cells. We
perform a convergence test to demonstrate that the theoretical solutions are exact and
provide a possible explanation of the equivalence of these two systems.

4.3.1 Growing domains in infinite populations

The initial distribution of the domain size of both wild-type cells and mutants is

pWT
n (t0) = pmutn (t0) =

1

2n
. (4.10)

The growth of each domain of either of the strains is a pure birth process since cells
cannot be eliminated from a channel [73]. In this case, the evolution equation for the
domain size of the wild type is

d

dt
pn = b

[
(n− 1)pn−1 − npn

]
. (4.11)

The equation for the mutant is the same but with a factor (1 + s) on the right-hand
side. We suppose that the distributions remain exponential at all times, i.e.

pn(t) = (1− e−k(t))e−k(t)(n−1). (4.12)

Substituting the solution given by Eq. (4.12) to Eq. (4.11) and using the initial condi-
tion k(0) = ln(2), we obtain that kWT (t) = − ln

(
1− e−bt

2

)
. Therefore, the distribution

of the number of wild-type cells is

pn(t) =
e−bt

2

(
1− e−bt

2

)n−1

, (4.13)

and the distribution of the number of mutants is

pn(t) =
e−b(s+1)t

2

(
1− e−b(s+1)t

2

)n−1

. (4.14)

We are interested in the events when either the size of the mutant domain or the
size of the wild-type domain becomes N first, see Fig. 4.5.
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Figure 4.5: Wild-type cells and mutants in an infinite population. Two
adjacent domains of mutants and wild-type cells start from n cells with probability
1/2n. We are interested in the probabilities and the average times at which either of
the domains grows up to N cells first.

4.3.2 Fixation probabilities

We numerically simulate the finite populations of the size N with the random initial
condition. Our simulations reveal a weak strength of selection in such populations. In
fact, given the same initial frequency f0 = 0.5, the effect of the value s on the fixation
probabilities is much smaller than in populations with the “one-end” initial condition
discussed in Section 4.2.1, see Fig. 4.6, (a).

For growing domains of two strains in an infinite channel introduced in Section 4.3.1,
we calculate the probability that in two adjacent domains of different strains, the wild-
type cells grow up to N cells before mutants. We denote by XWT (t) and Xmut(t) the
number of wild-types and mutants at time t. Also, we denote by TWT and Tmut the
time at which XWT (TWT ) = N and Xmut(Tmut) = N . Therefore, the probability that
the mutant population grows to the size N before the wild-type one can be represented
as

P (Tmut < TWT ) =

∫ ∞

0

∫ y

0

fTmut,TWT
(x, y)dxdy =

∫ ∞

0

∫ y

0

fTmut(x)fTWT
(y)dxdy,

(4.15)
where the density functions of TWT and Tmut have the form

fTWT
= N

2N

2N − 1

e−bt

2

(
1− e−bt

2

)N−1

, (4.16)

fTmut = N(s+ 1)
2N

2N − 1

e−b(s+1)t

2

(
1− e−b(s+1)t

2

)(N−1)

. (4.17)

Substituting the density functions fTWT
and fTmut into Eq. (4.15) and performing

the integration, we obtain

P (Tmut < TWT ) = − 1

2N − 1
+

22N

(2N − 1)2
N

2

∫ 1

0

(
1− u

2

)N−1(
1− us+1

2

)N
du, (4.18)

see Appendix E for calculations. For the neutral case s = 0, Eq. (4.18) results in
P (Tmut < TWT ) = (TWT < Tmut) = 1/2, see Appendix E. For the non-neutral case
s > 0, we solve Eq. (4.18) numerically with the QUADPACK integration [71]. This
probability is in good agreement with our numerical simulations, see Fig.4.6, (a).
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Figure 4.6: Fixation probabilities of populations with the random initial
condition. (a) Fixation probability as a function of N for different values of the
selection coefficient s. (b) Fixation time as a function of N for different values of the
selection coefficient s. The light-colored curves with triangle-shaped points represent
the “one-end” case in both figures.

As a convergence test, we demonstrate that the discrepancy between numerical
simulations and the theoretical prediction given by Eq. (4.18) decreases as the number
of iterations increases, see Appendix E for more details. Therefore, we conjecture that
the solution given by Eq. (4.18) is exact.

4.3.3 Fixation time

Our numerical simulations of finite populations of size N demonstrate the low influence
of selection on fixation times as well, see Fig.4.6, (b).

For the theoretical result, we find the average times ⟨TWT ⟩ and ⟨Tmut⟩ at which one
of the adjacent domains of wild-types and mutants reach the size N . These average
times have the forms

⟨TWT ⟩ =
∫ ∞

0

tfTWT
dt =

2N

b(2N − 1)

[
log

(N
2

)
+ γ

]
, (4.19)

⟨Tmut⟩ =
∫ ∞

0

tfTWT
dt =

2N

b(s+ 1)(2N − 1)

[
log

(N
2

)
+ γ

]
, (4.20)

where γ ≈ 0.577 is the Euler-Mascheroni constant, see Appendix F.
Using Eq. (4.18) and Eqs. (4.19), (4.20), we find the average time at which either

of the wild-type and mutant domains reaches the size N . This average time can be
found as

⟨T ⟩ = P (Tmut < TWT )⟨Tmut⟩+ (1− P (Tmut < TWT ))⟨TWT ⟩, (4.21)

see Appendix F for the full expression of Eq. (4.21).
For s = 0 and large N , Eq. (4.21) results in

⟨T ⟩ = 1

b

[
ln
(N − 1

2

)
+ γ

]
, (4.22)

see Appendix F. For s ̸= 0, we solve Eq. (4.21) numerically. The results are in good
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agreement with the simulations of finite populations, see Fig.4.6, (b).



Chapter 5

Coalescent dynamics of planktonic
communities

This chapter has been published as:

• Martín, P.V., Koldaeva, A. and Pigolotti, S. “Coalescent dynamics of planktonic
communities”, Physical Review E, 2022,

see Appendix G.

Outline of the project and results

In this project, we explore the diversity of planktonic communities in aquatic envi-
ronments with and without currents using spatial models that propagate forward and
backward in time.

Both of the models simulate spatial trajectories of each individual, which we discuss
in detail in Sections 2.5.2 and 2.5.2. As a result, the forward model reconstructs an
ancestry tree of the entire population, whereas the backward (or coalescent) model pre-
dicts an ancestry of a sample from the population, see Fig. 5.1, (a) and (b). Therefore,
as we discussed in Section 1.4.5, the backward model is preferable for simulating large
planktonic communities, due it its simplicity over the forward model.

We explore the conditions upon which the backward model is dual to the forward
model. In particular, we define two noise regimes called the weak and strong noise. In
the weak noise regime, the stochastic fluctuations induced by birth and death processes
in the forward model do not affect homogeneity of individuals’ distribution in the
forward model. Consequently, the total number of individuals does not deviate much
from its original value. We claim that the duality between the forward and backward
rigorously models holds in the weak-noise regime.

To demonstrate it, we run extensive numerical simulations of both models in the
two noise regimes. Moreover, we simulate these models in the presence and in the ab-
sence of chaotic advection. We explore the predicted biodiversities using such biodiver-
sity measures as α−diversity, β−diversity, species-area relation, and species-abundance
distribution (SAD). In the weak-noise regime, the forward and backward models yield
nearly identical predictions for all these quantities.
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Figure 5.1: Two models of planktonic communities. (a) Forward model re-
constructs ancestry tree of the entire population. (b) Backward model reconstructs
ancestry tree of a sample from the population.

Finally, we employ the backward model to predict the impact of chaotic advection
by oceanic currents on biodiversity of planktonic communities. We analyse the metage-
nomic data of plankton microorganisms sampled in oceans [85] and lakes [6] around
the world. Both the experimental observations and numerical simulations of the model
shows that SAD in the oceans are characterized by a steeper slope comparing to the
ones in lakes.



Chapter 6

Conclusion

In this Thesis, we studied the population dynamics of two spatially organized popula-
tions: bacteria E. coli proliferating in rectangular microchannels with two open ends
and planktonic communities evolving in a chaotic advection field. We analyzed both
systems with individual-based mathematical models, and employed experimental data
to validate theoretical predictions of the models. In this chapter, we provide detailed
discussions of both systems and present further perspectives of the study.

6.1 E. coli in microchannels

The main focus of this thesis is the population dynamics of dense microbial communities
growing in narrow rectangular microchannels. In such populations, a new reproduction
is not necessarily followed by a death of a neighbor cell. In fact, reproduction creates a
shift of an entire lane of cells toward an open end. Our experiments demonstrated that
such dynamics, combined with the geometry of microchannels, result in the segregation
of bacterial strains into stripes along microchannels. This is in contrast to populations
growing on a surface, in which strains segregate into sector-like regions [36].

Our analysis is based on a lattice-based model [37]. We generalized the model
and incorporated two effects observed in the experiments of proliferating E. coli in
microchannels: the tendency of cells to reproduce within their original lane and towards
the closest end. Our model predicts fast fixation within one lane of N cells with the
time that scales as log(N). This time is much shorter than the average fixation times
obtained for the Moran and linear Voter models, that scale as N and N2, respectively.
This demonstrates that shifting dynamics facilitates the fast accumulation of cells of
the same strain that eventually takes over. Due to this, the dynamics of a population
that consists of multiple lanes have two regimes: fast exponential diversity loss within
lanes and slow competition between the lanes. Moreover, our model predicts a narrow
Gaussian fixation probability distribution with the mean in the middle of a channel.
In other words, the mutants arising in the middle of a channel have a high positional
advantage, whereas the majority of other mutants have almost zero survival probability.

We discovered that the shifting dynamics in combination with the geometry of
microchannels suppresses the strength of natural selection. Also, the strength of selec-
tion highly depends on the initial distribution of mutants in a channel. For a single
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mutant with the highest positional advantage, the effect of selection advantage on fix-
ation probability is lower by several magnitudes compared to the well-mixed case. The
fixation probabilities of mutants with low positional advantage remain almost unaf-
fected. We also explored two scenarios of mutants with the initial frequency greater
than 1/N : the mutants concentrated in one cluster next to an open end and random
initial distribution. In the first case, the mutant’s fixation probability depends on the
compound parameter Ns2, which demonstrates a weak strength of selection. Randomly
distributed mutants result in an even weaker effect of selection on fixation probabili-
ties. These findings demonstrate a remarkable characteristic of population dynamics
in microchannels: the initial position of mutants is a dominating factor in their fate.
Therefore, the balance between genetic drift and natural selection tilts toward the lat-
ter one. Moreover, this disbalance increases with the growth of the population size
N .

Our findings are in contrast to predictions of other models of populations with
shifting dynamics. For example, if such a population evolves on a cycle, the effect of
selection is the same as in well-mixed populations [1]. Another example is the linear
array process, in which cells propagate in a similar fashion as in the mother machine
[68]. Since only the cell at the closed end has a non-zero fixation probability, selection
is completely suppressed in such populations.

Our results are applicable to microbial ecology in soil. In order to find shelter
from large predators and access to water, most bacteria inhabit micropores [98]. The
diameter of such micropores is about three times the bacteria’s body size [46]. This
limits the number of individuals a bacteria interacts with within its population. It has
been shown that this number is about 120 individuals on average [74]. Therefore, the
size and organization of bacterial populations in soil are comparable with microchannels
studied in this thesis.

Renewing epithelium tissue has a similar spatial organization with cells arranged
into thin compartments [33, 44]. The cells in the compartments originate at a stem
cell layer and push each other toward the top of the compartment in the same way
as the cells propagate in the mother machine [3]. Understanding the dynamic of such
populations can shed light on the emergence and propagation of deleterious mutations
in epithelial tissue that leads to cancer [12, 29].

We aim to extend our study of competing non-neutral strains of bacteria E. coli
to test the selective advantage in microchannels experimentally. To achieve this setup,
we use two strains of E. coli with different antibiotic resistance levels [30]. One strain
is sensitive to ampicillin and has been used in previous experimental work; the other
has a modified plasmid, expressing a different fluorescent protein, with an additionally
incorporated ampicillin-resistant gene (AmpR). Now, we achieve altered reproduction
rates by adding ampicillin to the media with the two strains [55]. As a result, the
resistant strain reproduces at a higher rate compared to the sensitive strain. Therefore,
the value of the selection advantage coefficient s can be adjusted by changing the
concentration of the antibiotic in the media. This experimental data will enable us to
test the theoretical predictions of our model with a random initial distribution of the
two strains in a channel.

Our theoretical findings on selection advantage in microchannels can be extended
to populations consisting of multiple lanes of cells. However, in such a case, the sepa-
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ration of the diversity loss into two regimes with the fast fixation within each lane and
slow competition between lanes might not hold anymore. This might be due to the
frequent invasion of mutants to their neighboring lanes. In order to understand this
phenomenon, a detailed exploration of experimental data with two non-neutral strains
along with extensive numerical simulations of the model is left for future work.

Also, our results can be extended to large populations growing in rectangular mi-
crochannels. The lattice model that we study in this thesis is a good approximation of
the dynamics of highly ordered populations of bacteria growing in narrow microchan-
nels. In larger populations, the destruction of the global cell ordering occurs due to
the buckling instability [7]. In such a case, off-lattice models might give more realistic
predictions [60, 80].

6.2 Plankton in velocity field
The second system we studied in this thesis consists of planktonic communities evolving
in a chaotic aquatic environment. Our model is based on a coalescence principle,
which enables reconstructing the evolution of a population backward in time. With
the backward model, we reconstructed the biodiversity of a sample instead of the entire
community. Moreover, with the backward approach, we modeled only the individuals
that contributed to the biodiversity of the final population. This makes the backward
model more computationally efficient compared to the standard forward models.

We demonstrated that there are two noise regimes. The weak noise regime is
characterized by small stochastic fluctuations of the average number of individuals
induced by birth and death processes in the forward model. Whereas, in the strong
noise regime, fluctuations dominate altering the average size of a population. We
showed that the backward and forward models are equivalent in the weak noise regime.
Moreover, we demonstrated that the predictions of the models are in good agreement
with the OTU composition of microbial communities sampled in aquatic environments
with and without currents.

Our model can be extended to a non-neutral case, considering distinct planktonic
species reproducing at different rates, potentially influenced by environmental changes
[18]. The incorporation of selection into our model allows us to examine how differential
reproductive rates and environmental factors impact the abundance and diversity of
planktonic species, providing valuable insights into the effect of selection on biodiversity
in changing environments [66, 84].
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Appendix C

Fixation probabilities for the
“one-end” initial condition

In this appendix, we solve Eq. (4.3) and derive the fixation probabilities given by
Eq. (4.4) of mutants with the initial frequency f0 and selection coefficient s concentrated
at one end in a microchannel.

First, we need to solve Eq. (4.3), which has the following form

dy

dx
v(x) +

d2y

dx2
D(x) = 0.

We introduce a new notation g(x) = dy
dx

. Thus, the equation takes the form

dg

dx
D(x) + gv(x) = 0,

or equivalently
g′(x)

g(x)
= − v(x)

D(x)
.

We integrate the latest equation and get the following expressions∫
g′(x)

g(x)
dx = −

∫
v(x)

D(x)
dx,

ln(g(x)) = −
∫

((2 + s)x−N)b/2

(N + xs)b/4
dx = −2

[
(2 + s)

∫
x

N + xs
dx−N

∫
dx

N + xs

]
=

= −2
[
(2 + s)

∫
sx+N −N

s(N + xs)
dx− N

s
ln(xs+N)

]
=

= −2
[2 + s

s

∫ (
1− N

s(N + xs)
dx

)
− N

s
ln(xs+N)

]
=

= −2
[2 + s

s

(
x− N

s
ln(xs+N)

)
− N

s
ln(xs+N)

]
.
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Therefore,

ln g(x) = −2(2 + s)x

s
+

4N(s+ 1) ln(xs+N)

s2
.

Taking exponential function of both sides on the latest equation, we find the function
g(x) in the form

g(x) = (xs+N)
4N(s+1)

s2 e−
2(2+s)x

s .

From the definition g(x) = dy
dx

, we find the function y(x) by integration:

y(x) =

∫ x

0

(zs+N)
4N(s+1)

s2 e−
2(2+s)z

s dz =

∫ x

0

(
2(2+s)
s2

(zs+N)
) 4N(s+1)

s2

(
2(2+s)
s2

) 4N(s+1)

s2

e−
2(2+s)z

s
±N 2(2+s)

s2 dz =

= const

∫ x

0

(2(2 + s)

s2
(zs+N)

) 4N(s+1)

s2

e−
2(2+s)(zs+N)

s2 d(zs+N).

Define a new variable t = 2(2+s)
s2

(zs+N). Thus,

y(x) = C

∫ 2(2+s)

s2
(xs+N)

2(2+s)

s2
N

t
4N(s+1)

s2 e−tdt =

= C
[
γ(

4N(s+ 1)

s2
+ 1,

2(2 + s)

s2
(xs+N))− γ(

4N(s+ 1)

s2
+ 1,

2(2 + s)

s2
N)

]
,

where C is a constant. By the definition of x(t),

0 ≤ x(t) ≤ N,

thus

C
[
γ(

4N(s+ 1)

s2
+ 1,

2(2 + s)

s2
N(s+ 1))− γ(

4N(s+ 1)

s2
+ 1,

2(2 + s)

s2
N)

]
≤ y(t) ≤

≤ C
[
γ(

4N(s+ 1)

s2
+ 1,

2(2 + s)

s2
N)− γ(

4N(s+ 1)

s2
+ 1,

2(2 + s)

s2
N)

]
.

By the Doob’s optional stopping theorem [24], the expected value of the bounded
martingale y(t) is equal to y(0) = y(x0). Therefore

y(0) = p1a0 + p0a1, where p0 + p1 = 1,

and a0 and a1 are the left and right ends of the interval for y. Therefore,

p1 =
y0 − a1
a0 − a1

=
γ(4N(s+1)

s2
+ 1, 2(2+s)

s2
(x0s+N))− γ(4N(s+1)

s2
+ 1, 2(2+s)

s2
N)

γ(4N(s+1)
s2

+ 1, 2(2+s)
s2

N)− γ(4N(s+1)
s2

+ 1, 2(2+s)
s2

N)

which is equivalent to the fixation probabilities given by Eq. (4.4) .



Appendix D

Fixation time for the “one-end” initial
condition

In this appendix, we derive the average fixation time given by Eq. (4.9) from the general
formula given by Eq. (4.7). Since we focus on the neutral case with x0 = N/2, the
fixation time in Eq. (4.9) can be written in the following way

T (x0) =
1

2

∫ N

x0

ψ(y′)dy′
∫ y′

0

dz

B(z)ψ(z)
− 1

2

∫ x0

0

ψ(y′)dy′
∫ y′

0

dz

B(z)ψ(z)
. (D.1)

This is due to the fact that the sub-populations of mutants and wild-types have the
same fixation probabilities equal to 1/2. In order to calculate the fixation time with
Eq. (D.1), we first find function ψ(x).

ψ(x) = e
−

∫ x
0

v(x′)
D(x′)dx

′
= exp

(
− 2

∫ x

0

2x−N

N

)
= exp

(
− 2

N

∫ x

0

(2x−N)dx
)
=

= exp
(
− 2

N
(x2 − xN)

)
= exp

(
− 2

N
(x− N

2
)2 +

N

2

)
= e−

(x−N
2 )2

N/2 eN/2.

Next, we calculate the terms of Eq. (D.1) separately using the expression of the function
ψ(x). The first term have the following representation∫ N

N/2

ψ(y′)dy′
∫ y′

0

dz

B(z)ψ(z)
=

∫ N

N/2

e−
(y′−N

2 )2

N/2 eN/2dy′
∫ y′

0

2

Nb
e

(z−N
2 )2

N/2 e−N/2dz =

=
2

Nb

√
N

2

∫ N

N/2

e−
(y′−N

2 )2

N/2

∫ y′−N/2√
(N/2)

−
√
N/2

et
2

dt =

√
π

2b

∫ √
N/2

0

e−t
2

[erfi(t) + erfi(
√
N/2)]dt =

=

√
π

b

[ ∫ √
N/2

0

e−t
2

erfi(t)dt+

√
π

2
erfi(

√
N/2)erf(

√
N/2)

]
.
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The second term differs from the first one only in the integration limits. Therefore, it
can be written in the following form.∫ N/2

0

ψ(y′)dy′
∫ y′

0

dz

B(z)ψ(z)
=

∫ N/2

0

e−
(y′−N

2 )2

N/2 eN/2dy′
∫ y′

0

2

Nb
e

(z−N
2 )2

N/2 e−N/2dz =

=
2

Nb

√
N

2

∫ N/2

0

e−
(y′−N

2 )2

N/2

∫ y′−N/2√
(N/2)

−
√
N/2

et
2

dt =

√
π

2b

∫ 0

−
√
N/2

e−t
2

[erfi(t)+erfi(
√
N/2)]dt =

=

√
π

b

[ ∫ 0

−
√
N/2

e−t
2

erfi(t)dt+

√
π

2
erfi(

√
N/2)erf(

√
N/2)

]
.

Substituting these two terms to Eq. (D.1), we get the following expression

T (x) =

√
π

2b

[ ∫ √
N/2

0

e−t
2

erfi(t)dt−
∫ 0

−
√
N/2

e−t
2

erfi(t)dt
]
=

=

√
π

b

∫ √
N/2

0

e−t
2

erfi(t)dt =
N

2
2F2(1, 1;

3

2
, 2;−N

2
),

where 2F2 is the generalized hypergeometric function and it’s has the following repre-
sentation

2F2(1, 1;
3

2
, 2;−N

2
) = Γ(3/2)

∞∑
k=0

(−N/2)k

Γ(3/2 + k)(k + 1)
.

Therefore,

T (x) = Γ(3/2)
∞∑
n=1

(−N/2)n

Γ(1/2 + n)n
,

which is equivalent to Eq. (4.9).



Appendix E

Fixation probabilities for the random
initial condition

Derivation of the fixation probability

In this section, we derive the fixation probability given by Eq. (4.15).

The fixation probability of mutants can be found as the probability that the popu-
lation of mutants grows up to N cells before the population of wild-type cells. We find
this probability in the form

P (Tmut < TWT ) =

∫ ∞

0

∫ y

0

fTmut,TWT
(x, y)dxdy =

∫ ∞

0

∫ y

0

fTmutfTmutTWT
(x, y)dxdy,

(E.1)
We substitute fTmut and fTmutTWT

given by Eqs. (4.16) and (4.17) and perform integra-
tion. As a result, we obtain

P (Tmut < TWT ) =
22NN2(s+ 1)

(2N − 1)2

∫ ∞

0

∫ y

0

e−b(s+1)x

2

(
1−e

−b(s+1)x

2

)N−1 e−bx

2

(
1−e

−bx

2

)N−1

dxdy =

=
22NN2

(2N − 1)2

∫ ∞

0

e−by

2

(
1− e−by

2

)N−1
∫ y

0

(
1− e−b(s+1)x

2

)N−1

d
(e−b(s+1)x

2

)
=

=
22NN

(2N − 1)2

∫ ∞

0

e−by

2

(
1− e−by

2

)N−1(
− 1

2N
+
(
1− e−b(s+1)y

2

)N)
dy =

= − 2NN

(2N − 1)2

∫ ∞

0

e−by

2

(
1− e−by

2

)N−1

dy+
22NN

2(2N − 1)2

∫ 1

0

(
1−u

2

)N−1(
1−us+1

2

)N
du =

= − 2N

(2N − 1)2

(
− 1

2N
+ 1

)
+

22NN

2(2N − 1)2

∫ 1

0

(
1− u

2

)N−1(
1− us+1

2

)N
du =

= − 1

2N − 1
+

22NN

2(2N − 1)2

∫ 1

0

(
1− u

2

)N−1(
1− us+1

2

)N
du.

The latest expression is equivalent to Eq. (4.18).
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Figure E.1: Convergence test. The value of the mean squared error given by
Eq. (E.2) decreases as the number of iterations grows.

For s = 0, Eq. (4.18) transforms to

P (Tmut < TWT ) = − 1

2N − 1
+

22NN

2(2N − 1)2

∫ 1

0

(
1− u

2

)2N−1

du =

= − 1

2N − 1
+

22NN

(2N − 1)2

∫ 1/2

0

(
1− t

)2N−1

dt = − 1

2N − 1
+

22N

2(2N − 1)2
22N − 1

22N
=

=
−2(2N − 1) + 22N − 1

2(2N − 1)2
=

(2N − 1)2

2(2N − 1)2
=

1

2
.

Convergence test

We demonstrate that the numerical fixation probabilities found for finite populations
with the random initial condition converge to the theoretical fixation probabilities given
by Eq. (4.18).

We run numerical simulations of populations of the size N for the same range of N
and the selection advantage coefficient s as in Fig. 4.6. As the measure of discrepancy
between numerical and theoretical predictions, we use the mean squared error in the
form

Rs =
1

n

n∑
i=1

(
P num
s (i)− P theor

s (i)
)2

, (E.2)

where P num
s (i) and P theor

s (i) are numerical and theoretical predictions of the fixation
probability, and n is the number of points (different values of the parameter N).

We find the value of Rs given by Eq. (E.2) for different values of s and different
numbers of numerical simulations. Fig. E.1 shows that the value of Rs decreases as the
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number of simulations grows.





Appendix F

Fixation time for the random initial
condition

In this section, we find the average fixation time given by Eq. (4.21).
First, we find the average times at which populations of mutants and wild-type cells

grow up to N cells.

⟨Tmut⟩ =
∫ ∞

0

tfTmutdt =
2NN(s+ 1)

2N − 1

∫ ∞

0

t
e−b(s+1)t

2

(
1− e−b(s+1)t

2

)N−1

dt =

=
2NN

(2N − 1)(s+ 1)

∫ 1/2

0

ln(2u)
(
1− u

)N−1

du =

=
2NN

(2N − 1)(s+ 1)

H[N/2]

[N/2]
→ 1

s+ 1

2N

2N − 1

(
ln
[N
2

)
+ γ

]
, as N → ∞,

where [N/2] is the integer part of N/2, H[N/2] =
∑[N/2]

k=1
1
k

is the [N/2]th harmonic
number, and γ ≈ 0.577 is the Euler-Mascheroni constant.

The average time ⟨TWT ⟩ at which populations of wild-type cells grow up to N cells
equals to ⟨Tmut⟩ for s = 0.

The total average time at which either of the wild-type and mutant domains reaches
the size N in the form

⟨T ⟩ = P (Tmut < TWT )⟨Tmut⟩+ (1− P (Tmut < TWT ))⟨TWT ⟩ =[
− 1

2N − 1
+

22N

(2N − 1)2
N

2

∫ 1

0

(
1− u

2

)N−1(
1− us+1

2

)N
du

] 1

s+ 1

2N

2N − 1

[
ln
(N
2

)
+γ

]
+

+
[
1 +

1

2N − 1
− 22N

(2N − 1)2
N

2

∫ 1

0

(
1− u

2

)N−1(
1− us+1

2

)N
du

] 2N

2N − 1

[
ln
(N
2

)
+ γ

]
.

We solve the integrals in this expression numerically.
For s = 0 and large N , the average time ⟨T ⟩ becomes

⟨T ⟩ = 1

2

[
ln
(N
2

)
+ γ

]
+

1

2

[
ln
(N
2

)
+ γ

]
= ln

(N
2

)
+ γ,
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which is equivalent to Eq. (4.22).



Appendix G

Coalescent dynamics of planktonic
communities

Martín, P.V., Koldaeva, A. and Pigolotti, S. “Coalescent dynamics of planktonic com-
munities”, Physical Review E, 2022, [59].

Contributions:

P.V.M. and S.P. designed the research. P.V.M. designed the model; A.K. performed
numerical simulations and analyzed the results; P.V.M., A.K., and S.P. wrote the paper.
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