
Technical Disclosure Commons Technical Disclosure Commons

Defensive Publications Series

November 2023

In-Conference Tool Virtual Assistant with Real Time Speaking In-Conference Tool Virtual Assistant with Real Time Speaking

Latency Latency

Dongeek Shin

Follow this and additional works at: https://www.tdcommons.org/dpubs_series

Recommended Citation Recommended Citation
Shin, Dongeek, "In-Conference Tool Virtual Assistant with Real Time Speaking Latency", Technical
Disclosure Commons, (November 17, 2023)
https://www.tdcommons.org/dpubs_series/6426

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for
inclusion in Defensive Publications Series by an authorized administrator of Technical Disclosure Commons.

https://www.tdcommons.org/
https://www.tdcommons.org/dpubs_series
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F6426&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series/6426?utm_source=www.tdcommons.org%2Fdpubs_series%2F6426&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

In-Conference Tool Virtual Assistant with Real Time Speaking Latency

 Speech-based interaction models in virtual assistants can enable users to verbally interact

with their devices in real time. A user can provide a verbal query to the user device, which the

speech-based interaction model processes and responds to in audio or text format. To process the

audio input of a user in real time, some conventional speech-based interaction models utilize a

transcription engine and a large language model (LLM). The transcription engine transcribes the

audio input of the user and sends the transcribed query to the LLM, which analyzes the

transcription and generates a response.

 In some conventional systems, the transcription engine includes a buffer that serves as a

temporary storage area for the audio data before it is processed and transcribed. Once the buffer

reaches a specific size (e.g., the size allocated to the buffer) or once a specific time interval has

passed, the transcription engine transcribes the audio data in the buffer. However, waiting until

the buffer reaches a specific size or until a specific time interval expires, before processing the

audio data, can introduce latency in real-time speech-based models because the user can finish

speaking before the buffer reaches the specific size or the specific time interval expires. The

latency caused during this period is often the bottleneck in real time speech-based models.

While reducing the specific size for the buffer or the specific time period might reduce latency, it

can also negatively impact the quality of transcriptions due to a lack of context if the buffer is

filled before the user has finished speaking. Accordingly, these conventional methods do not

solve the concern of creating high quality transcriptions with minimal latency.

The response time of real time speech-based models can be calculated using the

following equation:

ti(response start) – ti(query end),

2

Shin: In-Conference Tool Virtual Assistant with Real Time Speaking Late

Published by Technical Disclosure Commons, 2023

where ti(response start) represents the time when the speech-based interaction model

begins responding to the user’s query, and

ti(query end) represents the time when the user finishes speaking.

However, as described above, in most conventional systems the response time is highly

dependent on the transcription engine because it plays the largest role in determining when a

query ends and when the resulting transcription can be sent to the LLM for processing. The lag

in response time can break the realism of conversations with virtual assistants for users.

 To address the above and other shortcomings, a framework is proposed that includes a

hybrid scheme utilizing a combination of a LLM and a small sound model (SSM). The SSM can

be used to timestamp the end of a user’s verbal query, which can then be used to notify the

transcription engine that the query has ended. The transcription engine can then abort and send

the existing set of transcriptions to the LLM for processing without waiting for the buffer to

reach the specific size or for the specific time interval to expire. As a result, the latency caused

by waiting for the buffer to fill or for the specific time interval to expire is reduced. The above

framework can be integrated in virtual assistants and other real time speaking applications or

devices, such as language translation devices, accessibility devices, voice controlled smart

devices, and other voice assistive technologies.

 Figure 1 illustrates a data flow diagram of a method 100 for processing a user’s audio

input 110 to send to a LLM 140. When a user is speaking, the audio input 110 can be received

and provided as input to both a transcription engine 120 and SSM 130 concurrently. The SSM

130 can be associated with a mechanism for communicating with the transcription engine 120.

The SSM 130 can determines when a verbal query has ended and generate a message or a flag

that is sent to the transcription engine 120 to immediately abort and use the existing set of

3

Defensive Publications Series, Art. 6426 [2023]

https://www.tdcommons.org/dpubs_series/6426

transcriptions to provide as input to the LLM 140. The LLM 140 then processes the transcribed

query and generates a response.

In one example, the SSM 130 can be a direct speech-based model trained to find patterns

in a user’s tone that indicate the end of a verbal query. The SSM 130 can be trained to output a

segmentation score for received audio input using raw sound data. For instance, the SSM 130

can take a user’s raw speech as input and output a query segmentation vector. When an output

segmentation score exceeds a predefined threshold, the SSM 130 can determine that the query

has ended. For example, the SSM 130 can determine that a verbal query has meaningfully ended

within milliseconds of when the user stops speaking.

In an illustrative example, the raw speech input fed into the SSM 130 can be the phrase

“how is the weather today?” The SSM 130 can output a query segmentation vector for the raw

speech input and analyze the segmentation scores of the query. The segmentation score for the

end of the word “today” may exceed the predefined threshold score for the end of the query. As

a result, the SSM 130 can determine that the user’s query has ended after the word “today” and

generate a message or a flag, that can be used to notify the transcription engine 120 to abort and

to provide the transcription to the LLM 140 for processing.

The SSM 130 can be composed of, e.g., a single level of linear or non-linear operations

(e.g., a support vector machine (SVM)) or a deep network, such as a machine learning model that

is composed of multiple levels of non-linear operations. An example of a deep network is a

neural network with one or more hidden layers, and such a machine learning model may be

trained by, for example, adjusting weights of a neural network in accordance with a back

propagation learning algorithm or the like. In some instances, the SSM 130 can be composed of

convolutional networks. In other instances, the SSM 130 can be composed of transformer

4

Shin: In-Conference Tool Virtual Assistant with Real Time Speaking Late

Published by Technical Disclosure Commons, 2023

decoders, similar to the architecture of an LLM. Once the SSM 130 is trained, it can be used to

analyze the segmentation scores of a user query to determine when the query has ended.

The transcription engine 120 that is provided with the raw audio input 110 in parallel

with the SSM 130 can convert the user’s raw speech input into written text. Much like the SSM

130, the transcription engine 120 can be composed of, e.g., a single level of linear or non-linear

operations (e.g., a support vector machine (SVM)) or a deep network, such as a machine learning

model that is composed of multiple levels of non-linear operations. In some instances, the

transcription engine 120 can be trained using datasets of paired audio and transcriptions. The

transcription engine 120 can include an acoustic model that uses the audio input to map acoustic

features into linguistic units and a language model that estimates the probability of word

sequences in a language. A decoder can be used in the transcription engine 120 to take the

output of the two models and search for the word sequence that best fits the audio input with the

goal of reducing the difference between the predicted transcription and the actual transcription.

Once the transcription engine 120 is trained, it can be used to process raw user audio input and

generate a transcription of the audio input, which is then provided as input to the LLM 140.

The LLM 140 receives the transcription of the user query and generates a response to the

user query. In some instances, the LLM 140 can be composed of, e.g., a single level of linear or

non-linear operations (e.g., a support vector machine (SVM)) or a deep network, such as a

machine learning model that is composed of multiple levels of non-linear operations. In other

instances, the LLM 140 can use a transformer-based model architecture with a self-attention

mechanism. The LLM 140 can comprise an artificial neural network, composed of artificial

neurons or nodes connected by weights. A positive weight reflects a relevant connection, while a

5

Defensive Publications Series, Art. 6426 [2023]

https://www.tdcommons.org/dpubs_series/6426

negative weight reflects irrelevant connections. Through training, the LLM 140 can adjust the

weights to minimize the difference between predicted and desired outputs.

The LLM 140 can be trained using datasets of question-answer pairs. The LLM 140 can

learn the probabilities of question-answer pairs by using self-supervised and/or supervised

learning to predict answers for input questions with the goal of reducing the difference between

predicted answers and actual answers. Once the model is trained, it can be used to process

transcriptions of user audio input 110 and generate a response to the user’s query.

 Figure 2 illustrates a diagram of a comparison 200 between a timeline of a user’s verbal

query 210 and a timeline of the buffer space used by the transcription engine 220 to transcribe

the query. The amount of space needed to store the length of the user query 230 is equivalent to

2.5 buffers 240a-c in the transcription engine 120. The third buffer 240c is shorter than the other

two buffers 240a-b because the transcription engine 120 had received a notification that the

query had ended based on a message or a flag generated by the SSM 130, which causes the

transcription engine 120 to abort and provide the transcription to the LLM 140 for processing

without waiting for the third buffer 240c to reach the specific size or for the specific time interval

to expire.

 Figure 2 visually illustrates that the proposed framework reduces latency due to the SSM

130 determining when a user query has ended and generating a message or a flag, which is used

to notify the transcription engine 120. In conventional systems, the transcription engine 120

would not receive a notification to abort and would not send the transcription for processing until

the third buffer 240c has reached a specified size (is completely filled). Accordingly, the latency

in the conventional system would be significantly greater than with the disclosed framework due

to the time it would take to completely fill the third buffer 240c.

6

Shin: In-Conference Tool Virtual Assistant with Real Time Speaking Late

Published by Technical Disclosure Commons, 2023

 By using a hybrid scheme between LLMs and SSMs rather than determining sentence

semantics with a transcription engine, the disclosed technique can generate more accurate query

end times and reduce the net response time in real time speech-based models.

7

Defensive Publications Series, Art. 6426 [2023]

https://www.tdcommons.org/dpubs_series/6426

Abstract

A framework is proposed for reducing latency for real-time speaking applications, such

as virtual assistants. The framework utilizes a hybrid scheme between a large language model

(LLM) and a small sound model (SSM). The SSM timestamps the end of a user’s verbal query

and notifies the transcription engine that the query has ended. The transcription engine will then

abort and send the existing set of transcriptions to the LLM for processing without waiting for

the buffer to meet the specific value or time. This minimizes the net response time for real time

speech-based models due to the reduced latency from the transcription engine.

Keywords: virtual meeting, video conference, virtual agent, virtual assistant, large language

model, small sound model, speaking latency

8

Shin: In-Conference Tool Virtual Assistant with Real Time Speaking Late

Published by Technical Disclosure Commons, 2023

Transcription Engine
120

Small Sound Model
130

Large Language Model
140

Audio Input
110

100

Figure 1

200

230

240a 240b 240c

210

220

Figure 2

9

Defensive Publications Series, Art. 6426 [2023]

https://www.tdcommons.org/dpubs_series/6426

	In-Conference Tool Virtual Assistant with Real Time Speaking Latency
	Recommended Citation

	tmp.1700101431.pdf.gsCl7

