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In-Conference Tool Virtual Assistant with Real Time Speaking Latency 

 Speech-based interaction models in virtual assistants can enable users to verbally interact 

with their devices in real time.  A user can provide a verbal query to the user device, which the 

speech-based interaction model processes and responds to in audio or text format.  To process the 

audio input of a user in real time, some conventional speech-based interaction models utilize a 

transcription engine and a large language model (LLM).  The transcription engine transcribes the 

audio input of the user and sends the transcribed query to the LLM, which analyzes the 

transcription and generates a response. 

 In some conventional systems, the transcription engine includes a buffer that serves as a 

temporary storage area for the audio data before it is processed and transcribed.  Once the buffer 

reaches a specific size (e.g., the size allocated to the buffer) or once a specific time interval has 

passed, the transcription engine transcribes the audio data in the buffer.  However, waiting until 

the buffer reaches a specific size or until a specific time interval expires, before processing the 

audio data, can introduce latency in real-time speech-based models because the user can finish 

speaking before the buffer reaches the specific size or the specific time interval expires.  The 

latency caused during this period is often the bottleneck in real time speech-based models.  

While reducing the specific size for the buffer or the specific time period might reduce latency, it 

can also negatively impact the quality of transcriptions due to a lack of context if the buffer is 

filled before the user has finished speaking.  Accordingly, these conventional methods do not 

solve the concern of creating high quality transcriptions with minimal latency. 

The response time of real time speech-based models can be calculated using the 

following equation:  

ti(response start) – ti(query end),  
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where ti(response start) represents the time when the speech-based interaction model 

begins responding to the user’s query, and  

ti(query end) represents the time when the user finishes speaking.   

However, as described above, in most conventional systems the response time is highly 

dependent on the transcription engine because it plays the largest role in determining when a 

query ends and when the resulting transcription can be sent to the LLM for processing.  The lag 

in response time can break the realism of conversations with virtual assistants for users.   

 To address the above and other shortcomings, a framework is proposed that includes a 

hybrid scheme utilizing a combination of a LLM and a small sound model (SSM).  The SSM can 

be used to timestamp the end of a user’s verbal query, which can then be used to notify the 

transcription engine that the query has ended.  The transcription engine can then abort and send 

the existing set of transcriptions to the LLM for processing without waiting for the buffer to 

reach the specific size or for the specific time interval to expire.  As a result, the latency caused 

by waiting for the buffer to fill or for the specific time interval to expire is reduced.  The above 

framework can be integrated in virtual assistants and other real time speaking applications or 

devices, such as language translation devices, accessibility devices, voice controlled smart 

devices, and other voice assistive technologies.  

 Figure 1 illustrates a data flow diagram of a method 100 for processing a user’s audio 

input 110 to send to a LLM 140.  When a user is speaking, the audio input 110 can be received 

and provided as input to both a transcription engine 120 and SSM 130 concurrently.  The SSM 

130 can be associated with a mechanism for communicating with the transcription engine 120.  

The SSM 130 can determines when a verbal query has ended and generate a message or a flag 

that is sent to the transcription engine 120 to immediately abort and use the existing set of 
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transcriptions to provide as input to the LLM 140.  The LLM 140 then processes the transcribed 

query and generates a response. 

In one example, the SSM 130 can be a direct speech-based model trained to find patterns 

in a user’s tone that indicate the end of a verbal query.  The SSM 130 can be trained to output a 

segmentation score for received audio input using raw sound data.  For instance, the SSM 130 

can take a user’s raw speech as input and output a query segmentation vector.  When an output 

segmentation score exceeds a predefined threshold, the SSM 130 can determine that the query 

has ended.  For example, the SSM 130 can determine that a verbal query has meaningfully ended 

within milliseconds of when the user stops speaking. 

In an illustrative example, the raw speech input fed into the SSM 130 can be the phrase 

“how is the weather today?”  The SSM 130 can output a query segmentation vector for the raw 

speech input and analyze the segmentation scores of the query.  The segmentation score for the 

end of the word “today” may exceed the predefined threshold score for the end of the query.  As 

a result, the SSM 130 can determine that the user’s query has ended after the word “today” and 

generate a message or a flag, that can be used to notify the transcription engine 120 to abort and 

to provide the transcription to the LLM 140 for processing.   

The SSM 130 can be composed of, e.g., a single level of linear or non-linear operations 

(e.g., a support vector machine (SVM)) or a deep network, such as a machine learning model that 

is composed of multiple levels of non-linear operations.  An example of a deep network is a 

neural network with one or more hidden layers, and such a machine learning model may be 

trained by, for example, adjusting weights of a neural network in accordance with a back 

propagation learning algorithm or the like.  In some instances, the SSM 130 can be composed of 

convolutional networks.  In other instances, the SSM 130 can be composed of transformer 
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decoders, similar to the architecture of an LLM.  Once the SSM 130 is trained, it can be used to 

analyze the segmentation scores of a user query to determine when the query has ended. 

The transcription engine 120 that is provided with the raw audio input 110 in parallel 

with the SSM 130 can convert the user’s raw speech input into written text.  Much like the SSM 

130, the transcription engine 120 can be composed of, e.g., a single level of linear or non-linear 

operations (e.g., a support vector machine (SVM)) or a deep network, such as a machine learning 

model that is composed of multiple levels of non-linear operations.  In some instances, the 

transcription engine 120 can be trained using datasets of paired audio and transcriptions.  The 

transcription engine 120 can include an acoustic model that uses the audio input to map acoustic 

features into linguistic units and a language model that estimates the probability of word 

sequences in a language.  A decoder can be used in the transcription engine 120 to take the 

output of the two models and search for the word sequence that best fits the audio input with the 

goal of reducing the difference between the predicted transcription and the actual transcription.  

Once the transcription engine 120 is trained, it can be used to process raw user audio input and 

generate a transcription of the audio input, which is then provided as input to the LLM 140. 

The LLM 140 receives the transcription of the user query and generates a response to the 

user query.  In some instances, the LLM 140 can be composed of, e.g., a single level of linear or 

non-linear operations (e.g., a support vector machine (SVM)) or a deep network, such as a 

machine learning model that is composed of multiple levels of non-linear operations.  In other 

instances, the LLM 140 can use a transformer-based model architecture with a self-attention 

mechanism.  The LLM 140 can comprise an artificial neural network, composed of artificial 

neurons or nodes connected by weights.  A positive weight reflects a relevant connection, while a 
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negative weight reflects irrelevant connections.  Through training, the LLM 140 can adjust the 

weights to minimize the difference between predicted and desired outputs.   

The LLM 140 can be trained using datasets of question-answer pairs.  The LLM 140 can 

learn the probabilities of question-answer pairs by using self-supervised and/or supervised 

learning to predict answers for input questions with the goal of reducing the difference between 

predicted answers and actual answers.  Once the model is trained, it can be used to process 

transcriptions of user audio input 110 and generate a response to the user’s query.   

 Figure 2 illustrates a diagram of a comparison 200 between a timeline of a user’s verbal 

query 210 and a timeline of the buffer space used by the transcription engine 220 to transcribe 

the query.  The amount of space needed to store the length of the user query 230 is equivalent to 

2.5 buffers 240a-c in the transcription engine 120.  The third buffer 240c is shorter than the other 

two buffers 240a-b because the transcription engine 120 had received a notification that the 

query had ended based on a message or a flag generated by the SSM 130, which causes the 

transcription engine 120 to abort and provide the transcription to the LLM 140 for processing 

without waiting for the third buffer 240c to reach the specific size or for the specific time interval 

to expire.   

 Figure 2 visually illustrates that the proposed framework reduces latency due to the SSM 

130 determining when a user query has ended and generating a message or a flag, which is used 

to notify the transcription engine 120.  In conventional systems, the transcription engine 120 

would not receive a notification to abort and would not send the transcription for processing until 

the third buffer 240c has reached a specified size (is completely filled).  Accordingly, the latency 

in the conventional system would be significantly greater than with the disclosed framework due 

to the time it would take to completely fill the third buffer 240c. 
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 By using a hybrid scheme between LLMs and SSMs rather than determining sentence 

semantics with a transcription engine, the disclosed technique can generate more accurate query 

end times and reduce the net response time in real time speech-based models.   
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Abstract 

A framework is proposed for reducing latency for real-time speaking applications, such 

as virtual assistants.  The framework utilizes a hybrid scheme between a large language model 

(LLM) and a small sound model (SSM).  The SSM timestamps the end of a user’s verbal query 

and notifies the transcription engine that the query has ended.  The transcription engine will then 

abort and send the existing set of transcriptions to the LLM for processing without waiting for 

the buffer to meet the specific value or time.  This minimizes the net response time for real time 

speech-based models due to the reduced latency from the transcription engine.  

 

Keywords: virtual meeting, video conference, virtual agent, virtual assistant, large language 

model, small sound model, speaking latency 
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