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C. Jordi Girona 1-3, Building B1, North Campus, 08034 Barcelona, Spain   

A R T I C L E  I N F O   

Keywords: 
Last-mile logistics 
E-commerce 
Continuous approximation 
Autonomous delivery robot 
Life cycle analysis 

A B S T R A C T   

The acceleration of global e-commerce brings an increasing environmental burden to urban last- 
mile logistics. Autonomous delivery robots (ADRs) have often been considered as an attractive 
solution to this challenge but, to date, their environmental impact had not been fully assessed. To 
fill this gap, a life-cycle analysis of two-echelon and business-as-usual distribution strategies is 
proposed in this paper. To model ADR production, primary data from an actual prototype is used. 
The mathematical formulation of the use stage is done using the continuous approximation 
methodology. Finally, some managerial insights are obtained. Two-echelon operations would 
generate between 60 and 130 gCO2-eq per parcel delivery depending on the considered operation 
scenario. The ADR fleet production and renewal are the biggest contributors to this total global 
warming potential (GWP). As a consequence, the three main leverages to decrease the GWP of an 
ADR-based two-echelon delivery scheme are an improvement of the ADR production processes, 
the maximization of the robot lifespan (both for mechanical parts and battery), and the optimi-
zation of delivery operations to minimize the robot fleet size.   

1. Introduction and state of the art 

The use of autonomous delivery robots (ADRs) for last-mile delivery has been attracting growing market interest over the last years, 
particularly driven by the ongoing COVID-19 pandemic and its need for contactless package deliveries (Pani et al., 2020). However, 
given the growing demand for last-mile deliveries and their associated environmental impacts, understanding to what extent new 
technologies, such as automation and robotics, can help reducing the environmental impacts of last-mile deliveries is becoming 
increasingly relevant. By exploring the different delivery strategies (i.e. using human-driven or autonomous vehicles with human 
delivery, ground robots or drones) and powertrains, research has been focusing on new business models to find applications and 
solutions to improve last-mile logistics, the most carbon intensive and least energy efficient supply chain link (Li et al., 2021). 

Using a life cycle assessment (LCA) framework, Li et al. (2021) investigated the key parameters influencing the life cycle green-
house gas (GHG) emissions of package delivery scenarios, benchmarking the use of electric and gas-powered autonomous vehicles and 
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two-legged robot against the traditional delivery method with driver hand-delivering parcels. It was found that full automation does 
not reduce the emissions in comparison with conventional delivery, which is associated with the lowest emissions with the use of 
electric vehicles (EVs). Given the superior relevance of the electrification of the powertrain in comparison with vehicle automation, the 
need for decarbonizing the grid is also highlighted. 

Aiming to investigate the life cycle environmental impact of the electrification of the powertrain in the delivery of goods in urban 
environments, Marmiroli et al. (2020) compared three light commercial vehicles (LCVs) with diesel, compressed natural gas and 
electric powertrains, using primary data from the vehicles’ manufacturer, considering a standard delivery mission. While in the 
production stage, the impacts are higher for the electric version in all the analyzed impact categories, during the usage its environ-
mental performance could be superior to internal combustion engine vehicle (ICEV) versions in some categories, assuming a 
renewable-based electricity mix use scenario. 

In the context of autonomous vehicles, connected and automated vehicles (CAVs) can combine connectivity (i.e. ability to share 
information with a connected vehicle and an infrastructure network) and automation technologies, being classified into five levels, 
from zero to full automation. Kemp et al. (2020) investigated life cycle energy usage and GHG emissions of Level 4 CAVs (i.e. high 
automation) by conducting an LCA of CAV platforms for electric sport utility vehicles (SUVs) and ICE vans, as part of an automated taxi 
fleet. By analyzing different scenarios varying the grid carbon intensity, and computing power requirements, 31% potential reduction 
of life cycle GHG emissions is expected when considering low carbon grid (0.08 kg CO2-eq/kWh) for CAV battery electric vehicles 
(BEVs), compared to the base scenario, whereas an increase of 34% is computed for high power (4000 W). This study reveals the 
importance of reducing CAV subsystem power requirements, as well as the vehicle electrification, together with grid decarbonization, 
towards a more sustainable implementation of CAV technology. 

Drones are also being explored as a way towards more environmentally sustainable technologies in the delivery systems. Focusing 
on the usage stage, Figliozzi (2020) revealed the potential of air (drones) and ground (sidewalk and road types) ADRs to reduce the 
carbon emissions, and analyzed the key influencing factors when comparing store delivery with in-store shopping. While studies have 
shown the environmental benefits of drone’s delivery (Koiwanit, 2018; Park et al., 2018; Stolaroff et al., 2018), drones are associated 
with major shortcomings (e.g. air safety and congestion, given the risk of system malfunction or hacking, and intense air traffic to meet 

a) b) 

c) 

Fig. 1. Expected accumulated environmental impact of (a) BAU and (b) two-echelon delivery scenarios. BAU and two-echelon delivery scenarios 
accumulated environmental impacts are compared in (c). 
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the delivery demand) and are more efficient in time-constrained and low-density delivery contexts (Figliozzi, 2020). 
Comparing them with ICEVs and EVs for grocery delivery, Yowtak et al. (2020) revealed that unmanned air vehicles (UAVs) are 

currently not competitive in terms of environmental and economic aspects. Even though UAVs supplemented with ICEV delivery on 
poor weather days (i.e. they are mostly unable to operate in rain or snow conditions) have the potential to perform better than the 
ICEV-only operation with regards to GHG emissions, environmental impacts such as photochemical oxidant formation potential and 
respiratory effects are increased. In addition, the energy required per km for high-payload UAVs is significantly greater than for EV 
systems, hence leading to higher environmental impacts when considering UAVs supplemented with EVs, in comparison with EVs-only 
scenario (Yowtak et al., 2020). 

While previous studies have analyzed the technical and environmental feasibility of autonomous vehicles, two-legged robots, 
drones, as well as the electrification of the powertrain for delivery systems, very little is known about the potential of ADRs to reduce 
the environmental impact of last-mile deliveries. The impact from the production of the ADRs and their use in an urban context is still 
subject of investigation. In this way, this paper focuses on providing a holistic approach of last-mile logistics operations, adopting a 
cradle-to-grave perspective; from the extraction of raw materials, through the production, up to the use stage. In order to model the 
production burdens, primary data from an ADR prototype manufacturer will be used. The delivery scenario mathematical formulation 
is based on the continuous approximation (CA) methodology (Daganzo et al., 2012). To the best of our knowledge, such a holistic 
approach, that combines primary ADR data and accurate usage stage formulation, has not been done yet. 

Two delivery strategies will be investigated and compared: business-as-usual (BAU) and two-echelon. In the BAU scheme, LCVs 
directly take the parcels from the carrier’s distribution center (DC) to the final receivers that are located in the considered service area. 
In the two-echelon scheme, the parcels are firstly taken from the carrier’s DC to some micro-hubs using heavy-duty vehicles (HDVs), 
being then transshipped from the HDVs to the ADRs at the micro-hubs. Secondly, ADRs deliver the parcels from the micro-hubs to the 
final customers. A detailed description of these delivery strategies can be found in the next chapter. 

In this context, one of our main objectives in this study is to explore the improvements in the operational efficiency generated by the 
implementation of a two-echelon delivery pattern (Soysal et al., 2015). The question is whether these improvements will result in 

Business-as-usual Two-echelon
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Fig. 2. Modelling framework based on LCA for assessing the environmental impacts of parcel delivery systems.  
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lower energy consumption during the usage stage, and eventually decrease the environmental impact of last-mile delivery operations. 
To address this question, fleet replacements will be also considered. In the BAU scheme, a number of LCVs are first produced and then 
replaced every rLCV

1 deliveries (see Fig. 1a). In the two-echelon delivery scheme, two fleets have to be considered. On the one hand, 
HDVs are first produced and replaced every rHDV

2 deliveries. On the other hand, a number of ADRs are also produced and replaced every 
rADR
2 deliveries (see Fig. 1b). In Fig. 1, the slope of each segment actually corresponds to the environmental impact associated with the 

energy consumption per parcel delivery in both the BAU and two-echelon use stages, while the discontinuities represent the expected 
environmental impact of fleet replacements. 

As illustrated in Fig. 1c, the primary aim is to compare the accumulated environmental impacts from BAU and two-echelon schemes 
over the lifetime. While it might be expected that the total vehicle production impact is higher in the two-echelon scheme, since many 
ADRs would be needed to make all the deliveries (i.e. they operate at a lower speed than LCVs and have a lower volume capacity), in 
the end, the energy savings during the usage stage might lead to a more environmentally sustainable two-echelon model (see Fig. 1c). 
This tradeoff between production and usage stage has been addressed in the LCA literature (Hauschild et al., 2018), in the context of 
integrated life cycle engineering (IC-LCE) framework (Cerdas et al., 2022) and already studied for other vehicles (e.g. for the case of 
electric vehicles, see Marmiroli et al., 2020, and for electric aircrafts, see Melo et al., 2022). However, an analysis of this potential 
tradeoff for the case of ADRs operating in two-echelon delivery schemes is still missing. Motivated to address this research gap, we aim 
at extending these findings to the field of last-mile logistics. 

2. Methodology 

This chapter describes the LCA-based framework and modelling approach developed in this study to address the aforementioned 
research question. Each section of the framework is addressed, particularly the LCA methodological aspects for modelling the envi-
ronmental impacts. This is followed by a detailed description of the system modelling; distinguishing between BAU and two-echelon 
schemes, considering the production and usage of the vehicles operated in each of the investigated delivery schemes. In the end, the 
uncertainty present in the modelling stage is addressed. 

2.1. Framework 

Fig. 2 presents the developed LCA-based modelling framework. The focus of investigation lies on the modelling and comparison 
between the BAU (i.e. using ICE- or BEV-LCVs) and two-echelon delivery schemes (i.e. using ADRs and BEV-HDVs) in terms of energy 
consumption and environmental impacts, assuming the vehicles being operated in a particular city. For this purpose, the framework 
highlights the foreground system of both delivery schemes, considering their vehicle and powertrain architectures and the systems in 
the background relevant for vehicle’s operation. Setting the context of the LCA, the methodological phases such as defining the goal 
and scope, the inventory analysis, impact assessment and interpretation are addressed. 

LCA is a methodology for systematically analyzing and evaluating the environmental impacts of a product system over its entire life 
cycle (i.e from raw material extraction, manufacturing, usage to final disposal or recycling), following the ISO 14040/14044 standards 
(Hauschild et al., 2018). LCA studies can be used to identify problem shifting, such as the shifting of the environmental burdens 
between impact categories or life cycle stages when comparing alternatives, enabling an understanding of the real implications 
associated with a product system throughout its life cycle. 

As illustrated in Fig. 2, a distinction is typically made in terms of foreground system (the system being directly engineered, e.g. the 
vehicle, the robot) and the background system (the systems that we need to operate our vehicle, e.g. the energy system, the material 
supply chain). While performing an LCA, data on all input flows (e.g. materials, resources and energy) and output flows (e.g. waste, 
emissions and products) related to the product system under analysis are collected and compiled in a so-called life cycle inventory 
(LCI). The inventory flows can then be characterized into corresponding environmental impacts based on an impact assessment 
method (as shown in Fig. 2). For the production of the ADRs, the impact assessment is based on the fourteen impact categories listed in 

Table 1 
ReCiPe impact categories investigated in this study.  

Abbreviation Impact Category Unit 

GWP100 Global Warming Potential kg CO2-eq. 
ODPinf Ozone Depletion Potential kg CFC-11-eq. 
FEP Freshwater Eutrophication Potential kg P-eq. 
MEP Marine Eutrophication Potential kg N-eq. 
IRP_HE Ionizing Radiation kg U235-eq. 
FETPinf Freshwater Toxicity Potential kg 1.4-DCB-eq. 
PMFP Particulate Matter Formation kg PM10-eq. 
POFP Photochemical Oxidant Formation kg NMVOC 
METPinf Marine Toxicity Potential kg 1.4-DCB-eq. 
TETPinf Terrestrial ecotoxicity kg 1.4 DCB-eq. 
HTPinf Human Toxicity Potential kg 1.4-DCB-eq. 
TAP100 Terrestrial Acidification kg SO2-eq. 
MDP Metal Depletion kg Fe-eq. 
FDP Fossil Depletion kg oil-eq.  
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Table 1 according to the ReCiPe method, commonly used for environmental assessment (Goedkoop et al., 2013). While the selected 
impact categories allow a broader analysis of the emissions, the focus in this paper will mainly lie on the global warming potential 
(GWP), since it is commonly investigated in the field of LCA for last-mile logistics (Li et al., 2021; Kemp et al., 2020; Stolaroff et al., 
2018). The impact assessment is then followed by the interpretation of results, analyzing the environmental impacts resulting from the 
LCI. To provide the needed background information on materials and energy carriers, the Ecoinvent 3.6 database is used. For all LCA 
calculations, Brightway2 framework is used, applying python programming language in jupyter notebooks. 

As addressed in the Introduction, this paper’s main goal is to quantify the environmental impact of the BAU and two-echelon 
delivery schemes (to be defined in the following subsection 2.1.1) and compare them. A comparative analysis is needed to under-
stand to what extent the efficiency improvements with the use of ADRs will contribute to reduce the environmental impact of last-mile 
delivery operations. The supply chain under study is mainly the e-commerce delivery market in which the demand is more fragmented. 
Due to the lack of data, the end-of-life (EoL) modelling is beyond the scope of investigation. It is taken into account the extraction of 
raw materials, manufacturing up to the usage stage of vehicles operating in both delivery schemes. The functional unit (FU) is the 
delivery of 1 parcel to 1 receiver, assuming that 1 customer receives one parcel. Temperature-controlled parcels are not considered. 
Two particular case studies will be analyzed: Hamburg (HH) and Barcelona (BCN) urban cores (Dijkstra et al., 2019). However, the 
operation models (to be introduced the next in Section 2.2) developed for these studies can be applied to any other given city or service 
region. 

2.2. System modelling 

The BAU and two-echelon are the delivery schemes considered for investigation. To ensure a fair comparison, the same FU, i.e. the 
delivery of one parcel to one final recipient, and constraints (time window, service region, demand density, etc.) will be considered. 

2.2.1. Business-as-usual delivery scheme 
In this delivery scheme, LCVs (see Fig. 3) directly take the parcels from the carrier’s distribution center (DC) to the final receivers 

that are located in the considered service area. The objective of the carrier is to minimize the distance travelled by its fleet in the given 
time window H considering that the volume capacity of the LCVs is limited. This is a particular instance of the capacitated vehicle 
routing problem with time window (CVRPTW, see Baldacci et al., 2012). 

Either diesel ICE or battery-electric LCVs (BEV-LCVs) will be considered. In the case of BEV-LCVs, we assume that they are 
recharged at the DC (they cannot be recharged along their delivery route). The distance from DC to the center of the service region is 
given by ρDC. 

(a) Environmental impact from the production of LCVs. 
Data from Ellingsen et al. (2016), originated from the inventories developed by Hawkins et al. (2012), has been used to calculate 

the GWP from the production of the LCVs. In the case of BEV-LCVs, the vehicle without batteries was considered, computing the 
battery production burdens separately. Data from the “BenchBatt” project (see Cerdas et al., 2018), was used considering a lithium iron 
phosphate (LFP) battery, which is the technology currently used in the ADR prototype. The GWP data and the battery specifications are 
summarized in Melo et al. (2020). 

(b) Environmental impact from the use of LCVs. 
Concerning the LCV use stage, the estimation of the GWPu of a vehicle veh, travelling on a road s, for a distance dveh

s is given in 
Equation (1). 

GWPu
(
veh, s, dveh

r

)
= gwpfuelzveh

s dveh
s (1) 

Where gwpfuel [kg CO2-eq/kWh] is the well-to-wheel GWP of 1 kWh of energy carrier (either diesel or electricity), and zveh
s [kWh/ 

km] the expected unit distance energy consumption of vehicle veh on road s. 
The estimation of gwpfuel is described in Chapter 3. The unit distance expected energy consumption zveh

s is computed using the 
technical characteristics of the vehicle and considering several driving cycles (see Supplementary Information, section 2). 

Finally, the distances travelled by the vehicle fleets in the considered use cases are estimated using the continuous approximation 
methodology (Daganzo, 2012). The modelling is detailed in the following section. 

(c) Modelling the operation of LCVs. 
In this scenario, the LCVs directly go from the DC to the final receivers’ locations (as illustrated in Fig. 3). The first step of the 

modelling process is to estimate the expected distance between two consecutive receivers lLCV
1 [km] (Daganzo, 1984). 

Fig. 3. BAU delivery scheme with LCVs (Renault, 2021).  
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lLCV
1 =

kLCV
̅̅̅
δ

√ (2) 

Where the LCV expected routing factor kLCV is a coefficient that depends on the service region road grid and δ [receivers/km2/day] 
the total demand density per logistics operator. 

Then the LCV expected delivery time tLCV
1 [h], including access and stop times, is estimated in Equation (3). 

tLCV
1 =

lLCV
1

vLCV
L

+ τLCV
d (3) 

Where vLCV
L [km/h] is the LCV expected commercial speed in the local urban grid (calculation can be found in the Supplementary 

Information, section 2), and τLCV
d [h] the LCV expected stop time per delivery. 

To estimate the energy consumption in this BAU Scenario 1, it is necessary to have an estimation of the number of routes needed to 
visit all the receivers, given the constraints of the problem. 

The first step is to estimate the expected number of receivers visited along one LCV route ΨLCV
1 . The value of ΨLCV

1 is constrained by 
three main restrictions: the LCV limited volume capacity, the operation time horizon H allowed and the LCV limited battery capacity. 
ΨLCV

1 is also equal to the number of parcels loaded in the LCV at the beginning of its route, assuming that one receiver gets one parcel. 
In Equation (4), Ψv

1 represents the maximum number of receivers that could be visited per LCV route if only the LCV volume ca-
pacity constraint were considered. 

Ψv
1 =

CLCV

E(u)
(4) 

Where CLCV [m3] is the LCV volume capacity and E(u) [m3] the parcel expected volume. 
If only the time horizon constraint were considered, Ψt

1 receivers could be visited along each individual LCV route. 

Ψt
1 =

H −
2ρDC
vLCV

LH

tLCV
1

(5) 

Where vLCV
LH [km/h] is the LCV expected commercial speed on metropolitan highways (calculation can be found in the Supple-

mentary Information, section 2), and ρDC the expected distance between the DC and the service region (see Fig. 3). 
Finally, if only the LCV limited battery capacity restriction were considered, Ψb

1 receivers could be visited along each LCV route. Ψb
1 

is the solution of Equation (6). 

Ψb
1lLCV

1 zLCV
L

(
Ψb

1

)
+ 2ρDCzLCV

LH

(
Ψb

1

)
= BCLCV (6) 

Where zLCV
L [kWh/km] is the LCV expected unit distance energy consumption in the local urban grid, zLCV

LH [kWh/km] the LCV 
expected unit distance energy consumption on metropolitan highways and BCLCV[kWh] the LCV battery effective energy capacity 
(assuming a rate of discharge of 80%). Please refer to the Supplementary Information (section 2) for the calculation of zLCV

L and zLCV
LH . 

In the case of diesel ICE LCVs, we do not consider this constraint of limited battery capacity. 
Finally, ΨLCV

1 is equal to the minimum value between Ψv
1, Ψt

1 and Ψb
1, ensuring that the three restrictions are enforced. 

ΨLCV
1 = min

{
Ψv

1;Ψ
t
1;Ψ

b
1

}
(7) 

In the case of diesel ICE LCVs, ΨLCV
1 is equal to the minimum value between Ψv

1 and Ψt
1 only. 

The total distance travelled by the LCV fleet on metropolitan highways DLH
1 [veh-km] is computed in Equation (8). 

DLH
1 = 2ρDC

[
δA

ΨLCV
1

]+

(8) 

Where [x]+ represents the upper integer of x. 
DL

1[veh-km/day] is the total distance travelled by the LCV fleet in the local urban grid. 

DL
1 = kLCV A

̅̅̅
δ

√
(9) 

T1[veh-h/day] is the total time worked by the LCV fleet. 

T1 =
DLH

1

vLCV
LH

+
DL

1

vLCV
L

+ δAτLCV
d (10) 

ELCV
1 [kWh/day] is the LCV fleet total energy consumption in this BAU Scenario. 

ELCV
1 = DLH

1 zLCV
LH

(
ΨLCV

1

)
+DL

1zLCV
L

(
ΨLCV

1

)
(11) 

The expected LCV fleet size in BAU Scenario 1 NLCV
1 is estimated in Equation (12) (calculation can be found in the Supplementary 

Information, section 3, result 1). 
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

If
ELCV

1

BCLCV ≥
T1

H
;NLCV

1 =

⎡

⎢
⎢
⎢
⎣

T1 +
ELCV

1
PLCV

c

H + BCLCV

PLCV
c

⎤

⎥
⎥
⎥
⎦

+

If
ELCV

1

BCLCV ≤
T1

H
;NLCV

1 =

[
T1

H

]+

(12) 

Where PLCV
c [kW] is the LCV battery charging power. 

In the case of diesel ICE LCVs, the expected fleet size is equal to the ratio [T1/H]
+ because there is no constraint concerning the 

vehicle’s limited battery capacity. 
The expected number of parcels delivered between two LCV fleet replacements rLCV

1 (see Fig. 1) is given in Equation (13) (see the 
Supplementary Information, section 3, result 2). 

rLCV
1 = δA • min

{
CLLCV BCLCV NLCV

1

ELCV
1

;
LLCV NLCV

1

DLH
1 + DL

1

}

(13) 

Where CLLCV [number of cycles] is the LCV battery expected cycle life, and LLCV [km] the LCV maximum lifespan. 
We assume that an LCV has to be substituted by a new one if its battery reaches its maximum number of cycles or the vehicle 

(especially the mechanical parts) reaches its maximum lifespan. 

In the case of diesel ICE LCVs, rLCV
1 is equal to δA LLCVNLCV

1
DLH

1 +DL
1
. 

2.2.2. Two-echelon delivery scheme 
In this alternative scenario, the considered service region is divided into Nh delivery zones (DZs) of expected area a (see Fig. 4). 

Within each DZ, a logistics facility (micro-hub) is created. 
In the first echelon of the distribution process, the parcels are taken from the carrier’s DC to the micro-hubs using heavy-duty 

vehicles (HDVs) to take advantage from their bigger volume capacity and increase the economies of scale (see Fig. 4a). The parcels 
are then transshipped from the HDVs to ADRs at the micro-hubs. Once all the parcels corresponding to a given delivery zone have been 
unloaded, the HDV goes to the next micro-hub. This process is repeated until all the micro-hubs are visited by the HDV fleet. 

In the second echelon, ADRs deliver the parcels from the micro-hubs to the final customers (see Fig. 4b). The operations of ADRs are 
characterized by a higher number of routes from the micro-hub to the receivers (because they have a smaller volume capacity), 
travelled at a lower speed. This optimization problem is a particular instance of the two-echelon capacitated vehicle routing problem 
with a time window constraint (Soysal et al., 2015). 

It is assumed that both HDVs and ADRs are BEVs that can be recharged at the carrier’s DC (for the HDVs) and at the micro-hubs (for 
the ADRs). The objective of implementing urban logistics micro-hubs directly within the service region is to minimize the distance 

Fig. 4. Two-echelon delivery operations with HDVs (StreetScooter, 2021) and ADRs.  
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travelled by the ADRs to access the final receivers, because these vehicles have a lower battery capacity, i.e. a lower range than HDVs. 
Designing representative energy consumption models and efficient energy management systems, especially under different payload 
scenarios, is a crucial challenge to ensure an optimal deployment of battery-electric micro-vehicles, such as ground ADRs or air de-
livery drones (Alyassi et al., 2022; Bruni et al., 2023; Liu, 2023; Torabbeigi et al., 2020). 

a) Environmental impact from the production of HDVs and ADRs. 

2.2.3. HDV production 
Similar to the case of LCVs, data from Ellingsen et al. (2016), originated from the inventories developed€ by Hawkins et al. (2012), 

has been used to calculate the GWP from the production of the HDVs. The battery production burdens have also been computed 
separately, using data from the “BenchBatt” project, see Cerdas et al. (2018), summarized in Melo et al. (2020). A lithium iron 
phosphate (LFP) battery is considered in the case of electric HDVs. 

2.2.4. ADR production modelling 
The production of the ADR is modeled using primary data from the ADR’s prototype manufacturer, being divided into twelve main 

sub-components, i.e. chassis, external shell, brakes, steering axis, batteries, motors, wheels and tires, internal delivery system, electronics, 
sensors, processing units and communication interfaces and display equipment. Table 2 shows the material decomposition of the ADR 
prototype, whereas Table S1 in the Supplementary Information shows the developed LCI of each component, which was determined 
from the designed prototype. The data from the background system on raw materials and energy is modeled via the Ecoinvent 3.6 
database. The LCI also computes the transportation of raw materials, and components, from raw material extraction up to production. 
The transport distances between the locations are covered by trucks, container ships, or trains. It is assumed that the production of the 
sub-components takes place in China, being transported to Portugal, where the ADR is assembled. 

The fabrication processes of the sub-components made of steel and aluminum are modeled using Ecoinvent 3.6 datasets (see 
Table S1 in the Supplementary Information). Plastics present in the prototype include POM, PET, PP, PVC, epoxy resin, flexible foam, 
polycarbonate, synthetic rubber, glass fiber reinforced plastics (CFRP) and 3D-printed elements (PLA). For 3D-printed elements, data 
from Cerdas et al. (2017) is considered. For CFRP, the hand lay-up technique is assumed given its reduced cost (Cucinotta et al., 2017). 

The electric motors present in the ADR are modeled using the Ecoinvent 3.6 dataset for electric scooter (Hollingsworth et al., 2019). 
The life-cycle inventory of the sensors present in the robot, i.e. LiDARs, sonars and cameras, follows the methodology proposed by 
Gawron et al. (2018). Concerning the brake system, due to lack of data, it was assumed to be composed of 90% of aluminum and 10% of 
synthetic rubber. Brakes represent approximately 1% of the total mass of the ADR, making this assumption acceptable. To model the 
wheels and tires, data from Hawkins et al. (2013) is used considering an energy consumption of 0.11 kWh per kg of synthetic rubber for 
the vulcanization process (Cobert, 2009). Finally, steppers, potentiometers, li-ion batteries, and liquid crystal display are modeled 
using Ecoinvent 3.6 datasets. Further details can be found in the Supplementary Information (see Table S1). 

(b) Environmental impact from the use of HDVs and ADRs. 
Concerning the HDVs and ADRs usage stage, the estimation of the GWPu of a vehicle veh, travelling on a road s, for a distance dveh

s is 
also given the Equation (1), see Section 2.2.1(b). The well-to-wheel GWP of electricity [kg CO2-eq/kWh] is described in Chapter 3, and 
the expected unit distance energy consumption is computed using the technical characteristics of the vehicles and considering several 
driving cycles (please refer to the section 2 in the Supplementary Information). Regarding the estimation of distances travelled by the 
vehicle fleets in the considered use cases, the continuous approximation methodology is used (Daganzo, 2012). The modelling is 
detailed in the next section. 

c) Modelling the operation of HDVs and ADRs. 
In this subsection, we model the operations of both the HDV and ADR fleets. The considered service region is divided into Nh 

delivery zones (DZs) of expected area a (see Fig. 4). Within each DZ, a logistics facility (micro-hub) is created. 

Nh =
A
a

(14)  

Table 2 
ADR prototype material decomposition.   

Low-alloyed steel (kg) Aluminum (kg) Plastics (kg) Other (kg) Total (kg) 

Internal delivery system 12 0.35 4.8 1.4 18.5 
Chassis 9.7 71 – – 81 
External shell – 5.4 40 – 45 
Brakes – 2.9 – 0.32 3.2 
Steering 0.85 – 0.26 – 1.1 
Wheels and tires 19 – 7.2 5.3 31 
Electronics, sensors, processing units – – – 10 10 
Display equipment – – – 8.9 8.9 
Batteries – – – 27.5 27.5 
Electric motors – – – 32.4 32.4 
Total     259  
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2.2.5. HDV operation modelling 
To determine the total number of HDV routes needed to serve all the logistics micro-hubs within the time window H, we first need 

to estimate the total number of parcels loaded in one HDV at the beginning of its route ΨHDV
2 (see the Supplementary Information, 

section 3, result 3). 

ΨHDV
v =

CHDV

E(u)
(15a)  

ΨHDV
t =

H −
2ρDC
vHDV

LH

1
δa

(
1

vHDV
L

kHDV ̅̅̅
a

√
+ τHDV

LU δa
) (15b)  

2ρDCzHDV
LH

(
ΨHDV

b

)
+ΨHDV

b
kHDV

δ
̅̅̅
a

√ zHDV
L

(
ΨHDV

b

)
= BCHDV (15c)  

ΨHDV
2 = min

{
ΨHDV

v ;ΨHDV
t ;ΨHDV

b

}
(15d) 

Where CHDV [m3] is the HDV volume capacity, τHDV
LU [h] the expected time needed to unload one parcel from the HDV at the micro- 

hub, vHDV
LH [km/h] the HDV expected commercial speed on line-haul metropolitan highways, kHDV the HDV expected routing factor in 

the local urban grid, vHDV
L [km/h] the HDV expected commercial speed in the local urban grid and BCHDV [kWh] is the HDV effective 

battery capacity. Please refer to the Supplementary Information (section 2) for the calculation of vHDV
LH , vHDV

L , as well as zHDV
LH and zHDV

L . 
The distance travelled on line-haul metropolitan highways by the HDV fleet DLH

2 [veh-km] is thus given by 

DLH
2 = 2ρDC

[
δA

ΨHDV
2

]+

(16) 

The distance DL
2 [veh-km] travelled by the HDV fleet in the local urban grid is given by Equation (17). 

DL
2 = kHDV

̅̅̅̅̅̅̅̅̅
ANh

√
= kHDV A

̅̅̅
a

√ (17) 

The HDV expected total energy consumption EHDV
2 [kWh] can then be computed. 

EHDV
2 = DLH

2 zHDV
LH +DL

2zHDV
L (18) 

THDV
2 [veh-h] is the total time worked by the HDV fleet in this two-echelon delivery scenario. 

THDV
2 =

DLH
2

vHDV
LH

+
DL

2

vHDV
L

+ δAτHDV
LU (19) 

Finally, the expected HDV fleet size NHDV
2 is equal to 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

If
EHDV

2

BCHDV ≥
THDV

2

H
;NHDV

2 =

⎡

⎢
⎢
⎢
⎣

THDV
2 +

EHDV
2

PHDV
c

H + BCHDV

PHDV
c

⎤

⎥
⎥
⎥
⎦

+

If
EHDV

2

BCHDV ≤
THDV

2

H
;NHDV

2 =

[
THDV

2

H

]+

(20) 

Where PHDV
c [kW] is the HDV battery charging power. 

The expected number of parcels delivered between two HDV fleet replacements rHDV
2 (see Fig. 1) is given in Equation (21) (see the 

Supplementary Information, section 3, Result 2). 

rHDV
2 = δA • min

{
CLHDV BCHDV NHDV

2

EHDV
2

;
LHDV NHDV

2

DLH
2 + DL

2

}

(21)  

2.2.6. ADR operation modelling 
We start by computing the expected distance ρh [km] between a micro-hub and the location of the first receiver along an ADR route 

(see the Supplementary Information, section 3, result 4). We assume that the total demand density δ [receivers/km2/day] is uniformly 
distributed all over the service region. 

ρh =

̅̅̅
a

√

2
(22) 

lADR
2 [km] is the expected distance between two consecutive delivery points (Daganzo, 1984). 
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lADR
2 =

kADR
̅̅̅
δ

√ (23) 

Where kADR is the expected routing factor of an ADR. 
We estimate the expected time needed per parcel delivery tADR

2 as 

tADR
2 =

lADR
2

vADR
L

+ τADR
d (24) 

Where vADR
L [km/h] is the ADR commercial speed (calculation can be found in the Supplementary Information, section 2) and τADR

d 
[h] the expected time needed to deliver a parcel to a final customer during the hand-over process. 

The next step is to evaluate the expected number of visited receivers per ADR route ΨADR
2 [receivers], which is mainly restricted by 

the limited volume capacity of an ADR CADR [m3], the operation time window H [h] and the ADR limited battery capacity BCADR 

[kWh]. 
In Equation (25), ΨADR

v [receivers] represents the maximum number of receivers that could be visited per ADR route if only the ADR 
volume capacity restriction were considered. 

ΨADR
v =

CADR

E(u)
(25) 

If only the time horizon restriction were considered, ΨADR
t receivers could be visited along each individual robot route (see the 

Supplementary Information, section 3, result 5). 

ΨADR
t =

H − 1
2

THDV
2

NHDV
2

−
2ρh

vADR
L

tADR
2

(26) 

Finally, if only the ADR limited battery capacity restriction were considered, ΨADR
b receivers could be visited along each ADR route. 

ΨADR
b is the solution of Equation (27). 

ΨADR
b

[
lADR
2 zADR

L

(
ΨADR

b

)
+PADR

e tADR
2 + zADR

d

]
+ 2ρh

(

zADR
L

(
ΨADR

b

)
+

PADR
e

vADR
L

)

= BCADR (27) 

Where PADR
e [kW] is the ADR electronics power (mostly sensors and processing units), zADR

d [kWh/delivery] the expected energy 
required to hand over the parcel to the receiver (some systems using robotic arms are implemented in some robots) and BCADR the ADR 
effective battery capacity (still assuming a 80% rate of discharge). Please refer to the Supplementary Information (section 2) for the 
calculation of zADR

L . 
Here only considering the ADR’s “mechanical” energy consumption (see the Supplementary Information, section 2) is not enough. 

ADRs are autonomous vehicles that need sensors and processing units to work correctly. This electronics equipment requires energy 
that is taken from the ADR battery, limiting the robot autonomy. 

As a consequence, ΨADR
2 is equal to 

ΨADR
2 = min

{
ΨADR

v ;ΨADR
t ;ΨADR

b

}
(28) 

The ADR’s fleet expected travelled distance per DZ DADR
2 [veh-km] can be computed as 

DADR
2 =

δa
ΨADR

2

̅̅̅
a

√
+ kADRa

̅̅̅
δ

√
(29) 

The ADR’s fleet expected working time per DZ TADR
2 is estimated as 

TADR
2 =

DADR
2

vADR
L

+ δaτADR
d (30) 

The ADR’s fleet total energy consumption per DZ EADR
2 [kWh] is computed. 

EADR
2 = DADR

2 zADR
L +TADR

2 PADR
e + zADR

d δa (31) 

We define nADR
2 as the number of ADRs per DZ. 
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

If
EADR

2

BCADR ≥
TADR

2

H −
1
2

THDV
2

NHDV
2

; nADR
2 =

⎡

⎢
⎢
⎢
⎣

TADR
2 +

EADR
2

PADR
c

H − 1
2

THDV
2

NHDV
2

+ BCADR

PADR
c

⎤

⎥
⎥
⎥
⎦

+

If
EADR

2

BCADR ≤
TADR

2

H −
1
2

THDV
2

NHDV
2

; nADR
2 =

⎡

⎢
⎢
⎢
⎣

TADR
2

H − 1
2

THDV
2

NHDV
2

⎤

⎥
⎥
⎥
⎦

+
(32) 

Where PADR
c [kW] is the ADR’s battery charging power. 

Consequently, the total size of the ADR’s fleet in the whole service region NADR
2 is equal to 

NADR
2 = NhnADR

2 (33) 

The expected number of parcels delivered between two ADR’s fleet replacements rADR
2 (see Fig. 1) is given in Equation (34) (see 

Supplementary Information, section 3, result 2). 

rADR
2 = δA • min

{
CLADRBCADRnADR

2

EADR
2

;
LADRnADR

2

DADR
2

}

(34) 

Where CLADR [cycles] is the ADR’s battery cycle life, and LADR [km] the ADR’s expected lifespan. 
Finally, the optimal value a* of the DZ area a that minimizes the two-echelon GWP is given in Equation (35) (see the Supplementary 

Information, section 3, result 6; Robusté et al., 1990). 

a* =
1

1.5
1
δ

(
CADR

E(u)

)2

(35) 

This optimized value of the DZ area a* will be used in the rest of the paper. 

2.3. Modelling uncertainty 

To deal with the uncertainty present in the modelling stage, a Monte Carlo analysis will be done (Perboli et al., 2018). The first stage 
of the Monte Carlo approach is to assume some given probability distribution functions (PDFs) for the model input parameters. In our 
case, the input parameters that present more uncertainty and need to be considered in the Monte Carlo approach are:  

• The diesel well-to-wheel GWP (Ecoinvent 3.6 database; Ntziachristos & Samaras, 2019).  
• The 2020 electricity production mix (Ecoinvent 3.6 database; electricityMap, 2022a, 2022b)  
• The line-haul distance between the carrier’s DC and the service region (authors’ own data; Bunderverband Paket & Express 

Logistik, 2017)  
• The carrier’s demand density (Comisión Nacional de los Mercados y la Competencia, 2020; Bunderverband Paket & Express 

Logistik, 2017)  
• The line-haul and local driving cycles (DieselNet, 2022; NREL, 2022).  
• The ADR’s production GWP (authors’ own data; Ecoinvent 3.6 database)  
• The ADR’s driving cycle smoothing factor (see Supplementary Information, Section 2; Cox et al., 2018) 

Then the last-mile operation key performance indicator (KPI) PDFs are obtained by computing the outputs of the analytical model 
for a very large number of input parameter random samplings. During a Monte Carlo iteration, a value of each input parameter is 
obtained, based on its own PDF, previously defined. Considering these input values, the different delivery KPI values, including 
production and use stage GWP, are obtained using the mathematical formulation presented in the previous subsections, and stored for 
analysis in the simulation post-processing. Considering a statistically representative number of Monte Carlo iterations, the delivery KPI 
PDFs can be obtained. A more-in depth analysis can be performed with this methodology because the model output is described with a 
mean value and a standard deviation, corresponding to the model sensitivity analysis. 

The Monte Carlo methodology is highly flexible and enables the modelling of non-linear effects. In addition, it is complementary 
with the continuous approximation approach. Indeed, given a set of input parameters, the computation of the different delivery KPIs 
does not require the usage of complex and time-consuming numerical optimization techniques, increasing the number of Monte Carlo 
iterations, which can be performed within a reasonable time. The combination of the Monte Carlo and continuous approximation 
techniques is thus highly scalable. 

3. Case study 

After the modelling process of the production and usage stages of the different vehicles, we propose to study two different use cases: 
the urban cores of Hamburg (HH) and Barcelona (BCN) metropolitan areas. The urban core is understood as a “densely inhabited city” 
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within a functional urban area (Dijkstra et al., 2019). We believe that comparing these two service regions with distinct characteristics 
and located in two different European countries will provide insightful results. In this section, detailed information about the parcel 
and operation input parameters are described. 

3.1. Service region and demand characteristics 

We only consider parcels whose mass is less than 2 kg and volume inferior to 0.04 m3 (40 cm × 30 cm × 30 cm box; Swiss Post, 
2022). We assume that these type of parcels represent around 50% of the total number of deliveries in the CEP market (Comisión 
Nacional de los Mercados y la Competencia, 2020) and that the average volume of these parcels is 0.02 m3 and expected mass 1 kg. 

The operation time window H is assumed to be 8 h, which corresponds to a standard shift in the transport industry (Perboli et al., 
2018). For fair comparison, the operation time window H is the same in the BAU and two-echelon delivery schemes. 

Fig. 5 presents the main characteristics of the two considered service regions. The locations of the different carriers’ DCs are also 
indicated (authors’ own data; Bunderverband Paket & Express Logistik, 2017). 

The urban core areas of HH and BCN are respectively 739 and 539 km2. In Fig. 6, the expected line-haul distance ρDC is displayed for 
the two service region use cases. It can be seen that the logistics sprawl in BCN is more relevant since the expected line-haul distance 
between the carriers’ DC and the urban cores is higher and the standard deviation is also higher. The distances between all carriers’ 
DCs and urban cores were computed using QGIS 3.22.4 (QGIS Development Team, 2022). The computation of this line-haul distance 
does not consider the actual road grid of the service region but follows a L2 metrics. In addition, we consider in this case study that all 
road gradients are null, including line-haul highways and the local grid. As a first approach, this assumption seems to make sense. 
Nevertheless, to have finer results in the future, road gradient is an important aspect that should be considered, since vehicles trav-
elling on roads with an important gradient will suffer from an increased energy consumption rate per kilometer, hindering their range, 
especially for BEVs. 

Fig. 6 also presents the expected demand density in the HH and BCN urban cores. We assume that this expected demand density 
follows a triangular PDF, whose minimum, mode and maximum values depend on the service region (Bunderverband Paket & Express 
Logistik, 2017; Comisión Nacional de los Mercados y la Competencia, 2020). 

Finally, Fig. 7 depicts the 2020 electricity mix in Germany and Spain, as well as the corresponding GWP per kWh of energy carrier 
(electricityMap, 2022a; electricityMap, 2022b; Ecoinvent 3.6 database). We also propose to study the Stated Policies Scenario (STEPS) 
and Sustainable Development Scenario (SDS) from the International Energy Agency (IEA, 2021) for the year 2050. The values of the 
GWP per kWh in the different electricity mix scenarios are compared with the well-to-wheel GWP of diesel production. Considering the 
data taken from the Ecoinvent 3.6 database (activity “diesel production, low-sulphur, petroleum refinery operation” in “Europe 
without Switzerland”), the expected well-to-tank GWP of 1 kg of diesel is equal to 0.59 kg CO2-eq. Assuming that 0.083 kg of diesel 
generates 1 kWh of energy (diesel density of 0.83 kg/L and net heating value of 10 kWh/L), the well-to-tank GWP of diesel production 
is equal to 0.049 kg CO2-eq per kWh. In addition, we estimate that the tank-to-wheel GWP of diesel is 3.169 kg CO2-eq per kg 
(Ntziachristos & Samaras, 2019), i.e. the tank-to-wheel GWP of diesel is 0.264 kg CO2-eq per kWh. 

3.2. Vehicle characteristics 

Table 3 presents the ICE LCV, e-LCV and e-HDV input parameters that were used in the numerical use cases. The volume capacity of 
both ICE and electric LCVs is assumed to be 3 m3 (Renault, 2021) whereas the HDV capacity is 20 m3 (StreetScooter, 2021). The 
expected stop time per delivery τLCV

d is 4 min (Allen et al., 2018; Perboli & Rosano, 2019). Considering the lack of data, we considered 
that the expected unloading time of a parcel at the micro-hub (in the case of the two-echelon distribution) is 30 s. The powertrain 
efficiency of the electric LCVs and HDVs is 0.81 (Kirschstein, 2020). The ICE LCV idle and fuel consumption was estimated using data 
from Kirschstein (2020). The routing factor of both LCVs and HDVs is assumed to be 0.7 (Daganzo, 2005). The wheel/road friction 

)a )b

Fig. 5. A. hh and b. bcn service regions.  
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coefficient cveh
roll and aerodynamic drag coefficient Cveh

x are taken from Kirschstein (2020). As described in Section 2.2.1 (a) and 2.2.2 (a), 
the GWP of the different vehicle production (without batteries, in the case of electric vehicles) was calculated using data from Ellingsen 
et al. (2016), originated from the inventories developed by Hawkins et al. (2012). As for the GWP of battery production, data from the 
project “BenchBatt”, summarized in Melo et al. (2020), was used, considering a LFP battery (the technology from the prototype). 
Finally, a lifespan of 180,000 km was assumed (Ellingsen et al., 2016). 

As for ADRs, we considered six different robots, being ADR 1 our reference for this study (see Table 4). In all defined scenarios, the 
ADR volume capacity is 0.4 m3 (authors’ own data based on the actual robot prototype). The main objective of studying several robot 
scenarios is to observe how operational conditions can affect the environmental impact of the two-echelon strategy using ADRs. We 
assumed that all ADRs have the same design but their operations are affected by internal factors (battery technology used to power the 
robot, sensor technology, or vehicle lifespan) and external ones (expected stop time per delivery or maximum allowed cruising speed). 
These latter parameters are not directly related to the robot design but they will affect the environmental impact of robot operations. 

As previously explained, ADR 1 is our baseline robot. For the remaining robots (ADR 2 to ADR 6), only one input parameter differs 

Fig. 6. Expected line-haul distance and demand density in the HH and BCN urban cores.  

Fig. 7. Well-to-wheel GWP of different electricity mix scenarios and diesel.  
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from ADR 1. This altered parameter is highlighted in Table 4 (see the squares). As a matter of illustration, ADR 2 has exactly the same 
input parameter as ADR 1 but we assumed that ADR 2 lifespan is twice lower. Our objective is to perform a sensitivity analysis of the 
models we previously defined. 

The ADR battery charging power was overestimated compared to the actual prototype system to simulate fast charging operations. 
The power needed to supply ADR electronics, used for autonomous navigation, is detailed in Table 5. The energy consumption of ADR 
“vehicle-to-X” (V2X) communication could also be included under the concept named “electronics power”, also integrating 5G 
technology and data storage in the cloud (Whitehead et al., 2015; Williams et al., 2022). Considering the huge certainty of the 
telecommunication systems’ environmental impact in future years (Williams et al., 2022), we decided to neglect these aspects in this 
paper. This hypothesis should be refined in future research. 

To generate the ADR driving cycle (see the Supplementary Information, section 2), we assume that the robot acceleration rate 
follows a triangular probability distribution function of minimum value 0.2 m/s2, mode 0.4 m/s2 and maximum value 0.7 m/s2 

(Rechkemmer et al, 2019). We assume that the ADR deceleration rate follows a triangular probability distribution function of mini-
mum value 0.3 m/s2, mode 0.4 m/s2 and maximum value 0.65 m/s2 (Rechkemmer et al, 2019). The cruising speed follows a uniform 

Table 3 
LCV and HDV operation input parameters.  

Input parameter ICE LCV e-LCV e-HDV 

Volume capacity (m3) 3 3 20 
Expected stop time per delivery (min) 4 4 – 
Parcel unloading time at micro-hub (min) – – 0.5 
Powertrain efficiency – 0.81 0.81 
Idle fuel consumption (L/h) 0.51 – – 
Full fuel consumption (L/h) 12.8 – – 
Motor power (kW) 76.8 – – 
Vehicle mass (without battery in case of BEV) (ton) 1.28 1.15 3.41 
Wheel/road friction coefficient 0.008 0.008 0.008 
Air drag coefficient 0.65 0.65 0.65 
Projected front surface (m2) 3.35 3.35 6 
Routing factor 0.7 0.7 0.7 
Vehicle lifespan (km) 180.000 180.000 180.000 
Battery capacity (kWh) – 33 76 
Battery cycle life (cycles) – 2.000 2.000 
Battery charging power (kW) – 11 11  

Table 4 
ADR operation input parameters.  

Input parameter ADR 1 ADR 2 ADR 3 ADR 4 ADR 5 ADR 6 

Volume capacity (m3) 0.4 0.4 0.4 0.4 0.4 0.4 
Expected stop time per delivery (min) 3 3 1.5 3 3 3 
Powertrain efficiency 0.81 0.81 0.81 0.81 0.81 0.81 
Vehicle mass (without battery) (ton) 0.23 0.23 0.23 0.23 0.23 0.23 
Wheel/road friction coefficient 0.008 0.008 0.008 0.008 0.008 0.008 
Air drag coefficient 0.65 0.65 0.65 0.65 0.65 0.65 
Projected front surface (m2) 1 1 1 1 1 1 
Routing factor 0.7 0.7 0.7 0.7 0.7 0.7 
Max. allowed speed (km/h) 25 25 25 10 25 25 
Vehicle lifespan (km) 40,000 20,000 40,000 40,000 40,000 40,000 
Battery mass (ton) 0.025 0.025 0.025 0.025 0.025 0.025 
Battery capacity (kWh) 3.0 3.0 3.0 3 3 7.3 
Battery cycle life (cycles) 2,000 2,000 2,000 2,000 2,000 714 
Battery charging power (kW) 11 11 11 11 11 11 
Electronics power (kW) 0.55 0.55 0.55 0.55 0.28 0.55  

Table 5 
ADR electronics power.  

Component Power Reference 

LiDARs 30 W Authors’ own data 
Global Navigation Satellite System (GNSS) 3 W Authors’ own data 
Cameras 10 W Authors’ own data 
Sonar Negligible Authors’ own data 
Processing units 400 W Authors’ own data; Gawron et al., 2018 
Display screens 100 W Authors’ own data 
Total ≈ 550 W   
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probability distribution function between 5 km/h and the ADR allowed maximum speed, which depends on the considered scenario 
(see Table 4). The ADR prototypes considered in this paper were designed for road, bicycle lane and pedestrian area autonomous 
navigation. This variety of operative domains is reflected in the ADR’s driving cycles (see Supplementary Information, Section 2), 
especially in the cruising speed of each individual stochastic micro-trip. We consider that the ADR’s maximum allowed speed is 25 km/ 
h, except for ADR 4, whose maximum allowed speed is 10 km/h. This maximum allowed speed is not necessarily reached by all in-
dividual micro-trips, which are built following a stochastic process. ADR 4 is representative of robot operations restricted to bike lanes 
and large sidewalks. For all ADR scenarios, the cruising time is assumed to represent 27.5% of the driving cycle total time 
(Rechkemmer et al, 2019). This rate falls to 12% when considering the idling time (Rechkemmer et al, 2019). The ADR’s driving cycle 
smoothing coefficient α (see Supplemental Information, Equation (1); Cox et al., 2018) is assumed to follow a uniform probability 
distribution function between 0 and 0.9 (Cox et al., 2018). 

Finally, the developed models in this study do not consider the influence of weather conditions on the use stage of the vehicles. As 
addressed in Egede (2018), the ambient temperature influences the energy consumption of the heating and cooling auxiliaries per 
kilometer driven, which is of particular relevance when comparing electric with conventional vehicles. In order to understand the 
impact of geographical and temporal differences on battery’s performance, and particularly on the environmental impact of vehicle’s 
operation in HH and BCN regions, the system modelling should couple spatial models with temperature profiles to the LCA foreground 
system models, following the methodology proposed by Cerdas (2022). Furthermore, snow, rain or fog can affect the behavior of 
sensors used for autonomous navigation (Zhang et al., 2021), which would hinder the operations of ADRs and prevent them from 
working correctly. These aspects should be refined in future research. 

4. Results 

4.1. Cradle-to-grave analysis 

Fig. 8 illustrates the contribution analysis of the cradle-to-gate environmental impacts of the production of one ADR. The chassis is 
the main contributor for GWP (45%), FDP (37%), PMFP (35%), POFP (36%) and TAP (34%). The primary aluminum production 
mainly drives these impacts, given its high share (88%) in the chassis. In the aluminum production process, electricity production from 
hard coal and heat generation are the main contributors, due to very energy-intensive stages. 

The display equipment also shows relevance across the impact categories, especially in MEP (67%) given by the treatment of 
wastewater from the liquid crystal display production. Motors and batteries present similar contributions across the impact categories. 
The highest burdens are present in toxicity-related categories FETP, METP, HTP. The impacts are mostly driven by copper production 
and the treatment of sulfidic tailings from copper mine operation, which is the mining waste after ore processing to remove the copper. 
In the case of batteries, their contribution to MDP reaches 23% particularly given the manganese concentrate production. 

Even though the other sub-components (e.g. internal delivery system, electronics, sensors, processing units, shell, brakes, steering, wheels 
and tires) show smaller contribution to the analyzed impact categories, their absolute numbers play a role in the total environmental 
impact of the ADR production. Despite its compacted size and reduced weight, some sub-components are specific to autonomous 
delivery robots (e.g. display, electronics, sensors, internal delivery system etc.), and their total burdens may lead to high impact in 
comparison with LCVs. Further results can be found in the Supplementary Information (see Table S2). 

Fig. 8. Environmental impacts’ contribution analysis for the production of one ADR. Impact categories are characterized as in the ReCiPe method 
(see Table 1). 
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Fig. 9 presents the GWP (in absolute value) of producing one electric HDV, one electric LCV, one ICE LCV or one ADR. The GWP per 
ton of vehicle is also showed. 

Even if the absolute ADR production GWP is twice lower than the e-LCV production GWP (4.5 ton CO2-eq per ADR against 10.4 ton 
CO2-eq per e-LCV), the GWP of producing one ton of ADR is 2.4 times higher than the GWP of producing one ton of e-LCV (17.5 ton 
CO2-eq per ton of ADR against 7.3 ton CO2-eq per ton of e-LCV). 

As previously mentioned, this is partly due to the components that are specific to the ADRs. The internal delivery system, elec-
tronics, sensors, processing units, communications and interfaces and display equipment represent more than 30% of the ADR pro-
duction total GWP (see Fig. 8). In addition, the data that was used to model the ADR production concerned a first robot prototype 
whose design was not necessarily optimized, explaining the higher GWP per ton of vehicle in the case of the ADR. 

4.2. Delivery operations key performance indicators 

After having derived some insight about the vehicle production, we can present the key performance indicators (KPIs) of the BAU 
and two-echelon delivery operations in the HH and BCN service regions during the usage stage of the vehicles. 

As previously mentioned, some input parameters are stochastic. To deal with this uncertainty, 1,500 simulations were run, 
following a Monte Carlo approach. As a consequence, we present the different operation KPIs as box plots. 

In the BAU delivery scheme, ICE vehicles consume in average 205 Wh of energy per parcel delivery in HH. This figure falls to 98 Wh 
in the case of e-LCVs, i.e. the energy efficiency of e-LCVs is approximately twice higher as ICE LCVs’. In the case of the BCN service 
region, ICE LCVs consume, on average, 290 Wh per delivery and e-LCVs 140 Wh per delivery, confirming that e-LCVs are more efficient 
in the usage stage than ICE LCVs. Delivery vehicles consume more energy per parcel delivery in BCN because the logistics sprawl is 
bigger and the demand density is lower (see Fig. 6); LCVs have to cover a larger distance to access the service area and also between 
each recipient. 

In the case of the two-echelon distribution scenario, the total energy consumption per parcel delivery is the sum of two terms. On 
the one hand, electric HDVs have to transport the parcels from the carriers’ DCs to the service region. The corresponding energy 
consumption is equal to, on average, 25 Wh per delivery in HH and 36 Wh per delivery in BCN (see the Supplementary Information, 
Section 4). On the other hand, we have to consider the energy consumed by the ADRs to take the parcels from the urban micro-hubs to 
the final receivers. The average ADR’s energy consumption ranges from 27 Wh per delivery to 72 Wh per delivery (depending on the 
ADR’s operational conditions) in HH and from 32 Wh per delivery to 91 Wh per delivery in BCN. The higher ADR’s energy con-
sumption per parcel delivery in BCN is also due to the lower demand density in this service region. 

To sum up, the average total energy consumption (including HDV and ADR) in the two-echelon delivery scheme ranges from 51 Wh 
per delivery to 97 Wh per delivery in HH and from 68 Wh per delivery to 127 Wh per delivery in BCN (see Fig. 10). Considering our 
reference ADR 1, the two-echelon delivery scheme is 24% more efficient than the e-LCV BAU scenario in HH in terms of energy 
consumption in the usage stage. This efficiency improvement reaches 34% in BCN. 

If we compare the different ADR’s operational conditions, it seems that decreasing the expected stop time per delivery τADR
d to 1.5 

min would generate a 19% (respectively 15%) decrease of the two-echelon total energy consumption in HH (in BCN, respectively). 
While idling and waiting for the final recipient, the ADR’s sensors consume energy, increasing the expected total energy consumption 
per parcel delivery. This is confirmed by the ADR 4 and ADR 5 operational scenarios (see the Supplementary Information, section 4). If 

Fig. 9. E-hdv, e-lcv, ice lcvs and adr vehicle production gwp.  
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the ADR’s maximum allowed speed is decreased to 10 km/h (ADR 4), the mechanical energy consumption is lower because the robot 
goes slower. However, the sensor energy consumption increases because sensors always need to be powered and the delivery time per 
parcel is increased (because the ADR goes slower). This seems to indicate that sensors represent a higher share of the ADR’s energy 
consumption. In the same line, if the robot sensor power is decreased to 280 W (ADR 5 operational scenario), the ADR’s energy 
consumption per parcel delivery decreases by 45% approximately (see Supplementary Information, Fig. 8), both in HH and in BCN, 
which confirms the previous statement. 

In terms of energy consumption, our results are consistent with Kirschstein (2020). Considering high traffic congestion, 150 
customers, a delivery zone radius of 2 km, i.e. a demand density of 12 receivers/km2, Kirschstein (2020) found that the energy 
consumption is approximately 300 Wh per delivery in the case of ICE LCVs and around 150 Wh per delivery in the case of e-LCVs, 
which is consistent with our results. The energy consumption per parcel delivery is lower in HH because of a higher demand density 
and a lower expected line-haul access distance on metropolitan highways. 

Another interesting KPI to be studied is the expected fleet size (see Fig. 11). In the BAU situation, around 240 LCVs are needed on 
average to serve all customers in HH and around 120 in BCN. The fleet size does not depend on the used powertrain technology, ICE or 

Fig. 10. Energy consumption per parcel delivery during the use stage in the HH and BCN service regions.  

Fig. 11. Expected fleet size in the HH and BCN service regions.  
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electric engine, because the time constraint is the main factor which defines the LCV fleet size in the BAU delivery scheme (see 
Equation (12). Battery electric LCVs do not need to be recharged during the day. The fleet size in Barcelona is lower because of the 
lower demand density to be served in this service region. 

In general, 1 LCV in the BAU situation is substituted by 0.1 HDV plus, between 1.5 and 3.3 ADRs, in the two-echelon configuration. 
In other words, a fleet of 10 LCVs in the BAU delivery scheme can be replaced by 1 HDV plus between 15 and 30 ADRs approximately, 
depending on the robot operational conditions. To reduce the ADR’s fleet size, the ADR stop time per delivery τADR

d should be reduced. 
This result was predictable. If the ADR’s maximum allowed speed is reduced to 10 km/h, the ADR’s fleet size must be increased in 50% 
in HH and 53% in BCN, considering that ADR 1 is the reference. The rest of operational parameters have little influence on the ADR’s 
fleet size. The variations that can be observed in Fig. 11 between ADR1, ADR 2, ADR 5 and ADR 6 are essentially due to the Monte Carlo 
process that generates slight differences in the numerical results. 

To understand why so many ADRs are needed to perform the deliveries, we have to consider Equation (32). The number of ADRs 
operating in a DZ is conditioned by the ADR’s operations time window. To be fair with the BAU delivery scheme, we considered that 
the two-echelon delivery operations had the same time window H. All the HDVs of the two-echelon strategy leave the carrier’s DC at 
time t = 0. At time t = H, all HDVs must have come back to the DC and all parcels must have been distributed. As a consequence, the 
HDV time window is H. Nevertheless, the ADR’s time window to deliver all parcels in a given DZ is lower than H because before 
arriving to a given DZ, the HDV has to visit and drop off many parcels in previous DZs. The total time window H has to be split between 
HDV and ADR operations. In order to decrease the fleet size, the ADR’s time window should be increased so that the robots have more 
time to deliver the parcels. This could be achieved through night deliveries, for instance, because the ADRs would not need any 
personnel to be operated. 

In terms of travelled vehicle-kilometer (see Fig. 12), 1 LCV-kilometer in the BAU delivery operations is substituted by 0.1 HDV-km 
and 0.7 ADR-km in the two-echelon strategy. In average, implementing logistics micro-hubs would reduce the total travelled distance 
by 20% approximately, including the distances travelled by both the HDV and ADR fleets in the two-echelon delivery scenario. The 
travelled distances per parcel delivery are lower in the case of HH because the demand density is higher in the HH service region and 
the carriers’ DCs are located closer to the urban core. 

In general, between 100 and 110 receivers are visited by 1 LCV in the BAU delivery scheme. This result is consistent with Allen et al. 
(2018) and Perboli & Rosano (2019) and means that the time window becomes the most restrictive constraint in the BAU scenario. As a 
consequence, the expected load factor of a LCV is around 67%, because we assumed the volume capacity of a LCV to be 3 m3 and the 
expected volume of a parcel 0.02 m3. The expected fuel consumptions of ICE LCVs are 0.051 L/km (0.043 kg/km) on metropolitan 
highways and 0.053 L/km (0.045 kg/km) in the local urban grid (see Supplementary Information, section 2). Considering a diesel net 
heating value of 10 kWh/L (Kirschstein, 2020), the energy consumption of ICE LCVs is equal to 0.51 kWh/km (line-haul highways) and 
0.53 kWh/km (local urban grid). In the case of electric LCVs, the expected energy consumption rates are equal to 0.28 kWh/km on line- 
haul highways and 0.19 kWh/km in the local urban grid (see Supplementary Information, section 2). These results are consistent with 
the Electric Vehicle Database (2021). The HDVs unit distance energy consumption rate is equal to 0.65 kWh/km on line-haul 
metropolitan highways and 0.52 kWh/km in the local urban grid (see Supplementary Information, section 2). 

As for ADRs, their load factor is equal to 100% because they are loaded on average with 20 parcels at the logistics micro-hubs. The 
mechanical propulsion of the robot requires on average around 0.018 kWh/km (see Supplementary Information, section 2) whereas 
the energy consumption of the electronics equipment is equal to 0.058 kWh/km for our reference case ADR 1 (sensor power of 550 W 
and commercial cruising speed of 9.5 km/h). Nevertheless, this electronics equipment is also powered while the robot is waiting for the 
final receiver (while idling the ADR mechanical propulsion energy consumption is null). Considering that an ADR travels around 0.3 

Fig. 12. Expected traveled distances per vehicle type in the HH and BCN service regions.  
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km per parcel delivery (see Fig. 12), the energy consumption required by the robot’s mechanical propulsion is equal to 5 Wh per 
delivery. For the electronics equipment (considering ADR 1), this value reaches 45 Wh per delivery (including the time needed to travel 
between two receivers’ consecutive locations and the delivery process, considering a stop time of 3 min per delivery). In conclusion, 
the energy needed to power the ADR’s electronics equipment (during the use stage) represents almost 90% of the total energy 
consumed per parcel delivery, in this model. 

Fig. 13. Life cycle analysis of parcel distribution GWP in the HH service region.  
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Fig. 14. Life cycle analysis of parcel distribution GWP in the BCN service region.  
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4.3. Delivery operations LCA 

After having analyzed the operational KPIs in the BAU and two-echelon scenarios, it is possible to study the GWP of these two 
delivery schemes adopting a LCA perspective. 

Fig. 13 presents:  

• The evolution over time (between 2020 and 2050) of the accumulated GWP of both BAU and two-echelon delivery schemes in the 
HH service regions in the 2020 and STEP energy mix scenarios (see Fig. 13a and 13b, respectively).  

• The evolution over time (between 2020 and 2050) of the unit GWP per parcel delivery of both BAU and two-echelon delivery 
schemes in the HH service regions in the 2020 and STEP energy mix scenarios (see Fig. 13c and 13d, respectively).  

• The unit GWP split between the different vehicle production and use stages at year 2050 in the HH service regions for the 2020 and 
STEP energy mix scenarios (see Fig. 13e and 13f, respectively). 

The discontinuities present in the aforementioned graphs (i.e. Fig. 13a to 13d) correspond to the vehicle fleet replacement. 
Considering the hypotheses adopted in the modelling stage of the paper, a LCV (either with internal combustion or electric engine) will 
deliver around 400,000 parcels before its replacement in BCN and around 500,000 in HH (see the Supplementary Information, Fig. 9). 
In the case of the two-echelon delivery scheme, each individual ADR will deliver between approximately 56,000 and 116,000 parcels 
before replacement in BCN and between 67,000 and 150,000 parcels in Hamburg, depending on the considered ADR. The main impact 
factor for the robot fleet replacement is the battery limited number of cycles and capacity (see Equation (34) because all ADRs except 
ADR 2 have the same mechanical lifespan. 

The main results from Fig. 13 are the following. Firstly, moving from ICE LCVs to electric LCVs in the BAU situation would decrease 
the GWP of parcel distribution in approximately 27% if the German energy mix remains the same between 2020 and 2050 (see 
Fig. 13e). In the case of the STEPS energy mix scenario, the electrification of the LCV fleet would generate a 43% decrease of the parcel 
distribution GWP (see Fig. 13f). No significant improvement would be seen in the case of the SDS energy mix scenario (see the 
Supplementary Information, Fig. 10). During the LCV electrification process, we can observe a shift of the environmental burden from 
the usage stage to the vehicle production (as illustrated in Fig. 13e and 13f) phase. In BAU deliveries with ICE LCVs, the vehicle 
production stage represents 23% of the life-cycle total GWP whereas the usage stage accounts for the rest of the GWP, i.e. 77% (see 
Fig. 13e). If the LCV fleet is electrified, considering that the German electricity mix gradually passes from the current one (in 2020) to 
the STEPS energy mix (in 2050), the e-LCV production environmental burden would represent 58% of the delivery total GWP whereas 
the usage stage emissions would represent 42% of the total GWP (see Fig. 13f). 

As for the two-echelon delivery scheme using ADRs, the results we obtain are more contrasted. On the period 2020–2050, 
considering our reference ADR (ADR 1), two-echelon operations would generate around 92 g CO2-eq per parcel delivery with the 2020 
German mix and around 82 g CO2-eq per parcel delivery in the STEPS energy mix scenario. If the ADR lifespan is lower (ADR 2), the 
two-echelon operation emissions would be around 100 g CO2-eq, higher than the BAU delivery scheme with ICE LCVs (see Fig. 13f). 

This high environmental impact of the two-echelon operations is due to the very large fleet of ADRs that is needed to perform the 
operations (see Fig. 11). The environmental burden of ADR 1 production in the STEPS scenario represents 71% of the total two-echelon 
GWP, followed by the ADR’s usage stage GWP (12%), the HDV’s production GWP (11%) and the HDV’s usage stage GWP (6%). 

The two-echelon usage stage GWP is directly related to the usage stage energy consumption that we described in Fig. 10. The ADR’s 
production GWP in the two-echelon delivery scheme depends on the considered operation scenarios. In the case of ADR 2 with a 
lifespan of 20,000 km, ADR’s production have a higher environmental burden because the robot fleet replacement would occur before 
(see Fig. 13c and 13d). ADR 3′s production environmental burden would be lower than in the ADR 1 scenario because of the ADR 3′s 
lower fleet size. Two-echelon operations based on ADR 4 would have the highest environmental burden because of ADR 4′s huge fleet. 
Deliveries with ADR 5 would have the lowest GWP. Even if ADR 5′s fleet size would be similar to ADR 1′s, ADR 5′s fleet replacement 
occurs afterwards (see Fig. 13c and 13d). If all ADR fleets were first replaced before 2030, ADR 5 would be the only one to have its first 
replacement between 2030 and 2035 (see Fig. 13c and 13d). In the case of ADR 5, the energy consumption per parcel delivery is lower, 
i.e. the factor which limits the robot lifetime is the mechanical pieces limited lifespan and not the battery’s total number of cycles (see 
Equation (34), as in other robotic scenarios. 

Finally, substituting ADR 1 battery with a LSB one would increase the two-echelon total GWP (see ADR 6 scenario) by 17% 
approximately. Even if the LSB battery capacity is higher than the LFP one (implemented in ADR 1), its total number of cycles is lower, 
and ADR 6′s fleet replacement would take place on a reduced time basis (see Fig. 13c and 13d). 

For the case of the BCN service region, the results are presented in Fig. 14. A similar insight previously developed in the case of the 
HH service region is gained. 

Using electric LCVs in the BAU scenario contributes to a 53% reduction of the total GWP per delivery if we assume that the 2020 
Spanish mix does not evolve over time (see Fig. 14e). The 2020 Spanish energy mix generates around 170 g CO2-eq per kWh against 
344 g CO2-eq per kWh for the 2020 German electricity mix (see Fig. 7). 

In the case of the ADR’s two-echelon operations, the conclusions do not vary from the HH’s service region insight we previously 
obtained since the total GWP combining HDVs and ADRs lies between 64 and 126 g CO2-eq per parcel delivery, which is equivalent to 
the values we obtained in the case of HH. Even if the Spanish electric mix has a lower GWP, the lower logistics economies of scale in 
BCN (because of a lower demand density) limits the two-echelon efficiency improvement. 

As we previously described, the main two-echelon GWP source is the ADR production (see Fig. 14e and 14f). In this Barcelona use 
case, the ADR’s production GWP represents around 75% of the two-echelon total GWP in the case of ADR 1 and the STEPS energy mix. 
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This increased share of the production GWP for electric vehicles (both e-LCVs, e-HDVs and ADRs) is due to the lower GHG emission rate 
per kWh of electricity in Spain, decreasing the weight of the usage stage energy consumption GWP. 

4.4. Main managerial insights 

The electrification of the LCV fleet following a BAU operational scheme would decrease the parcel delivery GWP by 59% in 
Barcelona and 43% in Hamburg (considering the STEPS electricity mix scenario). Compared with e-LCV BAU operations, the two- 
echelon ADR-based operational scheme is not competitive in terms of parcel delivery GWP. In both the Hamburg and Barcelona 
service regions, the two-echelon delivery strategy with our reference ADR would generate between 80 and 90 g CO2-eq per parcel 
delivery. This high figure is essentially due to the ADR’s production high environmental burden. Individually, the production of each 
ADR generates a significant amount of GHG because of some components that are inherent to autonomous technologies. In addition, 
the ADR fleet needed to serve all the demand in a restrictive time window is huge. The higher production GWP associated with a bigger 
fleet explains why the environmental burden of the ADR’s production is so high in the delivery process. During the use stage, the two- 
echelon ADR-based delivery method is undoubtedly more efficient because the energy consumption per parcel delivery in the use stage 
is decreased by more than 25% in the two-echelon model when compared with the e-LCV BAU delivery method. 

As a consequence, the main leverages to decrease the GWP of a two-echelon delivery scheme combining HDVs and ADRs are:  

• The improvement of the ADR’s production processes to limit GHG emissions during the robot production phase.  
• The reduction of the ADR’s electronics and sensor power. This measure could reduce both the ADR’s production and usage stage 

GWP. In the usage stage, a reduction of the ADR’s electronics and sensor power would limit the total energy consumption of the 
two-echelon delivery scheme. As for the ADR’s production environmental burden, a reduction of the electronics and sensor power 
increases the ADR’s lifetime and the robot fleet does not need to be replaced so often. By reducing the sensor and electronics power, 
the number of battery recharging processes are reduced and the ADR’s battery lifetime can be maximized since the robot battery 
lifetime is the factor which conditions the robot fleet replacement in our model. This improvement could also be achieved through 
the increase of the ADR’s battery capacity, limiting the number of recharging cycles, and maximizing the battery lifetime.  

• The improvement and optimization of the ADR’s logistics models. In the formulation we proposed, the main factor explaining the 
low performance of ADR-based two-echelon delivery schemes is the high ADR’s fleet size. To make ADRs more competitive, the 
fleet size should be reduced. This reduction might be achieved through the optimization of the ADR’s logistics operations (as can be 
the reduction of the stop time per delivery which depends on the delivery process to recipient, as a matter of illustration) and a 
higher ADR’s delivery time window. To widen the ADR’s delivery time window, it seems that the decoupling between HDV op-
erations linking all logistics micro-hubs (which could be done at night for instance) and ADR operations (during daytime) would be 
the most efficient strategy. 

5. Conclusion and further research 

A life-cycle analysis (LCA) of different distribution strategies within the e-commerce market has been proposed in this paper. A two- 
echelon delivery pattern combining heavy-duty vehicles (HDVs) and autonomous delivery robots (ADRs) has been compared to 
business-as-usual (BAU) operations with internal combustion engine (ICE) or electric light commercial vehicles (LCVs). To model the 
ADR’s production, primary data from an actual ADR prototype combined with the ecoinvent database has been used. The mathe-
matical formulation of the usage stage main key performance indicators (KPIs) has been done using the continuous approximation 
(CA) technique. Finally, combining the production and usage stage modelling, managerial insight, concerning parcel distribution in 
the Barcelona and Hamburg urban cores, has been obtained. The analysis also shows the impact of the delivery use case in the last-mile 
operations global warming potential (GWP). The introduction of ADRs on a large-scale basis may not reduce the GWP of last-mile 
parcel delivery, if a series of operative conditions are not met. 

As further research, some underlying assumptions need to be further investigated to make our study more exhaustive. As it was 
previously mentioned, the ADR’s production represents the main part of the two-echelon delivery GWP. In our modelling, we consider 
that the ADR’s production GWP remains constant between 2020 and 2050 and equal to its value in 2020. Considering all the in-
vestments that are done in renewable energies, this assumption seems too strong since the energy mix will become greener over the 
years and this reduction of the well-to-wheel electricity mix GWP should also be considered into the ADR’s production since electricity 
is used to produce a robot. In this case, this evolution could play in favor of ADRs since the robot fleet is replaced more often. A LCV is 
replaced every 20 years more or less, so its production process cannot benefit from the electricity mix GWP reduction over the years. 

In addition, the energy consumption model of the vehicles considered in this study should be improved to take into account the 
road slope or the environment temperature that can have an influence on the energy consumption per km, especially in the case of 
battery electric vehicles. Still in the usage stage formulation, CA models should be further refined because the demand densities we 
dealt with in the paper are at the limit of the CA methodology representative domain. 

The two previously mentioned improvements concern the usage stage modelling. It seems reasonable to assume that these im-
provements would not fundamentally modify the obtained results because of the high ADR’s production environmental burden, on 
which robot manufacturers should be focusing. Concerning the robot production modelling, it has to be mentioned that the data we 
used was taken from an ADR prototype whose design was not optimized. It can be assumed that in the further iterations of the ADR’s 
design process, further weight improvements will be done, i.e. reducing its production GWP. 

Finally, in the fleet replacement modelling, vehicle lifespan would also depend on time, not only distances, as we have been 
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assuming. It would especially be the case for the ADR’s sensors whose lifespan is measured in terms of working hours, not kilometers. 
In addition, many cities implement vehicle access restrictions such as low-emission zones that depend on the vehicle age. It is being 
progressively forbidden for old internal combustion engine vehicles to enter city centers. Concerning future research, urban last-mile 
parcel delivery using drones should also be subject of investigation, analyzing a hybrid delivery solution, potentially combining them 
with ADRs. 
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