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Abstract

The study of subgroups of the free group can be carried out using the theory developed by Stallings, in
which a graphical representation encoding the algebraic properties of these subgroups is given in the form
of Stallings automata. These automata can be used to solve many algorithmic problems for the free group,
like the membership problem, the intersection problem or the finite index problem. In this work, we provide
an overview of Stallings theory and apply it to prove a result by Hall that gives the number of finite index
subgroups in the free group. Moreover, we present a generalisation of the theory of Stallings which gives
a geometric representation of the subgroups of free times free-abelian groups using Stallings automata
enriched with certain abelian labelling to account for the free-abelian part of these groups. Combining this
theory with the result by Hall and an analogous result for free-abelian groups, we obtain a recursive formula
giving the number of finite index subgroups in a free times free-abelian group.

Keywords

Free times free-abelian group, (enriched) Stallings automaton, (enriched) folding, finite index, finite index
problem, decision problem.
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1. Introduction

In 1983, J.R. Stallings published a paper [20] that set the foundations of the now celebrated Stallings
automata theory, which gives a geometrical representation of the subgroups of the free group using certain
type of automata. These so-called Stallings automata have proved to be very useful. Indeed, many
algorithmic problems (like the finite index problem, the membership problem or the finite index problem)
can be seen to be solvable for the free group thanks to techniques based on Stallings automata. In this
work, we present the theory of Stallings following some recent references on the topic ([10] and [8]) and
apply it to prove a result by M. Hall (see [15]), which gives a recursive formula for the number of finite
index subgroups in the free group.

In [5] and [9], a study of free times free-abelian groups was recently carried out by developing a
generalisation of Stallings theory for this more complicated family of groups. In this case, the subgroups of
a free times free-abelian group are represented by Stallings automata enriched with certain abelian labelling.
We will also give an account of this theory and we will use it to derive a formula for the number of finite
index subgroups in a free times free-abelian group. To do this, we will also need to study the same problem
for free-abelian groups, so some attention will be dedicated to that family of groups as well.

This work is structured as follows.

Section 2 is a brief collection of definitions and results of group theory with two aims: first, providing
the basic background about groups (Section 2.1) and algorithmic problems (Section 2.2), and second,
fixing the notation and terminology that we will use.

In Section 3, we focus on free-abelian groups. Being these groups one of the factors of free times
free-abelian groups, the results exposed here will be relevant in Section 5. In Section 3.1, we give some
basic general notions about free-abelian groups which are mainly oriented to obtain a bijection between
the subgroups of a free-abelian group and certain matrices. This bijection is then used in Section 3.2 to
obtain a formula for the number of finite index subgroups in a free-abelian group.

Section 4 is dedicated to the free group. In Section 4.1, the reader can find the definitions and results
regarding these groups that will be essential in the rest of the work. After this, in Section 4.2, we give a
quick overview of the classical Stallings theory, which provides a geometrical representation of the subgroups
of the free group. In Section 4.3, we use the theory of Stallings to study the index of subgroups of the
free group with some detail, which leads us to a reformulation in terms of Stallings automata of a result
by Hall counting the number of finite index subgroups in the free group.

The central part of this work is Section 5, where we study free times free-abelian groups. In Section 5.1,
we give the necessary algebraic background on these groups. In Section 5.2, we present a generalisation
of the theory of Stallings that uses enriched automata to encode the information about subgroups of free
times free-abelian groups. This description of subgroups using enriched automata is applied in Section 5.3
to study the index and, in particular, to derive a recursive formula for the number of finite index subgroups
in a free times free-abelian group.

Finally, Section 6 draws attention to some possible continuations of the work developed in this thesis.
These are based on the possibility of extending the results regarding the number of finite index subgroups to
bigger families of groups, like free-abelian by free groups (see Section 6.1) and Droms groups (see Section
6.2).
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Counting subgroups using Stallings automata

1.1 Notation and terminology

With the aim of avoiding possible confusions, we include some clarification regarding the notation and
terminology used in this work.

The set of natural numbers, which we denote by N, does not include zero. The cardinal of a set S
is denoted by #S . By infinity we always mean countable infinity, and we denote it by ∞. We will write
[m, n] = {k ∈ N ∪ {0} : m ≤ k ≤ n}, where m is a natural number and n might be a natural number or
infinity. We will also sometimes write [n] = {1, 2, ... , n} for n ∈ N.

The last letters of the latin alphabet will usually represent symbols in formal alphabets (x , y ,. . . ) and
formal words or elements of the free group (u, v ,w ,. . . ). The first letters of the latin alphabet in bold
(a,b, c,. . . ) will be used to denote elements of Zm. Uppercase letters in bold (A,B,C,. . . ) will be used
to denote matrices.

Finally, it is important to note that functions act on the right. That is, we denote by (x)φ (or just
xφ) the image of an element x by the function φ. Accordingly, we will denote by ϕψ the composition

A
ϕ−→ B

ψ−→ C . We apply the same criterion for matrices acting on vectors by multiplication.
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2. Preliminaries

In this section, we present briefly some standard concepts about group theory and algorithmic problems.

2.1 Basics of group theory

Let G be a non-empty set and let · : G × G → G be a binary operation assigning an element of G ,
denoted by g1 · g2, to every pair (g1, g2), where g1, g2 ∈ G . If this binary operation is associative and
has a (unique) neutral element (i.e., an element in G , which we will denote by 1G or simply 1, such that
1G ·g = g ·1G = g , for all g ∈ G ), then the pair (G , ·) is said to be a monoid. If, in addition, every element
g ∈ G has a unique inverse g−1 with respect to this binary operation (that is, g ·g−1 = g−1 ·g = 1G ), then
the pair (G , ·) is called a group. In what follows, we will usually refer to the set G as a group, assuming
the operation.

We say that H ⊂ G is a subgroup of G , denoted by H ⩽ G , if H is also a group with the (restriction
of the) operation ·.

Definition 2.1. Let G be a group and let S be a subset of G . We say that the smallest subgroup of G
containing S is the subgroup generated by S and we denote it by ⟨S⟩. It is straightforward to check that

⟨S⟩ = {sk1i1 s
k2
i2
· · · sknin : n ∈ N and sij ∈ S , kj ∈ Z, for j = 1, 2, ... , n}.

Given a group G , we say that S ⊂ G is a generating set for G if ⟨S⟩ = G . We say that G is finitely
generated if there exists a finite generating set for G . We will write H ⩽fg G meaning that H is a finitely
generated subgroup of G .

Definition 2.2. The rank of a group G , which we denote by rk(G ), is the minimum cardinality of a
generating set for G , that is,

rk(G ) = min{#S : S ⊂ G and G = ⟨S⟩}.

Remark 2.3. If H is a subgroup of G , it is not true in general that the rank of H is bounded by the rank
of G . A representative example is the free group (see Section 4), whose subgroups may have a higher rank
than the ambient group. But there also examples, like free-abelian groups (see Section 3) for which the
rank of a subgroup can be at most the rank of the ambient group. This fact is a source of many interesting
questions wondering about the rank of, for example, the subgroup of fixed points of an automorphism or
the intersections of subgroups. With regard to intersections, we have the following important concept.

Definition 2.4. We say that a group G has the Howson property (or is Howson) if the intersection of
any two finitely generated subgroups of G is again finitely generated (i.e., if H,K ⩽fg G implies that
H ∩ K ⩽fg G ).

In a group G , we define the commutator of two elements x , y ∈ G as the element [x , y ] := x−1y−1xy .
The subgroup of G generated by all the commutators is called the commutator subgroup of G and is
denoted by [G ,G ] := ⟨[x , y ] : x , y ∈ G ⟩.

Definition 2.5. A group G is abelian if [g1, g2] = 1 for every g1, g2 ∈ G , that is, if all the elements in G
commute.
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Counting subgroups using Stallings automata

We say that a group G is cyclic if it can be generated by a single element, that is, if G = ⟨g⟩ for some
g ∈ G . It is clear that cyclic groups are abelian.

Let G be a group and let H be a subgroup of G . For every g ∈ G we may consider the sets

gH = {gh : h ∈ H} and Hg = {hg : h ∈ H},

which we call the left coset of H by g and the right coset of H by g , respectively. It can be shown that
the left and right cosets define respective partitions on G and, therefore, respective equivalence relations
LH and RH.

Definition 2.6. We call index of H in G , and denote it by |G : H|, the cardinal of the quotient set G/LH
(which coincides with that of G/RH), that is,

|G : H| = #(G/LH).

We write H ⩽fi G to denote that H is a finite index subgroup of G . Now, let S ⊂ G . We say that S
is a left (right) transversal for H in G if every left (right) coset of H contains exactly one element of S .

In general, for a subgroup H ⩽ G , the left and right cosets by an element g ∈ G may not coincide.
But there are subgroups for which this does happen.

Definition 2.7. Let G be a group and H ⩽ G . We say that H is normal in G , and denote it by H ◁G , if
gH = Hg for every g ∈ G .

For example, the commutator subgroup [G ,G ] of a group G is an example of a normal subgroup in G .

Definition 2.8. Let G be a group and let S be a subset of G . The smallest normal subgroup of G
containing S is called the normal closure of S and is denoted by ⟨⟨S⟩⟩.

Notice that for a normal group K , the quotient sets G/LH and G/RH are the same and, in this case,
we denote any of them by G/K . This is the crucial property of normality, which allows to give the quotient
set a group structure.

Theorem 2.9. Let G be a group. If K ◁ G, the quotient set G/K is a group with the operation

(aK )(bK ) = (ab)K , for all aK , bK ∈ G/K .

In this case, G/K is called the quotient group.

For example, the quotient group G/[G ,G ] is the largest abelian quotient of G , in the sense that if H
is a normal subgroup of G , then G/H is abelian if and only if [G ,G ] ⩽ H. This quotient group is usually
called the abelianisation of G , denoted by G ab.

Definition 2.10. Let (G1, ·) and (G2, ∗) be two groups. A map f : G1 → G2 is said to be a group
homomorphism if (g · h)f = (g)f ∗ (h)f for every g , h ∈ G1. The kernel of a homomorphism f : G1 → G2

is
ker(f ) := {g ∈ G1 : (g)f = 1G2},

which is clearly a normal subgroup of G1.

A very important result in group theory is the First Isomorphism Theorem, which we now state.
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Theorem 2.11. Let G1 and G2 be two groups. If f : G1 → G2 is a homomorphism, then

G1/ ker(f ) ∼= Im(f ).

In particular, if f is an epimorphism, then

G1/ ker(f ) ∼= G2.

A result which can be derived from the previous one and which we will use in this work is the Second
Isomorphism Theorem, whose statement follows.

Theorem 2.12. Let G be a group, let H be a subgroup of G and let N be a normal subgroup of G. Then,

H

H ∩ N
∼=

HN

N
.

The First Isomorphism Theorem plays an important role (see Theorem 4.14) in the definition of a
presentation for a group, which is a succinct way of presenting all the information about a group (see
Definition 4.15 in Section 4.1).

The main objects of study of this work are direct products of free and free-abelian groups, we give the
details of this product of groups now.

Definition 2.13. If (H, ·) and (K , ∗) are groups, then their external direct product, denoted by H × K , is
the group with elements all ordered pairs (h, k), where h ∈ H and k ∈ K , and with operation

(h, k)(h′, k ′) = (h · h′, k ∗ k ′).

Proposition 2.14. Let G be a group with normal subgroups H and K. If HK = G and H ∩ K = 1, then
G ∼= H × K.

A group HK like in the previous proposition is called the internal direct product of H and K . If we
have a group G ∼= H × K , we say that H and K are direct factors of G .

2.2 Algorithmic problems

Between the years 1910 and 1914, the German-born mathematician Max Dehn published a series of papers
on group theory and topology. The problems he posed and the techniques he developed have had a very
strong influence in the study of combinatorial group theory. Among other significant contributions, Dehn
posed three important problems, each one of them stemming from a specific topological question. Dehn’s
three problems are the following:

Definition 2.15. Word problem, WP(G ): Let G be a group given by a finite presentation ⟨X |R⟩. Decide,
given a word w ∈ (X±)∗, whether w ∈ ⟨⟨R⟩⟩.

Definition 2.16. Conjugacy problem, CP(G ): Let G be a group given by a finite presentation ⟨X |R⟩.
Decide, given words u, v ∈ (X±)∗, whether there exists w ∈ (X±)∗ such that w−1uwv−1 ∈ ⟨⟨R⟩⟩.

Definition 2.17. Isomorphism problem IP(G ): Decide, given finite presentations ⟨X1|R1⟩ and ⟨X2|R2⟩,
whether they present isomorphic groups.

7



Counting subgroups using Stallings automata

A rigorous definition of an algorithm can be given using the concept of Turing machine. For our
purposes, it will be enough to define an algorithm as a procedure, given by a finite number of instructions,
that on a given input produces an unambiguous answer after a finite number of steps. If an algorithm
outputting a correct yes/no answer exists for one of these problems, then we say that the problem is
solvable.

In addition to the problems posed by Dehn, there are some other problems which will be of interest for
us. For example we have the following generalisation of the word problem.

Definition 2.18. Membership problem, MP(G ): Let G be a group given by a finite presentation ⟨X |R⟩.
Given words u, v1, ... , vk ∈ (X±)∗, decide whether u represents an element in the subgroup generated by
the elements represented by v1, ... , vk .

Another problem of interest which is related to the Howson property we defined in the previous part is
this one.

Definition 2.19. Subgroup intersection problem, SIP(G ): Let G be a group given by a finite presentation
⟨X |R⟩. Given two different finite families of words u1, ... , ul ; v1, ... , vk ∈ (X±)∗, decide whether the
intersection of the corresponding generated subgroups ⟨u1, ... , ul⟩ ∩ ⟨v1, ... , vk⟩ ⩽ G is finitely generated
and, in the affirmative case, compute a generating set for the intersection.

Since in this work we are particularly interested in counting subgroups of finite index, the following
problem will be quite relevant.

Definition 2.20. Finite index problem, FIP(G ): Let G be a group given by a finite presentation ⟨X |R⟩.
Given a finite family v1, ... , vk ∈ (X±)∗, decide if the subgroup ⟨v1, ... , vk⟩ ⩽ G has finite index. And, in
the affirmative case, compute a system of coset representatives.
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3. Free-abelian groups

In this section we will focus on free-abelian groups. We will start by presenting some basic concepts and
results regarding these groups, paying special attention to those results that allow us to study finite index
subgroups in these groups. In this vein, Theorem 3.17 and Theorem 3.19 are probably the most important:
the former gives a bijection between finite index subgroups of a free-abelian group and a certain kind of
matrices and the latter exploits this bijection in order to count the number of subgroups of a given index
in a free-abelian group. These results will be useful later in Section 5, since the groups we will study there
are a direct product in which one of the factors is a free-abelian group.

3.1 Definition and properties of free-abelian groups

We will define the groups that we are going to study in this section in terms of the existence of a certain
generating set.

Definition 3.1. Let G be an abelian group. We say that a subset B ⊂ G is an abelian basis for G if the
following two conditions are satisfied:

(i) G = ⟨B⟩ (that is, B generates G ).

(ii) If for some b1, ... , bk ∈ B and n1, ... , nk ∈ Z we have that n1b1 + · · ·+ nkbk = 0, then ni = 0 for all
i ∈ {1, ... , k} (that is, b1, ... , bk are linearly independent).

If G is an abelian group which admits an abelian basis B, we say that G is a free-abelian group.

If it is clear from the context, we will sometimes refer to abelian bases simply as bases.

Remark 3.2. In this work, we will restrict ourselves to the case of finitely generated free-abelian groups.
From now on, every time we refer to a free-abelian group, the reader should take into account that we are
referring to a finitely generated free-abelian group.

Remark 3.3. If G is a (finitely generated) free-abelian group, then every basis for G is finite. Indeed, by
the previous remark, G admits a finite generating set S = {s1, ... , sp}. Now let B be an abelian basis for
G . Since si ∈ G = ⟨B⟩ for i ∈ {1, ... , p}, each si can be written as an integer linear combination of a
finite number of elements of B. By considering the (finite) union of these elements of B, we obtain a finite
abelian basis B′ ⊂ B for G . If B′ ̸= B, there exists b ∈ B\B′ which can be written as a linear combination
of the elements in B′, contradicting the fact that the elements in B are linearly independent. Thus, B = B′
is finite.

The prototypical example of a free-abelian group is (Zm, +), whose elements are m-tuples of integers
and whose operation is the component-wise addition. Indeed, an abelian basis for Zm is B = {ei}mi=1,
where ei denotes the tuple which consists of all zeros except for a one in the i-th position (this basis is
usually called the canonical basis of Zm).

The following result collects a few basic properties about free-abelian groups, some of them concerning
the cardinality of their bases and their rank (which turn out to be the same).

Proposition 3.4. Let G and G ′ be groups. Then:

(i) G is free-abelian if and only if G ∼= Zm for some m ≥ 0.

9



Counting subgroups using Stallings automata

(ii) If G is free-abelian, then any two bases of G have the same cardinality.

(iii) If G is free-abelian, then the cardinal of any abelian basis of G is equal to the rank of G.

(iv) If G and G ′ are free-abelian, then G ∼= G ′ if and only if rk(G ) = rk(G ′).

Proof. (i) If G is free-abelian and B = {b1, ... , bm} is an abelian basis for G , the map

f : G → Zm

m∑
i=1

xibi 7→ (x1, ... , xm),

where xi ∈ Z for i ∈ [m], is an isomorphism. Conversely, the canonical basis {ei}mi=1 is an abelian
basis for Zm.

(ii) Let B and B′ be finite bases of G with cardinals #B = m and #B′ = m′. By item (i), we have that
G ∼= Zm ∼= Zm′

. If we now consider the subgroup H = {2g : g ∈ G}, we have that

(Z/2Z)m ∼= G/H ∼= (Z/2Z)m
′
,

so if we consider the cardinal of these isomorphic groups, we obtain

2m = #(Z/2Z)m = #(G/H) = #(Z/2Z)m
′
= 2m

′
,

which implies that m = m′.

(iii) By item (ii), all bases of G have the same cardinal. If we take any abelian basis of G , say B, and we
denote its cardinal #B = m, we have that G ∼= Zm by item (i). Arguing by contradiction, suppose
that there exists a generating set S with cardinal #S < m for Zm. If we look at the elements of S
in the Q-vector space Qm, we also have that S generates Qm, but this contradicts the fact that Qm

is a vector space of dimension m. Therefore, G ∼= Zm has rank m.

(iv) This is a direct consequence of items (i) and (iii).

Since all free-abelian groups of rank m are isomorphic to Zm by Proposition 3.4, we will usually denote
any free-abelian group of rank m by Zm.

Remark 3.5. It is worth noting that a presentation for the free-abelian group of rank m, Zm, is given by

⟨t1, ... , tm|t−1
i t−1

j ti tj ,∀i , j ∈ [m]⟩.

In order to describe the subgroups of a free-abelian group and their rank, we will need the following
lemma (we omit its proof, but it can be found in [16, Corollary 10.16]).

Lemma 3.6. If H ⩽ G and G/H is free-abelian, then G = H ⊕ K, where K ⩽ G and K ∼= G/H.

We can now use this lemma to prove that the property of being free-abelian is inherited by subgroups
and to relate the rank of these subgroups with the rank of the ambient group.

Theorem 3.7. Every subgroup H of a free-abelian group G of finite rank is itself free-abelian and, moreover,
rk(H) ≤ rk(G ).
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Proof. The proof is by induction on m, the rank of G . For the base case, if m = 0, the result is immediate
because G is the trivial group. Also notice that if m = 1, then G ∼= Z. Since the subgroups of a cyclic
group are cyclic as well, we have that either H ∼= {0} or H ∼= Z, and the result holds. For the inductive
step, let {b1, ... , bm+1} be an abelian basis of G . Define G ′ = ⟨b1, ... , bm⟩ and H ′ = H ∩G ′. By induction,
H ′ is free-abelian of rank ≤ m. Applying Theorem 2.12, we have

H/H ′ = H/(H ∩ G ′) ∼= (H + G ′)/G ′ ⩽ G/G ′ ∼= Z.

By the case m = 1, either H/H ′ = {0} or H/H ′ ∼= Z. In the first case, H = H ′ and we are done; in
the second case, Lemma 3.6 gives H = H ′ ⊕ ⟨h⟩ for some element h ∈ H, where ⟨h⟩ ∼= Z, and so H is
free-abelian and rk(H) = rk(H ′ ⊕ Z) = rk(H ′) + 1 ≤ m + 1.

In Proposition 3.10, we will give a characterisation of finite index subgroups in terms of their rank and
we will also show that the finite index problem is solvable for free-abelian groups. To do so, we first need
to see how subgroups of Zm can be described using integer matrices.

Given an integer matrix A of dimension s ×m, we will denote by ⟨A⟩ the row space of the matrix A,
that is,

⟨A⟩ = {xA : x ∈ Zs}.

The elements in ⟨A⟩ are integer linear combinations of the rows of A, which are elements of Zm. Therefore,
⟨A⟩ is the subgroup of Zm generated by the rows of A. Notice that, in general, the rows of A need not be
an abelian basis of the subgroup ⟨A⟩, they are just a generating set. However, if the matrix A has full row
rank, then the rows of this matrix form an abelian basis of ⟨A⟩.

An integral square matrix U of size m is called unimodular, U ∈ GLm(Z), if det(U) = ±1, that is, if
the matrix is invertible in Mm(Z). The following lemma recalls some properties of unimodular matrices
that we will use.

Lemma 3.8. Let A and A′ be integral matrices of dimension s × m. If A = UA′ for some unimodular
matrix U, then ⟨A⟩ = ⟨A′⟩. Moreover, if A and A′ have full row rank and ⟨A⟩ = ⟨A′⟩, then A = UA′ for
some unimodular matrix U.

Proof. Suppose A = UA′ for some unimodular matrix U. If ai and ui are the i-th rows of A and U
respectively, we have that ai = uiA

′ ∈ ⟨A′⟩ for i ∈ {1, ... , s}. Therefore, since ⟨A⟩ is generated by the
rows of A, we have that ⟨A⟩ ⊂ ⟨A′⟩. Given that U is unimodular, we also have that A′ = U−1A and can
conclude similarly that ⟨A′⟩ ⊂ ⟨A⟩.

Now, if A and A′ have full row rank and ⟨A⟩ = ⟨A′⟩, then the rows of A belong to ⟨A′⟩ and we
have that A = VA′ for some integral matrix V. Similarly, A′ = WA for some integral matrix W. This
means that A = VWA and, since A has full row rank, we may conclude that VW = I which implies that
det(V) = det(W) = ±1.

The following classical result (whose proof we omit but can be found in [1, Theorem 3.1, Section 5.3])
associates a matrix with a special form to every integer matrix. This matrix can be obtained from the
original one multiplying it by suitable unimodular matrices.

Proposition 3.9. For every s ×m integral matrix A, there exists a matrix, called the Smith Normal Form
(SNF) of the matrix A, with the same dimensions as A and which is of the form

D = diag(d1, d2, ... , dr , 0, ... , 0),

11
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where d1, ... , dr are strictly positive integers satisfying that each of them divides the following one (d1|d2| · · · |dr )
and r ≤ min{s,m} such that

PA = DQ,

for some P ∈ GLs(Z) and Q ∈ GLm(Z).

We now have all the ingredients to give the characterisation of finite index subgroups in a free-abelian
group in terms of their rank.

Proposition 3.10. A subgroup L ⩽ Zm has finite index in Zm if and only if it has maximum rank m.

Proof. Let a1, ... , as ∈ Zm be a generating set for L. Consider the integral matrix A whose rows are the
ai

′s, which has dimension s ×m. We compute the SNF of A, obtaining that

PA = DQ,

for some P ∈ GLs(Z), Q ∈ GLm(Z) and D = diag(d1, d2, ... , dr , 0, ... , 0) where d1, ... , dr are positive such
that d1|d2| · · · |dr and r ≤ min{s,m} is the rank of A.

Since the rows of A generate L, we have that L is also generated by the rows of PA, due to Lemma
3.8. Since PA = DQ, L is generated by the image under the automorphism

Q : Zm → Zm

v 7→ vQ

of the subgroup L′ generated by the vectors (d1, 0, ... , 0), ... , (0, ... , 0, dr , 0, ... , 0).

Observe that, given that [d1]×· · ·×[dr ]×Zm−r is a transversal for Zm/L′, its image by the automorphism
Q gives us a transversal for Zm/L. Moreover, notice that the index of L in Zm is

|Zm : L| = d1 · · · dr ·#Zm−r . (1)

Thus, it is clear that |Zm : L| is finite if and only if r = m, i.e., if and only if L has maximum rank m.

Corollary 3.11. The finite index problem for Zm is solvable, that is, if a subgroup L of Zm is given by a
finite set of generators, we can algorithmically decide whether L is of finite index in Zm, and effectively
compute a transversal (and therefore the index |Zm : L|) if the index is finite.

Proof. Maintaining the notation above, it is enough to observe that the finite index condition (having
r = m) is algorithmically decidable just by counting the number of nonzero diagonal elements in the SNF
of A. Finally, to obtain a transversal in the case in which the index of L is finite, one simply has to multiply
by Q the elements in [d1]× · · · × [dr ].

Suppose now that L is a finite index subgroup in Zm. Due to Proposition 3.10, it must have rank m and
therefore we can take an abelian basis of L with cardinality m. If we denote by A the matrix whose rows
are the elements of this abelian basis, we obtain a full rank square integer matrix satisfying that ⟨A⟩ = L.
Observe that, because we may have different bases of L, there is not a unique square matrix whose row
space is L. In what follows, we will define and prove the existence and unicity of a matrix with a certain
special form (see Definition 3.12) having L as its row space. This will allow us to establish a bijection
between finite index subgroups in Zm and a certain set of matrices.

12



Definition 3.12. We say that a matrix H ∈ Mn,m(Z) is in Hermite normal form (abbreviated HNF) if
there exists r ≤ n and a strictly increasing map f : [r ]→ [m] satisfying the following conditions:

(i) The last n − r rows of H are zero.

(ii) For 1 ≤ i ≤ r , hi ,f (i) > 0, hi ,j = 0 if j < f (i) and 0 ≤ hj ,f (i) < hi ,f (i) if j < i .

The reader may find slightly different definitions for the previous concept from other authors (the
definition we have presented is an adaptation of [4, Definition 2.4.2.]).

Remark 3.13. In the particular case in which H ∈ Mm(Z) has full rank, we will have that H is in HNF if
it satisfies the following properties (notice that in this case f is the identity):

(i) hij = 0 if i > j (that is, H is an upper triangular matrix),

(ii) hii > 0 for all i ∈ [m] (the elements in the diagonal are strictly positive),

(iii) For every l < i , 0 ≤ hli < hii (the elements above hii are nonnegative and strictly upper-bounded by
it).

Since we are interested in studying finite index subgroups of Zm, we will now focus on showing how to
transform a full rank m×m integer matrix into a (unique) matrix in HNF with the same row space, which
of course will be of the type specified in the previous remark.

Given an integer matrix A, we can perform the so-called elementary row operations, which consist in
premultiplying A by certain unimodular matrices and are the following:

(i) Swapping two rows Ri and Rj for i ̸= j . We denote this operation by Ri ↔ Rj and it is equivalent to
premultiplying A by the unimodular matrix U obtained from the identity matrix by swapping its i-th
and j-th rows.

(ii) Multiplying the i-th row Ri by −1, denoted by Ri ← −Ri . This is equivalent to premultiplying A by
the unimodular matrix U resulting from multiplying the i-th row of the identity matrix by −1.

(iii) Adding an integer multiple of the j-th row to the i-th row. This operation is denoted by Ri ← Ri+αRj

with α ∈ Z and it is equivalent to premultiplying A by the unimodular matrix U which is obtained
from the identity matrix by adding α times the j-th column to the i-th column.

Notice that performing a finite sequence of these elementary row operations amounts to premultiplying the
original matrix by a unimodular matrix (since the product of unimodular matrices is again a unimodular
matrix). This means, by Lemma 3.8, that the row space of the matrix obtained after these operations is
precisely that of the original matrix.

Theorem 3.14. Let A be an integer m × m matrix of full rank, then it can be brought into HNF by a
sequence of elementary row operations.

Proof. We describe an algorithm converting A into a matrix in HNF. This algorithm constructs a sequence
of matrices A0 = A,A1,A2, ... ,Am, where

Ak =

[
Hk Ck

0 Dk

]
,

13
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and we have that Hk is a k × k matrix in HNF and Ck and Dk have dimensions k × (m − k) and
(m − k)× (m − k) respectively. The matrix Ak+1 is obtained from Ak as follows.

Step 1: Let d1, d2, ... , dm−k be the entries in the first column of Dk. By multiplying some of the rows
by −1 if necessary, we may assure that all of these entries are nonnegative. Moreover, since the matrix A
(and, therefore, all the matrices of the sequence) has full row rank, dl > 0 for some l ∈ [m − k]. Now, if
di > dj are two nonzero entries in the first column of Dk, we perform the row operation Ri � Ri −⌊didj ⌋Rj .

We do this until we obtain that there is exactly one nonzero entry in the first column of Dk (we can assure
that this will happen eventually because every time one of these row operations is performed, all the entries
in the first column of Dk remain nonnegative but their total sum strictly decreases). If we denote by d the
unique element in the first column of Dk different from zero and swap rows if necessary, we obtain that d
is in the first row and first column of Dk.

Step 2: It remains to ensure that all the entries in the first column of Ck are nonnegative and smaller
than d . To do so, we perform the operation Ri � Ri −⌊ cid ⌋Rk+1 for each i ∈ [k − 1] (clearly, this does not
affect the entries of Hk).

Notice that when we compute A1 from A0, Step 2 is not necessary; and, when we compute Am from
Am−1, Step 1 can be omitted.

The matrix Am is the claimed one, since it is in HNF.

Theorem 3.15. Two full rank square integer matrices H and H′ in HNF satisfying that ⟨H⟩ = ⟨H′⟩ must
be equal.

Proof. Suppose H = [hij ] and H′ = [h′ij ] are two full rank m×m matrices in Hermite normal form satisfying
that ⟨H⟩ = ⟨H′⟩ and H ̸= H′. Choose j ∈ [m] to be as small as possible satisfying hij ̸= h′ij for some
i ∈ [m] and, without loss of generality, suppose hij > h′ij .

If we denote by hi and h′i the i-th rows of H and H′ respectively, we have that hi,h
′
i ∈ ⟨H⟩ = ⟨H′⟩

and, therefore, hi − h′i ∈ ⟨H⟩, which means that hi − h′i can be expressed as an integer linear combination
of the rows of H.

Notice that, by the choice of j , hi − h′i has zeros in its first j − 1 components. This implies that
hi − h′i is an integer linear combination of rows hj,hj+1, ... ,hm. Indeed, suppose hi − h′i =

∑m
k=1 αkhk,

with αk ∈ Z. Since h1 is the only row of H whose first component is nonzero and the first component
of hi − h′i must be null, we have that α1 = 0. Now, out of h2,h3, ... ,hm, the only row whose second
component is nonzero is h2, which implies that α2 = 0 because the second component of hi − h′i is zero.
Repeating this argument, we arrive at the conclusion that α1 = α2 = · · · = αj−1 = 0.

Given that the only one of the rows hj,hj+1, ... ,hm which has a positive element in the j-th position
is hj, we have that hij − h′ij = zhjj for some integer z . Now, taking into account that hij < hjj and
h′ij < hij < hjj , we can see that |hij − h′ij | < hjj and thus we must have z = 0. It follows that hij = h′ij ,
which is a contradiction.

Remark 3.16. The two previous results tell us that for any subgroup L ⩽ Zm of rank m and any square
full rank integer matrix A whose row space is L, there exists a unique matrix H in Hermite normal form
satisfying that H = UA for some unimodular matrix U. The matrix H will be referred to as the Hermite
normal form of A. Moreover, observe that H is the only full rank square matrix in HNF whose row space
is L. We will denote it by (L)H.

We summarize the described situation in the result below.

14



Theorem 3.17. There exists a bijection between finite index subgroups of Zm and full rank m×m integer
matrices in Hermite normal form.

Proof. Given a subgroup L ⩽ Zm of finite index, we know by Proposition 3.10 that L has rank m and
therefore we can take an abelian basis for L of cardinality m. Now let A be the full rank m × m matrix
whose rows are the elements of this basis. Computing the HNF of A, we obtain (L)H, which is the only
full rank m×m matrix in HNF whose row space is L. Therefore, we can consider the following well-defined
map:

H : {f.i. subgroups of Zm} → { full rank m ×m integer matrices in HNF}
L 7→ (L)H

Since the map ⟨M⟩ ←[ M is clearly its inverse, we conclude that H is a bijection.

This theorem that we have just proved together with the following result will be the keys for the proof
of Theorem 3.19 in the next section.

Proposition 3.18. Let L be a subgroup of finite index k in Zm, then det((L)H) = k.

Proof. By Proposition 3.9, we know that there exist unimodular matrices P and Q such that (L)H =
P−1DQ, where D is the SNF of (L)H. Since the determinant of unimodular matrices is −1 or 1 and the
determinant of (L)H has to be positive, we have that

det((L)H) = det(D) = d1 · · · dr = |Zm : L|,

where in the last step we have used the equality (1), taking into account that the rank of L is m because
it has finite index.

3.2 Counting finite index subgroups in free-abelian groups

The result in this section provides a recursive formula to obtain the number of subgroups of a given finite
index in Zm. In general, for any group G , we will denote by Nk(G ) the number of subgroups of index k in
the group G .

Theorem 3.19 (Bushnell-Reiner). Let k ∈ N, then Nk(Z) = 1 and

Nk(Zm) =
∑
s|k

Ns(Zm−1)

(
k

s

)m−1

, for m ≥ 2.

Proof. By Theorem 3.17 and Proposition 3.18 , we have that every subgroup of index k in Zm is uniquely
represented by an m × m integral matrix in HNF whose determinant equals k . Therefore, Nk(Zm) is the
number of such matrices, which have the form:

H =


h11 h12 h13 · · · h1m
0 h22 h23 · · · h2m
0 0 h33 · · · h3m
...

...
...

. . .
...

0 0 0 · · · hmm

 , (2)
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where hi ,i ≥ 1 for i ∈ {1, ... ,m}, 0 ≤ hij < hjj for 1 ≤ i < j and k = h11h22 · · · hmm. Let us count the
number of these matrices.

Let s = hmm a divisor of k . To each of the elements h1m, h2m, ... , h(m−1)m we can assign the values
0, 1, ... , s − 1, which gives us sm−1 choices for the last column of the matrix. If we remove the last column
and the last row, we obtain an (m − 1) × (m − 1) integral matrix in HNF whose determinant equals k

s ,
thus, there are N k

s
(Zm−1) choices for the rest of the matrix H. Summing over all the positive divisors s of

k gives the formula

Nk(Zm) =
∑
s|k

N k
s
(Zm−1)sm−1,

which is equivalent to the desired formula if we take into account that k
s runs over all divisors of k as s

does.

In Table 1, we can find the number of subgroups of index k in Zm for small values of k and m.

m\k 1 2 3 4 5 6 7

1 1 1 1 1 1 1 1
2 1 3 4 7 6 12 8
3 1 7 13 35 31 91 57
4 1 15 40 155 156 600 400
5 1 31 121 651 781 3751 2801
6 1 63 364 2667 3906 22932 19608
7 1 127 1093 10795 19531 138811 137257
8 1 255 3280 43435 97656 836400 960800
9 1 511 9841 174251 488281 5028751 6725601

Table 1: Values of Nk(Zm) for small m and k .
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4. The free group

After studying free-abelian groups in the previous section, we will dedicate this section to the study of free
groups, which are the other factor that makes up the groups that we will focus on in Section 5.

This section is structured in three parts: Sections 4.1 and 4.2 are meant to be a brief overview of
the properties of the free group and the study of its subgroups using Stallings automata, which are fairly
standard and well-known topics in group theory, whereas in Section 4.3 we will revisit a less well-known
result related to finite index subgroups in free groups.

With more detail, in Section 4.1, we give the main properties of the free group that we will need in this
work; in Section 4.2, we develop the celebrated theory of Stallings describing the subgroups of free groups
as automata; finally, in Section 4.3, we will use the tools of Stallings theory to study the index of subgroups
of free groups and provide a formula for counting the number of subgroups of a given finite index in the
free group.

4.1 Definition and first properties

This section collects the basic definitions and results that we will need about free groups. Although different
definitions of these groups can be given, the categorical approach is perhaps the best in order to highlight
a crucial fact about free groups: the images of a certain subset (called a basis) of a free group uniquely
determine a homomorphism to any other group, no matter what images we choose. To understand why
this behaviour is special, notice that, in general, if we are trying to define a homomorphism between two
groups G1 and G2 and g , h ∈ G1 are two elements such that g · h = 1G1 , we are not free to choose their
images (g)f and (h)f in any way we want, since they will have to satisfy that (g)f ∗ (h)f = (1G1)f = 1G2 .
This categorical definition will be the first one we present.

Definition 4.1. We say that a group F is free if there exists a subset X ⊂ F (called a basis) such that
for every group G and every map f : X → G , there exists a unique homomorphism f̃ : F → G making the
following diagram commutative

X F

G .
f

f̃

Notice that Definition 4.1 does not ensure the existence of the object we are defining. We will later
give a constructive proof of the existence of a free group. But before this, it is convenient to give a second
definition of free group (equivalent to the first one).

To present the second definition of the free group, some concepts and notation need to be introduced.
Given a group G and a subset X ⊂ G , we will denote by X−1 = {x−1 : x ∈ X} the set of elements in G
which are inverses of elements in X . A product of elements of a group G in which 1G does not appear
as a factor and no element is adjacent to its inverse is said to be a reduced product (the empty reduced
expression, which we denote by 1, represents the trivial element of G ).

Definition 4.2. Let G be a group and X ⊂ G . We say that the subset X is free in G if the only reduced
product of elements of X ∪ X−1 which yields the trivial element in G is the empty reduced expression.

Once these concepts have been established, we can give the second definition of free group.
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Definition 4.3. Let F be a group and let X ⊂ F . We say that F is a free group with basis X if the subset
X is free in F and it is a generating set of F .

The two definitions we have given for the free group (Definitions 4.1 and 4.3) are actually equivalent
(see [10, Proposition 16] or [2, Theorem 3.6]).

The following corollary gives a useful characterisation of a basis of a free group.

Corollary 4.4. F is a free group with basis X ⊂ F if and only if every element in F can be written in a
unique way as a reduced product of the elements in X ∪ X−1.

In order to show that free groups exist, we proceed to construct them, specifying the set of elements
of the group as well as an operation.

Definition 4.5. Let X be a nonempty set. The elements of X will be called letters and the set itself will be
called an alphabet. Any ordered and finite sequence of letters in X , w = x1x2 · · · xn with n ≥ 0 and xi ∈ X
not necessarily distinct, is a word on X . A subword of a word will be any subsequence of consecutive
letters. The length of a word w is the number of letters in the word and it will be denoted by |w |. We
will follow the convention of denoting by 1 the empty word (the only word of length zero). The set of all
words over X will be denoted by X ∗. Notice that X ∗ is a free monoid with respect to the operation of
concatenation. We define the set of formal inverses of X as X−1 = {x−1 : x ∈ X} (notice that X and
X−1 are disjoint). Moreover, we will use the notation X± = X ⊔ X−1.

Next, we define a congruence in the monoid (X±)∗ whose quotient will be the set for the free group
we are building.

Definition 4.6. Let u, v ∈ (X±)∗. The words u and v are said to be equivalent, u ∼ v , if there exists a
finite sequence of words u = w1,w2, ...,wk = v such that every wi+1 can be obtained from wi by insertion
or deletion of subwords of the form xx−1 with x ∈ X±.

We will consider the quotient FX := (X±)∗/ ∼ and we will define an operation on it which yields a
group. If we denote by [w ] ∈ FX the class of the word w ∈ (X±)∗, we can define the operation

[u] · [v ] := [uv ], (3)

where uv is the concatenation of u and v in (X±)∗.

Proposition 4.7. The set FX with operation (3) is a group.

Proof. Associativity in FX is a consequence of the associativity of concatenation in the monoid (X±)∗.
The neutral element is [1] and the inverse of a class [xϵ1i1 · · · x

ϵn
in
] ∈ FX (where ϵj = ±1) is the class

[x−ϵnin
· · · x−ϵ1i1

]. Therefore, FX with operation (3) is a group.

Once the group FX is constructed, we still have to show that it is free with basis X . But let us introduce
first the concept of reduced word.

Definition 4.8. A word w ∈ (X±)∗ is reduced if no letter in w is adjacent to its formal inverse.

The following result will allow us to reinterpret FX in a more combinatorial and algorithm-friendly way.

Proposition 4.9. Every equivalence class [w ] ∈ FX contains exactly one reduced word, denoted by w.
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Proof. See [10, Proposition 12] or [2, Proposition 3.3].

Remark 4.10. Proposition 4.9 allows us to interpret the group FX as the set of reduced words in (X±)∗

with the operation u · v = uv . In what follows, we will therefore think of elements of the free group as
reduced words.

Proposition 4.11. For any alphabet X , the group FX is free with basis X .

Proof. A corollary of Proposition 4.9 is the fact that the the map ιX : X → FX which takes x ∈ X to [x ]
is injective and this, in turn, gives the result (see [10, Corollary 14] for the details).

We have shown that we can build a free group with basis any given set (if the set is empty, we have
the free group of rank 0, F0, which is the trivial group). The following result tells us that the cardinal of
a basis determines the free group up to isomorphism.

Proposition 4.12. Let F be a free group with basis X ⊂ F and let F′ be a free group with basis X ′ ⊂ F′.
Then, F and F′ are isomorphic groups if and only if X and X ′ have the same cardinal.

Proof. See [10, Theorem 17] or [2, Theorem 3.8 and Corollary 3.10].

Remark 4.13. If X is a basis of F, we have that rk(F) = #X . Moreover, we will write Fn to denote the
free group of rank n.

A fundamental trait of free groups is the fact that, in a way, they contain all the information about all
existing groups. We make this statement precise below.

Theorem 4.14. Every group G is a quotient of an appropriate free group. That is, for every group G,
there exists a cardinal n and a normal subgroup N ⊴ Fn such that G ∼= Fn/N.

Proof. Let X ⊂ G be a set of generators of G (we can always take X = G ) and let n = #X be its cardinal.
We consider the free group FX . If we let φ : X → G be the inclusion map, by the universal property,
there exists a unique morphism of groups φ̃ : FX → G such that [x ]φ̃ = x , for every x ∈ X . Given that
X generates G , φ̃ is surjective and, by the First Isomorphism Theorem, ker φ̃ is a normal subgroup of FX

satisfying that FX/ ker φ̃ ∼= Im(φ̃) = G .

Relying on Theorem 4.14, we give next the definition of presentation of a group, which is a compact
way of encapsulating a group.

Definition 4.15. Let G be a group. A presentation for G is a pair (X ,R) where X is an alphabet, R
is a subset of FX and G ∼= FX/⟨⟨R⟩⟩. We usually write G = ⟨X |R⟩ and we call the elements of X the
generators given by the presentation of G and, the elements in R, relators of the presentation of G .

Remark 4.16. Observe that the free group with basis X admits the presentation FX = ⟨X |−⟩, which is
called the canonical presentation for FX .

Remark 4.17. Notice also that the presentation of a group is not unique. For example, ⟨a|−⟩ and ⟨a, b|ab−1⟩
are both valid presentations for the group Z.

Definition 4.18. We say that a presentation ⟨X |R⟩ is finite if both X and R are finite sets. Moreover, a
group is said to be finitely presented if it admits a finite presentation.
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Since finite presentations are finite ways to encode groups (which might be infinite), they are a specially
convenient way of representing groups for algorithmic problems (see Section 2.2).

As a last piece of information about presentations, in the following result we state how a presentation
for a direct product can be obtained from the presentations of its factors.

Proposition 4.19. Let H and K be groups with respective presentations ⟨S1|R1⟩ and ⟨S2|R2⟩. Then
⟨S1 ∪ S2|R1 ∪ R2 ∪ {[s1, s2] : s1 ∈ S1, s2 ∈ S2}⟩ is a presentation for the direct product H × K.

4.2 Stallings automata

In this section, we develop the Stallings theory representing subgroups of free groups as automata. The
crucial idea is to understand the elements in a subgroup as labels of closed paths in these automata. We
will develop this idea formally next, starting with some definitions that establish some basic concepts and
notation regarding these mathematical objects.

Definition 4.20. Let X be an alphabet. A (pointed) X -automaton is a tuple Γ = (V ,E , ι, τ , ℓ,b), where
V and E are disjoint sets and V is nonempty, ι, τ : E −→ V and ℓ : E −→ X are functions and b ∈ V .
The sets V = VΓ and E = EΓ are called the set of vertices and the set of directed edges or arcs of Γ,
respectively. The function ι assigns to each edge e ∈ E its origin eι ∈ V , while τ assigns its end eτ ∈ V .
The function ℓ assigns a label (e)ℓ ∈ X to each edge. The distinguished vertex b is called the basepoint
of the X -automaton. If eι = p, eτ = q and (e)ℓ = x , we write e ≡ p

x−→ q and we say that e is an x-arc.
Finally, if we forget about the labelling and the basepoint, what remains is a directed graph (also called
digraph) which we will call the underlying digraph of the automaton.

Definition 4.21. A walk of length s in an X -automaton Γ is a finite sequence γ = p0e1p1 · · · esps with
pi ∈ VΓ, ei ∈ E , ei ι = pi−1 and eiτ = pi for i = 1, ... , s. We say p0 and ps are the origin and the end of
γ respectively and we denote this by γι = p0 and γτ = ps . We also say that γ is a walk from p0 to ps and
we denote this by γ : p0 ⇝ ps . If p0 = ps = p, we say that γ is a closed walk and we also call it a p-walk.
Note that walks of length 0 (called trivial walks) correspond to vertices in Γ.

Definition 4.22. An involutive X -automaton Γ is an X±-automaton with a labelled involution on its arcs;

i.e., to every arc e ≡ p
x−→ q we associate a unique arc e−1 ≡ q

x−1

−−→ p such that e−1 ̸= e and (e−1)−1 = e.
We say that e−1 is the inverse of e. We say that E+Γ = {e ∈ EΓ : (e)ℓ ∈ X} is the set of positive arcs
of Γ and that E−Γ = {e ∈ EΓ : (e)ℓ ∈ X−1} is the set of negative arcs of Γ. The positive part of an
involutive automaton Γ is the automaton Γ+ obtained after deleting all the negative arcs from Γ. If we
remove the labelling and the basepoint of Γ, we obtain an involutive digraph and, if we identify the pairs
of arcs which are inverse of each other (constituting an edge) we have the so-called underlying graph of Γ.

Remark 4.23. Note that an involutive automaton is fully characterised by its positive (or negative) part.
We will make use of Γ+ in order to represent the automaton Γ, following the implicit convention that the
positive arcs e ≡ p

x−→ q can be crossed backwards (from q to p) reading the inverse label x−1.

Let us now give some notions about graphs. These concepts refer to graphs like the ones we obtain
when considering the underlying graph of an involutive automaton, but by extension we will use the same
terms to refer to the involutive automata from which these graphs come from.

A path is a sequence of vertices and edges v0e0v1e1 · · · ek−2vk−1 without repetitions such that vi ∈
VΓ, ei ∈ EΓ, ei ι = vi and eiτ = vi+1. If P = v0e0v1e1 · · · ek−2vk−1 is a path and k ≥ 3, then the graph
resulting from adding an edge between vk−1 and v0 to P is a cycle.
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A notion which will be of importance later on is that of connectivity. A non-empty graph Γ is called
connected if any two of its vertices are linked by a path in Γ. A maximal connected subgraph of Γ is called
a connected component of Γ. An edge of a graph Γ whose removal results in a disconnected graph is called
a bridge.

A graph which does not contain any cycles is called a forest and a connected forest is called a tree.
The degree of a vertex is the number of its incident edges. The vertices of degree 1 in a tree are its leaves.
If T is a tree and u and v are two of its vertices, we say that v is at T-distance d of u if the length of the
only path in T joining u and v has d edges. An edge e in the tree T is at T -distance d of u if its incident
vertex closest to u is at T -distance d of u. Given a graph Γ, a spanning forest (spanning tree) of Γ is a
subgraph of Γ which is a forest (tree) and whose vertices are all the vertices of Γ. The graphical rank of a
graph Γ, rk(Γ), is the number of arcs outside a spanning forest. If Γ is finite, then

rk(Γ) = #EΓ−#VΓ +#CΓ,

where CΓ is the set of connected components of Γ.

Remark 4.24. We will understand that the graphical rank of an automaton is the graphical rank of its
underlying graph. Similarly, the degree of a vertex of an automaton will be that of the corresponding
vertex in its underlying graph.

After giving these few notions for graphs, let us now go back to involutive automata. The labelling
on the arcs of an involutive automaton Γ can be naturally extended to an (X±)∗-labelling of walks in the
automaton simply by concatenating the corresponding labels of the arcs in the walk: if γ = p0e1p1 · · · esps
is a nontrivial walk, we define its label as (γ)ℓ = (e1)ℓ · · · (es)ℓ ∈ (X±)∗. Moreover, we define its reduced
label as (γ)ℓ := (γ)ℓ ∈ FX . The label and reduced label of a trivial walk are the trivial elements in the
monoid (X±)∗ and the group FX respectively (both will be denoted by 1). If (γ)ℓ = w ∈ (X±)∗, we say
that the walk γ reads w or that the word w labels the walk γ, and we write γ : p0 ⇝

w
ps .

Let Γ be an involutive and connected X -automaton and let p ∈ VΓ. One can observe that the set of
reduced labels of p-walks in Γ,

⟨Γ⟩p = {(γ)ℓ : γ is a p-walk of Γ},

is a subgroup of FX : indeed, the trivial element is a label for a trivial p-walk; the reduced label of the
concatenation of two elements in ⟨Γ⟩p is the reduced label of the p-walk obtained from reading one p-walk
after the other; and the inverse of the reduced label of a p-walk is the reduced label of the inverse walk
(the walk with the reversed sequence) of this p-walk.

Definition 4.25. This subgroup ⟨Γ⟩p is called the subgroup recognised by Γ at vertex p. The subgroup
recognised by Γ at the basepoint, ⟨Γ⟩b, will be denoted simply by ⟨Γ⟩ and we will call it the subgroup
recognised by Γ.

The previous definition establishes a map between automata and subgroups of the free group, namely,

{involutive X -automata} → {subgroups of FX}
Γ 7→ ⟨Γ⟩. (4)

Let us now remark that the map (4) is exhaustive. For any subgroup H of FX , we can consider a
(possibly infinite) generating set S . Below, we present an automaton that recognises the subgroup H.

With the notation above, given an element (or reduced word) w = xi1xi2 · · · xip ∈ S , the X -automaton
consisting of the directed cycle reading the word w is called the petal automaton of w (see Figure 1). The

21



Counting subgroups using Stallings automata

X -automaton obtained by identifying the basepoints of the different petal automata of all the words in S
is called the flower automaton of S and is denoted by Fl(S) (see Figure 2).

Figure 1: Petal automaton associated to the word w = xi1xi2 · · · xip .

Figure 2: Flower automaton of S = {w1,w2, ... ,ws}

It is clear that Fl(S) is an automaton recognising H. Observe that an element h ∈ H will be a product
of the generators in S and their inverses. If we consider the concatenation of the b-walks around the
petals of each of these generators in the same order that they appear in the expression of h as a product
of elements of S , we obtain a b-walk whose label is h (notice that the orientation of the b-walk around
each petal must be in concordance with the exponent +1 or −1 of each generator in the expression for h).
Conversely, b-walks in the flower automaton have as reduced labels elements of the subgroup H, since S
is a generating set. In consequence, the subgroup recognised by Fl(S) is H and we conclude that the map
(4) is exhaustive. However, this map is not a bijection. For example, considering different generating sets
gives different automata recognising the same subgroup.

With the goal of distinguishing a unique witness among all the automata recognising the same subgroup,
we now focus on the sources of redundancy in the map (4) and present some properties of automata which
will be relevant for the bijection.

Definition 4.26. Let Γ be an X -automaton. A vertex p ∈ VΓ is saturated if for every letter x ∈ X there
is at least one x-arc with origin at p. An X -automaton Γ is said to be saturated if all of its vertices are
saturated.

Remark 4.27. In the case of an involutive X -automaton (which is, in particular, an X±-automaton), being
saturated translates into having at least one x-arc going in and out of each vertex for each x ∈ X .

Definition 4.28. An X -automaton Γ is deterministic at a vertex p ∈ VΓ if no two arcs with the same
label depart from p (i.e., if eι = e ′ι and (e)ℓ = (e ′)ℓ implies that e = e ′). We say that Γ is deterministic
if it is deterministic at every vertex.
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Definition 4.29. We say that a walk γ presents backtracking if it has two successive arcs inverse of each
other. We say that γ is reduced if it presents no backtracking.

Definition 4.30. Let Γ be an involutive X -automaton. We say that a vertex in Γ is alive if it belongs to
some reduced b-walk, otherwise we say it is dead. Moreover, Γ is said to be core if it has no dead vertices.
The core of Γ, denoted by core(Γ), is the maximal core subautomaton of Γ (containing the basepoint).

It is sometimes convenient to understand coreness in an alternative way. In order to present it, we need
the following definition.

Definition 4.31. If the underlying graph of an automaton Γ can be obtained by identifying a vertex of
some graph ∆ with a vertex of some disjoint non-trivial tree T , then we say that T is a hanging tree of Γ.

Remark 4.32. An automaton will be core if it is connected and has no hanging trees which do not contain
the basepoint. As a consequence, core(Γ) is what remains after choosing the connected component of Γ
which contains the basepoint b and removing all the hanging trees which do not contain b.

It is important to notice that ⟨core(Γ)⟩ = ⟨Γ⟩.

As we will see, automata which are both deterministic and core are the appropriate witnesses we are
looking for.

Definition 4.33. An involutive X -automaton Γ is said to be reduced if it is deterministic and core.

Of course, in order to convert the map (4) into a bijection, we must distinguish reduced automata up
to isomorphism. We formalise this notion below.

Definition 4.34. Let Γ = (V ,E , ι, τ , ℓ,b) and Γ′ = (V ′,E ′, ι′, τ ′, ℓ′,b′) be two X -automata. A homomor-
phism of automata from Γ to Γ′ is a function θ : V −→ V ′ satisfying that (b)θ = b′ and that, for every
pair of vertices p, q ∈ VΓ and every x ∈ X , if there is an arc p

x−→ q in Γ then there is an arc pθ
x−→ qθ in

Γ′.

The following result is key to establish the bijection, as it will later ensure that reduced automata
recognising the same group will have to be the same up to isomorphism.

Proposition 4.35. Let Γ and Γ′ be reduced X-automata. Then, ⟨Γ⟩ ⩽ ⟨Γ′⟩ if and only if there is a
homomorphism Γ→ Γ′ and, in this case, the homomorphism is unique.

Proof. The proof of this technical result can be found in [10, Proposition 42].

Corollary 4.36. Two reduced X-automata recognise the same subgroup if and only if they are isomorphic
(there exists a bijective homomorphism of automata between them). That is, if Γ and Γ′ are reduced
X-automata, then

⟨Γ⟩ = ⟨Γ′⟩ ⇔ Γ ∼= Γ′.

Proof. If Γ ∼= Γ′, we have homomorphisms ϕ : Γ → Γ′ and ϕ−1 : Γ′ → Γ, so ⟨Γ⟩ ⩽ ⟨Γ′⟩ and ⟨Γ′⟩ ⩽ ⟨Γ⟩ by
Proposition 4.35 and we conclude that ⟨Γ⟩ = ⟨Γ′⟩.

Reciprocally, suppose ⟨Γ⟩ = ⟨Γ′⟩. Equivalently, we have that ⟨Γ⟩ ⩽ ⟨Γ′⟩ and ⟨Γ′⟩ ⩽ ⟨Γ⟩, which implies
(using again Proposition 4.35) that there exist homomorphisms ϕ : Γ → Γ′ and ψ : Γ′ → Γ. Notice that
the compositions ϕψ and ψϕ are homomorphisms from Γ and Γ′ to themselves respectively. Since it is
clear that the identity is a homomorphism from any automata to itself, the unicity from Proposition 4.35
guarantees that ϕψ and ψϕ are the identity of Γ and Γ′ respectively. Thus, Γ ∼= Γ′.
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We will now define the Schreier automaton for a subgroup and, from it, the Stallings automaton for a
subgroup, which will help us make the bijection in Theorem 4.44 more explicit.

Definition 4.37. Let G be a group, H a subgroup of G and S ⊂ G a set of generators for G . The (right)
Schreier automaton of H with respect to S , denoted by SchG (H, S) or Sch(H,S) if the group is clear by
the context, is the S-automaton with set of vertices H\G (the set of right cosets of G mod H), an arc
Hg

s−→ Hgs for every coset Hg ∈ H\G and every element s ∈ S±, and the coset H as basepoint.

Since the vertices of the Schreier automaton are the cosets of the subgroup H, the index of H in G
will be the number of vertices in this automaton. Some other of its properties are collected in the next
proposition.

Proposition 4.38. If H is a subgroup of FX , the following properties hold:

(i) Sch(H,X ) is an involutive, deterministic and saturated X-automaton;

(ii) Sch(H,X ) is connected, but it may not be core;

(iii) ⟨Sch(H,X )⟩ = H.

All points in the previous proposition are quite transparent, but it is worth providing an example to
show that the Schreier automaton is not necessarily core.

Example 4.39. If we consider the subgroup H = ⟨x⟩ in F2 = ⟨x , y |−⟩, we have that Sch(H, {x , y}) consist
of an x-loop at the basepoint together with two hanging trees joined to the basepoint by respective b-arcs.
This automaton is not core, due to the presence of hanging trees not containing the basepoint.

We will now add coreness to the Schreier automaton to reach a reduced automaton.

Definition 4.40. Let H be a subgroup of FX . The Stallings automaton of H with respect to X , denoted
by St(H,X ), is the core of Sch(H,X ), that is St(H,X ) = core(Sch(H,X )).

The following result makes clearer the relation between the Schreier and the Stallings automata.

Proposition 4.41. Let H be a subgroup of FX . Then, St(H,X ) is saturated iff St(H,X ) = Sch(H,X ) iff
Sch(H,X ) is core.

Proof. To see this, we must simply take into account that Sch(H,X ) is always saturated, St(H,X ) is
always core and St(H,X ) = core(Sch(H,X )).

Before stating the result (Theorem 4.44) that gives us the bijection we are looking for, let us introduce
certain transformations that will allow us to actually compute the Stallings automaton of a subgroup when
it is given by a finite set of generators.

Definition 4.42. Let Γ be an involutive X -automaton and let e and f be two arcs breaking the determinism
of Γ, that is, eι = f ι and (e)ℓ = (f )ℓ , but e ̸= f . We define a Stallings folding, and denote it by Γ ↷ Γ′,
as the transformation which consists in identifying the arcs e and f (as well as their corresponding inverses)
in Γ. If the arcs e and f are not parallel (i.e., eτ ̸= f τ), we will refer to it as an open folding (see Figure
3); otherwise, we will say it is a closed folding (see Figure 4).
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Figure 3: Open folding.

Figure 4: Closed folding.

Since the arcs involved in a Stallings folding have the same label, one can read the same reduced words
in Γ before and after performing a Stallings folding. This observation gives the following lemma.

Lemma 4.43. If Γ ↷ Γ′ is a Stallings folding, then ⟨Γ⟩ = ⟨Γ′⟩.

All the previous concepts and results of this section crystallise into the following theorem, which gives
a bijection between certain kind of automata and subgroups of the free group.

Theorem 4.44 (Stallings). The function

{(isomorphic classes of) reduced X-automata} → {subgroups of FX}
Γ 7→ ⟨Γ⟩ (5)

is a bijection with inverse St(H,X ) ←[ H. Furthermore, finitely generated subgroups correspond precisely
to finite automata and, in this case, the bijection is algorithmic.

Proof. Both maps are well-defined: indeed, for every Γ, ⟨Γ⟩ is a subgroup of FX ; and St(H,X ) is a reduced
X -automaton for every H ⩽ FX . Also, the maps are inverse of each other: on the one hand, ⟨St(H,X )⟩ = H
because Sch(H,X ) already recognised H and taking the core does not change the recognised subgroup; on
the other hand, for Γ reduced, Corollary 4.36 ensures that St(⟨Γ⟩,X ) = Γ.

We will now show that, if a subgroup H is given by a finite number of generators, then the map (5)
is algorithmic. Suppose S is the given finite set of generators of H ⩽ FX . We can build Fl(S), the flower
automaton of S . This automaton recognises H and it is core by construction (since we can assume the
generators to be reduced words). However, this flower automaton may fail to be deterministic at the
basepoint, since we can have two different generators starting by the same letter. To fix this, we can
perform a series of Stallings foldings of the pairs of arcs which break the determinism.

By Lemma 4.43, we know that these Stallings foldings do not change the subgroup recognised by the
automaton. During this process of folding, new nondeterministic situations to fix may arise. However,
notice that with each folding we perform, the number of arcs in the automaton decreases by one and,
since we start with a finite number of arcs because the initial automaton is finite, this folding process
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will eventually finish. As a result, we will obtain a deterministic X -automaton recognising H. Moreover,
since the folding process can only produce hanging trees containing the basepoint, the final object is still
core, and hence a reduced X -automaton recognising H, which must be St(H,X ) (because we have already
shown that (5) is a bijection). We emphasise that the bijectivity of (5) implies that the result of the
folding process is independent of the order in which the foldings are performed as well as of the initial set
of generators of H one starts with.

Since we have shown that one of the directions is algorithmic and we have a bijection, we also have
that the map is algorithmic in the other direction.

The following example illustrates how to perform Stallings foldings so as to obtain a Stallings automaton.

Example 4.45. Consider the subgroup H = ⟨x2yx−1, xy−1xy⟩ ⩽ F2 = ⟨x , y |−⟩. Figure 5 summarises a
sequence of Stallings foldings which starts with the flower automaton of S = {x2yx−1, xy−1xy} and ends
with St(H).

Figure 5: Sequence of Stallings foldings.

The following result is quite relevant because it gives an efficient way to compute the direction Γ 7→ ⟨Γ⟩
of bijection (5). Moreover, it shows that an automaton encodes a basis for the group it recognises and
that the rank of this subgroup can be interpreted graphically under certain assumptions.

Theorem 4.46. Let Γ be a connected, pointed and involutive X -automaton, let T be a spanning tree of Γ,
and let

BT = {(b⇝T p
e−→ q ⇝

T
b)ℓ : e ∈ E+Γ\ET}

bet the set of reduced labels of positive T -petals (where ⇝
T

means that the arcs in the corresponding part
of the walk belong to T). Then,

(i) BT is a generating set for ⟨Γ⟩,

(ii) if Γ is deterministic, then ⟨Γ⟩ is free with basis BT ,

(iii) if Γ is reduced, then ⟨Γ⟩ is finitely generated if and only if Γ is finite and, then,

rk(⟨Γ⟩) = 1−#VΓ +#E+Γ = rk(Γ).
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Proof. We will give an idea of the proof just for the first item (the rest of the proof can be seen in detail
in [10, Proposition 54]). Let w = (γ)ℓ ∈ ⟨Γ⟩, where γ is a reduced b-walk. We may write:

γ : b⇝
T •

e
ϵ1
1−−→ •⇝T •

e
ϵ2
2−−→ •⇝T • · · · •⇝T •

e
ϵl
l−−→ •⇝T b,

where e1, ... , el ∈ E+Γ\ET and ϵj = ±1. And we can also consider:

γ′ : b⇝
T •

e
ϵ1
1−−→ •⇝T b⇝

T •
e
ϵ2
2−−→ •⇝T b · · ·b⇝T •

e
ϵl
l−−→ •⇝T b.

It is clear that w = (γ)ℓ = (γ′)ℓ ∈ ⟨BT ⟩.

An immediate consequence of Theorem 4.46, is the following widely-known result.

Theorem 4.47. (Nielsen-Schreier) Every subgroup of a free group is free.

The theory of Stallings automata we have seen so far has many applications. For example, it can be
used to derive results like the fact that bases of subgroups of free groups are generating sets of minimum
cardinality (see [10, Proposition 72]) or to prove that Fn is Hopfian (see [10, Proposition 73]), that is,
every exhaustive endomorphism of F is automatically injective. Another application of Stallings theory is
to show that the membership problem is solvable for free groups (see [10, Proposition 69]). To see many
other applications of this theory, we refer the interested reader to [8].

In the next section we will apply this theory to study the index of subgroups of free groups and, in
particular, to count the number of subgroups of a given finite index.

4.3 Studying the index of subgroups in free groups

In this section, we will use Stallings automata to study questions related to the index of subgroups of free
groups, including the finite index problem and the derivation of a formula giving the number of subgroups of
a certain finite index in the free group. To start, we give a result which characterises finite index subgroups
of free groups.

Proposition 4.48. Let H be a finitely generated subgroup of a free group FX . Then, the index |FX : H|
is finite if and only if St(H) is saturated and, in this case, |FX : H| = #VSt(H).

Proof. Recall that the vertices of the Schreier automaton of H are the right cosets of H in FX . Then, if
|FX : H| is finite, Sch(H) is finite. If St(H) were not saturated, we would have to add to it hanging trees
(with infinite vertices) at the vertices with a missing x-arc for some x ∈ X± to obtain Sch(H), which would
mean that Sch(H) is infinite, yielding a contradiction. So St(H) must be saturated. Conversely, if St(H)
is saturated, then St(H) = Sch(H) by Proposition 4.41. Then, Sch(H) has a finite number of vertices
because St(H) is finite due to the fact that H is finitely generated. Thus, |FX : H| is finite. In consequence,
the index |FX : H| is finite if and only if St(H) is saturated and, in this case, since the Stallings and the
Schreier automata of H are the same, we have that |FX : H| = #VSt(H).

As a first consequence of this result, we may observe that FX has a finite number of subgroups with a
given finite index k, since there is a finite number of Stallings automata with k vertices. Later, in Theorem
4.55, we will obtain a formula to determine that number precisely. A second consequence is that we can
solve FIP(FX ) for FX a free group.

27



Counting subgroups using Stallings automata

Corollary 4.49. The finite index problem is solvable for free groups.

Proof. The decidability of FIP(FX ) is a consequence of Proposition 4.48 and of the computability of the
Stallings automaton in the finitely generated case. For the computation of a transversal when H is of finite
index, take into account that St(H) is saturated and finite. Notice that any walk γ in St(H) = Sch(H)
starting at b satisfies that γτ = Hw , where w = (γ)ℓ ∈ FX . Therefore, we can consider a family of
representatives of the right cosets mod H simply by taking walks from the basepoint to each of the vertices
of St(H) and taking their labels.

We give below a formula relating the index and the rank of a subgroup of a free group, which will be
used later on in Theorem 5.43.

Theorem 4.50. (Schreier’s Index Formula) Let Fn be a free group of rank n and let H be a finite index
subgroup of Fn. Then

rk(H)− 1 = |Fn : H|(n − 1). (6)

In particular, the subgroup H is finitely generated if and only if the ambient rank n is finite.

Proof. If H has finite index, then St(H) is saturated (so it is 2n-regular) and #VSt(H) < ∞. Therefore
rk(St(H)) <∞ (that is, there is a finite number of arcs outside any spanning tree) if and only if n <∞.
In particular, if n is infinite, then rk(H) =∞ and the formula (6) holds.

Let us suppose now that n <∞. We know that H is finitely generated, so St(H) is finite. Let T be a
spanning tree of St(H), then H has a basis with #(E+St(H)\ET ) elements. Taking this into account, we
have

rk(H)− 1 = #(E+St(H)\ET )− 1 = #E+St(H)−#ET − 1
= #E+St(H)−#VT = n#VSt(H)−#VSt(H)
= |Fn : H|(n − 1),

where the second to last equality comes from the equality 2n#VSt(H) = 2#E+St(H), which is obtained
by adding the degrees of all of the vertices.

In the remaining of this section, we will obtain a recursive formula that gives the number of subgroups
of a given finite index in a free group of finite rank. This result was initially obtained by Marshall Hall Jr.
in a paper (see [15]) published in 1949. Here we revisit this result using the language of Stallings automata
(whose theory was introduced in the previous section) in order to represent subgroups of the free group,
instead of using a Schreier system and a certain function to do so (as it was done originally in [15]).

Taking into account the bijection presented in Theorem 4.44 and the characterisation of finite index
subgroups given in Proposition 4.48, one can establish the following bijection:

Sk(X ) → Hk(X )
Γ 7→ ⟨Γ⟩, (7)

where Sk(X ) denotes the set of (isom. classes of) saturated Stallings automata with k vertices and Hk(X )
denotes the set of subgroups of index k of FX .

So, our task is to count the number of reduced and saturated X -automata with k vertices (taking
X = {x1, ... , xn} to be a set of n elements). In order to do so, it is convenient to use an alternative
representation of Stallings automata in which the vertices of the automata are labelled. Propositions 4.52
and 4.53 give a one to one correspondence between the automata with labelled vertices and tuples of
permutations, which will be easier to count. However, considering labelled automata raises the issue that,
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when counting subgroups, we will have to take into account that automata which are identical but for a
change in the labels of the vertices actually represent the same subgroup.

We introduce now some notation that will be used in the remaining of this section. Firstly, we will
denote by Sk the set of permutations of a set of k elements V = {v1, v2, ... , vk}. Secondly, for a fixed set
X = {x1, ... , xn} we will denote by Ãk(X ) the set of all X -automata which are deterministic and saturated
and which have k labelled vertices.

Remark 4.51. We make two observations:

(i) The automata in Ãk(X ) have no hanging trees. Indeed, if there was one, it would have to be finite
and there would be a leaf, in contradiction with the fact that these automata are saturated (all
vertices should have even degree).

(ii) The automata in Ãk(X ) need not be connected.

Proposition 4.52. Let X = {x1, ... , xn} and k ∈ N. Then there exists a bijection between (Sk)
n and

Ãk(X ).

Proof. We will start by giving a map ϕ : (Sk)
n → Ãk(X ). Let P = (π1, ... ,πn) be a tuple of permutations

of a set V = {v1, ... , vk}. We can build an X -automaton Γ̃ with (labelled) vertex set V , taking v1 to be
the basepoint and defining the set of arcs as follows: for each i ∈ [n] and j ∈ [k], if (vj)πi = vl , add the

edge vj
xi−→ vl to Γ̃. This automaton satisfies that:

(i) It is deterministic: notice that Γ̃ is deterministic by construction, since πi has a unique image for
every element of V .

(ii) It is saturated: it is clear that for each label xi we have an xi -arc going out of each vertex and the
fact that each πi is surjective guarantees that there is also an xi -arc arriving at each vertex.

Therefore, we have that Γ̃ ∈ Ãk(X ) and we can set (P)ϕ = Γ̃.

For the other direction of the bijection, let Γ̃ ∈ Ãk(X ) with set of vertices V = {v1, v2, ... , vk}. Fix
i ∈ [n] and consider j ∈ [k]. Since Γ̃ is deterministic and saturated, there is a unique arc starting at vertex
vj with label xi . Let us denote the end vertex of this arc by vjxi . Now, for every xi ∈ X , we may define
the map

πi : V → V
vj 7→ vjxi ,

which is bijective because V is a finite set and we can show that the map is injective. Indeed, if we had
vjxi = vlxi for some vj , vl ∈ V with vi ̸= vl , there would be two different arcs labelled with xi arriving at
vertex vjxi = vlxi , contradicting the fact that Γ̃ is deterministic. Thus πi belongs to Sym(V ). If we define
(Γ̃)ϕ−1 = (π1, ... ,πn) for every Γ̃ ∈ Ãk(X ), it is clear that ϕ−1 is indeed the inverse of ϕ.

Proposition 4.53. Let X = {x1, ... , xn}. Then there exists a bijection between the subset of automata
in Ãk(X ) which are connected and the set of tuples P = (π1, ... ,πn) with πi ∈ Sym(V ),∀i ∈ {1, ... , n},
such that the action of the group G = ⟨P⟩ = ⟨π1, ... ,πn⟩ on V is transitive.

Proof. We will show that the restriction of the bijection ϕ given in the proof of Proposition 4.52 to the set

S = {(π1, ... ,πn) ∈ (Sk)
n : the action of ⟨π1, ... ,πn⟩ on V is transitive}
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is a bijection onto its image, which is nothing but the set of elements in Ãk(X ) which are connected.

Take P = (π1, ... ,πn) ∈ S and consider two vertices vj , vl ∈ V of the automaton Γ̃ = (P)ϕ. Given that
the action of G = ⟨π1, ... ,πn⟩ on V is transitive, there exists σ = πi1πi2 · · ·πis ∈ G such that (vj)σ = vl . By
the way in which the automaton Γ̃ is built, this translates into a walk from vj to vl labelled by xi1xi2 · · · xis ,
so it is clear that any two vertices in Γ̃ are connected.

Now suppose Γ̃ ∈ Ãk(X ) is connected and consider the tuple P = (π1, ... ,πn) = (Γ̃)ϕ−1. Observe
that, since Γ̃ is connected, there is a walk from the basepoint to any other vertex u of the automaton with
some label xi1 · · · xis . If we now consider σ = πi1 · · ·πis ∈ G = ⟨π1, ... ,πn⟩, we have that σ is a permutation
of V taking the basepoint to u. This implies that the orbit of the basepoint is the whole set V , so the
action is transitive.

Notice that, given an automaton Γ̃ ∈ Ãk(X ), it may not be connected and hence will not represent
a (vertex-labelled) Stallings automaton. However, we can always obtain a reduced and saturated X -
automaton with up to k labelled vertices simply by taking the basepoint component of Γ̃ (we assume it
is the vertex with label v1). If we denote by Γ̃b the automaton obtained in this way, we can define the
following map:

f : Ãk(X ) → Cb(Ãk(X ))

Γ̃ 7→ Γ̃b,

where Cb(Ãk(X )) denotes the set of connected components containing the basepoint (vertex with label v1)
of the automata in Ãk(X ). In terms of the permutations which are in bijection with Ãk(X ), what f does
is to take the orbit of v1 under the action of the group generated by the permutations. Restricted to this
orbit, the action is transitive and, by Proposition 4.53, the corresponding automaton is a vertex-labelled
Stallings automaton.

Remark 4.54. Notice that the automata in Cb(Ãk(X )) can have between 1 and k vertices. In addition,
these automata are reduced.

Moreover, every (vertex-labelled) automaton Γ̃b determines a (standard) Stallings automaton Γb simply
by removing the labels of all vertices except the basepoint (in this context, the label v1 is what differentiates
it from the rest of vertices). Thus, we can define a map:

g : Cb(Ãk(X )) →
⋃k

j=1 Sj(X )

Γ̃b 7→ Γb,

where
⋃k

j=1 Sj(X ) is the set of all possible saturated Stallings automata with up to k vertices.

These two maps f and g that we have just defined, together with Propositions 4.52 and 4.53, play an
essential role in the proof of the following result which gives a recursive formula for Nk(Fn).

Theorem 4.55. The number Nk(Fn) of subgroups of index k in Fn is given recursively by N1(Fn) = 1,

Nk(Fn) = k(k!)n−1 −
k−1∑
i=1

[(k − i)!]n−1Ni (Fn).

Proof. Let us consider the following composition of maps:

(Sk)
n ϕ←→ Ãk(X )

f−→ Cb(Ãk(X ))
g−→

⋃k
j=1 Sj(X )

ψ←→
⋃k

j=1Hj(X )

P 7→ Γ̃ 7→ Γ̃b 7→ Γb 7→ ⟨Γb⟩,
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where ϕ is the bijection described in the proof of Proposition 4.52, f and g are the maps defined above
and ψ denotes a bijection whose restriction to subsets of automata in

⋃k
j=1 Sj(X ) with the same number

of vertices is the bijection (7) for the corresponding value of the index.

Since all the maps involved are surjective, their composition φ = ϕfgψ is surjective as well. We may
write

(Sk)
n =

⊔
H

(H)φ−1, (8)

where H runs over all possible subgroups of FX of finite index lower or equal than k.

We will now determine the cardinal of the fiber of each element in the image of f and g respectively.
In the case of f , the number of automata which have the same basepoint component as Γ̃ ∈ Ãk(X ) (that
is, the same orbit of v1 in V under the action of the group generated by the elements of the tuple (Γ̃)ϕ−1)
is equal to the number of different ways in which n permutations can act on the vertices outside of this
orbit. If the basepoint component of Γ̃ has r elements, there are k − r vertices outside of the orbit of v1,
so there are exactly [(k− r)!]n automata in Ãk(X ) whose image by f is (Γ̃)f . In the case of g , the number
of preimages of an automaton Γb ∈

⋃k
j=1 Sj(X ) is equal to the number of different labellings that can be

assigned to the vertices in Γb which are not the basepoint. If the number of vertices in the automaton is r ,
this is precisely (k − 1)(k − 2) · · · (k − (r − 1)).

So, we have seen that for a subgroup H of finite index r in FX , the cardinal of its fiber is determined
by its index:

#((H)φ−1) = (k − 1)(k − 2) · · · (k − (r − 1))[(k − r)!]n = (k − 1)![(k − r)!]n−1.

Therefore, by (8), we have that

(k!)n =
∑
H

#((H)φ−1) =
k∑

r=1

(k − 1)![(k − r)!]n−1Nr (Fn),

where in the first sum H runs over the subgroups of indices from 1 to k in Fn, and in the second equality
we have stratified the sum according to the index of the subgroups. Dividing by (k − 1)! and separating
the last term of the sum, we have

k(k!)n−1 = Nk(Fn) +
k−1∑
r=1

[(k − r)!]n−1Nr (Fn),

and, isolating Nk(Fn), we obtain the desired formula.

Table 2 shows the number of subgroups of index k in Fn for small values of k and n.

n\k 1 2 3 4 5 6 7

1 1 1 1 1 1 1 1
2 1 3 13 71 461 3447 29093
3 1 7 97 2143 68641 3011263 173773153
4 1 15 625 54335 8563601 2228419359 893451975473
5 1 31 3841 1321471 1035045121 1611152548351 4514783110951681

Table 2: Values of Nk(Fn) for small n and k.
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5. Free times free-abelian groups

In this section we will deal with free times free-abelian groups (FTFA groups, for short) which are the direct
product of the two types of groups that we have seen in Sections 3 and 4, free groups and free-abelian
groups.

Although at first sight one might be tempted to think that FTFA groups are just a simple combination
of free and free-abelian groups, they turn out to be a more complicated family of groups than expected,
since they exhibit certain behaviours that set them apart from their factors. One example of this unexpected
behaviour is the fact that FTFA groups are not necessarily Howson, whereas it is known that both free
groups and free-abelian groups are Howson. It is worth checking this fact with an example.

Example 5.1. Let F2 × Z = ⟨x , y |−⟩ × ⟨t|−⟩, and consider the finitely generated subgroups H = ⟨x , y⟩
and K = ⟨tx , y⟩. If we study the intersection of these two subgroups, we obtain

H ∩ K = {w(x , y) : w ∈ F2} ∩ {w(xt, y) : w ∈ F2}
= {w(x , y) : w ∈ F2} ∩ {w(x , y)t |w |x : w ∈ F2}
= {w(x , y)t0 : w ∈ F2, |w |x = 0}
= ⟨x−kyxk : k ∈ Z⟩ = ⟨⟨y⟩⟩,

where |w |x denotes the sum of the exponents of every appearance of x in the word w and ⟨⟨y⟩⟩ denotes
the normal closure of y in F2. Since the Stallings automaton corresponding to H ∩K = ⟨⟨y⟩⟩ is the one in
Figure 6 and it has infinite graphical rank, we conclude that H ∩K is not finitely generated (using Theorem
4.46, which relates the graphical rank of the automaton with the algebraic rank of the subgroup which it
recognises).

Figure 6: Stallings automaton of H ∩ K .

As we can see, the sometimes unexpected behaviour of FTFA groups makes them an interesting object
of study. Indeed, this family of groups has been the focus of several recent research papers (see [7, 19, 17,
18, 10, 3, 13, 6] ) which investigate issues like, for example, the intersection of subgroups of FTFA groups
or the endomorphisms of these groups.

The current section is structured as follows. In Section 5.1, we will present FTFA groups and derive
some of their basic properties; in Section 5.2, an enriched version of Stallings automata suitable for the
representation of subgroups of FTFA groups will be developed; and, in Section 5.3, we will obtain a formula
for calculating the number of subgroups of a given finite index in a FTFA group. Since the study of FTFA
groups using enriched automata is fairly recent (as opposed to the classical theory of Stallings automata
for free groups presented in Section 4, whose origin may be traced back to 1983 with the publication of
[20] by J.R. Stallings), the results in Sections 5.1 and 5.2 will include proofs in most cases and some will
be illustrated with examples. For this part, we will follow closely [9] and [5].
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5.1 Properties of FTFA groups

We call free times free-abelian groups (FTFA) the direct product of a finite rank free group Fn and a finitely
generated free-abelian group Zm, that is, groups of the form G ∼= Fn × Zm. Therefore, by Proposition
4.19, we can consider the following standard presentation for them

G ∼= Fn × Zm =

〈
x1, ... , xn, tixk = xkti , ∀i ∈ [m],∀k ∈ [n]
t1, ... , tm ti tj = tj ti , ∀i , j ∈ [m]

〉
, (9)

taking into account the presentations given for the direct factors in Remarks 4.16 and 3.5.

By definition, any element in G can be represented as a product of the generators xi and tj given in this
presentation, but it is important to notice that, due to the fact that the tj ’s commute with all the other
generators, we can obtain different reduced words on these generators representing the same element of the
group. However, every element of G admits a unique representation of the form w(x1, ... , xn)t

a1
1 ta22 · · · tamm ,

where w(x1, ... , xn) is a word on X = {x1, ... , xn} and (a1, a2, ... , am) ∈ Zm.

For economy in the notation, we will abbreviate this normal form writing it as

wta = w(x1, ... , xn)t
(a1,a2,...,am),

where t is a formal symbol with the only purpose of holding the vector a = (a1, a2, ... , am) in the exponent
so that we can write the addition of elements in Zm as a product. Indeed, in this manner, we can write the
operation in G as (uta)(vtb) = uvta+b using multiplicative notation, while the abelian part works additively,
as usual, up in the exponent. With this convention, the trivial element of the group G is (represented by)
1 · t0 and ti = tei , where 0 = (0, ... , 0) ∈ Zm and ei = (0, ... , 1, ... , 0) is the all-zeros vector with a 1 in
the i-th position, for i ∈ [m].

Definition 5.2. For an element in normal form wta, we say that w ∈ Fn is its free part and the vector
a ∈ Zm is its abelian part. Moreover, we will denote by π the projection to the free part

π : G→ Fn

wta 7→ w ,

and by τ the projection to the abelian part

τ : G→ Zm

wta 7→ a.

Of course, two elements of G are equal if and only if their free and abelian parts coincide. And it is
also worth noticing that both π and τ are homomorphisms. The following remark draws attention to a
redundancy which might generate some confusion.

Remark 5.3. We must be careful in the case in which n = 1. In that case, Fn × Zm ∼= Zm+1 is a free-
abelian group and can be seen as F0×Zm+1 or as F1×Zm, a fact that gives rise to some ambiguity when
defining π. We will think of these groups as F0 × Zm+1. However, to avoid unnecessary confusions, in
many cases we will choose to avoid this case n = 1, since free-abelian groups were already dealt with in
Section 3.
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As it is the case with free and free-abelian groups, subgroups of a FTFA group are again of the same
kind (with the restrictions inherited from those of its factors). In order to prove this result, it is important
to note that the group G fits in the middle of the natural short exact sequence

1 −→ Zm ι−−→ G π−−→ Fn −→ 1, (10)

where ι is the inclusion map and π is the projection to the free part.

Proposition 5.4. Let H be a subgroup of G = Fn × Zm. Then the subgroups of H are again free times
free-abelian. In particular, for n ≥ 2, H admits a decomposition

H = Hπσ × (H ∩ Zm) ∼= Fn′ × Zm′
, (11)

where σ is a splitting of (10), m′ ∈ [0,m] and n′ ∈ [0,∞].

Proof. If we have n = 0, 1, then G is free-abelian and, therefore, any subgroup is free-abelian as well. Let
us suppose in what follows that n ≥ 2.

In the short exact sequence (10), we have that ker(π) = im(ι) = {1} × Zm ∼= Zm. If we now restrict
this short exact sequence to H ⩽ G, we obtain

1 −→ ker(π|H)
ι−−→ H

π−−→ Hπ −→ 1,

where ker(π|H) = H ∩ ker(π) ∼= H ∩ Zm ⩽ Zm and Hπ ⩽ Fn. In consequence, ker(π|H) is a free-abelian
group and Hπ is a free group. In order to obtain a splitting for π|H , choose a basis for Hπ, say {ui}i∈I
for some countable set of indices I (recall that Hπ need not be finitely generated). Consider the map that
takes every ui to an arbitrary preimage ui t

ai ∈ H for some ai ∈ Zm. Since the group Hπ is free, this defines
a splitting σ : Hπ 7→ H. Moreover, we have that σ is injective, which implies that Hπσ ⩽ H is isomorphic
to Hπ. We can now exhibit the following isomorphism of groups:

φ : H −→ Hπσ × ker(π|H)

h 7−→(hπσ, h(hπσ)−1).

Therefore H = Hπσ × ker(π|H) ∼= Hπ × (H ∩ Zm) ∼= Fn′ × Zm′
, where n′ and m′ are as indicated in the

statement of the result, so H is free times free-abelian.

Corollary 5.5. A subgroup H ⩽ Fn × Zm is finitely generated if and only if its projection Hπ to the free
part is finitely generated.

The following result tells us how the rank of G is related to the ranks of its direct factors.

Proposition 5.6. Let H ⩽ Fn × Zm, then

rk(H) = rk(Hπ) + rk(H ∩ Zm).

Proof. Let us denote p = rk(Hπ) and q = rk(H ∩ Zm). From (11), we know that H is isomorphic to the
direct product of Hπ and H ∩ Zm, so it can be generated by p + q elements (the union of p generators of
Hπ and q generators of H ∩ Zm) . Therefore rk(H) ≤ p + q.

In general, if G ab is the abelianisation of a group G , we have that rk(G ab) ≤ rk(G ). Given that
Hab ∼= (Hπ)ab× (H ∩Zm)ab ∼= Zp ×Zq, we derive that p+ q = rk(Hab) ≤ rk(H). Thus we conclude that
rk(H) = p + q.
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Now, by considering respective bases for each of the factors of a subgroup H ⩽ G (that is, a basis for
Hπσ and an abelian basis for H ∩ Zm), we define a notion of basis for a subgroup of a FTFA group.

Definition 5.7. A free-abelian basis of a subgroup H ⩽ Fn × Zm is a set of generators of H of the form

{u1ta1 , ... , uptap ; tc1 , ... , tcq},

where a1, ... , ap ∈ Zm, {u1, ... , up} is a free basis of Hπ, and {c1, ... , cq} is an abelian basis of LH = H∩Zm.
Notice that we might have p = ∞, since Hπ could be a subgroup of infinite rank of Fn. This does not
happen with q, which will always be lower or equal than m (by Theorem 3.7).

Given an element w ∈ Fn and a subgroup H ⩽ Fn × Zm, we may wonder what elements of Zm can
“accompany” w as an abelian part in such a way that the resulting element belongs to H. This gives rise
to the following concept.

Definition 5.8. Given a subgroup H ⩽ G and an element w ∈ Fn, we define the abelian completion of
w in H to be CH(w) = {a ∈ Zm : wta ∈ H}. We also say that a is an abelian completion of w in H if
a ∈ CH(w).

Proposition 5.9. The completion CH(u) is non-empty if and only if u ∈ Hπ and, in this case, it is a coset
of LH = H ∩Zm in Zm. In particular, if {u1ta1 , ... , uptap ; tc1 , ... , tcq} is a free-abelian basis for H ⩽ G and
w ∈ Fn, then

CH(w) =

{
∅, if w ̸∈ Hπ,
ωA+ LH if w ∈ Hπ,

where A is the p × m matrix having ai as i-th row, LH = ⟨c1, ... , cq⟩ ⩽ Zm and ω = wϕρ is the
abelianisation of the expression of w in the basis {u1, ... , up}; that is, ϕ is the change of basis w 7→ ω (w
is originally represented by a word in the generators of the ambient Fn and w = ω(u1, ... , up)), and ρ is
the abelianisation Fu1,...,up

∼= Fp ↠ Zp, as it is represented in the following diagram:

Fn ⩾ Hπ
ϕ−−−−→ Fp

ρ−−−→ Zp A−−−−→ Zm /LH−−−−−→ Zm/LH
w 7−−−→ ω 7−−−→ ω 7−−−→ ωA 7−−−→ ωA+ LH = CH(w).

Proof. For the first part, it is enough to take into account the definition of abelian completion, from which
we deduce that CH(u) ̸= ∅ iff ∃a ∈ Zm : uta ∈ H iff u = (uta)π ∈ Hπ. To see that, if CH(w) ̸= ∅,
then it is a coset of LH , let us assume that {u1ta1 , ... , uptap ; tc1 , ... , tcq} is a basis for H. The fact that
CH(w) = ωA + LH follows from this observation: if we take wta ∈ H and write it in terms of this basis,
we will have

wta = ω(u1t
a1 , ... , upt

ap)tb

for some b ∈ ⟨c1, ... , cq⟩. Since the t’s commute with everything, if we denote by |ω|i the sum of the
exponents of the different appearances of ui t

ai in ω(u1t
a1 , ... , upt

ap), we have that

wta = ω(u1, ... , up)t
(|ω|1,...,|ω|p)A+b,

and thus, a = (|ω|1, ... , |ω|p)A+ b ∈ ωA+ LH .

A consequence of the previous result is this useful equivalence.

Corollary 5.10. Let wta ∈ G and H ⩽ G with basis {u1ta1 , ... , uptap ; tc1 , ... , tcq}, then

wta ∈ H ⇔ w ∈ Hπ and a ∈ wϕρA+ LH .
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5.2 Enriched automata

In Section 4.2 we gave a graphical description of the subgroups of the free group using Stallings automata,
and now we will extend this theory to the subgroups of FTFA groups. To achieve this goal, we will also
use certain type of automata, but enriched with some additional information to encode the abelian part of
these subgroups. We give a precise definition of these objects below.

Definition 5.11. A Zm-enriched X-automaton (or simply an enriched automaton) is a pointed involutive
(Zm×X ×Zm)-automaton, with a subgroup of Zm attached to the basepoint. In more detail, an enriched
automaton Γ consists of:

(i) an involutive pointed digraph Γ = (V ,E , ι, τ ,b), which will be called the underlying digraph of Γ;

(ii) an involutive labelling map ℓ = (ℓ1, ℓX , ℓ2) : E → Zm × X± × Zm to which we refer as the enriched
labelling of Γ; in other words, for every arc e ≡ p → q with label (a1, x , a2), there exists a unique
arc e−1 ≡ q → p with label (−a2, x−1,−a1), which will be called the inverse arc of e. We will refer
to a1 and a2 as abelian labels of e and to x as a free label of e.

(iii) a label for the basepoint, which is a subgroup LΓ ⩽ Zm which we call the basepoint subgroup of Γ,

The result of removing from Γ the basepoint subgroup is what we call the body of Γ and we will denote
it by Γ∗. Removing not only the basepoint subgroup of Γ but also all the abelian labels gives as a result a
standard X -automaton which we call the skeleton of Γ, denoted by sk(Γ). An enriched X -automaton Γ is
said to be deterministic (respectively, connected, core, reduced) if its skeleton sk(Γ) is so. We also define
the core of an enriched automaton in terms of the core of its skeleton in the natural way.

We will follow the same convention as in the free case (see Remark 4.23), i.e., an involutive automaton
is represented by its positive part.

We will write e ≡ p
a1 a2−−−−−→

xj
q to indicate that the arc e ≡ p → q has label (a1, xj , a2). Recall that in

the free case the labelling of arcs could be extended to walks in a natural way just by concatenating the
labels of the arcs which formed the walk. We adapt this scheme to enriched automata:

(i) An enriched arc e ≡ p
a1 a2−−−−−→

xj
q is meant to be read t−a1xj t

a2 = xj t
a2−a1 when crossed forward (from

the tail to the head of the arrow), while it should be read t−a2x−1
j ta1 = x−1

j ta1−a2 = (xj t
a2−a1)−1

when crossed backwards (from the head to the tail of the arrow).

(ii) Successive arcs in a walk read the product (in G) of the labels of the arcs.

(iii) When at the basepoint, one can choose any element from LΓ ⩽ Zm ⩽ G as a label.

Hence, if γ = e1e2 · · · ek is a non-trivial walk (every ei is an arc and k ≥ 1) in Γ, an enriched label of
γ will be

(γ)ℓ := t−(e1)ℓ1(e1)ℓX t
(e1)ℓ2 · · · t−(ek )ℓ1(ek)ℓX t

(ek )ℓ2 ∈ G. (12)

Moreover, due to rule (iii) above, we will consider that any walk γb that contains the basepoint has multiple
enriched labels, namely, the product in G of (γb)ℓ and any element of the basepoint subgroup. In particular,
we will follow the convention that any element in LΓ is a possible enriched label of the trivial b-walk (a
walk beginning and ending at the basepoint).

Proposition 5.12. The set of enriched labels of b-walks in Γ is a subgroup of G.
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Proof. The trivial element of G is an enriched label of the trivial b-walk in Γ. Moreover, if g1, g2 ∈ G are
enriched labels of respective b-walks γ1 and γ2, g1g2 is an enriched label of the concatenation of γ1 and
γ2, which is also a b-walk. Finally, if g ∈ G is an enriched label of a b-walk γ, g−1 is an enriched label of
the inverse walk of γ, which is also a b-walk.

Definition 5.13. Let Γ be an enriched automaton. An element in the group G which is an enriched label
of a b-walk in Γ is said to be recognised by Γ. The set of all elements recognised by Γ, which we know is
a subgroup of G by the previous result, is called the subgroup recognised by Γ and it is denoted by ⟨Γ⟩.

The following lemma tells us how the subgroup recognised by Γ is related to the subgroups recognised
by its skeleton and its core.

Lemma 5.14. Let Γ be an enriched automaton. Then,

(i) ⟨sk(Γ)⟩ = (⟨Γ⟩)π,

(ii) ⟨Γ⟩ = ⟨core(Γ)⟩.

Proof. (i) If u ∈ ⟨sk(Γ)⟩, then u is the label of a b-walk in sk(Γ) and, if we consider the enriched label of
this walk in Γ, we obtain an element uta ∈ ⟨Γ⟩ for some a ∈ Zm such that (uta)π = u. Reciprocally,
if u ∈ (⟨Γ⟩)π, then there must exist some a ∈ Zm such that uta is a label of a b-walk in Γ and it is
clear that, if we ignore all the abelian information, u is a label of a b-walk in sk(Γ).

(ii) The inclusion ⟨core(Γ)⟩ ⊂ ⟨Γ⟩ is clear. For the other inclusion, suppose v is a dead vertex in Sk(Γ)
and let γ be a b-walk containing v . The backtracking of this walk translates into a cancellation of
the labels (both free and abelian) of the arcs in Γ which do not belong to core(Γ). Therefore, the
labels (elements in G) of b-walks in Γ and core(Γ) coincide.

Proposition 5.12 allows us to define a map which assigns a subgroup of G to every enriched automaton:

{Zm-enriched X -automata} → {subgroups of G}
Γ 7→ ⟨Γ⟩. (13)

Recall that we are aiming to obtain a bijection between the set of subgroups of G and some set of
enriched automata. For the map that we have just defined, which is a first step towards the bijection we
seek, it is easy to prove its surjectivity by defining a FTFA version of the flower automaton we had in the
free case.

Definition 5.15. Let uta ∈ G where u = xi1xi2 · · · xik ̸= 1 and xij ∈ X±. We define the canonical petal
automaton associated to uta, denoted by Fl(uta), as the following enriched automaton:

b
0 0−−−→
xi1

• 0 0−−−→
xi2

• · · · • 0 a−−−→
xik

b.

Moreover, given a finite subset S = {u1ta1 , ... , uptap ; tc1 , ... , tcq} ⊂ G, with u1, ... , up ̸= 1 and a1, ... , ap,
c1, ... , cq ∈ Zm, we define the enriched flower automaton Fl(S) as the automaton obtained by identifying
the basepoints of the petals of the first p elements of S and declaring the basepoint subgroup to be
LΓ = ⟨c1, ... , cq⟩ (see Figure 7).
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Figure 7: Enriched flower automaton.

Notice that in Fl(uta) we can read both uta and its inverse as enriched labels of a b-walk, so ⟨Fl(uta)⟩ =
⟨uta⟩. The same argument (concatenating petals) proves that ⟨Fl(S)⟩ = ⟨S⟩. Indeed, enriched labels of
b-walks in Fl(S) are a product of elements of S and vice versa.

Given a subgroup H ⩽ G, it is enough to consider a generating set of H, say S, and build the flower
automaton of S in order to obtain an enriched automaton which recognises the subgroup H, that is,
H = ⟨Fl(S)⟩. This guarantees the surjectivity of the map (13).

However, a subgroup H ⩽ G can be recognised by infinitely many automata, so this map is not injective.
The sources of this non-injectivity are:

(i) The redundancy inherited from the free part: since the skeleton of the flower automaton is a standard
automaton, it may present non-determinism. We will have to adapt the classical Stallings foldings
to enriched automata in order to fix this.

(ii) The presence of parallel enriched arcs with the same free label (situation depicted in Figure 8)
generates redundancy due to the non-determinism of the free part (the kind of redundancy in item
(i)), but also due to the abelian part. Indeed, looping around the two parallel arcs gives an abelian
contribution which might not be included in the basepoint subgroup (we will specify this later in
Lemma 5.27). Therefore, changing the basepoint label so that it includes said contribution gives
an automaton with different basepoint label recognising the same subgroup. This source of non-
injectivity will be dealt with by means of closed enriched foldings at the same time as (i).

Figure 8: Parallel enriched arcs with the same free label.

(iii) Certain redistributions of abelian labels throughout the automaton do not change the recognised
subgroup. For example, for any petal of the flower automaton, we could place the label a at the end
of any of the arcs constituting the walk. To fix this source of redundancy we will introduce some
transformations which will allow us to move the abelian labels around the automaton.
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(iv) Every abelian label in the enriched automaton Γ works modulo LΓ. Indeed, suppose we have some
b-walk containing some arc with a as one of its abelian labels. Since the elements of ⟨Γ⟩ are enriched
labels of b-walks in Γ and the product of an enriched label of a b-walk by any element of LΓ is another
enriched label of the b-walk, if we change some label a by a+ l with l ∈ LΓ, the recognised subgroup
does not change. This source of redundancy is inherent in the object that we are considering, so the
way in which we deal with it is by absorbing it in the natural way, considering the labelling modulo
the basepoint subgroup (which we will express writing mod b).

In order to remove the previous sources of redundancy, we will ask for some extra properties that the
representative automata must satisfy. Firstly, to remove the sources of redundancy (i) and (ii), we will
consider reduced enriched automata.

Remark 5.16. Notice that if Γ is reduced, its skeleton sk(Γ) is a reduced X -automaton and, by Lemma
5.14, we have that ⟨sk(Γ)⟩ = (⟨Γ⟩)π = Hπ. This implies that sk(Γ) is nothing but the classic Stallings
automaton St(Hπ,X ).

These reduced automata encode nicely many algebraic properties of the subgroup they recognise, like
a basis for it.

Remark 5.17. Observe that, if T is a spanning tree of Γ and we call BT = {(b ⇝T p
e−→ q ⇝

T
b)ℓ : e ∈

E+Γ\ET} (the set of enriched labels of positive T -petals in Γ), we have that (BT )π = BT (the positive
T -basis of Hπ).

The following lemma shows that BT is a basis for the subgroup recognised by the body of Γ and can
be completed so as to obtain a basis for H and it also shows that the basepoint subgroup of a reduced
enriched automaton recognising H coincides with H ∩ Zm.

Lemma 5.18. Let Γ be a reduced enriched automaton recognising H ⩽ G. Then, H = ⟨Γ∗⟩ × LΓ, where
⟨Γ∗⟩ is the image of a splitting of π|H , and LΓ = H ∩ Zm. Moreover, BT is a free basis for ⟨Γ∗⟩ which,
joined to an abelian basis for LΓ, constitutes a basis for H.

Proof. It is obvious by definition that LΓ ⩽ ⟨Γ⟩ ∩ Zm = H ∩ Zm. For the opposite inclusion, let BT =
{ui tai}i , and suppose that ta ∈ ⟨Γ⟩ ∩ Zm = H ∩ Zm. Then, we may write ta = w(ui t

ai)t l for some l ∈ LΓ,
where w(ui t

ai) denotes a reduced word on the ui t
ai ’s. Given that the free part of this element ta is trivial

and {ui}i is freely independent, we must have that w is the trivial word and therefore ta = t l ∈ LΓ, as we
wanted to see.

To prove that H = ⟨Γ∗⟩ × LΓ, we consider the homomorphism Hπ → H given by (γTe )ℓX 7→ (γTe )ℓ for
each arc e ∈ EΓ\T and take into account the decomposition (5.4).

Remark 5.19. We must point out here that, even though we always have LΓ ⩽ H ∩ Zm, the opposite
inclusion may not be true when Γ is not reduced. This is due to possible non-trivial relations among the
free parts u1, ... , up. We refer the reader to Example 5.37 to see an instance where LΓ ̸= H ∩ Zm.

Although reduced enriched automata are good representatives of subgroups of G, there are still redun-
dancies to care about. For this, we will consider the following kind of automata.

Definition 5.20. Let Γ be an enriched X -automaton and let T be a spanning tree of Γ. We say that Γ is
T-normalised if it is reduced and its abelian labelling satisfies these two conditions:

(i) (e)ℓ1 = (e)ℓ2 = 0 for all e ∈ ET (the abelian labels in the arcs of T are all equal to zero),
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(ii) (e)ℓ1 = 0 for all e ∈ EΓ\ET (only the labels at the head of the arcs outside T might be nonzero).

Notice that if two T -normalised automata Γ and Γ′ recognise the same subgroup H ⩽ G, they will
both have the same basepoint subgroup (indeed, by Proposition 5.18, LΓ = H ∩ Zm = LΓ′). Because of
this, we can compare Γ and Γ′ modulo their basepoint subgroups, as we do in the next result.

Proposition 5.21. For any given subgroup H ⩽ G, and any given spanning tree T of St(Hπ,X ), every
two T-normalised enriched automata Γ and Γ′ recognising H are equal modulo LΓ = LΓ′ = H ∩ Zm.

Proof. Observe that, by Remark 5.16, both Γ and Γ′ have the same skeleton and, by Proposition 5.18,
they also have the same basepoint subgroup. Notice as well that, because they are T -normalised, all the
abelian labels in these automata are zero except for the ones placed at the endpoints of the arcs outside
of the spanning tree. If we show that these labels coincide modulo LΓ, we will have the result. Take an
arc e in Sk(Γ) = Sk(Γ′) and let us see if (e)ℓ2 takes the same value modulo LΓ in both Γ and Γ′. Suppose
(e)ℓ2 = a in Γ and (e)ℓ2 = c in Γ′. If we read the enriched label of the b-walk containing the arc e
whose other arcs all belong to T both in Γ and Γ′, for some w ∈ Hπ we will obtain that wta ∈ ⟨Γ⟩ = H
and wtc ∈ ⟨Γ′⟩ = H. This implies that ta−c = (wta)(wtc)−1 ∈ H ∩ Zm = LΓ = LΓ′ . Therefore, the two
automata coincide modulo the basepoint.

Thanks to this result, once a spanning tree T is fixed, by considering the abelian labels modulo the
basepoint subgroup, we have a unique object representing a given subgroup of G: a T -normalised enriched
automaton Γ modulo the basepoint subgroup, for some spanning tree T .

Definition 5.22. Let H be a subgroup of G and let T be a spanning tree of St(Hπ,X ). Then, a T -
normalised Zm-enriched X -automaton recognising H is said to be a Stallings automaton for H with respect
to T . We will denote these automata by StT (H,X ) or simply St(H) when T and X are clear from the
context.1 When we consider the abelian labels of one of these automata modulo the basepoint subgroup
(mod b), we call this the canonical Stallings automaton for H with respect to T (which is a unique
representative of the subgroup H), and we denote it by StT (H,X ).

Remark 5.23. Notice that the existence of a Stallings automaton of a subgroup H ⩽ G is guaranteed.
Indeed, we know that St(Hπ) exists and we can consider a spanning tree T . Now, at every arc e outside
this spanning tree, we add as an abelian label (at the head of the arc) an element in the abelian completion
of the element of Hπ which labels the b-walk b ⇝

T
p

e−→ q ⇝
T

b. Then, we let the remaining labels in the
automaton be zero. Finally, we set H ∩ Zm as the basepoint subgroup of the automaton. In this way, we
obtain an enriched automaton which is a Stallings automaton for H.

In practice, we may work with any Stallings automaton for H (for example, when we solve some instance
of the membership problem) and we will only need to consider the canonical Stallings automaton to have
a bijection.

In order to establish a bijection between subgroups of G and these enriched automata, we will need to
specify a uniform way to choose the spanning trees of reduced enriched automata.

Lemma 5.24. Let Γ be a reduced enriched X-automaton. Let ≼ be a well order in X± and consider the
tree T≼(Γ) obtained in the following way:

(i) First, declare that b is a vertex of T≼(Γ).

1Note that we are slightly abusing language here since StT (H,X ) might denote different automata (equal modulo the
basepoint subgroup).
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(ii) Recursively, add to T≼(Γ) the edge (together with its other incident vertex) with smallest possible
label incident to the oldest vertex present in T≼(Γ) at the moment and not closing a path.

Then, T≼(Γ) is a spanning tree of Γ.

Proof. The hypotheses in the statement of this result guarantee that step (ii) can always be performed.
Indeed, since no two arcs with the same label can be incident in the same vertex (because the automaton
is reduced), the edge with smallest possible label incident to the oldest vertex is well-defined. Given the
fact that the automaton is connected (it is reduced) and the way in which new vertices are incorporated
to the tree (first those at distance 1 from b, then those at distance 2 from b, etc.), all vertices of Γ will
eventually be incorporated to T≼(Γ) and no cycle is generated, so it is a spanning tree.

A Stallings automaton for H ⩽ Fn×Zm with respect to a spanning tree obtained following the process
in Lemma 5.24 will be denoted by St≼(H,X ) and we will refer to it as a ≼-Stallings automaton when we
want to emphasise the way in which the spanning tree has been chosen. Considering its labels modulo the
basepoint subgroup, we obtain a canonical automaton which we denote by St≼(H,X )

The main result of this section is the following bijection between subgroups of G and (uniformly chosen)
enriched Stallings automata.

Theorem 5.25 (Delgado-Ventura). Let FX be a free group with finite basis X , let Zm be a finitely
generated free-abelian group, and let ≼ be a total order on X±. Then, the map

St≼ : {subgr. of FX × Zm} ↔ {(isom. classes of) ≼-Stallings automaton mod b}
H 7→ St≼(H,X )
⟨Γ⟩ ← [ Γ

(14)

is a bijection. Moreover, if we restrict it to finitely generated subgroups, this bijection is computable.

The fact that the map (14) is a bijection is a consequence of what we have discussed so far: the
inverse map has been already shown to be well defined and surjective. On the other hand, if we consider
≼-normalised Stallings automata modulo the basepoint subgroup, we have a unique representative for each
subgroup in G. In the remaining of this section, we will develop the theory necessary to show that if we
restrict to finitely generated groups, the bijection (14) is algorithmic.

We will start by showing how to compute St≼(H,X ) when we are given a finite generating set S for a
subgroup H. We start by constructing the enriched flower automaton for S in order to obtain an enriched
automaton recognising H. Our goal now is to obtain a ≼-normalised enriched automaton starting from the
one we have. As it happened in the free case, the strategy is to introduce certain kinds of transformations
on enriched automata that do not change the recognised subgroup and which will allow us to reach a
reduced enriched automaton in finite time.

The idea is to adapt the folding process we had in the free case to the enriched case. Just like in the
free case, here we will also have open and closed foldings, but with the extra information of the abelian
labelling of the arcs. In the case of open foldings, we will perform an identification of two arcs like in the
free case, but here we have the extra condition that the abelian labels (not only the free ones) must be
the same for the arcs involved. On the other hand, for closed foldings the identification entails a possible
abelian contribution to the basepoint subgroup. We formalise these two notions below.

Definition 5.26 (Enriched foldings). Let us consider the following elementary transformations on enriched
automata:
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(i) Open (enriched) foldings: consisting in identifying a pair of nonparallel enriched arcs with exactly
the same (free and abelian) labelling (see Figure 9).

Figure 9: Open enriched folding.

(ii) Closed (enriched) foldings: consisting in identifying a pair of parallel enriched arcs with the same free
label and updating the basepoint subgroup from LΓ to LΓ + ⟨c1 − a1 + a2 − c2⟩ (see Figure 10).

Figure 10: Closed enriched folding.

The following lemma guarantees that the previous transformations do not affect the subgroup recognised
by an enriched automaton.

Lemma 5.27. If Γ is an enriched Zm-automaton and Γ ↷ Γ′ is an (open or closed) enriched folding, then
the subgroups recognised by Γ and Γ′ in G coincide, that is, ⟨Γ⟩ = ⟨Γ′⟩ ⩽ G.

Proof. Since the labels of both arcs involved in an open folding coincide, it is clear that one can read the
same labels before and after the folding. As to closed foldings, the updating of the basepoint subgroup
described in Definition 5.26 guarantees the invariance of the recognised subgroup, since it compensates
the abelian contribution that looping around the closed folding creates. Indeed, when we have two parallel
arcs with the same free label we can read the family of words [(t−a1xi t

a2−c2x−1
i tc1)±1]∗, which (taking into

account the commutativity between the ti ’s with and the rest of the generators) corresponds to the abelian
subgroup ⟨c1 − a1 + a2 − c2⟩ in G. By adding this abelian contribution to the basepoint subgroup, we
ensure that we can remove one of the arcs involved without changing the recognised subgroup.

Since open foldings require the two arcs involved to have the same enriched label, one may wonder
what happens if we have an open folding situation in the skeleton of the enriched automaton but the
abelian labels of the two arcs do not match. It is clear that we cannot apply an open enriched folding
directly. This motivates the definition of certain abelian transformations which will allow us to change
the distribution of the abelian labels in the automaton, again, without modifying the recognised subgroup.
These transformations will not only help us to tranform any open folding situation in the skeleton into an
enriched open folding situation, but they will also allow us to “move” the abelian labels out of the chosen
spanning tree when we compute a ≼-normalisation of our automaton.
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Definition 5.28 (Abelian transformations). Let us consider the following elementary abelian transforma-
tions on enriched automata:

(i) A vertex transformation consists in adding a vector c ∈ Zm to every abelian label in the neighbourhood
of a vertex p (see Figure 11).

Figure 11: Vertex transformation.

(ii) An arc transformation consists in adding a vector c ∈ Zm to both the initial and final labels of an
arc (see Figure 12).

Figure 12: Arc transformation.

It is obvious that these transformations do not affect the skeleton of the automaton and, in the following
result, we show that they do not affect the recognised subgroup either.

Proposition 5.29. Abelian transformations do not change the recognised subgroup. That is, if Γ ↷ Γ′ is
a (vertex or arc) transformation, then ⟨Γ⟩ = ⟨Γ′⟩.

Proof. Let Γ be an enriched automaton and let Γ′ and Γ′′ be the automata resulting from applying a
vertex transformation and an arc transformation, respectively, to Γ. We will prove that ⟨Γ⟩ = ⟨Γ′⟩ = ⟨Γ′′⟩.
To show that ⟨Γ⟩ = ⟨Γ′⟩, we must simply observe that, if a b-walk in Γ goes through a vertex p reading
xij t

ajxik t
−ak = xij xik t

aj−ak , the corresponding b-walk in Γ′ will read xij t
aj+cxik t

−ak−c = xij xik t
aj+c−ak−c =

xij xik t
aj−ak . Similarly, in order to prove that ⟨Γ⟩ = ⟨Γ′′⟩, we need only realise that if an arc is read as

t−axi t
b = xi t

b−a in Γ, the corresponding arc in Γ′′ is read as t−a−cxi t
b+c = xi t

b+c−a−c = xi t
b−a.

By applying vertex and arc transformations, we can redistribute abelian labels throughout the automaton
without changing the recognised subgroup. The proof of the following lemma may serve as an example of
this.

Lemma 5.30. The abelian labels in any bridge-arc in an enriched automaton do not affect the subgroup
it recognises in Fn × Zm. In particular, we can remove all abelian labels from any bridge-arc.

Proof. Let e ≡ p
a1 a2−−−−−→

xj
q be a bridge-arc and assume, without loss of generality, that p belongs to the

component containing the basepoint when one removes the arc e (we may say p is the arc extreme closer
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to the basepoint). Firstly, we perform an arc transformation subtracting a2 to both abelian labels of e so

as to obtain e ≡ p
c 0−−−→
xj

q, where c = a1 − a2. Secondly, using a vertex transformation, we subtract

c in each one of the vertices in the component containing the basepoint. In particular, the result of this

transformation on e is to have e ≡ p
0 0−−−→
xj

q. Notice that now all the abelian labels in the basepoint’s

component are shifted by −c. We can restore their original labels by carrying out an arc transformation
adding c to both the tail and the head of every arc in this component.

As we had previously said, the idea is to use abelian transformations in order to reach (enriched) folding
situations like the ones in Definition 5.26. The following result makes this clear.

Lemma 5.31. A pair of arcs e and f in an enriched automaton Γ admit an open (resp. closed) enriched
folding if and only if the corresponding arcs in Sk(Γ) admit an open (resp. closed) folding.

Proof. It is obvious that, if the enriched automaton admits an open folding then its skeleton does too.
Suppose now that Sk(Γ) admits an open folding. If the abelian labels of the arcs coincide, the enriched
automaton also admits an open folding. Otherwise, one can perform arc and vertex tranformations so as to
obtain an enriched folding situation like in Definition 5.26. Indeed, if e ≡ p

a1 a2−−−−−→
xj

q and f ≡ p
c1 c2−−−−−→

xj
r

are the two arcs which we want to identify, we can first apply an arc transformation to f adding a1 − c1
to both of its abelian labels in order to obtain (f )ℓ1 = (e)ℓ1 = a1 and (f )ℓ2 = c2 − c1 + a1. Then, we
perform a vertex transformation at r (notice that this will not affect the labelling of e because we have
an open folding situation, that is, we have that q ̸= r) adding a2 − c2 + c1 − a1 to the abelian labels in
its neighbourhood, which yields (e)ℓ2 = (f )ℓ2. After this preparation, all the abelian labels in e and f
coincide, so we can perform the open folding. In the case of closed foldings, the double implication is clear,
since there are no requirements on the abelian labels of the arcs involved.

Remark 5.32. After seeing the proof of the previous proposition, one may wonder why in the case of closed
enriched foldings we do not carry out a preparation process that makes the abelian labels match like in the
open folding case. If this were possible, we might have defined closed enriched foldings as an identification
of arcs like in the free case. However, if we try to adapt the argument we have used for open enriched
foldings, we encounter that the vertex transformation at the endpoint of f would also affect the label (e)ℓ2
and we cannot obtain the same abelian labels in both arcs in this way. Given this situation, what we do
is to fully remove f and update the basepoint to avoid changing the recognised subgroup. The reason
behind this change in the basepoint is that want to ensure the recognised subgroup does not change (see
the proof of Lemma 5.27).

As a consequence of Lemma 5.31, we have the following corollary.

Corollary 5.33. Let Γ be an enriched automaton. Then Γ admits no more foldings if and only if Sk(Γ)
admits no more foldings.

In order to prove the computability of the map (14) all we need to show is that we can transform our
initial flower automaton for a generating set of a subgroup H into St(H).

Proposition 5.34. Let H ⩽ Fn×Zm be a subgroup given by a finite family of generators, then a Stallings
automaton for H is computable.

Proof. We will start by building an enriched flower automaton Γ for the given finite set of generators of H.
This enriched automaton is core and we will show that it can be transformed into a reduced automaton
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without altering the subgroup it recognises (that is, H) by means of a finite sequence of transformations
which may include abelian transformations and enriched foldings.

By classic Stallings automata theory, we know that there exists a finite sequence of foldings which
convert the skeleton of Γ into the reduced automaton St(Hπ). Applying Lemma 5.31, it is clear that we
can perform an enriched folding on Γ for each of the free foldings of the skeleton just by carrying out the
necessary abelian transformations in the case of open foldings and by changing the basepoint subgroup
suitably in the case of closed foldings. With this, we obtain a finite sequence of transformations which
convert Γ into a reduced enriched automaton recognising H.

Suppose T is the chosen (by Lemma 5.24) spanning tree for the reduced enriched automaton we have
obtained, which we will call Γ′. We claim that we can normalise Γ′ with respect to T by performing abelian
transformations (which do not change the recognised subgroup) throughout the spanning tree in order to
move the abelian labels out of T .

Suppose that we have removed all the abelian labels from every arc at T -distance at most k−1 from the
basepoint b. For every arc e ≡ pk

a c−−−→
x

pk+1 in T at T -distance k from b, perform an arc transformation

removing the label a from the tail of e and then perform a vertex transformation in pk+1 to remove the
obtained label (that is, c− a). Notice that the vertex transformation may also affect other arcs:

(i) it may modify the abelian labelling of an arc at distance k + 1 from the basepoint,

(ii) it may modify the abelian labelling of an arc outside of T .

Since Γ′ is finite, after a finite number of steps in this process, we will reach the arcs in T at maximum
distance from b. After performing the described transformations in these arcs, which may only modify
the labelling of arcs outside of T because there are no arcs in T at a higher distance, we obtain that all
nonzero abelian labels lie in arcs outside of T .

Finally, we can apply arc transformations to concentrate the abelian labels in the heads of the arcs
outside of T so as to obtain a T -normalisation of Γ′. Thus, St(H) is computable.

We have shown how to compute St(H) for a finitely generated subgroup H ⩽ G. We will now focus
on describing an efficient way of computing the subgroup generated by a Stallings automaton (by giving a
basis for it), showing the computability of the right-to-left direction of the bijection (14).

We already mentioned the idea that, as it happened in the free case, enriched Stallings automata
encode a basis of the subgroups of G (see Remark 5.17 and Proposition 5.18).

Recall that we had seen that BT = {(b⇝T p
e−→ q ⇝

T
b)ℓ : e ∈ E+Γ\ET} is a basis for ⟨Γ∗⟩. Taking this

into account, we have that the union of an abelian basis of LΓ and a basis of ⟨Γ∗⟩ like BT is a free-abelian
basis for ⟨Γ⟩. In case we have a finite ≼-normalised enriched automaton, we can compute one of these
bases. First, one must compute an abelian basis for LΓ, which can be done using linear algebra. Then,
a basis of ⟨Γ∗⟩ is obtained by reading the enriched labels of the T -petals in Γ (of which there is a finite
number). Therefore, we have the following corollary.

Corollary 5.35. Free-abelian bases of finitely generated subgroups of FTFA groups are computable.

We will illustrate the computability of bijection (14) with two examples.

Example 5.36. Let us consider the subgroup

H1 = ⟨xyxt(1,2), x−1yxt(4,0), yxyt(0,2), y−1x−1yt(1,1), t(3,0), t(0,6)⟩ ⩽ F2 × Z2.
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We will obtain a St≼(H1), where the total order ≼ that we are considering is x−1 < x < y−1 < y .

The first enriched automaton in Figure 13 is the flower automaton of the set

{xyxt(1,2), x−1yxt(4,0), yxyt(0,2), y−1x−1yt(1,1), t(3,0), t(0,6)}.

Notice that, in Figure 13, L = ⟨(3, 0), (0, 6)⟩ and the different automata represent the result we obtain
after each of the five steps that we carry out.

b b b

b b b

(1)

(3) (4)

(2)

(5)

(1,2)

(4,0)

(0,2)

(1,1)

(1,2)

(1,1)

(0,2)

(4,0)

(1,2)

(4,0)

(0,2)
(1,1)

(4,0)
(4,0)

(−3,2)

(1,1)
(1,1)

(1,3)

(4,0)

(−3,2)

(1,1)
(1,3)

(4,0)

(−3,2)

(1,3)

(1,1)

L L
L

L L L

x

y

Figure 13: Steps in Example 5.36.

In step (1), we apply abelian transformations in order to obtain matching labels in the arcs that we

will fold in the second step. For example, notice that to fold the red arc e ≡ • (0,0) (1,2)−−−−−−−−→
x

b with the

other red arc below it, we need to perform the following abelian transformations: first, we apply an arc
transformation to e adding (−1,−2) and, afterwards, we perform a vertex transformation at • adding
(1, 2). The enriched automaton we obtain after step (1) is the result of applying similar operations in the
other petals.

In step (2), we fold the three red arcs whose heads are pointing at b (observe that all of them have
zero abelian labels thanks to the preparation process carried out in step (1)) and we also fold the three
blue arcs whose heads are pointing at b.

In step (3), we perform the abelian transformations that are necessary before step (4). First, we apply an

arc transformation to the blue arc e ≡ • (0,0) (1,2)−−−−−−−−→
x

• adding (3,−2) so as to obtain e ≡ • (3,−2) (4,0)−−−−−−−−−→
x

•.
Then, we perform a vertex transformation at the top left vertex adding (−3, 2). After this, we carry out an

arc transformation at the red arc f ≡ • (0,0) (0,2)−−−−−−−−→
x

• adding (0,−2) in order to have f ≡ • (0,−2) (0,0)−−−−−−−−−→
x

•.
This is followed by applying a vertex transformation at the bottom right vertex adding (1, 3).

In step (4), we perform an enriched folding involving the two blue arcs on top and another one involving
the two red arcs at the bottom. Notice that in the resulting automaton, the thicker arcs are those belonging
to the spanning tree associated to the order we have chosen at the beginning.
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In step (5), we apply an arc transformation to the red arc at the bottom adding (−1,−1) so as to make
sure that all nonzero abelian labels are placed at the heads of the arcs outside the spanning tree. This way,
we obtain St(H1).

Finally, from the Stallings automaton for H1 that we have computed, we can obtain a basis for H1,
which is

B1 = {x2t(0,2), x−1yxt(1,0), y2t(1,3), y−1xyt(1,1); t(3,0), t(0,6)}.
Notice that in this basis we have the same number of generators of H1πσ that we had at the beginning,
which means that there were no nontrivial relations among the free parts of the original generators. This
will not happen in the next example, in which there will be relations of this type among the given generators.

Example 5.37. In this second example, we will consider the subgroup

H2 = ⟨xyxt(1,2), x−1y2t(3,2), xy3t(−1,4), t(2,0), t(0,4)⟩ ⩽ F2 × Z2.

(1)
b
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L
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x
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Figure 14: Steps in Example 5.37.

The first automaton in Figure 14 is the enriched flower automaton associated to the given generating
set of H2 and we have L = ⟨(2, 0), (0, 4)⟩. Since the transformations we apply are very similar to the ones
in the previous example, we will only describe with detail the steps which present some difference. In step
(1), we apply abelian transformations to redistribute the abelian labels. In step (2), we perform two open
foldings involving the arcs marked with segments. In step (3), we apply abelian transformations to make
the abelian labels of the pairs of arcs which are marked coincide. In step (4), we perform the two open
foldings involving the arcs marked. In step (5), we perform a closed folding with the subsequent change of
the basepoint subgroup, which consists in adding (1, 2)− (−4, 2) = (5, 0) to the basepoint subgroup. As
before, the arcs which are thicker represent the spanning tree T that we choose to normalise the automaton
(we have used the same order as in the previous example to obtain this tree). Since all non-zero abelian
labels are placed at the head of the arcs outside T after the last folding, no more abelian transformations
are needed. The resulting automaton is St(H2).
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Now, from the Stallings automaton for H2 that we have computed, we can obtain a basis for H2, which
is

B2 = {xyxt(1,2), x−1y2t(1,2); t(1,0), t(0,4)},

where we have used the fact that ⟨(2, 0), (5, 0), (0, 4)⟩ = ⟨(1, 0), (0, 4)⟩ to obtain a basis for the basepoint
subgroup.

It is interesting to note that this example clarifies Remark 5.19: the enriched automaton that we
have at the beginning recognises H2, but its basepoint subgroup is not H2 ∩ Zm. Indeed, we have that
(xyxt(1,2)) · (x−1y2t(3,2)) · (xy3t(−1,4))−1 = t(5,0) ∈ H2∩Zm, but it is clear that t(5,0) ̸∈ L = ⟨(2, 0), (0, 4)⟩.
On the other hand, St(H2) does have H2 ∩ Zm as its basepoint subgroup (notice that during the process
of folding, we have changed the basepoint subgroup when performing a closed folding).

An important consequence of the algorithmic behaviour of the bijection we have established is that the
membership problem for FTFA groups is computable.

Proposition 5.38. If G is a FTFA group, then the membership problem MP(G) is computable.

Proof. Wemay assume that all the input words are in normal form. Given elements wta,w1t
a1 , ... ,wkt

ak ∈ G,
we will give a finite sequence of steps to show that it is possible to decide whether wta belongs to
H = ⟨w1t

a1 , ... ,wkt
ak⟩.

Recall that any St(H) is an enriched automaton recognising H. This means, by the definition of
recognised subgroup, that wta ∈ H if and only if it is an enriched label of a b-walk in St(H). In particular,
if wta ∈ H, we must have that w ∈ Hπ and this is equivalent to w being a label of a b-walk in Sk(St(H))
(since by Proposition 5.14 we have that ⟨Sk(St(H))⟩ = Hπ). Assuming that we can read w in the skeleton
of St(H), we will still need to verify if ta ∈ CH(w) to decide if wta ∈ H. When reading w in St(H), we
also read an abelian completion cw ∈ CH(w). We will have that wta is an enriched label of a b-walk in
St(H) if and only if ta−cw ∈ LH (being LH the basepoint subgroup of St(H)). Taking this into account,
we can decide whether wta ∈ H following these steps:

1. Compute a St(H).

2. Try to read the free part w of the word in the skeleton of St(H), keeping track of the abelian
completion cw ∈ Zm obtained in doing so. If this is not possible, it will mean that w is not the label
of any walk in Sk(St(H)), so return NO; otherwise continue.

3. If the final vertex (after reading w in Sk(St(H))) is not the basepoint b, then return NO (because
this means that w is not the label of a b-walk); otherwise continue.

4. Check whether ta belongs to cw + LH using linear algebra methods over Z. In the affirmative case,
return YES; otherwise, return NO.

5.3 Finite index subgroups of FTFA groups

As an application of the description of subgroups of Fn × Zm given by the bijection (14), in this section
we will study the finite index subgroups of a FTFA group. We will first show how the index of a subgroup
H of G = Fn ×Zm is related to the indices of Hπ in Fn and of H ∩Zm in Zm (Proposition 5.39). We will
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also show that the finite index problem is solvable for free times free-abelian groups (Proposition 5.42).
And, finally, we will determine the number of finite index subgroups of a FTFA group.

Proposition 5.39. Let G be a FTFA group, let H be a subgroup of G, let {vi}i∈I be a right transversal
for Hπ in Fn, and let {cj}j∈J be a transversal for LH = H ∩ Zm. Then, {vi tcj : i ∈ I , j ∈ J} is a right
transversal for H in G. Hence, |G : H| = |Fn : Hπ| · |Zm : LH |; in particular, the index |G : H| is finite if
and only if both |Fn : Hπ| and |Zm : LH | are finite.

Proof. We will first prove that the elements in {vi tcj : i ∈ I , j ∈ J} all belong to different right cosets of H.
Indeed, if Hvi t

cj = Hvi ′t
cj′ , then we can project to Fn in order to obtain (Hπ)vi = (Hπ)vi ′ and, given that

{vi}i∈I is a right transversal for Hπ, we obtain that i = i ′. Taking into account that tcj and tcj′ commute
with vi = vi ′ , it follows that Ht

cj = Htcj′ . If we now intersect this with Zm, we obtain LH + cj = LH + cj′ ,
and this implies that j = j ′ because {cj}j∈J is a transversal for LH . This shows that each of the right
cosets represented by an element vi t

cj is different from the others. Now, to prove that these are all the
right cosets of H in G, we must simply prove that ⊔i∈I ⊔j∈J Hvi tcj = Fn×Zm. Let us take wta ∈ Fn×Zm.
For some i ∈ I and u ∈ Hπ, we may write w = uvi and we can also choose d ∈ CH(u) so that utd ∈ H.
Moreover, we may write a− d = l+ cj for some j ∈ J and l ∈ LH . With this, we have:

wta = uvi t
a = utavi = utdta−dvi = utdt l+cjvi = utdt lvi t

cj ,

where utdt l ∈ H because utd ∈ H and t l ∈ LH ⊂ H, so wta ∈ Hvi t
cj and this concludes the argument.

Corollary 5.40. Let H be a subgroup of a FTFA group G and let St(H) be a Stallings automaton for H.
Then, H has finite index k if and only if St(H) is saturated, it has a finite number of vertices k1 which is
a divisor of k and has a basepoint subgroup of finite index k

k1
in Zm.

Example 5.41. To illustrate the two previous results, let us consider again the subgroups H1 and H2 in
Examples 5.36 and 5.37.

In Example 5.36, we obtained a Stallings automaton which was saturated and had 3 vertices. This
means that |F2 : H1π| = 3. Now, since the basepoint subgroup of this automaton was H1 ∩ Z2 = L1 =
⟨(3, 0), (0, 6)⟩, we have that |Z2 : H1 ∩ Z2| = 3 · 6 = 18, where we have applied formula (1). With this,
applying Proposition 5.39, we conclude that H1 is a finite index subgroup with

|F2 × Z2 : H1| = |F2 : H1π| · |Z2 : H1 ∩ Z2| = 3 · 18 = 54.

In Example 5.37, St(H2) was not saturated, which means that H2 does not have finite index in F2×Z2,
in virtue of Corollary 5.40.

Proposition 5.39, together with the fact that the finite index problem is known to be solvable for each
of the factors (free and free-abelian) of G, give that FIP(G) is solvable as a corollary.

Corollary 5.42. Let H ⩽ G be a finitely generated subgroup given by a finite set of generators. Then,
there is an algorithm to decide whether H is of finite index and, in the affirmative case, compute the index
and a transversal for H. In other words, FIP(G) is solvable.

We will now combine the graphical description that we have obtained for finite index subgroups of
FTFA groups with the formulas we obtained in 3.19 and 4.55 for free-abelian and free groups respectively
in order to derive a formula for the number of subgroups of a given finite index in a FTFA group.
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Theorem 5.43. Let G = Fn × Zm, then

Nk(G) =
∑
k1|k

Nk1(Fn) · N k
k1

(Zm) ·
(

k

k1

)k1(n−1)+1

,

where Nk(G ) denotes the number of subgroups of index k in the group G and k1 runs over all divisors of k.

Proof. By Corollary 5.40, it is clear that we must count the number of canonical Stallings automata which
are saturated, have a finite number of vertices k1 which is a divisor of k and have a basepoint subgroup of
finite index k

k1
in Zm.

Let us begin by fixing k1, a divisor of k . To determine the number of enriched automata Γ with k1
vertices satisfying the above properties, we will begin by studying how many choices we have for

(i) the skeleton of Γ,

(ii) the basepoint subgroup of Γ, and

(iii) the abelian labelling of the arcs of Γ,

taking into account the restrictions coming from the mentioned properties.

We will first consider the skeleton of Γ. Since Γ must be ≼-normalised (in particular, reduced) and
saturated and must have k1 vertices, it is clear that Sk(Γ) must be the Stallings automaton of a subgroup
of index k1 in Fn. Therefore, the number of possible choices that we have for Sk(Γ) is Nk1(Fn), i.e., the
number of subgroups of index k1 in Fn.

As to the basepoint subgroup of Γ, since we need it to have index k
k1

in Zm, the number of possible

choices that we have for it is N k
k1

(Zm), i.e., the number of subgroups of index k
k1

in Zm.

It remains to determine the number of distinct abelian labellings that we can have for the arcs of Γ.
The first thing one must notice is that, because Γ is ≼-normalised, all abelian labels will be zero except
maybe the ones situated at the heads of the arcs outside the spanning tree T≼(Γ). The number of arcs
outside the spanning tree is the graphical rank of Sk(Γ), which coincides (by Theorem 4.46) with the rank
of ⟨Sk(Γ)⟩. Using Schreier’s formula (see Theorem 4.50), we can write the rank of ⟨Sk(Γ)⟩ in terms of its
index. Indeed, rk(⟨Sk(Γ)⟩)− 1 = |Fn : ⟨Sk(Γ)⟩|(n− 1) = k1(n− 1), so there are k1(n− 1)+1 labels whose
value might be nonzero. Given that these abelian labels are considered modulo the basepoint subgroup, the
number of possible choices for each of them is precisely the index of the basepoint subgroup in Zm, which

we know is equal to k
k1
. Therefore, the number of possible abelian labellings for the arcs is

(
k
k1

)k1(n−1)+1
.

Since the three elements listed above determine Γ, for the value k1 we had fixed, the product of the
three numbers that we have obtained is the number of enriched automata with k1 vertices which have the
properties mentioned in the first paragraph of the proof. To finish the argument, we must simply sum the
number we have obtained over all possible divisors k1 of k and that yields the formula in the statement.

We can see how many finite index subgroups of index k we have in Fn × Zm for certain values of n,m
and k in Table 3.
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(n,m)\k 1 2 3 4 5 6 7

(0, 3) 1 7 13 35 31 91 57
(2, 0) 1 3 13 71 461 3447 29093
(2, 1) 1 7 22 111 486 3772 29142
(2, 2) 1 15 49 255 611 4827 29485
(2, 3) 1 31 130 799 1236 9232 31886
(3, 1) 1 15 124 2431 68766 3025596 173773496
(3, 2) 1 31 205 3263 69391 3057907 173775897
(3, 3) 1 63 448 5951 72516 3139944 173792704

Table 3: Values of Nk(Fn × Zm) for small n,m and k .
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6. Future work

The work that we have presented so far has some possible continuations. Since FTFA groups can be
thought of as members of larger families of groups, it is reasonable to think that the results that we have
obtained for FTFA groups might be generalizable to these larger families. In this vein, two families of
groups for which it is natural to try to obtain a formula for the number of subgroups of a given finite index
are free-abelian by free groups (which we will present in Section 6.1) and Droms (which will be dealt with
in Section 6.2).

6.1 Free-abelian by free groups

The groups we studied in Section 5, FTFA groups, which are the direct product of a free group and a
free-abelian group, are actually a particular case of a more general notion which we present next.

Definition 6.1. Let Zm = ⟨t1, ... , tm|ti tj = tj ti , ∀i , j ∈ [m]⟩ be a free-abelian group of finite rank m with
abelian basis T = {t1, ... , tm}, let Fn = ⟨x1, ... , xn|−⟩ be a free group of rank n with basis X = {x1, ... , xn}
and let Aj ∈ GLm(Z) for each j ∈ {1, ... , n} be automorphisms of Zm. The semidirect product GA =
Fn ⋉A• Zm, with action the homomorphism given by

A• : Fn → GLm(Z)
xj 7→ Aj,

is called a free-abelian by free group, which we will abbreviate by FABF.

Remark 6.2. If w = xϵ1i1 x
ϵ2
i2
· · · xϵpip is a word where ij ∈ {1, ... , n} and ϵj ∈ {−1,+1} for all j ∈ {1, ... , p},

we will write
Aw := Aϵ1i1 A

ϵ2
i2
· · ·Aϵpip

for the product of matrices obtained replacing each letter xj in w by the corresponding matrix Aj. Also,
for a subgroup H ⩽ Fn, we will write

AH := {Aw : w ∈ H}.

With the notation above, a presentation for a FABF group GA = Fn ⋉A• Zm with a specified action is
the following:

GA = Fn ⋉A• Zm =

〈
x1, ... , xn, x−1

k tixk = tiAk, ∀i ∈ [m],∀k ∈ [n]
t1, ... , tm ti tj = tj ti , ∀i , j ∈ [m]

〉
. (15)

Remark 6.3. The case where the action is trivial (that is, Aj = Im for all j ∈ {1, ... , n}) corresponds to the
direct product Fn × Zm, the family of groups studied in Section 5.

Given a word w on (X ∪T )±, we can use the relations in (15) to move the ti ’s orderly to the right and
obtain a normal form for the element represented by w . Indeed, we define the normal form for the element
of GA represented by the word w as

uta = u(x1, ... , xn) · ta11 · · · t
am
m ,

where u is the element of Fn represented by the free part of the element in Fn ⋉A• Zm corresponding to
the word w and a = (a1, ... , am) ∈ Zm is its abelian part. In addition, we will denote by π : GA → Fm the
map assigning uta 7→ u.
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With this notation, the semidirect conjugation relation in GA can be written as

u−1tau = taAu , where a ∈ Zm and u ∈ Fn.

Equivalently, we have the following multiplication rules:

tau = utaAu and uta = taA
−1
u u.

As it happened with free groups and FTFA groups, the subgroups of a FABF group are FABF as well.
Moreover, a generalisation of the techniques developed in section 5 allow to establish again a bijection
between subgroups and enriched automata (see [5]).

The enriched automata in this new bijection are the same objects presented in Definition 5.11. In
this context, we will also have that the set of enriched labels of b-walks in an enriched automata Γ is a
subgroup in GA, which we call the subgroup recognised by Γ and denote by ⟨Γ⟩A. However, the way in
which enriched arcs are meant to be read in the context of the semidirect product is a bit different from
the FTFA case, since we must consider the action. Indeed, for a given action A• : Fn → GLm(Zm), the arc

e ≡ p
a1 a2−−−−−→

xj
q is meant to be read as we indicate in Figure 15. And, taking this into account, enriched

labels of walks in Γ are defined analogously to the FTFA case.

Figure 15: Reading of enriched labelling in FABF groups.

Another trait that differentiates the enriched automata in the FABF case is that we may obtain elements
in Zm which do not belong to the basepoint subgroup by conjugation. Let us clarify this. Suppose that uta

is the label of a b-walk γ in Γ. If we read the inverse walk of γ, followed by an element c ∈ Zm belonging
to the basepoint subgroup and then we read γ, what we obtain is

u−1t−a · tc · uta = u−1tct−auta = u−1tcut−aAuta = tcAut−aAuta.

Now, if we read just γ followed by its inverse, we have

u−1t−auta = u−1ut−aAuta = t−aAuta.

Thus, tcAu is an element of Zm which belongs to the subgroup recognised by Γ, but which may not belong
to the basepoint subgroup. Thinking now about the whole basepoint subgroup, if we read the inverse of
γ, the basepoint subgroup L and then γ, what we obtain is the conjugate of L by uta, which is (L)Au.
This generates certain redundancy when trying to give a unique enriched automaton representing each
subgroup, since we might take an enriched automaton with a bigger basepoint subgroup. This motivates
the following definition.
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Definition 6.4. Let Γ be a Zm-enriched X-automaton recognising a subgroup H ⩽ GA. Then, the closure
of the basepoint subgroup L in Γ with respect to A• is the subgroup

L := (L)AHπ ⩽ H ∩ Zm.

The basepoint subgroup L of Γ is said to be closed (in Γ with respect to A•) if it is equal to its own closure,
that is, L = L. An enriched automaton having a closed basepoint subgroup is called closed.

To eliminate the source of redundancy coming from conjugation that we were talking about before, we
will need to consider closed enriched automata.

In spite of the complications in the basepoint subgroup that arise due to the effect of conjugation, it is
possible to adapt foldings to this new situation and guarantee the computability of the basepoint subgroup
in order to obtain a unique representative automaton. We now enunciate without proof the theorem that
gives the bijection between FABF groups and certain enriched automata.

Theorem 6.5 (Delgado, Ventura). Let FX be a free group with finite basis X , let Zm be a finitely generated
free-abelian group, and let ≼ be a total order on X±. Then, the map

St≼ : {subgr. of FX ⋉A• Zm} ↔ {(isom. classes of) Stallings automata mod b}
H 7→ St≼(H,X )

⟨Γ⟩A ← [ Γ
(16)

is a bijection. Moreover, f.g. subgroups correspond to finite automata and the restriction of this bijection
to f.g. subgroups is computable.

In the previous theorem, by Stallings automata we mean closed ≼-normalised Zm-enriched X -automata,
where the meaning of ≼-normalised is the same as in the context of FTFA groups. As to St≼(H,X ), we
will not give define it explicitely in the context of FABF groups. We simply observe that St≼(H,X ) is a
closed enriched automaton.

Once we have this bijection, it is natural to ask whether it could be used to count finite index subgroups
in FX ⋉A• Zm mimicking the approach that we followed for FTFA groups. The following two results, which
are generalisations of Proposition 5.39 and Corollary 5.40 for FABF groups, suggest that this similar
approach might work.

Proposition 6.6. Let H be a subgroup of GA, let {vi}i∈I be a right transversal for Hπ in Fn, and let
{cj}j∈J be a transversal for LH = H ∩ Zm. Then, {vi tcj : i ∈ I , j ∈ J} is a right transversal for H in GA.
Hence, |GA : H| = |Fn : Hπ| · |Zm : LH |; in particular, the index |GA : H| is finite if and only if both
|Fn : Hπ| and |Zm : LH | are finite.

Corollary 6.7. Let H be a subgroup of GA. Then, H has finite index k if and only if the St≼(H,X ) is
saturated, it has a finite number of vertices k1 which is a divisor of k and has a basepoint subgroup of
finite index k

k1
in Zm.

It is clear from these results that, if we wish to determine the number of subgroups of index k in GA,
we will have to count the number of Stallings automata Γ which are saturated, have a finite number of
vertices k1 which is a divisor of k and have a basepoint subgroup of finite index k

k1
in Zm. It is important

to notice that, since Stallings automata are closed in this context, the basepoint subgroup must be closed
in Γ with respect to A•. That is, we are counting the same objects as in Theorem 5.43, but adding the
extra condition that the basepoint subgroup L satisfies L = (L)AHπ, where H is the subgroup recognised
by Γ.
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If {u1, ... , up} is a basis for Hπ, the extra condition L = (L)AHπ can be reformulated as

L = (L)Aui , for i ∈ {1, ... , p}. (17)

Recall that, since L must be a finite index subgroup of Zm, we can associate to it a unique m×m integer
matrix L of rank m in Hermite Normal Form (using the bijection in Theorem 3.17). Since the rows of L
generate L, condition (17) can be written as

∃X ∈ GLm(Z) such that L · Aui = X · L for each i ∈ {1, ... , p}. (18)

If we now regard L as a matrix over Q and take into account that its determinant is not zero (as it is
the index of L in Zm, which we are assuming to be finite), we can consider its inverse L−1 and we can
reformulate (18) as

LAuiL
−1 ∈Mm(Z) for all i ∈ {1, ... , p}. (19)

From this, we can see that a first step to obtain the desired formula for this family of groups would be
to determine, given A ∈ GLm(Z), how many m ×m full rank integer matrices in HNF satisfy that LAL−1

is an integer matrix.

Remark 6.8. Since we cannot expect LAL−1 to be an integer matrix for every L we consider (unless A is
the identity matrix), it is clear that the number of subgroups of index k in a FABF group Fn ⋉A• Zm will
be at most Nk(Fn × Zm).

6.2 Droms groups

Below, we present a second natural generalisation of the family of FTFA groups. The groups of this
generalised family can be defined by giving a presentation for them that is encoded in a simple graph.
Among these groups, we will focus on Droms groups, which will be defined later.

Definition 6.9. Given a finite simple graph Γ with vertex set V (Γ), the corresponding right-angled Artin
group (RAAG), denoted by GΓ, is given by the following presentation:

GΓ = ⟨V (Γ)|xy = yx ⇔ x and y are adjacent vertices in Γ⟩.

Example 6.10. Some examples of RAAGs are the following:

(i) The free group of rank n, Fn, is a RAAG whose associated graph consists of n isolated vertices.

(ii) The free-abelian group of rank m, Zm, is a RAAG associated to the complete graph with m vertices,
Km.

(iii) The FTFA group Fn × Zm is a RAAG whose associated graph is the join of Km and the graph with
n isolated vertices. Recall that the join of two graphs is the result of connecting with edges all the
vertices in one of the graphs with all the vertices of the other.

(iv) The group F2 × F2 is a RAAG associated to the cycle of length 4.

The main theorem by Droms in [14] says that the graph describing a RAAG is unique in the sense of
the following theorem.

Theorem 6.11. Two RAAGs GΓ and GΓ′ are isomorphic if and only if the graphs Γ and Γ′ are isomorphic.
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The behaviour of RAAGs can be quite wild; for example, the finite index problem for F2 × F2 is not
decidable, so we cannot expect to extend the results about the index to all RAAGs. This suggests that we
will need to restrict to a smaller family. Another example of the complicated behaviour of RAAGs is the fact
that the closure property that we had for free-abelian, free and FTFA groups (see Theorem 3.7, Theorem
4.47 and Proposition 5.4, respectively) does not hold in general, not all finitely generated subgroups of
RAAGs are themeselves RAAGs. Droms provided a condition for a RAAG to have all of its subgroups again
of this type, which we state next.

Theorem 6.12. Every finitely generated subgroup of GΓ is itself a RAAG if and only if no full subgraph of
Γ is a cycle of length four (C4) or a path of length three (P4).

The graphs satisfying this condition are called Droms graphs and their associated RAAGs are called
Droms groups. The family of Droms groups admits a recursive construction with a neat algebraic interpre-
tation.

Theorem 6.13. The family of Droms graphs (resp., Droms groups) can be recursively defined as the
smallest family of graphs D (resp., groups D) satisfying the following rules:

(i) The empty graph, K0, belongs to D. (The trivial group {1} belongs to D).

(ii) If Γ1, Γ2 ∈ D, then the disjoint union Γ1 ⊔ Γ2 belongs to D. (If G1,G2 ∈ D, then their free product
G1 ∗ G2 belongs to D).

(iii) If Γ ∈ D, the join K1 ∨ Γ is a Droms graph. (If G ∈ D, the direct product Z×G is a Droms group).

The recursive description of Droms groups allows to combine Ivanov’s graphs (which are a generalisation
of Stallings graphs to study subgroups of a free product) and enriched graphs to understand Droms groups.
This has already been done successfully in [12], where the intersection problem is solved and, in a work
in progress [11], the same authors study and solve the finite index problem among other problems. This
supports the possibility of counting finite index subgroups in this family.
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