
Role-shifting threads: Increasing
OpenMP malleability to address load
imbalance at MPI and OpenMP

Journal Title
XX(X):1–10
©The Author(s) 2022
Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

SAGE

Joel Criado 1, Victor Lopez, 1 Joan Vinyals-Ylla-Catala 1, Guillem Ramirez-Miranda 1,
Xavier Teruel 1 and Marta Garcia-Gasulla 1

Abstract
This paper presents the evolution of the free agent threads for OpenMP to the new role-shifting threads model and
their integration with the Dynamic Load Balancing (DLB) library. We demonstrate how free agent threads can improve
resource utilization in OpenMP applications with load imbalance in their nested parallel regions. We also demonstrate
how DLB efficiently manages the malleability exposed by the role-shifting threads to address load imbalance issues.
We use three real-world scientific applications, one of them to demonstrate that free agents alone can improve the
OpenMP model without external tools, and two other MPI+OpenMP applications, one of them with a coupling case, to
illustrate the potential of the free agent threads’ malleability with an external resource manager to increase the efficiency
of the system. In addition, we demonstrate that the new implementation is more usable than the former one, letting the
runtime system automatically make decisions that were made by the programmer previously. All software is released
open-source.

Keywords
Dynamic load balancing, Free agents, OpenMP, Tasking, Malleability

Introduction
During the last years in the HPC community, both hardware
and software are getting ready for the exascale era. On
the one hand, hardware boosts the computational power of
nodes by increasing the number of cores per node and using
different accelerators as much as augmenting the number of
nodes. On the other hand, software needs to evolve to use
this massive computational power efficiently.

Malleability is one of the main characteristics of software
that has proven necessary to deal with the immense
computational power. Malleability allows dealing with
heterogeneous hardware, noise at all levels, load imbalance,
communication inefficiencies, and dynamic workloads,
among other issues.

Moreover, with the growing variety in hardware archi-
tectures, portability is another must-have characteristic for
all the software components because it is not a sustainable
approach to port every software to each newly designed
platform.

In this challenging scenario, all the software stack layers
must be malleable, flexible, and portable. We have already
seen this direction in using workloads instead of monolithic
applications (Conejero et al. 2018), job schedulers managing
adaptable applications (Prabhakaran et al. 2015; D’Amico
et al. 2018), the development of malleable codes (Desell et al.
2007), and parallel programming models offering dynamic
malleability (El Maghraoui et al. 2007).

In this work, we focus on OpenMP; the OpenMP parallel
programming model has embraced malleability since its
appearance, instead of much more rigid parallel models
such as MPI, which only recently has started to offer
this feature. However, even the original malleability of the

OpenMP model has proven not to be enough. For this
reason, we extend our previous free agent threads proposal
that expands the malleability of the programming model
outside the parallel construct. This new feature allows the
Dynamic Load Balancing (DLB) library to further exploit the
malleability of hybrid MPI+OpenMP applications, achieving
better efficiencies.

The main contributions of this paper are the following:
a new implementation of the free agent threads; this new
implementation aims to add a lower overhead, be more
usable, and offer an extensible framework; the integration
of the free agent threads with the DLB library, and the
demonstration using three real HPC applications and two
different architectures.

Related Work
This work relies on two main principles: a task-based
programming model, where the parallel decomposition
leverages the creation of unstructured work units (called
tasks), and runtime malleability, in terms of resource
allocation, of the associated task-based programming
runtimes.

Among the set of task-based programming models
currently used in HPC, we can find:

Since the release of OpenMP 3.0 (OpenMP ARB 2008),
the standard includes a task-based approach in addition to

1Barcelona Supercomputing Center, Spain

Corresponding author:
Joel Criado, BSC-CNS Barcelona, Barcelona, 08034, Spain
Email: joel.criado@bsc.es

Prepared using sagej.cls [Version: 2017/01/17 v1.20]

This is an accepted manuscript, the final version can be found at: https://journals.sagepub.com/doi/abs/10.1177/10943420231201153
Copyright © 2023 by SAGE Publications

2 Journal Title XX(X)

its traditional work-sharing model. The current tasking sub-
model allows creating new tasks, waiting for their execution,
and adequately ordering tasks using data dependences. This
tasking approach is similar to the aforementioned OmpSs
programming model. However, the execution model is still
bound to the creation of parallel regions.

The Intel Cilk++ SDK (Intel Corporation 2009) is a C++
language extension that includes a runtime library within the
family of Intel compilers. It allows expressing the parallelism
through a few language keywords (similar to compiler
directives), which ease iteration space decomposition, stand-
alone tasks creations, and the synchronization among these
work units. The current version of this approach is the
OpenCilk project (Massachusetts Institute of Technology
2021), under the MIT supervision.

The OmpSs programming model (Barcelona Supercom-
puting Center 2011; Duran et al. 2011) expresses parallelism
using compiler directives. These directives are transformed
at compile time into runtime services with well-defined
semantics. Among others, programmers may create new
tasks, wait for their execution, establish the proper order of
task execution, atomic/critical memory updates, etc. When
ignoring directives, sequential behavior is expected.

The Intel Threading Building Blocks, TBB (Intel
Corporation 2011), is a C++ template library that allows
program parallelization through tasks. Programmers may use
high-level or low-level interfaces to spawn tasks; with such
information, the runtime creates a Task Dependency Graph
and executes tasks in parallel when possible.

Resource usage malleability is the other pillar on
which our implementation relies. Changing the number
of assigned processing elements at runtime requires a
parallel decomposition that does not depend on them.
This requirement removes from the equation the traditional
OpenMP work-sharing constructs. Once we start a parallel
region, the number of threads participating in it must remain
constant until the end of the construct. Otherwise, some
fundamental definitions will be broken (e.g., the barrier
directive or a static distribution of iterations among threads).

Some OpenMP extensions have tried to relax the
requirement of keeping constant the number of threads
participating in the parallel region based on the idea of
reparallelization Klemm et al. (2007). Such an approach
requires specifying safe points along the OpenMP code
where the runtime may proceed with any work repartitioning.
The authors reinforce the arguments about the complexity
and limitations of modifying the number of participants
within the parallel region:

• When considering the semantics of the parallel: the
number of times a statement is executed, barriers
thread private variables.

• When considering the specific semantics of work-
sharings: dynamic schedulers, partial chunks/itera-
tions, reductions.

Task-based approaches, instead, will ease resource
malleability. As the created tasks are not bound to a particular
thread before starting their execution, the number of threads
(and the number of cores, consequently) may change at

runtime. Several existing implementations leverage such
malleability:

The OmpSs programming model implements a Thread
Manager module, which provides support to the number
of threads and their bindings to the underlying CPUs.
The OmpSs Thread Manager may also interact with the
Dynamic Load Balancing library (Garcia et al. 2014;
D’Amico et al. 2018). This library gathers information about
the system occupancy beyond the process level, having
an overall picture of the whole node status. With this
information, it can decide and change which should be
instant resource ownership for each process along with the
program execution.

Some OpenMP implementations also include the idea of
using additional threads not directly included in the parallel
region to help execute tasks. The Hidden Helper Threads
feature (Tian et al. 2022) implemented in the LLVM compiler
presents a common use case in which the target construct
may leverage the presence of these other threads to relieve
the critical path. The main differences with our current
implementation are: 1) the Hidden Helper Threads approach
does not allow to change the number of threads; and 2) it
is restricted to the use of target tasks, while our proposal
intends to be more generic*.

Our initial implementation of free agent threads (Lopez
et al. 2021) combines two previous approaches. On the one
hand, we implement the mechanism on top of an OpenMP
runtime fully integrated as a standard programming model.
On the other hand, we implement it in such a generic way
that all the instantiated tasks could leverage the presence of
these additional threads to be executed. The DLB component
is responsible for increasing or reducing the number of
threads participating in the process. This previous work
demonstrated how free agent threads could address load
imbalance problems inherent in some HPC applications.

The current version, presented in this work, generalizes
and simplifies the implementation by allowing an existing
thread to change its role during the execution. Taking
advantage of existing threads that no longer participate
in the parallel region reduces the cost of creating and
managing such threads. In addition, the implementation is
more consistent with the definitions of the model itself
regarding the limit of threads. We also prepare the runtime
to host other types of roles in the future. We believe
it is interesting for OpenMP users and developers to
increase the model’s extensibility further. For instance,
the standard could consider dedicating specific threads to
execute communication tasks (i.e., the thread role will
be communicator). Finally, it also simplifies the way
programmers interact with the execution of the resulting
programs by pushing the rationale of specific decision-
making configurations as part of the OpenMP runtime (i.e.,
automatize parameters). The evaluation section will show
that the runtime’s automated decisions always improve the
best configuration used in the previous implementation.

∗This is also the reason we are not comparing against this proposal; the
study’s use cases do not take any benefit from the Hidden Helper Threads
implementation.

Prepared using sagej.cls

J. Criado et al. 3

Design and implementation
Our previous free agent thread implementation used a
mechanism of two pools of threads, one containing the initial
plus the worker threads and the other pool containing the
set of free agent threads. The idea behind was to have a
representative thread per processor and enable either the
worker thread or the free agent thread depending on whether
the thread on that processor was needed for a parallel region.

After evaluating our first approach, we observed two
undesirable situations. Firstly, a worker thread and a free
agent thread, both bound to the same processor, could
be active simultaneously. When the first was needed
for a new parallel region while the second was still
executing a previously instantiated explicit task, i.e., a task
generated by a task construct, thus provoking a short
time-lapse of processor oversubscription. Secondly, should
the OpenMP model implement a new type of thread,
its implementation may also be done using a third pool
of threads overcomplicating the implementation. Our new
implementation solves both problems by using the same
thread running with different roles and adding extensibility
to the model.

The new free agent thread and role-shifting implementa-
tion presented in this paper are based on the LLVM OpenMP
runtime version 14.0.0 (Barcelona Supercomputing Center
2016).

The LLVM OpenMP runtime
The LLVM OpenMP runtime implements parallel regions as
follows. When a thread encounters a parallel construct,
the thread creates the structure for the team of threads and
assigns as many threads as needed to the team. Threads
will be created the first time that the runtime needs such
threads. Upon completion of the parallel region, threads are
suspended and moved to a thread pool structure until another
parallel region is encountered. If subsequent parallel regions
do not need more threads than any other previous region,
existing threads will be reused.

The LLVM OpenMP runtime implements the thread fork-
join model using two different kinds of barriers. The first
kind of barrier is called fork-barrier, and this is where all
idle threads are waiting until they are needed for some team.
When an idle thread is assigned to a team, the thread is
released and executes an implicit task, which is the task
assigned to each team member that includes all the parallel
region code. One particularity of this barrier is that a thread
is released as soon as it is ready; whether the other threads
participating in the same parallel region have arrived at the
barrier is irrelevant.

The second kind of barrier is called join-barrier, and it is
used to join all threads at the end of a parallel region. It is
a more traditional barrier where all threads must reach the
barrier before the rest may proceed. After that, all threads
again enter the fork-barrier.

The described flowchart of a worker thread is shown in
Figure 1. A thread may reach task scheduling points while
executing its implicit task, typically when encountering
taskgroup, taskwait, barrier constructs, etc. The
implementation may perform a task switch at this point,
beginning or resuming the execution of an explicit task

release()fork_barrier

task scheduling point

implicit task

while (!g_done)

implicit barrier

join_barrier

explicit task

Figure 1. OpenMP worker thread flowchart.

bound to the same team. Once it reaches the implicit barrier,
a worker thread may also execute explicit tasks.

The role-shifting threads
The role-shifting threads are an evolution of the current
OpenMP threads. We can differentiate two types of OpenMP
threads: the initial and worker threads. When a non-nested
parallel region ends, all the worker threads become idle until
the initial thread encounters another parallel region. The
idea behind role-shifting threads is to use the already existing
idle threads to perform different jobs based on their available
roles.

Under the new model, all threads, including the initial
thread, can have from 0 to n potential roles, but only one
of them can be active at a time. The initial thread may not,
and probably must not, use any role, but we do not enforce
the restriction for simplicity in the specification. The worker
role is implicit in all the threads since they may be able to
participate in a parallel region at any time.

1 typedef enum omp_role {
2 OMP_ROLE_NONE = 0 ,
3 OMP_ROLE_FREE_AGENT = 1 << 0 ,
4 OMP_ROLE_X = 1 << 1 ,
5 OMP_ROLE_Y = 1 << 2 ,
6 OMP_ROLE_Z = 1 << 3
7 } o m p _ r o l e _ t ;

Listing 1: OMP Roles enumeration example.

To allow for multiple roles simultaneously, we use a
custom enumeration type where each bit represents a
different role. An example structure is displayed in Listing 1.

release()fork_barrier

task scheduling point

implicit task

while (!g_done)

implicit barrier

join_barrier

explicit task

explicit task
role == free agent thread

role != free agent thread change
role?

yes/no

change
role?

Figure 2. OpenMP role-shifting thread flowchart.

A thread can shift its active role at different points. At
the start of a parallel region, all the required threads must
abandon their current role and execute their assigned implicit
task; after finishing it, they may shift to one of their potential
roles. Regarding the free agent role, these threads may
change their role before and after executing an explicit task.
These role-shifting points are depicted in Figure 2. In the
future, other roles may use the same shifting points and
introduce new ones if required.

Prepared using sagej.cls

4 Journal Title XX(X)

New API routines. We have implemented an extension to
the OpenMP API to interact with the role-shifting threads
model. This extension includes the concept of global thread
id in the runtime to interact with the API. This thread id is a
unique identifier assigned at thread creation and lasts for the
entire execution. The global thread id must not be confused
with the current OpenMP thread number, which identifies
each thread participating within a parallel region.

• int omp_get_thread_id(void): Obtains the
global thread id of that thread.

• int omp_get_thread_roles(int tid,
omp_role_t *roles): Returns the number of
potential roles for thread with global id tid and sets
roles to the potential roles of the thread.

• void omp_set_thread_roles(int tid,
omp_role_t roles): Sets the potential roles

of the thread with global id tid to roles. It will
remove all previous potential roles from the thread. If
tid is higher than the current number of threads, the
runtime will create a new thread with the appropriate
roles.

Environment variables. We propose a unique environment
variable to unify all the role-shifting threads model:
OMP_ROLES: Indicates the initial number of threads with

the desired potential roles. Usage examples:

(i) OMP_ROLES="{role1},{role2},{role1,
role3}". Three different threads, one with role1,
one with role2, and another with role1 and
role3.

(ii) OMP_ROLES="{role1},{role2,role4}*3".
Four different threads, one with role1 and three with
role2 and role4.

New OMPT callback signature. We propose a new OMPT
callback to identify when a thread shifts its active role.

• void ompt_callback_thread_role_shift
(ompt_data_t *thread_data,
ompt_role_t prior_role, ompt_role_t
next_role): Each thread emits the callback

each time it changes the active role: prior_role
indicates the previous active role, and next_role
indicates the new active role of that thread.

Free agent clause Some tasks access information related
to the team (e.g., threadprivate variables or executing
omp_get_thread_num), and executing them with a free
agent thread may lead to an incorrect result. Therefore, we
added the free_agent clause to task and taskloop
constructs to indicate when a free agent thread can execute
a task. By default, threads with the role cannot execute any
task, so the correctness is preserved.

We have implemented the clause in the Clang compiler
shipped with the OpenMP runtime. Clang evaluates the
boolean condition when the clause is specified and sets
the runtime structures accordingly. When the value is a
constant, it is evaluated in the front-end. Otherwise (e.g.,

the expression value depends on a runtime variable), it emits
code to compute the boolean expression at runtime.

We also created an environment variable
(OMP_FREE_AGENT_CLAUSE_DEFAULT) to indicate if
all the tasks are suited for free agent execution. That way,
the user does not have to modify all the constructs one by
one. The environment variable accepts a boolean value.

Integration with DLB
We have integrated the free agent threads role from the
role-shifting threads implementation with the Lend When
Idle (LeWI) module of DLB. LeWI aims at optimizing
the performance of hybrid applications (MPI+OpenMP) by
improving their load balance. Figure 3 shows how LeWI
operates for an unbalanced application. When an MPI
process executes a blocking call, it lends all the CPUs it has
at that moment, and other processes may acquire them for
their use. After exiting the MPI call, the process reclaims
all the CPUs it owns, and it can continue its execution
transparently.

Figure 3. Example of DLB and LeWI balancing algorithm. On
the left is an unbalanced hybrid application. On the right, the
application is balanced using LeWI.

Regarding the OpenMP integration, we capture specific
OMPT callbacks and perform different actions with DLB:

• Parallel_begin: We must register when executing a
parallel region and the number of threads associated
with it. Those threads are required for the entire
execution of the region and cannot shift their role at
any moment.

• Parallel_end: The parallel region ends, and DLB may
use the threads from the former parallel region for load
balancing purposes.

• Task_schedule: When starting the execution of a task,
DLB tries to acquire a CPU from any other process if
there are more pending tasks. When a free agent thread
ends the execution of a task, it returns the CPU if it
has been reclaimed, or it lends the CPU if there are no
more pending tasks, or it proceeds silently.

• Thread_begin: We extract the global thread id for
each thread and set the affinity of the free agents to
their correspondent CPU.

• Thread_role_shift: When a thread changes from
worker to free agent, we deactivate it if the CPU has
been reclaimed or there are no more pending tasks.

Prepared using sagej.cls

J. Criado et al. 5

When an MPI process receives a CPU for the first time, it
creates a new thread with the role of free agent, and it assigns
that CPU for the rest of the execution to that thread. When
it receives that same CPU in the future, instead of creating
a new thread, it will change the role of that thread with
the API. We also tried a different strategy where we rebind
inactive threads to new CPUs when possible, but it had more
overhead and was more sensitive to system noise (e.g., CPU
preemptions by the OS), so it was discarded.

Evaluation
In this section, we present the performance evaluation of
the proposed implementation. In this evaluation, we will
compare up to three versions of each application:

• Original: The original application executed as in a
production run.

• Double-pool: The original application using the DLB
load balancing library (for hybrid applications) with
the LLVM free agent threads implementation based on
the double pool of threads. For this implementation,
the user must provide the maximum number of free
agent threads used per MPI process. We will consider
this variable in the evaluation as Num. free agent
threads.

• Role-shifting: The original application using the DLB
load balancing library (for hybrid applications) with
the LLVM free agent threads implementation based on
the role-shifting threads. This version does not need
additional parameters, and the runtime automatically
decides the number of free agent threads.

HPC Environment
All the experiments presented in this work have been
obtained on two different clusters, MareNostrum4 and a
Huawei Kunpeng platform.

MareNostrum4 is a supercomputer based on Intel Xeon
Platinum processors; each node comprises two sockets (Intel
Xeon Platinum 8160 CPU) with 24 cores each at 2.10GHz
for a total of 48 cores per node and 96 GB of main memory.
Its nodes are connected using a 100 Gbit/s Intel Omni-Path
network. It houses 3456 nodes accounting for a total of
165888 cores.

The Huawei cluster is a supercomputer built with the
Kunpeng 920 microprocessor based on the ARMv8.1
architecture. Each node comprises two sockets with 64 cores
at 2.60GHz for a total of 128 cores per node and 256 GB
of main memory. The cluster consists of 16 nodes connected
using a Mellanox high-performance network interconnect for
a total of 2048 cores.

On MareNostrum4, the OpenMP runtime, DLB, and
all the applications have been compiled using the Intel
2017.4 suite. The MPI library used to run is Intel MPI
2017.4 version. We use DLB version 3.0 (Barcelona
Supercomputing Center 2009) and the extended LLVM
OpenMP runtime library (Barcelona Supercomputing Center
2016) to support the free agent threads in all cases. On the
Huawei cluster, the compiler used is GCC 11.2.0 and the MPI
implementation is OpenMPI 4.1.3.

For the evaluation, we test three state-of-the-art HPC
applications; a condensed matter physics simulation code,
DMRG++, a parallel remesher, ParMmg, and a simulation
code for high-performance computational mechanics, Alya.

DMRG++
DMRG++ (Alvarez 2009) is an HPC implementation of the
Density Matrix Renormalization Group algorithm developed
by ORNL. The application is written in C/C++ and
parallelized with OpenMP. Therefore, DLB is not used with
this application since it requires an MPI parallelization.

The version used in this study is the DMRG++ mini-
app (Elwasif et al. 2018), which focuses on the computation-
intensive part of DMRG++. The mini-app performs
Kronecker products on matrices. The code structure is
represented in Listing 2. It features two nested parallel
regions with an uneven computational load that produces
imbalances. One possible parallelization of this loop consists
of a task-based dependency approach (Criado et al. 2019).
However, in this study, we base our experiments on
the original parallelization with nested parallel regions,
analyzing the impact of the role-shifting threads to solve their
load imbalances automatically.

1 for (n u m _ i t e r a t i o n s) {
2 # pragma omp p a r a l l e l for s c h e du l e (static)
3 for (i = 0 ; i < n ; i ++) {
4 # pragma omp p a r a l l e l for s c h e du l e (dynamic , 1)
5 for (int j = 0 ; j < n ; j ++) {
6 int s i z e _ k = M at r i x [i] [j]−>A. s i z e () ;
7 # pragma omp t a s k l o o p default (s h a r e d)
8 for (int k = 0 ; k < s i z e _ k ; k ++) {
9 . . . / / Task body

10 }
11 }
12 }
13 }

Listing 2: DMRG++ miniapp structure.

Figure 4 shows two Paraver traces of an execution with
four OpenMP threads in the outer parallel region and twelve
in the inner one. Each horizontal line corresponds to one
OpenMP thread, and on the x-axis, the time is represented.
The traces display the amount of time each thread is
performing useful computation and uses a gradient; green
means low duration, and blue high duration, while white is
used when the thread is idle. Both traces are on the same time
scale.

The Intel runtime is used in the top execution. Due to the
load imbalance from the outer parallel region, half of the
threads execute their tasks much faster than the others. They
are idle for most of the execution. The bottom trace solves
the same problem using the role-shifting runtime. Here, the
threads shift to the free agent role after ending their parallel
region and start executing tasks. The application improves its
load balance and is able to end faster.

Figure 5 shows the execution time obtained on
MareNostrum4 with the Intel runtime and the role-shifting
runtime. The double-pool runtime is not included because
it lacks the algorithm to schedule workers and free
agents automatically. It was not implemented in the first
implementation due to a lack of time. The x-axis represents
the number of threads used in each parallel region (i.e.,

Prepared using sagej.cls

6 Journal Title XX(X)

Figure 4. DMRG++ Paraver execution traces on MareNostrum
4. Top: execution with the vendor runtime. Bottom: execution
with the role-shifting LLVM runtime. Both runs are equivalent
and use 4 OpenMP for the outer parallel region and 12 for the
inner one.

nesting configuration); the first value refers to the outer level
and the second to the inner one. The y-axis depicts the
execution time in seconds.

The results show that with the 2×24 configuration,
both runtimes achieved a similar execution time. Using
two threads on the outer level results in a well-balanced
execution, and the execution cannot benefit from the role-
shifting threads. Nevertheless, achieving a similar execution
time demonstrates that our runtime does not introduce a
significant overhead.

The other configurations present load imbalances in the
outer level, as shown in the Paraver traces, which ultimately
lead to an increased execution time. In those scenarios, the
role-shifting runtime is able to balance the execution. It
achieves a similar execution time in all the scenarios. Since
the computation load of each parallel region is related to the
input, the optimal number of threads per parallel region may
change each time it is modified. Nevertheless, with the role-
shifting runtime, the user can achieve a reasonable execution
time without trying all the different permutations.

0

1

2

3

4

2x24 4x12 6x8 8x6 12x4 24x2

E
x

e
cu

ti
o

n
 t

im
e
[s

]

Nesting configuration

Original Role-shifting threads

Figure 5. Comparison of DMRG++ executions in
MareNostrum4 with the vendor runtime (Original) and the
runtime introduced in the paper (Role-shifting). The execution
time is represented in the y-axis. The x-axis shows the number
of threads used in each parallel region; the first value refers to
the outer region (i loop), and the second one to the inner region
(j loop).

Figure 6 shows the same experiment executed on the
Kunpeng cluster, using nesting configurations to fill the
128 cores of one node. The first conclusion we observe is
that, in its original version, the application performs better
with an unbalanced configuration of 4×32 than with the
balanced 2×24. The Kunpeng cluster node comprises 4
NUMA nodes of 32 cores. Thus a possible explanation
is that pinning the 32 threads of the innermost parallel
region in one NUMA node has a more significant impact
than the imbalance introduced in the 4×32 configuration. It
could also mean that the excess of parallelism at the thread
level negatively impacts the performance, and reducing the
number of active threads to two parallel regions of 32 threads
actually improves the execution time. This conclusion
interferes with the motivation of free agent threads about
using the maximum number of idle threads to speed up the
execution. Nevertheless, the results with free agent threads
still outperform the original execution in most configurations
and still achieve the best overall execution time.

0

5

10

15

2x64 4x32 8x16 16x8 32x4 64x2

E
xe

cu
ti

on
 t

im
e

(s
)

Nesting configuration

Original Role-shifting threads

Figure 6. Comparison of DMRG++ executions in Kunpeng with
the GCC runtime (Original) and the runtime introduced in the
paper (Role-shifting). The execution time is represented in the
y-axis. The x-axis shows the number of threads used in each
parallel region; the first value refers to the outer region (i loop),
and the second one to the inner region (j loop).

ParMmg
ParMmg (Cirrottola and Froehly 2019) is a parallel remesher
developed by INRIA, based on top of the sequential Mmg
remesher. Mesh adaptation is widely used in computational
solid mechanics (CSM) and computational fluid dynamics
(CFD) domains to improve the quality of the solution. The
application is written in C and parallelized with MPI. The
input set used in the study is prepared to do a weak scaling
using power of two MPI ranks from 2 to 256 processes.

We added an OpenMP taskification on the main loop
iterations to implement a second level of parallelism in that
region that allows us to exploit the load balancing capabilities
of DLB.

ParMmg presents an irregular load imbalance among the
different iterations, as seen in the top trace of Figure 7. In this
figure, we show a Paraver trace of an execution of ParMmg
using 32 MPI ranks; each horizontal line corresponds to one
MPI process, and the time is represented on the x-axis. White
means that the MPI process is not doing useful computation,
i.e., it is inside an MPI call, and any other color means
computing. In this trace, we can identify three steps and

Prepared using sagej.cls

J. Criado et al. 7

Figure 7. Top: ParMmg Paraver trace execution of 3 iterations
using 32 MPI ranks. Bottom: Same execution using role-shifting
threads and DLB. Each color represents different MPI ranks,
and both traces are at the same duration scale.

observe that the load distribution changes from one iteration
to another. For these two reasons, ParMmg can benefit from
the load balancing capabilities of DLB because the load
imbalance can not be predicted as it changes dynamically
during the execution.

We can see the same execution using DLB and role-
shifting threads in the bottom trace of the same figure. We
can observe that each MPI process can now have more than
one OpenMP thread; these are the different lines below an
MPI process. We can also observe how the additional threads
are used at the end of the iteration to speed up the execution
of the most loaded MPI ranks.

1,098

1,163
1,175

1,188 1,192 1,185 1,192

1

1,1

1,2

1 4 8 13 20 41 x

S
p

e
e
d

u
p

 w
rt

 O
ri

g
in

a
l

Num. free agent threads | version

Double-pool Role-shifting

Figure 8. ParMmg speedup (y-axis) comparison with DLB and
different free agent thread implementations (x-axis) on one
MareNostrum4 node. For the Double-pool implementation,
different number of free agent threads are tested.

In Figure 8, we show the speedup of ParMmg on
MareNostrum4 obtained with the different implementations
of free agent threads using DLB with respect to the original
execution. On the x-axis, we show the different versions
of the free agent threads implementations and the different
number of free agent threads used for the double-pool
implementation. There are two important outcomes from
this plot. On the one hand, the role-shifting implementation
obtains the same performance as the best configuration of
the double-pool implementation. On the other hand, the
performance of the double-pool implementation depends
highly on the number of free agent threads that the user
specifies.

500

700

900

1.100

1.300

1.500

1.700

2 4 8 16 32 64 128 256

E
x

e
c
u

ti
o
n

 t
im

e
 (

s)

MPI ranks

Vanilla Double-pool Role-shifting

Figure 9. ParMmg scalability on MareNostrum4 from 2 to 256
processes. The y-axis displays the execution time in seconds,
and the x-axis the amount of MPI ranks used in each run.

Figure 9 displays the execution time of ParMmg on
MareNostrum4 using a different number of MPI ranks (and
cores) on the x-axis. The different versions are represented
by different lines. The number of free agent threads allowed
per MPI rank is set to the best configuration measured in the
previous experiment for the double-pool version. ParMmg is
a weak scaling application so the ideal execution would be a
flat line. We can see that for all the cases, the execution using
DLB and free agent threads improves the performance of the
vanilla ParMmg code. For all the executions, the role-shifting
implementation performs as well as the best configuration of
the double-pool implementation.

1,062

1,115

1,157
1,172 1,169 1,170 1,176

1,0

1,1

1,2

1 2 4 12 18 24 x

S
p

e
e
d

u
p

 w
rt

 O
ri

g
in

a
l

Num. free agent threads | version

Double-pool Role-shifting

Figure 10. ParMmg speedup (y-axis) comparison with DLB
and different free agent thread implementations (x-axis) on one
Kunpeng node.For the Double-pool implementation, different
number of free agent threads are tested.

Figure 10 shows the speedup of ParMmg on one Kunpeng
cluster with the two free agent threads implementations
using DLB with respect to the original execution. In this
case, we get results very similar to the speedups obtained
on MareNostrum4. The new implementation of role-shifting
threads still outperforms the double-pool version in all the
configurations. It also demonstrates that the role-shifting
version can obtain maximum performance by dynamically
selecting the number of free agent threads used for load
balancing.

Figure 11 shows the scalability chart on the Kunpeng
cluster. Due to the application memory constraints, ParMmg
was executed using up to 32 MPI ranks per node but still
forcing the ratio of 1 core per rank in order to keep the
comparisons fair. Thus, even if DLB enables free agent
threads to help with the load balance, those threads will be

Prepared using sagej.cls

8 Journal Title XX(X)

0

1000

2000

3000

2 4 8 16 32 64 128 256

E
x

e
cu

ti
o

n
 t

im
e
 (

s)

MPI ranks

Vanilla Role-shifting

Figure 11. ParMmg scalability on the Kunpeng cluster from 2
to 256 processes. The y-axis displays the execution time in
seconds, and the x-axis the amount of MPI ranks used in each
run.

pinned to the same 32 cores where the application is running.
The double-pool implementation is not shown in the figure
since their performance results are very similar to the role-
shifting implementation. The figure demonstrates again that
the free agent threads can be used successfully to improve
load imbalance in applications.

Alya
Alya (Vázquez et al. 2016) is a high-performance
computational mechanics code that can solve multiple
physics, standalone or coupled. Most of the problems it
can address come from the engineering realm. Among
the different physics solved by Alya, we can mention
incompressible and compressible flows, non-linear solid
mechanics, chemistry, particle transport, heat transfer,
turbulence modeling, electrical propagation, etc. Alya was
specially designed for massively parallel supercomputers and
is part of the Unified European Application Benchmark Suite
(UEABS), a set of 13 highly scalable, relevant, and publicly
available codes. Alya is written in Fortran and parallelized at
different levels, including MPI, SIMD, OpenMP, and GPUs.
This paper will use the MPI+OpenMP version, and the
OpenMP parallelization will be used only for load balancing.
The executions will be launched as an MPI-only execution:
one core per MPI rank and one OpenMP thread per process.
This is because the OpenMP parallelization of Alya is not
exhaustive in all the code and is not used in production runs.

The use case executed in this paper is a production
combustion problem, coupling the fluid solution on the one
hand with the chemical reaction on the other (Cavaliere et al.
2013; Zhang et al. 2015). Due to the problem size and the
time constraints that would appear on the Kunpeng cluster,
these experiments have only been tested on MareNostrum4.

Figure 12. Alya Paraver trace execution of 2 iterations coupling
96 MPI ranks for the fluid simulation and 672 MPI ranks for the
chemical simulation.

In Figure 12, we can see a trace of the execution of Alya
with 768 MPI ranks. The first 96 MPI ranks are solving the
fluid, and the remaining 672 the chemical reaction. In this
trace, the grey color represents useful computation, the other
colors represent the MPI calls executed by the program. We
can identify two time steps and the two coupled problems in
the trace. We can observe that the computing region before
the MPI_Barrier (red) is the more time-consuming one, and
at the same time, it presents a significant load imbalance.

1,314
1,369

1,428

1,549 1,572 1,576 1,576
1,616

1

1,1

1,2

1,3

1,4

1,5

1,6

1 3 7 15 23 35 47 X

S
p

e
e
d

u
p

 w
rt

 o
ri

g
in

a
l

Num. free agent threads | version

Double-pool Role-shifting

Figure 13. Alya speedup (y-axis) comparison with 768 MPI
ranks using DLB and different free agent thread
implementations (x-axis). For the Double-pool implementation,
different number of free agent threads are tested.

We evaluate three different executions of Alya, the original
code, using DLB and the double-pool implementation of the
free agent threads, and using DLB with the role-shifting
version. In Figure 13, we can see the speedup obtained
when using DLB and free agents with the different versions
with respect to the original execution of Alya, using 768
MPI ranks in 768 cores for all cases. In the x-axis, we
show the different number of free agent threads enabled
for the double-pool implementation. We can see that the
role-shifting version achieves a better speedup than the
best configuration of the double-pool implementation. We
can also observe that the performance of the double-pool
implementation depends on the number of free agent threads
enabled by the user.

1,098
1,123

1,169

1,205
1,229 1,234 1,234

1,272

1

1,1

1,2

1,3

1 3 7 15 23 35 47 X

S
p

e
e
d

u
p

 w
rt

 o
ri

g
in

a
l

Num. free agent threads | version

Double-pool Role-shifting

Figure 14. Alya speedup (y-axis) comparison with 1152 MPI
ranks using DLB and different free agent thread
implementations (x-axis). For the Double-pool implementation,
different number of free agent threads are tested.

In Figures 14 and 15, we can see the same study running
Alya with 1152 and 1536 MPI ranks. In both plots, we
can see that the role-shifting implementation outperforms

Prepared using sagej.cls

J. Criado et al. 9

1,062

1,104

1,213

1,257 1,271 1,277 1,273
1,304

1

1,1

1,2

1,3

1,4

1 3 7 15 23 35 47 X

S
p

e
e
d

u
p

 w
rt

 o
ri

g
in

a
l

Num. free agent threads | version

Double-pool Role-shifting

Figure 15. Alya speedup (y-axis) comparison with 1536 MPI
ranks using DLB and different free agent thread
implementations (x-axis). For the Double-pool implementation,
different number of free agent threads are tested.

all the configurations of the double-pool one. Alya’s tasks
have finer grain than ParMmg (a few milliseconds per task),
and the program benefits from the reduction in overhead
in the runtime and DLB integration. It is also interesting
to notice that the best configuration of the double-pool
implementation is not consistent between the executions with
the different number of MPI ranks.

4

6

8

10

12

14

768 1152 1536

T
im

e
 (

s)

Num. MPI ranks

Original Double-pool Role-shifting

Figure 16. Alya scalability on MareNostrum4 from 768 to 1536
processes. The y-axis displays the execution time in seconds,
and the x-axis the amount of MPI ranks used in each run.

Figure 16 shows the execution time achieved by the
different versions when running Alya varying the number
of MPI ranks. We show that the use of DLB and free agent
threads improves the performance of the original Alya code
in all the cases. In this plot, we use the best configuration
achieved in the previous experiments for the double-pool
implementation. However, the best option is to use the role-
shifting version of the free agent treads implementation.

Impact on the OpenMP model
Free agent threads may be introduced in the next OpenMP
release. As with many other added features, they might
impact the model, add some restrictions, or affect how
developers write their code. We believe the addition of
free agent or role-shifting threads will give OpenMP users
more tools to enhance the performance of their applications
further.

One of the restrictions added by free agent threads
is the execution of OpenMP team-related functions, e.g.,

omp_get_thread_num. Since free agent threads do
not belong to any team, they cannot obtain a unique
team identifier. It is not an uncommon practice in some
applications to use this identifier to allocate private storage
for that thread manually, and this cannot be accomplished in
tasks executed by free agent threads. In that sense, we believe
that OpenMP programs should express the parallelism in a
descriptive way rather than using a prescriptive approach.
Being descriptive will also increase the malleability of the
application as long as the model is also malleable.

Nevertheless, when making an OpenMP proposal it is
critical to keep the compatibility of existing applications.
By adding the free_agent clause or a convenience
environment variable, the correctness of existing applications
can still be ensured.

In OpenMP, tasks can also be tied to a thread; once a thread
has started executing a task, only this thread will be able to
resume the task if ever this task is suspended. We have not yet
explored task tiedness in our implementation, but we believe
that the model can support it. The problem with tied tasks
comes from the malleability of the model, a free agent thread
can be dynamically suspended, but the implementation needs
to ensure that all tasks tied to that thread are completed.

Locks and critical sections are, by definition, already
supported by free agent threads. Lock ownership was defined
in terms of tasks instead of threads in OpenMP 3.0. Critical
sections are specified by a name, even if the name is not
provided. Only one thread at a time will execute the critical
region regardless of which team the thread belongs to.

Conclusions
This paper presents a new extension of the OpenMP
programming model, allowing their threads to have different
roles. The previous free agent threads have been merged
into this new implementation as a role. With this approach,
the model has a unique pool of threads, in contrast to the
previous one, employing fewer resources. Moreover, the
role-shifting approach is an opportunity to include more roles
in the model, which may lead to more improvements in terms
of malleability and flexibility.

Previously, the user had to select the desired number of
free agent threads at the start of the execution, but the role-
shifting allows for changes at runtime. This change makes
the model more flexible for the users and tools using the
OMPT interface from OpenMP. This fact is reflected in the
evaluation, where the role-shifting model delivered the same
or better performance than the double-pool model without
any tunning required.

Furthermore, we demonstrate how the free agent threads
proposal increases the malleability of the OpenMP standard,
thus, allowing tools like DLB to exploit it to achieve better
efficiencies. To this end, the role-shifting model has been
integrated with DLB.

We have demonstrated the potential of role-shifting
threads for purely OpenMP applications and how DLB
improves the performance of hybrid applications, exploiting
the malleability exposed by OpenMP tasks by enabling and
disabling threads with the free agent role. The results showed
speedups from 1.2× to 2.44× in three real-world scientific
applications, mending their load imbalances.

Prepared using sagej.cls

10 Journal Title XX(X)

Overall we show the relevance of malleability at the
different levels of the software stack to achieve performance.
We also highlight the need to isolate the user from low-level
decisions, and that different runtime systems must coordinate
to use the computational resources efficiently.

Acknowledgements This work has received funding from the DEEP
Projects, at the European Commission’s FP7, H2020, and EuroHPC
Programmes, under Grant Agreements 287530, 610476, 754304, and
955606. The PCI2021-121958 financed by the Spanish State Research
Agency - Ministry of Science and Innovation. And it also has the support
of the Spanish Ministry of Science and Innovation (Computacion de Altas
Prestaciones VIII: PID2019-107255GB).

References

Alvarez G (2009) The density matrix renormalization group for
strongly correlated electron systems: A generic implementa-
tion. Computer Physics Communications 180(9): 1572–1578.

Barcelona Supercomputing Center (2009) DLB repository.
URL https://github.com/bsc-pm/dlb/commit/

c4642f8. Accessed: 2022-06-29.
Barcelona Supercomputing Center (2011) OmpSs Specification.

URL https://pm.bsc.es/ompss. Accessed: 2022-03-
01.

Barcelona Supercomputing Center (2016) LLVM repository.
URL https://github.com/bsc-pm/llvm/commit/

21f396fde4a9. Accessed: 2022-06-29.
Cavaliere DE, Kariuki J and Mastorakos E (2013) A comparison

of the blow-off behaviour of swirl-stabilized premixed, non-
premixed and spray flames. Flow, Turbulence and Combustion
91(2): 347–372. DOI:10.1007/s10494-013-9470-z. URL
https://doi.org/10.1007/s10494-013-9470-z.

Cirrottola L and Froehly A (2019) Parallel unstructured mesh adap-
tation using iterative remeshing and repartitioning. Research
Report RR-9307, INRIA Bordeaux, équipe CARDAMOM.
URL https://hal.inria.fr/hal-02386837.

Conejero J, Corella S, Badia RM and Labarta J (2018) Task-based
programming in COMPSs to converge from HPC to big data.
The International Journal of High Performance Computing
Applications 32(1): 45–60.

Criado J, Garcia-Gasulla M, Labarta J, Chatterjee A, Hernandez
O, Sirvent R and Alvarez G (2019) Optimization of condensed
matter physics application with OpenMP tasking model. In:
International Workshop on OpenMP. Springer, pp. 291–305.

D’Amico M, Garcia-Gasulla M, López V, Jokanovic A, Sirvent R
and Corbalan J (2018) DROM: Enabling Efficient and Effort-
less Malleability for Resource Managers. In: Proceedings
of the 47th International Conference on Parallel Processing
Companion, ICPP Workshops ’18. Association for Computing
Machinery, p. 41. DOI:10.1145/3229710.3229752. URL
https://doi.org/10.1145/3229710.3229752.

Desell T, Maghraoui KE and Varela CA (2007) Malleable
applications for scalable high performance computing. Cluster
Computing 10(3): 323–337.

Duran A, Ayguadé E, Badia RM, Labarta J, Martinell L, Martorell
X and Planas J (2011) OmpSs: a Proposal for Programming
Heterogeneous Multi-Core Architectures. Parallel Process.
Lett. 21: 173–193.

El Maghraoui K, Desell TJ, Szymanski BK and Varela CA (2007)
Dynamic malleability in iterative MPI applications. In: Seventh

IEEE International Symposium on Cluster Computing and the
Grid (CCGrid’07). IEEE, pp. 591–598.

Elwasif W, D’azevedo E, Chatterjee A, Alvarez G, Hernandez
O and Sarkar V (2018) MiniApp for Density Matrix
Renormalization Group Hamiltonian Application Kernel. In:
2018 IEEE International Conference on Cluster Computing
(CLUSTER). IEEE, pp. 590–597.

Garcia M, Labarta J and Corbalan J (2014) Hints to improve
automatic load balancing with LeWI for hybrid applications.
Journal of Parallel and Distributed Computing 74(9): 2781–
2794.

Intel Corporation (2009) Intel Cilk++ SDK Programmer’s Guide.
URL https://www.clear.rice.edu/comp422/

resources/Intel_Cilk++_Programmers_Guide.

pdf.
Intel Corporation (2011) Intel Threading Building Blocks.

URL https://www.inf.ed.ac.uk/teaching/

courses/ppls/TBBtutorial.pdf.
Klemm M, Bezold M, Gabriel S, Veldema R and Philippsen M

(2007) Reparallelization and Migration of OpenMP Programs.
Cluster Computing and the Grid, IEEE International
Symposium on 0: 529–540. DOI:10.1109/CCGRID.2007.96.

Lopez V, Criado J, Peñacoba R, Ferrer R, Teruel X and
Garcia-Gasulla M (2021) An openmp free agent threads
implementation. In: International Workshop on OpenMP.
Springer, pp. 211–225.

Massachusetts Institute of Technology (2021) Open-
Cilk Language Extension Specification Version
1.0. URL https://cilk.mit.edu/docs/

OpenCilkLanguageExtensionSpecification.

htm.
OpenMP ARB (2008) OpenMP Application Programming Inter-

face, Version 3.0. URL https://www.openmp.org/

wp-content/uploads/spec30.pdf. Accessed: 2022-
11-29.

Prabhakaran S, Neumann M, Rinke S, Wolf F, Gupta A and Kale
LV (2015) A batch system with efficient adaptive scheduling
for malleable and evolving applications. In: 2015 IEEE
International Parallel and Distributed Processing Symposium.
pp. 429–438.

Tian S, Doerfert J and Chapman B (2022) Concurrent Execution
of Deferred OpenMP Target Tasks with Hidden Helper
Threads. In: Chapman B and Moreira J (eds.) Languages
and Compilers for Parallel Computing. Cham: Springer
International Publishing. ISBN 978-3-030-95953-1, pp. 41–
56.

Vázquez M, Houzeaux G, Koric S et al. (2016) Alya: Multiphysics
Engineering Simulation Toward Exascale. Journal of
Computational Science 14: 15–27.

Zhang H, Garmory A, Cavaliere DE and Mastorakos E (2015)
Large eddy simulation/conditional moment closure modeling
of swirl-stabilized non-premixed flames with local extinction.
Proceedings of the Combustion Institute 35(2): 1167–1174.

Prepared using sagej.cls

https://github.com/bsc-pm/dlb/commit/c4642f8
https://github.com/bsc-pm/dlb/commit/c4642f8
https://pm.bsc.es/ompss
https://github.com/bsc-pm/llvm/commit/21f396fde4a9
https://github.com/bsc-pm/llvm/commit/21f396fde4a9
https://doi.org/10.1007/s10494-013-9470-z
https://hal.inria.fr/hal-02386837
https://doi.org/10.1145/3229710.3229752
https://www.clear.rice.edu/comp422/resources/Intel_Cilk++_Programmers_Guide.pdf
https://www.clear.rice.edu/comp422/resources/Intel_Cilk++_Programmers_Guide.pdf
https://www.clear.rice.edu/comp422/resources/Intel_Cilk++_Programmers_Guide.pdf
https://www.inf.ed.ac.uk/teaching/courses/ppls/TBBtutorial.pdf
https://www.inf.ed.ac.uk/teaching/courses/ppls/TBBtutorial.pdf
https://cilk.mit.edu/docs/OpenCilkLanguageExtensionSpecification.htm
https://cilk.mit.edu/docs/OpenCilkLanguageExtensionSpecification.htm
https://cilk.mit.edu/docs/OpenCilkLanguageExtensionSpecification.htm
https://www.openmp.org/wp-content/uploads/spec30.pdf
https://www.openmp.org/wp-content/uploads/spec30.pdf

	Introduction
	Related Work
	Design and implementation
	The LLVM OpenMP runtime
	The role-shifting threads
	New API routines.
	Environment variables.
	New OMPT callback signature.
	Free agent clause

	Integration with DLB

	Evaluation
	HPC Environment
	DMRG++
	ParMmg
	Alya

	Impact on the OpenMP model
	Conclusions
	Acknowledgements

