

Creation of a modular and procedural
environments based on current urban
architectures.

Author: Pau Fiol Lorente

Director: Josep Serrano Recuero

Bachelor’s Degree in Video Game and Design and
Development

Year: 2022-23

Pau Fiol Lorente
Analysis of heterogeneity in real cities for videogame environments

2

Index
Index .. 2

Abstract ... 4

Keywords ... 5

Links ... 5

Index of Figures ... 6

Index of Tables .. 6

Glossary ... 7

1. Introduction... 8

1.1 Motivation ... 8

1.2 Problem Formulation .. 8

1.3 General Objectives .. 9

1.4 Specific Objectives ... 9

1.5 Project Scope ... 10

2. State of the art .. 11

2.1 Software .. 14

3. Project management ... 15

3.1 Modifications .. 15

3.1. Risks and Contingencies ... 16

3.2. Cost Analysis ... 17

4. Methodology ... 18

4.1 Methodology Deviations ... 19

4.1 Software .. 20

5. Development ... 21

5.1 Preproduction ... 21

5.1.1 Styles .. 21

5.1.1.1 Early XX Century .. 21

5.1.1.1 Modern .. 23

5.1.1.1 Bauhaus ... 25

5.2.1.1 Requirements .. 27

5.2.1.2 Metrics .. 27

5.2.1.4 List of Assets .. 28

5.2 Production ... 29

5.2.1 Module creation ... 29

5.2.1.3 Modelling .. 29

Pau Fiol Lorente
Analysis of heterogeneity in real cities for videogame environments

3

5.2.1.5 UV Mapping ... 30

5.2.1.6 Materials ... 31

5.2.2 Procedural Tool creation .. 32

4.2.2.1 Parameters .. 32

5.2.2.1 Volume Generation ... 33

5.2.2.2 Instances to Geometry .. 36

4.2.3 Game Engine .. 37

4.2.3.1 Importing ... 37

4.2.3.1 Material Assignment ... 37

4.2.3.1 Tool Use ... 38

4.2.3.1 Level Creation .. 39

5.Conclusion .. 41

6. Future Lines ... 42

7. Bibliography .. 43

Pau Fiol Lorente
Analysis of heterogeneity in real cities for videogame environments

4

Abstract
This project deals with current modular and procedural technologies and its usage in 3D
Art for Environments. The use of tools to create and distribute elements based on a
series of parameters is increasingly common for the creation of digital, urban spaces, as
it speeds up the creative process and can generate a multitude of unique versions.

The goal is to deepen the author’s knowledge on existing city building approaches and
replicate the results with a modular and procedural approach using non-standard
workflows.

The result of this project is an urban space within Unreal Engine, a detailed guide on the
approach followed for its creation, and the assets used to construct it.

Pau Fiol Lorente
Analysis of heterogeneity in real cities for videogame environments

5

Keywords
3D, Urban, Environments, Modelling, Modular.

Links
Presentation video: here

Blender project: here

Pau Fiol Lorente
Analysis of heterogeneity in real cities for videogame environments

6

Index of Figures

Figure 1: Fallout’s 4 entire building asset kits, sorted by style.[2] ... 11
Figure 2: Granularity Example. .. 12
Figure 3: Trello Board .. 15
Figure 4: Early XX Century render in Unreal Engine .. 21
Figure 5: Early XX Century Mood board .. 22
Figure 6: All Early XX Century modules in Blender .. 22
Figure 7: Modern building render in Unreal Engine ... 23
Figure 8: Modern Mood Board ... 24
Figure 9: All Modern modules as seen in Blender. ... 24
Figure 10: Bauhaus building render in Unreal Engine ... 25
Figure 11: All Bauhaus Modules as seen in Blender. .. 26
Figure 12: Bauhaus Mood Board ... 26
Figure 13: Relevant Face for module creation. ... 27
Figure 14: Elements used for the Early XX century style as seen in Blender outliner. 28
Figure 15: UV mapping of a window module's wall. Note the overlap and seam locations (red
edges) at the corners. ... 30
Figure 16: Building Modules with colour coded materials. .. 31
Figure 17: Building Generator parameters as seen in Blender. .. 32
Figure 18: Basic geometry of the volume. .. 33
Figure 19: All commonly used Mask Node Groups. .. 34
Figure 20: Instance on Points Node. ... 35
Figure 21: Result of the Building Generator in Blender, colour coded by material. 36
Figure 22: Building Generator parameters as seen in Unreal Engine. .. 37
Figure 23: Assigned Materials in Unreal Engine .. 37
Figure 24: AlterMesh asset as seen in the Unreal Engine editor, including parameters. 38
Figure 25: European Beech showcase, Quixel Megascans.. 39

Index of Tables
[Table 3-1] Risks and Contingencies. ……………………………………………………………………………………… 16

[Table 3-2] Cost Analysis. ……………………………………………………………………………………………………… 17

[Table 5-1] Metric list for all styles used. ………………………………………………………………………………. 27

[Table 5-2] Basic module list. ………………………………………………………………………………………………… 28

Pau Fiol Lorente
Analysis of heterogeneity in real cities for videogame environments

7

Glossary
Procedural Modelling: a family of techniques that generate geometry from a set of
rules.

Visual programming: A programming language that allows for the creation of programs
graphically, often following the concept of “boxes and arrows”.

Modular: Construction out of prefabricated units with standardized dimensions that
allows for quick, flexible assembly.

Normal: An object, typically a vector, that is perpendicular to a face. Within Blender, the
vertex normal vector is the average of the faces a vertex belongs to.

Z-Fighting: Also called plane fighting. Visual artifacts created by the near-similar or
identical values in the distance to the camera.

Instances: Copies of a resource such as geometry meshes that share a single space in
memory.

Photogrammetry: The process of obtaining reliable information about physical objects
and the environment through the process of recording, measuring and interpreting
photographic images. For this specific project, material visual properties.

PBR: Physics Based Rendering. A render process that accurately replicates real world
light, materials, surfaces, and their respective interactions.

Pau Fiol Lorente
Analysis of heterogeneity in real cities for videogame environments

8

1. Introduction
1.1 Motivation
The use of tools to assist in the creative process is nowadays a core part of workflows
across the industry. The reason behind choosing a project that involves procedural and
modular workflows is to master their use and better understand its strengths and how
to address their weaknesses, chiefly to allow for more varied results.

As for the topic of urban environments, it was an opportunity to delve deeper into a
topic of personal interest, as architecture and urbanism are interests of mine and I am
close to many people working on the field.

Additionally, cities are a common setting for games, so this project will serve as a
personal portfolio project for future potential employers for the roles of technical artist
and / or environment artist.

1.2 Problem Formulation
Often during the development of a 3D videogame, the largest man-hour investment is
on the art department. To address this issue and have better scalability in projects, game
studios often adopt approaches that minimize the efforts of the team by using modular
elements to construct environments, and further this by using procedural tools to put
together these separate objects.

Because of the existing need, these tools currently exist, both proprietary and open, but
unless the gameplay itself is procedural, it is uncommon for high budget games to have
their cities be entirely machine generated, as the refinement and unique details artists
will add is yet to be matched.

These existing solutions are most of the time based in visual programming, in order to
allow a more intuitive approach for artists without extensive knowledge in
programming.

To summarize, there is a wide range of existing solutions when in comes to putting
together modular buildings automatically and with variations, but most do not generate
buildings that reflect how styles and technology change over time.

For this reason, the most reasonable approach within the scope of this project will be to
choose and adequate existing solution and adapt it in order to incorporate additional
variety.

Pau Fiol Lorente
Analysis of heterogeneity in real cities for videogame environments

9

1.3 General Objectives
There are two main aspects of value here:

- Modelling:
o Creating modular asset packs at a high standard.
o Properly reflecting different architectural styles.
o Master the use of photogrammetry materials.

- Tool Use and Integration:

o Creation of node-based tools to substitute repetitive tasks.
o Iteration to create visually interesting results.
o Optimisation for their use in game engines.

1.4 Specific Objectives
The results of this project will be divided in two sections:

- Urban Environment:

o Small scale urban area (a few city blocks).
o Mostly procedurally generated from modular components, within scope

limitations.
o Custom modular asset pack with various architectonic styles.

- Workflow:

o Define easy to use software that interacts neatly with each other.
o Create a replicable methodology to be used.

Pau Fiol Lorente
Analysis of heterogeneity in real cities for videogame environments

10

1.5 Project Scope
The urban environment will serve for personal use in showcasing my abilities to
potential employers.

The workflow will try to inform other professionals in the game environment section on
good practices and solutions to achieve architectural variety in modular generation of
buildings and/or urban spaces. It is not its intention to be used in-game to create random
maps every time, or to be used in city builders.

Given the limitations of 4 months and a single worker, a series of compromises will need
to be made. To reduce the time investment, the modular assets will be low poly, as a
sculpting would take too much of the time allotment.

For similar reasons, the amount of different building styles will most likely not match the
amount a real city would, instead aiming for enough variety to showcase the point and
a setup that allows for posterior growth.

Pau Fiol Lorente
Analysis of heterogeneity in real cities for videogame environments

11

2. State of the art
This section will provide context on the different approaches that are in use in the digital
media industry for the creation of buildings and urban spaces, as per J. Burgess, N.
Purkeypile in GDC talk “Fallout’s 4” Modular level design [2]:

Manual: This is the most straightforward method. A building is completely modelled in
a single piece ready to be used in game.

This may be used for games that have few urban elements and to not warrant the initial
investment that the following methods have. It is used for unique buildings (e.g., the
cathedral of a city) that would not see their elements reused. However, it is also true
that even within a building many elements tend to be repeated, so even then repeated
items such as columns or arches will be done aside and then instanced as necessary.

Modular: A set of constructive elements with a cohesive style and standardized
dimensions is created to then be used to put together buildings, either in the 3D
software, or the game engine.

- Manual creation: This is the current standard of the game industry. This allows

for very fine control of the resulting spaces, which is important to other aspects
of videogames, such as narrative or gameplay, as level designers are allowed to
create the levels with ready assets. It also allows for a significant time save and
ensures a uniform style throughout the different spaces.

- Procedural creation: This is the goal of this project. The handmade elements are
then assembled following a set of rules and parameters. This requires dividing
the elements in groups or tags that define its uses, valid connections, and style,
and creating a set of rules that define what to use, where.

Figure 1: Fallout’s 4 entire building asset kits, sorted by style.[2]

Pau Fiol Lorente
Analysis of heterogeneity in real cities for videogame environments

12

Within modular creation, a series of factors need to be decided prior to the kit being
created, as addressed in “Game environment art with modular architecture” (Nataska
Statham, et al.) [1]:

- Types of modularity:
o Component Swapping: Having multiple elements designed to fir the same

slot. For example, having multiple window borders fitting a window. It
allows for easier variation within a set.

o Fabricate to Fit: Allow for the creation of different meshes to fit a desired
space. For example, one might have bases and tops for columns and the
column itself would be enlarged/shrunk as needed. It is also useful when
creating organic spaces that do not follow grids.

o Bus modularity: A frame where multiple modules can be added at
designed spots. Typically used in cases where the object is expected to
grow, such as city builder games.

- Granularity: The scale at which components are made. The smaller, the finer it
is the control over the outcome, but it will be more laborious to put together as
there will be more elements per objects. This can be mitigated by creating
prefabricated elements (also known as prefabs) combining elements into
commonly used larger elements, while also maintaining those individual
elements separate to use if needed.

Figure 2: Granularity Example.

Pau Fiol Lorente
Analysis of heterogeneity in real cities for videogame environments

13

- Tiling direction: What directions is each element meant to be used, to ensure
that they fit the grid and connect well with other elements.

- Dimensions: All elements must have proportioned dimensions to each other and
its use. Most commonly it is a multiplication of human height.

- Procedural/Parametric: The geometry is completely generated from a set of
rules. The main limitation here for its commonplace use in the industry is that
the complexity of these rules can be overwhelming and requires extensive
knowledge of programming to create and use. Research into creating more user-
friendly approaches such as text prompts or sketches by using machine learning,
but it is not ready for commercial use.

Pau Fiol Lorente
Analysis of heterogeneity in real cities for videogame environments

14

2.1 Software
There are many programs that would allow for 3D modelling and have a visual
programming option potent enough for our purposes.

Houdini: A very established 3D animation software that specializes in complex
simulations, particles, and general VFX. It is more than capable of handling the
complexity. However, manual modelling for the individual would be less than ideal and
would require to either build them completely parametrically or to use an additional
modelling software.

Unreal Engine: The scripting and visual programming tools within the engine and its
prefab system are powerful enough to create the city and buildings from an imported
set of asset kits. It is commonly used and is the dominant option for companies where
level designer put together the maps from modules when not using an in-house game
engine, which we will not address here. With the release of Unreal Engine 5.2, a new
framework for Procedural Content Generation has been released experimentally. This
happened after the project was well underway but would have been the ideal tool for
this project.

Blender: It allows for modelling, sculpting, and the use of geometry nodes all within a
single workspace. Most other software listed here has a deeper set of tools in their
specific field, but Blender has a broader reach and rarely one will need to swap to
another program. The main reasons for Blender to have a small foothold in the
professional industry are its reliability, which is slowly improving; the lack of a clear
customer support system to fallback to and the lack of multi-user, automated pipelines
that Autodesk can offer. However, it is entirely free and open source.

Autodesk Suite: 3DS-MAX and Maya can cover the modelling needs of the project, and
Revit is entirely destined to parametric creation. However, since is focus is mostly
towards architecture and engineering, the tools available are often suboptimal for our
needs.

ArcGIS City Engine: Based on the Geographic Information System (GIS), this program is
narrowly focused on the creation of urban environments. It fetches real geographic data
and allows for a 2D sketching of the street layout, and then the generation of buildings
given shape grammars or default pre-sets to be tweaked. It is used in urban planning,
serious games, and movies.

This software is narrow enough that it would not make sense to use it, as the project is
oriented to a more modular style of creation prevalent in the industry. However, it is a
great reference to consider.

Pau Fiol Lorente
Analysis of heterogeneity in real cities for videogame environments

15

3. Project management
The tracking of work done will be done using Trello, by adding tasks under different
boards divided based on the current status of the work.

- To Do: Tasks yet to be started but is defined.
- Research: Tasks in preliminary stages, gathering the information required for it.
- In Progress: Tasks started. Checklists within the task itself will be used to provide

further granularity of the progress.
- Validation: These tasks are pending review, explained below, and if the result

satisfies the criteria, will go on to completed. Otherwise, it will return to “To Do”.

Validation:

For the validation process, the pipeline and the technical side will be validated by
tracking time spent and comparing it with other iterations and manual modelling from
previous projects. Lower work times are the goal. The technical aspect will be evaluated
based on in engine performance and visual errors. Factors such as frames per second al
load time will also be noted to ensure no readily apparent errors exist.

For the modelling part, validation is harder to define as appearance is a much more
subjective matter, so it will be put under review of the project director after the author
is satisfied.

3.1 Modifications
Ultimately, the Trello was abandoned in lieu of an analogic approach. The solution was a
combination of a whiteboard, sticky notes, and a notebook. The reasoning for this was the ever
presence of this elements in the workspace facilitating keeping track of the work, the positive
psychological effects of a more tangible status, and the lack of need of access by multiple
individuals. The functionality was effectively the same, with To Do, In Progress and Validation.

For time management, Google calendar was used instead, but was ultimately a rough guideline
with worst case end dates. Because of the lack of experience in many of the elements of the
project time estimations were most of the time very incorrect and made little sense to fully plan.

Figure 3: Trello Board

Pau Fiol Lorente
Analysis of heterogeneity in real cities for videogame environments

16

3.1. Risks and Contingencies
Risk Solution

Reliance on external software

Strong version control of the files and autosave,
in order to minimize issues generated outside of
our control

Performance Issues within Engine

-Optimize and delete unnecessary geometry,
-Additional optimizations in culling unseen
building areas
-Model with Level of Detail, if time permits

Interaction issues in software

Fallback onto manually export standard file
formats, such as .fbx and .png

Time limitations for the
additional modular styles

-Limit the number of styles.
-Avoid exceedingly time-consuming styles (e.g.,
rococo)
-Limit elements per module

[Table 3-1] Risks and Contingencies.

Pau Fiol Lorente
Analysis of heterogeneity in real cities for videogame environments

17

3.2. Cost Analysis
 Non-Commercial /

Academic
Commercial Use

Software
Blender 0€ 0€

Unreal Engine 0€ 0€

Alter Mesh 0€ 99€
Quixel Megascans 0€ 19€/month

Automatic Parallax
Window Material

30€ 30€

Labour
Junior Artist 1500€/month

Hardware 0€ 1500€

Total (4 MONTHS) 7705€

 [Table 3-2] Cost Analysis.

This rough estimate is split by its commercialization because of the standard split in
software pricing. However, because of the modelling choice being open source and free,
the cost is significantly lower. The prices for commercial use assume the costs for a single
developer with an expected revenue under 1.000.000€.

The computer price is a rough estimate of the cost of a PC with the capabilities to work
in Unreal Engine unimpeded but is hard to give precise numbers because of the volatility
of the market. Amortization of the computer is not considered.

Pau Fiol Lorente
Analysis of heterogeneity in real cities for videogame environments

18

4. Methodology
There exists a preproduction block where the goal is to test the functionality of different
pieces of software, how they interact with each other, and how productive can they be
considering the user’s skills.

There is the task of defining the sizes of the modules, which are typically dependant on
the gameplay. As there is no gameplay involved in the project, it will be based on
industry standards based in the default character size of the engine.

For the choices of architectonic styles and their interaction, literature on urbanism and
its growth will be analysed.

For the Production itself, an incremental approach would be best, as we are building on
top of existing concepts. This approach is based on creating discrete independent goals
and add them individually.

Incremental creation allows the testing of isolated elements and having more
immediate results, allowing for a better time management, as any unexpected mistakes
will not show up together at the end of the project. Additionally, the nature of the
project lends itself well, as visual programming allows for a growth in complexity that is
quite intuitive and can often be organised, in discrete blocks of nodes. It is the same for
building modular packs, as a building can be defined with very few elements and then
grow in complexity with the addition of further components and variations.

- Preproduction:
o Research tools.
o Research adequate architectural styles.
o Visual reference gathering: Mood boards.
o Define metrics, list of assets, variations, styles.

- Production:

o Replicate existing solution for procedural assembly of modular buildings.
o Create first modular style.
o Test result and implementation of current solution.
o Create second modular style.
o Implement basic multiple style support in the tool.
o Iterate implementation until results are as desired.
o Materials selection, implementation and colour variation tools.
o Time assessment of additional styles.
o Create In-Engine final scene and add manual touch-ups.
o Renders, video and build showcase.

Pau Fiol Lorente
Analysis of heterogeneity in real cities for videogame environments

19

4.1 Methodology Deviations
Because of the incremental approach taken, the tool created for the generation of
buildings was often changing requirements. Since the changing requirements affected
the module modelling, the development of the first architectural style was done in
parallel with the tool itself, and the constant iteration was of greater time cost than
expected.

Another task that was not considered was a proper analysis of the bridge plugin used:
AlterMesh. The difficulties of using a small piece of software with limited assistance and
finnicky set up were a time investment that pushed back on other tasks and limited the
styles of buildings that could be done comfortably in time.

Pau Fiol Lorente
Analysis of heterogeneity in real cities for videogame environments

20

4.1 Software
The software that will be used for this project is the following:

- Modelling, UVs: Blender 3.3.0 LTS (Long Term Support)
- Materials: Unreal Engine 5.2 + Quixel Megascans
- Game Engine: Unreal Engine 5.2
- Visual Programming: Blender 3.3.0, Unreal Engine 5.2
- Blender to Unreal Importer: AlterMesh

The decision to use Blender over more industry standard software has multiple
motivations:

 It is free and open source: This makes this method more approachable for small
studios or individuals, as other modelling and parametric modelling options used
in professional situations can cost thousands of euros yearly.

 It has a strong community online: It allows for easy access to documentation and
similar existing projects. This platform is also a good space where one can share
projects such as this one.

 It is a relatively new solution: The goal of this project is to find interesting ways
to work modularly, and whilst interesting, more traditional options have already
been explored in depth by expert professionals and this project would be just
following their footsteps.

 With AlterMesh, instead of strictly geometry, the file opened in Unreal Engine is
still parametric and can be adjusted as needed.

Quixel Megascans is a service that, in partnership with Epic Games, offers free PBR
photogrammetry-based materials and assets for use within Unreal Engine, with liberty
for modification and use if it is within Unreal Engine. The opportunity to work with
realistic materials is something that has only become available without a great economic
or expertise barrier recently and is also recently that real time applications are powerful
enough to use them. Fort this reason, using it can be an invaluable advantage in the job
market in the near future.

As of the delivery of this project, Unreal Engine has updated to 5.2. The engine version
was updated because it released at a time when the work done in engine was still
minimal, and thus migration posed no risk, as 5.2 was more stable on all relevant
features for the project, such as Nanite and Lumen. It also implemented the
experimental framework for Procedural Content Generation (PCG), which would have
been an ideal software for this project. Because of the time of release, however, it was
deemed to risky for the project deadlines to a new framework, but since its stability
improvements, the project was upgraded from 5.0 to 5.2.

Pau Fiol Lorente
Analysis of heterogeneity in real cities for videogame environments

21

5. Development
5.1 Preproduction
5.1.1 Styles
5.1.1.1 Early XX Century
This was the first style created, and the one that underwent the most changes, due to its parallel
development with the building generator tool as the requirements and possibilities of the tool
were being discovered.

The main influence of this building are the apartment buildings of the Early twentieth century
present in Spanish cities like Barcelona and Madrid. This style is a based in modernist and
neoclassical architecture, but toned down because of its more utilitarian nature, as they are not
geared towards opulence. It is important to note that this appearance has been and is still used
today, but the internal structure has changed, meaning that nowadays with modern
construction techniques there are different dimensions and elements that have changed. This is
the case in the style with elements such as sliding, metal window frames, or a cheaper straight
balcony railing, as opposed to the more organic and twisting cast iron railings of the past.

Figure 4: Early XX Century render in Unreal Engine

Pau Fiol Lorente
Analysis of heterogeneity in real cities for videogame environments

22

Figure 5: Early XX Century Mood board

Figure 6: All Early XX Century modules in Blender

Pau Fiol Lorente
Analysis of heterogeneity in real cities for videogame environments

23

5.1.1.1 Modern
Modern here refers to the new building style that appeared with the population boom of the
fifties and sixties in Spain, where urbanization skyrocketed and a high demand in housing
created higher multiuse buildings to appear. This is reflected in the triple use of shop space in
the ground floor, office space in the first floor, and housing above. It should also be noted that
with the goal of maximizing floor space, balcony space was turned into interior space by pushing
the façade outwards as much as possible, being limited by the urbanism codes of each city.
These same codes also regulated how close an overhang could be to the neighbouring building,
resulting in the tapered or chamfered corners of many of these buildings. It is also when attics
became a premium living space, with additional balcony, now that lifts had become ubiquitous,
in contrast to the first floor of the XX century style (also known as principal in Catalan).

Figure 7: Modern building render in Unreal Engine

Pau Fiol Lorente
Analysis of heterogeneity in real cities for videogame environments

24

Figure 9: All Modern modules as seen in Blender.

Figure 8: Modern Mood Board

Pau Fiol Lorente
Analysis of heterogeneity in real cities for videogame environments

25

5.1.1.1 Bauhaus
This building is very heavily inspired by Seagram Building (1958), a skyscraper in Manhattan by
Ludwig Mies van der Rohe. The reasoning behind such a different building style was to create a
visual point of interest via contrast and size hierarchy, to direct the viewer towards it. The initial
suggestions provided by the tutor was a church, as they are across many cities’ central points,
have unique shapes that stand out, are and often large. The change of direction was because of
a desire of avoiding religious imagery, while preserving point of interest concept. An interesting
execution of this concept, with a focus on an intimidating, massive building, can be seen during
the cutscenes of the game Control, as seen top middle right in the figure below.

 Using a skyscraper could highlight the modular nature of this project, because skyscrapers
create patterns by repletion of elements. The building was chosen as it personally engaged me,
and Mies van der Rohe is one of the favourite architects of my father, who is in turn part of the
motivation to do an urban environment in the first place.

The name Bauhaus for the style is the name of the architect society and school Staatliche
Bauhaus, which Mies van der Rohe belonged to and became one of the main representatives.

Figure 10: Bauhaus building render in Unreal Engine

Pau Fiol Lorente
Analysis of heterogeneity in real cities for videogame environments

26

Figure 12: Bauhaus Mood Board

Figure 11: All Bauhaus Modules as seen in Blender.

Pau Fiol Lorente
Analysis of heterogeneity in real cities for videogame environments

27

5.2.1.1 Requirements
It is important to consider how the edges of each element will match with the other nodes.
Vertices should preferably match those of other modules, as it will reduce the total vertex count
when used. Additionally, modules can overlap, which can be used to create protruding elements
such as overhangs or pillars in edges of the wall which can extend into the next module. Similarly,
when creating corners any protrusion should be made to meet at 45º with itself and other
compatible corners. Since the building generator tool is updated dynamically with each change
to its modules, a straightforward solution is to regularly check how changes made in the modules
are reflected in the final building.

Figure 13: Relevant Face for module creation.

5.2.1.2 Metrics
The metrics of all the modules are based on a square base prism (width x width x height). These
values can be defined within the building generator tool, as well as a second height value
reserved for the ground floor (width x width x ground floor height). This means that when
creating the modules, the goal is to fill the corresponding region of the volume, the -Y face for
the walls and the +Z side for the roof. Corner modules meet with each other at the +X side (right
hand). Protrusion can be any size, and indentations should be smaller than the width value.

The origin point of the modules should always be the centre of floor of said prism.

STYLE Module width
(m)

Module Height (m) Ground Floor
Module Height (m)

Sidewalk Height (m)

Early XX 4 3 4 0,2
Modern 4 3,3 8 0,2

Bauhaus 6 5 7,5 0,8
[Table 5-1] Metric list for all styles used.

Pau Fiol Lorente
Analysis of heterogeneity in real cities for videogame environments

28

5.2.1.4 List of Assets
Asset Category Has Corner Variation
Doorway Ground Floor No
Shop Ground Floor Yes
Balcony Middle Floor Yes
Windows Upper Floor Yes
Party Wall Ground Floor Yes
Party Wall Middle Floor, Upper Floor Yes
Roof Roof No
Roof Edge Roof Yes
Sidewalk Sidewalk Yes
Traffic Light Decorations No
Streetlight Decorations No
Trash bin Decorations No
Other Decorations Decorations No

[Table 5-2] Basic Module List.

This reflects the basic modules a complete building, but it
should be noted that since the tool is relatively flexible,
changes can be made:

- A style for Upper Floor is not required.

- Decorations can be greatly expanded, be it different
decorations for each wall/roof module or a wider selection
to be chosen at random.

- If a building is not intended to have party walls, the
modules can also be removed. This is the case, for example,
with the Bauhaus style skyscraper, as these kinds of
buildings rarely touch neighbouring buildings, and it was
not intended in this project.

- With minor modifications, the building generator tool can
be adapted to support multiple variations of every module,
as is the case currently on the Ground Floor for the Modern
style, which selects between multiple modules

Because of limitations of Blender’s Geometry Nodes, the
order of the modules and their distribution in the different
collections should be matched, or the Building Generator
tool will need to be slightly adjusted. This is because the
tool picks an instance based on its list number within the
Collection.

Figure 14: Elements used for the Early XX century style
as seen in Blender outliner.

Pau Fiol Lorente
Analysis of heterogeneity in real cities for videogame environments

29

5.2 Production
5.2.1 Module creation
5.2.1.3 Modelling
The approach selected for this project is what is known as low polygon, hard surface. In essence,
the goal is to keep the number of vertices at a minimum from the start and avoid if possible
organic shapes that would difficult the overall process.

To start basic shapes (cubes, planes. cylinders…) will be placed to create the rough shapes. Since
the objects in question are to interact with other modules and are architectural, it is key to
ensure the metrics of all vertices are at adequate positions. To do so, the easiest way is to
numerically displace the edges or vertices to the desired locations. The exact dimensions are
informed by the module dimensions, various building codes, and ISO standards for elements
such as steps.

Once the rough shape, or block out is done, the next step is to cut (divide in segments) the faces.
The edges will be then again moved to their final position, outlining the shape of a protrusion or
indentation e.g., balconies, or doorways. The polygons within this outline are then extruded
inwards or outwards, again using numerical values informed by building codes. This process can
be repeated multiple times from large to small extrusions until the final shape is created.

Another common tool used will be in setting faces, which will result in new polygons surrounding
a smaller version of the selected one. This is useful for windows and doorways, as it allows for a
quick way of creating the frames that surround them.

The third main tool will be bevelling, which allows an edge to be turned into faces, effectively
rounding that edge. This allows to easily turn a prism like shape into a cylinder like shape,
allowing the user to block out with prisms, which are easier to use when checking the metrics.

Once the final model is complete, it is good practice to remove any useless geometry, such as
faces behind the main wall of the module. This is not to improve performance, but it will also
simplify the UV and material assignment process.

When doing modules past the first one, it can be useful to check what elements of the previous
modules might be useful. If so, duplicating the mesh and separating it into the various elements
can speed up the process, as they can be used instead of the basic shapes during the block out
process. It should be noted that since these separated meshes carry UV and material assignment
information, this step can be done after these steps have been completed to further reduce
workload.

Pau Fiol Lorente
Analysis of heterogeneity in real cities for videogame environments

30

5.2.1.5 UV Mapping
UV Mapping is the process of assigning the faces of a model a space within one or multiple image
textures.

During this process the goal is to have the faces be flat and adequately scaled in order to avoid
distortion and maximize the texel resolution. The textures used from Quixel Megascans have
different scales for each file, meaning the scale of the UVs depends on the material in question.
If the stucco material selected for the wall is 4mx4m the wall faces should occupy the entire
width of the UV space. However, materials such as metals are provided in 2mx2m, so the scale
should be scaled accordingly. If a surface is larger than the texture size, the UV assignment can
either be cut using seams or be extended over the UV range (1, 1). This is only applicable on
tillable textures which is the case for all Megascans.

Since we will be relaying in real time lighting in Unreal Engine, the Materials did not require
baking any texture maps. This means that the UVs could overlap without causing any issues. This
makes easier maximizing the area of UV space used.

For creating the UV assignments, seams are placed in the mesh to indicate the unwrapping
algorithm where it can separate the faces. The ideal placement of the seams is wherever they
will be least visible. This depends on each element, but a useful rule of thumb is to think the
angle(s) from which it will be viewed. For example, since the balcony modules will be above the
camera view from the player, the inner top edge is probably the least obvious seam. Another
solid way to do so is to use as seams smaller edges reducing the potential area of mismatch.

Finally, seams are to be placed at the edges separating one material from another, as it is totally
intended for a difference to be there.

The Unwrapping algorithm will generally do a perfect job if the seams are adequate, but
occasionally the result will need to be realigned or squared. It is also important for directional
materials e.g., wood planks, bricks to ensure the rotation is correct and consistent between
modules. Additionally, the Cubic projection algorithm was used in certain elements, such as
windows, because the seams that were created fitted the real-world versions of the object, and
the cubic projection does not require seams to be placed.

The unwrapping was done separately by materials, in order to avoid visual clutter while working.

Figure 15: UV mapping of a window module's wall. Note the overlap and seam locations (red edges) at the corners.

Pau Fiol Lorente
Analysis of heterogeneity in real cities for videogame environments

31

5.2.1.6 Materials
For the material assignment, colour coded materials were created and assigned per face to each
module with the goal of having the set up for its import onto Unreal Engine. Each material was
assigned a colour simply for visual clarity.

In Engine, the materials used were mostly Megascans materials imported via Quixel Bridge.
These materials provide a master material which was modified in two major ways:

The textures were virtualized: This makes the textures move from its usual location, RAM, to a
hard drive allocation. This was done purely out of necessity, as the Megascans materials are
composed by three uncompressed, high-resolution images (ranging from 1k to 8k). Since
buildings range in 8 – 12 materials, the high memory costs made it impossible to smoothly use
Unreal Engine with 8GB of memory. This solution is for a specific case only and is by no means a
professional distributable solution without any options to address it. Improving this situation
might be a future development.

The second major change was the randomisation of the base colour. This is done by multiplying
a random colour by the base colour texture. This colour is created by doing a three-way linear
interpolation of three different colours which can be adjusted as parameters. The use of three
of them is to create a region of colours that is significantly more varied than the results of a two-
way interpolation. The seed, the value that defines which colour within the range is used is
determined by the division of the meshes world position and a parameter seed. This allows the
material to change colour for each instance, as two buildings won’t be sharing the same
coordinates. It also has the benefit of being a single material instance, improving performance.
Additionally, a tint parameter ranging from one to zero allows to limit the strength of the tint or
turn it off altogether, depending on the needs.

With the modifications of the master material completed, it was a matter of trying multiple
materials to see which ones matched best the mood boards and masked the imperfections in
the seams between modules. Some of the materials have multiple texture sets in order to add
further variety. In other cases, such as marble, a simple colour change does not equal a different
kind of stone, and thus multiple types of marble were used and changed manually.

The only deviation of this approach was done for windows and light sources. Light sources are a
basic reflective material with emissive value and emissive colour parameters. For the windows,
Automatic Parallax Window Material by BB Lab was purchased from the Epic Marketplace. This
material provides parallax (simulated perspective by modifying flat images) rooms that are very
low on computing cost, which was a requirement. It also provides a way of randomizing the
different interiors. Unfortunately, the way it works was fundamentally different of the modular
approach used by this project.

Figure 16: Building Modules with colour coded materials.

Pau Fiol Lorente
Analysis of heterogeneity in real cities for videogame environments

32

5.2.2 Procedural Tool creation
4.2.2.1 Parameters
 The current parameters that one can provide to affect the result are the following:

- Building Width, Building Depth, Building
Height: the size of the building in each
dimension, expressed in number of modules.

- Module Width, Module Height, GF Module
Height: The dimensions in meters of the
modules used.

- Upper Floor Threshold: The building floor in
which the modules for middle floor will be
replaced for the upper floor ones. If no upper
floor is desired, the value should match the
Building Height.

- Sidewalk height: The height of the sidewalk
in meters

- Sidewalk: 0 = No sidewalk generated, 1 =
sidewalk generated.

- +X Façade, -X Façade, +Y Façade, -Y Façade:
Which sides should be created as façades,
party walls, or non-existent. Because
Blender does not support dropdown selectors, number values specified in the
parameter’s tooltip are used: Façade = 2, Party Wall =1, Empty= 0. This is in place to
allow for buildings to be side by side without overlapping geometry and avoid creating
unnecessary geometry in sides which will not be seen by the player.

- Seed: The value in which all random values are based. Changing this value changes all
random distributions. Currently, it affects some decorative elements and the ground
floor modules used.

Figure 17: Building Generator parameters as seen in Blender.

Pau Fiol Lorente
Analysis of heterogeneity in real cities for videogame environments

33

5.2.2.1 Volume Generation
The first step is to create a basic geometry to later replace each vertex for a module. The
geometry in this case is the combination of 5 grids (a plane with various cuts at regular
distances), 4 for the walls and one from the roof. The dimensions and number of cuts of each
grid are defined by the product of the module and building dimensions provided.

After their creation, each grid has its position adjusted to its corresponding side of the building,
and its height is adjusted so the ground floor sits at Z = 0 regardless of the building height. Finally,
the lowest points of the grid are adjusted to consider the height difference between the ground
floor and the rest of the modules.

Figure 18: Basic geometry of the volume.

Pau Fiol Lorente
Analysis of heterogeneity in real cities for videogame environments

34

By using the node Instance on Points, a copy of a module can be placed in each of the vertex
and evaluates all the inputs for each vertex that replaces.

To know which vertices should be affected, how should they be affected, and which instance to
use, the approach of this project was to create selection masks. Selection masks are analogous
to conditions in conventional programming, returning either true or false for each vertex or
instance evaluated. For example, one can evaluate the normal vector of each vertex and
compare it to a vector representing one of the cardinal directions to know if a vertex belongs to
a specific wall.

These masks are then grouped together into single nodes, as they are reused throughout the
node system and helps readability. Since groups can not access the parameters of the main node
system, many of them must be provided the parameters via an external group input.

Figure 19: All commonly used Mask Node Groups.

Pau Fiol Lorente
Analysis of heterogeneity in real cities for videogame environments

35

The selection input lets the node know which vertices
to replace, so this input can be used to filter out the
walls marked as empty.

In Instance we can provide the mesh to be copied, or a
collection of them, which one can then choose which
mesh to use via the Instance Index if Pick Instance is
set to true. Because of current limitations on how
Blender operates with instances, the second approach
has been chosen for this project.

This means that instead of working with object names
numerical id values are used, which makes for a less
readable system and requires the objects of the
collection to be properly ordered. However, since it
greatly simplifies the node system both visually and in
efficiency terms, the trade-off is worthwhile. To
choose the correct instance the value goes trough a
series of switches connected to the various masks
created. This can be conceptualized as a branching
path of conditions: “Is this a façade? If so, Is this the
ground floor? If so, is it a corner? If it is, use id number
2”.

In the rotation value we can provide the various
rotations for each wall orientation along with a mask
for the different walls, so all modules are facing out of
the building.

Instead of using the scale value set to X = -1.0 to mirror the necessary corners, which was the
initial approach used, the mirroring will be done later in the node sequence to avoid face normal
issues that would be problematic within the engine. For this reason, there is two Instance on
Points For the walls, one for the mirrored modules and one for the non-mirrored, as it facilitates
the selection moving forward.

There are also different Instance on Points for the Roof and the wall decorations, as the set of
conditions used is based on the same concept, but the conditions aren’t. It could be merged into
a single Instance on Points, but it would result in a larger set of nodes that would be harder to
follow for any new users without a noticeable improvement on performance.

Figure 20: Instance on Points Node.

Pau Fiol Lorente
Analysis of heterogeneity in real cities for videogame environments

36

5.2.2.2 Instances to Geometry
When all instances are set, they are then turned again into geometry. If the project where to be
used exclusively in Blender, this step would be negative, as using instances of a small object is
better for performance than a single large object. However, because the final object will be a
mesh in Unreal Engine, it is best to do so within Blender so that the transformation is as
expected, and some clean-up can be performed.

We use Realize Instances to do so, and this transfers the values within the instances to the newly
created faces, such as the UV mapping and material assignment.

It is after this step that we can flip the normal vectors of the mirrored instances to ensure that
no inverted normal vectors reach Unreal Engine, in which they would be seen transparent, and
can generate texturing issues.

Finally, by doing a merge by distance set to a very low value we can combine overlapping
vertices, such as the corners of the modules, to remove unnecessary vertices and issues such as
Z-fighting.

.

Figure 21: Result of the Building Generator in Blender, colour
coded by material.

Pau Fiol Lorente
Analysis of heterogeneity in real cities for videogame environments

37

4.2.3 Game Engine
4.2.3.1 Importing
After creating a new project and installing
the AlterMesh plugin following the
documentation of the plugin, the file path
to the Blender executable must be
provided. This is because AlterMesh
essentially runs Blender in the background
and imports the needed geometry
dynamically each time the parameters are
updated. It will be running a Blender
program for each different Geometry
nodes setup, so, in this case, three separate
blender instances running.

To import the files, simply drag and drop
into the project’s content browser the
desired .blend file. If multiple Geometry
Nodes are contained into a single file, a
dialog will allow for any or all the nodes to
be imported as separate assets. In order to recognize which Geometry Nodes are to be
imported, they must be present within the Blender’s scene.

4.2.3.1 Material Assignment
AlterMesh objects preserve the material
slots and the correct assignation, meaning
that if multiple materials are used for
different sections of the building in
Blender, they will be the same in Unreal
Engine. However, the materials are not
carried along.

This is not an issue for the desired
workflow, as the materials provided by
Megascans are free only within the engine
and Unreal Engine’s Material Node
system is the ideal place for doing the
material customisations mentioned in
4.2.1.6.

Figure 22: Building Generator parameters as seen in Unreal
Engine.

Figure 23: Assigned Materials in Unreal Engine

Pau Fiol Lorente
Analysis of heterogeneity in real cities for videogame environments

38

4.2.3.1 Tool Use
In the object inspector of the AlterMesh object the parameters of the tool can be used the same
as in blender.

The Refresh option will update the mesh if any changes are made to the .blend file, which can
be useful if modifications to the modules or the node setup are made and is faster than having
to reimport the mesh from scratch. It can also solve certain problems that rarely arise, such as
the mesh not loading when reopening the Unreal project.

The AlterMesh objects cannot be seen in play mode, meaning that they cannot be play tested.
To be viewed in play mode or used in the final game build, the button Convert needs to be used.
This brings up the regular Static Mesh importer, meaning the mesh can take advantage of the
new Nanite system of Unreal Engine 5 for improved performance. This Static mesh is then placed
at the previous position and stored as a regular mesh, meaning that additional copies can be
placed.

The actor has the possibility to activate the “experimental: runtime” option, but the
performance is severely affected. It is best practice to turn into static meshes, preferable Nanite,
all buildings that are deemed final, in order to alleviate performance costs, even during level
creation.

It should also be noted here that while dragging as a slider the geometry nodes parameters is
possible, it is not advised, as it seems to request an export of each individual value change to
Blender, which depending on the values modified and your computer can cause a crash.
Occasionally, an AlterMesh asset will not update. This is because either the Blender file had its
name modified during runtime or the Blender instance running in the background has stopped.
This can be fixed by resetting the engine.

Figure 24: AlterMesh asset as seen in the Unreal Engine editor, including parameters.

Pau Fiol Lorente
Analysis of heterogeneity in real cities for videogame environments

39

4.2.3.1 Level Creation
The Level was built on top of the preset ThirdPersonGame provided by Unreal Engine. This
preset, beyond the game controller and character, already includes a global illumination, a
directional light that accurately mimics the sun, rotation included, a postprocessing volume for
adjustments to the camera, and a skybox.

The ground plane was created with a custom material created from a Megascans road textures,
set to tile at an adequate scale. To avoid an excessively apparent tiling repetition, noise textures
at three different scales, all larger than the asphalt texture, were used to die and darken the
surface irregularly. This makes the repetition much harder to see, and imitates stains, wear and
tear and asphalt patches.

Afterwards AlterMesh assets were placed and had its materials assigned. Once ready, they were
distributed forming city blocks, changing the parameters as necessary to achieve an interesting
shape variety. Once a city block had the desired look, the AlterMesh assets were turned into
static meshes, in order to save on performance. This is repeated for all blocks that form the main
area. Since the main showcase of this environment was in the form of a render, viewers have no
control over the view angles, allowing for a focus on the details only from the camera viewpoint.
This, combined with the high computer demands, means that the main street seen in the
presentation find is where most of the detail is place.

After all city blocks where placed, any gaps where the horizon could be seen was covered by
scattering copies of buildings and city blocks at different distances, to create the illusion of a
larger city.

The next step was to add vegetation, all of which was obtained via Megascans. Since the trees
were a recent addition, only a few species are available. The trees chosen were European Beech
for the sidewalks, and European Hazel for the Bauhaus patios. For each of the trees, there are
multiple trees in order to add variety. However, since they are meant to be wild trees, they are
not as manicured as trees in urban spaces. I chose the most fitting few and to avoid repetition,
added slight scale changes and rotation to each tree instance. Alternatives were researched, but
very few photorealistic trees were available for prices within the budget. Another advantage of
the Megascans trees that can be seen is that they come with a simple wind animation, with adds
to realism at minimal effort.

Figure 25: European Beech showcase, Quixel Megascans.

Pau Fiol Lorente
Analysis of heterogeneity in real cities for videogame environments

40

Decals were the final layer of elements added. Decals are a volume which projects a flat material
onto a surface, at minimal performance cost, as is done within the shaders. Decals were used to
add traffic lines and signs, manholes to the sidewalks, and text, in this case just my name to a
few shops’ signs, mostly to prove a point about the ease of use for custom diegetic publicity and
brands that can add to worldbuilding. These were done in Unreal Engine because they can also
be fetched from Megascans, perform better than image planes, and come with depth simulation
incorporated, meaning the can look three-dimensional if needed.

Once the level was complete, a cinematic camera with 1:2,3 ratio, 1080p resolution and 35mm
lens was created, the original camera animation was assigned to it and polished, lights were
adjusted, and was set to render at maximum quality and antialiasing for the final video.

Pau Fiol Lorente
Analysis of heterogeneity in real cities for videogame environments

41

5.Conclusion
The use of external tools to assemble modular environments allows for a faster creation of
environments with little sacrifice in quality if done properly. It also helps iterate more quickly
the refinement of the level, by helping quickly adjust shapes and help with visual hierarchy,
player guidance and overall aesthetics. However, the manual touch-ups to a scene really tie
everything together, so making the environment totally automated could run the risk of creating
bland and repetitive environments.

When it comes to software, however, justified why some industry software standards are
standard. Blender, while perfectly capable as a 3D modelling software, is still in its infancy when
it comes to node-based modelling. Compared to, for example, Houdini, many simple concepts
require either obtuse approach or are impossible altogether. Another difficulty is clearly the
debugging process, where the information travelling through nodes is hard to access,
misleading, or incomplete. Blender is in constant development, and the current goal of the
company is “Everything Nodes”, so it can be expected to improve in the future.

The use of a small, single developer plugin for the importing is something is full of dangers and
pitfalls, with limited documentation and the lack of robustness that more established companies
can provide, this tool would certainly be dangerous in a company environment with higher
stakes. It is a possibility for similar tools to be built in house in order to have a dedicated
programmer to the task to address any potential issues that might arise.

Finally, even with the ease of use of Unreal Engine’s lighting system and photorealistic assets,
realistic environments are still hardly a tool meant for a solo developer, at least for entire
products. They need extensive work in order to be properly integrated with each other and be
optimised enough for real time use. The use of this approach means that either the product will
be following the same aesthetic visuals of all others using this solution, or a large amount of
time needs to be devoted to modifying them, create new assets and tune elements such as
shading in order to stand out. This all means that a single individual, within a reasonable
timeline, is not able to create environments that stand out on its own.

Pau Fiol Lorente
Analysis of heterogeneity in real cities for videogame environments

42

6. Future Lines
The release of Unreal Engine’s Procedural Content Generation framework provides is an
experimental release that should be capable of replicating the node tool made in Geometry
Nodes, with the notable advantage of being entirely within engine, enabling things such as
instancing, the use of decals, and the plethora of optimisations available more effectively. The
largest of all changes, however, is that this will allow for building to be generated in game. A
likely line of future is to rebuild the same building generator within PCG. This process will be
easier now that the general knowledge is present, and the result using industry standard, cutting
edge technology would be an ideal portfolio element for a technical artist position.

The second major line of work will be to extend the scope to entire urban spaces within a single
setup, in order to be able to generate fully procedural levels. This is a large challenge, as in order
to create a level or space at that same quality level and with enough variety, many edge cases
and interactions between buildings, roads, street furniture and other elements such as NPCs or
game elements need to be addressed.

Another great improvement that could be done would be to stray away from basic cube shapes
and explore how to create module-based n-sided buildings, using for example Voronoi Cell noise
as an urban grid.

Finally, there are subsystems that were planned but could not be achieved within the time
given: coherent traffic signs, and cable grids.

Pau Fiol Lorente
Analysis of heterogeneity in real cities for videogame environments

43

7. Bibliography

1. Nataska Statham, João Jacob, Mikael Fridenfalk. Game environment art with
modular architecture, Entertainment Computing. 2022. ISSN 1875-9521

2. J. Burgess, N. Purkeypile. “Fallout 4’s” Modular Level Design, in: Game Dev. Conf.
GDC 2016, InformaTech, San Francisco, CA, US, 2016.

3. K. Lynch. ¿De qué tiempo es ese este lugar? Para una nueva definición del
ambiente. Editorial Gustavo Gili. 1972. ISBN 84-252-0853-X

4. Geometry Nodes — Blender Manual.
https://docs.blender.org/manual/en/latest/modeling/geometry_nodes/index.h
tml

5. Kammerbild. Blender: procedural buildings with geometry nodes fields [Video].
YouTube. 2022. https://www.youtube.com/watch?v=59PeIGmZQdY

6. AlterMesh – AlterMesh Manual. https://altermesh.com/wp-
content/uploads/2022/01/AlterMesh_Manual.pdf

