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Study of compression techniques for partial differential
equation solvers

Abstract:
Partial Differential Equations (PDEs) are widely applied in many branches of science, and
solving them efficiently, from a computational point of view, is one of the cornerstones of
modern computational science. The finite element (FE) method is a popular numerical
technique for calculating approximate solutions to PDEs.

A not necessarily complex finite element analysis containing substructures can easily gen-
erate enormous quantities of elements that hinder and slow down simulations. Therefore,
compression methods are required to decrease the amount of computational effort while
retaining the significant dynamics of the problem.

In this study, it was decided to apply a purely algebraic approach. Various methods will be
included and discussed, ranging from research-level techniques to other apparently unrelated
fields like image compression, via the discrete Fourier transform (DFT) and the Wavelet
transform or the Singular Value Decomposition (SVD).

Keywords: finite element method; reduced order model; partial differential equations;
singular value decomposition; fourier transform



Summary

In the fields of science and engineering, Partial Differential Equations (PDEs) play a
fundamental role as a powerful tool for modeling diverse systems. They provide a means
to describe the evolution of physical quantities in relation to independent variables such as
space and time. However, the analytical solutions for PDEs are often elusive and challenging
to obtain. As a result, the application of numerical approximation methods, particularly the
finite element (FE) approach, becomes vital.

During FE simulations, significant amounts of data are generated, making dimensionality
reduction techniques, whose implementation is known as reduced-order models (ROMs), very
valuable for compressing the obtained information. This thesis explores several techniques for
achieving such a reduction, and as its main goal, it sets out to implement at least one of the
described techniques inside a code of FE and perform the analysis of one problem with the
assistance of the professor. The initial focus is on the Singular Value Decomposition (SVD)
an the Proper Orthogonal Decomposition (POD), widely utilized methods for effectively
reducing data dimensions. Additionally, transform-based compression methods like the
discrete Fourier transform (DFT) and wavelets, commonly employed in fields such as image
compression, are explored as potential approaches for compressing equations derived from
FE methods.

Furthermore, subsequent sections of the thesis provide insights into the application of these
techniques in parametrized FE models. The particularities of employing reduced-order models
and hyper-reduced-order models using techniques like the Empirical Cubature Method (ECM)
are also discussed. Finally, a numerical assessment of a simple yet impactful problem is
presented, demonstrating the effectiveness of these methods and opening paths for further
exploration within the thesis. To conclude the thesis, the need for these methods is justified
as a relevant contribution to advancements in the engineering community.



Resum

En els camps de la ciència i de l’enginyeria, les Equacions en Derivades Parcials (EDPs)
juguen un paper fonamental com una eina potent per a la modelització de sistemes. En aquest
sentit, proporcionen un mitjà per descriure l’evolució de les magnituds f́ısiques en relació
amb variables independents com l’espai i el temps. No obstant això, les solucions anaĺıtiques
de les EDPs sovint són dif́ıcils d’obtenir, el que requereix l’ús de mètodes d’aproximació
numèrica com enfocaments amb elements finits (EF).

Durant simulacions d’EF, es generen grans quantitats de dades, cosa que fa que tècniques de
reducció de dimensionalitat, conegudes com a models de reducció d’ordre (MRO), siguin
molt valuoses per comprimir la informació obtinguda. Aquesta tesi explora diverses tècniques
per aconseguir aquesta reducció i, com a objectiu principal, es proposa implementar almenys
una de les tècniques descrites dins d’un codi amb elements finits i realitzar l’anàlisi d’un
problema amb l’assistència del professor. L’enfocament inicial es centra en la Descomposició
de Valors Singulars (DVS) i la Descomposició Ortogonal Pròpia (DOP), mètodes àmpliament
utilitzats per reduir eficaçment les dimensions de les dades. A més, també s’exploren mètodes
de compressió basats en transformacions com la transformada discreta de Fourier (TDF) i
els wavelets, que s’utilitzen habitualment en àrees com la compressió d’imatges, però que son
presentas com nous enfocaments per comprimir les equacions dels mètodes d’EF.

Les seccions següents de la tesi proporcionen una visió de l’aplicació d’aquestes tècniques
en models parametritzats d’EF. També es discuteixen les particularitats de l’ús de models
de reducció d’ordre i models d’ordre hiper-redüıts utilitzant tècniques com el Mètode de
Cubatura Emṕırica (ECM). Finalment, es presenta una avaluació numèrica d’un problema
senzill però de gran impacte, que demostra l’efectivitat d’aquests mètodes i obre camins per
a investigacions futures de més profunditat. Per concloure la tesi, es justifica la necessitat
d’aquests mètodes com una contribució rellevant als avenços de la comunitat d’enginyeria.
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1. Introduction

1.1. Aim

The goal of this project is to develop an in-house code containing at least one of the data
methods and/or compression techniques usually applied to approximate complex nonlinear
partial differential equations (PDEs) arising from real-world engineering problems.

Therefore, several methods will be explored throughout the thesis, ranging from basic
introductory material to research-level strategies, combining techniques from other fields
(e.g., image compression) to tackle previously unachievable problems brought by the new
computational era.

1.2. Scope

The development of the project will include the study and implementation of the listed
following tasks:

• Overview of several data-driven methods, applied optimization, and classical techniques
approaches, with a quantitative and qualitative assessment of all available underlying
algorithms for solving engineering problems.

• Study and development of an algorithm capable of using Principal Orthogonal Decom-
position (POD) as one of the uses of Singular Value Decomposition (SVD).

• Study and comprehension of the parameterized finite element (FE) model and the
current reduced-order modeling panorama, especially through the ECM, since it is the
professor’s main field of study.

• Study and validation of a finite element simulation code and its related reduction
model with the assistance of the professor.

• Performing a compression performance comparison of the finite element simulation
using the key ideas acquired in the study phase.

Moreover, the development of the project will NOT include:

• Development of a finite element simulation. The simulation data is being provided by
the tutor’s research group. The treatment will be carried out by the student.

• Development of SVD, Fourier and Wavelet transforms libraries and/or related internal
functionalities of MATLAB’s framework.

• Simulation tests with intricate meshes, containing many integration points, as the
primary goal of the thesis is proving applicability, extension fields are outside the scope.

1



Chapter 1. Introduction

1.3. Requirements

The requirements of the project are divided into two categories: those concerning the
constraints for the final solution and those concerning the procedure requirements that must
be followed during the development of the thesis.

• Constraints for the final solution.

– Application of at least one of the compression techniques reviewed using finite
element simulation data provided by the tutor’s research group.

– The code must be developed using MATLAB software.

– Standard MATLAB libraries and functionalities will be implemented.

– All generated code must be easily readable and, if necessary, extendable.

– Use of the specialized software (GID) developed by the professor’s research group
for post-processing purposes.

• Procedure requirements.

– The bachelor final thesis project dedication limit is 300 hours.

– All academic documents developed during the entire thesis must be written in
English.

– The GitHub online repository will be used to commit the code modifications. This
tool provides easy access to the code and its various versions for the programmer,
and it is good practice for future projects.

– All academic deliverables must be completed by June 21st.

1.4. Justification

Partial Differential Equations (PDEs) have been enormously successful as a tool for modeling
processes both in science and engineering. PDEs explain how physical quantities or variables
alter in relation to a number of independent variables, including space and time. By
formulating PDEs that describe the underlying physics or dynamics of a system, one can
gain insights into its behavior, make predictions, and analyze its properties. However, for the
vast majority of geometries and problems, and due to the limited availability of analytical
solutions, these PDEs cannot be solved using analytical methods [1].

Instead, a numerical approximation for solving the equations is constructed, generally based
on several discretization methods, to appropriately capture the essence of the continuous
PDE problem. These discretization approaches approximate the PDEs with numerical model
equations that can be solved numerically. The numerical model equation solutions are, in
turn, an approximation of the genuine PDE solutions. Such approximations are computed
using methodologies such as the finite element method (FEM), which uses an element-based
approach for the computation of the variables of the problem, as later sections of the work
will discuss in more detail.

2



Study of compression techniques for PDE solvers

The issue arises from the fact that in order to capture the true dynamics and properties of a
model, one must build very condensed meshes (dividing the domain into smaller regions)
and/or a high number of elements, which in turn contain a large number of integration points
that the approximation must address. In the field of computation, this is referred to as the
”curse of dimensionality”, where high-dimensional PDEs often require sophisticated numerical
techniques, efficient algorithms, and powerful computational resources to obtain accurate
solutions in a reasonable time frame. As stated in [2], the execution of such high-dimensional
simulations is nearly impossible due to restricted available resources as the management of a
vast amount of data is required.

In this manner, High-Performance Computing (HPC) is one strategy for overcoming these
restrictions. It thrives on the power of aggregated computing power to handle data-intensive
tasks that regular workstations are unable to handle. Nevertheless, access to such exclusive
high-end devices is granted to only a limited set of users, especially those whose research
and development work is already being adopted by large HPC facilities [3]. Furthermore,
and what is more concerning, the average waiting time for the jobs (uses of such devices)
becomes substantial when the simulation is too expensive to perform (see Figure 1.1).

Figure 1.1.: Average queue time versus the number of CPU cores
available for the jobs on supercomputer PARAM Yuva II [3].

Therefore, the development of techniques that speed up the simulation, modeling, and
rendering of finite element intensive tasks would allow researchers to acquire the findings
of sophisticated analyses more quickly and efficiently. These techniques are known as
compression techniques since the end result is a reduced model of the original. This pursuit
is what engineers and scientists from all disciplines are attempting to uncover in what has
been referred to by many authors as the fourth paradigm of scientific discovery [4].

As a result, the aim of this thesis is to harness the power of applying data-driven methodologies
in finite element simulations to the availability of vast and increasing quantities of data as
a way of integrating compression techniques that accelerate the study and optimization of
nonlinear systems with complex multiscale physics.

3



Chapter 1. Introduction

1.5. Schedule

Designing a planification strategy is one of the primary jobs in the early stages of development.
There are various tools available to aid in this pursuit. In this scenario, a work breakdown
structure was initially constructed to identify the tasks to be accomplished, followed by a
Gantt chart to demonstrate their sequencing in the timeline.

1.5.1. Description of the tasks to be developed

The tasks to be carried out have been collected and ordered in the following Table 1.1, where
a brief description of each activity to be developed is provided.

ID Task Description

0 Introduction to data compression Beginning of the study with some basic notions of the field of
interest

1 Overview of data-driven methods Get an overview of the methods available for performing data
compression.

1.1 Introduction to SVD Inquire into high-dimensional reduction models using SVD.

1.2 Introduction to POD Inquire into high-dimensional reduction models using POD.

1.3 Introduction to Fourier Transform Inquire into the Fourier series’ application to data compression.

1.4 Introduction to Wavelet Transform Inquire into the Wavelet application to data compression.

2 Review of FE methdology A comprehensive understanding of the finite element methodology.

2.1 Parametrization of the FE model Defining and assigning variables that control the behavior of the
finite element model.

2.2 Overview of reduced order modelling Investigation of the panorama of the reduced-order modelling.

2.3 Approaches for the reduction stages Investigation of the applications of the reduced-order modelling.

2.4 Introduction to ECM algorithm Inquire into the Empirical Cubature Method algorithm details.

3 Performance comparison and valida-
tion of the model

Performing a comparison of the reduced-order model developed.

3.1 Algorithm applicability to the code Assessing the applicability of the algorithm to the provided code.

3.2 Numerical assessment Evaluation of an strucutural simple case of study.

3.3 Performance analysis Performing a comparison between the FE entire model and the
reduced HROM.

3.4 Conclusions and Results Analyze the results obtained by using the algorithms developed by
the code provided.

4 Project Management Development of the deliverables (report, budget, project charter).

4.1 Project Charter Drafting and realization of the project charter delivery.

4.2 Report Drafting and realization of the report delivery.

4.3 Budget Drafting and realization of the budget delivery.

Table 1.1.: Table summary of all tasks to carry out along with their description.

4
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1.5.2. Interdependency relationships among tasks

The task dependencies are shown in the Table 1.2 below, which was created to help organize
the schedule later shown in the Gantt chart in Figure 1.3.

ID Task Preceding tasks

0 Introduction to data compression

1 Overview of data-driven methods 0

1.1 Introduction to SVD 1

1.2 Introduction to POD 1.1

1.3 Introduction to Fourier Transform 1.2

1.4 Introduction to Wavelet Transform 1.3

2 Review of FE methdology 1.4

2.1 Parametrization of the FE model 2

2.2 Overview of reduced order modelling 2.1

2.3 Approaches for the reduction stages 2.2

2.4 Introduction to ECM algorithm 2.3

3 Performance comparison and validation of the model 2.4

3.1 Algorithm applicability to the code 3

3.2 Numerical assessment 3.1

3.3 Performance analysis 3.2

3.4 Conclusions and Results 3.3

4 Project Management 1

4.1 Project Charter 1

4.2 Report 1.4

4.3 Budget 3.4

Table 1.2.: Table summary of all tasks dependencies relationships.

5
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1.5.3. Work breakdown structure (WBS)

The scheme of all the activities to be developed is shown in the next figure, where the
structure of the work can be seen clearly.

Figure 1.2.: Work breakdown structure of the project (Source: Own).

6
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1.5.4. Gantt chart

Finally, the Gantt chart shows the duration of each task, their start and end throughout the
course of the thesis. It is worth mentioning that the Gantt chart is planned for a regular
TFE semester, that is, between the start in February and the end in June. The design of the
planification has been done in a cascade mode, as it can be seen in Table 1.2.

13/Feb 28/Feb 15/Mar 30/Mar 14/Apr 29/Apr 14/May 29/May 13/Jun 28/Jun

0. Introduction to data compression
1. Overview of data-driven methods

1.1. Introduction to SVD
1.2 Introduction to POD

1.3 Introduction to Fourier Transform
1.4 Introduction to Wavelet Transform

2. Review of FE methodology
2.1. Parametrization of the FE model

2.2. Overview of reduced-order modelling
2.3. Approaches for the reduction stages

2.4. Introduction to ECM algorithm
3. Performance comparison and  validation of…

3.1. Algorithm applicability to the code
3.2. Numerical assessment
3.3. Performance analysis

3.4. Conclusions and Results
4. Project Management

4.1. Project Charter
4.2. Report
4.3. Budget

Figure 1.3.: Gantt chart of the project (Source: Own).

Task Start Date End Date Duration [days]

0. Introduction to data compression 13/Feb 4/Mar 19
1. Overview of data-driven methods 5/Mar 25/Mar 20
1.1. Introduction to SVD 26/Mar 4/Apr 9
1.2 Introduction to POD 5/Apr 10/Apr 5
1.3 Introduction to Fourier Transform 11/Apr 15/Apr 4
1.4 Introduction to Wavelet Transform 16/Apr 22/Apr 6
2. Review of FE methodology 23/Apr 5/May 12
2.1. Parametrization of the FE model 6/May 13/May 7
2.2. Overview of reduced-order modelling 14/May 19/May 5
2.3. Approaches for the reduction stages 20/May 23/May 3
2.4. Introduction to ECM algorithm 24/May 31/May 7
3. Performance comparison and validation of the model 31/May 17/Jun 17
3.1. Algorithm applicability to the code 31/May 5/Jun 5
3.2. Numerical assessment 6/Jun 10/Jun 4
3.3. Performance analysis 11/Jun 13/Jun 2
3.4. Conclusions and Results 14/Jun 17/Jun 3
4. Project Management 13/Mar 21/Jun 100
4.1. Project Charter 13/Mar 17/Mar 4
4.2. Report 25/Apr 20/Jun 56
4.3. Budget 20/Jun 21/Jun 1

Table 1.3.: Task activity duration for Figure 1.3.

7



Chapter 2. State of the art

2. State of the art

The development of computing, as well as the associated techniques and tools that have
emerged over time, has allowed us to perform calculations and simulations that were previously
unimaginable regarding the complex physical reality existing in the world. However, although
computing devices continue to be improved and computational power is added to them, there
are physical restrictions that lead us to believe that not every model can be solved at ease,
particularly those requiring dimensional complexity and high precision in small regions.

This increased demand for computational advancement has opened up many fields of research
about the effective treatment of available hardware, both through parallel techniques [5] or
the treatment of memory and storage availability [6]. There is, however, another approach
aiming at the same goal that seeks to discover a more condensed and reduced manner of
describing the same problem without resorting to such errors that the problem becomes too
distorted. This current trend involves data compression methodologies.

It is important to remark that data compression, or the act of representing a set of information
in a more compact form, is actually composed of two different algorithms. A properly
named compression algorithm takes an input χ and generates a representation χc that
contains fewer bits than the original input, and another reconstruction algorithm acts on
the compressed representation χc to create a reconstruction γ. Figure 2.1 depicts these
procedures schematically.

Figure 2.1.: Generalized schematic of compression and reconstruction
algorithm, extracted from [7].

Data compression algorithms can be divided into two broad classes according to the recon-
struction requirements: lossless compression schemes, in which γ is identical to the input
χ, and lossy compression schemes, which typically provide much higher compression than
lossless compression but allow γ to differ from χ.
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2.1. Lossless and lossy compression

Lossless compression techniques are those that do not involve any loss of information, as the
term suggests. If the data has been losslessly compressed, the original data can be retrieved
exactly from the compressed data. Applications that cannot accept any difference between
the original and the recreated data, such as text compression or medical imaging, typically
adopt lossless compression.

While there are many situations where it is required that the reconstruction match the
original exactly, there are other circumstances in which it is permissible to loosen this
condition in order to achieve greater compression. Lossy compression strategies are used in
these circumstances.

Lossy compression techniques involve some information loss in the process, with the resulting
data often being irrecoverable or hard to precisely recreate. In exchange for allowing this
distortion in the reconstruction, it typically gets compression ratios that are substantially
higher than those that are feasible with lossless compression.

In the context of this investigation, reversible compression will be foregone in favor of one
that yields larger compression ratios. Additionally, discarding the compression error is
unnecessary since a numerical approximation of a physical situation is already being tackled,
carrying a previous error added to the machine precision. At this stage in the analysis of a
complicated physical system, millimetric accuracy is less important than getting close to
reality and understanding the size of the issue.

Once an initial compression overview has been developed, the performance of the algorithms
treated needs to be compared and optimized. However, due to the variety of application
areas, the measure of performance needs to be established in different terms.

2.2. Measures of performance

There are several ways in which a compression algorithm can be evaluated. The amount of
compression used, the amount of memory needed to construct the method, or how quickly
the algorithm runs under specified conditions can all be used to quantify the algorithm’s
relative complexity.

A very sensible way to assess how well a compression algorithm compresses a given set of
data is to compare the ratio of the number of bits required to represent the data before and
after compression. This ratio is called the compression ratio. As an example, consider an
array of 1024x1024 pixels that needs 1,048,576 bytes to be stored. If this array were to be
compressed, and the compressed version used 16,384 bytes, then the compression ratio would
be 8:1.

The fact that the reconstruction and the original data are different in lossy compression
made us look for a method for measuring the difference in order to establish how effective
a compression technique is. The term used to describe the acceleration of the method,
computationally speaking, is the speedup factor, which quantifies the ratio of the time required
for the reference implementation to the time required for the improved implementation. In
Section 5.1, all these issues are properly addressed.
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2.3. Dimensionality reduction

Generally speaking, any endeavor aimed at creating a simpler model from a more complex
one is referred to as model order reduction [8]. The simpler model is usually referred to as
the reduced-order model (ROM), while the more complex one is said to be the full-order or
high-fidelity model. One of the most significant challenges when dealing with a full-order
model is the establishment of a constitutive link between macro-strain and macro-stresses at
the macro-scale that precisely captures the characteristics and arrangement of the different
phases at the finer scale (i.e., micro-scale) of the model.

In this regard, hierarchical multiscale approaches [9] have gained prominence. These ap-
proaches employ a divide-and-conquer strategy, in which the domain is partitioned into
smaller subdomains (e.g., elements) at various scales. However, this division alone does not
reduce the model, since the total number of unknowns remains the same. What distinguishes
hierarchical multiscale models is the inclusion of simplifying assumptions [10] in the equations
governing the interaction (i.e., connection) between contiguous subdomains at each scale.
Under these assumptions, the constitutive link can be systematically established [11] using
boundary value problems (BVPs) on specific representative subdomains for each point at
the coarse scale.

space so that it embraces, aside from the span of the POD stress basis functions, the space generated — and
herein lies the novelty — by the gradient of the (reduced-order) shape functions. Furthermore, it is shown that,
in contrast to the situation encountered when using standard interpolatory schemes in other parametrized
BVPs [33], in the BVP under consideration, the number and particular placement of sampling points within

the integration domain influence notably the spectral properties (positive definiteness) of the Jacobian matrix

of the governing equation, and therefore, the convergence characteristics of the accompanying Newton–
Raphson solution algorithm. Another innovative ingredient of the present paper is a points selection
algorithm that does acknowledge this peculiarity and chooses the desired sampling points guided, not only
by accuracy requirements (minimization of the interpolation error over the FE stress snapshot), but also by
stability considerations.

2. RVE equilibrium problem

In this section, we present the variational statement and finite element discretization of the fine-scale equi-

librium problem, which, recall, is the parameterized BVP we wish to efficiently solve using the reduced-basis
approximation.

2.1. Preliminaries

Let X � Rd ðd ¼ 2; 3Þ be a subvolume of characteristic length l� lM (lM is the characteristic length of the
macro-continuum XM , see Fig. 1) that is representative of the heterogeneous material as a whole. In micro-
structures that exhibit statistical homogeneity, this domain receives the name of Representative Volume Ele-

ment (RVE), whereas in micro-structures that display periodicity, it is commonly known as repeating unit cell
(RUC), or simply unit cell [24]. In the sequel, the acronym RVE will be used to refer to X.

In the homogenization approach adopted in this work — commonly known as first-order homogenization
[32,40] — the strain field �ðxÞ at any point x 2 X is assumed to be decomposed into macroscopic and fluctu-
ating contributions; under the hypothesis of infinitesimal deformations, this decomposition can be written as:

�ðxÞ ¼ �M þrsuðxÞ: ð1Þ

Here, �M stands3 for the macroscopic strain tensor (the input parameter in the problem) and rsu denotes the
symmetric gradient of the displacement fluctuation field (this field is, in turn, the basic unknown of the problem).

Implicit in the scale separation assumption is the fact that fine-scale deformations only influence coarse-
scale behavior through its volume average over the RVE. It can be shown (see, for instance, Ref. [22]) that
this implies that the boundary conditions (BCs) prescribed on the RVE must be homogeneous (i.e.,

Fig. 1. First-order homogenization.

3 Macroscopic variables will be identified by appending a subscript “M”, while variables associated to the fine scale will be designated by
bare symbols. For instance, we shall write �M and �ðxÞ to denote the macroscopic strain tensor and the fine-scale strain field, respectively.

J.A. Hernández et al. / Comput. Methods Appl. Mech. Engrg. 276 (2014) 149–189 153

Figure 2.2.: Domain and subdomains interface in the commonly known
first-order homogenization [12, 13], extracted from [14]

Methods for solving the BVP range from analytical approaches, which are computationally
efficient but limited to simple structures, to direct computational methods, such as the
two-level Finite Element (FE2) method [15], which have broader applicability but come
with a high computational cost. In between these extremes, semi-analytical techniques, like
Transformation Field Analysis (TFA) [16], broaden the area of research while still requiring
manageable computational resources.

Nevertheless, these methods continue to rely on previously specified presumptions regarding
the constitutive behavior of the relevant phases. To overcome these limitations, an emerging
technique that has recently drawn more attention [14], employs the so-called [17] reduced-basis
(RB) approximation in the solving of the fine-scale BVPs. Unlike Galerkin approximation
procedures, where the basis functions are constructed from polynomials or transcendental
functions like sines and cosines, these RB approximations are carried out from computational
experiments conducted in an offline stage (commonly termed empirical basis functions [18],
meaning ”derived from computational experiments”).
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The experiments involve solving a battery of BVPs for various macro-strain histories and
combining the results of these FE calculations into a data set consisting of hundreds or even
thousands (depending on the number of time steps) of displacement field solutions, commonly
known as snapshots. If all of these snapshots were minimally connected with one another, the
dimension of the manifold spanned by them would be too large, making the entire approach
unfeasible because it would no longer qualify as a truly reduced basis method. Fortunately,
as demonstrated later in this paper, the majority of these snapshots do show strong linear
correlations between one another (i.e., they have redundant information) and also contain
deformation modes that are unrelated to the accuracy of coarse-scale predictions.

All that is needed to achieve the desired decreased basis and a much reduced dimensional
representation of the solution data set is an automatic method (i.e., machine learning or
data-driven method) to locate and eliminate this redundant and irrelevant information
while retaining, to the greatest extent feasible, its core characteristics. The problem of
reducing unneeded complexity from large data sets in order to identify dominating patterns
is fundamental to fields such as digital image compression [19], and hence numerous efficient
dimensionality reduction (i.e., data compression) techniques already exist.

A generic approach that has been used since the dawn of computing and served as the
foundation for many other data-driven methods is the Singular Value Decomposition (SVD).
Initially developed by Beltrami and Jordan in [20] and later generalized by Autonne [21],
there have been numerous algorithms developed during the last decades for efficiently solving
SVD, as seen in [22]. Some of these methods are reviewed in later sections. One of the central
uses of the SVD, as well as one of the simplest and most popular compression algorithms,
is the Proper Orthogonal Decomposition (POD). The method, which is also known as the
Karhunen-Loève decomposition, was originally introduced independently by Karhunen [23]
and Loève [24], among others. Although applied mainly to analyze the statistical properties
of large-scale data [25, 26], has been employed recently in nonlinear PDE-based models [27],
making it suitable for the reduction of large-scale systems [28].

Another approach for data compression is the translation of equations into a coordinate
system where expressions decouple and are accessible to computation and analysis. This
is what transform-based compression methods are based on, such as the discrete Fourier
transform (DFT) and fast Fourier transform (FFT), both of which are derived from the
Fourier transform on discrete vectors of data. A proper introduction to the theoretical
development of the Fourier transform can be seen in [29]. A Fourier-related transform similar
to the DFT is the discrete cosine transform (DCT) proposed by Nasir Ahmed in [30], a
method most commonly used in signal processing and image compression.

More recently, the so-called wavelets [31] have surpassed the status of traditional transform-
based compression by taking advantage of a multi-resolution decomposition, which is par-
ticularly beneficial for a variety of applications. While the usage of wavelets is now most
widely used in image compression [32, 33], some techniques [34] arise in the reduction regard,
which is the main reason why they need to be covered and studied in more detail.

All in all, the choice of the proper data compression technique to apply depends greatly on
the characteristics of the problem, such as the size, complexity, and sparsity of the solution
data. In the succeeding section, a further discussion about the intrinsic nature of each
technique will be extensively discussed.
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3. Compression algorithms

The next section of this study will cover a number of important themes. The display of
dominant low-dimensional patterns in the data of complex systems will be the first block
addressed (i.e., singular values, characteristic modes, and projections to low-rank subspaces)
through the usage of powerful data-driven methods (e.g., singular value decomposition and
proper orthogonal decomposition) that can effectively sense patterns in the data and form
compact representations for modeling and control.

The second block addressed will be centered around the extraction of patterns in the data,
where the aim is to find coordinate transforms (e.g., spectral decomposition, the Fourier
transform, generalized functions) that reduce the complexity of the system. Despite the fact
that these techniques have often only been used for linear dynamics and straightforward
idealized geometries, the ability to construct data-driven transformations creates opportunities
to apply these strategies to new research challenges with more intricate geometries and
boundary conditions.

3.1. Singular Value Decomposition

The first technique reviewed in this report is the singular value decomposition (SVD), which
will serve as the basis for many other approaches developed subsequently. In brief, SVD will
be used to find low-rank approximations to matrices. It is based on the fact that data from
complex systems is often low-rank, which means that the high-dimensional data obtained in
analyses can be explained by a small number of dominating patterns [4].

An effective and mathematically reliable technique for identifying these patterns in data
is the SVD. It takes a high-dimensional set of data points and reduces them to a lower
dimensional space that reveals the original data substructure and orders it from the largest
variation to the least [35]. SVD is useful for data compression techniques because fluctuations
below a certain threshold may be easily disregarded, allowing for significant data reduction
with the knowledge that the key relationships of interest have been maintained.

Because the decomposition is modified in the compression algorithm to produce a low-
rank approximation matrix, the reconstructed matrix differs slightly from the original
matrix. Henceforth, the algorithm performed results in some loss of information (i.e., lossy
compression). However, SVD is proved to be numerically stable [4] and, what is more relevant,
is guaranteed to exist for any matrix, unlike other decomposition like the eigendecomposition.
In the next subsection, a thorough mathematical explanation is discussed.
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3.1.1. General definition

Singular value decomposition is a unique matrix decomposition based on a theorem from
linear algebra [22] that exists for every complex-valued matrix A ∈ C n×m:

A = UΣV∗ , (3.1)

where U ∈ C n×n is an orthogonal matrix, Σ ∈ R n×m is a diagonal matrix, and V ∈ C m×m

is the transpose of an orthogonal matrix. Both U and V are unitary matrices 1 and the ∗

denotes the complex conjugate transpose 2.

The columns of U are orthonormal eigenvectors of AAT , called left singular values, while
the columns of V are orthonormal eigenvectors of ATA, called right singular values. The
diagonal elements of Σ are called singular values and are ordered from largest to smallest,
which are at the same time the non-negative and non-zero square roots of the eigenvalues of
AAT and ATA.

The approach works by ranking the dimensions according to variation and determining which
dimension has the greatest variance. Once this dimension has been identified, it is possible
to use fewer dimensions to find the closest match to the original data points. That is the
main reason why SVD may be thought of as a data compression or reduction technique.

From the definition of SVD seen in Equation (3.1) and knowing Σ is diagonal, the rank-r of
the SVD approximation is given by the sum of r distinct rank-1 matrices [4]:

A =
r∑
i=1

σi ui v
∗
i = σ1 u1 v

∗
1 + σ2 u2 v

∗
2 + · · ·+ σr ur v

∗
r ,

where σi is the i-th singular value of matrix A, ui and vi are corresponding singular values
of matrix A, and r = min (n,m). Assuming the fact that singular values are ordered as
follows: σ1 ≥ σ2 ≥ σ3 ≥ ... ≥ σr , the aforementioned formula implies that the first term in
the sum would contribute the most to the matrix A, while the last term would have the least.
Therefore, if only the first k members of the above summation are taken, the approximation
matrix results in:

A ≈ A′ =
k∑
i=1

σi ui v
∗
i .

A U Σ

V T

=

Figure 3.1.: Decomposition of input matrix A into diagonal matrix of singular
values Σ and matrices of left and right singular vectors.

Orange color illustrates low-rank approximation (Source: Own).

1 A square matrix X is unitary if U U∗ = U∗ U = I
2 For real-valued matrices, this is the same as the regular transpose X∗ = XT
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The quantity of the singular values left out of the approximation formula affects the accuracy
of the result, namely σk+1...σr. The first singular value is assumed to be orders of magnitude
greater than the singular values at the end of the decomposition sequence in the compression
process. When r = k or σi = 0 for all i > r, special circumstances apply, and the compression
results in lossless compression because the omitted singular values do not add to the sum.
To prevent losing crucial data in such situations, approximation errors must be assessed and
taken into consideration. A simple way to understand the truncation of singular values is
depicted in the above Figure 3.1, where the orange color is there to represent the low-rank
approximation of the input.

3.1.2. Intuitive interpretation

There is actually an intuitive and elegant visual interpretation beneath the SVD method.
It is necessary to bear in mind that any rectangular matrix of m by n has the power to
transform a vector in the m-th dimension to a vector in the n-th dimension, something often
called the linear transformation from Rm to Rn, exemplified in Figure 3.2. This is more
easily understood when thinking about matrix vector multiplication. In particular, a 2 by 3
matrix has the ability to take a vector in R3 down to a vector in R2.

R RA
→ →
m n

Figure 3.2.: Linear transformation of a vector in Rm to Rn via a
rectangular matrix A (Source: Own).

Therefore, if a rectangular matrix m by n was composed of a square identity matrix m by m
and the leftovers until n columns were zero values, the linear transformation applied to the
Rm vectors would erase |n−m| dimensions. For instance, if an R3 vector was multiplied by
a rectangular matrix 3 by 2, the vector would translate into the 2D plane, which means it
would lose 1 dimension.

Consider now symmetric matrices, which are square matrices in which on both sides of the
diagonal line the entries are identical. They hold a very strong property, which is that the
eigenvectors of symmetric matrices are perpendicular to each other; that is to say, if the
eigenvectors were normalized and packaged into another matrix, the result would be an
orthogonal matrix.

However, most matrices in nature are not symmetrical. But there is a trick to artificially
construct symmetry out of nowhere. Considering a rectangular matrix A m by n and
multiplying this matrix by its transpose AAT , the result is a symmetric square matrix of
m by m. Were the transpose on the left side ATA, then the result would be a symmetric
square matrix of n by n.
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The matrices obtained on the previous page are not completely unknown, since they are the
same matrices that had already been announced at the beginning of the section, matrices U
and V, which contain the perpendicular (or orthonormal when normalize) eigenvectors of
the multiplication of matrix A from the right and left sides, respectively. As stated in the
beginning of the section, both columns of these matrices were given special names, which
were left singular values for the columns of U and right singular values for the columns of
V, both depicted in Figure 3.3.

→
u1
→
u2

→
v1
→
v2
→
v3AAT = U = ATA = V =

Figure 3.3.: Left and right singular values of a rectangular matrix A,
m = 3 and n = 2 (Source: Own).

It is provable that matrices U and V are positive semi-definite (PSD) matrices. This implies
that the eigenvalue for each eigenvector is non-negative λi ≥ 0. Moreover, if the eigenvalues
from both matrices were to be sorted in descending order, the overlapping ones would be
numerically identical, which means that the biggest eigenvalue of U equals the biggest
eigenvalue of V, and so forth.

Just like the singular vectors, those shared eigenvalues are indirectly derived from the very
original matrix A. Computing the square root of each of these eigenvalues, the singular
values of matrix A would be obtained:

√
λi = σi. Proof of the statements made in this

section can be reviewed in detail in chapter 3 of Hopcroft’s book in [36].

Once again, the statement that any matrix A can be unconditionally decomposed into three
matrices – in which matrix Σ is rectangularly diagonal containing the singular values of
matrix A arranged in descending order; the matrix V and U are orthogonal matrices that
contain the normalized eigenvectors arranged in descending order of their eigenvalue of the
multiplication of matrix A by its transpose both in the right and left sides, respectively.
This is clearly visualized in Figure 3.4, where the content of each matrix is dissected.

→
u1
→
u2

→
v T1

→
v T2

→
v T3

A =
σ1

σ2

Figure 3.4.: Singular Value Decomposition formula dissection of a
rectangular matrix A, m = 3 and n = 2 (Source: Own).

The matrix A itself applies a complicated linear transformation from Rm to Rn. Nevertheless,
it can be perfectly understood as sequentially applying the three matrices of the decomposition
made on Figure 3.4. The VT matrix is an orthogonal matrix that applies a rotation such
that the right singular vectors return to the standard basis. More precisely, the singular
vector with the biggest singular value lands on the x-axis, while the singular vector with the
second biggest value lands on the y-axis, and so forth until the n-th axis.
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The Σ matrix is a rectangular diagonal matrix that is essentially a square diagonal matrix
composed of a dimension eraser, which, as stated previously, is a rectangular matrix that
removes |n − m| dimensions. If matrix A was to be 2 by 3, then the dimension erased
would be the third one. Afterwards, the diagonal matrix stretches each axis based on the
singular value σi. As the final step, matrix U rotates the standard basis to align with the
left singular vectors. Every step explained can be observed in summary in the geometric
interpretation elaborated by Glibert Strang in The Fundamental Theorem of Linear Algebra
in Figure 3.5.

 Similarly AA + is the identity on the column space, and zero on the left nullspace:

 AA+ = 1 = projection onto the line through [1].

 A Summary of the Key Ideas

 From its r-dimensional row space to its r-dimensional column space, A yields
 an invertible linear transformation.

 Proof: Suppose x and x' are in the row space, and Ax equals Ax' in the column
 space. Then x - x' is in both the row space and nullspace. It is perpendicular to
 itself. Therefore x = x' and the transformation is one-to-one.

 The SVID chooses good bases for those subspaces. Compare with the Jordan form
 for a real square matrix. There we are choosing the same basis for both domain
 and range-our hands are tied. The best we can do is SAS-' = J or SA = JS. In
 general J is not real. If real, then in general it is not diagonal. If diagonal, then in
 general S is not orthogonal. By choosing two bases, not one, every matrix does as
 well as a symmetric matrix. The bases are orthonormal and A is diagonalized.

 Some applications permit two bases and others don't. For powers A' we need
 S` to cancel S. Only a similarity is allowed (one basis). In a differential equation
 u' = Au, we can make one change of variable u = Sv. Then v' = S'-ASv. But for
 Ax = b, the domain and range are philosophically "not the same space." The row
 and column spaces are isomorphic, but their bases can be different. And for least
 squares the SVD is perfect.

 This figure by Tom Hern and Cliff Long [2] shows the diagonalization of A.
 Basis vectors go to -basis vectors (principal axes). A circle goes to an ellipse. The
 matrix is factored into UIV'. Behind the scenes are two symmetric matrices ATA
 and AAT. So we reach two orthogonal matrices U and V.

 A

 VT u'2e2 U

 Vp U 2 e2 -IU

 V1 4

 V

 We close by summarizing the action of A and AT and A':

 Avi = oiui ATui = o,vi A +ui = vi/oi 1 < i < r.

 The nullspaces go to zero. Linearity does the rest.

 854 THE FUNDAMENTAL THEOREM OF LINEAR ALGEBRA [November

This content downloaded from 
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Figure 3.5.: Geometric interpretation of the singular value
decomposition of a 2 by 2 matrix A, extracted from [37].

3.1.3. Method computation

Generally, algorithms for computing singular values are variants of algorithms for computing
the eigenvalue decomposition of hermitian square matrices 3. The goal is to calculate the
square roots of the eigenvalues of ATA without actually computing ATA.

Beforehand, in order to prevent needless complexity, all the sections and ensuing techniques
have been given as though the matrix were real. Nevertheless, an extension for complex
matrices can be applied to the SVD method. The book Numerical Linear Algebra by
Lloyd N. Trefethen and David Bau in [38] contains comprehensive documentation on the
implementation of complex matrices in the computation of SVD.

As stated before from Equation (3.1), the non-zero singular values of A ∈ Rm×n (m ≥ n)
are the square roots of the non-zero eigenvalues of ATA or AAT .

ATA = (UΣVT )T (UΣVT ) = VΣTUTUΣVT = V(ΣTΣ)VT

Therefore, mathematically speaking, the SVD of A can be calculated analytically as follows:

1. From ATA;

2. Compute the eigenvalue decomposition of ATA = VΛVT ;

3. Let Σ be the m× n non-negative diagonal square root of Λ;

4. Solve the system UΣ = AV for unitary U.

3Hermitian matrices can be understood as the complex extension of real symmetric matrices.
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This algorithm is regularly utilized, frequently by individuals who have independently
rediscovered the SVD. The matrix ATA is known as the covariance matrix of A. The
approach is unreliable, however, because it transforms the SVD problem into an eigenvalue
problem, which might be significantly more vulnerable to disturbances. The difficulty can be
understood from the proof given in [38].

The SVD can be reduced to an eigenvalue problem in a different, stable manner. Assume
that m = n and that A is square. This is not a necessarily arduous limitation because it
can be demonstrated that issues with rectangular singular values can be converted to square
problems [38]. Consider the symmetric or hermitian 2m× 2m matrix:

H =

[
0 AT

A 0

]
.

Since A = UΣVT implies AV = UΣ and ATU = VΣT = VΣ, the next is deduced[
0 AT

A 0

] [
V V
U −U

]
=

[
V V
U −U

] [
Σ 0
0 −Σ

]
,

which amounts to an eigenvalue decomposition of H. The singular vectors of A may be
obtained from the eigenvectors of H, and it can be seen that the singular values of A are
the absolute values of the eigenvalues of H.

As a result, one may create the matrix H and determine its eigenvalue decomposition to
produce the SVD of a square matrix A. This method is stable in comparison to using ATA
or ATA. The typical SVD methods are based on this concept, albeit in a veiled manner in
which no matrices of dimension m + n are explicitly constructed. Additionally, a preliminary
unitary reduction to bidiagonal form is a crucial step in facilitating a quick process.

Hermitian eigenvalue problems are often resolved in two-phase computation [38]: first, the
matrix is reduced to tridiagonal form, and then the tridiagonal matrix is diagonalized.
Since the 1960s, when Golub, Kahan, and other researchers published their work, a similar
two-phase method has been accepted for SVD computing. After converting the matrix A
into bidiagonal form, the matrix is diagonalized.

× × × ×
× × × ×
× × × ×
× × × ×
× × × ×
× × × ×


︸ ︷︷ ︸

A

Phase 1−→



× ×
× ×

× ×
×


︸ ︷︷ ︸

B

Phase 2−→



×
×

×
×


︸ ︷︷ ︸

Σ

,

where × represents a generally non-zero entrance. In Phase 1 of the SVD computation, A
is converted into a bidiagonal form by performing separate unitary operations on the left
and right. The simplest way is the Golub-Kahan bidiagonalization, which uses Householder
reflectors as its core.

Reviewing QR factorization and Householder triangularization is key to fully understanding
the following explanation; therefore, Appendix B exposes important remarks that the reader
should take note of before moving forward.
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Householder reflectors are applied alternately on the left and the right. The right reflection
adds a row of zeros to the right of the first superdiagonal, whereas the left reflection introduces
a column of zeros below the diagonal, preserving the zeros that were just added to the
column. As an illustration, consider a 5×4 matrix, i.e.,

× × × ×
× × × ×
× × × ×
× × × ×
× × × ×


︸ ︷︷ ︸

A

UT
1−→


× × × ×
0 × × ×
0 × × ×
0 × × ×
0 × × ×


︸ ︷︷ ︸

UT
1 A

V1−→


× × 0 0
0 × × ×
0 × × ×
0 × × ×
0 × × ×


︸ ︷︷ ︸

UT
1 AV1

UT
2−→


× × 0 0
0 × × ×
0 0 × ×
0 0 × ×
0 0 × ×


︸ ︷︷ ︸

UT
2 U

T
1 AV1

V2−→


× × 0 0
0 × × 0
0 0 × ×
0 0 × ×
0 0 × ×


︸ ︷︷ ︸

UT
2 U

T
1 AV1V2

UT
3−→


× × 0 0
0 × × 0
0 0 × ×
0 0 0 ×
0 0 0 ×


︸ ︷︷ ︸
UT
3 U

T
2 U

T
1 AV1V2

UT
4−→


× × 0 0
0 × × 0
0 0 × ×
0 0 0 ×
0 0 0 0


︸ ︷︷ ︸
UT
4 U

T
3 U

T
2 U

T
1 AV1V2

= B

Note that the related identity matrices are excluded since, after the second step, no more
right-multiplications were required. The last matrix, B, has a bidiagonal shape. The resulting
algorithm for m× n matrices with (m ≥ n) dates back to 1965 and is given by [39].

Algorithm 1 Golub-Kahan Bidiagonalization

for k = 1 to n do
x = Ak:m,k
uk = x+ sign(x(1)) ∥x∥ e1
uk = uk/ ∥uk∥
Ak:m,k:n = Ak:m,k:n − 2uk(u

T
k Ak:m,k:n)

if k ≤ (n− 2) then
x = Ak,k+1:n

vk = x+ sign(x(1)) ∥x∥ e1
vk = vk/ ∥vk∥
Ak:m,(k+1):n = Ak:m,(k+1):n − 2((Ak:m,(k+1):n)vk)v

T
k

end if
end for

An improvement on Algorithm 1 is given by the Lawson-Hanson-Chan algorithm. The main
idea for this latter algorithm is to first compute the QR factorization of A, i.e., A = QR
and then apply the Golub-Kahan algorithm to R, i.e., R = UBVT . Together, this results in
A = QUBVT . The advantage of this approach is that the bidiagonalization algorithm has
to be applied only to a small n× n matrix, namely the non-zero part of R. Book Numerical
Linear Algebra in [38] explores this alternative algorithm.

Finally, the computation of Phase 2 performs the SVD of the bidiagonal matrix B previously
calculated. From the 1960s to the 1990s, the standard algorithm for this was a variant of
the QR algorithm. More recently, divide-and-conquer algorithms have also become very
competitive, as depicted in references such as [40].
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3.1.4. Eigenfaces example

One of the most remarkable demonstrations of SVD that gives a principled approach to
dimensionality reduction of high-dimensional data sets is the so-called eigenfaces example.
In this case, this particular example is going to be extracted from the book Data-Driven
Science and Engineering: Machine Learning, Dynamical Systems and Control by Steven L.
Brunton and J. Nathan Kutz. All results present in the foreseen chapter have been obtained
by running the codes provided by the author in MATLAB 4.

In this problem, SVD is applied to a large library of facial images to extract the most
dominant correlations between images. The result of this decomposition is a set of eigenfaces
that define a new coordinate system. This problem was first studied by Sirovich and Kirby
in 1987 [41] and expanded on in [42]. It is widely applied to automated facial recognition, as
in this particular application presented by Turk and Pentland in 1991 [43].

The demonstration of this eigenface example is going to be conducted using the Extended
Yale Face Database B, extracted both from the paper [44] and [4], consisting of 38 people
(28 from the extended database and 10 from the original database) in cropped and aligned
photos under 64 lightning situations, captured with a geodesic dome with a camera facing
each person involved.

(a) A single image for each person in the Yale
database. Generated using

(b) All images for a specific person under different
light conditions.

Figure 3.6.: Images obtained from the Extended Yale Face
Database B in grey colormap (Source: Own).

Each picture has a 192 × 168 pixel size. Additionally, every facial picture in the library
has been transformed into a large column vector of 192 x 168 = 32,256 elements. The first
36 individuals (seen in the left panel from Figure 3.6) from the total of 38 persons in the
database will be utilized as our training data for the eigenfaces example, with two individuals
being saved as a test set for future usage. In the right panel, a sample of all 64 photographs
of a certain individual are displayed.

4 The database from which the faces were extracted can also be obtained inside the author’s data.
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As mentioned earlier, each image is reshape into a large column vector, which corresponds
to every single column of a data matrix X of size 32,256 elements. What is neat about the
SVD is that the columns of U have exactly the same size as the columns of X. Therefore,
if reshaping u1, which is also a column vector of 32,256 elements, the result would be the
shape of a face. These particular faces are what are called the eigenfaces in the example.

As per the computation, the average face of all the columns of X is going to be determined
and subtracted from each column vector. Afterwards, the economy-sized 5 SVD is going to
be computed, mainly because the 32,256 elements are not needed, but instead only the first
nonzero singular values. The mean-subtracted image vectors are then stacked horizontally as
columns in the data matrix X, as shown in the schematic on Figure 3.7. The columns of U
are the eigenfaces, and they may be reshaped back into 192 × 168 images to be visualized.

1.6 Eigenfaces Example 27

Figure 1.17 Schematic procedure to obtain eigenfaces from library of faces.

Code 1.13 Compute eigenfaces on mean-subtracted data.

% We use the first 36 people for training data
trainingFaces = faces(:,1:sum(nfaces(1:36)));
avgFace = mean(trainingFaces,2); % size n*m by 1;

% Compute eigenfaces on mean-subtracted training data
X = trainingFaces-avgFace*ones(1,size(trainingFaces,2));
[U,S,V] = svd(X,’econ’);

imagesc(reshape(avgFace,n,m)) % Plot avg face
imagesc(reshape(U(:,1),n,m)) % Plot first eigenface

Using the eigenface library, Ũ, obtained by this code, we now attempt to approximately
represent an image that was not in the training data. At the beginning, we held back two
individuals (the 37th and 38th people), and we now use one of their images as a test image,
xtest. We will see how well a rank-r SVD basis will approximate this image using the
following projection:

x̃test = ŨŨ∗xtest.

Figure 3.7.: Schematic procedure to obtain eigenfaces from
library of faces, extracted from [4].

In Figure 3.8, the first 64 eigenfaces are shown. The first 64 columns of the matrix U were
extracted, with the observation that each of those columns had been reshaped as an image
(i.e., an array that appeared to be shaped as a face). Then, as seen in the aforementioned
figure, the faces were arranged over a sizable grid of 64 total images of faces of 8 × 8.

5 When n ≥ m, the matrix Σ has at most m nonzero elements on the diagonal and it is possible to exactly
represent x using an economy-sized SVD version.
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Despite the fact that only the first 64 eigenfaces were plotted in Figure 3.8, there were really
more calculated eigenfaces, adding up to the complete number of original data columns.
As it may be observed from the figure, the first couple of eigenfaces are very ghosty and
blurry, corresponding to those features that every face has in common (i.e., eyes, noses, and
mouths), while in the proceeding eigenfaces, more information is being captured, such as
shadows or extremely bright and dark eyebrows, as well as lightning and facial details.

The main advantage of this decomposition approach is that each person’s face can still be
accurately approximated using a linear combination of a few of the eigenfaces, even while
only maintaining a small subset of the eigenfaces (i.e., the first few hundred).

Figure 3.8.: Images obtained from the Extended Yale Face
Database B in grey colormap (Source: Own).

Figure 3.9 reveals the singular values of the data matrix X. The number of modes is displayed
on the horizontal axis, showing up to 24 hundred of them, which is naturally the number
of columns in matrix X. The magnitude of the log of the singular values in the diagonal Σ
is displayed on the vertical axis. The ideal situation for a singular value distribution may
be found if the fundamental structure of the singular value distribution curve is thoroughly
investigated. This is due to the fact that the energy (i.e., the variance in the faces) is carried
by the first few values before it tapers off and becomes increasingly less informative.

Figure 3.9.: Singular values of the data matrix X (Source: Own)
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The next step is to use the eigenfaces obtained in Figure 3.8 to approximate a human face
that was outside of the training set used (i.e., the 36 people used in the beginning of the
example). For this, the pictures of the 38th person on the list are used for the assessment of
how accurately this eigenface-space depicts the 38th person. The first r columns of matrix U
will serve as the so-called eigenface-space into which we will project the large skinny column
vector xi.

Numerically speaking, the transpose of the basis of the eigenfaces-space of r-rank is going
to be multiplied by the xi column vector. The result would be the coefficients (i.e., the
fingerprint of that person) in the coordinate system, so it results in the mixture of the
eigenfaces needed to be added up to get that person’s face.

Thus, to recreate an approximation of xi in that space, the previous multiplication by the
linear combination of eigenfaces is repeated again, such that

x̃i = Ur U
T
r xi︸ ︷︷ ︸
α

,

where α represents the small dimensional vector of exactly the mixture of the first r eigenfaces
that xi contains, and x̃i is the projection of xi onto the first r eigenfaces.

Figure 3.10 illustrates how this person’s face gets reconstructed if the first r eigenfaces
are kept. The accuracy of the reconstruction of one person’s face can be proved using a
different number of ranks. In fact, it is seen that the face does rapidly converge to the real
face. Once more, as was previously stated in Figure 3.8, while the first images preserve
the characteristics of a generic face, as r increases, the details of the face gradually become
more distinct. Overall, the approximation is relatively poor for r ≤ 200, but it improves for
r > 400 to a passable representation of the test image.

Figure 3.10.: Approximate representation of test image using
eigenfaces basis of various order r. (Source: Own)
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3.2. Proper Orthogonal Decomposition

Proper orthogonal decomposition (POD) is one of the central uses of the SVD, providing a
data-driven, hierarchical coordinate system to represent high-dimensional correlated data [4].
It can be seen as the SVD algorithm applied to partial differential equations (PDEs). As
such, it is one of the most important dimensionality reduction techniques available to study
complex spatio-temporal systems, which are typically exemplified by nonlinear PDEs.

The central idea of POD is to reduce the dimensionality of a data set consisting of a large
number of interrelated variables while retaining as much as possible of the variation (i.e.,
statistical information) present in the data set [45]. This is accomplished by projecting
PDE dynamics to low-rank subspaces, which make it easier to evaluate simulations of the
controlling PDE model. Significant speedups in computing are made possible by the low-rank
models produced by the ROM, which may enable real-time control of PDE-based systems
and/or optimization over parametrized PDE systems.

The optimality of POD is what makes this approach so well-liked in applications where
low-dimensional, high-accuracy approximations are required [46]. POD offers a foundation
for the modal decomposition of a collection of data, such as experimental or numerical
simulation results. The properties of POD imply that it is a preferred basis in the sense
that it is designed to optimize approximation accuracy. In order to show how this goal is
achieved, the fundamental tenet of approximation processes is first explored.

3.2.1. Approximation basis functions

Consider a function f(x, t) defined over a domain of interest denoted by Ω. The aim is to
approximate this function by expressing it as a linear combination of basis functions ψi(x),
i.e.,

f(x, t) ≈
m∑
i=1

ai(t) ψi(x) , (3.2)

where ai(t) are time-dependent coefficients representing the unknown amplitudes of the
expansion. As the number of terms m increases, the approximation is expected to approach
the exact function representation.

To determine the values of the coefficients ai(t), a minimization process is employed. In the
case of the least squares approximation, the goal is to minimize the L2-norm of the error,
defined as: ∥∥∥∥∥f(x, t)−

m∑
i=1

ai(t) ψi(x)

∥∥∥∥∥
L2

→ min , (3.3)

where ∥ · ∥L2 denotes L2-norm defined by

∥f(x, t)∥L2 =

∫
Ω
|f(x, t)|2 dΩ .

It is important to note that the representation in Equation (3.2) is not unique for a given
function f(x, t). The choice of basis functions ψi(x) is arbitrary, and each selection corresponds
to a different set of amplitudes.
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In the standard approximation approach, the responsibility of selecting the basis functions
lies with the user. Based on experience, one can determine whether polynomial functions,
trigonometric functions, exponential functions, or any other type of function should form
the basis [28]. While increasing the number of terms m typically leads to improved accuracy
in the approximation given by Equation (3.2), there is no proof that the chosen basis is
the optimal one for the given functions [46]. Therefore, it is natural to seek a basis that
provides the best possible approximation of the function f(x, t) for a given number m. Proper
orthogonal decomposition (POD) specifically addresses the selection of basis functions ψi(x)
and offers a method for constructing an optimal basis for the function under consideration.

3.2.2. General definition

There is considerable freedom in the selection of basis functions ψi(x) for approximating
function f(x, t), as long as the chosen basis is complete and linearly independent. By choosing
an orthonormal set of basis functions, satisfying the property [4]∫

Ω
ψk(x) ·ψj(x) dx =

{
1, j = k

0, j ̸= k
,

gives some advantages, as the determination of the amplitudes ai(t) can be simplified. In
this case, the amplitudes become relatively simple, as they are given by

ai(t) =

∫
Ω
f(x, t) ·ψi(x) dΩ .

Notably, each amplitude depends solely on the corresponding basis function, ψi(x). If the
basis functions are non-orthogonal, determining the amplitudes would involve solving a
system of linear equations.

Furthermore, this basis needs to be optimal in the sense that for each value of m, the
approximation should be as good as possible in terms of the least square error in Equation (3.3).
In other words, the aim is to find a sequence of ordered orthonormal functions such that the
first two functions provide the best two-term approximation, the first three functions offer the
best three-term approximation, and so on. Once identified, these specially ordered orthogonal
functions are referred to as the optimal modes for the function f(x, t), and the representation
in Equation (3.2) is known as the proper orthogonal decomposition of f(x, t).

To proceed with the construction of the optimal POD modes, the dynamics of the function
f(x, t) are sampled at prescribed time intervals. Specifically, a snapshot uk contains samples
of the system at different spatial locations, denoted as u(xi, tk). The continuous functions
and modes are then evaluated at discrete spatial locations.

In an analysis, a large data set is typically dealt with, denoted as X, which consists of a
number of distinct instances in time:

X =

 | | |
u1 u2 · · · um
| | |

 ,

where the columns uk = u(tk) ∈ Cn may be measurements from simulations or experiments.
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As mentioned earlier, X usually consists of a time series of data with m distinct measurement
instances in time. Often the state-dimension n is significantly larger than m (i.e., on the
order of millions or billions in the case of fluid systems), resulting in a tall-skinny matrix as
opposed to a short-fat matrix when n≪ m.

To uncover the optimal basis set, the singular value decomposition (SVD) is employed for
the complex-valued matrix X ∈ Cn×m:

X = UΣV∗ ,

where U ∈ Cn×n and V ∈ Cm×m are unitary matrices and Σ ∈ Rn×m is a matrix with
nonnegative entries on the diagonal, with the values ordered from largest to smallest. SVD
gives essential insight into developing an appropriate basis set adapted to the individual
challenge. In particular, matrix U is guaranteed to provide the best modes to approximate
X in the L2 sense [46], with its columns representing the orthogonal modes necessary for
the ideal basis. The matrix V captures the time history of each modal element, while Σ
indicates the relative importance of each mode. Remember that the modes are arranged
with the most dominant first and the least dominant last.

Typically, the total number of modes (r) is determined by the number of snapshots m taken
in constructing X (where normally n≫ m). The aim is to determine the minimal number
of modes necessary to accurately represent the dynamics of the function, thus selecting a
rank-r approximation that accurately captures the true dynamics, where typically r ≪ m.
The quantity of interest is then the low-rank decomposition of the SVD given by

X̃ = ŨΣ̃Ṽ∗ ,

where
∥∥∥X− X̃

∥∥∥ < ε for a given small value of epsilon. From the columns of the truncated

matrix Ũ, the desired basis modes ψk are extracted, forming the optimal basis matrix Ψ:

Ũ = Ψ =

 | |
ψ1 ψ2 · · · ψr
| | |

 ,

where the truncation preserves the r most dominant modes used in Equation (3.2). The
truncated r modes {ψ1,ψ2, · · · ,ψr} are orthogonal and serve as a low-rank orthogonal basis
to represent the dynamics of the function.

The aforementioned processes may be summarized in Algorithm 2, where the basis was
computed using SVD. Be aware that it may alternatively have been accomplished using an
algorithm to solve the issue of eigenvalue decomposition (e.g., as in the case [47]); in such
case, numerous writers refer to the technique by other names, such as PCA or KLD [45].

Algorithm 2 POD basis of rank r

Set X = [x1, x2, · · · , xn] ∈ Rm×n,
Compute singular value decomposition [Ψ,Σ,Φ] = svd(X);
Set ψi = Ψ.,i ∈ Rm and λi = Σ2

ii for i = 1, · · · , r;
return POD basis ψi

r
i=1 and eigenvalues λi

r
i=1
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3.2.3. Approximation of surface example

To demonstrate the application of the POD method in the selection of optimal basis elements,
an illustration will be provided where the surface of a given function, which exhibits spatial
and temporal variations, is approximated. This particular example has been extracted from
the article An introduction to the proper orthogonal decomposition by Anindya Chatterjee,
referenced in [48]. All results present in the foreseen chapter have been obtained by running
the codes provided by the author in MATLAB.

Let z be given by

z(x, t) = e−|(x−0.5)(t−1)| + sin(xt), 0 ≤ x ≤ 1, 0 ≤ t ≤ 2 . (3.4)

The function will be measured at 25 equidistant x points and 50 equidistant time instants t.
The surface z(x, t) defined in Equation (3.4) can be seen initially displayed in the top-left
corner of Figure 3.11.

By organizing the data into a matrix Z, the SVD of such a matrix is computed. Subsequently,
rank approximations of Z are calculated, ranging from 1 to 3, as depicted in Figure 3.11.

Rank 3 approximation, shown in the bottom-right corner of Figure 3.11, appears to be almost
indistinguishable from the actual surface. This is explained in Figure 3.12 (a), which depicts
the singular values of Z. Observe how the size of the singular values rapidly decreases, with
the fourth one being considerably lower than the third (note how the scale is logarithmic).

Figure 3.11.: (top-left) Representation of the actual surface z(x, t)).
(others) Rank approximation of the surface extracted

using SVD (Source: own).
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In this particular example, the focus has been on generating lower-rank approximations of
the data, with the usage of the SVD considered incidental to the computations. To interpret
the results in terms of mode shapes within the context of the POD, one can examine the
first three columns of matrix V, which represent the three primary mode shapes in the
x-direction. By projecting the data onto these mode shapes, the temporal evolution of the
corresponding modal coordinates can be obtained.

The computation of modal coordinates is straightforward. From the definition established in
Equation (3.2), one could discretize such an equation so as to write a matrix product instead
of a function product. Introducing matrix Q such that UΣ = Q from the SVD operation,
where Q ∈ Rn×m and A = QVT , the next product may be written

A = QVT =
m∑
k=1

qkv
T
k .

where qk is the k-th column of Q and vk is the k-th column of V. Function z(x, t) is
represented as matrix A, the time-dependent function ai(t) is represented by the column
matrix qk and the spatial-dependent function ψi(x) is represented by the row matrix vTk .

Therefore, the k-th modal coordinate qk is derived by multiplying uk, representing the k-th
column of matrix U (assuming U is available through the SVD), by the singular value
σk. Alternatively, if only the proper orthogonal modes V are accessible, the projection
calculation simplifies to qk = Zvk, where vk denotes the k-th column of matrix V. The
modal coordinates for the surface are visualized in Figure 3.12 (b). The dominance of the
first coordinate is evident (corresponding to the most prominent singular value), while the
magnitudes of the second and third coordinates are comparable (approximately equal to the
second and third singular values).

It is worth noting that the computation of modal coordinates provides valuable insights into
the underlying dynamics of the data. These coordinates serve as a representation of the
contribution of each mode shape to the overall behavior of the system.

(a) Singular values of the data matrix Z. (b) Modes contributions to the approximation of
the surface example.

Figure 3.12.: SVD and POD analysis of the approximation performed
(Source: Own).
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3.3. Fourier and Wavelet Transform

One of the most foundational and ubiquitous coordinate transformation was introduced by
J.B. Joseph Fourier in the early 1800s to investigate the theory of heat [49]. Fourier derived the
Fourier transform (and the Fourier series in particular) as a way of approximating solutions
of PDEs. He was particularly interested in the heat equation, where he discovered that the
Fourier transform was a coordinate transformation capable of diagonalizing the Laplacian
operator in the heat equation. What he showed was that the Laplacian (i.e., a mathematical
operator) contained eigenvalues and eigenfunctions, which were sines and cosines functions
of a particular frequency determined by the boundary conditions and geometry of the object,
and that the corresponding eigenvalues were those special frequencies.

Since then, it has been used for all kinds of applications in fields like image compression and
solving other partial differential equations. In fact, the singular value decomposition (SVD)
studied in the first section of this chapter can be thought of as a data-driven extension of
the fast Fourier transform (FFT).

3.3.1. Brief introduction

The Fourier transform is introduced as a valuable coordinate transformation for addressing
various types of problems, such as data representation, image compression, and solving
complex sets of partial differential equations. Before delving into the computational imple-
mentation of Fourier transforms on data vectors, it is essential to introduce the concepts of the
analytic Fourier series and Fourier transform, which are defined for continuous functions.

A key result in Fourier analysis states that if f(x) is a periodic and piecewise smooth function,
it can be expressed as a Fourier series. This series serves as a decomposition or approximation
of the function f(x) by an infinite sum of cosines and sines with increasing frequencies.
Specifically, when f(x) is 2π-periodic, it can be written as:

f(x) =
a0
2

+

∞∑
k=1

(akcos(kx) + bksin(kx)) , (3.5)

where the coefficients ak and bk contain the information required to reconstruct the original
function f(x) by combining the trigonometric functions or higher-frequency terms. These
coefficients can be obtained using the following equations:

ak =
1

π

∫ π

−π
f(x) cos(kx)dx , bk =

1

π

∫ π

−π
f(x) sin(kx)dx . (3.6)

It is worth noting the resemblance between the coefficients and the inner product between
the function f(x) and the specific trigonometric function associated with index k. In other
words, the integrals in Equation Equation (3.6) can be rewritten as:

ak =
1

∥cos(kx)∥2
⟨f(x), cos(kx)⟩ , bk =

1

∥sin(kx)∥2
⟨f(x), sin(kx)⟩ .
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A geometric interpretation of the Fourier series meaning is helpful in understanding the
concepts presented. In Equation (3.5), the function f(x) is expressed as a sum of ak times
cosines of kx and bk times sines of kx. As previously mentioned, these coefficients ak and bk
represent the projections of the function onto the corresponding cosine and sine waves.

Figure 3.13 illustrates two sets of orthogonal bases in a 2-dimensional vector space. One
basis comprises the vectors x⃗ and y⃗, while the other basis is composed of orthogonal vectors
denoted as u⃗ and v⃗. Within this vector space, consider the test vector f⃗ . It is possible to
represent f⃗ in either the (x⃗, y⃗) coordinate system or the (u⃗, v⃗) coordinate system.

The representation is straightforward. To express f⃗ in the (x⃗, y⃗) coordinate system, the
projection of f⃗ onto the x-direction, given by the inner product of f⃗ and x⃗, is considered.
The same procedure applies to the (u⃗, v⃗) coordinate system:

f⃗ = ⟨f⃗ , x⃗⟩ x⃗

∥x⃗∥2
+ ⟨f⃗ , y⃗⟩ y⃗

∥y⃗∥2
, f⃗ = ⟨f⃗ , u⃗⟩ u⃗

∥u⃗∥2
+ ⟨f⃗ , v⃗⟩ v⃗

∥v⃗∥2
.

The purpose of this representation is to demonstrate that the definition of the Fourier series
aligns with how vectors are expressed on an orthogonal basis in a two-dimensional vector
space like R2. The Fourier series utilizes orthogonal functions, similar to how x⃗ and y⃗ are
orthogonal vectors. By applying the Fourier series, it becomes possible to determine the
extent to which f⃗ aligns with the cosine direction, represented by the ak coefficient.2.1 Fourier Series and Fourier Transforms 51

⇀
x

⇀
u

⇀

f

⇀
v

⇀
y

Figure 2.2 Change of coordinates of a vector in two dimensions.

Example: Fourier Series for a Continuous Hat Function
As a simple example, we demonstrate the use of Fourier series to approximate a continuous
hat function, defined from −π to π :

f (x) =

⎧⎪⎪⎨
⎪⎪⎩

0 for x ∈ [−π, π/2)

1 + 2x/π for x ∈ [−π/2, 0)

1 − 2x/π for x ∈ [0, π/2)

0 for x ∈ [π/2, π).

(2.13)

Because this function is even, it may be approximated with cosines alone. The Fourier
series for f (x) is shown in Fig. 2.3 for an increasing number of cosines.

Figure 2.4 shows the coefficients ak of the even cosine functions, along with the approx-
imation error, for an increasing number of modes. The error decreases monotonically, as
expected. The coefficients bk corresponding to the odd sine functions are not shown, as
they are identically zero since the hat function is even.

Code 2.1 Fourier series approximation to a hat function.

% Define domain
dx = 0.001;
L = pi;
x = (-1+dx:dx:1)*L;
n = length(x); nquart = floor(n/4);

% Define hat function
f = 0*x;
f(nquart:2*nquart) = 4*(1:nquart+1)/n;
f(2*nquart+1:3*nquart) = 1-4*(0:nquart-1)/n;
plot(x,f,’-k’,’LineWidth’,1.5), hold on

% Compute Fourier series

Figure 3.13.: Change of coordinate of a vector in two dimensions,
extracted from [4].

Thus, the Fourier series can be seen as a means of writing f⃗ in an orthogonal basis of sines
and cosines, akin to writing vectors in an orthogonal basis. Lastly, it is important to note
that the Fourier series is particularly useful for approximation, as Equation (3.6) provides an
exact equality. However, in practice, it is often sufficient to retain a subset of these elements,
such as k = {1, · · · , r}, to obtain a satisfactory approximation of the original function.
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3.3.2. General definition

In the following section, the generalization of the Fourier transform from periodic functions to
functions defined on an infinite domain will be discussed. The Fourier series concept emerges
from the notion that an arbitrary function, denoted as f(x), which exhibits periodicity
within a specific domain (e.g., [−π, π] or [−L,L]), can be expanded as a sum of periodic
sines and cosines. These sines and cosines serve as the fundamental building blocks for
higher harmonics, enabling the expansion of f(x). By allowing the upper limit of the domain,
denoted as L, to tend towards infinity (L −→ ∞), the Fourier transform is obtained.

The representation of the Fourier series is considered, and the case where the upper domain
approaches infinity is examined. This transformation provides a representation of the function
f(x) that is no longer strictly periodic and allows for non-zero values at specific points.
Consequently, arbitrary functions spanning from negative infinity to positive infinity can be
represented using the Fourier transform.

Firstly, the Fourier series defined on the domain x ∈ [−L,L) is given by:

f(x) =
a0
2

+

∞∑
k=1

[
ak cos

(
kπx

L

)
+ bk sin

(
kπx

L

)]
=

∞∑
k=−∞

cke
ikπx/L ,

where the coefficients are determined as

ck =
1

2L
⟨f(x), ψk⟩ =

1

2L

∫ L

−L
f(x)e−ikπx/Ldx .

The approximation of f(x) is represented by a sum of sines and cosines with discrete
frequencies given by ωk = kπ/L = k∆ω, where ∆ω = π/L. As the limit L −→ ∞ is taken,
the quantity ∆ω tends to zero (∆ω −→ 0). Consequently, the resolution to distinguish
different frequencies becomes infinitesimally small, and ∆ω can be expressed as a differential
ω (dω), resulting in:

f(x) = lim
∆ω→0

∞∑
k=−∞

∆ω

2π

∫ π/∆ω

−π/∆ω
f(ξ)e−ik∆ωξdξ︸ ︷︷ ︸

⟨f(x),ψk(x)⟩

eik∆ωx .

Here, the Fourier series coefficients ck are substituted, and the limit is taken as L tends to
infinity (∆ω −→ 0). Upon analyzing this expression, as ∆ω approaches zero, the summation
is transformed into an integral spanning from negative infinity to infinity with respect to the
variable ω. Therefore, the equation can be rewritten as:

f(x) =

∫ ∞

−∞

1

2π

∫ ∞

−∞
f(ξ)eiωξdξ︸ ︷︷ ︸
f̂(ω)

eiωxdω .

Consequently, the Fourier series coefficients are incorporated into a comprehensive expression,
and the limit is taken as L −→ ∞ or ∆ω −→ 0. The resulting summation is then converted
into a Riemann integral, integrating with respect to a dummy variable ξ and the frequency ω.
The inner integral, denoted as f̂(ω), corresponds to what is known as the Fourier transform.
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3.3.3. Discrete Fourier Transform

The computation of these quantities on a computer using the discrete Fourier transform
(DFT) will now be described. Instead of approximating the infinite Fourier transform integral,
the focus is on approximating the finite Fourier series. This concept plays a crucial role
and eventually leads to the fast Fourier transform (FFT), which stands as one of the most
powerful and significant algorithms of the previous century. The discrete Fourier transform
represents a mathematical transformation that can be expressed as a matrix multiplication,
while the fast Fourier transform presents a computationally efficient method for computing
the DFT, particularly suited for large data sets. In essence, the FFT serves as the algorithm
employed for computing the DFT.

Earlier, the approximation of periodic functions using infinite sums of sines and cosines
was discussed. However, in many cases, an analytical function is not available, and instead,
measurement data obtained from experiments or simulations is utilized. The typical scenario
involves having discrete values of f(x) at specific locations, such as x1, x2, x3, . . . , xn, resulting
in a data vector f = [f1, f2, f3, . . . , fn]

T .2.2 Discrete Fourier Transform (DFT) and Fast Fourier Transform (FFT) 57

x1 x2 x3 xn

f1

f2

f3

fn

Figure 2.7 Discrete data sampled for the discrete Fourier transform.

algorithm [137, 136] that scales as O(n log(n)). As n becomes very large, the log(n)

component grows slowly, and the algorithm approaches a linear scaling. Their algorithm
was based on a fractal symmetry in the Fourier transform that allows an n dimensional
DFT to be solved with a number of smaller dimensional DFT computations. Although the
different computational scaling between the DFT and FFT implementations may seem like
a small difference, the fast O(n log(n)) scaling is what enables the ubiquitous use of the
FFT in real-time communication, based on audio and image compression [539].

It is important to note that Cooley and Tukey did not invent the idea of the FFT, as
there were decades of prior work developing special cases, although they provided the
general formulation that is currently used. Amazingly, the FFT algorithm was formulated
by Gauss over 150 years earlier in 1805 to approximate the orbits of the asteroids Pallas and
Juno from measurement data, as he required a highly accurate interpolation scheme [239].
As the computations were performed by Gauss in his head and on paper, he required
a fast algorithm, and developed the FFT. However, Gauss did not view this as a major
breakthrough and his formulation only appeared later in 1866 in his compiled notes [198].
It is interesting to note that Gauss’s discovery even predates Fourier’s announcement of the
Fourier series expansion in 1807, which was later published in 1822 [186].

Discrete Fourier Transform
Although we will always use the FFT for computations, it is illustrative to begin with the
simplest formulation of the DFT. The discrete Fourier transform is given by:

f̂k =
n−1∑
j=0

fj e
−i2π jk/n, (2.26)

and the inverse discrete Fourier transform (iDFT) is given by:

fk = 1

n

n−1∑
j=0

f̂j e
i2π jk/n. (2.27)

Figure 3.14.: Discrete data sampled for the discrete Fourier transform,
extracted from [4].

The objective is to obtain a vector of Fourier coefficients in the form of f̂ = [f̂1, f̂2, f̂3, . . . , f̂n]
T

for each of these data points fk. Analogous to the conversion of the function f(x) into
coefficients that multiply the sines and cosines, the data f is transformed into the Fourier
transform vector f̂ , consisting of frequency components. Each f̂k represents the contribution
of the corresponding frequency to the data, where f̂n corresponds to the highest frequency
possible with n data points.

To obtain the aforementioned data vector f̂ , the simplest formulation of the DFT is employed,
as expressed by

f̂k =

n−1∑
j=0

fje
−i2πjk/n ,

where the k-th Fourier coefficient is computed by summing the contributions of all j data
points at the j-th frequency, scaled by the k-th frequency divided by n. The interpretation
of the exponential term e−i2πjk/n will be provided later.
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Similarly, as observed in a Fourier transform or Fourier series, the inverse discrete Fourier
transform (iDFT) allows the reconstruction of the original data if the Fourier transform is
available. The iDFT is defined as

fk =
1

n

n−1∑
j=0

f̂je
i2πjk/n .

In essence, given the data vector f = [f1, f2, f3, . . . , fn]
T , performing the discrete Fourier

transform yields the Fourier frequencies f̂ = [f̂1, f̂2, f̂3, . . . , f̂n]
T . These frequencies represent

the contributions necessary to reconstruct the data in f , expressed as

{f1, f2, · · · , fn} DFT
=⇒

{
f̂1, f̂2, · · · f̂n

}
.

It is important to note that all terms in the series involve the multiplication of exponentials,
which are integer multiples of e raised to the power of i2πjk/n, where i denotes the
complex imaginary unit i =

√
−1. This exponential term defines a fundamental frequency

ωn = e−2πi/n, determining the range of sines and cosines that can be approximated using n
discrete values. This fundamental frequency serves as a fundamental unit of work. In an
interval with n data points, each Fourier transform involves summing integer multiples of this
fundamental frequency multiplied by the data, similar to the inverse Fourier transform.

Hence, the fundamental frequency ωn is utilized to compute a matrix that facilitates the
multiplication of the data, resulting in the Fourier transform. Although both the Fourier
transform and the inverse Fourier transform involve summations over the data, it is not
practical to perform the entire summation for each k = 1, 2, 3, . . .. Such an approach would
be laborious, especially when implementing it in code.

Instead, a more efficient approach involves expressing the summation for each k in terms of
a matrix operation. This operation consists of multiplying the data vector by a matrix to
obtain the Fourier transform vector. The matrix, known as the DFT matrix, is defined as


f̂1
f̂2
f̂3
...

f̂n

 =


1 1 1 · · · 1
1 ωn ω2

n · · · ωn−1
n

1 ω2
n ω4

n · · · ω
2(n−1)
n

...
...

...
. . .

...

1 ωn−1
n ω

2(n−1)
n · · · ω

(n−1)2

n


︸ ︷︷ ︸

DFT Matrix


f1
f2
f3
...
fn

 .

In summary, it is important to note that even when dealing with a data vector instead of
an analytic function, a discrete version of the Fourier series can still be computed. The
transformation from data to Fourier coefficients and the inverse transformation can both
be expressed as matrix operations utilizing the DFT matrix. These operations involve
complex numbers, resulting in a complex-valued matrix and complex Fourier coefficients.
The magnitude of each coefficient represents the presence of sine and cosine components,
while the phase describes the phase relationship between these components. Therefore, with
discrete data, it is possible to leverage the Fourier transform to analyze frequency components
and gain insights into the underlying patterns and structures within the data.
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3.3.4. Fast Fourier Transform

The discrete Fourier transform (DFT) matrix is computationally expensive to compute and
multiply with the data. Consequently, the fast Fourier transform (FFT) algorithm has
become synonymous with the DFT due to its efficiency. In practice, the FFT is used to
compute the discrete Fourier transform instead of explicitly constructing and multiplying
the DFT matrix. This algorithm offers significant speed and efficiency advantages.

The primary motivation for utilizing the FFT is to achieve faster computations. The DFT
calculation has a computational complexity of O

(
n2
)
, meaning that as the number of data

points (n) increases, the number of required multiplications grows quadratically. This can
result in slow and expensive computations, particularly when dealing with larger values of
n, such as images. In contrast, the FFT achieves the same Fourier transform but with a
computational complexity of O(n log(n)). This ”fast scaling” is nearly linear in n, with the
small logarithmic correction becoming less significant as n grows larger. For example, when
n is a thousand, the logarithm of n might be three, but when n is a billion, the logarithm of
n is only nine. Thus, the logarithmic term does not increase as rapidly as n.

For the case where n is a power of 2, such as n = 1024 = 210, the FFT algorithm offers
further efficiency gains. By rearranging the entries of the data vector f , the Fourier transform
f̂ can be computed more efficiently. In this scenario, the DFT matrix, denoted as F1024, can
be expressed as a product of smaller matrices, including the identity matrix (I512) and the
diagonal matrix (D512).

f̂ = F1024f =

[
I512 −D512

I512 −D512

] [
F512 0
0 F512

] [
feven
fodd

]
,

The matrices F512 represent the Fourier transform for a smaller size, and the vector feven
contains the even-index coefficients of f , while fodd contains the odd-index coefficients. D512

matrix is given by

D512 =


1 0 0 · · · 0
0 ω 0 · · · 0
0 0 ω2 · · · 0
...

...
...

. . .
...

0 0 0 · · · ω511

 .

By leveraging the diagonal structure of the sub-blocks, the multiplication becomes simpler
and more efficient, as the sub-blocks are smaller in size (512 instead of 1024) and contain
numerous zeros. Moreover, the matrices F512 can be further divided into even smaller
blocks, allowing the same efficiency trick to be applied recursively. This recursive subdivision
continues until reaching a 2× 2 matrix (F2), which is straightforward to multiply.

F1024 −→ F512 −→ F256 −→ · · · −→ F4 −→ F2 ,

The FFT takes advantage of the DFT matrix’s inherent symmetry and intelligently reorders
the indices to exploit redundancies and simplify calculations. By recursively reducing the
computation, significant reductions in complexity are achieved, eventually resulting in a
computational complexity of O(n log(n)).
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3.3.5. Wavelet Transform

It is noteworthy to mention wavelets, which can be regarded as an advanced version of the
Fourier transform [50]. The Fourier transform facilitates the decomposition of a function into
a sum of sines and cosines, thus revealing its frequency content. It has been established that
these sinusoidal functions constitute an orthogonal basis for the representation of desired
functions. In this section on wavelets, a generalization of this notion will be explored,
extending the concept of orthogonal basis to encompass other orthogonal functions that may
offer improved representation for specific function types. Wavelets find extensive applications
in image and audio compression, revolutionizing signal compression and representation in
the digital age [4].

When dealing with time series data, precise temporal information about the function’s
temporal location is available, but there is a lack of knowledge regarding the frequencies
present at that specific moment. Conversely, in a Fourier transform, the frequency content
can be precisely determined, but the temporal occurrence of these frequencies remains
unknown. Consequently, the Fourier domain provides high frequency resolution but significant
uncertainty regarding the timing of frequency occurrences.

To address these limitations, the development of the spectrogram (as illustrated in Figure 3.15
(c)) was motivated. The spectrogram assigns equal importance to both time and frequency
and can be envisioned as a grid-like structure that sacrifices some time resolution from the
original time series and some frequency resolution from the Fourier transform. Nonetheless, it
provides valuable insights into the activation and deactivation times of individual frequencies,
thus offering partial temporal and frequency information.

74 Fourier and Wavelet Transforms

Uncertainty Principles
In time-frequency analysis, there is a fundamental uncertainty principle that limits the
ability to simultaneously attain high resolution in both the time and frequency domains.
In the extreme limit, a time series is perfectly resolved in time, but provides no information
about frequency content, and the Fourier transform perfectly resolves frequency content,
but provides no information about when in time these frequencies occur. The spectrogram
resolves both time and frequency information, but with lower resolution in each domain, as
illustrated in Fig. 2.23. An alternative approach, based on a multi-resolution analysis, will
be the subject of the next section.

Stated mathematically, the time-frequency uncertainty principle [429] may be written as:(∫ ∞

−∞
x2|f (x)|2 dx

)(∫ ∞

−∞
ω2|f̂ (ω)|2 dω

)
≥ 1

16π2
. (2.51)

This is true if f (x) is absolutely continuous and both xf (x) and f ′(x) are square integrable.
The function x2|f (x)|2 is the dispersion about x = 0. For real-valued functions, this is the
second moment, which measures the variance if f (x) is a Gaussian function. In other
words, a function f (x) and its Fourier transform cannot both be arbitrarily localized. If the

Figure 2.23 Illustration of resolution limitations and uncertainty in time-frequency analysis.

Figure 3.15.: Illustration of resolution limitations and uncertainty in
time-frequency analysis, extracted from [4].
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The wavelet transform, also known as multi-resolution analysis [50], introduces multiple
scales in both time and frequency. The observation that indicates that very low frequencies
tend to persist over extended durations without significant changes over time is going to
be followed. Consequently, a baseline frequency is established at the lowest level, assuming
continuous activation throughout time, without concerning ourselves with precise timing.

Moving to the subsequent level, the frequency range is divided in half, sacrificing some
frequency resolution but providing information about occurrence times within the time series
data set. As we ascend to higher levels, more frequency resolution is obtained, as higher
frequencies exhibit more rapid changes over time. However, the ability to precisely identify
which high frequencies are activated diminishes.

Figure 3.15 (d) presents a multi-resolution time-frequency decomposition achieved using the
wavelet decomposition technique. This representation acknowledges that lower frequencies
change relatively slowly over time, needing less temporal accuracy. On the other hand, higher
frequencies demand increased temporal accuracy, introducing more uncertainty regarding
the exact frequency of activations and deactivations. Although the example illustrates three
levels, practical applications may involve ten or more levels for this decomposition.

Therefore, the wavelet decomposition can be viewed as an optimized spectrogram, effectively
allocating information where it is most relevant. It provides reduced information for low
frequencies while enhancing temporal resolution for higher frequencies, and vice versa for
frequency resolution.

The fundamental concept in wavelet analysis shares similarities with Fourier decomposition,
involving the projection of a given time series or spatial data onto an orthogonal basis.
However, in the wavelet transform, this orthogonal basis comprises a hierarchical arrangement
of functions that decrease in size within temporal or spatial windows, as depicted in Figure 3.15
(d).

The core concept of wavelet analysis revolves around a function known as the mother wavelet,
denoted as ψ(t). From this mother wavelet, smaller wavelets can be derived using the
following equation:

ψa,b(t) =
1√
a
ψ

(
t− b

a

)
.

If we consider ψ as a Gaussian function, adjusting the parameter b would shift the Gaussian
function in time, selecting the specific window within the time series. On the other hand, the
parameter a controls the size of the wavelet. As a increases, smaller windows are obtained,
corresponding to higher levels, while b slides the window across the time signal.

Consequently, the wavelet transform, denoted by Wψ, can be expressed as the inner product
between the function f and the wavelet ψa, b:

Wψ(f)(a, b) = ⟨f, ψa,b⟩ .
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To facilitate comprehension, an example of a wavelet, the Haar wavelet, will be presented.
The Haar wavelet, discovered in 1910 [51], exhibits the following expression:

ψ(t) =


1 0 ≤ t < 1/2

−1 1/2 ≤ t < 1

0 otherwise.

,

This wavelet consists of a step function with values of 1 and -1 over the entire interval of the
wavelet transformation. The first wavelet, displayed in Figure 3.16, represents the mother
wavelet ψ1,0 scaled with a = 1 (no resizing) and b = 0 (no shift). By utilizing this mother
wavelet, smaller wavelets can be constructed, such as ψ1/2,0 (scaled down by a = 1/2, no
shift), or ψ1/2,1/2. The process can be continued, yielding a variety of wavelets. The function
ψ1,0 corresponds to the lower region of the decomposition presented in Figure 3.15 (d), while
ψ1/2,0 represents the upper-left portion, and ψ1/2,1/2 corresponds to the right portion.

It is worth noting that all these wavelets are orthogonal functions. Consequently, the inner
product of ψ1,0 with ψ1/2,0 results in 0 because, when ψ1,0 is 1, ψ1/2,0 is half 1 and half -1,
leading to cancellation. Similar orthogonality relationships hold between the bottom and
top wavelets. Thus, the construction of these wavelets ensures orthogonality as the shape is
shrunk and divided into halves.

76 Fourier and Wavelet Transforms
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Figure 2.24 Three Haar wavelets for the first two levels of the multi-resolution in Fig. 2.23 (d).

wavelet transform (CWT), which is given by:

Wψ(f )(a, b) = 〈f,ψa,b〉 =
∫ ∞

−∞
f (t)ψ̄a,b(t) dt, (2.54)

where ψ̄a,b denotes the complex conjugate of ψa,b. This is only valid for functions ψ(t)

that satisfy the boundedness property that

Cψ =
∫ ∞

−∞
|ψ̂(ω)|2

|ω| dω < ∞. (2.55)

The inverse continuous wavelet transform (iCWT) is given by:

f (t) = 1

Cψ

∫ ∞

−∞

∫ ∞

−∞
Wψ(f )(a, b)ψa,b(t)

1

a2
da db. (2.56)

New wavelets may also be generated by the convolution ψ ∗ φ if ψ is a wavelet and
φ is a bounded and integrable function. There are many other popular mother wavelets ψ

beyond the Haar wavelet, designed to have various properties. For example, the Mexican
hat wavelet is given by:

ψ(t) = (1 − t2)e−t2/2 (2.57a)

ψ̂(ω) =
√

2πω2e−ω2/2. (2.57b)

Figure 3.16.: Three Haar wavelets for the first two levels of the
multi-resolution in Figure 3.15 (d), extracted from [4].

In summary, wavelets strike a balance between time-series analysis and the Fourier transform,
resembling an enhanced spectrogram that selectively allocates resolution according to the
signal’s requirements. This approach is motivated by natural signals of interest to humans,
where low-frequency components change relatively slowly over time, while high-frequency
components exhibit more rapid variations. Consequently, the wavelet decomposition adapts
the resolution based on these frequency characteristics.
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4. Compression of equations

While techniques like SVD and Wavelet transform have been successfully used for compressing
images and large data set of information, as seen in the previous chapter, applying similar
compression methods to the Finite Element (FE) equations presents a unique challenge. The
compression of equations refers to the process of reducing the complexity and computational
cost associated with solving finite element equations at a given scale.

One approach to compressing the FE equations, and the main focus of this thesis, is the
so-called projection-based, reduced-order models [8], particularly through Galerkin projection.
The existence of low-dimensional representations for a particular parameterized finite element
problem is based on the assumption that the state variable may be precisely estimated by
a linear approximation of a few global basis vectors [14]. By doing so, the computational
burden is significantly reduced, enabling faster and more efficient simulations.

Data compression algorithms, such as SVD or POD, play a crucial role in determining
this reduced-order subspace. They analyze a set of representative displacement fluctuation
solutions over a so-called training sample [8], and identify the dominant modes of deformation.
These dominant modes represent the most significant contributors to the system’s response
and can be used to construct a basis for the reduced-order subspace. By retaining only these
dominant modes, the dimensionality of the problem is reduced, resulting in a compressed set
of equations that still accurately capture the behavior of the system [10].

4.1. General Overview

This research focuses on developing a cost-effective low-dimensional model for governing
equations that involve nonlinear relationships between state variables and input parameters.
The construction of such a model involves two sequential stages [52]:

1. Projection onto the reduced basis: In this stage, an approximation of the state
variables is introduced into the governing equation. The resulting equation is formulated
in the space spanned by the basis vectors, effectively reducing the number of unknowns.
This simplification facilitates the process of solving the equation. However, for general
nonlinear problems, evaluating the residual still depends on the size of the finite element
mesh. Consequently, a second reduction stage may be necessary.

2. Approximation of the nonlinear term: This stage, known as hyper-reduction [53],
presents challenges and remains a topic of discussion in the model reduction community.
Various approaches have been proposed in the literature to address this additional
dimensionality reduction stage.
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Let F h ∈ RN denote 1 the full-order term with a general nonlinear relationship involving
input variables and state variables. Specifically, F h refers to the vector of finite element
nodal internal forces. The projection onto the reduced-order space is denoted by F ∈ Rn
(n≪ N), and the connection between these variables is established through the basis vector
matrix Φ ∈ RN×n (F = ΦTF h). Approaches for approximating F can be broadly classified
into nodal vector approaches and integral approaches [8].

4.1.1. Nodal Vector Approximation Approaches

In nodal vector approximation approaches, the finite element vector F h is approximated
by a low-dimensional interpolant F h ≈ RFF

h
z . Here, RF ∈ RN×m is the interpolation

matrix, and F h
z represents the entries of F h corresponding to the degrees of freedom

(z ⊂ {1, 2, · · · , N}) where interpolation occurs. The interpolation matrix is obtained by
computing a basis matrix for F h and determining a set of indices that minimize the error
over a representative set of snapshots of F h. Offline methods like the Empirical Interpolation
Method (EIM) [54] can be used to determine these interpolation indices. The nodal vector
approximation approach originated from the work of Everson and Sirovich [55], being the
first proposed method for handling nonlinear terms in model order reduction.

4.1.2. Integral Approximation Approaches

In the finite element context, F can be seen not only as a projection of a large vector
into a reduced-order space (F h = ΦF h) but also as the result of integrating over the
concerned domain Ω ⊂ Rd (with d = 2 in this case), where the reduced-order variable
f = ΨT f h(f : Ω −→ RN ). Consequently, the problem can be viewed as the approximation of
an integral rather than a vector. This can be addressed by either seeking a low-dimensional
approximation of the integrand or approximating the integral itself as a weighted sum of the
integrand evaluated at optimal sampling points.

1. Interpolation of the integrand: In this approach, the procedure is similar to vector
approaches, with the difference being that the interpolation is performed on the integrand
rather than the integral [56]. By approximating f (x) as a sum of interpolation functions
Rg(x) evaluated at the sampling points xg ∈ z, the integral can be expressed as a sum of
the product of matrix weights Qg and the integrand evaluated at the interpolating points.

2. Cubature methods: Cubature methods approximate the integral by a finite sum of
positive scalar weights {ωg}mg=1 multiplied by the integrand at selected sampling points. These
methods [57, 58] are based on the principles of Gaussian quadrature for polynomial functions.
The strategy involves selecting a reduced set of points and associated positive weights from
the integration points of the FE mesh. This selection aims to minimize the integration
error over representative samples of the integrand. The use of positive scalar weights in
cubature methods ensures that the Jacobian matrix maintains the spectral properties of its
full-order counterpart, preserving symmetry and positive definiteness in structural problems.
This advantage sets cubature methods apart from interpolatory schemes, which can have a
negative impact on the robustness of finite element models [59].

1The superindex ”h” denotes FE nodal quantities, while bare symbols represent RO variables. Upper-case
and lower-case symbols represent the dimensions of the FE and RO problems (e.g. N and n, respectively).
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This research employs a novel cubature approach called the Empirical Cubature Method
(ECM) [8], whose resolution guideline is introduced in Section 4.4.1.

4.2. Parametrized Finite Element Model

The model aiming to be simplified is a parametrized nonlinear equation known as the
full-order or high-fidelity model. It represents the motion of a system using the finite element
method in a Lagrangian formulation. The equation can be expressed as:

Mhd̈
h
(µ) + F h

(
dh,dh0 ;µ

)
= F h

ext (µ)−Mh
0 d̈

h
0(µ), (4.1)

In this equation, dh ∈ RN and dh0 ∈ RN0 represent the vectors of unknown and prescribed
nodal displacements, respectively. The sizes of these vectors are determined by the number
of unrestricted degrees of freedom N and the number of restricted degrees of freedom N0,
which remain constant throughout the analysis due to fixed Dirichlet boundaries.

The double dot notation denotes the second derivative with respect to time, representing the

acceleration (d̈
h
= ∂2dh/∂t2). The parameter set is denoted by µ, and its corresponding

space is D. These parameters can include variations in prescribed boundary conditions, body
forces, material properties, and other factors.

The mass matrices Mh ∈ RN×N and Mh
0 ∈ RN×N0 represent the inertial forces caused

by the acceleration of unrestricted and restricted degrees of freedom, respectively. These
matrices are assumed to be independent of the parameter set µ.

On the other hand, F h ∈ RN and F h
ext ∈ RN are the vectors of nodal internal and external

forces, respectively. For simplicity, it is assumed that F h
ext does not depend on the state

variables. The integration rule used to evaluate F h involves pairs {xg,Wg}Mg=1, where
xg ∈ Ω represents the position of the g-th integration point, Wg is the corresponding weight
(including the Jacobian of the finite element at that point), and M is the total number of
integration points. Consequently, it can be approximated F h as:

F h =

∫
Ω
f hdΩ ≈

M∑
g=1

Wgf
h (xg) , (4.2)

where fh(xg) : D −→ RN represents the sparse internal force vector at the g-th integration

point. In a small strain setting, fh(xg) = B
hT (xg)σ)(xg), where B

h ∈ RN×s is the classical
(global) strain-displacement finite element matrix at the point xg, and σ ∈ Rs is the stress
vector (where s = 4 for plane stress/strain problems). The nonlinearity between fh and the
state variable dh can arise from geometric effects (large strains) and/or material behavior.

Lastly, the constitutive relationship between the stress vector and both µ and the deformation
history at each integration point is represented by:

H
(
σ,dh,dh0 , ξ;µ

)∣∣∣
xg

= 0, g = 1, 2, . . . ,M,

where ξ represents the vector of internal variables. The statement is summarized in Box I.
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4.3. First Reduction Stage

4.3.1. Unknown Nodal Displacements

The concept of model reduction is based on the idea that, for any given input parameter
µ ∈ D, the displacement solution can be approximated using a set of n linearly independent
basis vectors Φi ∈ RN (i = 1, 2, · · · , n), where n≪ N . This approximation can be expressed
as follows:

dh(µ) ≈ Φd(µ), (4.3)

where Φ = [Φ1Φ2 · · ·Φn] is the displacement basis matrix, and d ∈ Rn is the vector of
unknown reduced displacements.

To compute the basis matrix Φ, one common approach involves solving the full-order problem
for representative values of the input parameters {µ}Pj=1(µ

j ∈ D). The corresponding
solutions are collected in a snapshot matrix:

Xd :=
[
dh
(
µ1
)
dh
(
µ2
)

· · · dh
(
µP
) ]

,

which is then processed using data compression algorithms, such as singular value decom-
position (SVD) or other compression techniques. By applying SVD, the approximation
Xd ≈ ΦΣΦV

T
Φ is obtained, where ΣΦ and V Φ ∈ RP×n are truncated matrices of singular

values and right singular vectors, respectively.

4.3.2. Prescribed Nodal Displacements and External Forces

To create a Reduced Order Model (ROM) that is independent of the size of the underlying
Finite Element (FE) mesh, it is necessary to approximate not only the solution vector
dh but also the input vectors of prescribed displacements (dh0) and external forces (F h

ext).
Computational savings achieved by compressing the input vectors may be smaller than the
savings obtained from approximating unknown displacements and internal forces.

Typically, both the prescribed displacements and external forces (i.e., the input vectors) can
be approximated exactly as linear combinations of a few spatial basis vectors. For example,
if the prescribed displacements are uniform in space, a single spatial mode is sufficient. If
the spatial variation is linear, then two spatial modes are needed, and so on. The coefficients
in these linear combinations can be obtained through interpolation.

Let’s consider the nodal vector of prescribed displacements, denoted as dh0(µ). Assuming an
exact approximation, it can be expressed as:

dh0(µ) =
(
Ξ Ξ−1

b

)
dh0
∣∣
b
(µ), (4.4)

where Ξ ∈ RN0×n0 is the corresponding basis matrix, b ⊆ {1, 2, · · · , N0} is a set of n0
admissible interpolation indices, Ξb denotes the block matrix of Ξ corresponding to rows b
(which is invertible), and dh0 |b represents the entries of dh0 corresponding to indices b. By
introducing the variables:

Φ0 := Ξ Ξ−1
b and d0 := d

h
0

∣∣
b
.
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The expression for dh0(µ) in Equation (4.4) can be written in a format similar to the
approximation of the unknown displacement in Equation (4.3):

dh0(µ) = Φ0d0(µ). (4.5)

The basis matrix Ξ can be obtained by collecting the vector of prescribed displacements
for the training input parameters in a single matrix Xd0 ∈ RN0×P , and applying the
singular value decomposition (SVD) to obtain the matrix of left singular vectors. The set
of interpolation indices b can be determined using methods like the Discrete Empirical
Interpolation Method (DEIM) [60].

A similar approach can be used to construct the interpolant of F h
ext. By expressing it as:

F h
ext = (Θ Θ−1

c )F h
ext

∣∣
e
, (4.6)

where Θ ∈ RN×nf and c ⊂ {1, 2, · · · , N} are the corresponding basis matrix and set of
interpolation points, respectively.

4.3.3. Projection onto the Reduced-Order Space

By substituting the expressions for the unknown displacement in Equation (4.3) and the
approximated prescribed displacements in Equation (4.5) into the FE balance Equation (4.1)
and performing a Galerkin projection by multiplying by ΦT , it is obtained:

(ΦTMhΦ) d̈+ΦTF h = ΦTF h
ext − (ΦTMh

0Φ0) d̈0. (4.7)

Defining the reduced mass matrices M ∈ Rn×n and M0 ∈ Rn×n0 as:

M := ΦTMhΦ and M0 := ΦTMh
0Φ0,

and the reduced vectors of internal F ∈ Rn and external forces F ext ∈ Rn as:

F = ΦTF h and F ext = ΦTF h
ext, (4.8)

the balance equation in Equation (4.7) can be rewritten as:

Md̈+ F = F ext −M0d̈0. (4.9)

The initial and boundary conditions in the ROM become:

d0 = g
h
b (µ), d(0) = u0, and ḋ(0) = ν0,

where u0 = ΦTuh0 and ν0 = ΦTνh0 .

Finally, by substituting Equation (4.6) into the second Equation (4.8), the reduced external
force vector can be represented as:

F ext = RextF
h
ext|e,

where Rext = ΦT (Θ Θ−1
c ).
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4.3.4. Internal Forces

The only remaining term in the reduced balance Equation (4.9) that depends on the
complexity of the finite element (FE) mesh is the reduced vector of internal forces F ∈ Rn.
By multiplying Equation (4.2) by ΦT , then:

F =

∫
Ω
ΦTfh dΩ ≈

M∑
g=1

Wgf(xg, : · ),

where f := ΦTfh. To complete the model-order reduction process, a more efficient integration
rule is required for F that takes into account the fact that displacements, strains, stresses,
and internal forces now reside in low-dimensional spaces. This step, thus, is to be performed
in a second reduction stage, where the ”reference” model is no longer the finite element
model itself but the ROM described in this first reduction stage.

For the convenience of the reader and ease of reference, the offline operations necessary
to generate such a reduced-order problem have been resumed in an algorithm exposed in
Algorithm 3. Additionally, the statement of the model itself is summarized in Box II.

Algorithm 3 First Reduction Stage

Require: Representative input parameters {µi}Pi=1

Ensure: Reduced-order matrices and vectors
1: Solve the finite element problem (from Box I) for each µi

2: Store the resulting vectors of unrestricted nodal displacements dh, prescribed nodal
displacements dh0 , and external forces f ext in snapshot matrices Xd, Xd0, and X f ext,
respectively

3: Apply SVD or any other compression technique to Xd, Xd0, and X f ext, obtaining basis
matrices Φ ∈ RN×n, Ψ ∈ RN0×n0 , and Θ ∈ RN×nf

4: Determine the interpolation indices b ⊆ {1, 2, · · · , N0} and c ⊂ {1, 2, · · · , N} of the basis
matrices Ξ and Θ using, for instance, DEIM

5: Compute reduced-order matrices: Φ0 = ΞΞ−1
b , M = ΦTMhΦ, M0 = ΦTMh

0 Φ0,
Rext = ΦTΘΘ−1

c , u0 = ΦTuh
0 , and ν0 = ΦTνh0

4.4. Second Reduction Stage

The second reduction stage builds on the reduced-order problem stated in Box II. The
main difference lies in the evaluation of the integral of the reduced internal forces, which
now only requires computing the integrand at a significantly smaller number of points,
denoted as m ≪ M . Consequently, the computational effort associated with solving the
constitutive equations diminishes by a factor of M/m, and the memory requirements for
storing the history of internal variables also decrease. The reduced-order operators, namely
Φ0,M,M0, Rext, and Bg = Bh

gΦ (where g = 1, 2, · · · ,M), have already been determined
in the offline phase of the first reduction stage (see Box II) and, hence, do not need to be
computed again. For computing the integral of the reduced internal forces, the Empirical
Cubature Method (ECM) is employed.
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4.4.1. Empirical Cubature Method

This section introduces the Empirical Cubature Method (ECM) for approximating the
integral of the reduced vector of internal forces. The goal is to approximate the integral of
the reduced vector of internal forces. Beginning by summarizing the optimized cubature
scheme proposed by An et al. [57]. Let f jI(x) = fI(x,µ

j) denote the I-th component
(I = 1, 2, ..., n) of the integrand at point x ∈ Ω corresponding to the solution for input
parameter µj (j = 1, 2, ..., P ).

The optimized cubature scheme approximates the integral of f jI as the sum of weighted
evaluations at selected points:

F jI =

∫
Ω
f jI dΩ ≈

m∑
g=1

ωgf
j
I(xg)

Here, Z = {xg}mg=1 represents the integration points, and ω = [ω1, ω2, ..., ωm]
T are the

positive weights. The positions of the integration points and the weights are determined by
minimizing the integration error over all components and training samples:

(ω,Z) = arg min
w∈Rm

+ ,Zg∈Ω

√√√√ n∑
I=1

P∑
j=1

(ejI)
2 , where ejI =

m∑
g=1

ωgf
j
I (xg)−

∫
Ω
f jI dΩ.

This minimization problem can be formulated in matrix format as:

(ω,Z) = arg min
w∈Rm

+ ,Z̃g∈Ω
∥JZw − b∥ (4.10)

where ∥ · ∥ refers to the standard Euclidean norm, and

JZ :=


f1 (x1) f1 (x2) · · · f1 (xm)
f2 (x1) f2 (x2) · · · f2 (xm)

. . . · · · ... · · ·
fP (x1) fP (x2) · · · fP (xm)

 , b :=


∫
Ω f

1dΩ∫
Ω f

2dΩ
...∫

Ω f
PdΩ

 , f j =


f j1
f j2
...

f jn


While the optimized cubature approach gives a great approximation, it can be computationally
costly for problems with a large number of samples. To address this issue, the ECM
introduces a dimensionality reduction process for the integrand. This reduction is similar
to the displacement vector reduction in the initial stage. By employing a dimensionality
reduction technique, a set of basis functions is determined for the integrand, enabling a more
efficient representation. The minimization problem of Equation (4.10) is then formulated in
terms of these basis functions, reducing the number of computations required.

In the continuous case, the basis functions Λi for the integrand can be obtained using
techniques like POD applied to the ensemble of snapshots. However, standard approaches
may encounter problems when the integral of the snapshots is zero for all input parameters.
To overcome this issue, the ECM adopts an expanded basis approach (EBA) [8] that uses a
modified basis to avoid ill-posedness. By employing this expanded basis, the ECM addresses
the challenges posed by quasi-static problems with no external forces.
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Nevertheless, in common finite element implementations, the value of the integrand is only
determined at the integration points of each finite element. Thus, for practical reasons,
it is convenient to recapitulate the analysis outlined before from a ”discrete” perspective,
where the integral desiring to approximate can no longer be treated as a linear operator
that maps continuous functions into R. Instead, it should be viewed as an operator that
maps vectors from RM (where M is the number of finite element (FE) integration points) to
R. The matrix representation of this operator can be derived from the expression for the
approximated integral of fI as follows:

FI =

∫
Ω
fI dΩ ≈

M∑
g=1

WgfI(xg) =
M∑
g=1

√
Wg

(√
WgfI(xg)

)
=

√
W

TFI , I = 1, 2, . . . , n

Here,
√
W ∈ RM is defined as:

√
W :=

[√
W1

√
W2 · · · √

WM

]T
and FI ∈ RM is a column vector that gathers the values of the integrand at all FE points,
multiplied by the square root of each finite element integration weight:

FI :=


√
W1fI(x1)√
W2fI(x2)

...√
WMfI(xM )


The matrix

√
W

T
serves as the representation of the integral operator when the domain space

RM is equipped with the standard scalar product. The discrete formulation approximates
the L2 norm of a function fI over the domain Ω. The function is assessed at a number
of integration points, and the contributions are weighted and added to arrive at this
approximation. This can be represented as:

∥fI∥2L2(Ω) =

∫
Ω
fIfId Ω ≈

M∑
g=1

WgfI (xg) fI (xg) = ∥FI∥2 .

Here, xg represents the coordinates of the integration point g, Wg denotes the corresponding
FE weight, and FI is the vector of function evaluations at the integration points. However, a
limitation arises when FE integration rules with negative weights are present. To overcome
this limitation, the absolute values of the FE integration weights can be used. By considering
the absolute values, the discrete approximation can be modified as follows:

FI ≈
M∑
g=1

|Wg| fI(xg) = ⟨sgn(W ),FI⟩ ,

In this modified formulation, sgn(W ) represents a vector of the same dimension as W and
contains the signs of the FE integration weights. The angle brackets denote the standard
scalar product between vectors. By considering the absolute values of the FE integration
weights, the discrete formulation can handle both positive and negative weights, allowing for
a more flexible approximation when negative weights are present.
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Basis Matrices

The ECM replaces the integral operator with a reduced-order representation, leading to a
further reduction in computational cost. Specifically, it seeks to find an approximation to

the matrix
√
W

T
by constructing a reduced-order basis for the space spanned by

√
W

T
.

In order to solve the discrete version of the integral equation, the basis matrix for the
nonlinear term FI (where I = 1, 2, . . . , n) needs to be determined. The basis matrix is

constructed by combining a basis matrix for the range of
√
W

T
(which represents the space

spanned by
√
W ) and a basis matrix Λ for the projection of FI onto the kernel of

√
W

T
.

The expanded basis matrix is given by:

Expanded basis matrix =
[
Λ1 Λ2 · · · Λp

√
W
]
.

To compute Λ, the ECM uses a snapshot-based approach with the snapshot matrix XF ,
which contains the snapshots of F j

I for all components I and all training configurations j.

The projection of each column of XF onto N (
√
W

T
) can be calculated by subtracting its

orthogonal projection onto R(
√
W

T
). This yields:

F̂ j
I = F j

I −
√
W

∥
√
W ∥

( √
W

T

∥
√
W ∥

F j
I

)
=



√
W1

(
f jI (x1)− F jI /V

)
√
W2

(
f jI (x2)− F jI /V

)
...√

WM

(
f jI (xM )− F jI /V

)

 . (4.11)

The entries of F̂ j
I are essentially the same as in the continuous case, where each entry is

the difference between the integrand at a given point and its volume average, multiplied by
the square root of the corresponding finite element integration weight. Collecting all these
vectors in the matrix X̂F ∈ RM×nP :

X̂F =
[
F1
1 · · · F1

n F2
1 · · · F2

n FP
1 · · · FP

n

]
. (4.12)

Next, a dimensionality reduction technique such as the Singular Value Decomposition (SVD)
is applied to approximate X̂F as

X̂F ≈ ΛΣΛV
T
Λ,

where ΣΛ and V T
Λ are the matrices of singular values and right singular vectors associated

with the selected dominant left singular vectors Λ ∈ RM×p.

To handle large snapshot matrices and minimize memory requirements, two strategies can be
adopted. First, if the problem’s geometry allows it, a reduced basis (RB) can be constructed

to approximate the range of
√
W

T
, see [8]. This reduces the dimensionality of the problem

and allows for more efficient computations. Second, if the snapshot matrix XF is too large
to store in memory, the partitioned version of the SVD in [8], which precludes the necessity
of manipulating the whole matrix, is used.
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Discrete Integral Equation

With the basis matrix Λ and the range space basis matrix
√
W , the discrete integral equation

can be constructed in the following form:

[
Λ1 Λ2 · · · Λp

√
W
]

C1

C2
...
Cp

D

 =
[
XF

]
,

where C1,C2, . . . ,Cp are the unknown coefficients corresponding to the basis functions in the

kernel of
√
W

T
, and D is the unknown coefficient vector corresponding to the basis functions

in the range of
√
W

T
. This equation can be solved using various numerical techniques,

such as least squares methods or iterative solvers. The solution provides the coefficients
C1,C2, . . . ,Cp and D, used to reconstruct the solution of the integral equation.

Reconstructing the Solution

Once the coefficients C1,C2, . . . ,Cp andD are obtained, the solution of the integral equation
can be reconstructed by evaluating the basis functions at the desired evaluation points. For
a given evaluation point xeval, the reconstructed solution FI(xeval) for component I can be
calculated as follows:

FI(xeval) =

p∑
k=1

ΛI,k ·Ck +W I ·D

where ΛI,k denotes the I-th component of the k-th column of Λ, and W I denotes the
I-th row of

√
W (e.g. I-th component could be displacements, strain, or stress fields). By

evaluating this expression for each component and at the desired evaluation points, the
solution of the integral equation can be reconstructed. The offline steps to determine the
integration points and their associated weights are summarized in Algorithm 4. Likewise,
the statement of the ”hyper-reducer” order problem is set in Box III.

Algorithm 4 Second Reduction Stage

Require: Representative input parameters {µi}Pi=1

Ensure: Integration points and weights for reduced-order problem
1: Solve the reduced-order problem (from Box II) for each µi

2: Store reduced internal forces in snapshot matrix XF ∈ RM×nP , and FE integration
weights in vector W ∈ RM

3: Compute the matrix of zero-integral snapshots X̂F using Equation (4.11) applied to
columns of XF

4: Determine orthogonal basis matrix Λ ∈ RM×p for the column space of X̂F and the p
leading left singular vectors from SVD of X̂F

5: Construct matrices J ∈ Rp+1×M and b ∈ Rp+1 for cubature optimization problem:

J =
[
Λ

√
W
]T

and b =
[
0T V

]T
, where V =

∑M
i=1Wi

6: Determine integration points z ∈ Nm and weights ω ∈ Rm+ using Appendix C
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4.5. Summary

Given µ ∈ D, gh(µ) : [0, T ] → RN0 ,uh
0 ,ν

h
0 ∈ RN ,F h

ext(µ) : [0, T ] → RN ,
find dh : [0, T ] → RN such that

Mhd̈
h
+F h = F h

ext−Mh
0 d̈

h
0 , where F h =

∫
Ω
f h dΩ ≈

M∑
g=1

Wgf
h(xg, : · ) .

subject to the Dirichlet boundary and initial conditions

dh0 = gh, dh(0) = uh0 , ḋ
h
(0) = νh0 , and the constitutive equations

H
(
σ,dh,dh0 , ξ;µ

)∣∣∣
xg

= 0, g = 1, 2, . . . ,M .

Box I. Statement of the finite element problem

Without approximation of internal forces
Given µ ∈ D, ghb (µ) : [0, T ] → Rn0 ,u0,ν0 ∈ Rn,F h

ext

∣∣
e
(µ) : [0, T ] → Rnf ,

find d : [0, T ] → Rn such that

Md̈+ F = F ext −M0d̈0 , where F =

∫
Ω
f dΩ ≈

M∑
g=1

Wgf (xg, : · ) .

with (f = ΦT f h) and Fext = Rext F
h
ext

∣∣
e
,

subject to the Dirichlet boundary and initial conditions
d0 = ghb , d(0) = u0, ḋ(0) = ν0 , and the constitutive equations

H (σ,d,d0, ξ;µ)|xg
= 0, g = 1, 2, . . . ,M .

Box II. Statement of the reduced-order problem

With approximation of internal forces
Given µ ∈ D, ghb (µ) : [0, T ] → Rn0 ,u0,ν0 ∈ Rn,F h

ext

∣∣
e
(µ) : [0, T ] → Rnf ,

find d : [0, T ] → Rn such that

Md̈+ F = F ext −M0d̈0 , where F =

∫
Ω
f dΩ ≈

M∑
g=1

Wgf (xg, : · ) .

with (f = ΦT f h) and Fext = Rext F
h
ext

∣∣
e
,

subject to the Dirichlet boundary and initial conditions
d0 = ghb , d(0) = u0, ḋ(0) = ν0 , and the constitutive equations

H (σ,d,d0, ξ;µ)|xg
= 0, g = 1, 2, . . . ,m .

Box III. Statement of the hyper-reduced order problem
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5. Numerical Assessment

In this chapter, a comprehensive numerical assessment is conducted to evaluate the effec-
tiveness of the proposed model-order reduction strategy. The assessment is performed on
a representative structural example, specifically a quasistatic bending problem involving a
stress-plane beam subjected to infinitesimal elastoplastic deformations. The beam, whose
dimensions are of length L = 3 m and height H = 0.1 m, is fixed at the left end and
experiences a prescribed rotation of µmax = 15o at the right end. The parameter µ varies
within the range of [0,+µmax], allowing for a thorough investigation of the beam’s behavior.

For this analysis, a total of P = 200 snapshots are generated to capture the beam’s response
under various loading conditions. The beam is discretized using quadratic elements, each
equipped with 9 Gauss points to accurately represent the deformation characteristics. The
finite element mesh can be seen in Figure 5.1 in GID.

(a) Zoom out of the mesh of the stress-plane beam.

(b) Zoom in of the mesh of the stress-plane beam.

Figure 5.1.: Mesh characterization of the stress-plane beam in GID.
(Source: Own).
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As observed from the above Figure 5.1 where the mesh is depicted, the size of the Elements
is rectangular (i.e., not the same in the x-direction and the y-direction) and it is of sizeX =
0.0375 m and sizeY = 0.02 m, providing an entire mesh with Nelem = 400 elements. The
numbering is also provided in Figure 5.1 (b).

Moreover, the material properties of the beam are defined by a single material with a Young’s
modulus of E = 70× 103 MPa, a Poisson’s ratio of ν = 0.3 and a material density ρ = 7850
kg/m3. These properties govern the beam’s mechanical behavior, providing crucial input for
the analysis.

In order to accurately analyze and solve a finite element problem, appropriate boundary
conditions need to be applied to the geometry. As said earlier, in this case, two boundary
conditions are applied: one fixed end and one prescribed rotation. In Figure 5.2, the boundary
conditions of the finite element mesh are visually depicted, showcasing the fixed end on
the left side (hence, the prescribed displacements) and the prescribed rotation on the right
end.

Figure 5.2.: Boundary conditions applied to the geometry of
the problem (Source: own).

By conducting this numerical assessment on the representative bending problem, the aim is
to validate the effectiveness and accuracy of the proposed model-order reduction strategy in
capturing the beam’s elastoplastic response under different loading conditions. The obtained
results will serve as a basis for evaluating the performance and applicability of the proposed
approach in practical engineering applications.

Various parameters play a crucial role in accurately representing and analyzing the behavior
of the beam. One of the fundamental parameters is the number of nodes, depicted as Nnode,
which determines the spatial discretization of the domain under consideration. Increasing
the number of nodes leads to a finer mesh, enabling a more accurate representation of the
system’s geometry and capturing localized effects more effectively. In this case, the number
of nodes defined is of Nnode = 1 771.

Another important parameter is the number of Gauss pointsM used for numerical integration
within each element. Gauss points are strategically placed within an element to approximate
the integrals of constitutive equations and evaluate element-level quantities. Increasing the
number of Gauss points enhances the accuracy of the numerical integration, enabling a
more precise representation of material behavior, such as stress and strain distributions.
In this case, the number of Gauss points is 9 for each element, summing up a total of
M = 9 Nelem = 3 600. To address the problem of incompressibility while preserving the
displacement-based formulation discussed earlier, researchers have developed a method known
as the ”B-bar” approach [61], applied in this particular case.
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The goal of the hyper-reduced order model (from now on, HROM) is to predict both the
displacement obtained in the application of the loads to the geometry of the problem for large
strains and the second Piola-Kirchhoff stress (abbreviated as PK2stress), as a measure of the
internal forces or stresses within a deforming solid body. Consider a deformation mapping
from the reference configuration (denoted by 0) to the current configuration (denoted by t).
The deformation is described by a displacement field, which maps points in the reference
configuration to their corresponding locations in the current configuration. The displacement
field is denoted by u(X, t), where X represents a point in the reference configuration and t
denotes time.

Assume that there is a material point located at X in the reference configuration. When the
material undergoes deformation, the new position of this point in the current configuration
is given by

(x = X+ u(X, t).

The PK2 stress tensor, denoted by P, is defined as follows:

P =
∂S

∂F
,

where S is the first Piola-Kirchhoff stress tensor and F is the deformation gradient tensor.
The deformation gradient tensor, F, describes the change in the geometry of the material
during deformation. It is defined as the derivative of the displacement field with respect to
the reference coordinates:

F =
∂x

∂X
= I+

∂u

∂X
,

where I is the identity tensor. The first Piola-Kirchhoff stress tensor, S, relates the forces
acting on a surface element in the current configuration to the corresponding area element
in the reference configuration. It is defined as:

S =
∂Ψ

∂F
,

where Ψ is the strain energy density function, which depends on the material behavior.
Therefore, the PK2 stress tensor, P, can be obtained by differentiating the first Piola-Kirchhoff
stress tensor, S, with respect to the deformation gradient tensor, F.

In this particular numerical assessment, predicting the PK2 stress along with the displacement
helps capture the mechanical response of the problem accurately, especially for large strains.
The PK2 stress tensor will provide a measure of the internal forces within the material,
taking into account the deformation and rotation of material elements.

After this brief explanation of the variables of the study, the hyper-reduced model used
for the computational assessment of the numeric problem is addressed. As explained in
the preceding sections, the construction of the desired HROM involves two sequential
dimensionality reduction stages. The first reduction stage consists of the creation of a
reduced-order model with no approximation of internal forces (henceforth labeled ROM). To
arrive at the ROM, the steps depicted in the outlined Box II) are followed. The first step is
to run FE analysis for representative values of such input parameters (the training inputs).
Furthermore, as mentioned earlier, the time domain for each input history (t ∈ [0, T ], where
T = 1 s) is discretized into 200 equally spaced steps, P = 200 snapshots.
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Thus, the matrices are to be stored in memory and processed by dimensionality reduction in
the first reduction stage: the matrix of displacements Xd and the matrix of PK2-stresses
XPK2stress. Given that a large number of snapshots have been generated, holding uncertainty
about the full dynamics of the unknown system, it is possible that the equilibrium state is
reached with a reduced number of snapshots. To validate this, singular value decomposition
(SVD) is performed to determine the number of necessary modes and store the found values in
a more reduced and compact form. In this case, the rank obtained for both the displacement
snapshot matrix and the PK2-stress snapshot matrix is 11 modes, as depicted in Figure 5.3.
The region in between modes 4 and 8 has been enlarged and converted to a logarithmic scale
for visualization purposes.

Figure 5.3.: (right) SVD truncation error versus number of basis vectors employed
in the approximation (n). (left) The portion between modes 4 and 8 is

shown in magnified form in logarithmic scale (Source: own)

To ensure accurate results for both displacements and PK2 stress, an initial truncation error
of ϵs = ϵσ = 10−3 is set. In a second reduction stage, the truncation error is reduced to
ϵd = 10−4 due to the desired stress accuracy. The number of displacement modes is also
determined, revealing that out of a total of 11 possible modes, only 4 displacement modes
are necessary to satisfy the stress accuracy requirement, as depicted in Figure 5.5.

Based on the selected displacement modes, the corresponding number of modes for PK1
and PK2 stresses turns out to be 14 and 12, respectively. Consequently, the matrix of
internal virtual work modes has a total of 96 columns, calculated by multiplying the number
of displacement modes (4) and PK1 stress modes (14). Performing the singular value
decomposition (SVD) on this matrix without any truncation yields 46 modes. Therefore, to
achieve exact integration of these virtual work modes, 47 points (46+1) are required.
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Analyzing the curve of the relative SVD truncation error as a function of the number of
modes displayed in Figure 5.4, it becomes evident that the error rapidly decreases as more
modes are included. Further iterations lead to the discovery that a truncation error of
ϵf = 5× 10−5 is enough, corresponding to 18 integration points out of a total of 3 600. This
choice satisfies both the displacement and stress accuracy requirements, as can be examined
later by analyzing the contour plot of normal PK2 stresses in the x-direction shown in
Figure 5.9.

Figure 5.4.: Truncation error versus number of modes
(matrix of internal work snapshots) (Source: own)

(a) Mode 1 - S1 = 20.88

(b) Mode 2 - S2 = 0.53

(c) Mode 3 - S3 = 0.015

(d) Mode 4 - S4 = 0.0056

Figure 5.5.: Deformed shapes corresponding to the first 4 dominant
displacement modes [Φ1,Φ2,Φ3,Φ4] (Source: own).
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When employing the element-based strategy for selecting integration points, it is found that
the rank of the snapshot matrix is practically the same as in the points-based approach,
resulting in a rank of 47. This implies that 47+1 = 48 elements would be necessary to
achieve exact integration of the reduced internal virtual work. However, through the second
reduction stage, it is determined that by setting the truncation error to ϵf = 5× 10−5, the
specified quality requirements are met, thus requiring only 18 finite elements.

Considering that each element employs the number of 9 Gauss points, this leads to a total of
18 · 9 = 162 integration points, which represents a 4.5% of the total number of Gauss points
of the problem, but it is still large considering that the points-based approach only required
18 points for integration. Hence, it is seen that the element-based approach requires nine
times more integration points than the point-based approach. The weights associated with
the 18 elements in the element-based approach can be visualized in Figure 5.6 (a).

(a) Weight (in % of the total volume V and sort in
descending order) associated to each

integration point.

(b) Dimensionless residual ∥r∥ /V versus number
of integration points.

Figure 5.6.: Characterization of the ECM integration points
(for m = 18) (Source: Own).

The location and arrangement of the selected m = 18 elements within the mesh can be
observed in Figure 5.7. In this visualization, the chosen elements are highlighted as rectangular
red boxes, enabling to easily identify their positions. The specific elements selected are labeled
as melem = [314, 130, 54, 171, 26, 8, 399, 11, 30, 2, 112, 1, 65, 7, 397, 61, 37, 12].

Hyperreduction I
Example 1: Plane stress beam with prescribed rotation on one end (see folder HROM/03_BEAM_rotation_NG)

13 modes and 50 points required for meeting the
speci�ed accuracy requirements

Location of the 34 elements containing the 50 points
selected by the ECM (out of 400 elements, and
400*9 = 3600 Gauss points )

Number of PK2-stress modes = 16
Number of PK1-stress modes = 16

First �ve dominant modes 

Location of the 35 elements containing the 40 ECM points. Location of the 15 elements containing the 18 ECM points. 

400 quadratic quad. elem.
(9 Gauss points per elem.)

Mode 1 (S1 =20.88)

Mode 2 (S2 = 0.53)

Mode 3 (S3 = 0.015)

Mode 4 (S3 = 0.0056)

MODES (including prescribed DOFs) and associated singular values

Figure 2: Beam with prescribed rotation (θ = 15 degrees) on one end.

Joaquín A. Hernández Ortega (joaquin.alberto.hernandez@upc.edu) 97 / 170

Figure 5.7.: Location of the m = 18 integration points
chosen by the ECM algorithm (Source: own).
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Next, it is required to study the extent to which the integration error affects the quality
of the response predicted by the HROM (in terms of the output of interest). To this end,
Figure 5.8 depicts the evolution of the variables of interest for the hyper-reduced case where
m = 18 integration points. As depicted in the figure, deviations between FE response and
HROM graphs are practically imperceptible, which means that the accuracy obtained is
quite considerable, even more so when the results of Table 5.1 are taken into account.

FE
HROM m = 18

FE
HROM m = 18

Figure 5.8.: Evolution over time of the variables of the 1st DOF. Results
computed with the FE model and the ROM using m = 18 and

the full set of FE integration points (Source: own)

Using GID as a postprocessing software tool proves crucial in visually presenting the results
within the mesh itself. In this case, the contour plot of the PK2 stress in Figure 5.9 is plotted
in the mesh, which is presented as deformed in the final step of the displacements by a factor
of 1 for the presence of large strains. The depicted Figure 5.9 shows the difference in the
final PK2 stress results between computing a problem of M = 3 600 integration points (top)
and m = 18 integration points (bottom), proving astonishing results.

Figure 5.9.: Contour plot of normal 2nd Piola-Kirchhoff stress in the x-direction by
the FE model (top) and the HROM (bottom) (Source: own).
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5.1. Performance Analysis

In Table 5.1, a comprehensive summary of the dimensions and computation time of both
the high-fidelity finite element (FE) model and the hyper-reduced order model (HROM) is
presented, highlighting the remarkable compression achieved by the HROM. The table also
includes the corresponding compression ratios, illustrating the significant reduction in the
number of displacement unknowns and integration points.

The compression achieved is truly astonishing, as the number of displacement unknowns
and integration points is reduced by more than one order of magnitude. These compression
ratios are reflected in equally remarkable speedup factors, with the HROM completing the
computation of 200 time steps in approximately 1 second, while the FE model took more
than 20 seconds. These timings were obtained using the vectorized MATLAB program
Appendix A running on a machine with a clock speed of 3.6 GHz, 8 GB of RAM, and 8 Intel
Core-i7 processors, operating on Windows.

FEM HROM Compression ratio

Number of unrestricted DOFs N = 3 498 n = 4 874.5
Number of restricted DOFs N0 = 44 n0 = 3 14.67
Number of integration points M = 3 600 m = 18 200
Computation time 20.5952 s 1.059 s 19.45

Table 5.1.: Comparison of the dimensions and computation time of the FE problem and
the HROM, along with the corresponding compression ratios.

The comparison presented in Table 5.1 highlights the substantial advantages of employing
the HROM over the traditional FE approach. The drastic reduction in the number of degrees
of freedom (DOFs) and integration points results in significant computational efficiency, as
evidenced by the impressive speedup factor. This efficiency gain enables rapid analysis and
exploration of different loading scenarios, facilitating quicker decision-making processes in
engineering and design applications.

Furthermore, these findings not only underscore the effectiveness of the HROM in terms of
computational efficiency but also emphasize its potential for accelerating the development
and optimization of structural systems. The astonishing compression ratios and speedup
factors achieved through the HROM demonstrate its viability as a valuable tool for efficient
and accurate analysis of complex structures, leading to substantial time and cost savings in
engineering projects.
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6. Future research

In this chapter, potential avenues for future research are discussed, building upon the findings
and methodologies presented in this thesis. The study thus far has focused on investigating
data compression algorithms, such as singular value decomposition (SVD), proper orthogonal
decomposition (POD), and Fourier and Wavelet transforms. Successful application of SVD
and POD techniques to a finite element mesh, as demonstrated in the previous chapter,
forms the basis for further exploration. However, several unexplored areas warrant attention
for future investigations.

1. Exploration of Fourier and Wavelet Transforms: Fourier and Wavelet transforms
offer alternative approaches for data compression in addition to SVD and POD. These
transforms provide powerful tools for analyzing signals and extracting relevant infor-
mation. Future studies can involve the application of Fourier and Wavelet transforms
to finite element data and the evaluation of their effectiveness in capturing important
features and reducing computational complexity.

Fourier transforms, based on the principle of expressing a function as a sum of sinusoidal
components, provide a frequency-domain representation of the data. By decomposing
the data into its frequency components, Fourier transforms reveal the underlying
spectral characteristics. This representation is particularly useful for capturing periodic
or oscillatory behavior in the data. By exploring the application of Fourier transforms
to finite element data, researchers can assess their ability to compress and represent
structural response data in the frequency domain. This can lead to insights into the
dominant frequencies or modes of vibration within the system.

Wavelet transforms, on the other hand, offer a time-frequency representation that
provides a more localized analysis compared to Fourier transforms. Wavelets are
functions that can capture both frequency and temporal information simultaneously.
By using wavelet transforms, researchers can decompose the data into different scales
or resolutions, revealing both the frequency content and the temporal localization
of features. This can be particularly beneficial when dealing with transient or non-
stationary phenomena, where the behavior of the system changes over time. By applying
wavelet transforms to finite element data, researchers can assess their ability to capture
localized events, such as stress concentrations or dynamic response characteristics, and
potentially achieve more efficient data compression.

By comparing the performance of these different data compression techniques, re-
searchers can evaluate their ability to capture important features of the data while
reducing computational complexity. It may also be possible to combine multiple
techniques, such as SVD or POD, with Fourier or Wavelet transforms, to leverage
their complementary strengths and achieve even more effective data compression and
representation.
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2. Investigation of Alternative Model Order Reduction Techniques: While
the current research successfully applied the Empirical Cubature Method (ECM)
to solve the finite element basis functions, there are other model order reduction
techniques that warrant further exploration. Future studies can focus on comparing
and evaluating alternative methods such as Reduced Basis Methods (RBM) or Dynamic
Mode Decomposition (DMD) for solving the finite element basis functions.

Reduced Basis (RB) methods offer an attractive approach for model order reduction
by constructing a low-dimensional subspace that captures the essential features of the
system’s response. These methods aim to identify a small number of basis functions, or
modes, that effectively represent the behavior of the system. The basis functions are
typically obtained by solving a reduced system using a small set of training samples or
snapshots. By investigating the application of RB to finite element data, researchers
can assess its accuracy in approximating high-fidelity solutions and its computational
efficiency in reducing the dimensionality of the problem. This exploration can help
identify scenarios where RB outperforms ECM or offers distinct advantages in terms
of accuracy and efficiency.

Dynamic Mode Decomposition (DMD) is another promising model order reduction
technique that focuses on capturing the dominant coherent structures or modes in a
dynamical system. DMD identifies the spatial and temporal patterns in the data and
decomposes them into a set of dynamically relevant modes. These modes can be used
to reconstruct the system’s response with reduced dimensionality. Future studies can
explore the application of DMD to finite element data and assess its effectiveness in
capturing the dominant structural behavior and reducing the computational complexity.
By comparing the performance of DMD with ECM and other techniques, researchers
can gain insights into the strengths and limitations of different model order reduction
approaches.

3. Integration of Multiple Data Compression Techniques: Another promising
direction for future research involves the integration of multiple data compression
techniques to enhance the efficiency and accuracy of reduced-order models. Combin-
ing SVD or POD with Fourier or Wavelet transforms can potentially leverage the
complementary strengths of each method, leading to more effective data compression
and representation. By developing hybrid approaches that harness the advantages of
different algorithms, researchers can advance the field by improving computational
efficiency, model accuracy, and capturing complex dynamic behavior.

4. Application to Complex Engineering Systems: The current research is primarily
focused on applying data compression algorithms and model order reduction techniques
to a representative structural example. Future studies should extend the investigation
to more complex engineering systems, such as multi-component systems, composite
materials, or fluid-structure interactions. By applying the developed methodologies
to these challenging scenarios, researchers can assess their generality, robustness, and
potential limitations, thereby expanding the practical applicability of the techniques.

All in all, future research endeavors should encompass several key areas to advance the
field of data compression and model order reduction in engineering analysis and design.
Addressing these areas of research contributes to the advancement of efficient simulation and
optimization of complex systems while maintaining a high level of accuracy and reliability.
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7. Concluding remarks

The aim of this thesis was to navigate and provide a comprehensive investigation and
evaluation of various compression algorithms and techniques, including singular value de-
composition (SVD), proper orthogonal decomposition (POD), Fourier analysis, and Wavelet
analysis, within the context of reduced order modeling (ROM). These techniques have
been meticulously explored and successfully employed to achieve a significant reduction
in dimensionality, paving the way for enhanced computational efficiency and accelerated
simulations that ensure a great deal of accuracy.

The study has made substantial progress in understanding and describing the finite element
model, which serves as the foundation for the implementation and evaluation of the reduced
order model using, in this particular case, the empirical cubature method (ECM). By
leveraging the power of these compression algorithms, the thesis has demonstrated the ability
to extract essential information from high-dimensional systems while significantly reducing
the computational complexity.

The utilization of a vectorized code provided by the professor (Appendix A), combined
with the student’s enhancements and expansions, has played a pivotal role in implementing
the dimensionality reduction techniques and enabling efficient execution of the HROM
computation. This code implementation has showcased the practical feasibility and efficacy
of applying these compression algorithms to real-world engineering problems.

The numerical assessment carried out in this research has yielded astonishing results. The
achieved compression factors and speedup have surpassed initial expectations, confirming
the effectiveness of the implemented methodologies. The computational time required
for simulations has been drastically reduced, enabling rapid analysis and decision-making
processes that are useful when more complex cases are studied, such as the cases of the
articles on which this method is based [9, 8, 10].

While acknowledging the remarkable achievements presented in this thesis, it is important to
recognize that further exploration and expansion of these methodologies are still possible.
The field of compression algorithms offers vast opportunities for future research, including
the investigation of more algorithms, hybrid approaches, and the assessment of complex
dynamical systems to allow the method to shine. Despite this, through this research journey,
the author has gained profound insights into the details of compression algorithms and their
application to ROM, which are certain to be useful in the author’s professional career.

In conclusion, the author takes great pride in the accomplishments achieved throughout this
thesis and expresses deep satisfaction in the lessons learned. The transformative impact of
mastering these compression algorithms and dimensionality reduction techniques is poised
to shape the future of computational modeling and simulation, making similar research a
significant contribution to the engineering community.

58



Study of compression techniques for PDE solvers

8. Environmental implications

In the modern world, the effects of human activity on the environment are a growing source of
serious worry. Understanding and dealing with the environmental effects of diverse activities
has never been more important given the multitude of environmental issues our world is
facing, such as climate change, deforestation, and pollution, just to name a few. This thesis
on compression techniques has the potential to significantly affect the environment in a
number of ways.

One of the key ways in which this impact can occur is through the reduction of computational
resources required for data analysis. Compression techniques aim to simplify complex datasets
by reducing the number of variables while retaining important information. By effectively
reducing the dimensionality of data, these techniques can significantly lower the computational
power and energy needed for processing and analysis.

Furthermore, dimensionality reduction can also contribute to the development of more efficient
algorithms and models. Traditional machine learning and data analysis methods often struggle
with high-dimensional datasets, leading to increased computational requirements and energy
consumption. By employing dimensionality reduction techniques, researchers can streamline
the analysis process, resulting in more efficient algorithms that consume fewer resources.

Additionally, dimensionality reduction techniques can contribute to the development of
sustainable solutions in various domains. For example, in environmental monitoring, where
large amounts of data are collected from sensors and devices, dimensionality reduction can
help identify critical features and patterns efficiently. This can lead to optimized resource
allocation, improved decision-making, and reduced environmental impact by minimizing
unnecessary data collection and processing.

Despite not being its primary objective, the side effects of this thesis can have a positive
environmental impact. It is crucial for researchers and practitioners to consider the environ-
mental implications of their work and strive for the implementation of eco-friendly practices
throughout the lifecycle of their research.
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Soc. Am. A 12.8 (Aug. 1995), pp. 1657–1664. Available from DOI: https://doi.org/
10.1364/JOSAA.12.001657.

[56] Grepl, Martin A. et al. “Efficient reduced-basis treatment of nonaffine and nonlinear
partial differential equations”. In: ESAIM: M2AN 41.3 (2007), pp. 575–605. Available
from DOI: https://doi.org/10.1051/m2an:2007031.

[57] Steven S. An, Theodore Kim, and Doug L. James. “Optimizing Cubature for Efficient
Integration of Subspace Deformations”. In: ACM Trans. Graph. 27.5 (Dec. 2008).
Available from DOI: https://doi.org/10.1145/1409060.1409118.

[58] Christoph von Tycowicz et al. “An Efficient Construction of Reduced Deformable
Objects”. In: ACM Trans. Graph. 32.6 (Nov. 2013). Available from DOI: https:
//doi.org/10.1145/2508363.2508392.

[59] Annika Radermacher and Stefanie Reese. “POD-based model reduction with empirical
interpolation applied to nonlinear elasticity”. In: International Journal for Numerical
Methods in Engineering 107.6 (2016), pp. 477–495. Available from DOI: https://doi.
org/10.1002/nme.5177.

[60] Saifon Chaturantabut and Danny C. Sorensen. “Discrete Empirical Interpolation for
nonlinear model reduction”. In: Proceedings of the 48h IEEE Conference on Decision
and Control (CDC) held jointly with 2009 28th Chinese Control Conference. 2009,
pp. 4316–4321. Available from DOI: https://doi.org/10.1109/CDC.2009.5400045.

[61] Juan C Simo and Thomas JR Hughes. Computational inelasticity. Vol. Interdisciplinary
Applied Mathematics. Springer Science & Business Media, 2006. Available from DOI:
https://doi.org/10.1007/b98904.

64

https://doi.org/10.1007/BF01456326
https://doi.org/10.1007/BF01456326
https://doi.org/10.1002/nme.3050
https://doi.org/10.1002/nme.2406
https://doi.org/10.1016/j.crma.2004.08.006
https://doi.org/10.1016/j.crma.2004.08.006
https://doi.org/10.1364/JOSAA.12.001657
https://doi.org/10.1364/JOSAA.12.001657
https://doi.org/10.1051/m2an:2007031
https://doi.org/10.1145/1409060.1409118
https://doi.org/10.1145/2508363.2508392
https://doi.org/10.1145/2508363.2508392
https://doi.org/10.1002/nme.5177
https://doi.org/10.1002/nme.5177
https://doi.org/10.1109/CDC.2009.5400045
https://doi.org/10.1007/b98904

	List of Tables
	List of Figures
	List of Algorithms
	Introduction
	Aim
	Scope
	Requirements
	Justification
	Schedule
	Description of the tasks to be developed
	Interdependency relationships among tasks
	Work breakdown structure (WBS)
	Gantt chart


	State of the art
	Lossless and lossy compression
	Measures of performance
	Dimensionality reduction

	Compression algorithms
	Singular Value Decomposition
	General definition
	Intuitive interpretation
	Method computation
	Eigenfaces example

	Proper Orthogonal Decomposition
	Approximation basis functions
	General definition
	Approximation of surface example

	Fourier and Wavelet Transform
	Brief introduction
	General definition
	Discrete Fourier Transform
	Fast Fourier Transform
	Wavelet Transform


	Compression of equations
	General Overview
	Nodal Vector Approximation Approaches
	Integral Approximation Approaches

	Parametrized Finite Element Model
	First Reduction Stage
	Unknown Nodal Displacements
	Prescribed Nodal Displacements and External Forces
	Projection onto the Reduced-Order Space
	Internal Forces

	Second Reduction Stage
	Empirical Cubature Method

	Summary

	Numerical Assessment
	Performance Analysis

	Future research
	Concluding remarks
	Environmental implications
	References

