
Quantifying the Sense of Presence
in Virtual Reality Using

Physiological Data

Eduard de Vidal i Flores

Advisors: Caglar Yildirim (MIT CSAIL)

Fox Harrell (MIT CSAIL)

Tutor: Antonio Chica (UPC)

A thesis submitted in partial fulfillment of the requirements for the:

Bachelor’s Degree in Informatics Engineering

Bachelor’s Degree in Mathematics

July, 2023

Abstract

English

Physiological measurement of player experience (PX) during gameplay has been of
increasing interest within game research circles. Sense of presence, which refers to
players’ psychological feeling of being in a virtual environment, is seen as a major
factor influencing PX. This thesis work explores how physiological measurements
relate to sense of presence while playing a virtual reality (VR) roleplaying game.
We find a significant negative correlation with skin temperature, which we interpret
as having to do with thermal discomfort being associated with lower levels of sense
of presence in VR. A commonly-used non-invasive wearable device for physiological
measurement is the Empatica E4 wristband, which offers multiple physiological met-
rics including electrodermal activity, heart rate and skin temperature. That said,
the E4’s integration with popular game engines such as Unity proves difficult due to
obstacles such as non-obvious critical bugs in the library and limited documentation
applicability within the Unity context. We thus present E4UnityIntegration-MIT,
an open-source Unity plugin designed to mitigate the challenges associated with in-
tegrating the E4 into Unity projects. The plugin exposes the E4’s API for interfacing
with Unity C# scripts, thereby enabling realtime data collection and monitoring,
and provides the affordance of saving the data in an external file for data analysis
purposes. The study here presented, which relied on E4UnityIntegration-MIT, also
serves as a validation study for the plugin.

Keywords: player experience, PX, presence, virtual reality, VR, virtual reality
gaming, VR gaming, Unity, affective gaming, Empatica E4, psychophysiological
measures, electrodermal activity (EDA), heart rate variability (HRV), skin temper-
ature

AMS: 62-07

i

Català

Les mesures fisiològiques de l’experiència de joc (PX) durant el joc han anat in-
crementant en popularitat en les comunitats de recerca sobre jocs. La sensació de
presència, que es refereix a la impressió psicològica d’estar en un entorn virtual, és
vista com un factor principal influent en el PX. Aquesta tesi explora com les mesures
fisiològiques hi estan relacionades mentre es juga a un joc de rol de realitat virtual
(VR). En trobem una correlació negativa significativa amb la temperatura de la pell,
la qual interpretem com a relacionada amb que la manca de confort tèrmic estigui
associada amb nivells menors sensació de presència. Un dispositiu wearable no inva-
siu comunament utilitzat per a mesures fisiológiques és la pulsera E4 d’Empatica,
que ofereix múltiples mesures fisiològiques incloent l’activitat electrodèrmica, la
freqüència card́ıaca i la temperatura de la pell. Tanmateix, la integració de l’E4
amb motors de joc populars com Unity resulta dif́ıcil a causa d’obstacles com errors
de programari cŕıtics gens evidents a la llibreria i la limitada aplicabilitat de la doc-
umentació en el context de Unity. Aix́ı doncs presentem E4UnityIntegration-MIT,
un plugin de Unity de codi obert dissenyat per a mitigar els reptes associats amb
integrar l’E4 a projectes de Unity. El plugin exposa l’API de l’E4 permetent-ne la
interacció amb scripts C# de Unity, habilitant aix́ı el recull i seguiment de dades
en temps real, i proveeix la funcionalitat de guardar-les en un fitxer extern per per-
metre’n l’anàlisi. L’estudi presentat, que va dependre de E4UnityIntegration-MIT,
alhora en serveix de validació.

Paraules clau: experiència de joc, PX, presència, realitat virtual, VR, joc de re-
alitat virtual, joc VR, Unity, joc afectiu, Empatica E4, mesures psicofisiològiques,
activitat electrodèrmica (EDA), variabilitat de freqüència card́ıaca (HRV), temper-
atura de la pell

AMS: 62-07

ii

Español

Las medidas fisiológicas de la experiencia de juego (PX) durante el juego han ido
incrementando en popularidad en los ćırculos de investigación de juegos. La sen-
sación de presencia, que se refiere a la impresión psicológica de estar en un entorno
virtual, es vista como un factor principal influyente en el PX. Esta tesis explora
como las medidas fisiológicas estan relacionadas con ella mientras se juega a un
juego de rol de realidad virtual (VR). Hallamos una correlación negativa significa-
tiva con la temperatura de la piel, la cual interpretamos como relacionada con que
el disconfort térmico esté asociado con niveles menores de sensación de presencia.
Un dispositivo wearable comúnmente usado para medidas fisiológicas es la pulsera
E4 de Empatica, que ofrece múltiples medidas fisiológicas incluyendo la actividad
electrodérmica, la frecuencia card́ıaca y la temperatura de la piel. Sin embargo,
la integración del E4 con motores de juego populares como Unity resulta dif́ıcil a
causa de obstáculos como errores de software cŕıticos nada obvios en la libreŕıa y la
limitada aplicabilidad de su documentación en el contexto de Unity. Aśı pues pre-
sentamos E4UnityIntegration-MIT, un plugin de Unity de código abierto diseñado
para mitigar los retos asociados con integrar el E4 en proyectos de Unity. El plugin
expone la API del E4 permitiendo su interacción con scripts de C# de Unity, ha-
bilitando aśı la recolección y el seguimiento de los datos en tiempo real, y provee la
funcionalidad de guardarlos en un fichero externo para permitir su análisis. El es-
tudio presentado, que dependió de E4UnityIntegration-MIT, sirve al mismo tiempo
como su validación.

Palabras clave: experiencia de juego, PX, presencia, realidad virtual, VR, juego
de realidad virtual, juego VR, Unity, juego afectivo, Empatica E4, medidas psicofi-
siológicas, actividad electrodérmica (EDA), variabilidad de la frecuencia card́ıaca
(HRV), temperatura de la piel

AMS: 62-07

iii

Acknowledgements

Heartfelt thanks to:

• Caglar Yildirim, for his wisdom and guidance as advisor, as well as his toler-
ance for my blunders. But, I had to do it wrong before getting it right.

• Fox Harrell, for leading such an innovative and interdisciplinary team, and
taking a chance in welcoming me on board. But for his leap of faith in me, I
would certainly not have been able to do research in such an interesting field!

• Eyup, and Jack, and Emma, and everyone else in the lab, for their conversa-
tion on a variety of topics, be it the Boston area weather, ChatGPT, ethics,
or old Turkish; which I at times made run for a bit too long. But it was all
so interesting, I couldn’t resist.

• Antonio Chica, for selflessly agreeing to be my tutor at UPC, and tolerating
my infinitely long monthly emails. But, there was so much to say.

• Toni Pascual, Carles Sora and Miguel Ángel Barja, who were instrumental
in helping establish contact with MIT scholars to get me admitted, despite
surely feeling some bewilderment when I expressed interest in doing game
research. But I had to remain loyal to my dreams.

• CFIS, and FME, and MIT, who are, each in their own way, formidable in their
ambition, for providing me with unmatched opportunities to learn - long you
live, and high you fly. But only if you ride the tide...

• My parents, and my sister, and the rest of my family, for their company even
when an ocean’s distance away (well, sometimes; some were around in the US
too!), and who I’m afraid I consistently forgot to regularly communicate with.
But no matter, I’ll soon be back!

• My longtime friends back home, whose efforts to remain in contact through-
out these months I greatly appreciate; and especially Laia, Ana, and Pau,
hardware companions during my bachelor’s, whom by serendipity I coincided
with here at MIT for a merry while. But also to the newfound friends at MIT
VISTA, and their fun events!

• To luck - the most important skill - without which I wouldn’t be where I am.

May I continue to enjoy its favour.

iv

Contents

Abstract i

Acknowledgements iv

List of Figures viii

List of Tables ix

List of Listings x

1 Introduction 1

I Theoretical Framework 4

2 Relevant Literature 5

2.1 Affect and Affective Computing . 5

2.1.1 Affect . 5

2.1.2 Affective Computing . 6

2.2 Player Experience . 7

2.2.1 Factors Affecting Player Experience 7

2.2.2 Measurement Methods . 8

2.3 Presence . 11

2.3.1 Measurement Methods . 11

2.3.2 Presence in Virtual Reality . 11

2.4 Psychophysiological Feedback in Games 12

II Technical Work 13

3 Empatica E4 14

3.1 Sensors . 14

3.2 Measurements . 16

3.3 Interfacing Options . 16

3.3.1 E4 streaming server . 17

3.3.2 E4 realtime . 18

3.3.3 E4link for Android . 19

4 E4UnityIntegration-MIT 21

4.1 Integrating Android Libraries to Unity . 21

4.2 E4link for Android . 23

4.2.1 E4link for Android Dependencies and Requirements 27

v

Contents

4.3 An E4 Plugin: E4UnityIntegration-MIT 28

4.3.1 Poor Documentation . 28

4.3.2 Nonobvious Critical Bug involving a Method in E4link ’s Interfaces 29

4.3.3 Testing and Debuggability Difficulty Inherent to Using E4link for
Android within Unity . 29

4.3.4 Threading Difficulties . 30

4.4 Design Specification . 31

4.4.1 Functional Requirements . 31

4.4.2 Foreseen Use Cases . 31

4.4.3 Target Audience . 31

4.4.4 Nonfunctional Requirements . 32

4.5 E4UnityIntegration-MIT Overview . 33

4.5.1 UnityE4.cs . 33

4.5.2 UnityE4link.java . 34

4.5.3 AndroidManifest.xml . 35

4.5.4 mainTemplate.gradle . 35

4.6 Implementation . 35

4.6.1 Working Around the Critical Bug in subsection 4.3.2 35

4.6.2 Default Functionality . 36

4.6.3 Threading Considerations . 42

III Experimental Work 45

5 Method 46

5.1 On the Plane . 46

5.2 Design . 47

5.3 Participants . 48

5.4 Materials . 48

5.4.1 Meta Quest 2 . 49

5.4.2 Empatica E4 . 49

5.4.3 Presence scale . 50

5.5 Procedure . 50

5.6 Research Ethics . 51

6 Results and Discussion 54

6.1 Descriptive Statistics and Pearson Correlations 55

6.2 Other Variables . 56

6.3 Verification of E4UnityIntegration-MIT 57

7 Conclusions 59

Bibliography 61

vi

Contents

A E4UnityIntegration-MIT plugin 64

A.1 Source Code . 64

A.1.1 AndroidManifest.xml . 64

A.1.2 mainTemplate.gradle . 65

A.1.3 UnityE4.cs . 66

A.1.4 UnityE4link.java . 73

A.2 Installation Instructions . 78

vii

List of Figures

2.1 Circumplex affect model diagram . 6

3.1 Empatica E4 . 15

3.2 Empatica E4 sensors . 15

3.3 E4 streaming server use diagram . 18

3.4 E4 realtime use diagram . 19

3.5 E4 realtime display . 19

3.6 E4link Sample Project display . 20

4.1 E4UnityIntegration-MIT files and dependencies 34

5.1 On the Plane . 47

5.2 Meta Quest 2 . 49

5.3 Procedure setup - participant’s view . 52

5.4 Procedure setup - experimenter’s view . 52

viii

List of Tables

6.1 Condition groups and sample sizes . 54

6.2 Means, standard deviations, and Pearson correlations 55

ix

List of Listings

1 interface UnityE4linkDataDelegate, interface UnityE4linkStatusDelegate,
and beginning of inner class EmpaDelegate 36

2 class UnityE4’s permissions section . 37
3 class UnityE4’s void Start() . 38
4 class UnityE4link’s constructor . 38
5 Inner class EmpaDelegate’s void didUpdateStatus(...) 39
6 Inner class EmpaDelegate’s void didDiscoverDevice(...) 39
7 Part of class UnityE4’s data logging section 41
8 class UnityE4’s data logging section’s void UpdateLogger() 41
9 class UnityE4’s void Update() . 42
10 Inner class UnityE4linkDataDelegateCallback 43
11 AndroidManifest.xml . 65
12 mainTemplate.gradle . 66
13 UnityE4.cs . 73
14 UnityE4link.java . 77

x

Chapter 1

Introduction

Assessing Player Experience (PX) is a matter of importance in game research and
development. As players’ enjoyment of a game is one of its most important charac-
teristics, it is natural game researchers would seek to investigate what it is provoked
by and how it is best measured, and game creators aim to maximize game enjoyment
in their works.

Many factors have been proposed to be involved in PX. Some of the most prominent
are flow (meaning an engaging balance between a player’s ability and the game’s
challenge [30]), immersion, and sense of presence. Nevertheless, research on this
topic is active. The extent to which these factors are influential to PX, and even
sometimes the precise definitions and differences between some of them, are not yet
fully known or universally agreed upon.

There are a range of approaches to measuring PX, from more subjective methods
such as interviews or questionnaires to more objective techniques like in-game an-
alytics and psychophysiological measurements. The latter offers advantages such
as not needing to interrupt the experience, nor introducing memory bias (by not
requiring of players to recall their experience after the fact) [29]. Moreover, the
immediacy in the availability of the data also allows for the possibility of inte-
grating the live readings as a realtime input into the game; this can be (and has
been [34] [11]) exploited to craft psychophysiological feedback loops, whereby game
parameters are altered according to the player’s state.

As would be expected, proportional to the potential of this method are explorations
on how to relate these measurements with PX or related constructs [30] [25] [26] [15]
[5] [34]. It is along these lines that the present work makes a contribution: we exam-
ine what relationships may be found between a set of physiological measurements
and the sense of presence in a virtual reality game.

Common physiological measurements taken include electrodermal activity (EDA),

1

Chapter 1. Introduction

heart rate (HR), interbeat interval (IBI), heart rate variability (HRV), blood vol-
ume pulse (BVP), temperature, electroencephalography (EEG), electromyography
(EMG), respiratory rate (RR) and eye tracking [29]. These metrics are obtained
through the use of a range of commercial or research devices.

One such commonly used device [34], [39], [7] is the Empatica E4. It is an promising
tool for this kind of research because of several factors:

• It comes in a non-invasive wearable wristband form factor.

• It simultaneously records several of the aforementioned measures, namely
BVP, EDA, IBI, skin temperature, and HR. (Additionally, while not a physi-
ological sensor, it also includes a 3-axis accelerometer) [13]

• It provides multiple methods of using or interfacing with it, ranging from
out-of-the-box working cloud solutions to a streaming service program for
Windows that can forward its data streams over TCP, or APIs for integrating
it into an Android or iOS application.

The availability of an Android API, the E4link for Android library, is particularly
advantageous due to the plethora of devices which run on an Android or Android-
based operating system, many of which support games. Indeed, even some virtual
reality (VR) headsets such as Meta’s Quest offerings are Android-based. Thus,
we identify the existence of a broader interest in and need for integrating the E4
wristband into game engines that support Android-based game releases, such as the
ever-popular Unity [41].

The study presented here, in which physiological measurements were taken while a
VR game was played on a Meta Quest 2, was no different, and the E4 was assessed
to be an ideal candidate for the task. However, it is not straightforward to use the
E4link library in Unity. While Unity provides ways of interfacing with Android
libraries, and E4link is small and simple enough, the integration proves difficult in
practice. There exists a non-obvious critical bug in the library that must be worked
around, some subtle issues regarding threading, and the documentation is non-
exhaustive and of limited applicability in the context of Unity. Additionally, the
library cannot work within the Unity player. This means the application must be
deployed (and debugged) on an Android device every time, making the development
workflow slow and tedious.

These experiences ultimately motivated the current thesis work, constituting the
E4link for Android integration code developed as a Unity plugin named E4UnityIntegration-
MIT and publishing it as open source [2], which we regard as the other contribution
of this project. With the plugin, we intend on satisfying the previously stated de-
sire for E4 integration into Unity with a ready-made solution, sparing others the
development difficulties and effort.

2

The project’s contributions are, then, twofold:

1. E4UnityIntegration-MIT

An Android Unity plugin to support psychophysiological data collection and
storage as well as physiological feedback game loops targeted at the game
research and development communities. It comes with useful built-in default
functionality such as automatically connecting to an E4 and writing recorded
data to a file and has been designed to be simple, easy to install, and easy to
use.

2. Exploratory study addressing:

How are players’ physiological responses related to their sense of
presence during a VR roleplaying game?

Carried out using E4UnityIntegration-MIT, the study also doubles as on the
field verification of the plugin’s suitability for one of its intended purposes,
psychophysiological data collection and storage.

We regard these to be technical and experimental contributions, respectively. The
content of the document is organized around them.

Part I: Theoretical Framework

In chapter 2 necessary background to contextualize the rest of the work is provided,
covering a range of topics relevant to the project.

Part II: Technical Work

As the Empatica E4’s role was central in this project, a short chapter 3 provides
all necessary information on it. Then, chapter 4 goes into extensive detail on
E4UnityIntegration-MIT ; the plugin is available for viewing in full in Appendix A.

Part III: Experimental Study

The study’s methodology is presented in chapter 5. An analysis of the results follows
in chapter 6.

Lastly, a final chapter 7 provides some closing remarks on the project overall.

3

Part I

Theoretical Framework

Chapter 2

Relevant Literature

Several important concepts and related literature must be introduced before the
present work can be properly contextualized.

The aim of this project (chapter 5) was to quantify the sense of presence of players
using physiological data. Work already exists which examines similar relationships,
such as correlations between player experience and physiological data. The intent of
such research has typically been to infer players’ affective state through these physio-
logical measurements. Under the understanding that player’s emotions are a central
factor in determining their enjoyment of a game experience, such psychophysiolog-
ical inferences offer insight into what affects player experience, ostensibly with the
goal of exploiting this knowledge in future to improve game experiences. We expand
on the selection of topics we just introduced in the following sections.

2.1 Affect and Affective Computing

Player’s emotions have already been identified as crucial to their enjoyment of
game experiences [30]. Affect, a closely related construct, and Affective Computing,
the multidisciplinary field devoted to its study in relation to computer sciences,
therefore deserve further discussion.

2.1.1 Affect

Affect is a psychological construct strongly related to emotion [30]. In the literature,
a commonly used conceptualization of affect is the circumplex affect model [36]. In
contrast to a basic emotions model (by which there exist a number of distinct,
independent, basic emotions such as sadness, anxiety, anger, elation, tension and

5

Chapter 2. Relevant Literature

Arousal

Pleasure

Excitement

Sleepiness

Misery

Distress

Depression Contentment

Valence

A
rousal

Figure 2.1: Circumplex affect model diagram

the like), the circumplex model places emotions roughly lying on a circle in a two-
dimensional space whose orthogonal axes correspond to degree of valence (pleasure-
displeasure) and degree of arousal (arousal-sleep), as in Figure 2.1. Thus, the
emotions alluded to by common words like joy or depression can be situated, re-
spectively, in high valence, high arousal, or low valence, low arousal, positions.

2.1.2 Affective Computing

Affective Computing (AC) is a multidisciplinary field encompassing computer sci-
ence, engineering, psychology, neuroscience, and other disciplines. AC research
investigates how affect influences interactions between humans and technology, in-
forms understanding of human affect through affect sensing technology, and guides
design, implementation and evaluations of systems involving affect [9].

It is clear, then, that investigations of the link between players’ emotions and com-
puter supported games, besides falling under game research, are also naturally tied
to AC.

The quantification of player experience (through affect) by psychophysiological mea-
surements (see subsubsection 2.2.2) is a technique of increasing interest in the game
research communities, and is the approach explored in this project. Physiological
measurements taken with this intent, often obtained through the use of research or
commercial wearable devices, are therefore also closely linked to AC.

6

2.2. Player Experience

2.2 Player Experience

Player Experience (PX) is akin to user experience (UX) of products or services
but specialized to games. Intrinsically related to players’ emotions during a game
experience, it is a concept of great interest in game research and development [30].
Several questions regarding PX are worth exploring, such as what may induce it or
what other constructs are related to it, as well as how best to measure it.

2.2.1 Factors Affecting Player Experience

A range of other constructs have been identified as related to PX. While the extent
of their relevance towards PX, or indeed the exact definitions and differences among
them, are not necessarily fully understood or agreed upon, at least the following
three bear mention: flow, immersion, and presence.

Flow

The state of flow [12] refers to the state of being felt when the balance between
challenge and skill in an activity is struck; it is a pleasurable sensation of total
involvement with a task. In relation to games, designing for it might revolve around
developing an appropriate sequence of increasingly difficult conflict scenarios.

As it is a positive feeling, it is thought that achieving a state of flow during play
is conducive to higher PX. As a matter of fact, the often used in game research
Game Experience Questionnaire (GEQ) [33], “a self-report measure that aims to
comprehensively and reliably characterise the multifaceted experience of playing
digital games”, includes a flow dimension whose purpose is to measure the degree
to which this state of mind was present.

Immersion

Immersion refers to the intuitively understandable sense of being deeply involved
in a game experience. There is no clear consensus regarding the exact definition of
this concept, with several models having been put forward. Of these, [6] proposes a
three-tiered division of immersion into three levels: engagement, engrossment, and
total immersion. The last one, total immersion, seems to be identifiable with sense
of presence, illustrating how it is sometimes difficult to precisely differentiate some
of these concepts.

It is reasonable to postulate that experiences can be better enjoyed when one is

7

Chapter 2. Relevant Literature

more involved with them, leading to the notion that in games immersion and PX
may be related.

Presence

The sense of presence in relation to virtual environments refers to the feeling of
actually being in the virtual environment. Factor analytic insights [37] suggest
several notions are involved with the sense of presence, such as spatial presence
(feeling present in the virtual space), involvement (attention paid to the virtual
environment instead of the physical one), and realness (judgement of similarity
between the real and virtual worlds).

Much like with immersion, in games the relation of sense of presence with PX,
supported in for example [44], is credible since it is reasonable that experiences
may be better enjoyed by those who feel more present in them.

2.2.2 Measurement Methods

There are a variety of methods to attempt to measure PX [29], from more subjective
methods such as interviews or questionnaires to more objective techniques like in-
game analytics and psychophysiological measurements. Each have their advantages
and disadvantages.

Subjective Methods

Subjective methods are those for which human bias has a reasonable chance to enter
the equation, such as interviews or questionnaires. Nevertheless, they oftentimes are
the most accessible kind of measurement to administer, justifying their prevalent
use [29].

Interviews are usually conducted by experts on the subject matter who know what
information to probe for. While this has the upside of possibly revealing particularly
relevant information, it has some disadvantages: participants may not be entirely
honest with an interviewer, or, if there are several people being interviewed at once,
such as in focus groups, be unwilling to give some information on account of others’
presence, and, of course, the questions the interviewer chooses to ask influence the
kinds of information that may be obtained to begin with.

As for questionnaires, among the most prevalent standardized ones is GEQ [33],
which contains the subscales of Immersion, Tension, Competence, Flow, Negative
Affect, Positive Affect, and Challenge. The degree to which the questionnaires are

8

2.2. Player Experience

able to robustly measure the factors they purport to is established by the empirical
evidence gathered during validation studies.

Besides their relative lack of objectivity, subjective methods have further disadvan-
tages [29]. One of them is introducing memory bias by requiring players to recall
their experience after the fact. Another is that they must be employed either at
the end of the gameplay (meaning there is little time resolution), or, conversely, if
it is decided they are to be periodically carried out throughout the experience, they
require repeated interruptions of the game.

All in all, though, subjective methods present several benefits not found elsewhere.
They are sometimes the most reliable and validated ways of measuring PX or related
constructs, and they are comparatively easy to carry out. Their usage is thus,
unsurprisingly, widespread and commonplace.

Objective Methods

Objective methods encompass measurements such as in-game analytics and psy-
chophysiological recordings. Due to their nature, they are much less susceptible to
human bias than subjective methods.

In-game analytics can take many forms. Data such as, for example, how the player
moved within the experience, where they pointed the game camera, what actions
they took and when, and their performance in the game can be potentially useful
for making inferences on the player’s state during play.

Regarding psychophysiological recordings, these have been of increasing interest in
game research circles in the past few years. Borrowing the approach from the field
of AC (subsection 2.1.2), one may attempt to relate the measurements to players’
emotional states during play to make inferences on PX; examples of this in the
literature include [30] [25] [26] [15] [5] [34].

Common physiological measurements taken include: electrodermal activity (EDA),
which measures the electrical conductivity of the skin; heart rate (HR); interbeat
interval (IBI), which measures the time between heartbeats; heart rate variability
(HRV), which measures the variations in HR; blood volume pulse (BVP), which
measures the blood volume pulses resulting from heartbeats; temperature, as mea-
sured on the skin; electroencephalography (EEG), which measures the electrical
activity of the brain; electromyography (EMG), which measures the electrical ac-
tivity of muscles; respiratory rate (RR); and eye tracking [29]. A range of research
and commercial devices are used to obtain these measurements.

In most cases the relationship between mental processes and body responses fol-
low a so-called many-to-one relationship, meaning multiple psychological processes
influence a given psychophysiological parameter. This situation is worse than a

9

Chapter 2. Relevant Literature

one-to-one (one psychological process influences one psychophysiological parame-
ter) relationship, but is nevertheless the most often used scenario in physiological
evaluation [29].

Some of the common measurements warrant further review:

EEG EEG measures brain waves in different frequency bands such as alpha (asso-
ciated with relaxation and lack of active cognitive processes, as well as infor-
mation and visual processing), beta (related to alertness, attention, vigilance,
and excitatory problem solving activities), theta (related to decreased alert-
ness and lower information processing, though frontal midline theta activity
in the anterior cingulate cortex scalp area also related to mental effort, atten-
tion, and stimulus processing), delta (most prominent during sleep, relaxation
or fatigue), and gamma (still largely unexplored) [29].

EMG The most common kind of EMG in game research is facial EMG (fEMG).
The brow muscke (corrugator supercilii) is used to indicate negative emotion
and cheek muscle (zygomaticus major) to indicate positive emotion; for longer
periods of play, the eye muscle (orbicularis oculi) is useful to detect high
arousal pleasant emotions [29]. The choice of these muscles is due to their
importance in facial expressiveness (that is to say, they are activated in certain
patterns when smiling, frowning, etc.). These measurements are thus apt for
determining affective valence (subsection 2.1.1).

EDA EDA is an exception in that it offers an almost one-to-one relation with
physical arousal, from which we are able to ascertain the affective arousal
(subsection 2.1.1) of a person. EDA measures changes in the passive electri-
cal conductivity of the skin relating to increases or decreases in sweat gland
activity, fluctuations which are caused by a person getting aroused by some-
thing they sense [29].

Changes due to the activity of the sweat glands are particularly interesting
because they are controlled by the Autonomic Nervous System (ANS), a part
of the Peripheral Nervous System (PNS) which is not under conscious control
(as opposed to the Somatic Nervous System, which is and is responsible for,
for example, willful activation of muscles). As such, this is a measure that is
difficult to fake by participants, justifying why EDA may be regarded as an
especially objective measure for arousal.

HR, IBI, HRV HR and IBI are obviously related measures (assuming HR is in
beats per minute and IBI in seconds, at any moment HR = 60

IBI
, although

it must be noted that HR is typically computed as the average accross a
span of several seconds instead of instantaneously). IBI decrease, and conse-
quently HR increase, is tied to increased information processing and emotional
arousal [29]. HRV is a more complex measure to interpret, relating instead to
changes in the frequency reflected by HR.

10

2.3. Presence

We thus see that there is good reason to believe in the endeavor of interpreting
affective state, and thus inferring PX or others, from psychophysiological data, as
there are ways of gleaning information about both affective valence and arousal
from it.

While we have established that with respect to subjective measures they have the
advantage of not introducing memory bias nor requiring that the gameplay be
interrupted, they also have the additional benefit of being available in realtime.
The theoretical implication of this is that the inference of PX or related concepts
could be carried out live while playing a game, offering the opportunity to integrate
this information into the game loop itself (presumably to dynamically adapt the
experience so as to achieve an improved experience for the player), and, in fact,
there already exist practical attempts at this. This notion is expanded upon in
section 2.4.

2.3 Presence

Sense of presence has already been commented on (subsubsection 2.2.1). Central
as it is to the present work, we delve slightly deeper into the topic.

2.3.1 Measurement Methods

Measuring sense of presence can be achieved through the use of questionnaires like
the psychometrically validated one in [37]. The complete questionnaire consists of
13 items, all of which significantly load on sense of presence in general or on one of
its identified factors (realness, spatial presence and involvement).

(A subscale of this questionnaire was used for the study (subsection 5.4.3), which
was concerned only with sense of presence in general and the factor of spatial
presence.)

2.3.2 Presence in Virtual Reality

It would be sensible that sense of presence would be amplified in VR experiences,
as VR has been designed with immersiveness (whose relationship with presence
is commented on in subsubsection 2.2.1) in mind. Indeed, studies like [10] find a
significant improvement in sense of presence in two games from different genres (a
racing game and a strategy game) in VR when compared to playing them on a
desktop computer.

11

Chapter 2. Relevant Literature

2.4 Psychophysiological Feedback in Games

Psychophysiological measurements, being available in realtime, allow games the
enticing possibility of carrying out inferences regarding the player’s state while
playing a game, offering the opportunity of integrating this information into the
game loop itself. Far from being an entertaining but remote theoretical prospect,
practical attempts at this have been developed recently.

In the case of [34], which modified its game loop to take EDA and skin temperature
into account, this was implemented with the intention of dynamically improving PX.
While the result achieved was actually the inverse (PX was reduced when adapting
the experience), the study nevertheless supports the idea that psychophysiological
measurements can be used to influence PX (and, instead, further research should
investigate how to create a positive, rather than negative, feedback loop for PX).

As for [11], EDA was integrated into the game loop of a VR game with the intention
of improving user experience, and the results were increased desire to use, flow
appropriateness, competence, and immersion with respect to the control group.

12

Part II

Technical Work

Chapter 3

Empatica E4

There exist a range of commercial and research devices capable of carrying out
psychophysiological measurements. The Empatica E4 [20], Figure 3.1, was the
device chosen for this project, and, considering much of the work revolves around
it (and a variety of details concerning it), it is worthwhile to devote a chapter to it
in order to give all necessary context.

The E4 is a noninvasive wearable wristband designed for research. Released in 2015,
the E4 has since been used in a wealth of studies [1] concerning psychophysiological
measurements.

3.1 Sensors

The E4 features an array of sensors that make it an attractive option as a noninva-
sive wearable device. The sensors include [20][14]:

Accelerometer 3-axis accelerometer.

Photoplethysmograph (PPG) Measures the amount of light emitted by an LED
towards a tissue that reflects back to the sensor in order to infer blood volume
changes.

EDA sensor Measures skin conductance.

Infrared thermopile Measures peripheral skin temperature.

These are demonstrated in Figure 3.2.

14

3.1. Sensors

Figure 3.1: Empatica E4 [20]

Figure 3.2: Empatica E4 sensors [22]

15

Chapter 3. Empatica E4

3.2 Measurements

From the aforementioned sensors several measurements are produced, each having
its own sample rate. The following are either automatically provided by the E4
itself or can be easily derived from those that are [14]:

3-axis accelerometer Data from 3-axis accelerometer sensor in the range−2gms−2

to 2gms−2, sampled at 32Hz.

BVP Data from photoplethysmograph (PPG), sampled at 64Hz.

EDA Data from the electrodermal activity sensor in µS, sampled at 4Hz.

IBI Inter beat intervals, as an intermittent output with 1
64
s resolution.

Temperature Peripheral skin temperature (at the wrist on which the E4 is worn)
in ◦C, sampled at 4Hz.

HR Average heart rate values computed in spans of 10 s, sampled at 4Hz. (This
is not available directly from E4UnityIntegration-MIT, but can be computed
from IBI.)

HRV Variations in heart rate. (This is not available directly from the E4 at all,
but again can be computed from IBI.)

3.3 Interfacing Options

Empatica provides an assortment of ways in which to interface with the E4. They
range from out-of-the-box solutions to utilities and APIs that allow integrating the
E4 into custom applications.

The out-of-the-box solutions [20] are the E4 manager (a Windows and Mac appli-
cation) and the E4 realtime (an Android and iOS application). These programs
operate similarly, ultimately sending the recorded data to Empatica’s secure cloud
platform. Afterwards, the data is available for download by accessing E4 con-
nect [16], the web portal to their cloud.

As for the alternatives that require programming [21], the E4 streaming server is
a utility (available only for Windows) able to connect to multiple Empatica E4
devices and forward their data streams to clients connected over TCP [21], and
the E4link library (for which two versions exist, E4link for Android and E4link for
iOS) is an API that allows integrating the E4 directly into a custom (Android or
iOS, as appropriate) application.

16

3.3. Interfacing Options

All options present benefits and drawbacks. While the obvious main advantage of
the out-of-the-box solutions is that they are immediately available and functional,
the fact that the data is uploaded to Empatica’s cloud, which does not have API
support for being accessed via code, means it is not as easily programmatically
manipulated. Moreover, data is only available in the cloud after the entire recording
is uploaded, and thus in this case there is no realtime data streaming potential. On
the other hand, the other options do not suffer from these limitations, but require
users to expend effort into developing their solutions.

The criterion by which we chose from among all the interfacing methods was to
determine the simplest configuration that would satisfy our requirements (that is,
the capability to receive the E4’s data in realtime in an Android Unity application).
Indeed, for this project a couple of the aforementioned interfacing options were used
or at least considered. Those relevant to this work are further explained in their
own sections below.

3.3.1 E4 streaming server

Recall from before that the E4 streaming server is a utility (available only for
Windows) that can forward data streams from multiple E4 devices over TCP [21];
a diagram of this functionality can be seen in Figure 3.3. This way of interfacing
with the E4 would have been sufficient to meet our requirements, but ultimately
went unused in this project.

To use the program, first the E4 must be paired with it. Then, the data stream can
be forwarded to one of the program’s clients. Naturally, the client application must
also have been designed with the capability of receiving the data stream in mind;
however, this can be implemented without issue in an Android Unity application.
In short, it is enough to fulfill our requirements.

Nevertheless, the development of the networking connectivity code in the client
application is not the only cost of using this service. Indeed, its usage carries
with it an increase in overall system complexity, since there must now exist an
intermediate Windows computer running the server working as a bridge between
the E4 and the client program. Moreover, there is also the added requirement of
a Bluetooth LE adapter dongle for the Windows machine (“E4 streaming server
works exclusively with the BlueGiga BLED112 Bluetooth Smart Dongle” [21]).

However, as the code to integrate the E4 was eventually to become a plugin of its
own, we must take into account that dependencies on additional hardware render
it less attractive. It is undesirable to restrict the ease with which game researchers
and developers (intended users of the plugin) can ascertain whether the E4 can
be satisfactorily integrated into their Unity project, as this may deter them from
trying at all.

17

Chapter 3. Empatica E4

Figure 3.3: E4 streaming server use diagram [19]

To its credit, E4 streaming server offers features that are not available in other
interfacing methods, in particular the ability to connect multiple E4 devices to an
arbitrary amount of client devices. As we were not interested in such a capability,
overall this utility does not offer the simplest solution and was thus disregarded in
favor of other methods (subsection 3.3.3).

3.3.2 E4 realtime

E4 realtime is an application (Android and iOS) which can connect to an E4 device
and start, stop, and upload its recording to Empatica’s cloud; a diagram of this
functionality can be seen in Figure 3.4. Using it is simple, as it only requires
pairing the smartphone and E4 as setup, and it is controlled from a single button
on the screen. Additionally, its user interface shows the measurements that the E4
is perceiving live, Figure 3.5, which is a great convenience for checking if the data
collection is going correctly.

However, in spite of providing such a realtime feature E4 realtime actually fails to
meet our requirements. Indeed, there is no way to communicate the data being
received to an Android Unity application (in realtime or not; data is uploaded
automatically to Empatica’s cloud which, as mentioned before, exposes no API, so
there is no programmatic way of transmitting it at all).

18

3.3. Interfacing Options

Figure 3.4: E4 realtime use diagram [20]

Figure 3.5: E4 realtime display [20]

Nevertheless, E4 realtime found its use in the present work. Its features made it a
convenient tool for collecting baseline measurements (subsection 5.4.2) before the
game measurements in the study (chapter 5).

Had the study been designed differently, however, and the baseline measurements
taken inside the game (in a different scene preceding the main one, for instance),
there would have been no reason to opt for using a different data gathering method
for the baseline. In our case this was not done due to lack of time, despite the fact
that it would have been beneficial at least in that it would have removed the need
for a data format homogeneization step (subsection 5.4.2). This offers an advance
into the projected usefulness of a single sufficient and simple method for meeting
our needs, which is what E4UnityIntegration-MIT was made to achieve, and on
which we elaborate on further elsewhere (chapter 4).

3.3.3 E4link for Android

E4link for Android is an Android library that provides an API to interface the
E4 with a custom Android application. Its minimum Android SDK API Level
is 19 (corresponding to Android 4.4 KitKat), and it works exclusively on 64 bit
devices [21].

19

Chapter 3. Empatica E4

Figure 3.6: E4link Sample Project display [24]

This API presents itself as an ideal solution for our use case, as it can natively
integrate the E4 directly with the Android Unity application, all while allowing
receiving its data in realtime.

Compared to other solutions that were also sufficient (subsection 3.3.1) this one has
the advantage of being the simplest possible. Indeed, it requires only an E4 and the
device running the Android Unity program, both of which were already necessary
pieces of hardware. Moreover, coding appears as though it ought to be simple as
well, as this library is an officially supported API. (This ended up not exactly being
the case (chapter 4), but was the perception at the time of choosing interfacing
methods.)

As such, E4link for Android was the interfacing option of choice for supporting
measurements during the game in the study (chapter 5), and the integration code
is now constituted as the E4UnityIntegration-MIT plugin (chapter 4).

Unlike with E4 realtime, applications integrating E4link for Android will have a
heterogeneous appearance as they are custom made. That said, Empatica do pro-
vide an Android E4link Sample Project, Figure 3.6, which can serve to showcase
what the library is capable of.

20

Chapter 4

E4UnityIntegration-MIT

The majority of the technical work undertaken for this project is contained within
E4UnityIntegration-MIT. It is an Android Unity plugin developed from scratch for
integrating the Empatica E4 (chapter 3) into the Unity game engine. According to
the reasoning in subsection 3.3.3, the plugin utilizes Empatica’s E4link for Android
API library to interface with the wristband.

Briefly (see more at section 4.4), E4UnityIntegration-MIT was designed to support
the streaming of the E4’s data through Bluetooth to Unity-made programs, with the
intention of making the data available in realtime within the application. Foreseen
potential uses for the data are inference of player emotional state to enable the live
tailoring of the experience, or psychophysiological data collection and storage for
later statistical examination.

In publicly releasing the plugin as open source [2] it is hoped that its intended users
(the broader game research and game development community) will find in it a
convenient tool for their purposes. At the same time, note that the plugin also sat-
isfies this work’s original need of a way to integrate the E4 into a Unity application
running on the Meta Quest 2 (whose operating system is Android based). Thus,
the second of the aforementioned potential uses is the one carried out in the study
(chapter 5).

4.1 Integrating Android Libraries to Unity

Unity supports deploying to Android targets. It also allows the interfacing with
Android libraries in several ways, with more having been added over the years, to
enable using their functionalities within Unity projects. Any such Android library
added to a Unity project is called an Android plugin.

21

Chapter 4. E4UnityIntegration-MIT

The different types of Android plugins are [3]:

Android Library Projects The raw Android Studio project for a library, with a
.androidlib extension.

Android ARchive plugins Libraries bundled in .aar files.

JAR plugins Libraries compiled to .jar files

Native plugins for Android They come in several types:

Plugins packaged in shared library files Possessing a .so extension

Plugins packaged in a static library Possessing a .a extension

Raw C/C++ source files Contained in .c, .cc, .cpp or .h files

Java and Kotlin source plugins Contained in .java or .kotlin files

All of these plugin types are integrated into Unity by placing their corresponding
files into the Assets/Plugins/Android folder and marking Android to be their
platform in the inspector’s settings.

The E4link library is provided by Empatica bundled in a .aar (Android ARchive)
format (section 4.2), and, as such, constitutes a supported library for Unity. How-
ever, as we shall also see, the Android ARchive format is not be the only plugin
type in play in this project, justifying having given the previous overview.

In all cases save for the native plugins, making use of them from Unity C# scripts
requires usage of the JNI (Java Native Interface) because we are calling Java code
from outside of Java. Unity provides two APIs, one high level and one low level, to
use JNI from C#. The former is sufficient for our purposes, and since it is simpler
to use it is preferable to the latter. Thus, only the high level one is commented on.

Its high level API mainly provides three C# classes: AndroidJavaObject, which
corresponds to a Java Object, AndroidJavaClass, which corresponds to a Java
Class, and, AndroidJavaProxy, which allows for the implementation of Java inter-
faces by C# classes.

The first two classes allow performing the most usual interactions with objects and
classes: getting and setting their fields, and calling their methods, all of them in
static and non-static versions.

AndroidJavaProxy, on the other hand, is less straightforward. It is used by creating
a C# class that inherits from it, and indicating in its constructor the Java interface
that is being implemented. Then, the child class can implement the interfaces’
methods. Crucially, this allows for the bidirectional communication between Java
and C# code.

22

4.2. E4link for Android

Triggering Java code execution from C# scripts is already possible through the
use of AndroidJavaObject and AndroidJavaClass’s methods, but triggering C#
code execution from Java scripts is only possible by implementing the following
programming pattern, relying on AndroidJavaProxy:

1. In the Java code, define an interface I, a variable I jv of this type, and a
setter function void jvsetter(I i) for this variable.

2. In the C# code, make a class AjpI : AndroidJavaProxy, which subclasses
AndroidJavaProxy. Implement in it interface I’s methods. Call the pre-
vious setter and set it to an instance AjpI csv of the class, jvsetter(csv).

3. In the Java code you can now call jv’s methods. The code executed will be
the C# code implemented in AjpI’s definition.

Note that the last step means that, in effect, the Java code is triggering C# code
execution.

The mechanism that has just been described is integral to the usage of the E4link
library from within Unity. This is because, as elaborated upon in section 4.2,
E4link provides two Java interfaces, namely interface EmpaDataDelegate and
interface EmpaStatusDelegate, whose methods are called on connection status
changes and data received events respectively. Thus, the task of integrating the
library into Unity consists, fundamentally, on being able to run whatever C# code
we want to execute upon having these methods invoked, which we achieve with the
described pattern.

4.2 E4link for Android

The E4link library is not freely available for download. Instead, obtaining it requires
visiting the Empatica connect web portal [16], where registered users can download
it in the developer area [17] bundled in a .aar (Android ARchive) format.

Additionally, the API is not well documented. While Empatica’s E4 link SDK for
Android usage page [18] is available for the general public, it is not a complete ref-
erence but rather a streamlined tutorial. The provided JavaDoc documentation [23]
is in a similar situation but is nonexhaustive as well. This is problematic, as even
some of the methods belonging to critical interfaces in the library are not mentioned
in any of these resources.

Instead, the author has found Empatica’s sample Android application repository [24]
source code to be the best official documentation available, as it showcases the li-
brary’s use in an already functional program, together with decompiling the library

23

Chapter 4. E4UnityIntegration-MIT

with Android Studio to analyse it. While they are good enough resources for those
willing to dive deep and even do some reverse engineering (as, being realistic, may
needed by programmers wanting to use the library in custom scenarios), there does
not exist an adequate quick reference for those unfamiliar with it.

This is unfortunate, as in fact the API is relatively simple and easy to understand.
Thus, it is reasonable to provide in this text an overview of the relevant parts of
the library, with the goal of providing greater context for the subsequent sections.

Central to the library’s usage are the following constructs:

• class EmpaDeviceManager, contained in the com.empatica.empalink pack-
age

This is the main class of the package, allowing interacting with E4 devices. It
supports a single connection with an E4. Some of its methods are:

– public EmpaDeviceManager(android.content.Context context,

EmpaDataDelegate dataDelegate, EmpaStatusDelegate

statusDelegate)

↪→

↪→

Class constructor.

The interface EmpaDataDelegate, interface EmpaStatusDelegate

implementing arguments determine the code to run on receiving data or
status updates from the connected device. These interfaces are elabo-
rated upon further below.

– public void authenticateWithAPIKey(java.lang.String key)

Each E4 device is associated to a list of developers (each with their own
E4 connect account [16] and API key) that are allowed to use it. This
is useful to protect E4 users’ privacy (for example, it protects against
a potential malicious program that automatically connects to any E4 it
finds, regardless of whether the device belongs to the developer of the
program or not, and which can therefore spy on the physiological status
of whoever is wearing it). API keys are checked against Empatica’s
servers online; this is actually the reason for the plugin’s requirement for
internet connection in order to function.

– public void startScanning()

Starts scanning for E4 devices.

– public void stopScanning()

Complementary method for halting scanning.

– public void connectDevice(android.bluetooth.BluetoothDevice

device) throws ConnectionNotAllowedException↪→

24

4.2. E4link for Android

Connects to an E4; it throws ConnectionNotAllowedException if the
connection to the device is not allowed.

– public void disconnect()

Complementary method for disconnecting from the connected to device.

Typical usage of this class would be:

1. Instantiate it

2. Authenticate the API key

3. Wait to receive the EmpaStatus.READY status update in the status del-
egate

4. Start scanning for devices

5. Wait for callbacks in the status delegate regarding the discovery of a
device

6. If this is the device one seeks to connect to, call the corresponding method
to connect to it. (This should succeed as long as the API key authenti-
cated with has permission to use the device.)

• interface EmpaDataDelegate, from the com.empatica.empalink.delegate
package

This interface must be implemented by some class in the E4link for Android
client program’s code.

Its methods are all callbacks for when data fields from the E4 are received.
Their arguments are the data value (or values) and the measurement’s Unix
time timestamp in seconds. Following is an overview of the relevant methods:

– void didReceiveAcceleration(int x, int y, int z, double

timestamp)↪→

– void didReceiveBVP(float bvp, double timestamp)

– void didReceiveGSR(float gsr, double timestamp)

– void didReceiveIBI(float ibi, double timestamp)

– void didReceiveTemperature(float t, double timestamp)

Note that there is no method to receive HR, even though this is one of the
pieces of data provided when interfacing with the E4 by other methods, for
example with E4 realtime (subsection 3.3.2). Still, this is not a problem as
HR can always be deduced from IBI.

• interface EmpaStatusDelegate, from com.empatica.empalink.delegate

This interface must also be implemented by some class in the E4link for An-
droid client program’s code.

25

Chapter 4. E4UnityIntegration-MIT

Its methods are all callbacks for receiving status updates regarding devices.
See below:

– void didDiscoverDevice(android.bluetooth.BluetoothDevice

device, java.lang.String deviceLabel, int rssi, boolean

allowed)

↪→

↪→

Invoked when a new E4 device is discovered. The boolean allowed

parameter is true if connection to this device is allowed according to the
API configuration profile.

– void didRequestEnableBluetooth()

Invoked when Bluetooth is detected as being off.

– void didUpdateSensorStatus(EmpaSensorStatus status,

EmpaSensorType type)↪→

Invoked when the a device updates its status.

Possible enum EmpaSensorStatus values are:

∗ EmpaSensorStatus.NOT_ON_WRIST

∗ EmpaSensorStatus.ON_WRIST

∗ EmpaSensorStatus.DEAD

– void didUpdateStatus(EmpaStatus status)

Invoked when the EmpaDeviceManager status changes.

Possible enum EmpaStatus values are:

∗ EmpaStatus.INITIAL

∗ EmpaStatus.READY

∗ EmpaStatus.CONNECTED

∗ EmpaStatus.DISCONNECTED

∗ EmpaStatus.CONNECTING

∗ EmpaStatus.DISCONNECTING

∗ EmpaStatus.DISCOVERING

– void didEstablishConnection()

Not documented in the JavaDoc [23]. Presumably, invoked when con-
nection to a device is established.

– void didFailedScanning(int errorCode)

Not documented in the JavaDoc [23]. However, the E4link Sample
Project code reveals that possible values for int errorCode are:

∗ ScanCallback.SCAN_FAILED_ALREADY_STARTED

For when a Bluetooth LE scan with the same settings is already
underway by the app.

26

4.2. E4link for Android

∗ ScanCallback.SCAN_FAILED_APPLICATION_REGISTRATION_FAILED

Fow when the app cannot be registered.

∗ ScanCallback.SCAN_FAILED_FEATURE_UNSUPPORTED

For when power optimized scan is not supported.

∗ ScanCallback.SCAN_FAILED_INTERNAL_ERROR

For when there is an internal error.

– void bluetoothStateChanged()

Not documented in the JavaDoc [23]. Invoked when a Bluetooth adapter
change is detected.

– void didUpdateOnWristStatus(@EmpaSensorStatus final int

status)↪→

Not documented in the JavaDoc [23]. Presumably, invoked when the
device starts or stops being worn on the user’s wrist.

This method, albeit undocumented, is actually unintendedly of great
importance in this library, due to a nonobvious bug that involves it.

Much of the code related to basic usage of the library is actually dependent
upon these methods. For example, a reasonable implementation would be
to call class EmpaDeviceManager’s public void startScanning()method
upon receiving EmpaStatus.READY as argument in

void didUpdateStatus(EmpaStatus status)

Likewise, class EmpaDeviceManager’s

public void connectDevice(android.bluetooth.BluetoothDevice

device)↪→

could be called upon receiving notification of a new device in

void didDiscoverDevice(android.bluetooth.BluetoothDevice

device, java.lang.String deviceLabel, int rssi, boolean

allowed)

↪→

↪→

In fact, this is the approach taken by the E4link Sample Project.

4.2.1 E4link for Android Dependencies and Requirements

Lastly, we remark on the fact that E4link for Android has a series of dependencies
and requirements, all of which are inherited by projects using it. On the package
dependency side, it relies on OkHttp [32] 2.7.5. As for requirements, it demands
Bluetooth permissions, which themselves need Location access permissions, the

27

Chapter 4. E4UnityIntegration-MIT

Bluetooth LE (Low Energy) feature, and Internet permissions. The implications
of these necessities on E4UnityIntegration-MIT ’s source files can be appreciated in
subsection A.1.2, for the dependencies, and in subsection A.1.1, for the require-
ments.

4.3 An E4 Plugin: E4UnityIntegration-MIT

So far it has been explained that Unity supports integrating Android libraries into
its projects, and that Empatica provide an Android API to interface with their
E4 wristband. As such, E4 integration into Unity projects seems like it ought
to be achievable in a simple manner. This begs the question: why, then, create
E4UnityIntegration-MIT?

What was eventually to become the plugin’s code was initially meant to be an ad
hoc script for integrating the E4 into an already existing Unity project. Instead, it
was the challenges along the way that forced it to be more complex and provided
justification for considering it all its own standalone tool, as well as provided the
motivation to release it publicly (that is, wanting to spare interested users the
trouble).

Following is a list of difficulties encountered, some of which have already been hinted
at. Hopefully by the end of the section it can be appreciated why there is benefit in
releasing the code publicly as a solution that works right out of the gate. This way,
users who wish to quickly integrate the device into their Unity program can do so
without worry of encountering unforeseen difficulties, as was unfortunately the case
for the present work.

4.3.1 Poor Documentation

It has already been commented on (section 4.2) that while there is some (incom-
plete) documentation [18] [23], to the author’s taste the best references are the
E4link Sample Project repository [24] together with decompiling the plugin’s code
in Android Studio.

This problem is only made substantively painful when in combination with the next
issue.

28

4.3. An E4 Plugin: E4UnityIntegration-MIT

4.3.2 Nonobvious Critical Bug involving a Method in E4link ’s
Interfaces

void didUpdateOnWristStatus(@EmpaSensorStatus final int status) is an
undocumented method in interface EmpaStatusDelegate. (Note, though, that
it is not a method in interface EmpaDataDelegate.)

However, at some point in class EmpaDeviceManager’s code the previous method
is called from interface EmpaDataDelegate, which, needless to say, is incorrect
behaviour and constitutes a bug1.

This bug is critical because, when triggered, it causes the application to instantly
crash. Moreover, we have anecdotally observed that this method seems to always
be invoked immediately after creating an instance of class EmpaDeviceManager;
if one instantiates this class at the beginning of the execution of the program (as
was our case), this means the application crashes on startup.

Also very noteworthy is the fact that this bug forbids a pure C# implementation
of E4UnityIntegration-MIT. Indeed, this bug can only be circumvented by ensuring
that both interfaces are implemented by the same class (which is what is done in the
E4link Sample Project [24]), making it so that the method is found despite being
accessed through the incorrect one. However, Unity’s AndroidJavaProxy C# class
can only implement one interface, and therefore it is necessary to also have code
outside of C# scripts (section 4.6).

Once again, this issue is further worsened by the next.

4.3.3 Testing and Debuggability Difficulty Inherent to Us-
ing E4link for Android within Unity

Typically, Unity applications, regardless of target platform, can be executed within
the editor running on the development machine (and, indeed, this is the case with
developing Android applications inside Unity too). This is useful both for quickly
testing the application and for debugging it, as when running from the editor Unity
supports a variety of features (breakpoints, stepping through the code in scripts,
etc.) that result in a convenient debugging environment.

When adding E4link to the mix, though, these capabilities are lost. This is in-
evitable due to the library’s reliance on specific hardware (Bluetooth LE) and soft-

1This bug was reported (on September 2020) and acknowledged by Empatica (on November
2020) [31] in the E4 link sample Android project repository. The issue was closed as completed on
November 2020. Nevertheless, the latest version of E4 link available for download is from February
2020, before the report, and the bug is still present.

29

Chapter 4. E4UnityIntegration-MIT

ware (Android environment) to perform its functions. These hardware and software
features are expected from target devices, but cannot guaranteed to be available in
development machines, so it makes sense that they are not supported from within
the editor.

Consequently, it was found that when trying to integrate E4link the only way of
testing the code was to deploy the entire project on an Android device each time.
Building for and installing on an external Android device is a slow process, taking
around 1min to 2min. Debugging is even more complex, requiring the use of the
adb logcat [42] utility through the Android Studio IDE [4]. The tool reads every
one of the many logged messages from the device, and one must attempt to make
sense of the relevant ones (typically accomplished by filtering out the unrelated
ones) to deduce where the issue lies.

It should now be made apparent why these three issues together make for an in-
credibly obtuse problem. As the application instantly crashes on startup, there are
virtually no clues about what the problem is. It is therefore hard to figure out
how to filter irrelevant adb logcat messages, and even more difficult to interpret
those which are relevant, as they concern the calling of an undocumented method
on an incorrect interface. Additionally, any changes made to the code to try to
glean insight through trial and error incur once more the time cost of building and
installing on an external device, significantly slowing debugging down.

4.3.4 Threading Difficulties

Unity’s API (for general calls to the game engine) is only functional when used
from the main Unity thread; using it from outside fails silently (that is, the calls do
nothing). On Android, the main Unity thread is different from the main Android
thread.

Usually, control flow within a Unity application is apparent to the developer, as
all execution happens within the main Unity thread unless expressly programmed
otherwise. However, E4link actually makes use of other threads for executing some
of its code. To the best of the author’s knowledge this fact is not documented any-
where; rather, this had to be discovered through reverse engineering (by decompiling
the code, see section 4.2) instead.

Indeed, at certain points during execution E4link will post tasks to other threads.
We found interface EmpaDataDelegate and interface EmpaStatusDelegate’s
callbacks were, in practice, always running on threads other than the main Unity
one, and as such all Unity API calls did nothing. This, unless handled properly,
greatly limits how useful a callback’s code can be.

The sensible way of dealing to deal with this behaviour is to employ a programming

30

4.4. Design Specification

pattern by which the callbacks only ever store in variables what the information
they carried was, and then regularly poll these variables from the main Unity thread
to react to their contents.

As such, while this difficulty can be easily sidestepped, it is nevertheless the case
that for those unaware of this happening it can be very confusing. Considered in
addition to the previous challenges, it must be said that being under the mistaken
impression that no callbacks were ever being called (while in fact they were, but
their code, consisting of Unity API calls which failed silently, did nothing) was an
unwelcome additional hurdle.

4.4 Design Specification

While ad hoc solutions can get by with merely solving their original problem, mak-
ing a tool that is convenient to use for a broader audience requires going somewhat
further. Now that the reasons for having E4UnityIntegration-MIT ’s code be pub-
lished as a plugin have been stated, it is sensible to lay down explicitly what the
design goals and intended use cases and audiences for the tool will be.

4.4.1 Functional Requirements

To support the streaming of the E4’s data through Bluetooth in realtime on Android
Unity projects.

This is basically synonymous with exposing interface EmpaDataDelegate and
interface EmpaStatusDelegate to Unity C# scripts.

4.4.2 Foreseen Use Cases

1. Inference of the player’s emotional state to enable live tailoring of the experi-
ence.

2. Psychophysiological data collection and storage for later statistical examina-
tion.

4.4.3 Target Audience

The target audiences of the plugin are the broader game research and development
communities.

31

Chapter 4. E4UnityIntegration-MIT

4.4.4 Nonfunctional Requirements

We want potential users to be able to quickly tell whether the E4 can actually be
satisfactorily integrated into their Unity project. As such, we aim for:

Simplicity

The plugin consists of only a few files. Moreover, it has minimal dependencies, as
only E4link for Android is needed.

Ease of installation

Installation is very simple: only a few project configuration changes are needed, and
importing the plugin requires only dragging and dropping its files into the correct
folder in the Unity project.

Useful default functionality

Ease of installation alone is not enough to allow users to get started quickly. Useful
default functionality upon merely installing the plugin is paramount to letting users
know that the tool is working and give them an accurate impression of whether it
could fulfill their needs. As such, by default the program:

1. Asks for Bluetooth permissions if not already possessed.

2. Attempts to automatically connect to the first E4 it detects.

3. Records its data and stores it in a .csv file after a predetermined amount of
time.

Note that this means the plugin automatically supports the second of its intended
use cases (that is, “Psychophysiological data collection and storage for later statis-
tical examination”) right off the bat.

Ease of use

The code has been designed to be easily modifiable, and its default functionality
serves as a contextual example regarding how to go about implementing desired
behaviour.

32

4.5. E4UnityIntegration-MIT Overview

4.5 E4UnityIntegration-MIT Overview

E4UnityIntegration-MIT consists of several files, Figure 4.1. Users can use the
plugin by editing the source files directly.

It is simple to install E4UnityIntegration-MIT (for a full explanation see section A.2).
All its files must be placed in the Assets/Plugins/Android directory of the Unity
project. Then the following steps should be followed:

• Enable Custom Main Manifest in the project settings. If it is already enabled
and a custom main manifest is already in use, then the plugin must be merged
into the existing one, by copying over the lines related to permissions and
feature requirements.

• Enable Custom Main Gradle Template in the project settings. If it is already
enabled and a custom main gradle template is already in use, then the plu-
gin must be merged into the existing one, by copying over the OkHttp [32]
dependency (required by E4link for Android, subsection 4.2.1).

Lastly, needless to say Empatica’s E4link for Android is also needed. It must be
placed in the same folder, alongside the rest of the plugin’s files.

We now provide an overview of each file’s purpose and content.

4.5.1 UnityE4.cs

Unity C# script containing public class UnityE4. Attach the script to an empty
GameObject to use the plugin.

Inside, two inner classes, named class UnityE4linkDataDelegateCallback and
class UnityE4linkStatusDelegateCallback, expose the Empatica API. They
implement the E4UnityIntegration-MIT interfaces defined in UnityE4link.java

(subsection A.1.4) for receiving data and status updates, respectively. Users wishing
to integrate the plugin to their use cases should alter the implementation of these
classes’ callback methods accordingly.

Note that, as noted in subsection 4.3.4, callback code may not execute Unity API
calls, as they’re limited to running on its main thread. Since callbacks are called
by the E4 link library’s code, which runs on a different thread, to react to received
data or status updates users should instead store the information and trigger the
desired behavior on the following Unity Update.

Additionally, this file also contains the code to record the received data periodically
(default is every .25 seconds) and store it in a file.

33

Chapter 4. E4UnityIntegration-MIT

Figure 4.1: E4UnityIntegration-MIT files and dependencies. At the top are the build and
configuration files that must be used or merged with existing ones. At the bottom, left
of the dashed line, are the source files that may be edited by users to achieve desired
functionality. To the right of the dashed line is Empatica’s E4 link library; it is not
distributed with the plugin and must be obtained directly from Empatica.

4.5.2 UnityE4link.java

Auxiliary Java file containing the UnityE4link class. It serves as a necessary bridge
between E4 link and UnityE4.cs.

As explained in subsection 4.3.2, a critical bug forbids a pure C# implementation
of the plugin. Its workaround is contained in this Java file (see subsection 4.6.1).

Being forced to introduce an intermediary Java file is not without advantages, how-
ever. While users may well get by without even looking at the Java file, the present
implementation allows, for those unafraid to look, programming E4 link related
functionalities directly in Java; at times this results in simpler code because often
the alternative is having to call Java’s utilities from C#. In fact, the provided
default behaviour of connecting to the first E4 encountered is contained in this file.

Also, it was hinted at in section 4.1 that .aar (Android ARchive) format plugins
(such as E4link for Android) were not the only type relevant to E4UnityIntegration-
MIT. Indeed, by having this .java file we are in effect introducing a .java source
plugin; this is the other type of plugin that was used for the tool.

34

4.6. Implementation

4.5.3 AndroidManifest.xml

The plugin’s custom main manifest.

Specifies the need for Bluetooth, internet, and location permissions (see subsec-
tion 4.2.1), as well as the Bluetooth low energy feature.

4.5.4 mainTemplate.gradle

The plugin’s custom main gradle template.

Specifies E4link for Android ’s OkHttp [32] dependency (see subsection 4.2.1).

4.6 Implementation

The difficulties described in section 4.3 and design objectives stated in section 4.4
shaped the plugin’s code. This section is devoted to explaining in greater detail
than in section 4.5 the characteristics and specific snippets of code that implement
the workarounds and features of the plugin.

4.6.1 Working Around the Critical Bug in subsection 4.3.2

The workaround for the critical bug in subsection 4.3.2 is implemented in the Java
file UnityE4link.java.

It is achieved by creating two interfaces, interface UnityE4linkDataDelegate

and interface UnityE4linkStatusDelegate, which extend the delegates defined
in E4link for Android, as well as inner public class EmpaDelegate, which im-
plements both delegate interfaces from E4link for Android and defers its calls to
objects of the previously stated interfaces. In this way, the necessary step of having
both of E4link for Android ’s delegates implemented by one same class is accom-
plished internally, without users who are only looking at the C# script needing to
even know about it.

35 // Implement these interfaces in a Unity C# script to receive the E4's data

and status updates↪→

36 interface UnityE4linkDataDelegate extends EmpaDataDelegate { }

37 interface UnityE4linkStatusDelegate {

38 void didUpdateStatus(String status);

39 void didEstablishConnection();

35

Chapter 4. E4UnityIntegration-MIT

40 void didUpdateSensorStatus(String status, String type);

41 void didDiscoverDevice(String deviceName, int rssi, boolean allowed);

42 void didFailedScanning(String error);

43 void didRequestEnableBluetooth();

44 void bluetoothStateChanged(boolean isBluetoothOn);

45 void didUpdateOnWristStatus(String status);

46 }

47

48 // Internal class, essential to work around a bug in the Empatica's E4 link

library↪→

49 // Passes callbacks through to the Unity C# script's

50 // Additionally, default behaviour of connecting to the first E4 found is

implemented here↪→

51 public class EmpaDelegate implements EmpaDataDelegate, EmpaStatusDelegate {

52 private final UnityE4linkDataDelegate unityE4linkDataDelegate;

53 private final UnityE4linkStatusDelegate unityE4linkStatusDelegate;

54

55 public EmpaDelegate(UnityE4linkDataDelegate unityE4linkDataDelegate,

UnityE4linkStatusDelegate unityE4linkStatusDelegate) {↪→

56 this.unityE4linkDataDelegate = unityE4linkDataDelegate;

57 this.unityE4linkStatusDelegate = unityE4linkStatusDelegate;

58 }

Listing 1: Fragment of UnityE4link.java: interface UnityE4linkDataDelegate,
interface UnityE4linkStatusDelegate, and beginning of inner class EmpaDelegate

The rest of inner class EmpaDelegate’s code implements the E4link for Android
interfaces’ methods and passes them through to the newly defined interfaces; see
subsection A.1.4 for the rest of inner class EmpaDelegate’s code.

4.6.2 Default Functionality

See subsubsection 4.4.4 for reference on what these features are.

Asking for Bluetooth permissions

Unless the user has already given an Android application Bluetooth permissions
(for example, on a previous run) they need to be requested explicitly.

247 // Permissions section

248

249 private bool HasUnityE4linkPermissions()

36

4.6. Implementation

250 {

251 return Permission.HasUserAuthorizedPermission(Permission.FineLocation);

252 }

253 // Call only if you lack the necessary permissions

254 private void RequestUnityE4linkPermissions()

255 {

256 PermissionCallbacks permissionCallbacks = new PermissionCallbacks();

257 permissionCallbacks.PermissionGranted += (string s) => {

InitUnityE4link(); };↪→

258 // FineLocation is critical, so always request again.

259 // However, not google's recommendation on how to handle user denying

260 permissionCallbacks.PermissionDenied += (string s) => {

RequestUnityE4linkPermissions(); };↪→

261 Permission.RequestUserPermission(Permission.FineLocation,

permissionCallbacks);↪→

262 }

263 // Call only if you have the necessary permissions

264 private void InitUnityE4link()

265 {

266 unityE4link = new

AndroidJavaObject("edu.mit.virtuality.unityE4link.UnityE4link",

unityE4linkDataDelegateCallback, unityE4linkStatusDelegateCallback,

EMPATICA_API_KEY);

↪→

↪→

↪→

267 }

Listing 2: Fragment of UnityE4.cs: class UnityE4’s permissions section

270 void Start()

271 {

272 unityE4linkDataDelegateCallback = new

UnityE4linkDataDelegateCallback(this);↪→

273 unityE4linkStatusDelegateCallback = new

UnityE4linkStatusDelegateCallback(this);↪→

274

275 // Check permissions and initialize unityE4link

276 if (HasUnityE4linkPermissions())

277 {

278 InitUnityE4link();

279 }

280 else

281 {

282 // When granted will initialize unityE4link

283 RequestUnityE4linkPermissions();

284 }

285 }

37

Chapter 4. E4UnityIntegration-MIT

Listing 3: Fragment of UnityE4.cs: class UnityE4’s void Start()

The permissions section (Listing 2) contains support functions used within
class UnityE4’s void Start() (Listing 3) method to ensure that Bluetooth per-
missions are possessed before instantiating and initializing class UnityE4link.

Automatically connecting to an E4

The code for automatically connecting to the first E4 discovered is a basic implemen-
tation of what is doubtless the most useful and important of E4UnityIntegration-
MIT ’s capabilities: connecting to an E4 device.

196 private final EmpaDelegate empaDelegate;

197 private final EmpaDeviceManager deviceManager;

198

199 public UnityE4link(UnityE4linkDataDelegate unityE4linkDataDelegate,

UnityE4linkStatusDelegate unityE4linkStatusDelegate, String empaticaApiKey)

{

↪→

↪→

200 Activity activity = UnityPlayer.currentActivity;

201

202 empaDelegate = new EmpaDelegate(unityE4linkDataDelegate,

unityE4linkStatusDelegate);↪→

203 deviceManager = new EmpaDeviceManager(activity.getApplicationContext(),

empaDelegate, empaDelegate);↪→

204

205 deviceManager.authenticateWithAPIKey(empaticaApiKey);

206 }

Listing 4: Fragment of UnityE4link.java: class UnityE4link’s constructor

105 // EmpaStatusDelegate methods

106 public void didUpdateStatus(EmpaStatus status) {

107 switch (status) {

108 case INITIAL:

109 break;

110 case READY: {

111 // Start scanning

112 deviceManager.startScanning();

113 } break;

114 case CONNECTED:

115 break;

116 case DISCONNECTED:

38

4.6. Implementation

117 break;

118 case CONNECTING:

119 break;

120 case DISCONNECTING:

121 break;

122 case DISCOVERING:

123 break;

124 }

125

126 unityE4linkStatusDelegate.didUpdateStatus(status.toString());

127 }

Listing 5: Fragment of UnityE4link.java: inner class EmpaDelegate’s
void didUpdateStatus(...)

139 public void didDiscoverDevice(EmpaticaDevice bluetoothDevice, String

deviceName, int rssi, boolean allowed) {↪→

140 if (allowed) {

141 // Stop scanning. The first allowed device will do.

142 deviceManager.stopScanning();

143 try {

144 // Connect to the device

145 deviceManager.connectDevice(bluetoothDevice);

146 } catch (ConnectionNotAllowedException e) {

147 // This should happen only if you try to connect when

allowed == false.↪→

148 }

149 }

150

151 unityE4linkStatusDelegate.didDiscoverDevice(deviceName, rssi,

allowed);↪→

152 }

Listing 6: Fragment of UnityE4link.java: inner class EmpaDelegate’s
void didDiscoverDevice(...)

The code is written according to the guidance of Empatica’s E4 link SDK for An-
droid usage page [18] and follows in the footsteps of the E4link Sample Project [24].
It is virtually the same as the “reasonable implementation” described in item 4.2:

For example, a reasonable implementation would be to call
class EmpaDeviceManager’s public void startScanning() method
upon receiving EmpaStatus.READY as argument in

39

Chapter 4. E4UnityIntegration-MIT

void didUpdateStatus(EmpaStatus status)

Likewise, class EmpaDeviceManager’s

public void connectDevice(android.bluetooth.BluetoothDevice

device)↪→

could be called upon receiving notification of a new device in

void didDiscoverDevice(android.bluetooth.BluetoothDevice

device, java.lang.String deviceLabel, int rssi, boolean

allowed)

↪→

↪→

Data logging

The data logging functionality is designed to periodically (the default value chosen
is 0.25 s) record the E4’s measurements and store it in a .csv file after a prede-
termined amount of time (40.0 s). The fact that recording stops after this amount
of time is arbitrary, and users of the plugin should modify the script to have the
end condition correspond to the end of their measurements (which may be after a
certain, possibly different, amount of time, or in response to an event such as the
end of the experiment).

11 // Data logging section

12

13 private enum LoggerState

14 {

15 Initial,

16 Start,

17 Logging,

18 Stop,

19 DidWrite,

20 FailedWrite

21 }

22

23 private LoggerState loggerState = LoggerState.Initial;

24

25 // Tuple class is reference type so it is thread-safe to keep track of the

last one↪→

26 public Tuple<int, int, int, double> accLast = new Tuple<int, int, int,

double>(0, 0, 0, 0.0d);↪→

27 public Tuple<float, double> batteryLast = new Tuple<float, double>(0.0f,

0.0d);↪→

28 public Tuple<float, double> bvpLast = new Tuple<float, double>(0.0f, 0.0d);

29 public Tuple<float, double> gsrLast = new Tuple<float, double>(0.0f, 0.0d);

40

4.6. Implementation

30 public Tuple<float, double> ibiLast = new Tuple<float, double>(0.0f, 0.0d);

31 public Tuple<float, double> tempLast = new Tuple<float, double>(0.0f, 0.0d);

32

33 private StringBuilder csvString;

34 private StreamWriter file;

35

36 private float currentSecond = 0.0f;

37

38 private IEnumerator E4DataLogger()

39 {

40 // Should now be loggerState == LoggerState.Start

41 GenerateCsvHeader();

42 loggerState = LoggerState.Logging;

43 while (loggerState == LoggerState.Logging)

44 {

45 LogConstruction();

46 yield return new WaitForSecondsRealtime(0.25f);

47 currentSecond += 0.25f;

48 }

49 // Should now be loggerState == LoggerState.Stop

50 if (WriteToFile())

51 {

52 loggerState = LoggerState.DidWrite;

53 }

54 else

55 {

56 loggerState = LoggerState.FailedWrite;

57 }

58 }

Listing 7: Fragment of UnityE4.cs: part of class UnityE4’s data logging section

126 private void UpdateLogger()

127 {

128 if (loggerState == LoggerState.Start)

129 {

130 StartCoroutine(E4DataLogger());

131 }

132 }

Listing 8: Fragment of UnityE4.cs: class UnityE4’s data logging section’s
void UpdateLogger()

287 void Update()

288 {

41

Chapter 4. E4UnityIntegration-MIT

289 // Stop logging after 40 seconds

290 if (currentSecond >= 40.0f)

291 {

292 loggerState = LoggerState.Stop;

293 }

294 UpdateLogger();

295 }

Listing 9: Fragment of UnityE4.cs: class UnityE4’s void Update()

A state machine (whose states are Listing 7’s enum LoggerState) controls whether
logging is ongoing or not. Listing 7’s IEnumerator E4DataLogger(), a Unity corou-
tine, is triggered (Listing 8’s void UpdateLogger()) when logging is in its initial
state, and runs every 0.25 s until it is stopped (Listing 9’s void Update()) after
40.0 s.

4.6.3 Threading Considerations

C# callback code is executed on a thread different from Unity’s main one, and
thus, in addition to the typical care that must be taken when dealing with any
multithreaded code, we must also ensure that no Unity API calls are made within
callbacks (see subsection 4.3.4).

138 class UnityE4linkDataDelegateCallback : AndroidJavaProxy

139 {

140 private readonly UnityE4 unityE4;

141

142 public UnityE4linkDataDelegateCallback(UnityE4 unityE4) :

base("edu.mit.virtuality.unityE4link.UnityE4link$UnityE4linkDataDelegate")↪→

143 {

144 this.unityE4 = unityE4;

145 }

146

147 void didReceiveAcceleration(int x, int y, int z, double timestamp)

148 {

149 Tuple<int, int, int, double> accTuple = new Tuple<int, int, int,

double>(x, y, z, timestamp);↪→

150 unityE4.accLast = accTuple;

151 }

152

153 void didReceiveBatteryLevel(float battery, double timestamp)

154 {

155 Tuple<float, double> batteryTuple = new Tuple<float,

double>(battery, timestamp);↪→

42

4.6. Implementation

156 unityE4.batteryLast = batteryTuple;

157 }

158

159 void didReceiveBVP(float bvp, double timestamp)

160 {

161 Tuple<float, double> bvpTuple = new Tuple<float, double>(bvp,

timestamp);↪→

162 unityE4.bvpLast = bvpTuple;

163 }

164

165 void didReceiveGSR(float gsr, double timestamp)

166 {

167 Tuple<float, double> gsrTuple = new Tuple<float, double>(gsr,

timestamp);↪→

168 unityE4.gsrLast= gsrTuple;

169 }

170

171 void didReceiveIBI(float ibi, double timestamp)

172 {

173 Tuple<float, double> ibiTuple = new Tuple<float, double>(ibi,

timestamp);↪→

174 unityE4.ibiLast = ibiTuple;

175 }

176

177 void didReceiveTemperature(float temp, double timestamp)

178 {

179 Tuple<float, double> tempTuple = new Tuple<float, double>(temp,

timestamp);↪→

180 unityE4.tempLast = tempTuple;

181 }

182

183 // Following method does not appear in E4 link documentation

184 void didReceiveTag(double timestamp)

185 {

186 }

187 }

Listing 10: Fragment of UnityE4.cs: Inner class UnityE4linkDataDelegateCallback

As we can see in Listing 10, inner class UnityE4linkDataDelegateCallback does
nothing but store the received data into variables, and lets the program react to
them on the main Unity thread (Listing 7’s IEnumerator E4DataLogger()). This
corresponds to the programming pattern prescribed in subsection 4.3.4.

Note additionally that in C# tuples are reference types [40], whose assignment is
guaranteed by the standard to be atomic, and so it is thread-safe to keep track of
the last one. That is to say, even if while writing to one of the tuples another thread

43

Chapter 4. E4UnityIntegration-MIT

happens to be reading the values (in our case this would be the Unity main thread
executing Listing 7’s IEnumerator E4DataLogger() while one of the callbacks in
Listing 10 is being invoked), it will either read from the old reference or the new
one wholesale, but never some data fields from one and some from the other. This
is important to preserve scientific data validity (if reads were mixed between the
old and new measurements, we would in effect obtain an apparent measurement,
created through combining data from both, which, in fact, never happened).

44

Part III

Experimental Work

Chapter 5

Method

The experimental contribution of the thesis involved investigating the psychophysi-
ological correlates of the sense of presence in VR within the context of a roleplaying
game. Specifically, the following research question was addressed:

How are players’ physiological responses related to their sense of pres-
ence during the roleplaying game?

For this purpose, the E4UnityIntegration-MIT plugin was integrated into a modified
version of the On the Plane VR game [43] that was to be used in a study compar-
ing the effects of perspective taking (by employing either an outgroup first person
perspective or a third person perspective) on ingroup-outgroup bias in which psy-
chophysiological data was also taken into account. The experimental study therefore
additionally served as a validation of the plugin within the context of a real games
reasearch study.

The present work’s research question was in addition to the study’s main research
concerns. Therefore, while this section (chapter 5) on method describes the experi-
ment in whole, including what all the various measured variables were, the following
results section (chapter 6) analyses only the relevant fraction of all the collected data
(namely, the E4 recordings and the presence scores).

5.1 On the Plane

On the Plane, Figure 5.1, is a roleplaying game that runs on desktop computers
and the Meta Quest VR headsets [27].

It simulates an air travel experience in which two women from different backgrounds

46

5.2. Design

Figure 5.1: On the Plane [43]. The left image corresponds to Sarah’s first person perspec-
tive, whereas the right one corresponds to the third person perspective. The right one
additionally depicts the menu that appears when giving players a choice between dialogue
clauses.

are involved: Sarah, a muslim U.S. woman who wears a hijab, and Marianne, a
woman from the U.S.’s Midwest who has had limited exposure to different cultures
and customs [43, p. 208].

In the game, players are in control of Sarah’s responses (through deciding between
a limited set of dialogue clauses) while in conversation with Marianne. Players’
choices affect the flow of the experience, as they cause changes in their standing in
the simulation. Indeed, beyond just narrative differences, AI controlled characters
are fully expressive and animated (they use body language, perform various ges-
tures and can change their facial expressions), and thus can alter their behaviour
according to the players’ standing.

Preceding the previously described main part of the game is an orientation scene
in which players are given instructions on the controls, as well as context regarding
the simulated situation. For instance: “You are Sarah, a Muslim woman born
in Indianapolis, IN. You travel frequently for work...”, “You just visited family in
Indianapolis and are on your returning flight to Newark, NJ...” [43, p. 208].

Participants were split into two condition groups for this study. While they played
Sarah’s role in both, in the first they played from Sarah’s own perspective (first
person), while in the second they played from the perspective of a flight attendant
as a bystander (third person).

5.2 Design

The study used a between-subjects design with two conditions (Sarah’s first person
perspective or a third person perspective), whose differences can be also be seen
in Figure 5.1. Several variables were recorded: physiological measurements such as
EDA, HRV (derived from IBI), temperature, and EEG; and the subjective sense of

47

Chapter 5. Method

presence.

Other measurements, namely wrist accelerometer data and BVP, were taken too.
However, these were collected only because the E4UnityIntegration-MIT plugin
allowed doing so at virtually no extra cost. Indeed, it was expected that these
variables would be uninteresting in relation to the research questions; however,
ensuring all E4 data was measured was important to perform a complete verification
of the plugin’s capabilities.

Moreover, baseline measurements of physiological data (EDA, HRV, temperature,
and EEG) were taken before participants played the game in order to account for
differences between individuals.

5.3 Participants

Possible participants in this study were English-speaking adults located in the USA
who had the ability to see visual content and navigate a virtual reality game. Par-
ticipants were recruited in a variety of ways: advertisements in various mail and
message groups, a post on the MIT Reddit forum [8], a call for participation in a
class at MIT taught by one of the researchers, and in-person requests to participate.
Thus, due to the nature of the explored communication avenues a large proportion
of participants had some connection to MIT. Participants voluntarily registered by
visiting an online sign-up page, where they could sign up for the study. Participants
were compensated with a $10 Amazon gift card for partaking in the experiment.

A total of 41 participants (21 participants in Sarah’s first person perspective, 20 in
the third person perspective) took part in the study. Two participants’ data were
rendered unusable by technical glitches, resulting in a dataset of 39 participants
(19 participants in Sarah’s first person perspective, 20 participants in the third
person perspective). Of these, 24 were female, 9 were male and 6 did not report.
Participants’ average age was 24.

5.4 Materials

A variety of materials were used to carry out the experiment. While the game em-
ployed has already been commented on (section 5.1), the following sections explore
the rest of the tools utilized.

48

5.4. Materials

Figure 5.2: Meta Quest 2 [28]

5.4.1 Meta Quest 2

The Meta Quest 2 [28], Figure 5.2, was the VR headset used to run the game. As
would be expected of a modern device, it has internet connection and Bluetooth
capabilities, which enables it to connect with the Empatica E4.

5.4.2 Empatica E4

The Empatica E4, Figure 3.1, was used to capture several physiological measure-
ments. Note that On the Plane is a Unity game [43], and the Meta Quest 2’s
operating system is Android based. Taken together, these two considerations mean
this is an ideal situation in which to use E4UnityIntegration-MIT.

Indeed, the plugin was integrated into the game and used to capture the E4’s data.
As mentioned previously (section 5.2), the physiological measurements of interest
were EDA, HRV (derived from IBI) and temperature; additionally, accelerometer
data and BVP were gathered too for E4UnityIntegration-MIT verification purposes.
All these fields were captured at a sampling rate of 4Hz.

As for the baseline, the E4 data was instead captured by the E4 realtime application
running on a smartphone. E4UnityIntegration-MIT was not used for the baseline as
these measurements happened outside of the game. As a consequence, data was not
captured at a sampling rate of 4Hz but rather at the native sampling rate of the E4,
which is higher than 4Hz for some data fields. To remedy this discrepancy, a Python
script was developed that converted the data generated when using E4 realtime into
E4UnityIntegration-MIT ’s format in order to homogenize measurements.

49

Chapter 5. Method

5.4.3 Presence scale

In order to determine the players’ level of presence a presence scale consisting of
six items (taken from the thirteen items presented in [37]; only those relating to
the constructs of Presence (paragraph 5.4.3) and Spatial Presence (paragraph 5.4.3)
were used) rated on a 5-point Likert scale was employed. Ratings from each item
were averaged to obtain a presence score for each participant.

Presence

• In the simulation world I had a sense of “being there”

Spatial Presence

• Somehow I felt that the virtual world surrounded me

• I felt like I was just perceiving pictures

• I did not feel present in the virtual space

• I had a sense of acting in the virtual space, rather than operating something
from outside

• I felt present in the virtual space

The presence questionnaire was integrated into the In the Plane game. It auto-
matically appeared after the participant had completed the main section of the
game.

5.5 Procedure

Participants were invited to take a seat upon arrival. They were then briefed on
the research study and presented with an informed consent form for signing. Par-
ticipants could cease their participation at this time or at any other during the
study. (One candidate did so.) Each participant was then assigned their condition
randomly.

Baseline measurements followed. The Empatica E4 was setup, stressing that these
are noninvasive sensors and do not hurt, and a roughly 1 minute video [35] was
played on a tablet for them to watch while the measurements were taking place.

50

5.6. Research Ethics

Experience with previous participants informed future procedure slightly in this
case. In time, we learned to ask participants to silence their smartphones and
smartwatches, and to not leave their devices on the table, as the vibrations against
a hard surface would also make noise. In any case, these constituted minor distrac-
tions which should not have a noticeable effect on the measurements.

After baseline measurements came the On the Plane VR game. Participants were
shown the relevant buttons on the controllers before helping them don the headset,
which already had the game (the correct version of it, according to their condition)
setup and running (waiting in the initial menu). The experience began when the
researcher told the player their participant ID and they input it into the game.
Interaction with the researcher would be kept to a minimum (only answering par-
ticipants’ questions) while they experienced the orientation and main scenes of the
game. Measurements were taken during the main scene of the game.

Here experience informed procedure once again. Progressively more attention was
paid to correctly adjusting the headset on participants, as this affects how clearly
they see the virtual environment. In time it became clear that those unfamiliar
with VR headsets would fail to realize they were not seeing clearly, or even that
they were outside of the physical boundaries the headset establishes (the effect of
this, which is supposed to be very apparent, is that the virtual environment loses
color and becomes translucent, blending with the outside physical environment, in
order to allow the user to determine where in the physical space they are and avoid
getting hurt; one participant reported having this experience, and is thus excluded
from further analysis on the grounds that immersion was compromised).

The presence questionnaire was completed right after the gameplay, as it automati-
cally appeared after completing the main part of the game. Once participants were
done, they were aided in taking off the headset and sensors and were presented with
a post-experience demographic questionnaire on a computer.

Once done, the participant was thanked, given a $10 Amazon gift card as compen-
sation, and dismissed. This process took participants approximately 20 minutes to
complete.

Figure 5.3 and Figure 5.4 depict the procedure’s setup from the point of view of a
participant or an experimenter respectively; many elements described in this section
can be appreciated in the images.

5.6 Research Ethics

Research involving human subjects falls under the purview of US federal regulations.
In this case, this study is categorised as human subjects non-biomedical research.

51

Chapter 5. Method

Figure 5.3: Procedure setup - participant’s view. Participants would sit in the chair
closest to the camera, and would first read and sign the infromed consent form, then
watch a video on the iPad during baseline measurements, and finally play the game on
the Meta Quest 2.

Figure 5.4: Procedure setup - experimenter’s view. The experimenter virtually always
sat on the chair with the shirt hanging. Connected to the experimenter’s laptop are the
Empatica E4 and MyndPlay MyndBand, which are charging before the next participant
arrives. To the left of the laptop are more printed copies of the informed consent form as
well as a procedure instruction sheet for reference.

52

5.6. Research Ethics

Thus, it was subject to review from an IRB (Institutional Review Board) at MIT
for ethical and regulatory compliance, and all researchers interacting with partic-
ipants were required to complete the appropriate “Social & Behavioral Research
Investigators” course training.

Indeed, the call for participation advertisement text, informed consent form, and
study procedure passed IRB approval. Accordingly, the rights of participants were
observed when: candidate participants were informed and not mislead, during ad-
vertising or when receiving the informed consent form, regarding the purpose, pro-
cedures, risks and discomforts, and potential benefits of the research; participants
voluntarily elected to partake, and could withdraw from the study at any time; and
their privacy and confidentiality was protected, both pertaining to their collected
data as well as their participation in the study in the first place, ensuring data
was stored securely, and personal information and study data stored separately and
associated only by an anonymous code.

53

Chapter 6

Results and Discussion

The guiding research question in this work was: “How are players’ physiological
responses related to their sense of presence during a VR roleplaying game?” The
variables of EDA, HRV, temperature and presence score were analysed in order to
ascertain any possible relationships between them. A variety of descriptive and
inferential statistics tests were conducted to this end.

All physiological measurement variables were normalised with respect to their base-
line (by subtracting the baseline mean from the experiment mean for each subject)
in order to account for individual differences. Additionally, we note that condition
(Sarah’s first person perspective or third person perspective, see section 5.2), Ta-
ble 6.1, showed no significant relationship with any of the considered variables in
any of the tests. As such, the following sections report the data in bulk (sample
size of 39), regardless of condition.

Condition n

1st person 19

3rd person 20

Total 39

Table 6.1: Condition groups and sample sizes

Note that one of the variables analysed, HRV, was not directly measured (subsec-
tion 5.4.2). Rather, it was obtained from IBI by computing the HR, and from that
the HRV, at any given time, and then considering its samples every 0.25s (thus
mimicking the sampling method of E4UnityIntegration-MIT).

54

6.1. Descriptive Statistics and Pearson Correlations

6.1 Descriptive Statistics and Pearson Correla-

tions

Variable M SD EDA HRV Temp. Presence

EDA (µS) .202 1.48 —

HRV (beats/min) 1.50e-2 .309

-.13
p=.45

[-.42, .20]
—

Temp. (◦C) .452 1.14

.09
p=.57

[-.23, .40]

.02
p=.90

[-.30, .33]
—

Presence 3.88 .554

.22
p=.17

[-.10, .50]

.14
p=.38

[-.18, .44]

-.39
p=.02

[-.62, -.08]
—

Table 6.2: Means (M), standard deviations (SD), and Pearson correlations (coefficients,
p-values, and 95% confidence intervals); n=39.

Correlation coefficients between physiological measurement variables (all rows ex-
cept for the last in Table 6.2) are all small and have p-values above .05, supporting
no linear relationship between them. This can be considered positive, as it means
that the variables that will next be contrasted with presence do not appear to be
dependent or correlated among themselves.

Presence, however, does have a significant correlation with temperature. Indeed,
having a Pearson coefficient of -.39 (p=0.02), participants with a higher skin tem-
perature had a significantly lesser sense of presence.

In this case, it is difficult to relate temperature variability as having much to do
with the game itself (such as individual differences in the reaction to the game
experience). Indeed, while it could be argued that participants more sensitive to
Marianne’s biased behaviour could have had a more heated reaction to the game,
it would also be expected that those more affected would be those who report a
higher sense of presence in the experience, rather than lesser.

Instead, we surmise the correlation may have to do with thermal discomfort. Our
temperature variable refers to skin temperature on the wrist (at the position the E4
was at), and while it is not the same as core body temperature, it can be reflective
of degree of thermal comfort [38]. As such, the likelier explanation is that some
participants felt hot during the experience, affecting their sense of presence.

55

Chapter 6. Results and Discussion

This leads us to formulate some practical suggestions on room temperature relating
to presence. For starters, users wishing to maximise their sense of presence while
playing games may want to pay attention to regulating the temperature of their
environment (although if they are investing time and effort into playing for plea-
sure, ostensibly they may also already be interested in having an adequate room
temperature to begin with for basic comfort reasons, if this option is available to
them). Also, researchers wishing to measure sense of presence in a particular game
(or, more generally, virtual environment) may want to also take into account tem-
perature as part of the analysis as it has been shown to be relevant.

No other variable was significantly correlated with presence. While HRV is far from
being significant (p=.38), EDA comes relatively closer (p=.17), with a Pearson
coefficient of .22.

6.2 Other Variables

EDA, HRV, temperature and presence were not the only variables measured. While
we are restricting our analysis to E4 data and presence scores, even then values such
as acceleration magnitude (from the E4 accelerometer) and BVP (also from the E4)
have not been reported on, because they are ultimately uninteresting to the research
question at hand.

Nevertheless, it is worth briefly commenting on whether any of the variables are cor-
related. While average BVP is far from achieving significance in correlation (p>.05)
with any other variable, the average magnitude of acceleration does correlate sig-
nificantly (p=0.01) with HRV, with a coefficient of -.41. In other words, those who
move around (their arm) more have a lower HRV, meaning a steadier or declin-
ing HR. Moreover, average magnitude of acceleration also correlates significantly
(p=0.02) with IBI, with a coefficient of -.36. This means those who performed more
movement had overall lower IBI (which is to say, higher HR).

Taken together, the interpretation of this could be that those who were more physi-
cally active during the experience had an overall higher, and steadier, HR through-
out, and maybe even declining during play as they became tired (which could
explain low average IBI and small or negative HRV). Alternatively, it could be a re-
flection of participants’ nervousness. Recalling that the physiological measurements
are normalised by subtracting their average baseline values, it could be that par-
ticipants’ agitation is reflected in a low or negative difference in IBI (participant is
more nervous, meaning higher average HR, when playing the game than during the
baseline), low or negative HRV (participants become increasingly relaxed as time
goes by during the experience, as they become used to it, resulting in declining HR,
and consequently in low or negative HRV), and increased average movement (of the

56

6.3. Verification of E4UnityIntegration-MIT

arm). We further note that a sizeable amount of participants reported no or little
prior experience with VR. Therefore it cannot be ruled out that a better expla-
nation could be obtained by replacing nervousness with excitement, or reaction to
novelty, in the previous reasoning.

6.3 Verification of E4UnityIntegration-MIT

A secondary purpose of the study was to serve as on the field testing for the
E4UnityIntegration-MIT plugin. Indeed, the plugin proved capable of handling
the task of capturing participants’ physiological data during the VR game.

The process was not without some slight troubles. The game had been modified with
the behaviour of connecting automatically to the E4 when the main scene started;
there were, however, two instances in which this failed to happen. Thankfully, in
one of the cases this problem was detected in time, and the researcher stopped the
experience at the beginning of the main scene and restarted the game to try again.
Thus, only one participant had no E4 data recorded for them (this is one of the
incidents referred to in section 5.3 that warranted exclusion from data analysis).

For comparison, the E4 also failed twice in the baseline recording stage. These mea-
surements did not depend on E4UnityIntegration-MIT but rather on Empatica’s
own E4 realtime smartphone app. As such, the two incidences of E4UnityIntegration-
MIT problems do not present an increase (nor decrease) with respect to Empatica’s
first party software.

The exact cause of E4UnityIntegration-MIT ’s malfunctions is unknown. Further
tests would need to be done after implementing some sort of logging utility in order
to keep record of the events related to E4 status during a malfunction to enable a
precise diagnosis.

Nevertheless, it is known that the error is not reliably reproducible, as evidenced
by the fact that it did not occur with every participant. Errors that exhibit this
sort of inconsistent behaviour are often related to network or connectivity issues
(in this case, perhaps connection to the internet though WiFi, or the Bluetooth
connection between the E4 and the headset), as such means of communication are
fallible mediums. The internet access dependency of E4UnityIntegration-MIT is
actually inherited from the Android E4 library itself, which requires authentication
of the application with Empatica’s servers in order to have permission to use a
particular E4 device 1. This renders the correct functioning of the plugin reliant on

1As already commented on in (section 4.2), the authentication requirement, which consists
of having the application register the developer API key with Empatica’s servers, is used to
determine whether a particular program’s developer has permission to connect to a given E4
device. This is a necessary feature to avoid potential privacy issues (i.e., having a malicious

57

Chapter 6. Results and Discussion

the Empatica servers being online and accessible at the time of connection, which
in general can be expected but never guaranteed.

Indeed, it is our suspicion that such an issue is at play in these situations. In one
of the E4UnityIntegration-MIT malfunction instances the same participant had to
have their baseline measures retaken because an E4 realtime failure happened as
well (the first time around no data was stored on the cloud). This points to there
having been some problem beyond the software, either on the E4 hardware (unlikely
since the device worked correctly before and after this incident) or, more likely, on
the network side of things.

Regardless of where specifically the problem lies, it cannot be ignored that the pre-
viously explained network reliance is a potential risk. Researchers (or any users of
the plugin, more generally) ought to implement safeguards that impede progress in
their Unity application in case connection fails (we remark that implementing such
a feature would be relatively easy, utilizing the facilities the plugin provides). While
this was not done for this study due to time constraints, such a safeguard would
also automatically protect against other bugs of the plugin, should the preceding
assessment of the likely root of the problem prove to be misguided.

In short, while there were incidents, issues like the ones mentioned can easily be
(and should be) guarded against; and, in any case, use of E4UnityIntegration-MIT
has proven to be no less reliable than Empatica’s own solutions anyway. As such,
we regard the plugin to be validated as fit for use, for the purpose of gathering
physiological data from Empatica E4 for research or otherwise.

program that automatically connects to any E4 it finds, regardless of whether the device belongs
to the developer of the program or not, and which can therefore spy on the physiological status
of whoever is wearing it), which is essential for a health device.

58

Chapter 7

Conclusions

Sense of presence is an important factor affecting player experience. Just as one
may study the relationships between psychophysiological measurements and PX, so
too can one ask:

How are players’ physiological responses related to their sense of pres-
ence during a VR roleplaying game?

The study presented in this thesis project was an exploratory investigation on this
matter through an experiment presented in Part III, which constitutes the project’s
experimental contribution.

In order to carry out the experiment, it became necessary to develop the integration
for one of the measurement tools, the Empatica E4; the code ended up being con-
stituted as E4UnityIntegration-MIT. This plugin was published as open source with
the intention of providing a ready-made solution to the desire to integrate the E4
with Unity on Android. The study itself also provided a chance to validate the tool
in a realistic experimental research setting while being used for one of its intended
purposes, that being data gathering and storing for research. E4UnityIntegration-
MIT, presented in Part II, alongside its verification in the study, make up the
project’s technical contribution.

All in all, we can say the project delivered on both accounts. Besides the overall
success in piloting E4UnityIntegration, in chapter 6 the analysis of psychophysiolog-
ical data exposes that, while no other relationship is statistically supported, there
is a significant negative correlation between temperature and sense of presence. We
attribute this to thermal discomfort, and surmise that participants who were too
hot during the experience felt a diminished sense of presence.

We can hope that E4UnityIntegration-MIT is of service to the broader game re-
search and development communities. On the other hand, the experimental results

59

Chapter 7. Conclusions

give us ground to be more prescriptive than just wishful thinking.

Based on the findings, it seems that as participants’ body temperature increased,
their sense of presence decreased. This indicates that increased body temperature
may undermine sense of presence during VR games. Future research should experi-
mentally manipulate room temperature to elucidate if there is a causal relationship
between the two variables.

Additionally, EDA did not achieve a significant positive correlation in this study,
but it came relatively close. A study with a larger sample size could be conducted
to determine whether there is smaller scale influence on sense of presence at play.

Finally, only a selection of all psychophysiological measurements was analysed in
relation to presence. Other studies could also go in the direction of exploring how
other measurements relate to presence.

In conclusion, work remains to be done on the open research question of the re-
lationship between physiological measurements and sense of presence. Together
with some findings of our own, we have reported a range of possible avenues of
further inquiry and remain expectant of future developments in this exciting area
of research.

60

Bibliography

[1] Advanced research on human behavior. url: https://www.empatica.com/
research/publications/.

[2] An Android Plugin for E4 Wristband Integration in Unity. url: https://
osf.io/v9whk/?view%5C_only=dc43354770044134a45c0a74c312514f.

[3] Android plug-in types. url: https://docs.unity3d.com/Manual/android-
plugin-types.html.

[4] Android Studio. url: https://developer.android.com/studio.

[5] Stuart M Bender and Billy Sung. “Fright, attention, and joy while killing zom-
bies in virtual reality: A psychophysiological analysis of VR user experience”.
In: Psychology & Marketing 38.6 (2021), pp. 937–947.

[6] Emily Brown and Paul Cairns. “A grounded investigation of game immer-
sion”. In: CHI’04 extended abstracts on Human factors in computing systems.
2004, pp. 1297–1300.

[7] Aaron Frederick Bulagang, James Mountstephens, and Jason Teo. “Multiclass
emotion prediction using heart rate and virtual reality stimuli”. In: Journal
of Big Data 8 (2021), pp. 1–12.

[8] Call for Participation in VR Research. url: https://www.reddit.com/r/
mit/comments/13bvtot/call_for_participation_in_vr_research/.

[9] Rafael A Calvo et al. The Oxford handbook of affective computing. Oxford
Library of Psychology, 2015.

[10] Michael Carroll, Ethan Osborne, and Caglar Yildirim. “Effects of VR gaming
and game genre on player experience”. In: 2019 IEEE Games, Entertainment,
Media Conference (GEM). IEEE. 2019, pp. 1–6.

[11] Francesco Chiossi et al. “Virtual reality adaptation using electrodermal ac-
tivity to support the user experience”. In: Big Data and Cognitive Computing
6.2 (2022), p. 55.

[12] Mihaly Csikszentmihalyi. Beyond boredom and anxiety. Jossey-bass, 2000.

[13] Data export and formatting from E4 connect. url: https://support.empatica.
com/hc/en- us/articles/201608896- Data- export- and- formatting-

from-E4-connect-.

61

https://www.empatica.com/research/publications/
https://www.empatica.com/research/publications/
https://osf.io/v9whk/?view%5C_only=dc43354770044134a45c0a74c312514f
https://osf.io/v9whk/?view%5C_only=dc43354770044134a45c0a74c312514f
https://docs.unity3d.com/Manual/android-plugin-types.html
https://docs.unity3d.com/Manual/android-plugin-types.html
https://developer.android.com/studio
https://www.reddit.com/r/mit/comments/13bvtot/call_for_participation_in_vr_research/
https://www.reddit.com/r/mit/comments/13bvtot/call_for_participation_in_vr_research/
https://support.empatica.com/hc/en-us/articles/201608896-Data-export-and-formatting-from-E4-connect-
https://support.empatica.com/hc/en-us/articles/201608896-Data-export-and-formatting-from-E4-connect-
https://support.empatica.com/hc/en-us/articles/201608896-Data-export-and-formatting-from-E4-connect-

Bibliography

[14] Decoding wearable sensor signals - what to expect from your E4 Data. url:
https://www.empatica.com/blog/decoding-wearable-sensor-signals-

what-to-expect-from-your-e4-data.html.

[15] Anders Drachen et al. “Correlation between heart rate, electrodermal activity
and player experience in first-person shooter games”. In: Proceedings of the
5th ACM SIGGRAPH Symposium on Video Games. 2010, pp. 49–54.

[16] E4 connect. url: https://e4.empatica.com/connect.

[17] E4 for Developer. url: https://e4.empatica.com/connect/developer.
php.

[18] E4 link SDK for Android. url: https://developer.empatica.com/android-
sdk-tutorial-100.html.

[19] E4 streaming server. url: https://developer.empatica.com/windows-
streaming-server.html.

[20] E4 wristband. url: https://www.empatica.com/research/e4/.

[21] E4 wristband for Developers. url: https://developer.empatica.com/.

[22] E4 wristband technical specifications. url: https://support.empatica.com/
hc/en-us/articles/202581999-E4-wristband-technical-specifications.

[23] E4link Android SDK Javadoc. url: https://developer.empatica.com/
empatica-android-sdk-javadoc.zip.

[24] E4link Sample Project. url: https : / / github . com / empatica / e4link -
sample-project-android.

[25] Darragh Egan et al. “An evaluation of Heart Rate and ElectroDermal Ac-
tivity as an objective QoE evaluation method for immersive virtual reality
environments”. In: 2016 eighth international conference on quality of multi-
media experience (QoMEX). IEEE. 2016, pp. 1–6.

[26] Sohye Lim and Byron Reeves. “Being in the game: Effects of avatar choice
and point of view on psychophysiological responses during play”. In: Media
psychology 12.4 (2009), pp. 348–370.

[27] Meta Quest. url: https://www.meta.com/quest/.

[28] Meta Quest 2. url: https://www.meta.com/quest/products/quest-2/.

[29] Lennart E Nacke. “An introduction to physiological player metrics for evaluat-
ing games”. In: Game Analytics: Maximizing the value of player data (2013),
pp. 585–619.

[30] Lennart E Nacke and Craig A Lindley. “Affective ludology, flow and immer-
sion in a first-person shooter: Measurement of player experience”. In: arXiv
preprint arXiv:1004.0248 (2010).

62

https://www.empatica.com/blog/decoding-wearable-sensor-signals-what-to-expect-from-your-e4-data.html
https://www.empatica.com/blog/decoding-wearable-sensor-signals-what-to-expect-from-your-e4-data.html
https://e4.empatica.com/connect
https://e4.empatica.com/connect/developer.php
https://e4.empatica.com/connect/developer.php
https://developer.empatica.com/android-sdk-tutorial-100.html
https://developer.empatica.com/android-sdk-tutorial-100.html
https://developer.empatica.com/windows-streaming-server.html
https://developer.empatica.com/windows-streaming-server.html
https://www.empatica.com/research/e4/
https://developer.empatica.com/
https://support.empatica.com/hc/en-us/articles/202581999-E4-wristband-technical-specifications
https://support.empatica.com/hc/en-us/articles/202581999-E4-wristband-technical-specifications
https://developer.empatica.com/empatica-android-sdk-javadoc.zip
https://developer.empatica.com/empatica-android-sdk-javadoc.zip
https://github.com/empatica/e4link-sample-project-android
https://github.com/empatica/e4link-sample-project-android
https://www.meta.com/quest/
https://www.meta.com/quest/products/quest-2/

Bibliography

[31] Native Code expects “didUpdateOnWristStatus” in “EmpaDataDelegate”. url:
https : / / github . com / empatica / e4link - sample - project - android /

issues/2.

[32] OkHttp. url: https://square.github.io/okhttp/.

[33] Karolien Poels, Yvonne AW de Kort, and Wijnand A IJsselsteijn. “D3. 3:
Game Experience Questionnaire: development of a self-report measure to as-
sess the psychological impact of digital games”. In: (2007).

[34] Helena Polman. “The Impact of Changing Moods Based on Real-Time Bio-
metric Measurements on Player Experience”. In: Gaming, Simulation and In-
novations: Challenges and Opportunities: 52nd International Simulation and
Gaming Association Conference, ISAGA 2021, Indore, India, September 6–
10, 2021, Revised Selected Papers. Springer. 2022, pp. 171–181.

[35] Quest 2 Navigating in VR. url: https://www.youtube.com/watch?v=
gKkwfy9GueQ.

[36] James A Russell. “A circumplex model of affect.” In: Journal of personality
and social psychology 39.6 (1980), p. 1161.

[37] Thomas Schubert, Frank Friedmann, and Holger Regenbrecht. “The expe-
rience of presence: Factor analytic insights”. In: Presence: Teleoperators &
Virtual Environments 10.3 (2001), pp. 266–281.

[38] Soo Young Sim et al. “Estimation of thermal sensation based on wrist skin
temperatures”. In: Sensors 16.4 (2016), p. 420.

[39] Elton Sarmanho Siqueira et al. “An automated approach to estimate player
experience in game events from psychophysiological data”. In: Multimedia
Tools and Applications (2022), pp. 1–32.

[40] Tuples vs System.Tuple. url: https://learn.microsoft.com/en- us/
dotnet/csharp/language- reference/builtin- types/value- tuples#

tuples-vs-systemtuple.

[41] Unity. url: https://unity.com/.

[42] View logs with Logcat. url: https://developer.android.com/studio/
debug/logcat.

[43] Caglar Yildirim and D Fox Harrell. “On the Plane: A Roleplaying Game for
Simulating Ingroup-Outgroup Biases in Virtual Reality”. In: 2022 IEEE In-
ternational Conference on Artificial Intelligence and Virtual Reality (AIVR).
IEEE. 2022, pp. 207–209.

[44] Caglar Yildirim et al. “Video game user experience: to VR, or not to VR?” In:
2018 IEEE Games, Entertainment, Media Conference (GEM). IEEE. 2018,
pp. 1–9.

63

https://github.com/empatica/e4link-sample-project-android/issues/2
https://github.com/empatica/e4link-sample-project-android/issues/2
https://square.github.io/okhttp/
https://www.youtube.com/watch?v=gKkwfy9GueQ
https://www.youtube.com/watch?v=gKkwfy9GueQ
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/value-tuples#tuples-vs-systemtuple
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/value-tuples#tuples-vs-systemtuple
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/value-tuples#tuples-vs-systemtuple
https://unity.com/
https://developer.android.com/studio/debug/logcat
https://developer.android.com/studio/debug/logcat

Chapter A

E4UnityIntegration-MIT plugin

The plugin is freely available online at [2].

A.1 Source Code

A.1.1 AndroidManifest.xml

1 <?xml version="1.0" encoding="utf-8"?>

2 <manifest

3 xmlns:android="http://schemas.android.com/apk/res/android"

4 package="com.unity3d.player"

5 xmlns:tools="http://schemas.android.com/tools">

6 <application>

7 <activity android:name="com.unity3d.player.UnityPlayerActivity"

8 android:theme="@style/UnityThemeSelector">

9 <intent-filter>

10 <action android:name="android.intent.action.MAIN" />

11 <category android:name="android.intent.category.LAUNCHER" />

12 </intent-filter>

13 <meta-data android:name="unityplayer.UnityActivity"

android:value="true" />↪→

14 </activity>

15 </application>

16 <!-- E4link -->

17 <uses-permission android:name="android.permission.BLUETOOTH" />

18 <uses-permission android:name="android.permission.BLUETOOTH_ADMIN" />

19 <uses-permission android:name="android.permission.INTERNET" />

20 <uses-feature

21 android:name="android.hardware.bluetooth_le"

64

A.1. Source Code

22 android:required="true" />

23 <uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION"/>

24 <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />

25 </manifest>

Listing 11: AndroidManifest.xml

A.1.2 mainTemplate.gradle

1 apply plugin: 'com.android.library'

2 **APPLY_PLUGINS**

3

4 dependencies {

5 implementation fileTree(dir: 'libs', include: ['*.jar'])

6 implementation 'com.squareup.okhttp:okhttp:2.7.5'

7 **DEPS**}

8

9 android {

10 compileSdkVersion **APIVERSION**

11 buildToolsVersion '**BUILDTOOLS**'

12

13 compileOptions {

14 sourceCompatibility JavaVersion.VERSION_1_8

15 targetCompatibility JavaVersion.VERSION_1_8

16 }

17

18 defaultConfig {

19 minSdkVersion **MINSDKVERSION**

20 targetSdkVersion **TARGETSDKVERSION**

21 ndk {

22 abiFilters **ABIFILTERS**

23 }

24 versionCode **VERSIONCODE**

25 versionName '**VERSIONNAME**'

26 consumerProguardFiles 'proguard-unity.txt'**USER_PROGUARD**

27 }

28

29 lintOptions {

30 abortOnError false

31 }

32

33 aaptOptions {

34 noCompress = **BUILTIN_NOCOMPRESS** + unityStreamingAssets.tokenize(',

')↪→

65

Appendix A. E4UnityIntegration-MIT plugin

35 ignoreAssetsPattern =

"!.svn:!.git:!.ds_store:!*.scc:.*:!CVS:!thumbs.db:!picasa.ini:!*~"↪→

36 }**PACKAGING_OPTIONS**

37 }**REPOSITORIES**

38 **IL_CPP_BUILD_SETUP**

39 **SOURCE_BUILD_SETUP**

40 **EXTERNAL_SOURCES**

Listing 12: mainTemplate.gradle

A.1.3 UnityE4.cs

1 using UnityEngine;

2 using UnityEngine.Android;

3 using System.Collections;

4 using System.Collections.Concurrent;

5 using System.IO;

6 using System.Text;

7 using System;

8

9 public class UnityE4 : MonoBehaviour

10 {

11 // Data logging section

12

13 private enum LoggerState

14 {

15 Initial,

16 Start,

17 Logging,

18 Stop,

19 DidWrite,

20 FailedWrite

21 }

22

23 private LoggerState loggerState = LoggerState.Initial;

24

25 // Tuple class is reference type so it is thread-safe to keep track of the

last one↪→

26 public Tuple<int, int, int, double> accLast = new Tuple<int, int, int,

double>(0, 0, 0, 0.0d);↪→

27 public Tuple<float, double> batteryLast = new Tuple<float, double>(0.0f,

0.0d);↪→

28 public Tuple<float, double> bvpLast = new Tuple<float, double>(0.0f, 0.0d);

29 public Tuple<float, double> gsrLast = new Tuple<float, double>(0.0f, 0.0d);

30 public Tuple<float, double> ibiLast = new Tuple<float, double>(0.0f, 0.0d);

66

A.1. Source Code

31 public Tuple<float, double> tempLast = new Tuple<float, double>(0.0f, 0.0d);

32

33 private StringBuilder csvString;

34 private StreamWriter file;

35

36 private float currentSecond = 0.0f;

37

38 private IEnumerator E4DataLogger()

39 {

40 // Should now be loggerState == LoggerState.Start

41 GenerateCsvHeader();

42 loggerState = LoggerState.Logging;

43 while (loggerState == LoggerState.Logging)

44 {

45 LogConstruction();

46 yield return new WaitForSecondsRealtime(0.25f);

47 currentSecond += 0.25f;

48 }

49 // Should now be loggerState == LoggerState.Stop

50 if (WriteToFile())

51 {

52 loggerState = LoggerState.DidWrite;

53 }

54 else

55 {

56 loggerState = LoggerState.FailedWrite;

57 }

58 }

59

60 private void GenerateCsvHeader()

61 {

62 csvString = new StringBuilder();

63

64 string[] header =

65 {

66 "Time",

67 "AccX", "AccY", "AccZ", "AccT",

68 "Bvp", "BvpT",

69 "Gsr", "GsrT",

70 "Ibi", "IbiT",

71 "Temp", "TempT"

72 };

73

74 foreach (string s in header)

75 {

76 csvString.Append(s + ", ");

77 }

67

Appendix A. E4UnityIntegration-MIT plugin

78 csvString.Append("\n");

79

80 }

81

82 private void LogConstruction()

83 {

84 Tuple<int, int, int, double> acc = accLast;

85 Tuple<float, double> battery = batteryLast;

86 Tuple<float, double> bvp = bvpLast;

87 Tuple<float, double> gsr = gsrLast;

88 Tuple<float, double> ibi = ibiLast;

89 Tuple<float, double> temp = tempLast;

90

91 csvString.AppendFormat("{0,5:F2}, " +

92 "{1}, {2}, {3}, {4,5:F2}, " +

93 "{5}, {6,5:F2}, " +

94 "{7}, {8,5:F2}, " +

95 "{9}, {10,5:F2}, " +

96 "{11}, {12,5:F2}\n",

97 currentSecond,

98 acc.Item1, acc.Item2, acc.Item3, acc.Item4 % 1000.0f,

99 bvp.Item1, bvp.Item2 % 1000.0f,

100 gsr.Item1, gsr.Item2 % 1000.0f,

101 ibi.Item1, ibi.Item2 % 1000.0f,

102 temp.Item1, temp.Item2 % 1000.0f);

103 }

104

105 private bool WriteToFile()

106 {

107 string PID = "P000";

108

109 string fname = PID + ".csv";

110 string path = Path.Combine(Application.persistentDataPath, fname);

111

112 try

113 {

114 file = new StreamWriter(path);

115 file.WriteLine(csvString.ToString());

116 file.Close();

117 return true;

118 }

119 catch

120 {

121 return false;

122 }

123

124 }

68

A.1. Source Code

125

126 private void UpdateLogger()

127 {

128 if (loggerState == LoggerState.Start)

129 {

130 StartCoroutine(E4DataLogger());

131 }

132 }

133

134 // Delegate callback section

135

136 // Note: delegate callbacks cannot use Unity API calls because they don't

run on the main Unity thread↪→

137

138 class UnityE4linkDataDelegateCallback : AndroidJavaProxy

139 {

140 private readonly UnityE4 unityE4;

141

142 public UnityE4linkDataDelegateCallback(UnityE4 unityE4) :

base("edu.mit.virtuality.unityE4link.UnityE4link$UnityE4linkDataDelegate")↪→

143 {

144 this.unityE4 = unityE4;

145 }

146

147 void didReceiveAcceleration(int x, int y, int z, double timestamp)

148 {

149 Tuple<int, int, int, double> accTuple = new Tuple<int, int, int,

double>(x, y, z, timestamp);↪→

150 unityE4.accLast = accTuple;

151 }

152

153 void didReceiveBatteryLevel(float battery, double timestamp)

154 {

155 Tuple<float, double> batteryTuple = new Tuple<float,

double>(battery, timestamp);↪→

156 unityE4.batteryLast = batteryTuple;

157 }

158

159 void didReceiveBVP(float bvp, double timestamp)

160 {

161 Tuple<float, double> bvpTuple = new Tuple<float, double>(bvp,

timestamp);↪→

162 unityE4.bvpLast = bvpTuple;

163 }

164

165 void didReceiveGSR(float gsr, double timestamp)

166 {

69

Appendix A. E4UnityIntegration-MIT plugin

167 Tuple<float, double> gsrTuple = new Tuple<float, double>(gsr,

timestamp);↪→

168 unityE4.gsrLast= gsrTuple;

169 }

170

171 void didReceiveIBI(float ibi, double timestamp)

172 {

173 Tuple<float, double> ibiTuple = new Tuple<float, double>(ibi,

timestamp);↪→

174 unityE4.ibiLast = ibiTuple;

175 }

176

177 void didReceiveTemperature(float temp, double timestamp)

178 {

179 Tuple<float, double> tempTuple = new Tuple<float, double>(temp,

timestamp);↪→

180 unityE4.tempLast = tempTuple;

181 }

182

183 // Following method does not appear in E4 link documentation

184 void didReceiveTag(double timestamp)

185 {

186 }

187 }

188

189 class UnityE4linkStatusDelegateCallback : AndroidJavaProxy

190 {

191 private readonly UnityE4 unityE4;

192

193 public UnityE4linkStatusDelegateCallback(UnityE4 unityE4) :

base("edu.mit.virtuality.unityE4link.UnityE4link$UnityE4linkStatusDelegate")↪→

194 {

195 this.unityE4 = unityE4;

196 }

197

198 void didUpdateStatus(string status)

199 {

200 if (status == "CONNECTED")

201 {

202 unityE4.loggerState = LoggerState.Start;

203 }

204 else if (status == "DISCONNECTED")

205 {

206 unityE4.loggerState = LoggerState.Stop;

207 }

208 }

209

70

A.1. Source Code

210 void didEstablishConnection()

211 {

212 }

213

214 void didUpdateSensorStatus(string status, string type)

215 {

216 }

217

218 void didDiscoverDevice(string deviceName, int rssi, bool allowed)

219 {

220 }

221

222 void didFailedScanning(string error)

223 {

224 }

225

226 void didRequestEnableBluetooth()

227 {

228 }

229

230 void bluetoothStateChanged(bool isBluetoothOn)

231 {

232 }

233

234 void didUpdateOnWristStatus(string status)

235 {

236 }

237 }

238

239

240 private readonly string EMPATICA_API_KEY = "YOUR_API_KEY";

241

242 private UnityE4linkDataDelegateCallback unityE4linkDataDelegateCallback;

243 private UnityE4linkStatusDelegateCallback unityE4linkStatusDelegateCallback;

244 private AndroidJavaObject unityE4link;

245

246

247 // Permissions section

248

249 private bool HasUnityE4linkPermissions()

250 {

251 return Permission.HasUserAuthorizedPermission(Permission.FineLocation);

252 }

253 // Call only if you lack the necessary permissions

254 private void RequestUnityE4linkPermissions()

255 {

256 PermissionCallbacks permissionCallbacks = new PermissionCallbacks();

71

Appendix A. E4UnityIntegration-MIT plugin

257 permissionCallbacks.PermissionGranted += (string s) => {

InitUnityE4link(); };↪→

258 // FineLocation is critical, so always request again.

259 // However, not google's recommendation on how to handle user denying

260 permissionCallbacks.PermissionDenied += (string s) => {

RequestUnityE4linkPermissions(); };↪→

261 Permission.RequestUserPermission(Permission.FineLocation,

permissionCallbacks);↪→

262 }

263 // Call only if you have the necessary permissions

264 private void InitUnityE4link()

265 {

266 unityE4link = new

AndroidJavaObject("edu.mit.virtuality.unityE4link.UnityE4link",

unityE4linkDataDelegateCallback, unityE4linkStatusDelegateCallback,

EMPATICA_API_KEY);

↪→

↪→

↪→

267 }

268

269

270 void Start()

271 {

272 unityE4linkDataDelegateCallback = new

UnityE4linkDataDelegateCallback(this);↪→

273 unityE4linkStatusDelegateCallback = new

UnityE4linkStatusDelegateCallback(this);↪→

274

275 // Check permissions and initialize unityE4link

276 if (HasUnityE4linkPermissions())

277 {

278 InitUnityE4link();

279 }

280 else

281 {

282 // When granted will initialize unityE4link

283 RequestUnityE4linkPermissions();

284 }

285 }

286

287 void Update()

288 {

289 // Stop logging after 40 seconds

290 if (currentSecond >= 40.0f)

291 {

292 loggerState = LoggerState.Stop;

293 }

294 UpdateLogger();

295 }

72

A.1. Source Code

296 }

Listing 13: UnityE4.cs

A.1.4 UnityE4link.java

1 package edu.mit.virtuality.unityE4link;

2

3 import android.Manifest;

4 import android.app.Activity;

5 import android.app.AlertDialog;

6 import android.bluetooth.BluetoothAdapter;

7 import android.bluetooth.le.ScanCallback;

8 import android.content.DialogInterface;

9 import android.content.Intent;

10 import android.content.pm.PackageManager;

11 import android.net.Uri;

12 import android.os.Bundle;

13 import android.provider.Settings;

14 import android.text.TextUtils;

15 import android.util.Log;

16 import android.view.View;

17 import android.widget.Button;

18 import android.widget.LinearLayout;

19 import android.widget.TextView;

20 import android.widget.Toast;

21

22 import com.empatica.empalink.ConnectionNotAllowedException;

23 import com.empatica.empalink.EmpaDeviceManager;

24 import com.empatica.empalink.EmpaticaDevice;

25 import com.empatica.empalink.config.EmpaSensorStatus;

26 import com.empatica.empalink.config.EmpaSensorType;

27 import com.empatica.empalink.config.EmpaStatus;

28 import com.empatica.empalink.delegate.EmpaDataDelegate;

29 import com.empatica.empalink.delegate.EmpaStatusDelegate;

30

31 import com.unity3d.player.UnityPlayer;

32

33

34 public class UnityE4link {

35 // Implement these interfaces in a Unity C# script to receive the E4's data

and status updates↪→

36 interface UnityE4linkDataDelegate extends EmpaDataDelegate { }

37 interface UnityE4linkStatusDelegate {

38 void didUpdateStatus(String status);

73

Appendix A. E4UnityIntegration-MIT plugin

39 void didEstablishConnection();

40 void didUpdateSensorStatus(String status, String type);

41 void didDiscoverDevice(String deviceName, int rssi, boolean allowed);

42 void didFailedScanning(String error);

43 void didRequestEnableBluetooth();

44 void bluetoothStateChanged(boolean isBluetoothOn);

45 void didUpdateOnWristStatus(String status);

46 }

47

48 // Internal class, essential to work around a bug in the Empatica's E4 link

library↪→

49 // Passes callbacks through to the Unity C# script's

50 // Additionally, default behaviour of connecting to the first E4 found is

implemented here↪→

51 public class EmpaDelegate implements EmpaDataDelegate, EmpaStatusDelegate {

52 private final UnityE4linkDataDelegate unityE4linkDataDelegate;

53 private final UnityE4linkStatusDelegate unityE4linkStatusDelegate;

54

55 public EmpaDelegate(UnityE4linkDataDelegate unityE4linkDataDelegate,

UnityE4linkStatusDelegate unityE4linkStatusDelegate) {↪→

56 this.unityE4linkDataDelegate = unityE4linkDataDelegate;

57 this.unityE4linkStatusDelegate = unityE4linkStatusDelegate;

58 }

59

60

61 // EmpaDataDelegate methods

62 public void didReceiveAcceleration(int x, int y, int z, double

timestamp) {↪→

63 unityE4linkDataDelegate.didReceiveAcceleration(x, y, z, timestamp);

64 }

65

66 public void didReceiveBatteryLevel(float battery, double timestamp) {

67 unityE4linkDataDelegate.didReceiveBatteryLevel(battery, timestamp);

68 }

69

70 public void didReceiveBVP(float bvp, double timestamp) {

71 unityE4linkDataDelegate.didReceiveBVP(bvp, timestamp);

72 }

73

74 public void didReceiveGSR(float gsr, double timestamp) {

75 unityE4linkDataDelegate.didReceiveGSR(gsr, timestamp);

76 }

77

78 public void didReceiveIBI(float ibi, double timestamp) {

79 unityE4linkDataDelegate.didReceiveIBI(ibi, timestamp);

80 }

81

74

A.1. Source Code

82 public void didReceiveTemperature(float temp, double timestamp) {

83 unityE4linkDataDelegate.didReceiveTemperature(temp, timestamp);

84 }

85

86 // Following method does not appear in E4 link documentation

87 public void didReceiveTag(double timestamp) {

88 unityE4linkDataDelegate.didReceiveTag(timestamp);

89 }

90

91

92 private String toStringEmpaSensorStatus(@EmpaSensorStatus int status) {

93 switch (status) {

94 case EmpaSensorStatus.NOT_ON_WRIST:

95 return "NOT_ON_WRIST";

96 case EmpaSensorStatus.ON_WRIST:

97 return "ON_WRIST";

98 case EmpaSensorStatus.DEAD:

99 return "DEAD";

100 default:

101 return "UNKNOWN_STATUS";

102 }

103 }

104

105 // EmpaStatusDelegate methods

106 public void didUpdateStatus(EmpaStatus status) {

107 switch (status) {

108 case INITIAL:

109 break;

110 case READY: {

111 // Start scanning

112 deviceManager.startScanning();

113 } break;

114 case CONNECTED:

115 break;

116 case DISCONNECTED:

117 break;

118 case CONNECTING:

119 break;

120 case DISCONNECTING:

121 break;

122 case DISCOVERING:

123 break;

124 }

125

126 unityE4linkStatusDelegate.didUpdateStatus(status.toString());

127 }

128

75

Appendix A. E4UnityIntegration-MIT plugin

129 public void didEstablishConnection() {

130 unityE4linkStatusDelegate.didEstablishConnection();

131 }

132

133 public void didUpdateSensorStatus(@EmpaSensorStatus int status,

EmpaSensorType type) {↪→

134 didUpdateOnWristStatus(status);

135

136 unityE4linkStatusDelegate.didUpdateSensorStatus(toStringEmpaSensorStatus(status),

type.toString());↪→

137 }

138

139 public void didDiscoverDevice(EmpaticaDevice bluetoothDevice, String

deviceName, int rssi, boolean allowed) {↪→

140 if (allowed) {

141 // Stop scanning. The first allowed device will do.

142 deviceManager.stopScanning();

143 try {

144 // Connect to the device

145 deviceManager.connectDevice(bluetoothDevice);

146 } catch (ConnectionNotAllowedException e) {

147 // This should happen only if you try to connect when

allowed == false.↪→

148 }

149 }

150

151 unityE4linkStatusDelegate.didDiscoverDevice(deviceName, rssi,

allowed);↪→

152 }

153

154 public void didFailedScanning(int errorCode) {

155 String s;

156 switch (errorCode) {

157 case ScanCallback.SCAN_FAILED_ALREADY_STARTED:

158 s = "Scan failed: a BLE scan with the same settings is

already started by the app";↪→

159 break;

160 case ScanCallback.SCAN_FAILED_APPLICATION_REGISTRATION_FAILED:

161 s = "Scan failed: app cannot be registered";

162 break;

163 case ScanCallback.SCAN_FAILED_FEATURE_UNSUPPORTED:

164 s = "Scan failed: power optimized scan feature is not

supported";↪→

165 break;

166 case ScanCallback.SCAN_FAILED_INTERNAL_ERROR:

167 s = "Scan failed: internal error";

168 break;

76

A.1. Source Code

169 default:

170 s = "Scan failed with unknown error (errorCode=" + errorCode

+ ")";↪→

171 break;

172 }

173

174 unityE4linkStatusDelegate.didFailedScanning(s);

175 }

176

177 public void didRequestEnableBluetooth() {

178 // Requesting enabling bluetooth to the user can be implemented here

179

180 unityE4linkStatusDelegate.didRequestEnableBluetooth();

181 }

182

183 public void bluetoothStateChanged() {

184 // E4link detected a bluetooth adapter change

185 boolean isBluetoothOn =

BluetoothAdapter.getDefaultAdapter().isEnabled();↪→

186 unityE4linkStatusDelegate.bluetoothStateChanged(isBluetoothOn);

187

188 }

189

190 public void didUpdateOnWristStatus(@EmpaSensorStatus final int status) {

191 unityE4linkStatusDelegate.didUpdateOnWristStatus(toStringEmpaSensorStatus(status));

192 }

193 }

194

195

196 private final EmpaDelegate empaDelegate;

197 private final EmpaDeviceManager deviceManager;

198

199 public UnityE4link(UnityE4linkDataDelegate unityE4linkDataDelegate,

UnityE4linkStatusDelegate unityE4linkStatusDelegate, String

empaticaApiKey) {

↪→

↪→

200 Activity activity = UnityPlayer.currentActivity;

201

202 empaDelegate = new EmpaDelegate(unityE4linkDataDelegate,

unityE4linkStatusDelegate);↪→

203 deviceManager = new EmpaDeviceManager(activity.getApplicationContext(),

empaDelegate, empaDelegate);↪→

204

205 deviceManager.authenticateWithAPIKey(empaticaApiKey);

206 }

207 }

Listing 14: UnityE4link.java

77

Appendix A. E4UnityIntegration-MIT plugin

A.2 Installation Instructions

1. Import the AndroidManifest.xml and mainTemplate.gradle files.

To do this, enable Custom Main Manifest and Custom Main Gradle Template
in the settings (Build Settings → Player Settings → Publishing Settings tab
→ Under the Build header). This creates some default files with the same
name in the Assets/Plugins/Android folder, which can be replaced with the
supplied ones.

If a custom main manifest or main gradle template was already in use, you
can merge the relevant part of either (the permissions and feature below the
comment, in the case of AndroidManifest.xml, or the okhttp:2.7.5 depen-
dency in the case of mainTemplate.gradle) into the existing ones.

Note: the AndroidManifest.xml and mainTemplate.gradle files must be in
the Assets/Plugins/Android directory to work.

2. Import the E4link for Android library (E4link.aar).

Note: the file must be in the Assets/Plugins/Android directory to work.

3. Import the the UnityE4.cs script wherever, and the UnityE4link.java file
into Assets/Plugins/Android. The UnityE4.cs script receives all callbacks
(data, status) from the library and handles writing the data to a file.

UnityE4.cs can be attached to an empty GameObject. Replace the string in
private readonly string EMPATICA_API_KEY = "YOUR_API_KEY"; with a
valid developer API key to have the plugin begin functioning; these steps
suffice to trigger the default behaviour (asking for Bluetooth permissions if
not possessed, connecting to the first E4 encountered, and recording data to
a file).

Note: the UnityE4link.java file must be in the Assets/Plugins/Android

directory to work.

78

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Listings
	Introduction
	I Theoretical Framework
	Relevant Literature
	Affect and Affective Computing
	Affect
	Affective Computing

	Player Experience
	Factors Affecting Player Experience
	Measurement Methods

	Presence
	Measurement Methods
	Presence in Virtual Reality

	Psychophysiological Feedback in Games

	II Technical Work
	Empatica E4
	Sensors
	Measurements
	Interfacing Options
	E4 streaming server
	E4 realtime
	E4link for Android

	E4UnityIntegration-MIT
	Integrating Android Libraries to Unity
	E4link for Android
	E4link for Android Dependencies and Requirements

	An E4 Plugin: E4UnityIntegration-MIT
	Poor Documentation
	Nonobvious Critical Bug involving a Method in E4link's Interfaces
	Testing and Debuggability Difficulty Inherent to Using E4link for Android within Unity
	Threading Difficulties

	Design Specification
	Functional Requirements
	Foreseen Use Cases
	Target Audience
	Nonfunctional Requirements

	E4UnityIntegration-MIT Overview
	UnityE4.cs
	UnityE4link.java
	AndroidManifest.xml
	mainTemplate.gradle

	Implementation
	Working Around the Critical Bug in subsection 4.3.2
	Default Functionality
	Threading Considerations

	III Experimental Work
	Method
	On the Plane
	Design
	Participants
	Materials
	Meta Quest 2
	Empatica E4
	Presence scale

	Procedure
	Research Ethics

	Results and Discussion
	Descriptive Statistics and Pearson Correlations
	Other Variables
	Verification of E4UnityIntegration-MIT

	Conclusions
	Bibliography
	E4UnityIntegration-MIT plugin
	Source Code
	AndroidManifest.xml
	mainTemplate.gradle
	UnityE4.cs
	UnityE4link.java

	Installation Instructions

