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Abstract

Autoencoders are essential in the field of machine learning because of the wide range of applications and

distinctive talents they have. The ability of autoencoders to learn condensed and effective representations

of complicated input data is one of the main factors in their significance. Autoencoders offer effective data

compression by encoding the input data into a lower-dimensional latent space, which is useful in situations

with constrained storage or bandwidth. Autoencoders are also frequently employed for unsupervised learning

tasks like data generation, dimensionality reduction, and anomaly detection. Without relying on explicit labels

or supervision, they enable us to find underlying patterns and structures in the data. Overall, the versatility

and utility of autoencoders make them a fundamental tool in the machine learning toolbox, empowering

researchers and practitioners to tackle a wide range of problems across diverse domains.

Generative models, such as autoencoders, play a fundamental role in machine learning by enabling the

creation of new, synthetic data that closely resembles the original input distribution. These models have

revolutionised various domains, including image generation, text synthesis, and music composition, among

many others. By capturing the underlying patterns and structures of the training data, generative models

provide a powerful framework for creative applications, data augmentation, and simulation studies.

This project aimed to explore the capabilities and applications of autoencoders, a type of neural network

architecture, in the field of machine learning. The main focus of the project was to refactor legacy code

used for image identification and transform it into an autoencoder capable of generating MNIST images.

Through extensive experimentation and analysis, the project demonstrated the effectiveness of autoencoders

in learning representations of input data and generating high-quality synthetic images. The findings of this

study contribute to our understanding of autoencoders and their potential for various tasks, including image

generation. The project also highlighted the importance of clean code practises, code refactoring, and neural

network architectural design principles in adapting existing models for new purposes.



Resum

Els Autoencoders són essencials en el camp de l’aprenentatge automàtic a causa de l’ampli ventall d’aplicacions i

talents distintius que tenen. La capacitat dels autoencoders per aprendre representacions de dades complicades

i que no tenen per què estar perfectes és un dels principals factors de la seva importància. Els autoencoders

ofereixen una compressió de dades eficaç mitjançant la codificació de les dades d’entrada en un espai latent de

dimensions inferiors, cosa que és útil en situacions amb emmagatzematge o amplada de banda restringida. Els

autoencoders també s’utilitzen amb freqüència per a tasques d’aprenentatge no supervisades com la generació

de dades, la reducció de la dimensionalitat i la detecció d’anomalies. Sense dependre d’etiquetes o supervisió

expĺıcites, ens permeten trobar patrons i estructures subjacents a les dades. En general, la versatilitat i la

utilitat dels autoencoders els converteixen en una eina fonamental en l’aprenentatge automàtic, que permet

als investigadors i professionals d’abordar una àmplia gamma de problemes en diversos dominis.

Els models generatius, com els autoencoders, tenen un paper fonamental en l’aprenentatge automàtic, ja

que permeten la creació de dades noves i sintètiques que s’assemblen molt a la distribució d’entrada original.

Aquests models han revolucionat diversos àmbits, com ara la generació d’imatges, la śıntesi de text i la

composició musical, entre molts d’altres. En capturar els patrons i les estructures de les dades d’entrenament,

els models generatius proporcionen un marc potent per a aplicacions creatives, augment de dades i estudis de

simulació.

Aquest projecte tenia com a objectiu explorar les capacitats i aplicacions dels autoencoders, definits com

un tipus d’arquitectura de xarxes neuronals, en el camp de l’aprenentatge automàtic. L’objectiu principal

del projecte era remodelar un codi heretat que funcionava per a la identificació d’imatges i transformar-lo

en un autoencoder capaç de generar imatges MNIST. Mitjançant una àmplia experimentació i anàlisi, el

projecte va demostrar l’eficàcia dels autoencoders per aprendre representacions de dades d’entrada i generar

imatges sintètiques d’alta qualitat. Els resultats d’aquest estudi contribueixen a la nostra comprensió dels

autoencoders i el seu potencial per a diverses tasques, inclosa la generació d’imatges. El projecte també

destaca la importància de les pràctiques de codi net, la refactorització de codi i els principis de disseny

arquitectònic en xarxes neuronals per adaptar els models existents per a nous propòsits.
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Mama, Papa, Pol, i tota la resta de famı́lia. Ho hem aconseguit junts. Gràcies per haver-me recolzat en
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I per acabar a tu Ona. Gràcies per guiar-me, per fer-me riure, per distreure’m, per animar-me a seguir. Vas

ser, ets i seràs un dels pilars més importants de la meva vida. Estic molt orgullós del que has assolit i de la
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Chapter 1

Introduction

1.1 Object

The aim of this project is to conduct a comprehensive examination of the various techniques and algorithms

related to Variational Autoencoders (VAEs) in Machine Learning. The project will involve researching its

theoretical foundations and exploring their practical applications in unsupervised learning, generative models,

and dimensionality reduction. The project will also include implementing and evaluating various types of

VAEs on different datasets and comparing their performance to other related algorithms. In addition, the

project will investigate the use of VAEs in conjunction with other machine learning techniques such as deep

learning and reinforcement learning. The overall goal of the project is to provide a thorough understanding

of its capabilities and limitations in the field of machine learning.

1.2 Scope

The development of the project will include:

• Refactored Code

• Autoencoders (AE)

• VAEs

Will be developed following:

• MATLAB language

• Object Oriented Programming (OOP) paradigm

The project will not include:

• Creation of databases

• Natural language processing

1



1.3. REQUIREMENTS CHAPTER 1. INTRODUCTION

• Other optimization algorithms

• Unsupervised learning

High level derivable:

• Code files

• Budget

• Final report

1.3 Requirements

In this section, the requirements that need to be fulfilled to achieve the thesis objectives will be outlined.

Firstly, the code based from the previous thesis [1] must implement VAEs, as this is the main objective of

the project, being MATLAB the software used to develop it. As commented before, the easier to navigate

inside the code the better understanding of it, so OOP will be the way the code is developed.

Apart from pure technical aspects, the databases used should be free to access, at the same time as the code

shall be able to be executed in any computer, giving the option to any user to work with it.

Taking all these points in consideration, the requirements can be summarized into:

• Developed in MATLAB software

• VAEs shall be implemented considering the previous code

• Developed with OOP

• Open Access Databases

• For any user and computer

1.4 Justification

Who hasn’t heard about Artificial Intelligence (AI) these days? It is a recurring topic in news, universities,

companies, etc. that can open the doors to a new way of doing things. But why can it be so revolutionary?

Some of the main points, as told by ChatGPT[2] (An AI itself), are the following:

”AI is becoming increasingly prevalent in many areas of our lives: From virtual assistants like Siri and Alexa

to self-driving cars, AI is rapidly becoming a part of our daily lives. By learning about AI, you can gain a

better understanding of how these technologies work and how they are likely to impact our society in the

future.

AI is transforming industries: AI is transforming a variety of industries, including healthcare, finance,

manufacturing, and more. By learning about AI, you can gain a competitive edge in your field and better

position yourself for career opportunities.

2



1.5. SCHEDULE CHAPTER 1. INTRODUCTION

AI has the potential to solve complex problems: AI has the ability to analyse massive amounts of data and

identify patterns that humans might miss. This makes it a powerful tool for solving complex problems in

areas such as climate change, public health, and more.

AI is shaping the future of work: AI is likely to have a significant impact on the nature of work and the job

market in the coming years. By learning about AI, you can better position yourself for success in the rapidly

evolving job market.” (ChatGPT, 2023)

Overall, learning about this topic is important for anyone who wants to understand the role that technology

is playing in our society and the opportunities and challenges that lie ahead.

As the field of AI is really deep, the thesis will be focused on VAEs as these are a powerful tool for unsupervised

learning, and have shown to be effective in a variety of applications such as image and text generation,

anomaly detection, and data compression. Moreover, VAEs offer a more flexible approach to generative

modelling, allowing for the generation of new data samples that are not present in the original dataset, which

is a key advantage compared to traditional machine learning techniques.

By studying this type of unsupervised learning, you can gain a deeper understanding of this powerful tool,

and how it can be applied to real-world problems. This can lead to new insights and developments in fields

such as AI, data science, and computer vision.

Additionally, as the field of machine learning continues to grow and evolve, it is important to stay up-to-date

with the latest techniques and technologies, and studying VAEs can help you stay at the forefront of this

rapidly evolving field.

1.5 Schedule

The first step in every project is to settle a planning. But before scheduling the tasks, these have to be

determined. To do that, it was decided to separate between management and technical tasks, as they are

presented below. Also, the related tasks are grouped under the same number.

• Technical tasks

– OOP, Machine learning & AE Initiation

– Analysis & Refactoring of the current code

– Implementation of VAEs

– Analysis of the results obtained

• Management tasks

– Gathering information

– Project Charter development

– Documentation

3
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– Derivable preparation

It is important to remark that the beginning of the project is marked in January 23rd, but the initiation

tasks started some time before.

Also, there are two general milestones in the project related to deliverables. Project Charter delivery (March

17th) and the final delivery (June 21st).

All this information let to develop a Gantt diagram (figure 1.1), using the ”GanttProject Software” [3].

Figure 1.1: Gantt chart. Source Own
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Study of Variational Autoencoders in Machine Learning

Chapter 2

State of the art

In this chapter, there is an introduction to the different aspects that this project deals with and the state of

the art in each of them. Later chapters will delve deeper into the more specific aspects that are being worked

on.

2.1 Artificial Intelligence

AI can be defined as the simulation of human intelligence processes by computer systems that will shape our

future more powerfully than any other innovation this century. ”Anyone who does not understand it will

soon find themselves feeling left behind, waking up in a world full of technology that feels more and more like

magic.” [6].

In the last few decades, rapid advances in data storage and computer processing power have dramatically

changed the game. The history of this discipline originates from the idea of creating machines that can think

and learn like humans. Its history dates back to the beginning of the 20th century, with the development of

the first theories of computation and mathematical logic.

The term ”artificial intelligence” was coined for the first time in 1956, during a conference held at Dartmouth

College in the United States, when John McCarthy, Marvin Minsky, Nathaniel Rochester and Claude Shannon

proposed that machines could be created to simulate human intelligence as a result of a workshop that lasted

8 weeks[7]. Since then, research in AI has evolved through different periods. During the 1960s and 1970s,

programs based on symbolic logic were developed for problem-solving and reasoning. During the 1980s and

1990s, there was an increase in the use of neural networks in order to create mathematical models that imitate

the functioning of the human brain, following the initial idea of recreating human intelligence.

Nowadays, AI is one of the areas of technology that is rapidly evolving. The emergence of large amounts of

data and the advancement of information and communication technologies have allowed the development of

machine learning algorithms that are capable of improving their accuracy as they learn from data.

Forbes magazine published last April an article called 24 Top AI Statistics & Trends in 2023 [8] where it
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details some predictions of how AI will impact society and the way to do anything. In terms of economy,

the market size is expected to reach $407 billion by 2027, growing more than a 450% from the actual $68,9

billion and being an important contributor to the GDP of a lot of countries around the globe. But how is

this impacting the economy so much? Some of the many examples include the following: The rapid growth

of chatbots such as ChatGPT from OpenAI, which had more than a million users within the first five days

of its release (in figure 2.1 the way consumers plan to use AI can be seen, with chatbots being the main

tool to meet these demands); The increase of driverless vehicles, a product that is forecast to account for

10% of the global market by 2030; Voice search is on the rise, with 50% of U.S. mobile users using it daily,

according to UpCity. This trend showcases the growing prevalence of AI-powered voice assistants in everyday

life. These are some of the topics where AI is the centre of attention nowadays, but 64% of businesses expect

AI to increase productivity in all kinds of jobs. This demonstrates the growing confidence in AI’s potential to

transform business operations.

Figure 2.1: The most common way consumers plan to use AI. Source [8]

But apart from these good statistics, consumers are concerned about AI usage. As can be seen in figure

2.2, the topics that worry the most are related to product descriptions and reviews, as consumers do not

quite trust AI and its training at all. Related to these concerns and the use of this technology in business as

explained before, in figure 2.3 Forbes presented a pie chart answering ”how likely are the consumers to trust

a business that uses AI”, revealing that at least 65% of them would not have problems with this change in

the industry.
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Figure 2.2: Consumer concerns about AI uses. Source [8]

Figure 2.3: Consumer confidence in businesses using AI. Source [8]

2.2 Machine Learning

Machine learning (ML) is a branch of AI and computer science that focuses on the use of data and algorithms

to imitate the way that humans learn, gradually improving its accuracy. [5].

It refers to the study of computer algorithms that use mathematical models to represent a sample of data,

expecting that new inputs will be correctly predicted by the model. Inside machine learning is representation

learning; this field differs from traditional ML as the features are not hand-designed but learned by the
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computer itself. Finally, inside representation learning is deep learning, which, as its name suggests, is based

on the addition of more layers to the model, enhancing the creation of more abstract features. Deep learning

is most often based on deep neural network architectures or multilayer perceptrons (MLPs). (In figure 2.4 a

Venn diagram of deep learning is shown.)

Figure 2.4: Venn diagram of deep learning. Source [9]

2.3 Generative AI

[10] Generative artificial intelligence is a type of AI system capable of generating text, images, or other media

in response to prompts. Generative AI models learn the patterns and structure of their input training data,

and then generate new data that has similar characteristics.

Generative AI has potential applications across a wide range of industries, including art, writing, software

development, healthcare, finance, gaming, marketing, and fashion. Investment in generative AI surged during

the early 2020s, with large companies such as Microsoft, Google, and Baidu as well as numerous smaller firms

developing generative AI models. However, there are also concerns about the potential misuse of generative

AI, such as in creating fake news or deep fakes, which can be used to deceive or manipulate people. [10]

A generative AI is constructed by applying unsupervised or self-supervised machine learning to a data set,

and the capabilities of the system depends on it. These different modalities are the following: Text, Code,

Images, Music, Video, Robot actions & Molecules
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2.4 Autoencoders

AE structures can be seen as a particular case of feed forward neural networks, which try to learn when

copying their input to their output. This may be understood as a composition of two functions: the encoder

h = f(x) and the decoder r = g(h). The expectation is that the AE does not learn to perfectly copy x, but it

is forced to learn to prioritise which information is useful.

There are several types of AE, but one of the simplest is the undercomplete AE, which reduces the input

dimension in the encoder and reconstructs it in the decoder (see figure 2.5). Then, in the last layer of the

encoder, all the information has been compressed to a much more dense state. If the decoder is linear and

the loss function is represented by the L2 norm, the undercomplete AE learns to span the same subspace

as principal component analysis (PCA). One goal of this project is to try to assemble this behaviour and

compare the results. Figure 2.6 shows how the inner layers of an AE can be used to compress images. But

more surprisingly, this architecture allows for ”random” inputs at the bottleneck in order to generate images.

Figure 2.5: Representation of an undercomplete AE using the MNIST database. Source [11]

This figure is a perfect example of what AE are used for the most nowadays. Two interesting practical

applications of AE are data denoising (which is seen in figure 2.5), and dimensionality reduction for data

visualisation. With appropriate dimensionality and sparsity constraints, AE can learn data projections that

are more interesting than PCA or other basic techniques.

2.5 Variational Autoencoders

VAE is a type of AE with added constraints on the encoded representations being learned. More precisely,

it is an AE that learns a latent variable model for its input data. The training of a VAE is regularised to

avoid overfitting and ensure that the latent space has good properties that enable the generative process. So

instead of letting the neural network learn an arbitrary function, the program learns the parameters of a

probability distribution modelling the data (latent attributes in figure 2.6). If you sample points from this

distribution, you can generate new input data samples. A VAE is a ”generative model”.
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Figure 2.6: Schematic of a VAE showing an example of latent attributes. Source [12]

Computers are becoming increasingly creative, and VAEs are playing a big role in furthering that creativity.

Some of the examples where VAEs are used the most nowadays are the following:

• Data generation: VAEs can produce fresh samples from the learnt latent space, resulting in the

production of fresh data with a distribution like that of the training set. As a result, they are beneficial

for projects like music composition, text production, and visual synthesis.

• Anomaly detection: VAEs can be trained on normal data samples and used to detect anomalies or

outliers in new data. The normal data distribution is modelled by VAEs in order to find cases that

significantly depart from the patterns that have been learned.

• Image and video compression: VAEs can be used for efficient data compression by learning a compact

representation of high-dimensional data. The latent space is used by VAEs to encode and decode data,

allowing for data compression while maintaining key characteristics.

• Learning representations: VAEs are capable of picking up useful latent representations of data. These

representations are helpful for later tasks like classification, grouping, and retrieval because they can

capture key aspects and structure in the data.

• Domain adaptation: By converting various domains into a single representation, VAEs can learn a

shared latent space. This makes it possible to transfer information between domains, allowing models

developed for one domain to excel in another that is related.

• Imputation and denoising: VAEs can be used to denoise noisy observations or to rebuild clean data from

partial data by filling in missing values. VAEs are able to infer the most likely complete or denoised

data points by learning the underlying data distribution.

It is important to note that VAEs are a powerful tool but may require careful model design, hyperparameter

tuning, and training to achieve good results for specific tasks. Their flexibility and generative capabilities

make them a popular choice in many machine learning applications.
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Chapter 3

Theoretical background

The essential ideas and principles that underpin the subject at hand are thoroughly covered in this chapter.

It acts as the basis for understanding the essential theoretical concepts that underlie the discussions and

analyses them afterwards.

3.1 The classification problem

The classification problem refers to the task of categorising or assigning predefined labels or classes to input

data based on their features or characteristics. The goal is to build a model or algorithm that can learn from

labelled training data and then predict the class or category of unseen or future instances.

3.1.1 Logistic regression

Logistic regression is the name given to the model that was first used to attack the classification problem for

a data set with only two classes. This model is founded on a linear transformation and on a logistic unit;

equations 3.1 and 3.2 show these transformations, where β is the model parameter, x is the input, and z is

the output. The logistic unit is introduced into the model to convert the outputs of the linear transformation

to probabilities. A (0,1) interval where 0 represents the first group and 1 represents the second one. Then a

0.6 output would represent a 60% probability of belonging to group 1 and a 40% of probability of belonging

to group 0.

z = β · x+ β0 (3.1)

y =
1

1 + e−z
(3.2)

Equation 3.2 is the logistic unit, which is usually called sigmoid due to the shape of the function. Sigmoid is

a very important function in Machine Learning, and it will be studied along with other activation functions
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in section 3.3.3. In the previous thesis, logistic regression was studied in much greater depth and was one of

the key focal points of the work. From there, some examples have been extracted to explain the theoretical

basis of the current thesis. As one of those, in figure 3.1 the boundary line between the two groups found

with the logistic regression is shown. Although the data set is kind of mixed up (for obvious reasons), there

is a clear separation with higher heights and weights for men, which is correctly represented by the boundary

line. This line represents the 50-50 boundary. Regarding the model, the points exactly on the line have a

50% probability of being men and 50% of being women.

Figure 3.1: Logistic Regression for a Male/Female data set. Source [1]

3.1.2 Cost Functions

Cost function is another name for the objective function that appears in the optimisation problem in machine

learning. A wide variety of loss functions may be defined depending on different interests. The importance of

choosing the appropriate one for the involved task is enormous, as the minimization process will be strongly

correlated with it. In particular, for linear regression tasks, the cost usually chosen is the mean squared error,

or MSE, whereas in logistic regression, it is usually preferred to use the negative log-likelihood, also called

cross-entropy.

The cost function is always composed of a loss function and a regularisation term. The loss is the function

with which the error is strictly measured, while the regularisation term is sometimes added to introduce a

penalty to the parameters in order to prevent overfitting. For more information, please refer to Section 5 of

the thesis [1], where different regularisation techniques are debated. Equation 3.3 shows the cross entropy

loss function, which is the most used in NN; Equation 3.4 shows the MSE function, which is the most used

in linear regressions; Equation 3.5 shows the norm L∞, which is sometimes used in other models.

12



3.2. REGULARISATION CHAPTER 3. THEORETICAL BACKGROUND

Negative log-likelihood has good properties in combination with neural networks. The fact that it uses a

logarithm makes it work really well with models using exponentials; in addition, the logarithm squishes the

subspace to numbers with smaller computation time for machines (ln(1 · 10−10) ≈ −23).

L(θ) = − 1

m

m∑
i

yi · log(ŷi) + (1− yi) · log(ŷi) (3.3)

L(θ) =

√√√√ m∑
i

[(yi − ŷi)2] (3.4)

L(θ) = max {|y1 − ŷ1|, |y2 − ŷ2|, ..., |ym − ŷm|} (3.5)

3.2 Regularisation

Regularisation techniques are introduced in machine learning to prevent overfitting. When there is little data

or the model is deep enough, it is often the case that the model is capable of memorising all the training data

and hypothetically reaching a loss function of 0. This can be far from ideal, as the model will not predict new

outputs outside the training set really well; in this case, we say the model overfits. There exist a wide range

of regularisation techniques, but the most commonly used are: (i) Parameter penalties; (ii) Early stopping;

and (iii) dropout.

Figure 3.2: Example of overfitting in the microchip dataset. Source [1]

3.2.1 Parameter Penalties

The norm penalty regularisation is based on limiting the capacity of the model by adding to the loss function

a regularisation term. This term is multiplied by a constant hyperparameter λ which weights the contribution

of the term.
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J(θ) = L(θ) + λ ·R(θ) (3.6)

The two most common penalties are L2 and L1:

R(θ) =
λ

2
ωTω (3.7)

R(θ) = λ||ω||1 (3.8)

The first one is known as weight decay, which causes the weights to move closer to the origin; this property

scales inversely with the curvature of the loss function. In the directions of minimum curvature, the weights

are pushed closer to the origin than in other directions. Figure 3.3 tries to show how L2 regularisation works

in a function with two weights.

Figure 3.3: The effect of L2 regularisation. Source [9]

The dashed lines in figure 3.3 represent contours of L2 while the continuous ones represent contour lines of

the loss function. ω∗ is the minimum of the loss function, but due to the influence of the L2 regularisation, ω̃

is the final optimal.

On the other hand, the L1 regularisation adds the same constant penalty to all the weights in the model that

surpass a certain boundary value, while the rest are pushed to 0. This regularisation results in a more sparse

solution as some of the weights are turned to 0. This sparsity has proved to be a useful property as a feature

selection mechanism in different AIs.
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3.2.2 Early stopping

Early stopping is a different regularisation method that does not rely on the modification of the cost function.

In fact, what it does is check the test loss every epoch. Although the training loss could get smaller, if after a

certain number of epochs the test loss has not been reduced, the minimization is stopped. With this, it is

ensured that the model does not continue minimising the cost function with the training set at the expense

of augmenting the test loss.

In this method, the analogous hyperparameter to λ in the penalty strategy is the optimum number of epochs

or iterations before overfitting.

In figure 3.4 is clearly seen that it is much better to stop the minimization before the validation error starts

to grow. This is done by storing the value of the parameters at the lowest validation error point and, after a

few iterations of non-improvement in validation error, rescuing this value as the optimum found.

Figure 3.4: Learning curves showing the optimum point to stop before overfitting. Source [9]

3.2.3 Dropout

The last technique is the dropout. This is a relatively new technique compared to the others. It consists of

training different models with different combinations of a ”base” model. To see the impact of suppressing

neurons on the performance of the NN, in Figure 3.5 a scheme of all sub-networks that are constructed by

removing non-output units from a base network is shown. The implementation of this technique is more

complex and beyond the scope of this study.
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Figure 3.5: Sub-networks formed from a base network. Source [9]

3.3 Feed forward neural networks

Neural networks (NN) are one of the pillars sustaining deep learning. These structures are used in different

ways and with different intentions, but in our case, they will be thought of as a tool for classification

learning. For example, if there are two types of dogs (Doberman and Border Terrier) that have different

body dimensions, the objective of a NN could be to predict the dog’s breed only using their dimensions.

The inputs for a specific neural network are usually called features. The ”prediction” is the output of the NN,

and it can be understood as a binary state (0 for one breed and 1 for the other), but it is rather preferred to

use a continuous interval I ∈ (0, 1) that symbolises probability. Finally, the operations that the network does

in order to get a prediction are called hidden layers. As can be seen, some of these characteristics are the

same as those in the logistic regression, so it was helpful to understand those first.

3.3.1 Architecture

Neural networks are composed of layers which in turn are made of neurons. The first layer is called the

input layer, the middle ones are called hidden layers, and the last one is the output layer.

Neuron

The neuron is the simplest unit of a NN. In Figure 3.6 its functioning is represented. It receives an input and

performs a linear transformation to produce the output.
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y = WT · x+ b (3.9)

The terms y and b are scalars (the output and the free term, respectively), x is the vector of inputs, and W

is the ”weights” vector. Then the parameters of the neurons are W and b and are usually enclosed in the

term θ = W, b. Therefore, the neuron performs the transformation y = f(x ; θ). The optimisation must find

the θ that minimises the error of the predictions.

Figure 3.6: Representation of a neuron. Source [1]

Layer

A layer is a collection of neurons that apply their transformation at the same level of the model; they

are acting in parallel (see Figure 3.7). For this reason, a layer can also be explained by itself as a linear

transformation f : Rn → Rm with n given inputs and m given outputs (where m is also the number of

neurons in the layer). Equation 3.9 can be rescued, where now y and b are the outputs of the neurons and

their free terms, respectively (vectors with length m), x is the input vector (with length n), and W is the

”weighted” matrix (dimensions n×m).
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Figure 3.7: Representation of a layer. Source [1]

Deepening the model

Once the structure of a layer is defined, a multilayer NN is obtained by the concatenation of several layers.

In the last examples, the final output was omitted, but it is an important characteristic of a NN. The final

purpose of the network is to classify data; therefore, the commonly used strategy is to have a final layer with

m outputs, where m is equal to the number of classes. Then a binary state defines whether the data entry

belongs to that particular group or not. Figure 3.8 shows the representation of a neural network with two

hidden layers.

Figure 3.8: Representation of a neural network with depth L. Source [1]
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3.3.2 Propagation

In machine learning, propagation is the word used to describe the computational process of a NN. It can be

either a forward propagation or a backward propagation.

The forward propagation takes the input x and traverses it through the network to the output to compute

the predictions ŷ and the cost J(θ). On the other hand, the backward propagation starts at the cost of the

output layer and flows backwards through the network in order to compute the gradient. From now on, the

notation used to represent the different characteristics of a NN will be present everywhere. See Appendix A

for a resume of this notation.

Forward propagation

Forward propagation is the act of concatenating the transformations to the input features until reaching the

last layer output. From section 3.3.1, it is known that each layer performs a linear transformation; more

details and one last transformation (the activation function) were required. Without entering into detail, this

transformation can be seen as a function g(h) : Rn −→ Rm, therefore, a layer performs the transformation of

equation 3.10.

fk = g(WT
k · x+ bk) (3.10)

Then, if the network has depth l, the forward propagation is defined as a composition of functions 3.11.

y = f l(f l−1(f l−2(...))) (3.11)

Notice that this composition has to be resolved from the inside to the outside, which means from the first

layer to the last. In algorithm 1, a pseudo-code is shown of how a forward propagation algorithm looks.

Where the function activation function() is a non-linear transformation to the output h at every layer. In

the following sections, different types of activation functions will be presented.

It is important to note that in pseudo-codes, the × symbol represents matrix multiplication and · represents

element-wise multiplication. Also, remember that the notation of the variables refers to Appendix A.
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Algorithm 1 Forward propagation

Require:
nL number of layers
θ parameters
X matrix of data inputs
y matrix of labels related to X

Ensure:
J training error
o output at every layer

1: W, B ←− extract W B (θ)
2: o1 ←− X
3: i←− 2
4: while i ≤ nL do
5: h←− oi−1 ×Wi−1 +Bi−1

6: oi ←− activation function(h)
7: i←− i+ 1
8: end while
9: J ←− cost function(o, y)

Backward propagation

Backward propagation, usually called ”backprop”, is a strategy to compute the derivatives of a NN. This

method is based on the application of the chain rule of calculus.

∂y

∂x
=

∂f (l)

∂f (l−1)

∂f (l−1)

∂f (l−2)
· · · ∂f

(1)

∂x
(3.12)

A neural network with depth l computes forwardprop, saving the linear transformations h(k) and activation

o(k) at each layer. Afterwards, the gradient of the cost is obtained in a reverse process by applying the

equation 3.12. Starting in the last layer and applying the chain rule, the gradient of the cost with respect to

θ is the following:

∇θJ = ∇ŷL(ŷ, y) ·
∂ŷ

∂h(l)

∂h(l)

∂θ
(3.13)

Notice that ŷ is indeed the activation function of the last layer o(l) and its derivative with respect to θ is the

derivative of the activation function times the derivative of the linear function. The derivative of the linear

function is one with respect to the biases and h(l−1) respect to the weights.

dh(l)

dθ
=

(
∂h(l)

∂b
,
∂h(l)

∂W

)
=

(
1, h(l−1)

)
(3.14)

Equations 3.13 and 3.14 compute only the gradient of the last layer. In order to propagate the error backwards,

the gradient of the cost with respect to the activation function has to be multiplied by W (k). Then similarly

to equation 3.13 there is:

∇θ(k)J = ∇o(k)J ·
do(k)

dh(k)

dh(k)

dθ(k)
where ∇o(k)J = W (k)T · ∇o(k+1)J (3.15)
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This is the theory behind the backprop; the pseudocode of this method will help to make a deeper understanding

of this concept. One last thing to add is that in deep learning, these terms tend to be compressed into

just two. One for the last derivative of the linear transformation (θ), and one for the derivative of the cost

respecting the activation function (δ). We define δ as

δ(k) = ∇o(k)J = W (k)T · δ(k+1) · do
(k)

dh(k)
(3.16)

See Algorithm 2 for for full details of backward propagation. The function extractWB(), decomposes all the

parameters that are enclosed in θ into weights and biases. On the other hand, the function reconstruct grad()

does the opposite, building a gradient with the same distribution as θ with W and B data structures given as

inputs.

The back propagation algorithm is a really useful tool to compute the gradient of the cost function. Sum-

marising all the concepts developed through this section, it is seen that back propagation is in contrast to

autodifferentiation, an explicit way to compute the gradient.

Algorithm 2 Backward propagation

Require:
nL number of layers
θ parameters
X matrix of data inputs
y matrix of labels related to X
o output at every layer

Ensure:
grad gradient of the cost function

1: W, B ←− extract W B (θ)
2: i←− nL
3: while i ≥ 2 do
4: o′ ←− activation function derivative(oi)
5: if i = nL then
6: aux←− negLogLikelihood derivative(y, oend
7: δi ←− aux · o′
8: else
9: δi ←−

(
Wi−1 × δTi−1

)T · o′
10: end if
11: gradWi−1 ←− 1

nDoTi−1 · δi
12: gradBi−1 ←− 1

nD

∑
δi

13: i←− i− 1
14: end while
15: grad←− reconstruct grad(gradW, gradB)

3.3.3 Activation Functions

The activation function (AF) is used to introduce non-linearity to the model. When these functions are

applied to the main corpse of the network, they are called hidden units, and when they are used in the

output layer, they are called output units. The latter are designed in such a way that their range is (0, 1).

The NN usually uses the same AF for all of its neurons. This is not always the case; sometimes different layers
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could be assigned different functions. There are dozens of different functions implemented in the literature.

In spite of this, in this study, only the most remarkable will be taken into consideration.

Sigmoid function

The sigmoid function was introduced in logistic regression, and it is the activation function more commonly

used in feed-forward neural networks. The sigmoid is a non-linear and bounded differentiable AF, defined for

any real input and with positive derivatives everywhere. It is given by the relationship:

f(x) =
1

1 + e−x
(3.17)

Sigmoid AF is really good for the output units of NN and, in general, for shallow networks. Its major

drawbacks are sharp damp gradients, gradient saturation, slow convergence, and bad behaviour with small

weights. For the sigmoid function, the maximum value of its derivative is 0.25 (see figure 3.10). When this

value is passed through the network, it causes the gradient to become smaller and smaller; this is known as

the vanishing gradient problem.

Hyperbolic tangent function

The hyperbolic tangent AF has a similar response to the sigmoid function (both of them are exponential

functions). In Figure 3.9 this AF is represented along with the sigmoid function. The function is defined as:

f(x) =
ex − e−x

ex + e−x
(3.18)

The implementation of the tanh function improves the training speed with respect to sigmoid as the gradient

achieves higher values. Nevertheless, it has the same disadvantage as it only attains a gradient of 1 when

the input is 0 (see figure 3.10). This still produces some dead neurons as a result of the vanishing gradient

problem. This limitation pushed further the research of AF, and it birthed the rectified linear unit, or ReLU.

Tanh overrides others in recurrent neural networks and natural language processing.

Figure 3.9: Representation of Sigmoid and Tanh response. Source [1]
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ReLU function

The rectified linear unit has been the most widely used AF since it was first proposed by Nair and Hinton in

2010. It offers better performance than sigmoid and tanh activation functions. The ReLU is almost a linear

function and therefore preserves the property of easy optimisation in linear models. It is defined as:

f(x) =


0 if x < 0

x if x ≥ 0

(3.19)

Equation 3.19 grants high computation speed by avoiding exponentials and divisions. Moreover, it introduces

sparsity as it squishes the values between zero and their maximum. The downside of ReLU as an AF is that

it tends to overfit the model much more than sigmoid or tanh. Nonetheless, the ”dropout” technique works

really well to reduce overfitting. This activation function has been used in a handful of NN architectures. It

is used in the hidden units, with another AF used in the output layers. Typical examples of its application

are classification and speech recognition. In Figure 3.10 the three activation functions explored till this point

are shown and compared.

Figure 3.10: Comparison of ReLU, sigmoid and tanh AF. Source [1]

Softmax function

The softmax function is a normalised exponential function. For this reason, it is normally only used in the

output layer. It can be said that softmax is similar to both tanh and sigmoid, with the first one sharing a

similar exponential response, and sigmoid sharing the monopoly of being the two king output activation

functions.

f(x) =
exi∑
j e

xj
(3.20)

Softmax is the regularised version of the non-differentiable max function; figure 3.11 shows these two functions.
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The softmax outputs a vector of real numbers belonging to the interval (0, 1), where the sum of all of them is

equal to 1. This is useful for classification tasks where the data trying to be classified has clearly separated

groups. With sigmoid, it could be possible to obtain a result where the NN gives a certain input more than

50% probability for two different classes.

Figure 3.11: Comparison of max and softmax for the 2D case. Softmax shows its first output, it has the
shame shape in each axis. Source [1]

Other activation functions

In the previous sections, the most known and used AFs have been resumed. This does not mean that there

are not other adequate activation functions for different tasks, but that those are the most reliable in general

terms and most used for some reasons. Other well-known AF functions are the Softsign, Softplus, or ELU

functions [10]. This study will limit the implementation to the four stated in previous sections.

3.4 Optimization method

Optimisation is a branch of mathematics that focuses on the labour of finding the best possible parameters in

a function or model. In the simplest case, optimisation consists of maximising or minimising a mathematical

function. The task of the NN is to learn to classify between different groups using a set of inputs. This

process is done by modelling the error of the model using a cost function (for more information, refer to 3.1.2)

and then trying to minimise this error with respect to the parameters θ.

In this chapter, only the basis of optimisation methods and the one used in the thesis will be explained, as

this is something studied in the previous study [1].

3.4.1 The learning process

Once everything in the network is settled, it is time to obtain the optimum parameters. The learning process

of a NN is based on the idea of the minimization of a cost function J(θ). This process is usually made in an

iterative way; at first, some random parameters of θ are initialised, and with those, the cost is computed via
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forwardprop and the gradient via backprop. With this information, the θ is updated, expecting a lower value

of J. This process is repeated until a local minimum is found.

The cost function J(θ) is a scalar multi-variable function f : Rn → R, it depends on a set of parameters θ1,

θ2, ..., θn and returns a real number that represents the error of the predictions. This function has one partial

derivative for each parameter, and these are enclosed in the term named gradient ∇J(θ) =
[

∂J
∂θ1

, ∂J
∂θ2

, ...
]
,

therefore the gradient is a vector that represents the ascending line in the maximum steep direction. First-

order optimisation methods use this property to update the parameters in the optimal direction from iteration

to iteration. On the other hand, second-order methods apart from the gradient use the hessian matrix

(second-order derivatives) to update the parameters, bearing in mind the curvature of the function.

There are several approaches in the literature on how to tackle the learning process, differing in how the

θ is updated. They are classified into first-order optimisation algorithms and second-order optimisation

algorithms.

Although the second-order optimisation algorithms use the hessian matrix to update θ and are usually faster

at converging to a local minimum, they are far from ideal due to their tendency to get stuck near saddle

points. This disadvantage is added to the need for an inversion of the system of equations, which is very

expensive, giving a higher computation cost. These properties make first-order algorithms, or just gradient

based methods, more suitable for deep learning.

3.5 Gradient descent

The gradient descent is a first-order algorithm that is really easy to implement. The idea behind it is to

slowly update the parameters of the function in the direction of the gradient (equation 3.21).

x′ = x− ϵ · ∇f(x) (3.21)

The negative sign comes from the intention to minimise f(x) (contrary to maximising, which would be the

positive direction of the gradient). The other term in the equation is the step size ϵ. In machine learning, this

is a hyperparameter called learning rate (LR). The selection of an appropriate LR is crucial and will be

strongly correlated to the performance of the optimisation process. There are two approaches when selecting

the LR: it is possible to either leave it static (usually a small constant) or change it over time. The latter is

called adaptive LR. It is also possible to perform a line search, evaluate a few possible ϵ and choose the one

that results in the smallest objective function value.

The algorithm 3 shows what a general gradient descent looks like. It has a main while loop with arbitrary

optimisation criteria, and it calls the lineSearch() function, which finds the best LR among a small sample. It

could be possible to make the line-search return always a small constant, therefore simplifying it to a static

method. A typical optimisation criteria is to use the norm of the gradient; if it is close to 0, it means the

function has at least reached a local minimum. Again, the notation used is the same as the one exposed in
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Appendix A.

Algorithm 3 Gradient Descent applied to NN

Require:
ϵ0 initial learning rate
θ0 initial parameters

Ensure:
θOPT optimum parameters

1: θ ←− θ0
2: while stopping criteria not met do
3: J, o←− forwardprop(nL, θ,X, y)
4: grad←− backprop(nL, θ,X, y, o)
5: ϵk ←− lineSearch(args, ϵk)
6: θ = θ − ϵ · grad
7: end while
8: θOPT ←− θ

3.6 Stochastic Gradient descent

Stochastic Gradient Descent (SGD) is a variation of gradient descent. The need to modify algorithm 3 comes

from the fact that gradient descent algorithms need to compute the derivative of the function every iteration.

This might not be problematic for a standard mathematical function; however, in deep learning, the gradient

needs to take the sum over all the training points (in big models, this can be thousands or millions). This is

a hindrance to obtaining a practical and fast optimisation.

The concept is simple: if you need to compute the gradient over millions of points, just take a few hundred

as an estimation. According to Goodfellow, et al. [9] optimisation methods that update the parameters

using only the gradient are robust and can handle smaller batch sizes like 100, whereas second-order methods

typically require much larger batch sizes like 10000.

Algorithm 4 is a variation of algorithm 3, where the difference is in line 3. A function called minibatch

selects a small sample of points from the entire dataset. For consistency, the function minibatch should not

repeat the points from the dataset until all of them are used; one pass through all the points in the dataset is

called an epoch.

26



3.7. AUTOENCODER CHAPTER 3. THEORETICAL BACKGROUND

Algorithm 4 Stochastic Gradient Descent applied to NN

Require:
ϵ0 initial learning rate
θ0 initial parameters
I batch size

Ensure:
θOPT optimum parameters

1: θ ←− θ0
2: while stopping criteria not met do
3: yb, Xb ←− minibatch(y,X, I)
4: J, o←− forwardprop(nL, θ,Xb, yb)
5: grad←− backprop(nL, θ,Xb, yb, o)
6: ϵk ←− lineSearch(args, ϵk)
7: θ = θ − ϵ · grad
8: end while
9: θOPT ←− θ

3.7 Autoencoder

As said in the brief introduction from chapter 2.4, AE are neural networks that aim to copy their inputs to

their outputs. They work by compressing the input into a latent-space representation, and then reconstructing

the output from this representation. This kind of network is composed of two parts: the encoder and the

decoder. The architecture of the autoencoder is explained in figure 3.12.

The encoder compresses the input into a latent-space representation. It can be represented by the encoding

function 3.22:

h = f (x) (3.22)

And the decoder aims to reconstruct the input from the latent space representation. It can be represented by

the decoding function 3.23:

r = g (h) (3.23)

Figure 3.12: Architecture of an AE. Source [13]

The AE as a whole can thus be described by the function 3.24, where you want r to be as close as the original
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input x.

r = g (f (x)) (3.24)

So the lost function of the AE is expected to be like function 3.25

loss = ||x− r||2 = ||x− g (h) ||2 = ||x− g (f (x)) ||2 (3.25)

The overall AE architecture creates a bottleneck for data that ensures only the main structured part of

the information can go through and be reconstructed. In the general framework, the family of considered

encoders is defined by the architecture of the encoder network, the family of considered decoders is defined

by the architecture of the decoder network, and gradient descent is used to find the encoder and decoder that

minimise the reconstruction error.

Copying the input to the output could make AEs look useless. Indeed, by training the AE to copy the

input to the output, the latent representation h will take on useful properties. By placing restrictions on the

copying task, this can be accomplished. Constraining h to have smaller dimensions than x is one technique

to force the AE to provide usable features; in this case, the AE is called undercomplete. By forcing the

AE to learn the most important aspects of the training data, we train an undercomplete representation. If

the AE is given excessive capacity, it may learn to replicate data without gaining any insight into how the

data is distributed. This can also happen in the overcomplete scenario, where the dimension of the latent

representation is larger than the input and the latent representation’s dimension is equal to or greater than

the input. In these cases, even a linear encoder and decoder can learn to duplicate the input to the output

without understanding the data distribution in any useful way. In an ideal world, one might successfully

train any AE architecture by selecting the capacity of the encoder and decoder as well as the code dimension

based on the complexity of the distribution to be modelled.

There are different types of AE, but the most common are the following:

Denoising AEs create a corrupted copy of the input by introducing some noise. This helps to avoid the

AE copying the input to the output without learning features about the data. These AEs take a partially

corrupted input while training to recover the original undistorted input. The model learns a vector field for

mapping the input data to a lower-dimensional manifold that describes the natural data to cancel out the

added noise. [14]

Sparse AEs have hidden nodes greater than input nodes. They can still discover important features from

the data. A generic sparse AE is visualised where the obscurity of a node corresponds with the level of

activation. A sparsity constraint is introduced on the hidden layer. This is to prevent the output layer from

copying input data. Sparsity may be obtained by adding additional terms to the loss function during the

training process, either by comparing the probability distribution of the hidden unit activations with some

low desired value or by manually zeroing all but the strongest hidden unit activations. Some of the most
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powerful AIs in the 2010s involved sparse AE stacked inside deep neural networks. [14]

VAEs make strong assumptions concerning the distribution of latent variables. They use a variational

approach for latent representation learning, which results in an additional loss component and a specific

estimator for the training algorithm called the Stochastic Gradient Variational Bayes estimator. It assumes

that the data is generated by a directed graphical model and that the encoder is learning an approximation

to the posterior distribution where ϕ and θ denote the parameters of the encoder (recognition model) and

decoder (generative model) respectively. The probability distribution of the latent vector of a variational

autoencoder typically matches that of the training data much closer than a standard autoencoder. [14]

This thesis is based on VAEs, as the objective is to evolve the previous code into a functional AE and, in the

future, evolve it into a VAE. For this reason, these are explained in more detail in the following section 3.8.

3.8 Variational autoencoders

Just as a standard AE, a VAE is an architecture composed of both an encoder and a decoder that is trained

to minimise the reconstruction error between the encoded-decoded data and the initial data. However, in

order to introduce some regularisation of the latent space, we proceed with a slight modification of the

encoding-decoding process: instead of encoding an input as a single point, we encode it as a distribution over

the latent space. The model is then trained as follows (see also figure 3.13):

• First, the input is encoded as distribution over the latent space

• Second, a point from the latent space is sampled from that distribution

• Third, the sampled point is decoded and the reconstruction error can be computed

• Finally, the reconstruction error is backpropagated through the network

Figure 3.13: Difference between AE (deterministic) and VAE (probabilistic). Source [15]

In practise, the encoded distributions are chosen to be normal so that the encoder can be trained to return

the mean and the covariance matrix that describe these Gaussians. The reason why an input is encoded

as a distribution with some variance instead of a single point is that it makes it possible to express very

naturally the latent space regularisation: the distributions returned by the encoder are enforced to be close
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to a standard normal distribution. We will see in the next subsection that we ensure in this way both a local

and global regularisation of the latent space.

Thus, the loss function that is minimised when training a VAE is composed of a ”reconstruction term” (on the

final layer), that tends to make the encoding-decoding scheme as performant as possible, and a ”regularisation

term” (on the latent layer), that tends to regularise the organisation of the latent space by making the

distributions returned by the encoder close to a standard normal distribution. That regularisation term is

expressed as the Kulback-Leibler (KL) divergence (explained after in this section) between the returned

distribution and a standard Gaussian and will be further justified in the next section. We can notice that the

KL divergence between two Gaussian distributions has a closed form that can be directly expressed in terms

of the means and the covariance matrices of the two distributions.

Kulback-Leibler divergence

KL divergence is a non-symmetric metric that measures the relative entropy or difference in information

represented by two distributions. It can be thought of as measuring the distance between two data distributions

showing how different the two distributions are from each other. There is both a continuous form (equation

3.26) and a discrete form of KL Divergence (equation 3.27).

DKL(p(x)||q(x)) =
∫ ∞

−∞
p(x)ln

p(x)

q(x)
dx (3.26)

DKL(p(x)||q(x)) =
∑
x∈X

p(x)ln
p(x)

q(x)
(3.27)

Latent space

Latent space is a representation of compressed data. More often than not, data is compressed in machine

learning to learn important information about data points. As a model learns, it is simply learning features

at each layer and attributing a combination of features to a specific output. But each time the model learns

from a data point, the dimensionality of the image is first reduced before it is ultimately increased. (see

figure 3.14). When the dimensionality is reduced, this is considered a form of lossy compression.
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Figure 3.14: Depiction of convolutional neural network. Source [16]

Because the model is required to reconstruct the compressed data, it must learn to store all relevant

information and disregard the noise. This is the value of compression: it allows us to get rid of any extraneous

information and only focus on the most important features. This compressed state is the Latent Space

Representation of the data.

But why is Latent Space important? The latent space representation of our data contains all the important

information needed to represent our original data point. This representation must then represent the features

of the original data. In other words, the model learns the data features and simplifies their representation to

make them easier to analyse.

This is at the core of a concept called Representation Learning, defined as a set of techniques that allow a

system to discover the representations needed for feature detection or classification from raw data. In this

use case, our latent space representations are used to transform more complex forms of raw data (i.e., images,

video) into simpler representations that are ‘more convenient to process’ and analyse.

Implementation

Rather than directly outputting values for the latent state as it would be done in a standard autoencoder,

the encoder model of a VAE will output parameters describing a distribution for each dimension in the

latent space. Since it is assumed that our prior follows a normal distribution, the output will be two vectors

describing the mean and variance of the latent state distributions. If we were to build a true multivariate

Gaussian model, we would need to define a covariance matrix describing how each of the dimensions is

correlated. However, a simplifying assumption will be made that our covariance matrix only has nonzero

values on the diagonal, allowing us to describe this information in a simple vector.

The decoder model will then generate a latent vector by sampling from these defined distributions and

proceed to develop a reconstruction of the original input (see figure 3.15).
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Figure 3.15: Architecture of a VAE. Source [12]

With this new parameters the loss function from equation 3.25 evolves to 3.28

LV AE = L(x, x̂) +
∑
j

KL(qj(z|x)||p(z)) (3.28)

However, this sampling process requires some extra attention. When training the model, we need to be able

to calculate the relationship of each parameter in the network with respect to the final output loss using a

technique known as backpropagation. However, we simply cannot do this for a random sampling process.

Fortunately, we can leverage a clever idea known as the ”reparameterization trick,” which suggests that we

randomly sample ϵ from a unit Gaussian and then shift the randomly sampled ϵ by the latent distribution’s

mean µ and scale it by the latent distribution’s variance σ.

Figure 3.16: Introduction of the random node. Source [12]

With this reparameterization, we can now optimise the parameters of the distribution while still maintaining

the ability to randomly sample from that distribution.
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Chapter 4

Code refactoring

Now that all the bases on which this work is based have been introduced, it is time to explain where this

thesis started. It has been explained earlier that it has not been part of nothing, but has continued the

project Study of efficient numerical tools for machine learning ([1]) where an introduction to this topic was

made and a code was developed capable of being trained and identifying what was asked, as could be numbers

from the MNIST dataset or correctly carrying out the famous Iris Test.

The codes developed to build the artificial neural networks for the previous thesis are summarised in the

Unified Modelling Language (UML) in figure 4.1. All the legacy code can be downloaded from this Github

link.

4.1 Starting point

OOP was one of the pillars of the project to produce clean and extendable code. The strategy used to code

the demand was the following:

The first step was to define the general structure of the code. The initial idea was to have three classes: Data,

Network and Trainer, with network in composition with Data, and Trainer with Network. Sticking to this

idea put up some hindrances during the development of the thesis.

In the end, quite a few more support classes appeared during the development of the project. Network owned

a propagator, which was the central CPU where the mathematics occurred, and a plotter, which was in

charge of the plots and graphics. The trainer was a template for both Fminunc from MATLAB and some

gradient descent methods that inherit the functions.

The conclusions about the code structure that position the current thesis beginning, as the code has to be

refactored, were the following:

”The code has been successfully implemented, it is extendable and not as easy to read as desirable but

sufficient. In the end, when designing big codes is easy to get tangled up. The code can work with 8 different
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data sets easily and can be extended to work with any dataset if saved in CSV. It also does what it was

required, and achieves similar levels of accuracy as some libraries of deep learning.” [1]

From here, the objective is to introduce the AE but also to make the code fancier and cleaner.

4.2 First steps

First of all, it is important to note that my knowledge about coding, OOP, and AI at the beginning of the

project was limited, so a lot of work behind the final program has been done in order to finally perform the

best I could. The training was done using ”The student’s guide to clean code development” and my tutor

Alex’s teaching site.

The first task is to learn what the code does and how to approach the refactoring needed. The UML (figure

4.1) has been created to understand how the code is organised. Also, a run test for the ”Iris Test” has been

done, and the Confusion Matrix has been plotted (figure 4.2, to understand what type of information this

last gives us.

Figure 4.2: Confusion Matrix for the understanding run. Source own

Given that the test ratio was set at 30% in this figure and that the code was tested with 45 outputs, a total

of 105 training flower classes were used. With only one error, the program mistook a ”2 class” for a third

class while matching 97.8% of the output classes with their targets. This gives us confidence that Toni’s code

is effective because both the training and the test were correctly carried out, and the software was able to

almost exactly identify the Iris species (Iris setosa, Iris virginica, and Iris versicolor) that were the target just

by knowing the size of the sepals and petals.
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After understanding what the code does and how it is organised, it is time to think about how to refactor it

in order to work as an AE. For the system to be flexible and adaptable, the Trainer and Network classes

must remain independent. By explicitly separating the training and generating duties, it will allow the code

to build and improve its sample generation functionalities. So this is the first task to be performed.

The first idea is to create a class called ”OptimizationProblem” in composition with Network, where the

trainer is allocated, in order to separate everything optimisation-related from network. The structure of this

intermediate refactored code is shown in figure 4.3.

Figure 4.3: Intermediate UML. Source own

4.3 Final structure building

Now that ”Network” and ”Trainer” have been separated from each other and the propagator has been

incorporated into the ”OptimizationProblem” class, it is time to try to privatise the classes as much as

possible in order to clear up the code and enhance its efficiency.

To accomplish this, it has been determined to develop a master class from which they will hang the rest and

use it to initialise and call the required functions. The creation of this class also allows us to privatise as

much as possible by allowing us to avoid moving numerous unneeded attributes from one class to another in

order to reach their intended destination. From here, it has also been determined to reorganise the classes

that have certain functionality so that each is responsible for its particular purpose, resulting in the structure

shown in Figure 4.4.

Thus, the five classes that have been created are as follows:

The first, LearnableVariables, is responsible for initiating and saving the variable that is trained, as its

own name indicates. It has been created in an independent class so that it is the same class that always

keeps the θ and does not have to go guarding in each class and go calling from one to the other.
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After that, the Network class finally integrates everything that the structure and navigation within it refer

to. This implies then that the propagator is inside, as well as the activation functions or creating the neuronal

network itself.

Now, we have a new class called CostFunction, which is responsible for calling the subclass that is required

according to the approximation that you want to do. (L2 or a normal propagator).

The Trainer class is the mother of optimizers. Depending on what is selected, activate the required optimizer

(usually the SGD) and interact with the rest only with cost and gradient, as AE requires.

Finally, the Plotter class, which has been adapted to the new structure but whose function remains the

same as in the legacy code, graphically extracts certain results.

Now that we have the definitive structure, we must check that the code still works perfectly since we have

only restructured it and no functionality has changed. For that, we will run an Iris test and check that the

effectiveness of target vs. output remains above 90% (see results in Section 5.1).

4.4 Evolving into an AE

Once the code has the desired structure, is privatised with clean code practises, and is proven to extract valid

results, it is time to transform the program into an AE. This means that now is time to move from a original

”X −→ encoder-decoder −→ Y” neural network architecture to ”X −→ encoder-decoder −→ X”.

To do this, it is time to modify the only class that has remained intact from the inherited code, ”Data”.

Having done all the refactoring work, a much easier scenario now arises, where what should be done is simply

tell the program the expected way of producing the output. We moved from creating a vector based on the

type of input we had (e.g., 10 in the MNIST, corresponding to all numbers from 0 to 9), to a matrix in the

form of the input (784 columns in the MNIST, corresponding to all features of every image).

The final code for this thesis can be downloaded from this Github link.
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Chapter 5

Results

Finally, the refactoring performed will be validated, and the performance of the AE developed in this thesis

will be analysed. Two topics will be discussed: the influence of different activation functions and an analysis

of the different optimisation parameters to improve the quality and performance of the program.

In this study, all the validation of refactoring has been carried out with the Iris dataset, since thanks to its

reduced size, we obtained the results almost immediately. Still, for the AE, it has been decided to use the

dataset MNIST, a world-known dataset containing 10,000 grey-scale images of 28x28 pixels (784 features)

representing hand-written digits (see figure 5.1). The goal from the beginning was to generate images, and

the fact that the images are numbers from 0 to 9 in white and black facilitates much both the visualisation of

the final image as well as working with computers that are not very powerful to have a reasonable time-out.

The original MNIST dataset is already separated into training and testing, and it consists of 60,000 images

in the training set and 10,000 in the test set. However, in this project, the test set has been used as a whole

and has been divided 70/30. This has been done to reduce possible problems with memory and time.

Lastly, after all the optimisation parameters are discussed, the final results will be presented, and the

effectiveness of the AE will be evaluated.

Figure 5.1: MNIST dataset. Source [17]
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5.1 Refactoring validation

In this section, we will obtain the results of the identification program after performing the refactoring, thus

validating its correct functioning.

The goal is to obtain an accuracy of more than 90%, which is the coincidence between the target stipulated

by the dataset and the output that the program generates.

Until now, while we were working on the code, the continuous validations that were being made were done

with the ”Iris Test”, as it worked with many fewer features, and that caused us to have the training almost

immediately. But now that it’s finished, a final validation has been made with the ”Iris Test”, as we knew it

should work, and also with the dataset ”MNIST”. This has been done because it is with which the AE has

been worked, so we needed to know that it identified well the images that entered it, and it has been possible

to do since we had results of the code inherited in the previous thesis [1] that we have been able to compare.

Validations have been made using the loglikelihood cost type and the following activation functions: ”ReLU”

for hidden units and ”Sigmoid” for output units.

Figure 5.2: Refactoring validation: Iris Test. Source own
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As can be seen in figure 5.2, only one of the 45 images tested has been identified wrong, giving a score of

97,8% valid answers.

Also in figure 5.3, the accuracy of the code identifying the numbers in the images is above 95%, which is

considered a very good result.

Figure 5.3: Refactoring validation: MNIST. Source own

Taking these results into account, we can confirm that the code is working properly, so the refactoring has

been done satisfactorily.

41



5.2. ACTIVATION FUNCTION DECISION CHAPTER 5. RESULTS

5.2 Activation Function Decision

Although it is possible to use different activation functions for different layers and even for different neurons,

the NN studied for the AE will only use one type of activation function for all the hidden units and one for

the output layer, as it is the only configuration where the code optimises properly.

To talk about the only valid configuration, we must understand the problem that was raised. When we first

ran the code, we realised that the cost function was stable but not minimised, and we did not get the results

we expected. To verify this, we decided to implement a function that would allow us to display a random

image of what our code generated.

In Figure 5.4, we can see the result we obtained with this simulation next to what was expected, concluding

that it was not what we were looking for. From here, we started looking for the problem and saw that ”a” (x

of the intermediate layers) was not updated during the iterations. Having found the problem, it was only

necessary to find the solution.

Figure 5.4: Comparison between target (a) and output (b) in the first run of the code as an AE. Source own

After iterating various optimisation parameters and seeing that the result remained unchanged, we realised

that what might be happening is that we were using an incorrect activation function. After discussing it, it

was concluded that the error was in the selected activation function (at that time, it was a sigmoid) for the

hidden units.

We know that the ReLU function prevents the problem of gradient fading that can occur with the sigmoid

function. Gradient fading is a phenomenon in which gradients become very small as they spread backwards

through deep layers, which makes effective model training difficult. The ReLU function helps mitigate this

problem by keeping gradients more stable and preventing their fading. In addition, another thing that benefits

from the change is that the ReLU activation function is computationally more efficient than the sigmoid,

meaning it requires less calculation time during the model training.

So the decision has been made to use the ReLU activation function for the hidden units. After applying this

change, the AE extracted the first reasonable result, that can be seen in the first iteration of the optimization

parameters in figure 5.5.

5.3 Optimization parameters iteration

From now on, where we already have the correct activation functions and the code works, it is time to

iterate the different optimization parameters to find the minimum cost function while maintaining reasonable
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training times.

After running the code several times of test and changing various parameters without following any pattern,

we see that whenever it converges, with the values in which we are moving, the stop criterion is to reach the

”MaxEpochs”, so the rest of the parameters will be kept during the simulations as indicated in table 5.1.

Parameters Value

Learning Rate 0,01

Lambda 0

TestRatio 30

MaxFunEvals 2000

MaxEpoch 58

OptTolerance 10−6

timeStop Inf([1,1])

fvStop 10−4

nPlot 1

Batch size 200

Table 5.1: Initial values before any iteration. Green values are those that will remain constant throughout all
iterations.

To evaluate the level of the result obtained in each iteration of some parameter, the easiest way is to look at

the images from which we extracted the code after each run and compare them with others to see which is

better. But this method is very subjective and no longer only depends on the criteria that we follow when

looking at it; when plotting a random image (every time the X is created in a different order), we do not

always get the same number, and some look more like its target than others. Therefore, the most appropriate

way to control the proper functioning of the AE is by looking at the cost function and its final value. The

smaller it is, the better the result obtained. There are no more ways to evaluate it since, unlike the inherited

code where it should hit a result already stipulated, with the generation of images we do not seek to scrap

the target image but learn from it and create a similar one.

Five possible parameter analyses have been performed: the Learning rate, the Test ratio, batch size,

MaxFunEvals, and Lambda, all using a NN architecture of 784 - 250 - 50 - 250 - 784. Finally, an architecture

analysis has been done. The number following the letter represents how many tests have been done. For

example, A1 T3 represents the third test of the first architecture, and A5 T1 is the first one of the fifth

architecture. In the tables, only the most significant tests are shown, but up to 30 tests with different

parameters have been performed to find the optimal optimisation parameters, and 10 architectures were tried.

The analyses have been done one after the other to optimise time. There is a possibility that some combination

with two values that are not optimal ends up giving a better overall result, but there is no criterion to

evaluate this, and a lot of trial and error time would be needed. Also, the only optimisation method used has

been SGD, as an initial trial of Fminunc did not support the amount of data needed to train this AE.
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5.3.1 Learning rate analysis

The learning rate is a really important parameter that might give you headaches when choosing it. A too

small learning rate can slow down optimisation and be a hindrance to overcoming local minimums. A too-large

learning rate might become unstable and never reach a minimum at all.

Figure 5.5 corresponds to the first test performed, where we can clearly see a similar shape between the

target and the output, but this last has a very low image quality. Figure 5.6 is the representation of the best

scenario achieved by iterating the Learning Rate.

Parameters A1 T1 A1 T2 A1 T3 A1 T9

Learning Rate 0,01 0,1 0,001 0,04

Results

Elapsed time 43,89 0,82 43,63 42,51

Final Cost Fnc 86,83 5630,74 169,8 74,84

Nº Epochs 58 1 58 58

Nº Iterations 1994 34 1994 1994

Stop Criteria MaxEpoch OptTol MaxEpoch MaxEpoch

Table 5.2: Learning rate analysis results.

Figure 5.5: Results of test A1 T1. Target (a); Output (b); Cost Function (c). Source own

Figure 5.6: Results of test A1 T9. Target (a); Output (b); Cost Function (c). Source own

44



5.3. OPTIMIZATION PARAMETERS ITERATION CHAPTER 5. RESULTS

5.3.2 Test Ratio analysis

The Test ratio has been analysed just to see if there is a significant change in the results. This actually affects

the percentage of data used to train the AE and what is left to test it.

After three different tests, the conclusion has been that the cost function does not change significantly, so the

test ratio will stay at 30%.

Parameters A1 T12 A1 T13 A1 T14

Test Ratio 10 20 50

Results

Elapsed time 41,05 42,23 44,6

Final Cost Fnc 78,34 77,05 77,32

Nº Epochs 45 50 80

Nº Iterations 1979 1999 1999

Stop Criteria MaxEpoch MaxEpoch MaxEpoch

Table 5.3: Test Ratio analysis results.

5.3.3 Batch size analysis

The concept of batch size is explained in section 3.6. What we can see here is that a very large batch size can

slow down the minimization considerably, even increasing the number of MaxEpochs, so that we do not reach

a final result of the cost function sufficiently well.

Figure 5.7 is a clear example of an AE with a cost function that is not sufficiently minimised. After some

iterations, the optimal result was the initial one of a batch size of 200, represented in figure 5.6.

Parameters A1 T15 A1 T16 A1 T21 A1 T9

Batch Size 2000 600 100 200

Results

Elapsed time 276,79 98,54 24,69 42,51

Final Cost Fnc 204,5 73,7 88,52 74,84

Nº Epochs 572 172 29 58

Nº Iterations 1712 1879 1959 1994

Stop Criteria MaxEpoch MaxEpoch MaxEpoch MaxEpoch

Table 5.4: Batch size analysis results.
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Figure 5.7: Results of test A1 T15. Target (a); Output (b); Cost Function (c). Source own

5.3.4 MaxFunEvals analysis

In practical terms, MaxFunEvals determines the maximum number of iterations or evaluations that the

optimisation algorithm will perform before terminating. If the maximum number of function evaluations is

reached without finding a satisfactory solution, the algorithm may stop and return the best solution found so

far. In our case, it directly affects the MaxEpochs that our program does, so it also determines (but in a

different way) how long the training process will be.

It does not affect the minimization itself, so the point here is to find a duration of the training that is good

enough in terms of minimising the cost function without being too long.

Parameters A1 T22 A1 T27 A1 T28 A1 T30

MaxFunEvals 3000 5000 15000 100000

Results

Elapsed time 64,31 109,64 323,17 2313,33

Final Cost Fnc 72,04 64,74 59,62 53,13

Nº Epochs 86 143 429 2858

Nº Iterations 2974 4969 14980 99994

Stop Criteria MaxEpoch MaxEpoch MaxEpoch MaxEpoch

Table 5.5: MaxFunEvals analysis results.

Figure 5.8: Results of test A1 T22. Target (a); Output (b); Cost Function (c). Source own
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Figure 5.9: Results of test A1 T27. Target (a); Output (b); Cost Function (c). Source own

Figure 5.10: Results of test A1 T22. Target (a); Output (b); Cost Function (c). Source own

5.3.5 Lambda analysis

With such a large dataset as the MNIST and inside an AE that uses a lot of variables, the idea of using

lambda seemed unuseful.

After doing some iterations, our hypothesis was validated, so the lambda stayed at 0.

Parameters A1 T24 A1 T25 A1 T26

Lambda 1 0,5 0,1

Results

Elapsed time 42,13 42,05 42,15

Final Cost Fnc 239,2 248,56 151,52

Nº Epochs 58 58 58

Nº Iterations 1994 1994 1994

Stop Criteria MaxEpoch MaxEpoch MaxEpoch

Table 5.6: Lambda analysis results.

5.3.6 NN Architecture analysis

Finally, after having the optimisation parameters that give us the best result, the architecture has been

iterated to find the values that give us the minimum cost function. This is achieved by avoiding the overfitting

that could appear with a too complex NN.
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The optimal architecture was found to be 784 - 500 - 100 - 500 - 784, giving us the minimum cost function

seen from every iteration.

Parameters A2 T1 A4 T1 A6 T1 A10 T1

Architecture

784

500

250

100

50

10

50

100

250

500

784

784

100

50

10

50

100

784

784

500

50

500

784

784

500

100

500

784

Results

Elapsed time 175,23 75,32 148,93 153,37

Final Cost Fnc 205,18 110,371 61,81 59,64

Nº Epochs 143 143 143 143

Nº Iterations 4969 4969 4969 4969

Stop Criteria MaxEpoch MaxEpoch MaxEpoch MaxEpoch

Table 5.7: Architecture analysis results

Figure 5.11: Results of test A2 T1. Target (a); Output (b); Cost Function (c). Source own
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Figure 5.12: Results of test A4 T1. Target (a); Output (b); Cost Function (c). Source own

Figure 5.13: Results of test A6 T1. Target (a); Output (b); Cost Function (c). Source own

5.4 Optimization evolution

The purpose of this section is to show how the program is being trained and the relation between the output

and the value of the cost function. In figure 5.14 the target and the cost function of one run of the code are

shown. In figure 5.15, the evolution of the output is shown. Every image represents the output at the end of

every epoch, except for the last two images, which represent the 80th epoch and the last one, as all these last

outputs were very similar.

Figure 5.14: Target (a) and Cost function (b) for outputs from figure 5.15. Source own
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Figure 5.15: Evolution of the output during the training process. Source own

5.5 Final results

The final results are shown in this section. In table 5.8 the values of the parameters are exposed. AF TF

represents the optimal AE, and AF Tmax corresponds to a much larger run performed to see the results,

knowing it was not worth it to wait such an amount of time for a very similar result.

The images extracted and the cost function evolution from both simulations are shown in figures 5.16 and

5.17 respectively.

Parameters AF TF AF Tmax

Learning Rate 0,04 0,04

Lambda 0 0

TestRatio 30 30

MaxFunEvals 5000 15000

MaxEpoch 143 429

OptTolerance 10ˆ(-6) 10ˆ(-6)

timeStop Inf([1,1]) Inf([1,1])

fvStop 10ˆ(-4) 10ˆ(-4)

nPlot 1 1

Batch size 200 200

Architecture

784

100

50

10

50

100

784

Results

Elapsed time 153,37 450,61

Final Cost Fnc 59,64 54,26

Nº Epochs 143 429

Nº Iterations 4969 14980

Stop Criteria MaxEpoch MaxEpoch

Table 5.8: Final parameters values
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Figure 5.16: Results of test AF TF. Target (a); Output (b); Cost Function (c). Source own

Figure 5.17: Results of test AF Tmax. Target (a); Output (b); Cost Function (c). Source own
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Chapter 6

Conclusions

The aim of this thesis was to conduct a comprehensive examination of the various techniques and algorithms

related to VAEs in Machine Learning. At the end, the implementation of AE has been the most realistic

objective and the one achieved successfully. We were able to create a model that not only successfully detected

photos but also showed the potential to create new images based on the learned representations by utilising

the power of AEs. This generative feature of the AE improves the model’s potential use cases and creates

intriguing new opportunities for creative applications.

The code can be run on every computer without having a large elapsed time, despite requiring more capacity

than the legacy code as it works with much more variables. This fulfils an important objective of this project.

Rethinking the architecture as part of the refactoring process helped us increase clean code practises and

optimise the performance of the code. All of the results were above 95%, demonstrating the refactored code’s

effectiveness in recognising images.

The final results demonstrated how well the AE captured and represented the key elements of the input

photos while enabling the creation of new samples that were visually plausible. The project also demonstrated

the advantages of using an AE for image generation, including the capacity to explore the latent space,

regulate the generation process, and improve the interpretability of the model’s internal representations.

All these objectives were successfully met. The codes used during this project have been coded from a legacy

code from thesis [1], maintaining a robust and simple-to-use program. Nevertheless, during the development of

this thesis, the scope was reduced as we faced our optimistic schedule predictions, leaving the implementation

of VAEs out of the scope because of a lack of time.

The natural path to continuing this project is to finally implement VAEs into the code. Also, some random

data generation in the latent space might be interesting to perform, as together with VAE’s implementation,

controlled output generation might be done. Another point to work on might be implementing the Fourier

transform for intelligent data classification to reduce the features in every image and enable our code to work

with larger and more complex images.
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Chapter 7

Social & Environmental impact

In this chapter, the social and environmental impacts derived from the study of generative AI and AE in

the field of machine learning will be analysed in detail. As technology advances and becomes increasingly

integrated into our lives, it is critical to understand how our research and development can affect society and

the environment.

7.1 Social Impact

AI’s impact on society is widely debated. Many argue that AI improves the quality of everyday life by doing

routine and even complicated tasks better than humans can, making life simpler, safer, and more efficient.

Others argue that AI poses dangerous privacy risks, exacerbates racism by standardising people, and costs

workers their jobs, leading to greater unemployment.

But what is certain is that we are reaching a point where we must regulate and control this sector, as one

can easily deceive a person, for example, with voice, image, or video generative AI.

7.2 Environmental Impact

The specific environmental impact of this work is minimal. You could count on the consumption of electricity

for the computer or WiFi, but we would be talking about a ridiculous and despicable amount.

However, in the already widespread field of AI, there is one factor to consider. Now we are working on a

program where we have many degrees of freedom, which implies we need a lot of computing ability, but we

have very little data trained. At the time we evolve and want to give a much more complex and comprehensive

training to our program, we will need a lot more calculation capacity because we will be talking about many

degrees of freedom, which implies a huge energy consumption.

Therefore, on this latter point, it would be interesting to work either with methods that reduce the needs of

the program or on how to make this necessary energy no problem.
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Chapter 8

Budget summary

The aim of this section is to present a summary of the associated costs of the project. The budget is divided

into five different groups, which are the ones presented in Table 8.1: Documentation, Technical Development,

Software, Other Direct Costs, and Indirect Costs. All of these are related to the hours of work of the engineer

and the cost of the tools used.

The indirect costs are estimated at 20% of the direct costs (i.e., office rental, energy supplies, etc.). The mean

hourly cost has been set to 13e/h, as it is the mean salary in engineering in Spain.

BUDGET

Item Unit Cost [e/h] Quantity [h] Total [e]

Documentation 13 170 2210

Technical Development 13 400 5200

Others - 30 715

Software - - 816

DIRECT COST - - 8941,0

INDIRECT COST 20% 8941 e 1788,2

TOTAL - - 10729,2

Table 8.1: Project’s budget summarised
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Appendix A Neural Network Notation

Notation Explanation Dimension

Bi vector of biases at layer i RnSi

grad gradient vector (analogous to θ) Rk

hi outputs after the linear transformation at layer i M(nD, nSi)

k number of parameters to minimize in the NN N

nD number of data points N

nF number of features N

nG number of groups N

nL number of layers N

nS vector with the architecture of the NN NnL

oi outputs after the activation function at layer i M(nD, nSi)

Wi matrix of weights between layer i-1 and i M(nSi−1, nSi)

x matrix with different inputs in rows and features in col M(nD, nF )

y matrix with different inputs in rows and classes in col M(nD, nG)

δi reverse propagation of the gradient at layer i M(nD, nSi)

θ vector with all the parameters W,B Rk
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Appendix B Databases used

Name Data points Features Classes

Iris 150 4 3

https://www.kaggle.com/datasets/uciml/iris

MNIST 10,000 784 10

https://ch.mathworks.com/help/deeplearning/ug/data-sets-for-deep-learning.html
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