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Abstract

English

Robotic autonomous exploration is an active field of research, where robot perception
pipelines abound. Graph-based pipelines, in particular, are a way to represent the envi-
ronment efficiently, and provide grounds for reasoning on a high level to solve robotics
tasks.

Wepropose a framework to generate hierarchical scene graphs automatically fromphoto-
realistic environments. In this thesis, a graph perception pipeline, Hydra, is employed
in combination with Habitat-Sim, a 3D simulator, to explore and generate 3D scene
graph representations from the simulated 3D maps. This framework and data have
provided the grounds to establish a general pipeline for solving exploration tasks in 3D
environments using Graph Neural Networks and Reinforcement Learning.

Keywords: Hierarchical Scene Graphs, Dynamic Scene Graphs, Autonomous Explo-
ration, Hydra, Habitat-Sim, ROS, Graph Reinforcement Learning.

AMSMSC codes: 68T45, 68T40, 68U20, 90C40.

Català

L’exploració robòtica autònoma és un camp de recerca actiu, on els mètodes de percep-
ció robòtica hi abunden. Els mètodes basats en grafs, en particular, són una manera
de representar l’entorn de forma eficient, i ofereixen una base sobre la que raonar a alt
nivell per resoldre tasques de l’àmbit de la robòtica.

Proposem un sistema per generar grafs jeràrquics d’escena automàticament a partir
d’entorns foto-realistes. En aquest treball emprem un mètode de percepció basat en
grafs, Hydra, en combinació amb un simulador 3D anomenatHabitat-Sim, per explorar
i generar representacions en forma de grafs d’escena 3D dels entorns tridimensionals
simulats. Aquest sistema i les dades que n’han derivat ens donen una base sobre la que
establim unmètode general per resoldre tasques d’exploració en entorns tridimension-
als mitjançant Xarxes Neuronals per a Grafs i Aprenentatge per Reforç.
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Paraules clau: Grafs Jeràrquics d’Escena, GrafsDinàmics d’Escena, ExploracióAutònoma,
Hydra, Habitat-Sim, ROS, Aprenentatge per Reforç en Grafs.

AMSMSC codes: 68T45, 68T40, 68U20, 90C40.

Castellano

La exploración robótica autónoma es un campode investigación activo, donde losméto-
dos de percepción robótica abundan. Losmétodos basados en grafos, en particular, son
una forma de representar el entorno de forma eficiente, y ofrecen una base sobre la que
razonar a alto nivel para resolver tareas del ámbito de la robótica.

Proponemos un sistema para generar grafos jerárquicos de escena automáticamente
a partir de entornos fotorealistas. En este trabajo usamos un método de percepción
basado en grafos, Hydra, en combinación con un simulador 3D llamado Habitat-Sim,
para explorar y generar representaciones en forma de grafos de escena 3D de los en-
tornos tridimensionales simulados. Este sistema y los datos que han derivado de él
nos dan una base sobre la que establecemos un método general para resolver tareas de
exploración en entornos tridimensionales mediante Redes Neuronales para Grafos y
Aprendizaje por Refuerzo.

Palabras clave: Grafos Jerárquicos de Escena, GrafosDinámicos de Escena, Exploración
Autónoma, Hydra, Habitat-Sim, ROS, Aprendizaje por Refuerzo en Grafos.

AMSMSC codes: 68T45, 68T40, 68U20, 90C40.
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1 Introduction

Robotics research and practice is nowadays pervasive in a lot of industries: from au-
tonomous vehicles ([23], [15]) and automated railway lines in transportation ([13],
[38]) to automating the monitoring, planting or gathering of crops in agriculture ([21],
[30], [1]), robots are more and more taking over human tasks, some of them menial,
some of them requiring certain skills.

One of these human tasks that we perform without pausing to think twice most of the
time is navigating a space: be it moving ourselves to a point accounting for several
physical constraints, completely exploring a new environment or looking for a particu-
lar object or place, there’s an implicit planning procedure that goes on in our minds. In
particular, examples of these tasks with unknown spaces in our daily lives are plenty,
ranging from looking for the bathroom in a bar where we previously have not been,
searching for where we left our keys in a new office, or navigating a train station where
our train has just stopped. Some of these environments are mapped, or have some
signals we can guide ourselves with, but we cannot assume that for every unknown
environment. Moreover, we usually are not aware of which "sensors" we use to search
for our objectives: we are able to use chemical signals through our nose, haptic signals
through our skin, and image signals through our eyes, tomention some examples. How
could we make a robot reason about all of this?

Extracting priors from the environment

This problem has been addressed previously by several investigations, such as [22],
[16] or [35]. Most of the time, these research efforts use both visual and location infor-
mation in order to extract other priors from the environment, which are used to reason
about it and perform a downstream task. One of these types of priors is graph infor-
mation, which is what this thesis will deal with.

Graphs are an abstract way to represent relational information between elements that
can belong to one or several categorical classes. Graphs represent all kinds of relational
structures in a simple, intuitive way, andmost of the time provide great insight on them
without much additional information than just their relational properties. This rela-
tional information can encompass, for example, spatial relationships between points in
a certain space.
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Scene graphs

Previous works use several high-level representations of the environment that are built
online during navigation and serve as cues for this process. These representations, most
of the time, involve geometric information about the immediate environment of the
agent, and do not represent higher-level abstractions directly, but rather compute them
implicitly. This might hinder the progress of the agent when learning or deploying
some autonomous behavior, as itmight be losing some information thatmight be useful
to perform human-defined tasks.

Our proposal is to use a representation in the form of a layered graph called a scene graph.
This concept comes from graphics applications and computer games, and is an abstract
representation of a 2D or 3D scene that groups elements in the scene by some shared
semantic property up into layers. This kind of graphs have a structure that reminds of a
tree, as nodes in different layers are related via one ormore hierarchical relationships: if
u and v are nodes in the scene graph in consecutive layers, possible relationships might
be "u is part of v" or "u depends on v" in some strictly defined abstract sense. However,
they are not trees, as nodes within the same layer might be related. We will review this
in more detail during our work.

Learning a navigation behavior

With this semantic information about the environment represented in a graph, we can
try to reason about the environment’s semantics and relationships to achieve certain
goals. The idea that we develop in this thesis points towards using machine learning
algorithms to learn how to reason about these semantics and relationships. Machine
learning is usually subdivided in three broad categories: supervised learning, where
we need a collection of examples S = {(xi,yi)}i∈I ⊆ X × Y and want to estimate the
value ofy for somexnot seen before; unsupervised learning, wherewewant to discover
underlying patterns in data that does not necessarily have any labels; and reinforcement
learning, where we want an agent to learn a close-to-optimal behavior in a complex
decision process.

In this context, the question of how tomake a robot navigate a space naturally givesway
to reinforcement learning, as the task-agent setting of this field is perfect to formulate
our problem. We will develop some of the concepts to ground this formulation.
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Enabling learning over the scene graph

Toperform some of the tasks related to robot navigation and exploration, wemust lever-
age every piece of informationwe can gather from the environment using the equipped
sensors and a collection of diverse perception pipelines and methods.

These methods include, for example, gathering semantic, geometric, and structural in-
formation from the environment, which naturally gives way to scene graphs, one of the
central concepts in our work. These scene graphs double down as a representation of
the memory of the agent, which together with the previously mentioned information
provides a high-level and rich abstraction of the environment and augments the ability
of the agent to reason over past states and its current surroundings.

Our aim is to enable the usage of these graphs for learning tasks in the field of explo-
ration. If we work towards this goal, our proposal is that the learning process of an
agent will be augmented thanks to a semantic understanding of the scene, which will
help it reason about the environment and perform the task more efficiently.

In order to extract this graph information from the environment, we need a working
framework that is able to load a 3D environment, move through it and generate the
graph, so that it can later be used for automated reasoning and decision-making.
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1.1 Contents of each section

This Bachelor’s thesis is divided in several sections, where we will go over the work
that has been done throughout the project:

• Section 2 revolves around defining some theoretical concepts that will be useful to
talk about in the development of the thesis and will help the reader get a broader
view of the work that has been done and the proposals that will be made.

• The exact definition of this project can be found in Section 3, wherewewill present
the objectives of the thesis.

• In Section 4 we will briefly review some related works in the field of autonomous
exploration and adjacent field that will be useful for the project, either as inspira-
tion or otherwise as integral parts of it.

• In Section 5 we will go over the details of how each part of the project has played
out. An important part of this section will also include the main challenges faced
during the project.

• In Section 6 we will summarize the final state of the project, and we will also go
over the results and contributions for each of its parts.

• Wrapping up the report, in Section 7 we will discuss how these results relate to
each other and to the aims of this work.

• Finally, in Section 8 we will present what we think are some possibilities for the
future of this work, unexplored or partially explored paths in the process and
some ideas that have not been fully developed during this work.
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2 Background

2.1 Graphs & Scene Graphs

Graphs are a really useful structure to represent relational information between some
elements of a set. Let us first define the simplest (and slightly restricted) notion of a
graph:

Definition: Graph
An undirected graph G without self-loops is a pair G = (V , E), where V is a set the
elements of which we call nodes, and E is a set of unordered pairs {u, v} we call
edges, where u, v ∈ V are different nodes.

Specifically for ourwork, wewill explore the concept of a scene graph. Scene graphs are
a concept that comes from the field of computer graphics, commonly used for example
in 3D computer games to control a scene, or in 2D graphics editing software. There is
much literature and work around scene graphs and a lot of definitions, but in our case
we will concentrate in the type of scene graph that is generated by Hydra [11], a robot
perception pipeline that generates hierarchical scene graphs of the following form:

Definition: Hierarchical Scene Graph
A hierarchical scene graph is an undirected graph without self-loops H that rep-
resents a 3D environment (scene) by means of several layers that represent diverse
abstraction levels. These layers are sets of nodes that partition V(H). If the layers
in the graph are {Lk}k∈{1,...,L}, then

V(H) =
L⊔

k=1

Lk.

A node in layer Lk has only one parent in layer Lk+1, and might have several
children in layer Lk−1. Nodes in layer LL only have children in layer LL−1 and no
parents, and nodes in layer L1 have a single parent in layer L2 and no children.

A scene graph generated by Hydra contains:
• A 3D mesh layer, M: the nodes in this layer are a collection of points in 3D

space that form a mesh. They have as attributes their position in 3D space
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as well as a semantic label. This points might or might not correspond to an
object, which belongs to the next layer.

• An objects and agents layer,O⊔A: in this layer there are two types of nodes,
the object nodes and the agent nodes. The object nodes o ∈ O represent an
object, with its position in space, its semantic class and the dimensions of an
approximate bounding box for the physical object they represent as attributes.
Mathematically, they are sets of points in the mesh layer, o ⊂ M, and any two
object nodes are disjoint, o1 ∩ o2 = ∅. An object node o has edges with every
point belonging to it in themesh layerM, ∀m ∈ o, {o,m} ∈ E(H), but there is
no edges between any two object nodes. The agent nodes a ∈ A, on the other
hand, are nodes that describe the position and other attributes of the agent
at several points in time, and they are connected within the agent layer A in
a sequential fashion: an agent node a ∈ A is connected to both the node that
represents the agent in the previous time step and the node that represents
the agent in the next time step.

• Aplaces layer,P : this layer contains the place nodes, which represent an open
location in 3D space where an agent can stand. A place node has as attributes
its position in 3D space according to some reference and the bounding box
of the space it represents. Two place nodes p1, p2 ∈ P are connected if the
straight line between their physical locations is unobstructed. Both the object
and the agent nodes in the previous layer share an edge with the place node
that is closest to them in location. Ifwe denote the position of a noden ∈ V(H)

as n⃗, then

{o, argmin
p∈P

∥o⃗− p⃗∥2} ∈ E(H),

{a, argmin
p∈P

∥a⃗− p⃗∥2} ∈ E(H).

• A rooms layer, R: in this layer we might find any number of nodes (at least
1). These nodes are abstractions of rooms, which are communities of places,
and are the parents of the nodes in the layer immediately below, P . Mathe-
matically, a room r is a set of places, r ⊂ P . As for edges between rooms, if
we have two different rooms r1, r2 ∈ R, then

{r1, r2} ∈ E(H) ⇐⇒ ∃u ∈ r1, v ∈ r2 : {u, v} ∈ E(H).
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Two rooms are always disjoint, i.e., r1 ∩ r2 = ∅, but they do not necessarily
partition the places layer: a particular place might not be assigned to any
room. For the places that are assigned to a room, though, we have that ∀p ∈
r, {r, p} ∈ E(H).

• A building layer, B = {B}: this layer consists of exactly 1 node, which is
the parent of every node in the layer immediately below, R. This node is
considered to be an abstraction of a building, which would be encompassing
the whole space. The building node has an edge with every room node, i.e.,
for each room r ∈ R, the edge {B, r} ∈ E(H).

In Figure 1 we can see how a scene graph from Hydra should look like1. We will go
over more details about this piece of software in Section 4.

Figure 1: Example of a Scene Graph generated by Hydra (annotated).

2.2 ROS

The Robot Operating System (ROS, [27]) is an open-source set of software and libraries
that abstracts several components of the operation of a robot. It dealswith, among other
things, programs that would be running in parallel on a robot. This programs are called
nodes, and ROS deals with the communication between them implementing several ab-

1 This is a modified frame of an animation in [17].
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stractions for it. The most important ones are topics, which can be seen as queues where
any node can push a message, given that the message is of a certain structure, and from
which any node can read the messages. Pushing a message to a topic is called being a
publisher to the topic, and receiving messages that are pushed to a topic is called being
a subscriber to the topic. ROS implements this abstraction and allows several topics to
exist at the same time with different types of messages. This allows for an easy and
rich communication system between the nodes, which are therefore loosely coupled
through message passing.

ROS provides away to schedule the execution of several nodes in the form of launch files,
XML files that describe what should be executed andwith which parameters. This files
also let us control how communication between nodes works, via settings such as local
environment variables or command-line arguments.

This framework is organized in packages which are mostly contributed by the commu-
nity. Each package can be thought of as a collection of nodes, configuration files and
launch files that ease the execution of certain procedures.

2.3 Reinforcement Learning

Inmachine learning, likewe stated before, there are severalways to approach a problem
or task, depending on what the structure of the problem is and depending also on the
available resources we have at our disposal. The approach we will use in this thesis to
frame the navigation setting is Reinforcement Learning (RL for short). In RL, we have
the following setting:

• A world or environment where our task is set.

• A task or objective that we want to complete.

• An agent that interacts with the environment.

• Some sort of reward signal that can guide the agent.

To formalize this setting, we will use the theory behind Markov processes.
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Definition: Markov Processp
A discrete-time Markov Process is a sequence of random variables (Xi)i∈I , with I
a totally ordered discrete set (typically, a subset of the natural numbers N), where
the random variables satisfy theMarkov property:

Pr(Xi+1|Xi, Xi−1, . . . , X0) = Pr(Xi+1|Xi)

The union of all the ranges of theXi is called the state space S. We can also regard
the Xi as all having the same range, which would be S.

Frequently, if the state space S is finite, a discrete-time Markov Process with time-
homogeneous transition probabilities can be represented using a directed graph (pos-
sibly with self-loops) like the one depicted in Figure 2, where the nodes represent the
states of the process and the edge weights represent the transition probability between
any two connected states.

Figure 2: Example of a 4-state discrete-time Markov Process.

We can understand the Markov property, which is the most important part of Markov
processes, as saying that the future behavior of the process, given the present, is in-
dependent of its past behavior. In this work we will assume that the state transition
probabilities pss′ = Pr(Xi+1 = s′|Xi = s) are time-homogeneous, this means, that
Pr(Xi+1|Xi) = Pr(Xj+1|Xj) for all i, j ∈ N, and hence, when S is finite, we can build the
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state transition matrix, P = (pij)i,j∈{1,...,|S|}.

In Figure 2, the state space S would be the set {1, 2, 3, 4}, and the (non-zero) transition
probabilities would be:

p11 = 0.1, p12 = 0.2, p14 = 0.7, p21 = 1.0, p32 = 0.5, p34 = 0.5, p42 = 0.4, p43 = 0.6.

Adding reward and interaction: MDPs

To transform a discrete-time Markov process into an RL-adequate setting, we need two
additional things: a reward signal and an agent that is able to interact with the envi-
ronment:

• The reward signal must give a value each time a state transition happens. We can
view it as a stochastic process as well, Rt, that has a value each time the process
“leaves” a state.

• The agent is an actor in the environment that is able to intervene in the state tran-
sitions, this is, influence the probability distribution of Xt+1 over the state space
S.

To formalize this, let us define the concept of a Markov Decision Process (MDP for
short):

Definition: Markov Decision Processp
A Markov Decision Process is a tuple (S,A,R,P), where:

• S is the state space.
• A is the action space: this is the set of actions that the agent can take. We will

use the notation As = {a ∈ A : a is available from s ∈ S}.
• R is a function that assigns a probability distribution over the real numbers

R to a triple (s, a, s′) representing the state transition s a−−→ s′. After such a
transition, the environment produces a reward according to this probability
distribution, that is, (s, a, s′)⇝ x ∈ R according toR.

• P is a function that assigns a probability distribution over the state space to a
pair composed of the current state and an action. That is, Pa,s(·) = Pr(st+1 =

·|st = s, at = a), which is zero if a ̸∈ As.
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Figure 3: Example of a Markov Decision Process.

In Figure 3, the state space is still the same as in Figure 2, but now the transition prob-
abilities depend on the action taken and from which state. For example,

Pa1,1(1) = 0.1, Pa1,1(3) = 0.9, Pa2,1(3) = 0.8.

In the RL theoretical setting, and also in practice, it is usually assumed that the agent
follows a behavior that can be modeled using a probability distribution. This is called
the agent’s policy:

Definition: Policy
In anMDP, a policy is a probability distribution function over the cartesian product
S ×A:

π : S ×A −→ [0, 1]

(s, a) 7−→ π(a|s).

The policy π can also be seen as a family of probability distributions over the action
space A, conditioned on the state s ∈ S that is taken as the current one. This policy
function is what is optimized in policy gradient methods, or in a surrogate fashion via
two other functions that we will define later. First of all, let us define the return value
of a state:
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Definition: Return value of a state
The return value of a state or return is the discounted accumulated reward that an
agent will receive when being in a certain state. If St = s, then the return value of
said state is calculated as:

Gt =
∑
k≥1

γk−1Rt+k,

where γ ∈ [0, 1) is the penalization factor of the future rewards.

The definitionwe have just seen is not quite of the state, but of the point in time at which
the agent experiences that state. In any case, it is clear thatGt is also a random variable,
so to be able to learn from it and get a real value/signal we will define two functions
that are key to the optimization process in the RL setting:

Definition: Value Functions in RLp
Given a behavior of an agent in an MDP represented by the policy function π(a|s),
the state value function (or value function) Vπ is the function defined by:

Vπ : S −→ R

s 7−→ Vπ(s) := Eπ[Gt|St = s].

In the same context, the state-action value function (orQ-function)Qπ is the func-
tion defined by:

Qπ : S ×A −→ R

(s, a) 7−→ Qπ(s, a) := Eπ[Gt|St = s, At = a].

These two functions are related following the equation:

Vπ(s) =
∑
a∈As

Qπ(s, a)π(a|s).

These functions, together with the Bellman equations (described in [4]) provide the
theoretical background for optimization of the agent’s behavior. Each time the agent
interactswith the environment, it gets an updated state and a reward signal (as the envi-
ronment has abandoned the previous state) and it is able to interact again. In this loop,
the agent can try to learn what actions provide a higher return value when taken from
certain states, hence learning an optimal behavior. This optimal behavior can be learned
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through several methods, including Dynamic Programming, Monte Carlo, Temporal-
Difference learning and Policy Gradient [36].
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3 Project description

The main goal of the project is to enable learning-based navigation approaches using
3D scene graphs on unknown environments. To this end, a dataset of such graphs in
realistic environments is needed for training graph-based models or policies. Hence,
we establish the following objective for the project:

Project objective
Build a pipeline capable of automatically generating a hierarchical scene
graph from a given 3D scene.

To achieve this, we have divided the project into several, more digestible steps:

1. Find aworking simulator that is able to provide the information thatHydra needs.

2. Find a dataset of 3D scenes that are compatible with said simulator.

3. Integrate the simulator with ROS and set up a way to navigate a scene manually.

4. Establish communication between the resulting node and Hydra to enable the
generation of 3D scene graphs.

5. Develop a way to navigate a scene automatically.

6. Develop a program that sequentially loads every scene in a dataset, navigates it
and generates a scene graph, which is then saved.

With these steps in mind, we can divide the project up into two parts: steps 1-3 corre-
spond to the Framework Setup part (5.1), and steps 4-6 correspond to the Automatic
Data Generation part (5.2).

As a third part, we will also develop a theoretical approach to some navigation prob-
lems, framing them within the Reinforcement Learning setting, and proposing a solu-
tion method using Graph Neural Networks. This will be the RL for Exploration Tasks
part (5.3).

All of the technical work developed in this project is hosted inmyGitHub profile, avail-
able at �Atellas23/graph-wanderer.

https://github.com/Atellas23/graph-wanderer/tree/alternative/teleporting_agent
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3.1 Why is our work valuable?

Most important for our work is the potential value that the previously defined project
could bring to the field of autonomous exploration and navigation.

Scene graphs, particularly the ones proposed and used by Hydra, give us the oppor-
tunity to reason about the environment using binary relationships. These binary rela-
tionshipsmight provide a way to relate an object’s semantic label, for example, with the
type of room it is in, or its geometric surroundings. This ability to reason over abstract
concepts is desirable in robotic autonomous exploration systems and autonomous be-
havior systems in general, as human-defined tasks might require some level of seman-
tic, geometric, and abstract understanding of an environment to be correctly carried
over. It might not be enough for a machine to understand our language for it to plan
how to look for an accidented person in the wreckage of a building.

For robots to knowhow to reason over this on-line, though, they first need some training
grounds to learn how to try and fail on a simulated environment. Our work provides
a way to support this training environment on several levels.
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4 Related Work

Before delvingdeeper in the implementation and resolutiondetails, wewill first broadly
review some related works that will be helpful in developing and understanding the
thesis.

4.1 Hydra

Hydra [11] is a robot perception pipeline from theMIT-SPARK laboratory that extracts
3D scene graph information from the sensor data that it receives, structured like we
defined in 2.1. It builds on Kimera ([28], [29]), a previous pipeline that is also able to
create such graphs, and that comes from the same team. It consists of several processes
that run in parallel, each with a different latency. Let us now broadly go through how
it works during runtime at a high level:

1. Hydra receives a semantic pointcloud. This is a collection of points in 3D space
that have a semantic class, an annotation of what they belong to: objects, struc-
tures, or other physical entities in the scene (for example, humans). It then pro-
cesses this semantic pointcloud to generate a 3D metric-semantic mesh, which
is a volumetric representation of the robot’s surroundings, using Voxblox [20],
a very efficient method to incrementally build Euclidean Signed Distance Fields
from Truncated Signed Distance Fields (two implicit representations of surfaces
and obstacles around the robot, more details in [39]).

2. To extract the places layer of the graph, during the 3D mesh reconstruction pro-
cess Hydra builds a Generalized Voronoi Diagram (GVD) consisting of the set
of points that are equidistant to at least 2 obstacles. Then, a subset of voxels are
selected to be place nodes according to criteria described in the paper, and edges
between them are added to ensure that the straight line (or an approximation to
it) is free space between them.

3. After the 3D mesh and the places, Hydra extracts the objects from the metric-
semantic mesh. It does so via an Euclidean clustering of the points belonging to
each semantic class, which leaves it with several potential objects. These are also
refined during the process, and an approximation to the centroid and bounding-
box for the object is stored.



Autonomous Exploration of Hierarchical Scene Graphs pg. 23

4. When the places layer is fully built in the surroundings of the robot, the room
detection algorithm comes into play. It uses an approach inspired by the dila-
tion operator [37] used in classical computer vision algorithms. The idea is to
dilate the values in the ESDF, such that small gaps like doors or windows close
up; then, the place nodes that correspond to free voxels (voxels with a distance
to an object that is higher than a certain threshold δ) are isolated together with
their connected components. These connected components (for a certain choice
of δ) are the initial rooms, which are then completed with the nodes that were left
out via a modularity-based greedy algorithm. Finally, a room node is created for
each component, and two room nodes share an edge in the rooms layer if their
children nodes are connected in the places layer.

Through several iterations of this process, Hydra builds a representation of the areas
corresponding to the pointclouds it has received. Apart from this process, Hydra also
deals with detecting loop-closures, which are points in time where the robot is travers-
ing a place it has traversed earlier. Detecting this is a complex task and is another of
Hydra’s contributions. Hydra’s goal is to be able to do all of this on board of a robot,
mainly targeted towards micro aerial vehicles. This whole pipeline is really refined and
efficient, but for large map sizes it can become somewhat slow at some points.

In Hydra, there are several improvements with respect to Kimera, the work it builds on.
These improvements most deal with the latency of several processes. To name a few:

• Building the mesh is faster because of a restriction in the area of which a volumet-
ric model is constructed.

• Extracting places is faster thanks to the use of a GVD, pre-computed as a byprod-
uct of the procedures used to build the metric-semantic mesh.

• Identifying rooms is less complex and faster, thanks to only using the places layer
of the scene graph and pre-computed distance values instead of a volumetric rep-
resentation of the whole environment.

In practice, however, in Section 5wewill see thatwhile the ideas andmethod thatHydra
implements makes sense, some of their intended results are not completely achieved.

In the version of Hydra that this thesis has been developed with, the previously de-
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scribed process is run through ROS2. This allows for a structured, general-purpose in-
teraction between Hydra and other nodes that might be running under the same ROS
master process. It also allows for the use of several other software suites that we will
later describe.

4.2 Habitat-Sim

Habitat-Sim [31] is a physics-enabled, 3D simulation environment made and main-
tained by the FacebookAIResearch team (nowadays,MetaAI Research). It has support
for several 3D datasets, using also scene-graphs for environment representation in its
inner workings. It is mainly coded in C++, although it offers a readily usable Python
API. It supports multiple agents, with a wide range of available geometries for their
virtual bodies, and a large pool of available parameterized sensors that can be attached
to the agents. Agents also have pathfinding algorithms available which can direct their
movement, which is described by a collection of actions that an agent can take, such
as moving forward, turning around, etc. Habitat-Sim also provides a class-hierarchy
that allows for agent, sensor and action sub-classing from its Python API, which makes
it easy to add custom actions and sensors. Code for the Habitat-Sim simulator can be
found in their public GitHub repository [9].

For this work, we are mainly interested in Habitat-Sim as a tool, so we will not dig
deeper than necessary into its workings. The most important part of Habitat-Sim that
we are interested in is its ability to provide:

• RGB images of the environment via its color camera sensors;

• Depth images of the environment via its depth camera sensors. A depth image is a
2D array representing the field-of-view (FOV) of the depth camerawhich consists
of values d ∈ R+, representing the distance from the camera at which each pixel
is supposed to be found;

• Semantic segmentation images of what its semantic camera sensors can see.

• Exact localization and orientation of the robot.

2 Hydra was updated during the span of this thesis on June 26th 2023, receiving a new, non-ROS
interface. We used tag v1.0.0 from their public GitHub repository, [17].
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4.3 MatterPort 3D dataset

The MatterPort 3D dataset (MP3D for short, [7], [6]) is a dataset consisting of 194000
RGB and depth images taken from 90 real house environments, together with ground-
truth semantic annotations of the elements in each image. These images and their addi-
tional semantic information are grouped in 90 3D mesh files, together with their corre-
sponding semantic annotation files. This dataset has built-in support in theHabitat-Sim
simulator, which will be really helpful in our work. It is highly valuable for our thesis,
as it provides a key point for our goal: creating scene graph data for realistic scenes.

4.4 Hierarchical Representations and Explicit Memory

In this paper [25], the authors propose a method to learn navigation policies on 3D
scene graphs. The scene graphs they use are the ones generated by Kimera ([28], [29]),
which is the precursor to Hydra. They argue that using high-level representations for
RL is likely to generalize better and be more sample efficient than learning from raw
observations, and say that having the scene graph readily available also provides tra-
jectory memory, which should also help during the training process and should let the
agent take better, more informed decisions on rollouts. They also argue that, as scene
graphs contain representations of abstract relations between entities, the agent should
be able to learn task-dependent regularities such as object incidence in certain types of
rooms or environments, or semantic cues about where to go to find a certain room.

In order to showcase their claims and proposals, they set up a multi-object search prob-
lem in unknown environments, generating the scene graphs in their dataset beforehand
manually. Then, they use these graphs and simulate the lack of knowledge of the agent
by progressively disclosing nodes as it moves through the environment. Their exper-
iments are done with 7 office environments using a photo-realistic simulator. To get a
close-to-optimal behavior, they set up an Actor-Critic framework (details can be found
in [36]) and train a GNN policy using Proximal Policy Optimization [32].

This work is relevant for our thesis as it provides experimental ground for our theoret-
ical framing of a navigation problem using RL with GNNs.
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5 Development process

In this section, we will go through the development process of the project, detailing
the main components of the framework we built. We will also go over some of the
challenges found while progressing.

5.1 Framework Setup

In this part of the project, we create a Python script capable of loading a 3D scene and
provide all the information needed to Hydra.

5.1.1 Understanding Hydra

First of all, we need to answer the question: which information does Hydra actually
need? In order to do that, we tested an example provided by the developers in their
GitHub repository [17].

Figure 4: High-level representation of Hydra’s data pipeline.

In Figure 4 we can see a high level representation of the graph-building pipeline that
Hydra uses. Let us do a quick review of how data is transferred between the different
pieces of the pipeline in this example.

1. First of all, the Robot moves through the environment and collects sensor data.
This includes RGB, Depth, Semantic Segmentation and Odometry information.

2. This information is then passed on to a middle-man called Cloudify, which takes
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care of assembling a semantic pointcloud from this information.3

3. Then, Hydra receives this semantic pointcloud and produces the Hierarchical
Scene Graph using the multi-stage process that we reviewed in 4.1. Note that
Hydra also uses to do this the information produced by the robot.

This pipeline, hence, is a blueprint that we will keep working on. For now, having seen
this, our goal is clear: we want to replace the Robot block of the pipelinewith our own
way of producing the same data. To do this, we will have to mimic what Hydra does
with its scheduling files in order to replace the information it is receiving in the example
with our own.

5.1.2 3D simulator

After understanding how Hydra works and what it needs from the simulator, we have
to decide what do we want in a simulator based on these requirements. We would like
to have the sensors we described earlier available, which are:

• An RGB camera sensor;

• A depth camera sensor;

• A semantic camera sensor.

Additionally, we also need another piece of sensory data which is odometry, this is, the
position p ∈ R3 and the orientation of the agent that is gathering the data with the other
sensors, represented using a quaternion q ∈ H.

We have usedHabitat-Sim as our attempt to satisfy all of these requirements. We have
mentioned this simulator earlier in Section 4.2. It exposes an agent API that we have
used to navigate the scene, and it is compatible with several 3D scene datasets, which
makes it really valuable for our objective, as our work becomes extensible to other data
other than what we have used.

3 This ROS node is not our original work, but of the ROS contributors. More information can be found
in [26].
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5.1.3 Simulator integration with ROS

The next step is to integrate the simulator we are using with ROS. This entails, mainly,
the creation and debugging of a ROS node that runs the simulator as its main process.
We had already started this process with iGibson [14] before moving to Habitat-Sim,
as iGibson already provides some ROS integration [34]. In particular, it provides a ROS
node and several launch files that have been really useful as templates for our work.

Our main development on top of iGibson’s example files was replacing the RGB image
used to generate the pointcloud with the semantic segmentation image of what the
agent sees. With this, we already had a semantically annotated pointcloud.

Then, we moved this process to Habitat-Sim. In this simulator, to be able to move
through the scene we have to first create a simulator object that loads a scene, and then
spawn an agent. To spawn this agent, we must first configure it, adding the multi-
ple sensors that we have at our disposal within the Habitat-Sim framework. Agents in
this simulator have a cylinder as the default body shape, which can be customized us-
ing several tools4. However, we decided to go with the default shape and have a slim,
human-height cylindrical agent (see Figure 7 for a schematic drawing).

With respect to the sensors, at first we decided to add one single sensor of each type
(RGB, depth and semantics) all facing in the same direction and placed in the same
position with respect to the robot’s body, the top of the cylinder. Habitat-Sim lets us
access these sensors’ information easily via numpy arrays, which then were converted
into ROS-compatible data types for Cloudify to use.

Regarding the movement of the agent, for manual exploration we used the directly
available action space in Habitat: move_forward, turn_left and turn_right. These
actions can be parameterized by a single parameter each (how much the robot moves
forward, how much its body rotates in a certain direction). This had a direct and easy
translation to getting input from the user: just use the Python code (the node) to receive
keyboard inputs, and then translate these into movement inside the simulator.

This movement changes the position and orientation of the robot inside the simulator.
We have to take into account these changes, and every time we publish an image mes-

4 For example, URDF.

http://wiki.ros.org/urdf/XML/model
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sage to a ROS topic, we have to register it to the frame of reference of the sensor it came
from. In our current scenario, this is easy, as all three sensors (RGB, Depth and seman-
tics) are placed in the exact same location, so they have the same frame of reference.
Also, we can access the ground truth position and orientation of the robot, which eases
the process.

Figure 5: High-level representation of the Simulator data pipeline.

At this stage, we have a pipeline that looks like the one in Figure 5. With this, we
conclude our integration of Habitat-Sim and ROS. This is already usable to navigate a
space and gather valuable information, andwe are now able to connect thiswithHydra.

5.1.4 Simulator integration with Hydra

Now, let us integrate the Simulator+ROS framework that we havewith Hydra. In order
to do this, we need to investigate how doesHydra use its configuration files, and how to
modify its scheduling file structure to be able to replace its entrypoints with our data.

Hydra is split into 3 different packages, but we will mainly talk about 2 of them, which
are more important for our purposes: hydra_topology and hydra_dsg_builder5. In
order to perform a successful simulation that outputs a 3D scene graph, we need to use
them conveniently.

As a start, the semantic pointcloud should be sent to Hydra’s first components, the
mesh processing pipeline (points 1, 2 and 3 explained in Section 4.1). This first part
of Hydra’s pipeline is set up and run in hydra_topology. This package accepts several

5 There is also hydra_utils, but we do not need to go that deep into Hydra to use it for our purpose.
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configurations which we have to customize to adapt to our situation. The two most
important ones are:

• Topics where visual information will be published. These include the topics for
RGB andDepth images, as well as the Camera Information and, most importantly,
the Semantic Pointcloud.

• Semantics-related parameters. For example, the number of semantic classes, the
color they correspond to and the real type of object they represent are things that
have to be set through configuration files.

Concerning the semantics configurations, we had to hard-code a mapping from colors
to semantic classes, condensing the 41 labels coming from Habitat to the 21 that Hydra
processes by default.

After processing the semantic pointcloud to extract places and objects, the second part
of Hydra’s pipeline (point 4 in Section 4.1) processes these to extract rooms from the
places layer, and generally builds the whole Hierarchical Scene Graph. This second
part is set up and run in hydra_dsg_builder. We do not have to inform this package of
anything other than what we are already setting up for hydra_topology.

So, putting all we know together, we had to build a system that integrated launching the
Simulator node, piped its produced data into Cloudify, and then directed the resulting
semantically-annotated pointcloud (aswell as the information from the Simulator) into
Hydra.

Figure 6: High-level representation of the whole manual data generation pipeline.

This system is brought up using roslaunch and a ROS scheduling file that can be con-
sulted in the Github repository.
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5.1.5 Testing Simulator+Hydra

When we tested the previously built framework, we noticed one thing: building the
graphwhile having only one camera that points forwards is really slow and error prone.
Hydra tends to produce disconnected places layers, and tends to update the graph re-
ally frequently, so a stable version of the graph is complicated to obtain. Sometimes
this might be because of a lack of continuously fed information (seeing a place too few
times, but updating the graph too frequently); other times this can be because of errors
in the sensors or artifacts they could produce.

That reason is why we decided to modify the sensor build of the agent in Habitat. The
updated version includes:

• 4x RGB cameras, separated π
2
rad from each other, covering a full turn around the

robot’s head;

• 4x depth cameras, in the same configuration as the RGB cameras;

• 4x semantic sensors, in the same configuration as well.

This list of sensors will provide the information needed for the pointcloud as well, but
this time, there will be no need for turning around in place to get everything around
the agent. This situation makes sense as well with reality, as there exist several models
of omnidirectional cameras that can be mounted onto robots. We can see a schematic
representation of the sensor and the agent build in Figure 7. Now, though, we have to

Figure 7: Representation of the agent we use in Habitat-Sim.

account for 4 different frames of reference when publishing images, as each group of
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3 cameras has a different frame of reference. The pointcloud assembler node can only
ever produce a pointcloud from one frame of reference, and Hydra can only read from
one pointcloud source, so we had to find away to assemble 4 pointclouds and then turn
them into just one between the Simulator and Hydra.

To enable the concatenation of the 4 pointclouds we have used a package that con-
catenates pointclouds coming from different sources called pointcloud_concatenate

(original at [33], our fork at [3]). Then, we just had to include this into a scheduling
file calling the Cloudify process 4 times, which then feeds these 4 resulting pointclouds
into the concatenation procedure to generate just one.

5.1.6 Main challenges

Wehad several challengingmoments in this part of the project. Let us list them in detail
here, and see how we solved them:

3D frame correction The 3D frame used in Habitat-Sim is different from the one that
Hydra uses. It is a right-handed frame of reference where the Y axis is pointing up-
wards and the Z axis is pointing backwards from the camera’s perspective.

We had to correct this misalignment in our code, mostly when dealing with the agent’s
position and orientation, but also when publishing the frame of reference for the se-
mantic pointcloud. We did this by transforming the coordinates of the observations,
and also by rotating Habitat’s frame of reference around the X axis by π

2
rad.

Computing setup BothHydra andHabitat require certain versions of system libraries
and specific hardware, which was difficult to accommodate for in general, and gave us
problems during the whole process.

5.1.7 Summary

Resulting from this section, we now have:

• A program that lets us control manually an agent (Figure 7) inside Habitat-Sim,
extract the information that Hydra uses and publish it for HSG construction.

• A system of scheduling files that make Hydra work as intended with our custom
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data.

• A graph building pipeline.

A basic representation of this result is the pipeline seen in Figure 6. We can also observe
how a manually controlled agent moves through an environment in a video recorded
by us, available at https://youtu.be/GViGpmfHACY.

https://youtu.be/GViGpmfHACY


pg. 34 Report

5.2 Automatic Data Generation

Given the results of the previous part, our aimnow is to change theway inwhichwe use
the entrypoints of Habitat. Instead of manual manipulation of the agent’s movement,
we want this movement to be performed automatically. Of course, we want to cover as
much of the scene as possible.

5.2.1 Navigating a scene

Let us describe how we navigate the scene now. After contemplating several options,
like using visual information or the top-down map of the scene, we decided to use the
places layer of the graph. As we detailed in 2.1, a Hierarchical Scene Graph contains
a layer that represents the geometry of the environment, which can be observed in the
synthetic representation of Figure 8. The partially generated places layer helps us in

Figure 8: Representation of a synthetic version of the places layer.

knowing where the agent can go, while being a sparse representation of the environ-
ment around it. It makes it simple to decide how to move through the scene: we just
have to pick a node that is available to us from the position we are currently in, and
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move to it using the actions available to us in the simulator. There exist many graph
traversal algorithms that might help us with that as well.

Moving through the graph also abstracts the process of moving between two locations
physically. As we have just used teleportation between two locations, we can ignore
possible obstacles that could be in theway between them. This abstraction of the agent’s
physical movement also relates to the fact that, in a real deployment, we could just
leave the process of moving between two close-by locations to a low-level planner that
performs this process.

However, this prompts us to maintain an internal representation of the places layer, so
we can knowwhat the agent has already seen andwe can keep the relevant information
of each place close to the agent’s decision making process.

This internal representation of the places layer is kept in our implementation using
NetworkX. However, this setup has two problems we have already hinted at before:

• Places Layer Connectivity: the places layer that Hydra generates is not always
connected. To ease planning and decision-making using the graph, we had to im-
plement several ways to keep everything connected. For example, keeping nearby
nodes connected (regardless of free space between them). This, of course, posed
some problems afterwards when trying to move through the scene.

• Non-incremental Graph Updates: Hydra produces updates that add new nodes
to the places layer, remove them andmove them. This is complex to deal with and
has to be treated case by case:

– If a node is being deleted and it is the current goal, we keep it.

– If a node is being deleted and we have not been on it but we have just seen
it, we can delete it.

– If a node is being deleted and we have already been on it, we keep it.

Of course, the agent’s process of deciding where to go next (both with and without
planning) affected the internal places representation in different ways, as we will soon
see.
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5.2.2 Algorithms for autonomous exploration

Having decided how we move through the scene, our goal now is to cover the whole
scene using the places layer of the HSG. We basically have two options: either we plan
ahead, deciding an order to visit the nodes and following this plan, or we decide at
each step the next node as an instantaneous decision.

Planning ahead When planning ahead, we want our agent to compute a plan to visit
every node it can see using a particular ordering. To do this, we tried two classical
planning approaches: a Traveling Salesperson Problem solver and the classical graph
traversal algorithms, such as DFS. Both of these planning methods suffered from the
same problems:

• During the process, what happens when we receive a new update of the places
layer? Aswe have alreadymentioned, we should keep nodes thatwe have already
visited or are planning to visit. In this setting, this is evenmore important: if some
node in the current plan is going to be deleted, we should keep it as well.

• Can we plan avoiding the use of already visited nodes? The main point here
is that some nodes might be instrumental in reaching some areas of the environ-
ment. Hence, we cannot really avoid the use of already visited nodes all of the
time, but we can certainly use as few as we can. The TSP solver we used directly
adapts to this, as we could compute a plan only over a subset of the nodes in the
places graph we were seeing. DFS and BFS, on the other hand, had to be slightly
modified to avoid using visited nodes that were not necessary.

This exploration methods proved to be slow and had several problems. One of them
was trying to explore areaswhere therewere nodes but representeduntraversable space
in Habitat. Hydra and Habitat sometimes do not agree on the navigability of some
points in the scene, which causes this to happen.

Making instantaneous decisions In this method, we let our agent decide on the next
node it will visit and move to it, then repeat. Hence, there is absolutely no planning
involved in this method, and instead we rely on the agent’s decision algorithm. Hence,
when deciding instantaneously on the next node to visit, we have to use heuristic meth-
ods to try to compensate for the short-sightedness of the approach. To start off, we limit
the agent’s available nodes to choose from to the set of unvisited one-hop neighbors of
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currently visited nodes,

F =

⋃
v∈V

Nv

− V .

We call this set the frontier. Of course, the current node u lies in V , so it is not an option
for the agent. Then, we have several ways to decide on just one node from this set.
We tried three ways, the most obvious ones in this situation, illustrated in Figure 9:
selecting the Closest, a Random, or the Furthest frontier node. The distances to select

Figure 9: Different ways to select the next node.

the closest and the furthest nodes are distances in the graph: as we keep the position
of every node in the internal representation of the places layer, we can make the edges
hold a weight, in this case the distance between the two nodes it is connecting.

These three ways to decide the next node all have the same consequences, mainly the
fact that they do not explore the whole scene but only a small area around the spawn
area of the agent.

When selecting the Closest node, the agent just moves to the frontier nodes in its clos-
est vicinity, slowly expanding the visited set. As Hydra updates constantly the places
graph around the agent, this method regularly finds new nodes close to the agent’s lo-
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cation. These new nodes added by Hydra’s update might be closer to the agent than
the nodes considered as frontiers before the update. Hence, the closest node will be
always close to the spawn area, instead of slowly moving away from it.

If instead we select a Random frontier node, we are dealing with a similar problem.
When beginning the process of exploration, we just gather information from the spawn
area. Then, Hydra only generates nodes in this area, which are the only ones that can be
in the frontier set, but they are too densely packed in certain areas. Hence, the random
node this procedure selects is more likely to be, and indeed is, closer to the agent than
it is to be further away. This leads also to only exploring a small area.

Finally, if we select the Furthest frontier node, we are able to circumvent the problems
of the closest node approach of toomuch locality. Regarding the density of nodes in the
spawn area, this is not avoided, but in this case does not strictly affect the approach, as
choosing the node that is the furthest away from the agent does not entail any random-
ness. Instead, this approach suffers from another problem, which is that the furthest
node moves drastically from one side of the agent to the other, and hence the agent
is unable to commit to a certain direction of exploration. Still, this is the method that
produces the best results.

5.2.3 Summary

As a result of this part of the project, we have obtained the pipeline we can see in Figure
10. As a summary, we have obtained, in addition to the results of Section 5.1:

• A program that automatically explores a 3D scene loaded into Habitat-Sim.

• An automatic graph building pipeline.

We can observe how an automatically controlled agent using the furthest frontier node
approach performs the exploration process in a scene in another video recorded by us,
available at https://youtu.be/6rpVRHE-uKc. As a note to Figure 10, note that this is just
a modification upon Figure 6: we are adding the figure of the Agent, which iteratively
receives information from the environment (Simulator) and the pipeline’s output (the
places layer of the Hydra-generated HSG) to make decisions and send information to
the beginning of the pipeline again.

https://youtu.be/6rpVRHE-uKc
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Figure 10: High-level representation of the Automatic Data Generation pipeline.

5.3 RL for Exploration Tasks

To finish the development process, let us mention the final part of the project, involving
Reinforcement Learning for exploration tasks.

5.3.1 Formalization

The aim now is to formalize a Reinforcement Learning framework for exploration and
navigation tasks that uses the concept of the Hierarchical Scene Graph as an environ-
ment where the agent is able to learn policies for its objectives.

The Markov Decision Process where the agent lives in our case has as states all the
subgraphs of a given Hierarchical Scene Graph, only partially known at each step. The
agent would use the places layer to move, hence the action space at each state being the
one-hop neighborhood of the agent’s node in the places graph.

The reward function would, of course, be a different one for every task. For example,
if we want to train an agent for coverage of an environment, the reward function could
be giving a small number λ > 0 when the agent explores a new node it had not seen
before, and another (in absolute value) small number µ < 0when the agent uses an old
node to navigate the space. For point-goal navigation, as another example, the reward
function could be−dG(u, g), where g is the goal node and u is the current node, and dG
measures the distance (sum of the edge weights in the path) between its arguments.



pg. 40 Report

Then, the learning would take place via any RL algorithm, such as DQN [19] or PPO
[32], using as a learning grounds the graph itself.

Learning on Graphs: GNNs The policy or the Q-function, or whatever function we
want to learn in this RL setting, could be approximated using a Graph Neural Network
[5]. Broadly, GNNs combine information of a node and its neighborhood using Equa-
tion 1, spreading and computing representations around the network. These GNNs
are differentiable, and hence allow for the usual deep learning algorithms to run their
course and optimize their weights.

hu = φ

xu,
⊕
v∈Nv

ψ(xu,xv, euv)

 (1)

The features the GNNwould be learning on would be, for example, node position, cen-
trality measures, semantic/geometric descriptors, edge weights, etc. The only problem
with GNNs is that they do not have (yet) a universal approximation result, like Multi-
Layer Perceptrons do [10]. Hence, it is not guaranteed that they are able to approximate
just about every function from a graph onto a vector space. Still, there are several re-
search efforts that show promising results such as [8] or [2]. Usually, to improve the
learning process a readout single-layer perceptron is added after the message-passing
layers that computes a last representation of the node features.

UsingGNNs on aHierarchical SceneGraphwould be a key point of this setting. Having
as we have a graph representation of the geometry of the environment, it is only natural
to use a graph-processing pipeline, but in this case, the fact that the graph we would be
using is layered is important because edges between layers (hierarchical edges) would
accelerate the process of sharing information, and hence would require less computa-
tion than if we would just use the places graph only. This is illustrated in Figure 11. In
any GNN, to get information from a certain node u to another node v it always takes
at least as many message-passing layers as the number of hops that separate u and v.
This fact gives layered graphs an advantage, as they shorten (via hierarchical edges)
the distance between two related nodes.
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Figure 11: Comparison of two message passing procedures.

5.3.2 Implementation: RL environment

As a final note to this section, we have implemented an RL pipeline to process a Hierar-
chical Scene Graph as the grounds for an agent to learn autonomous behavior on this
type of scene representation. In Figure 12 we can see a high-level representation of the
pipeline that the RL framework is built on.

This pipeline uses several well-known packages in the RL ecosystem:

• Gymnasium is used to build an environment that handles HSGs. This involves
keeping an internal representation of what has the agent seen so far, and only
disclosing a node once the agent has been to one of its one-hop neighbors.

• RayRLlib is used for batching graph observations andusing already implemented
RL algorithms for training. RLlib has extensive support for Gymnasium environ-
ments using some of its observation spaces, although graph observation spaces
are not supported.

• PyTorch Geometric is used to build and represent computationally a GraphNeu-
ral Network. This framework, which is an extension of PyTorch, maintains tensor
representations of the neural network weights, gradients and activations, which
are all used during the training process.
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Figure 12: High-level representation of the RL data pipeline.

The implementation for this part of the project can be also found in the Github reposi-
tory. It has been tested both with a synthetic graph and with a graph generated using
the automatic pipeline in Figure 10, training an agent for a point-goal navigation task.
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6 Results

Having concluded the methodology and development process that we have followed,
let us summarize the results of the whole project.

We have created two different graph generation pipelines:

1. Amanual pipeline that loads a 3D scene into a simulator, lets the user control an
agent andmove it through the environment, and generates aHierarchical Scene
Graph representing the environment. We can see a visual representation of this
pipeline in Figure 6. A video depicting a manually controlled agent generating
a Hierarchical Scene Graph using this pipeline is available at https://youtu.be/
GViGpmfHACY.

2. An automated pipeline that loads a 3D scene into a simulator, makes an agent
move through it autonomously and generates a Hierarchical Scene Graph rep-
resenting the environment. We can see a visual representation of this pipeline
in Figure 10. A video depicting an automatically controlled agent generating a
Hierarchical Scene Graph using this pipeline is available at https://youtu.be/
6rpVRHE-uKc.

Regarding the Reinforcement Learning pipeline, we have created a framework to set up
exploration tasks asMarkovDecision Processes, the kind of problems that can be solved
using RL algorithms and theory. We have integrated a Gymnasium-based environment
simulating navigation on a graph with RLlib batching procedures and algorithms, and
we have been able to set up a Graph Neural Network policy using PyTorch Geometric
and test the whole RL pipeline.

The whole code framework developed for this project is available at�Atellas23/graph-
wanderer.

6.1 Discussion of results

Our objective was the creation of a pipeline able to generate Hierarchical Scene Graphs
automatically from a 3D simulated photo-realistic environment. We have achieved this
to a certain extent:

https://youtu.be/GViGpmfHACY
https://youtu.be/GViGpmfHACY
https://youtu.be/6rpVRHE-uKc
https://youtu.be/6rpVRHE-uKc
https://github.com/Atellas23/graph-wanderer/tree/alternative/teleporting_agent
https://github.com/Atellas23/graph-wanderer/tree/alternative/teleporting_agent
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Ë The framework is able to automatically load 3D scenes and perform some explo-
ration autonomously.

Ë The framework also allows for manual exploration of 3D scenes, enabling an easy
generation of HSGs.

é The autonomous explorationmethods thatwe have used do not explore thewhole
scene but just a small area.

Even though we do not explore the whole scene, the automatic exploration pipeline
does sometimes venture to rooms close to the spawning area of the agent, and if given
enough time, and under the assumption that the places layer generated by Hydra is
eventually stable enough, the algorithm would cover greater fractions of the environ-
ment.

The definition of the frontier nodes, for example, might have constrained the swiftness
of exploration. We could have defined the frontier set to be larger, for example by in-
cluding also the two-hop or three-hop neighbors into the options to navigate to. It is
unclear, though, how much this would have improved the overall performance of the
algorithm.

The tools that we have used have also deeply influenced the extent to which we have
achieved our objectives. In particular, Hydra (version v1.0.0) has some problemswith
the places graph connectivity during the graph generation process, and also does not
generate a places graph that is equally dense everywhere. Hence, the resulting scene
graphs do not always have a connected places graph that we can use to reason with.

The process of maintaining an internal coherent representation of the places layer also
has an effect on the decision-making process; even just listening for updates and pro-
cessing them naturally takes longer as the size of the places layer increases, which plays
a role in how the agent chooses the next node.

The dataset and the simulator we have used have also influenced how the project took
its form: unnavigable positions, for example, have been a great inconvenience when
dealing with data from Hydra, as we have had to account for several edge cases that
have hindered our progress.
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7 Conclusions

As we mentioned in Section 3.1, our work has a potential value to set the ground for
agents to learn navigation behaviors through graph representations of an environment.
Let us stress this point again, relating it to the progresswe havemade, and let us explain
at what levels we cover this vision.

First of all, we have a system that proves that both manual and automatic generation
of scene graphs for large 3D scenes is possible, although our approach requires some
more work in order for it to deliver high-quality data, as we state in Section 8. Our
approach is modular in several ways. For example, several scene datasets might be
able to interact with the developed framework. Also, there are several components that
use ground truth information from the environment that are readily replaceable with
more realistic tools, such as odometry estimation methods (general SLAM, VIO) or
off-the-shelf semantic segmentation neural networks.

The data we generate can be then successfully used in an RL environment as a grounds
for the agent to navigate a space. An agent in this RL environment might learn policies
to solve exploration or navigation related tasks, reasoning over the subgraph that it
is currently able to see. The tasks than can be set up in this environment are several,
ranging from coverage of a scene to object search or point navigation, as theHierarchical
Scene Graph of the scene provides plenty of information for these tasks to be well-
defined.
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8 Future work

This project, as large as it is, has many key features that can be improved upon. Several
advancements have been taking place during the development of the project as well,
and in this section we will summarize what we expect to be possible points where a
future work could progress using this thesis as a ground work.

Hydra

Hydra is a framework that was in development during this project. Several of its fea-
tures were either non-public or not entirely available, or were not straight-forward to
activate.

The loop closure detection algorithm is an example of these features. Hydra includes
an optimization for the places graph that decides when the robot has completed a loop
(i.e. has returned to a place it has previously been to) and makes changes to the places
graph accordingly. Some loop closure detection is already built-in in Hydra v1.0.0,
but the procedure using the package Kimera-VIO [28] and the instructions to make it
work were not released until March 2023. When this project started, only visual LCD
was available, and it was not straight-forward to activate it.

A new version of Hydra dealing with some of the problems we encountered, including
density and connectivity of the places layer, was released on June 26th, 2023 ([18], [12]).
A future work taking over our project as a ground work would have the opportunity
of using the new features in Hydra v2.0.0a1. These include also GNN-based room
classifiers (giving a semantic label to a room) and graph-based LCD.

Simulator and Data

In our project, we have used Habitat-Sim as a general simulator. This simulator is not
particularly targeted towards any type of robot. A future work that would direct the
data towards Micro Aerial Vehicles (MAVs) would benefit from using Flightmare6 as a
simulator.

6 At https://uzh-rpg.github.io/flightmare/.

https://uzh-rpg.github.io/flightmare/
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Regarding the data, we have used theMP3D dataset that contains 90 scenes from house
environments. As we have already mentioned during the thesis report, Habitat-Sim
(just like other simulators) has support for scenes from several datasets. In particular,
we could have used theHM3Ddataset [24] consisting of 1000 environments of different
typologies, which would better adequate as general data fromwhich to generate HSGs.
Also, this data could then be used for training agents for exploration tasks, whichwould
avoid learning environment-dependent representations, in particular because the se-
mantic label distributions (rooms and objects) would be different in different types of
environment. The only caveat is that theHM3Ddoes not include semantic ground truth
classification of the objects. For that there is the HM3DSem dataset [40], a subset of 216
semantically annotated scenes.

In general, though, even if we did not have semantic ground truth, we could have used
any state-of-the-art semantic segmentation network over the RGB images gathered from
Habitat-Sim in order to assemble the semantic pointcloud for Hydra.

The same thing applies to odometry. If we did not have a global ground truth position
and orientation, we could have used any already existing method. In fact, Kimera-VIO
[28], which is already used in Hydra, is also a utility that can provide this kind of
information from visual and inertial sensors.

As we already mentioned in Section 7, changing the way in which we decide to explore
the environment using the graph would be also a good thing to develop: instead of
using the one-hop neighborhood, make this set larger and include nodes from further
away.

RL pipeline

The last part of our project, which has been set up but not applied, provides future
opportunity for research taking over this project.

The first thing that could be done is training RL agents to perform several exploration
tasks using the data we have generated with our pipeline. Tasks these agents could
learn range from exploring an unknown environment completely to looking for a par-
ticular semantic class of an object or a particular type of room, or navigating to a par-
ticular location in the scene.
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The expected results, for example in object or room search would be a good semantic
understanding of the scene aswell as a reduction in the size of the policymodels needed
to perform these tasks in a satisfactoryway. For these tasks, the places nodes could hold
semantic and geometric descriptors such as the ones proposed in Hydra for graph-
based LCD.

On-board execution & real experiments

A key point for future work is real implementation. If this pipeline were to be run
in a real environment, we could have results of how Hydra behaves in a real robot
together with the real performance of automatic exploration algorithms, even if they
are as simple as ours.
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