
Heterogeneous Programming Using
OpenMP and CUDA/HIP for Hybrid
CPU-GPU Scientific Applications

Journal Title
XX(X):1–18
©The Author(s) 0000
Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

SAGE

Marc González and Enric Morancho

Abstract
Hybrid computer systems combine compute units (CUs) of different nature like CPUs, GPUs and FPGAs.
Simultaneously exploiting the computing power of these CUs requires a careful decomposition of the applications into
balanced parallel tasks according to both the performance of each CU type and the communication costs among them.
This paper describes the design and implementation of runtime support for OpenMP hybrid GPU-CPU applications,
when mixed with GPU-oriented programming models (e.g.: CUDA/HIP). The paper describes the case for a hybrid
multi-level parallelization of the NPB-MZ benchmark suite. The implementation exploits both coarse-grain and fine-grain
parallelism, mapped to compute units of different nature (GPUs and CPUs). The paper describes the implementation of
runtime support to bridge OpenMP and HIP, introducing the abstractions of Computing Unit and Data Placement.
We compare hybrid and non-hybrid executions under state-of-the-art schedulers for OpenMP: static and dynamic
task schedulings. Then, we improve the set of schedulers with two additional variants: a memorizing-dynamic task
scheduling and a profile-based static task scheduling. On a computing node composed of one AMD EPYC 7742 @
2.250GHz (64 cores and 2 threads/core, totalling 128 threads per node) and 2 x GPU AMD Radeon Instinct MI50 with
32GB, hybrid executions present speedups from 1.10x up to 3.5x with respect to a non-hybrid GPU implementation,
depending on the number of activated CUs.

Keywords
Heterogeneous Programming, Hybrid CPU-GPU, OpenMP, CUDA, HIP

Introduction

Hybrid computing systems have become the widest spread
solution within the High Performance Computing (HPC)
domain. Hybrid systems combine computing units (CUs)
of different nature and computational power, for instance
CPUs, GPUs and FPGAs. Given the impressive computing
power delivered by these architectures, significant efforts
have been devoted to port applications from many computing
domains to this type of HPC systems. Machine Learning,
BioInformatics, Scientific Computing and many more
have clear examples of representative applications like
TensorFlow (Abadi et al. 2015), Caffe (NVIDIA 2020),
Smith-Waterman (Manavski and Valle 2008), Alya (Giuntoli
et al. 2019) that recently developed the support for GPU-
based systems.

Hybrid systems are programmed with language extensions
to general-purpose programming languages such as C/C++
and Fortran. Nvidia’s CUDA, AMD’s HIP, OpenCL,
OpenACC and OpenMP are reference programming models
for heterogeneous computing that follow this approach. In
general, all these programming frameworks focus on the
essential actions for porting an application to a hybrid
architecture: memory allocation, data transfers between CUs
that now operate within a distributed memory address space,
and the specification of those computations to be offloaded
to GPU-based CUs and those to be executed by CPU-based
CUs. OpenMP includes many language constructs to guide
all these aspects.

Hybrid applications simultaneously exploit fine and coarse
levels of parallelism. This requires the definition of memory-
allocation strategies per each device, work-distribution
schemes aware of the different nature of the CUs to balance
the work execution, and communication phases whenever
is necessary to exchange values between the CUs that
reside in different memory spaces. In particular, OpenMP
has evolved with new features so that all of these aspects
are reasonably supported through specific constructs and
practices. Nevertheless, most of this support focuses on
the sole utilization of the OpenMP programming model,
not addressing the fact that many applications now have
been ported to GPU-based systems using other programming
models such as CUDA or HIP. OpenMP has to be able to
reasonably support too the interoperability with these defacto
heterogeneous programming standards. Both CUDA/HIP
runtime systems define very similar interfaces to operate
with GPU devices. The main functionalities that need to
be addressed are how computations are offloaded to the
devices, how memory is allocated into devices and mirrored
with host memory, and how data is transferred from/to
devices and host. All of these aspects are supported by a
set of runtime primitives included in CUDA/HIP that require

Computer Architecture Department, Universitat Politècnica de Catalunya-
BarcelonaTECH, Barcelona, Spain

Corresponding author:
Marc González, marc@ac.upc.edu

Prepared using sagej.cls [Version: 2017/01/17 v1.20]



2 Journal Title XX(X)

the specification of how to interoperate with the OpenMP
execution model.

Mixing CUDA/HIP and OpenMP is a common practice
(Yang et al. 2011, 2021; Corni et al. 2016; Jacobsen
and Senocak 2013; Guan et al. 2013). In this context,
the threading level is utilized to activate several devices,
having one or more threads responsible for: device
memory allocation, data transfers and kernel offloading.
But if this approach is extended to simultaneously activate
both the CPU and GPU cores, then programmers have
to face significant programming limitations. Essentially,
programmers have to manually introduce code responsible
for an appropriate work distribution that adapts to the
inherent differences of CPU/GPU compute power, and to
distribute data among the host and device memory spaces
according to the work distribution. All of this has been
observed in previous works where specific work-distribution
mechanisms are described for hybrid architectures (Mittal
and Vetter 2015; Belviranli et al. 2013; Choi et al. 2013;
Zhong et al. 2012; Zhang et al. 2021; Gowanlock 2021).

In this context, the challenge of simultaneously activating
both CPUs and GPUs is essentially limited by the
interoperability of OpenMP with CUDA/HIP. The main
contribution of this paper is the design and implementation
of a runtime system support to improve the interoperabilty
of OpenMP and CUDA/HIP. We introduce two main
abstractions build on top of the OpenMP programming
model: Computing Unit and Data Placement. Using the
proposed runtime system, we describe how to effectively
mix OpenMP and AMD’s HIP to achieve a multi-level
parallelization of the NPB-MZ benchmark suite where both
the CPU an GPU cores execute simultaneously. We evaluate
its performance in a computing node composed of one AMD
EPYC 7742 @ 2.250GHz (64 cores and 2 threads/core,
totalling 128 threads per node) and 2 x GPU AMD Radeon
Instinct MI50 with 32GB. Hybrid configurations present
speedups from 1.08x up to 3.18x with respect to a non-hybrid
GPU configuration, depending on the number of activated
CUs.

This paper is organized as follows: Section describes
the NPB-MZ benchmark suite and points out its sources of
parallelism. Section details the design and implementation
of the runtime support for OpenMP hybrid applications.
Section depicts how the runtime support is used to
achieve a hybrid implementation of the NPB-MZ benchmark
suite. Section evaluates the performance of our hybrid
implementation. Section discusses related works and,
finally, Section concludes the paper.

Benchmark characterization

NAS Parallel Benchmarks
The NAS Parallel Benchmark (NPB) (Bailey et al. 1991)
suite provides the implementation of different benchmarks
for several programming languages (Fortran, C, ...) and
parallel paradigms (OpenMP, MPI, ...). The suite defines
several input classes for each benchmark; classes S, W,
A, B,... determine a sequence of increasing input sizes.
Finally, to verify the result of the benchmarks, NPB gives the
expected result for each class. The original NPB benchmark
suite consisted of eight benchmarks: five kernels and three

pseudo-applications. In this work we focus just on the three
pseudo applications: BT (Block Tri-diagonal solver), LU
(Lower-Upper Gauss-Seidel solver) and SP (Scalar Penta-
diagonal solver).

BT, LU and SP traverse a 3D volume (Figure 1-a) to
compute discrete solutions of the Navier-Stokes equations.
Figure 2-a shows the flow graph of NPB benchmarks. The
main loop, the time-step loop, applies a benchmark-specific
solver on every iteration.

Figure 1. 3D Volume: a) NPB, b) NPB-MZ, example 4 × 3 tiling
into 12 zones and neighbourhood relation between zones.

Figure 2. Flow graphs: a) NPB and b) NPB-MZ.

The Multi-Zone NPB (NPB-MZ) (der Wijngaart and
Jin 2003) re-implement NPB to expose a coarse level of
parallelism. To that end, the 3D input volume is tiled through
both x and y dimensions producing a grid of prisms (known
as zones, Figure 1-b) that can be processed in parallel.

However, the correct values of the border faces of each
zone also depend on the values of the border faces of its
neighbour zones. So, between two iterations of the time-
step loop, an exchange-boundaries procedure must update
the border faces of all zones.

Figure 2-b shows the flow graph of NPB-MZ benchmarks.
Each time-step iteration must call the exchange-boundary
procedure before applying the solver to all zones (potentially
in parallel).

Consequently, each time-step iteration can be divided into
two periods: the Communication Period, devoted to transfer
zone faces, and the Computation Period, devoted to update
zones. Figure 3 details the sequence of high-level procedures
called at each iteration.

Table 1 depicts the characterization of NPB-MZ bench-
marks. For each input class, the table details the overall
size, the number of zones, the zone size and the number
of time steps of each benchmark. Notice some differences

Prepared using sagej.cls



González and Morancho 3

Input 3D volume Memory Num. zones (x × y) Zone size (points per zone) Time steps
Class x × y × z (points) (GB) LU SP & BT LU SP BT LU SP BT

B 304 × 208 × 17 ≈ 0.2 4 × 4 8 × 8 67 184 16 786 from 2 992 to 59 976 250 400 200
C 480 × 320 × 28 ≈ 0.8 4 × 4 16 × 16 268 800 16 800 from 2 912 to 60 648 250 400 200
D 1 632 × 1 216 × 34 ≈ 13.0 4 × 4 32 × 32 4 217 088 65 892 from 11 968 to 243 236 300 500 250
E 4 224 × 3 456 × 92 ≈ 250.0 4 × 4 64 × 64 83 939 328 327 888 from 59 248 to 1 203 452 300 500 250

Table 1. Characterization of NPB-MZ benchmarks: overall size (number of points and memory requirements) and, for each
benchmark, number of zones, zone size and number of time steps.

among the benchmarks that will be relevant in order to
understand the performance of the hybrid implementations
of the benchmarks:

• In LU, the number of zones is always 16, indepen-
dently on the input class. For each input class, zone
sizes are uniform.

• In SP, the larger the input class, the larger the number
of zones. Like in LU, zone sizes are uniform at each
input class; however, SP zones are smaller than LU
zones.

• In BT, like in SP, the larger the input class, the larger
the number of zones. However, zone sizes are not
uniform; for each input class, the ratio between the size
of the biggest zone and the size of the smallest zone is
about 20×.

Figure 3. Time-step loop of NPB-MZ benchmarks. Sequence
of procedures called at each iteration of the time-step loop.

Sources of parallelism
The NPB-MZ suite exposes several levels of parallelism.
Its main difference with respect to NPB is the exposure
of a new parallelism level, the inter-zone parallelism. It
can be exploited in the Computation Period by the parallel
processing of zones through several Computing Units (i.e.,
CPU’s and GPU’s). Moreover, NPB-MZ also exposes an
intra-zone parallelism in both periods while processing each
individual zone. It can be exploited by several parallelization
techniques (i.e., multi-threading, vectorization and porting to
GPU). The following subsections describe these parallelism
levels.

Computation period: Inter-zone Parallelism
Figure 4 shows the skeleton of the time-step loop of

the NPB-MZ applications. The Computation Period is
implemented by a loop that traverses the zones and processes

for (step=0; step < num_steps; step++) {

/* BORDER EXCHANGE */

exch_qbc(...);

/* ZONE PROCESSING */

for (zone=0 ; zone < num_zones; zone++) {

comp_phase_1 (...);

comp_phase_2 (...);

...

comp_phase_N (...);

} /* zone loop */

} /* Time step loop */

void comp_phase_N(...) {

/* Loop NEST 1 */

for (k=0; k < zdim; k++)

for (j=0; j < ydim; j++)

for (i=0; i < xdim; i++) {

/* MATRIX BASED COMPUTATION */

...

}

/* Loop NEST 2 */

for (k=0; k < zdim; k++)

for (j=0; j < ydim; j++)

for (i=0; i < xdim; i++) {

/* MATRIX BASED COMPUTATION */

...

}

...

}

Figure 4. Time step loop for the NPB-MZ benchmark suite.
Border elements of zones are computed in function exch-qbc.
Zones are processed sequentially by means of a series of
computational phases where each one contains several loop
nests that perform matrix-based computations.

them. As processing a zone is independent of processing the
other zones, the exploitation of inter-zone parallelism implies
the parallelization of this loop.

Computation period: Intra-zone Parallelism
Figure 4 depicts that each computational phase calls

a subroutine with several loop nests that implement the
computation for one zone and a computational phase. The
intra-zone parallelism corresponds to the exploitation of the
parallelism exposed by these loop nests. These loops can be
annotated with OpenMP directives or transformed to device
kernels.

Communication period: Intra-zone Parallelism
Figure 5 shows the code skeleton for the exchange

of boundary values. In this period, zones are processed
sequentially, so no inter-zone parallelism exists. However,
processing each zone exposes some intra-zone parallelism.
The computations are organized in the form of memcpy
operations that pack/unpack border elements into temporary
buffers (copy face function) and then these are exchanged

Prepared using sagej.cls



4 Journal Title XX(X)

/* EXCH_QBC */

for (zone=0; zone < num_zones; zone++) {

east = adjacency_east[zone];

north = adjacency_north[zone];

copy_face(tmpEast, mesh[east], "IN",...);

copy_face(tmpNorth, mesh[north], "IN",...);

compute_border(mesh[zone], tmpEast, tmpNorth,...);

copy_face(tmpEast, mesh[east], "OUT" ...);

copy_face(tmpNorth, mesh[north],"OUT",...);

} /* zone loop */

void copy_face(...) {

...

for (k=0; k < dim; k++)

for (j=0; j < dim; j++) {

/* MATRIX BASED COMPUTATION */

...

}

...

}

void compute_border(...) {

for (k=0; k < dim; k++)

for (j=0; j < dim; j++) {

/* MATRIX BASED COMPUTATION */

...

}

}

Figure 5. Computation of border elements for each zone.
Zones are processed sequentially by means of a sequence of
memcpy operations (copy face function) that pack/unpack
border elements to temporary buffers. The buffers are
exchanged between adjacent zones (compute border function).

between adjacent zones (compute border function). These
computations are implemented as parallelizable loop nests
that can be annotated with OpenMP directives or transformed
into device kernels.

Hybrid parallelization
Figures 6 and 7 depicts the parallel host and device code
schemes for the NPB-MZ benchmark suite. The inter-zone
parallelism is easily exploited by annotating the loop that
traverses zones with an OpenMP parallel for directive.
Exploiting intra-zone parallelism depends on the nature
of the CUs: for CPU-based CUs, by means of additional
OpenMP directives that parallelize loop nests within the
different phases of zone processing; for GPU-based CUs,
these loop nests must be transformed into kernel functions.

To simultaneously activate both devices and host, the
codes in Figures 6 and 7 need additional support to
identify whether an OpenMP thread corresponds to a CPU-
based or to a GPU-based CU. In the context of hybrid
executions, nested parallelism requires associating threads in
an outer level of parallelism to a subset of the computational
resources (i.e: a compute unit). Therefore, when these
threads generate the inner level of parallelism, a decision
has to be taken regarding whether this parallelism has to
be mapped to device or host cores. We define that a thread
diverges to a host compute unit if it deploys the inner level
of parallelism to a host compute unit. Similarly, a thread
diverges to a device compute unit if it offloads the inner level
of parallelism to a device. This support is not available in

the current specification of OpenMP 5.2 and neither exists
in Nvidia’s CUDA nor AMD’s HIP runtime specifications.
One main contribution of this paper is the design and
implementation of the missing runtime support to effectively
merge OpenMP with CUDA or HIP. Notice that new
features in OpenMP like contexts, traits and meta-directives
could be used to parallelize the loop nests using solely
OpenMP directives. But these do not solve the problem of
determining if a thread in the outermost level of parallelism
(e.g.: inter-zone parallelism) has to be diverged to a GPU
or CPU version for the innermost parallelism (e.g.:intra-
zone parallelism). Even with meta-directives, OpenMP does
not define what should be the association between threads
and devices. Only a manual solution performed by the
programmer can solve this limitation. Notice too that this
association is essential for the work distribution to be applied
between threads executing the outermost parallelism. In
addition, if the application already is coded using CUDA or
HIP primitives (e.g.: memory allocation, data transfers and
kernel offloading), the programmer might want to utilize this
version of the code but combined with OpenMP.

for (step=0; step < num_steps; step++) {

/* BORDER EXCHANGE */

exch_qbc(...);

/* ZONE PROCESSING */

#pragma omp parallel for /* Inter-zone parallelism */

for (zone=0; zone < num_zones; zone++) {

comp_phase_1 (...);

comp_phase_2 (...);

...

comp_phase_N (...);

} /* zone loop */

} /* Time step loop */

void comp_phase_N(...) {

#pragma omp parallel for /* Intra-zone parallelism */

for (k=0; k < zdim; k++)

for (j=0; j < ydim; j++)

for (i=0; i < xdim; i++) {

/* MATRIX BASED COMPUTATION */

...

}

#pragma omp parallel for /* Intra-zone parallelism */

for (k=0; k < zdim; k++)

for (j=0; j < ydim; j++)

for (i=0; i < xdim; i++) {

/* MATRIX BASED COMPUTATION */

...

}

...

}

Figure 6. Multi-level OpenMP parallel code. Outermost level of
parallelism (inter-zone) is exploited by means of an OpenMP
directive that parallelizes the loop that traverses the zones.
Innermost level of parallelism (intra-zones) is exploited by
means of OpenMP annotations for the loop nests that
implement the compute phases of zone processing.

Hybrid execution requires to manage different memory
spaces, so memory allocation and placement requires
some guidance from the programmer. Consequently, at the
programming model level, the programmer needs some
explicit support to indicate when to allocate memory, where
to allocate and, if necessary, to change the placement of that

Prepared using sagej.cls



González and Morancho 5

__global__ kernel_1_comp_phase_N(...) {

k = f_k(block grid);

j = f_j(block grid);

i = f_i(block grid);

/* MATRIX BASED COMPUTATION */

...

}

__global__ kernel_2_comp_phase_N(...) {

k = f_k(block grid);

j = f_j(block grid);

i = f_i(block grid);

/* MATRIX BASED COMPUTATION */

...

}

void comp_phase_N(...) {

kernel_1_comp_phase_N<<<grid, block, ... >>> (...);

kernel_2_comp_phase_N<<<grid, block, ... >>> (...);

...

}

Figure 7. Device code for exploiting innermost parallelism
(intra-zone). Loop nests corresponding to compute phases of
zone processing have been transformed into device kernels.

memory. In the context of Figures 6 and 7, the programmer
must ensure that memory allocation and placement has
happened prior any work is assigned to the OpenMP threads
that will be diverged to CPU or GPU execution. But this is
highly entangled with the work distribution applied among
the hybrid execution flows. Similarly as with the computing
unit abstraction, we need additional runtime support to make
possible the appropriate policies for memory placement
according to the work-distribution schemes.

Given the inherent difference in compute power between
host and devices, new scheduling schemes are necessary.
Current specification of OpenMP supports static and
dynamic schedulers. In this paper we implement variants
of those to address the eventual unbalance caused by the
different compute power of CPU and GPU cores.

Runtime support for OpenMP hybrid
applications

This section describes the design of a runtime support that
allows the programmer to develop hybrid OpenMP appli-
cations with CUDA/HIP. The design is divided into three
runtime subsystems: a) libCU-rtl implements the necessary
support to introduce the computing unit abstraction, b)
libPLACEMENT-rtl implements the necessary support to
manage with different address spaces, c) libSCHEDULING-
rtl includes the implementation of additional scheduling
schemes for hybrid applications.

The content of this section contributes to identify runtime
primitives that can improve the overall programmability of
hybrid OpenMP applications. It should be understood as
a case of study for improvements in the OpenMP runtime
support regarding the interoperability with GPU-oriented
programming frameworks such as CUDA or HIP.

libCU-rtl

Computing units can be either CPU-based or GPU-based.
For CPU-based CUs, they correspond to an aggregation of
one or more CPUs. For instance, a CU can be formed with a
pair of CPUs giving an organization that we identify as 1x2:
1 stands for one CU, the 2 identifies the number of CPUs in
the CU. Similarly, CUs can be defined in the form of 1x4,
1x8 or whatever the CPU aggregation.

GPU-based CUs are defined only in the form of K+1
configuration where K CPUs are bounded to one GPU
in order to orchestrate all actions over the GPU: memory
allocation, data transfers and computation offloading. For
this work, the most common usage cases have been covered
with hybrid configurations in the following form: (N x M
+ G) CPUs where N stands for the number of CPU-based
CUs executing with M CPUs, and G stands for the number
of GPU-based CUs. All CPU-based CUs are composed of the
same number of CPUs and GPU-based CUs are managed by
solely one thread per GPU (e.g.: K=1). For these cases, a total
number of NxM + G threads are necessary for execution.

Threads are created using the OpenMP programming
directives. For thread-CU association, we rely on the thread
affinity support already existing in OpenMP. The environ-
ment variables OMP PROC BIND and OMP PLACES con-
trol the thread affinity to the actual CPUs. Our CU runtime
support relies on correctly setting these variables to ensure
the particular thread-CU association that will allow the
simultaneous activation of CPUs and GPUs.

OMP PLACES="{0, 1, 2, 3}, {4, 5, 6, 7}, {8, 9, 10, 11},
{12, 13, 14, 15}, {16}, {17}, {18}, {19}"

OMP PROC BIND="close, master"

Logical CU Identifier

0 1 2 3 4 5 6 7

CPU CPU CPU CPU CPU CPU CPU CPU

CPU CPU CPU CPU GPU GPU GPU GPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU-based CUs (1x4) GPU-based CUs

Figure 8. Example of an 8 CUs organization: 4 CPU-based
CUs composed each one of 4 CPUs, 4 GPU-based CUs
composed of 1 CPU and 1 GPU. This configuration needs 20
physical CPUs. OpenMP thread binding is used to configure the
thread-CU association. OpenMP variables OMP PLACES and
OMP PROC BIND are set to achieve the desired configuration.

Figure 8 shows an 8-CU hybrid system, with 4 CPU-
based CUs composed each one of 4 CPUs and 4 GPU-based
CUs composed of 1 CPU and 1 GPU. This configuration
needs a total number of 20 physical CPUs. Besides, the
CPU aggregation is achieved by setting the two OpenMP
environment variables that control affinity and thread binding
to CPUs. OMP PLACES lists aggregation of physical CPU
identifiers where threads are bounded to. These aggregations
are named places. OMP PROC BIND describes how to
interpret the content of OMP PLACES across nested levels
of parallelism. Table 3 shows the appropriate values for these
variables in a OpenMP compact form for some particular CU
configurations.

Prepared using sagej.cls



6 Journal Title XX(X)

Signature Description
unsigned int nCUS() Get the current number of active CUs.
unsigned int nGPUS() Get the number of GPU-based CUs.
unsigned int nCPUS() Get the number of CPU-based CUs.

unsigned int nInnerCPUs()
Get the number of CPUs contained in the CPU-based CU associated to the invoking thread.
Returns 0 if thread corresponds to a GPU-based CU.

bool isGPU(() Check if invoking thread is associated to a GPU-based CU.
bool isCPU() Check if invoking thread is associated to a CPU-based CU.

unsigned int getGPUid()
Get the device ID for the CU associated to the invoking thread.
Returns error (-1) if the invoking thread is not associated to a GPU-based CU.

unsigned int getCPUid()
Get the OpenMP thread ID for the CU associated to the invoking thread.
Returns (-1 limits::max) if the invoking thread is not associated to a CPU-based CU.

unsigned int getCUid() Get the CU ID, from 0 up to the number of CUs minus one.

void synchronize()
Synchronize with the device corresponding to the CU associated to the invoking thread.
In case the CU corresponds to a CPU, no synchronization happens.

Table 2. Runtime primitives of libCU-rtl

Configuration OMP PLACES

OpenMP
Thread
Binding

1x2 + 4 ”{0:2}:1:1, {2}:4:1”
1x4 + 1 ”{0:3}:1:1, {4}:1:1”
4x2 + 1 ”{0:2}:4:2, {8}:1:1”
7x2 + 2 ”{0:2}:7:2, {14}:2:1”
3x4 + 4 ”{0:4}:3:4, {12}:4:1”

Table 3. Examples for OMP PLACES variable and thread
binding control in hybrid execution using the OpenMP
programming model.

Within the libCU-rtl, CUs are identified with integer
numbers that range from 0 up to NCUS-1, where the NCUS
correspond to the number of executing CUs. This is totally
in accordance with how OpenMP identifies the threads that
execute within the same parallel region. The OpenMP thread
name space matches exactly the CU name space. Within
the libCU-rtl, CPU-based CUs are identified from 0 up to
NCPUS-1 where NCPUs is the number of of CPU-based
CUs. GPU-based CUs are identified by numbers in the
range [NCPUS, NCUS-1]. The CU name space is used
to implement work-distribution schemes similarly to the
OpenMP programming model.

Table 2 lists the runtime primitives implemented to operate
with the CU abstraction within the OpenMP programming
model. The primitives give support to the programmer to
query the runtime system about the parameters of the hybrid
execution: how many CUs are executing, how many of them
correspond to CPU-based CUs, and how many of them
correspond to GPU-based CUs. Also, there are primitives to
get and set the CU identifier, and to translate from the CU
identifier to the device identifier the thread is assigned to,
and from the CU identifier to the OpenMP thread identifier
in the case of CPU-based CUs. For GPU-based CUs there is a
specific primitive to synchronize with the associated device.
Section describes in detail how all these primitives have been
used to code a hybrid version of the NPB-MZ benchmark
suite.

libPLACEMENT-rtl

OpenMP hybrid applications require additional runtime
support to control the data sharing between the host and
device address spaces e.g.: data sharing happens at system
memory page level). Memory allocation and placement, and
eventual data transfers have to be guided by the programmer
in order to achieve satisfactory levels of performance.

For instance, CUDA runtime primitives to manage unified
virtual memory allow programmers to provide hints for data
placement and usage in computational kernels (González
and Morancho 2021; NVIDIA 2023). For hybrid OpenMP
applications, similar support is needed and should be
available in accordance to the OpenMP conventions for
parallelism exploitation. The role of the libPLACEMENT-
rtl is to bridge the OpenMP programming model with the
existing support to control the memory allocation, placement
and if necessary, migration.

Guidance from the programmer is needed so that when
a computation is assigned to a CU, the data associated to
the computation is placed on the corresponding CU memory
space. This requires memory allocation and, potentially,
data migration prior the actual computation is executed.
Usually, for hybrid applications, programmers introduce
a pre-computed work distribution and memory allocation
before any computation takes place. This happens in the
initialization phases of the application. In contrast, the lib-
PLACEMENT-rtl includes the necessary runtime support so
that memory allocation, placement and migration can happen
at any time of the execution.

Within the libPLACEMENT-rtl, memory spaces are
identified with an integer value that ranges from 0 up to
NAS-1, where NAS stands for the total number of memory
spaces in use. Host address space is identified with value 0,
and the devices’ memory spaces are numbered from 1 up to
the number of GPU-based CUs.

The main data structure for the libPLACEMENT-rtl is
a map between key values and actual memory addresses
belonging to any of the different address spaces. A key
corresponds to a host memory address that identifies
uniquely a memory region. Programmers can register
memory regions using the primitive registerMem. Along
the application execution, programmers can allocate, de-
allocate, copy and migrate memory regions using key
values and CU identifiers that identify memory regions
in a particular CU. The libPLACEMENT-rtl strictly gives
support for this functionalities and no memory consistency
mechanisms are supported. The replicas and actual state
of data is totally under the programmer responsibility.
The runtime distinguishes between memory placement and
memory allocation. Memory regions only have one active
placement, although they might have been allocated in
several memory spaces. Only migration actions change
the placement, while allocation or copy do not. Besides,

Prepared using sagej.cls



González and Morancho 7

Primitive Description

unsigned int registerMem(void* key, unsigned int size)
Register within the runtime a memory region identified by key
of size bytes.

unsigned int getPlacement(void* key)
Get the memory space ID for the input key,
from 0 up to the number of active memory spaces for the application.

void* alloc(void* key, unsigned int CU)

Perform memory allocation on the given CU memory space for a memory
chunk. Size is determined by the previous registration of the key value
associated to the memory region. Return value corresponds to the pointer
to memory region.

void* dealloc(void* key, unsigned int CU)
Perform memory deallocation on the given CU memory space for a memory
chunk.

void* mem addr(void* key, unsigned int CU)
Get base address of the registered memory region associated to key within
the CU memory space.

unsigned int migrate(void* key, unsigned int to)
Perform memory migration from the current placement of data (key) to the
destination memory space.

unsigned int
copy(void* key, unsigned int from,

unsigned int to)

Perform a memory copy from the origin memory space to the
destination memory space.

bool isGPU(unsigned int AS) Check if the memory space AS corresponds to a device memory space.
bool isCPU(unsigned int AS) Check if the memory space AS corresponds to host memory space.

unsigned int getGPUid(unsigned iny AS)
Get the device ID for the AS.
Returns error (-1) if the AS is not associated to a GPU-based CU.

Table 4. Runtime primitives of libPLACEMENT-rtl

primitives that involve data transfers between CUs are not
optimized regarding the overlapping of communication and
computation. In general, the primitives in libPLACEMENT-
rtl expect that once memory regions have been allocated,
then the application rarely will require memory migration
due to changes in the work distribution among the CUs.
But if this were the case, the runtime supports this feature.
Section describes the hybrid implementation of the NPB-
MZ benchmark suite and shows that this has not represented
a limitation for the hybrid parallelization and execution.

Table 4 describes the runtime primitives that introduce
the placement abstraction within the OpenMP programming
model. The primitives give support to the programmer to
query the runtime system about the parameters of the hybrid
execution: how many address spaces are in use and check if
an address space identifier corresponds to a host or device
address space. For managing the memory allocation, the
runtime support includes primitives to alloc and copy. In this
regard, the alloc and de-alloc operations are mapped on the
already existing primitives in the native OpenMP runtime
support, but execute additional control code to monitor the
allocated memory regions. For placement management, the
runtime supports one main primitive to migrate memory
regions. Section describes in detail how all these primitives
have been used to code a hybrid version of the NPB-MZ
benchmark suite.

libSCHEDULING-rtl
Hybrid applications require work distribution schemes that
adapt to the different computing power of the CUs. We
have implemented a runtime library with generic support to
implement different schedulers. The implementation follows
an object-oriented paradigm, with virtualization of methods
that need to be redefined by the programmer to implement
new schedulings.

Within the libSCHEDULING-rtl, the input parameters
for the scheduler are the number of tasks, the number of
CPU-based CUs and the number of GPU-based CUs. All
schedulers assume that the tasks are identified by an integer
value ranging from 0 up to NTASKS-1 , where NTASKS
stands for the total number of tasks to be executed.

Table 5 describes the runtime primitives that allow the
programmer to define and operate with the schedulers. The
primitives also give support to the programmer to monitor
execution times for tasks and also for CUs. Section describes
in detail how these primitives have been used to code a hybrid
version of the NPB-MZ benchmark suite.

Table 6 describes the main data structures that have been
used to implement the scheduling support. The runtime
system records how many tasks have to be scheduled, how
many CUs are available, how many of them correspond
to CPU-based CUs and how many correspond to GPU-
based CUs. The runtime has the ability to memorize the
task assignment between the CUs, so that if a computation
is repeated several times, the scheduling is only applied
once and later reused across the computation instances.
For this purpose, the runtime uses several vectors to
retain the the task-CU assignment (e.g.: vectors mTaskCU,
mTaskHowmany). Along the execution of the application,
CUs require tasks to be executed (e.g.: getTask). This
corresponds to the main virtual method. A programmer
can redefine this method to implement dynamic work-
distributions schemes. CUs notify that a task starts execution
(executeTask) and communicate to the runtime system that a
task has been completed (commitTask). These primitives are
used to monitor task execution time and total CU execution
time (vectors mTimersPerCU and mTimersPerTask).

Within libSCHEDULING-rtl we have implemented
variants of two state-of-the-art schedulers: Static and
Dynamic Task scheduling. The following subsections
describe each scheduling in detail. In the context of this
work, these schedulers represent a case of study to evaluate
the support that the libSCHEDULING-rtl offers to enable
user-defined schedulers. Hence, this section should not be
understood as comprehensive study on work scheduling for
heterogeneous systems.

SCHEDULING::Static
This scheduling assigns the set of tasks evenly among the

CUs: the total number of tasks is divided by the number of
CUs. The same number of consecutive tasks (according to
the tasks numbering) is assigned to each CU. If the number
of CUs does not evenly divide the number of tasks, then

Prepared using sagej.cls



8 Journal Title XX(X)

Signature Description

void commitTask(unsigned int task)
Commit the task executed by the CU associated to
the invoking thread.

unsigned int getTask()
Get a task assigned to the CU associated to the invoking thread.
Returns NOTASK when runs out of pending tasks.

void executeTask(unsigned int task)
Start execution of the task assigned to
the CU associated to the invoking thread.

unsigned int getCUid(int Task) Get the CU identifier that executes the task.
void setTaskTime(unsigned int task, float Time) Set the time sample for a task.
void getTaskTime(unsigned int task) Get the time sample for a task.
void setCUTime(int CU, float Time) Set the time sample for a CU.
void getCUTime(int CU, float Time) Get the time sample for a CU.
bool isDynamic() Check if scheduling is a variant of a dynamic scheduling.
bool isStatic() Check if scheduling is a variant of a static scheduling.
void printScheduling() Output the assignment between CUs and tasks.
void printTaskTimers() Output the time samples for tasks.
void printCUTimers() Output the time samples for CUs.

Table 5. Runtime primitives of libSCHEDULING-rtl

Type Name Description
unsigned int mNtasks Number of tasks to be scheduled.
unsigned int mNcpus Number of CPU-based CUs.
unsigned int mNgpus Number of GPU-based CUs.

std::vector<int> mTaskCU Vector of size mTasks containing the CU identifier that executes each task.
std::vector<int> mTaskHowmany Vector of size mNcpus+mNgpus containing the number of tasks assigned to each CU.

std::vector< std::vector<int> > mCUTasks
Vector of size mNcpus+mNgpus. Each element is a vector containing the sequence
of tasks assigned to a CU.

std::vector<bool> mCommitTasks Vector of size mNtasks that indicates if a task has been completed.

std::vector<unsigned int> mIndexTask
Vector of size mNcpus+mNgpus containing an index value for the task being executed
by a CU. This value is used to access the corresponding vector within the mCUTasks vector.

omp lock t mLock Mutex used for mutual exclusion to support dynamic schedulers.
unsigned int mChunk Chunk parameter applied to the dynamic scheduler.

std::vector<float> mTimersPerCU Vector of size mNcpus+mNgpus to store the execution time for a CU.
std::vector<float> mTimersPerTask Vector of size mTasks to store the execution time for a task.

std::vector<unsigned int> mIndexFirstTask
Vector of size mNcpus+mNgpus to store first task assigned to a CU. The scheduler assumes
a sequence of consecutive tasks being assigned to each CU.

std::vector<unsigned int> mIndexLastTask
Vector of size mNcpus+mNgpus to store last task assigned to a CU. The scheduler assumes
a sequence of consecutive tasks being assigned to each CU.

Table 6. Data structures of libSCHEDULING-rtl

an additional task is assigned to CUs with identifiers in the
range [0, NREMAIN-1] where NREMAIN is the number
of remaining tasks. This scheduler behaves exactly as the
STATIC scheduling included in the OpenMP specification
for loop level parallelism.

SCHEDULING::STATIC-hybrid
This scheduler is a variant of the Static scheduler.

According to a pre-computed parameter, the Performance
Conversion Factor (PCF), the scheduler divides the set of
the tasks into two subsets: one for the CPU-based CUs, the
other for the GPU-based CUs. Then the scheduler applies a
Static scheduling per each subset, separately assigning tasks
to CPU-based CUs and GPU-based CUs. The PCF is the
ratio between the execution time needed to process a task
by a CPU-based CU and by a GPU-based CU according to
the hybrid configuration. For instance, a PCF1x2 equal to 2.5
indicates that the execution time needed by a CU composed
by 2 CPUs to process a task is equal to 2.5 multiply by
the time needed by one GPU-based CU (e.g.: one GPU).
Similarly, PCF1x4 is the ratio between the execution times of
a CU composed by 4 CPUs and a GPU-based CU. In general,
this scheduler needs the PCF values to be pre-computed; in
our implementation, through profiling techniques.

Given T tasks, this scheduler assigns to the set of GPU-
based CUs the number of tasks: Tgpu = T / (G x PCF + C),
where C corresponds to the number of CPU-based CUs, G

corresponds to the number of GPUs. If the division generates
a remaining of tasks, these are grouped in GxPCF groups
and assigned to the GPUs. The number of tasks assigned to
the CPU-based CUs is Tcpu = T - Tgpu. Once the Tgpu and
Tcpu values are computed, then the scheduler applies a Static
scheduling to each set according to the number of CPU-based
and GPU-based CUs. The reasoning behind this arithmetic is
the following: dividing the number of tasks by the value (G x
PCF + C), defines the number of groups that can be formed
with sufficient work to distribute among CPU-based and
GPU-based CUs in a uniform, balanced way. The balancing
occurs because of the PCF parameter in the expression. For
instance, if T=10, G=1, C=1 and PCF=3, then we want to
form groups of 4 tasks (4=GxPCF+C), because 3 of them
will be mapped to a GPU, one will be mapped to a CPU-
based CU. This results in balanced distribution, according to
the PCF value. We count how many of these groups can be
formed by computing T / (G x PCF + C).

This STATIC-hybrid scheduling has several similarities
with previous heterogeneous work-schedulings in Scogland
et al. (2012, 2014). In these works, performance models
are introduced to estimate the execution time of a task
on the available computing resources (e.g.: CPUs/GPUs).
The estimates are generated dynamically, through regression
techniques. The STATIC-hybrid is very similar to that of
the heterogeneous work-scheduling in Scogland et al. (2012,

Prepared using sagej.cls



González and Morancho 9

2014). Given the estimates, the tasks are assigned to the
compute units in a similar fashion. The essential difference
is that the STATIC-hybrid scheduler needs of an off-line
profiling step to generate samples of execution times for
tasks and compute units. The performance comparison factor
is derived from these samples, which is the key element
in the STATIC-hybrid scheduling to decide where to place
a particular task. In general, this approach is less general
that those based on dynamic techniques, but in the context
of scientific applications it is yet a feasible and effective
technique. The impact of the profiling step is evaluated in
Section where we describe how much time is needed and
what are the programming efforts that it requires.

SCHEDULING::Dynamic
This scheduler assigns tasks to CUs dynamically. It

divides the set of tasks into chunks of chunk consecutive
tasks according to the task numbering; where chunk is a
parameter of the scheduler. A chunk is assigned to each
CU and as soon as a CU finishes processing its chunk, the
scheduler assigns a new chunk to the CU. This scheduling
behaves as a task scheduler where the chunk parameter
determines the task granularity.

The chunk parameter can smooth the effect of CU
synchronizations to acquire chunks of work. Besides, this
scheduler is able to memorize the task-CU assignment. The
runtime system keeps track of which tasks executed each
CU. From one execution of the scheduled computation, to
the next instance of the same computation, the scheduler
ensures that the same task scheduling is applied. Thus, no
data migration occurs when the parallelism execution is
repeated. Only the first instance of the work execution suffers
from overheads related to memory registering, allocation
and/or data transfers associated to the data communication
between the CUs. This data locality preservation is only
effective if no other computation under a different scheduling
moves data between host and devices. This scheduler
behaves exactly as the DYNAMIC scheduling included in the
OpenMP specification for loop level parallelism, but with the
additional property of memorizing the task assignment from
one execution to the next one.

Design and Implementation of Hybrid
NPB-MZ
This section describes the hybrid design and implementation
of the NPB-MZ benchmark suite using the runtime support
described in the previous section.

Multi-Level Hybrid Parallelization
The mulit-level parallelization is described in terms of
the inter and intra zone parallelism exposed in both the
Computation Period and Communication Period of each
benchmark in the suite.

Computation Period
Figure 9 shows the OpenMP implementation for a hybrid

parallel strategy for the inter-zone parallelism. The original
loop responsible for traversing the zones (Figure 4) has
been substituted by a parallel region. The parallel region is
executed with as many threads as CUs are used for the hybrid
execution. The code executed by all threads corresponds to

a while loop where the primitives for acquiring, executing
and committing tasks are inserted. Notice the usage of the
migrate primitive to ensure that the memory allocation is
performed prior any attempt is done to process a zone (e.g.:
task). In this case, the task identifier coincides with the zone
index to be processed at each iteration of the while loop.
For threads associated to a GPU-based CU, after the zone
is processed, a synchronization primitive is invoked. The
different computation phases are executed by a host CU or
device CU according to the nature of the thread. Notice
that this code structure is independent from the applied
scheduling. In Figure 9 a static scheduling is used, but it
could be substituted by a dynamic or hybrid scheduling.

Figure 10 depicts the code for one stage. Notice the
usage of the corresponding primitives to check whether
the executing thread is associated to a host or to a device
CU. For host CUs, the execution is diverged to loop nests
annotated with OpenMP directives. These inner parallelism
is exploited by as many threads as the output of the
primitive nInnerCPUs. Thus, this innermost parallelism is
deployed over the CPUs associated to the host CU. This
is ensured because OpenMP thread affinity is set so that
appropriate places are described through OMP PLACES
and OMP PROC BIND environment variables. If the thread
corresponds to a device CU, then the execution is diverged to
the invocation of the kernels that codify the device versions
of the original loop nests. Notice the translation from the
device CU identifier to the actual device identifier (e.g.: call
to the getGPUid primitive).

Static(num_zones, CU::nGPUS(), CU:nCPUS());

#pragma omp parallel num_threads(CU::GPUS()+CU:CPUS())

{

task = Static::getTask();

while (task != NO_TASK) {

PLACEMENT::migrate(mesh[zone],...);

Static::executeTask(task);

/* ZONE PROCESSING */

zone = task;

comp_phase_1 (...);

comp_phase_2 (...);

...

comp_phase_N (...);

if (CU::isGPU()) CU::synchronize();

Static::commitTask(task);

task = Static::getTask();

}// while

} // parallel

Figure 9. Code transformation for exploiting inter-zone
parallelism. Original parallel loop is transformed into a parallel
region containing a while loop. Threads iterate and invoke the
runtime primitives to acquire tasks and execute them. The
scheduling to be applied is determined by the call to the
primitive Static.

Communication Period
Within the Communication Period there is no inter-zone

parallelism. All zones are processed one after the other,
exchanging and updating border values. Process a zone

Prepared using sagej.cls



10 Journal Title XX(X)

void comp_phase_N(...)

if (CU::isCPU()) {

NT = CU::nInnerCPUs();

#pragma parallel for num_threads(NT)

for (k=0; k < zdim; k++)

for (j=0; j < ydim; j++)

for (i=0; i < xdim; i++) {

/* MATRIX BASED COMPUTATION */

...

}

} // if

else if (CU::isGPU()) {

HipSetDevice(CU::getGPUid());

kernel_1_comp_stage_N<<<grid, block, ... >>> (...);

} // else

...

}

Figure 10. Code transformation for exploting intra-zone
paralellism. Host CUs are diverged to loop nests annotated with
loop level parallelism directives. This innermost level of
parallelism is executed by the CPUs associated to the host CU;
the number of threads is determined by the call to nInnerCPUs.
Device CUs are diverged to kernel invocations.

for (zone=0; zone<NUM_ZONES; zone++) {

east_zone = adjacency_east[zone]

north_zone = adjacency_north[zone];

zonePlacement = PLACEMENT::getPlacement(mesh[zone]);

copy_face(tmpEast[zonePlacement], mesh[east_zone],

"IN", ...);

copy_face(tmpNorth[zonePlacement], mesh[north_zone],

"IN", ...);

if (PLACEMENT::isGPU(zonePlacement)) {

HipSetDevice(PLACEMENT::getGPUid(zonePLacement));

gpu_compute-border(mesh[zone],

tmpEast[zonePlacement],

tmpNorth[zonePlacement]);

}

else if (PLACEMENT::isCPU(zonePLacement)) {

cpu_compute_border(mesh[zone], tmpEast[zonePlacement],

tmpNorth[zonePlacement]);

}

copy_face(tmpEast[zonePlacement], mesh[east_zone],

"OUT", ...);

copy_face(tmpNorth[zonePlacement], mesh[north_zone],

"OUT", ...);

}

Figure 11. Hybrid implementation of the exchange boundary
computation. Host and device versions of the compute border
computation are introduced. Zone placement is checked and
border computation happens where the zone resides.

exposes some amount of parallelism that can be exploited
through fine-grain parallelism.

Figure 11 depicts the code scheme for the Communication
Period. Zone faces containing border elements are copied to
temporary buffers (e.g.: calls to copy-face procedure). Then,
zone placement is checked to perform the border exchange
computation on a device or host accordingly.

The implementation of the copy-face procedure now is
more complex because buffering of border elements is
conditioned by the fact that buffers and adjacent zones can

void copy_face(void* Buffer, void* Zone, string Dir, ...) {

zonePlacement = PLACEMENT::getPlacement(Zone);

bufferPlacement = PLACEMENT::getPlacement(Buffer);

if (Dir == "IN") {

if (PLACEMENT::isGPU(zonePlacement) &&

PLACEMENT::isGPU(bufferPlacement)) {

HipSetDevice(PLACEMENT::GPU(zonePlacement));

gpu_copy_face<<<grid, block, ...>>>(...);

HipMemCpyPeer(Buffer, ...,);

}

if (PLACEMENT::isGPU(zonePlacement) &&

PLACEMENT::isCPU(bufferPlacement)) {

HipSetDevice(PLACEMENT::GPU(zonePlacement));

gpu_copy_face<<<grid, block, ...>>>(...);

HipMemCpy(Buffer, ...,HipDeviceToHost);

}

if (PLACEMENT::isCPU(zonePlacement) &&

PLACEMENT::isGPU(bufferPlacement)) {

cpu_copy_face(...);

HipSetDevice(PLACEMENT::GPU(bufferPlacement));

HipMemCpy(Buffer, ...,HipHostToDevice);

}

if (PLACEMENT::isCPU(zonePlacement) &&

PLACEMENT::isCPU(bufferPlacement)) {

cpu_copy_face(...);

}

} // if Dir == "IN"

else if (Dir == "OUT") {

...

} //if Dir == "OUT"

}

Figure 12. Hybrid implementation of the copy face
computation. Placement checks are introduced for buffers and
and zones. Host and device versions of the copy face
procedure are needed to cover all 4 possibilities: buffer resides
on host/device, zone resides on host/device.

reside on different address spaces. Figure 12 shows the
code skeleton for this procedure. Notice the structure of
if statements that cover the 4 possibilities: buffer resides
on host/device, zone resides on host/device. Notice that,
for data transfer, AMD’s HIP primitives appear to move
the data acrros the host and devices. This communication
arises according to the memory footprint determined by
the applications, which in turn is totally conditioned by
the scheduling applied during the Computation Period. The
effect of this communication is evaluated in Section .

Programmability Assessment
The runtime support described in this section has made
possible the deployment of a methodology to enable hybrid
executions mixing OpenMP and CUDA/HIP. In terms of
programmability, we have introduced the abstractions of the
Computing Unit, Data Placement and Scheduling within the
OpenMP programming model in a transparent fashion and
in accordance to the current specification of the OpenMP
programming paradigm. In addition, we have provided with a
code transformation to enable task parallelism accompanied
with a set of placement and scheduling primitives that make
possible the simultaneous activation of host and device
computing units.

The following subsections compare our proposal versus
existing solutions that achieve similar levels of programma-
bility mixing different programming models with CUD-
A/HIP.

Prepared using sagej.cls



González and Morancho 11

Comparing with MPI + CUDA/HIP
As different devices in a compute node might or might

not share their memory spaces, several works have tried to
achieve a hybrid parallelization mixing distributed memory
paradigms such as MPI and CUDA/HIP (Karunadasa and
Ranasinghe 2009; Peña et al. 2020; Kraus 2013; Awan
et al. 2019; Jacobsen et al.). These solutions require similar
runtime primitives as those explored in this work. In MPI
(Message Passing Interface Forum 1994), work distribution
would happen manually across the different MPI ranks.
And within each of the ranks, the simultaneous activation
of the host cores and the device cores would also happen
through manual re-coding of the application. One immediate
drawback of this approach corresponds to the mapping of
host cores to MPI ranks for locality purposes. OpenMP
includes support to guide the thread affinity to hardware
resources. Though for MPI it is also possible to use tools
like numactl or cpusets, this complicates the task of the
programmer, compared to the current OpenMP solution,
fully integrated in the specification with the definition
of places and thread binding (i.e., usage of environment
variables OMP PLACES and OMP PROC BIND).

Comparing with OpenMP/OmpSS
OmpSS (Elangovan et al. 2013; Duran et al. 2011; Bueno

et al. 2012) is a task-based programming model that can
effectively support the hybrid parallel strategy described for
the NPB-MZ benchmark suite. The inter-zone parallelism
can be supported through task definition directives, and data
associated to tasks can be specified through the usage of
in, out clauses to describe producer consumer relations.
The entanglement between the task scheduling and the data
placement is solved using this information. Compared to our
proposal, both require the programmer to identify which data
is associated to each task, however the programming efforts
are simpler in OmpSS than in our proposal.

For OpenMP, the similarities and limitations are the
same. OpenMP supports task-level parallelism. The common
usage of a parallel directive combined with a single
directive for task definition can be used for the inter-zone
parallelization. But OpenMP does not allow the programmer
to control how tasks have to be mapped to compute
units. This combination can not be accompanied with the
specification of a particular scheduling. Therefore, similar
runtime functionalities as those proposed in this paper would
be necessary to deploy a reasonable interoperability between
OpenMP and CUDA/HIP. Specially for data placement
and work scheduling. Notice that using target and meta-
directives to offload computations to devices does not solve
the problem of whether at the inter-zone level of parallelism,
decide where to execute a task. The target support just solves
the device code generation, not the scheduling and data
placement problems.

The CoreTSAR proposal (Scogland et al. 2014) addresses
the limitations of these programming models. In particular,
it identifies the missing runtime functionalities to simulta-
neously deploy task-based parallelizations with appropriate
task scheduling, including a reasonable programming level
regarding the data placement guidance. Both CoreTSAR and
the runtime described in this paper share some function-
alities, being the main difference the fact that CoreTSAR

does not target the interoperability for OpenMP and CUD-
A/HIP. CoreTSAR complements the OpenMP standard to
enable OpenMP strategies for heterogeneous programming.
Besides, CoreTSAR scheduling is based on dynamic tech-
niques, in contrast we explore offline profiling techniques to
define an appropriate task scheduling.

Evaluation
This section evaluates the overall performance of our
hybrid implementation of the NPB-MZ benchmark suite.
Applications have been coded and compiled within the
ROCm-3.5.0 framework and llvm 12 compiler suite. The
CPU code has been compiled combining a C++ NPB-
MZ implementation (Dümmler and Rünger 2013) and the
original NPB-MZ Fortran implementation (der Wijngaart
and Jin 2003) to generate a version compatible with the
ROCm implementation of the applications. All experiments
have been performed in a system composed of AMD EPYC
7742 @ 2.250GHz (64 cores and 2 threads/core, totalling 128
threads per node) and 2 x GPU AMD Radeon Instinct MI50
with 32GB. We run class D NPB-MZ benchmarks (Table 1),
so the input mesh is composed by 16 zones (LU-MZ) or 1024
zones (BT-MZ and SP-MZ); memory usage is 13 GB.

Overall Performance
The basis for the performance evaluation is the comparison
between four versions of the benchmarks in the suite:
GPU-based and CPU-based non-hybrid versions already
studied in previous studies for the NPB-MZ benchmark
suite (Duran et al. 2005; Gonzalez and Morancho 2020;
González and Morancho 2021) and two hybrid executions
under two work-distribution schemes. On one hand, a
static scheduling that corresponds to the default and only
supported scheduling for hybrid executions in the latest
OpenMP specification (OpenMP 5.2). On the other hand,
we include a dynamic task scheduling with the ability
of memorizing the task-CU assignment across different
instances of the scheduled computation. The comparison
between the static and dynamic hybrid versions exposes
the current performance limitations in OpenMP for hybrid
executions.

SP-MZ benchmark:
Figure 13 shows the speedup achieved by several parallel

configurations with respect to the single CPU configuration
in benchmark SP-MZ. Leftmost bars correspond to
executions under a STATIC scheduling. We take the
performance of this scheduler as a performance reference.
From left to right, first CPU-based configurations range
from 16 to 64 threads exploiting the inter-zone parallelism
(e.g.: for 64x1 configuration, each thread processes 16
zones). Maximum speedup is observed with 32 threads:
19.71x. Then, with 48 and 64 threads, the performance drops
significantly (up to 18.23x and 13.26x respectively). This
trend will also appear in the hybrid configurations. Table
7 shows average execution time per zone under different
configurations. For SP-MZ, the first thing to notice is that
for 1-GPU, processing one task (e.g: zone) takes 0.83ms on
average. In contrast, with 1-CPU, it takes 8.70ms. When

Prepared using sagej.cls



12 Journal Title XX(X)

Sp
ee

du
p

Figure 13. Benchmark SP-MZ with input CLASS D. Overall speedup for different configurations: from left to right, CPU only
configurations, 1 GPU configurations and 2 GPU configurations. CPU-based CUs are defined as BxT, where B corresponds to
CPU-based CUs executing with T CPUs each. Speedup is measured with respect to single CPU configuration.

more CPUs are added, the time for processing one tasks
increases. Notice how for a non hybrid 32x1 configuration
the average task processing time is 11.25ms, but for 64x1 is
36.38ms: more than 3x of slowdown. Consequently, CPU-
based versions do not scale well with the increment of CUs.
The time it takes to compute one zone when executing with
16, 32 48 and 64 CUs is not constant. The main reason for
this is that last level cache memory has a small capacity
compared to the input data size: 256 MB in contrast to 13GB
(see Table 1). The pressure over the memory subsystem is
different in each configuration, making executions with a
higher count of CUs process one zone with higher execution
times. This aspect is essential to explain the performance of
hybrid configurations.

Conf. SP-MZ BT-MZ Conf. LU-MZ
1-GPU 0.83 2.96 1-GPU 38.44

1x1 8.70 31.11 1x1 1653.38
16x1 9.00 64.75 1x16 258.94
32x1 11.25 69.19 1x32 98.13
48x1 18.61 87.66 1x48 88.44
64x1 36.38 102.50 1x64 38.44

Table 7. Average task time (ms) for all NPB-MZ applications
with different CU configurations : BxT where B stands for the
number of CUs and T stands for the number of threads in each
CU, non hybrid 1-GPU and 2-GPU (B=0).

Conf. SP-MZ BT-MZ Conf. LU-MZ
1-GPU 1 1 1-GPU 1
16x1 10.89 21.91 1x16 6.74
32x1 13.62 23.41 1x32 2.55
48x1 22.52 29.66 1x48 2.30
64x1 44.03 34.69 1x64 2.16

Table 8. PFC values used per each application and
configuration. Values are obtained from the relation between
task execution times in 1 GPU and B x T CPUs configurations
(BxT where B stands for the number of CUs and T stands for
the number of threads in each CU).

Hybrid configurations with 1 GPU show a similar trend. 1-
GPU configuration speeds-up by 10x. Hybrid configurations
under the STATIC scheduling do not outperform CPU-
based configurations. For instance, 32x1+1 configuration
speeds-up by 18.72x, below the performance of the 32x1
configuration (19.71x). This is due to the way the 1024 zones
are distributed among CU’s. For 32x1 configuration, there
are 32 CU’s and the scheduler assigns 32 zones to each
one. For the 32x1+1 configuration, there are 33 CUs, so

the largest piece of work still is a 32-zone work unit. For
hybrid configurations with higher count of CPU-based CUs,
adding one or two GPUs does not significantly reduce the
work assignment per each CU. The STATIC scheduler does
not take into account the differences between the CUs respect
their compute power.

Figure 13 shows the performance of hybrid configurations
under a DYNAMIC scheduler with CHUNK=1. Notice that
now configurations 32x1+1 and 32x1+2 speedup by 20.38x
and 19.88x respectively. Both outperform the maximum
performance observed for CPU-based configurations. But we
have observed that the speedup for hybrid configurations
under the DYNAMIC scheduler is limited by the Commu-
nication Period. For the SP-MZ, the input working set is
composed of many and very small zones where the ratio
between the number of boundary elements and the total
number of zone elements makes that a very high count
of elements are processed within the border computation.
This becomes even worse when we combine the memory
spaces for host and devices, slowing down its execution
time. Zones are dynamically distributed among the CUs.
This makes that adjacent zones now are placed in different
memory spaces. Therefore, data transfers are necessary to
compute the exchange of boundary values. In particular
we have observed execution times for the Communication
Period that change from 97ms for CPU-based configura-
tions to 140ms for hybrid configurations with 1 GPU, and
200ms with 2 GPUs. The Computation Period ranges from
576ms to 280ms depending on the number of active CUs in
the configuration. Therefore, speedups for the Computation
Period are considerably higher than those observed for the
overall performance. For instance, for hybrid configurations
with 2 GPUs, we have observed speedups that range between
21x and 31x. But the increments in the execution times for
the Communication Period limit the overall performance of
the application. In this regard, one particular aspect of the
DYNAMIC scheduling is that of memorizing the task-CU
assignment from one execution instance to the next one. In
the context of hybrid architectures with different physical
memory spaces, this aspect becomes essential to ensure that
in phases where data is interchanged between tasks, the
communication overheads do not become a performance
bottleneck. We have checked that if the same scheduling
is applied but removing the memorizing ability (e.g., each
instance of the Computation Period remaps the task-CU

Prepared using sagej.cls



González and Morancho 13

assignment), then both the Computation Period and the Com-
munication Period suffers from slowdown factors between
10x-15x.

The STATIC-hybrid scheduler is based on a performance
conversion factor (PCF) between the GPUs and the CPUs.
In this case, the PCF value for each configuration has been
obtained from the data in Table 7. We divide the average
task execution under a CPU and non hybrid configuration
by the average task execution time when executed in one
GPU. This should describe how faster a GPU is computing
one task compared to CPU-based execution with 16, 32, 48
and 64 CPUs. Table 8 exposes the PCFs values for each
configuration, directly computed from Table 7. In general,
collecting the data in Tables 7 and 8 requires the execution
of several iterations of the benchmarks. In our case, 5
iterations were sufficient to observe steady execution times
per task on both the GPU case and the CPU case. Overall
this corresponded to experiments that needed less than 10
minutes for all 3 benchmarks in the NPB-MZ suite.

For the STATIC-hybrid scheduling, we observe that the
work imbalance caused by the different nature of the
CUs is solved. Even more, the scheduler tends to assign
adjacent zones to the same CU. Therefore, this scheduling
balances the execution without incurring in communication
overheads related to the boundary values exchange. This
explains the observed performance levels: speedup values
range between 20x and 30x, outperforming the single GPU
configurations by factors ranging from 1.75x and 2.5x.
Although these improvements, both the 1-GPU and 2-GPU
hybrid configurations expose a performance degradation
with more than 32 CPUs. This fact is explained by the data in
Table 7. As it was described previously, the zone processing
time is not constant, with increments of more that 3x of
slowdown when doubling the number of available CPU-
based CUs. This explains that for hybrid configurations with
more than 32 CPUs the STATIC-hybrid scheduling is not
able to perform a zone-CU assignment that keeps improving
the performance as the total count of CUs is increased. In
the context of heterogeneous computing, the STATIC-hybrid
corresponds to a a state-of-the-art scheduling aligned to most
recent advances in heterogeneous scheduling. The reference
works (Scogland et al. 2012, 2014; Elangovan et al. 2013;
Duran et al. 2011) explore similar approaches based on
estimates for the execution time in different types of compute
units. In particular, the proposal Scogland et al. (2014) is
based on dynamic techniques that implement a regression
based on architectural parameters. In contrast, the STATIC-
hybrid is based on offline data obtained through profiling
techniques. In this regard, we consider a the STATIC-
hybrid scheduling as a variant for a reference scheduling in
heterogeneous computing.

LU-MZ benchmark: Figure 14 shows the speedup achieved
by several parallel configurations with respect to the single
CPU configuration in benchmark LU-MZ. From left to
right, the performance of CPU-based configurations are
shown using from 1 to 64 threads exploiting the intra-
zone parallelism (e.g.:for a 1x32 configuration, each zone
is processed by 32 threads, one zone after the other).
Maximum speedup is observed with 64 threads: 19.78x.
In general, from 16 CPU to 64 CPU configurations, there

is poor scalability, although speedup increases with the
increment of CPUs. This trend will also appear in the hybrid
configurations. As it has been observed in the previous
subsection, the main reason for this is that last level cache
memory has a small capacity compared to the input data
size: 256 MB in contrast to 13GB (see Table 1). This makes
that the CPU-based versions do not scale well with the
increment of CUs. The time it takes to compute one zone
when executing with 16, 32 48 and 64 CUs is not constant
(see Table 7). The pressure over the memory subsystem is
different in each configuration, diminishing the effect of the
utilization of high counts of CUs.

Hybrid configurations show a very different range of
speedups. Single GPU configurations delivers an impressive
speedup of 42.91x. Configurations under the STATIC
scheduling improve the speedup as the number of CPU-based
CUS increases, reaching a maximum speedup of 48.80 for
the 1x48+1 configuration. The STATIC distribution does not
take into account the differences in compute power of the
CUs. The LU-MZ operates over a mesh of 16 zones. In
all 1-GPU hybrid configurations the number of CUs are 2.
This means that 8 zones are assigned to 1 GPU, 8 zones are
assigned to 1 CPU-based CU composed of 16, 32, 48 or 64
CPUs depending on the configuration. For 2 GPUs, the initial
speedup is 83.79x. But the STATIC scheduling is not able to
adapt the work distribution now for 3 CUs. Dividing the 16
zones among 3 CUs defines the largest piece of work to be
composed of 6 zones that are assigned to the CPU-based CU.

The DYNAMIC scheduling improves the performance
significantly. For this scheduling the maximum speedup
corresponds to 55.89x for 1-GPU and 90.47x for 2-GPU
configurations. In this case, faster CUs (the GPUs) take
more work to execute. In contrast to the SP-MZ benchmark,
the LU-MZ input mesh is organized in very few and very
large zones. This implies that the ratio between border
elements and zone elements is very small. As a result, we
do not observe a significant increment in the Communication
Period, as happened with the SP-MZ benchmark. Despite
that, we have observed that the memorizing ability of the
DYNAMIC scheduling still is essential in this case as we
have checked that if the same scheduling is applied but
removing the memorizing ability (e.g.: each instance of the
Computation Period remaps the task-CU assignment), then
both the Computation Period and the Communication Period
suffers from slowdown factors between 15x-20x.

The STATIC-hybrid achieves the maximum performance
in all hybrid configurations. For 1-GPU, speedups range
from 48x to 59x, with an increment of performance as
the number of CUs is increased. For 2-GPU observed
speedups range from 82x to 93x. This scheduling succeeds
on identifying the differences in compute power among the
available CUs, and distribute tasks (e.g.: zones) accordingly
to balance the work distribution. As has been described
previously for the SP-MZ application, for the LU-MZ
application Tables 7 and 8 expose the PCF values used for
the STATIC-hybrid scheduling.

In conclusion, 1-GPU hybrid configurations speed up
from 1.13x to 1.30x with respect to the non-hybrid 1-GPU
configuration. For 2-GPU hybrid configurations speedups are
more modest (up to 1.10x). For LU-MZ, the reduced number
of zones (only 16) and their huge size limit the chances

Prepared using sagej.cls



14 Journal Title XX(X)

Sp
ee

du
p

Figure 14. Benchmark LU-MZ with input CLASS D. Overall speedup for different configurations: from left to right, CPU only
configurations, 1 GPU configurations and 2 GPU configurations. CPU-based CUs are defined as BxT, where B corresponds to
CPU-based CUs executing with T CPUs each. Speedup is measured with respect to single CPU configuration.

for the DYNAMIC scheduler to succeed in producing
an appropriate work distribution. The configurations that
present a slowdown suffers from a work imbalance, biased
to the slowest computing units, the CPUs. Only the STATIC-
hybrid scheduling succeeds in maintaining increments of
performance as the number of CUs is increased.

BT-MZ benchmark:
Figure 15 shows the speedup achieved by several parallel

configurations with respect to the single CPU configuration
in benchmark BT-MZ. From left to right, first CPU-based
configurations use from 16 to 64 threads exploiting the inter-
zone parallelism (e.g.: for 64x1 configuration, each thread
processes 16 zones). Maximum speedup is observed with
64 threads: 18.48x. The poor scalability is related to two
main aspects. On the one hand, the last level cache memory
has a small capacity compared to the input data size: 256
MB in contrast to 13GB (Table 1). The time it takes to
compute one zone when executing with 16, 32 48 and 64
CUs is not constant (seet Table 7). The pressure over the
memory subsystem is different in each configuration, making
configurations with a higher count of CUs process one
zone with higher execution times. On the other hand, BT-
MZ computes over a mesh composed of 1024 not equally
sized zones. The input set defines an scenario of many
tasks combining small, medium and large tasks, defining a
considerable amount of work imbalance. This corresponds
to a very different situation compared to the scenarios for the
LU-MZ and SP-MZ cases.

For STATIC scheduling, both 1-GPU and 2-GPU cases
of hybrid configurations do not present either a good
response to the increment of the CU count. In contrast,
the DYNAMIC scheduling delivers significant speedups.
For 1 GPU, maximum performance is obtained with the
63x1+1 configuration and a 33x speedup factor. For 2
GPUs, the maximum performance is obtained with 62x1+2
configuration with a speedup factor of 36.97x. In both cases,
all hybrid configurations outperform their corresponding
non-hybrid configurations by factors the a range from 1.5x
an 2x. The effect of the DYNAMIC scheduling in the
Communication Period is similar to that observed in the
SP-MZ benchmark. In particular, we have observed that
for CPU-only configurations the Communication Period
takes 88ms, while for hybrid configurations it executes with
205ms. But the work balance benefits of the DYNAMIC
scheduling hide the increment of the execution time for
the Communication Period. As for SP-MZ and LU-MZ,
the effectiveness of the Dynamic scheduling is totally

conditioned by its memorizing ability for the task-CU
mapping. Removing this ability makes the scheduling totally
ineffective.

The STATIC-hybrid scheduling balances the work
distribution but not up to the level the DYNAMIC scheduling
does. Even the improvements in the Communication
Period related to zone adjacency and communication
overheads for the boundary values exchange, these are
not sufficient to reach the performance of the DYNAMIC
scheduling: speedups range between 19x and 36x for hybrid
configurations. The main reason for that is that the STATIC-
hybrid divides the set of zones assuming all of them are
equally sized. This is not the case of the BT-MZ application.
Therefore, the DYNAMIC scheduling deploys a much better
work distribution, mainly lead by the different speed of
processing that each CU delivers. As in the previous cases,
all PCFs values have been obtained from Table 7 and are
exposed in Table 8.

Related works

NPB-MZ studies: Dümmler and Rünger (2013) evaluated
NPB-MZ benchmarks on hybrid CPU+GPU architectures.
They decompose the workloads and, using a static
scheduling, distribute them among the CPU’s or the
GPU. Their evaluations show a significant performance
improvement with respect to both pure GPU and pure
CPU implementations. Pennycook et al. (2011) detail their
implementation of the LU-NPB application on CUDA.
Moreover, they developed an analytical model to estimate the
execution time of the benchmark on a range of architectures.
They validate the model using evaluation environments
that range from a single GPU to a cluster of GPU’s.
Xu et al. (2014) focused on directive-based parallelization
of NPB benchmarks. After analyzing and profiling the
OpenMP version of NPB, they annotate the source code with
OpenACC directives to automatically generate GPU versions
of the benchmarks.

Loop and Task Scheduling: In Bull (1998); Poly-
chronopoulos and Kuck (1987); Yong Yan et al. (1997) loop
schedulers combine information gathering (e.g.: runtime
execution times or actual sizes of data structures) with the
ability of memorizing the work assignment produced by
the scheduler itself. Specifically for NPB-MZ benchmarks,
Duran et al. (2005) describe a feedback scheduler based
on execution times to determine thread distribution and
work assignment for NUMA shared memory architectures.

Prepared using sagej.cls



González and Morancho 15

Sp
ee

du
p

Figure 15. Benchmark BT-MZ with input CLASS D. Overall speedup for different configurations: from left to right, CPU only
configurations, 1 GPU configurations and 2 GPU configurations. CPU-based CUs are defined as BxT, where B corresponds to
CPU-based CUs executing with T CPUs each. Speedup is measured with respect to single CPU configuration.

In Lucco (1992); Tzen and Ni (1993) loop schedulers
address the work imbalance in irregular applications based
on runtime information used to deploy dynamic schedulers.
Similarly, but targeting thread-data affinity, loop schedulers
have been proposed for the preservation of data locality but
minimizing the rations of work imbalance (Markatos and
LeBlanc 1994; Subramaniam and Eager 1994; Markatos and
LeBlanc 1991). In Hamidzadeh and Lilja (1994), an on-line
mechanism is presented that dedicates a single processor to
execute a branch-and-bound algorithm to search for partial
schedules concurrent with the execution of tasks previously
assigned to the remaining processors. Task dynamic sched-
ulers have been also studied, specially in the context of
OpenMP programming model (Olivier et al. 2012; LaGrone
et al. 2011). They focus on the following issues: work
balance, locality and cut-off mechanisms for divide-and-
conquer algorithms which usually present implementations
based on recursive iterative structures.

Heterogeneous Work Scheduling: Heterogeneous com-
puting have generated contributions related to the porting
of applications to this type of architectures. Many works
from different domains describe the adaptation of specific
frameworks to execute on multi-GPU systems, where CPUs
take the role of orchestrate the parallelism execution, and
GPUs act as accelerators (Hermann et al. 2010; Nere et al.
2013; Toharia et al. 2012; Chen et al. 2012; Yang et al.
2013). Other works describe a cooperative heterogeneous
computing frameworks which enables the efficient utilization
of available computing resources of host CPU cores for
CUDA kernels. In Yang et al. the Linpack benchmark is
deployed on hybrid petascale architecture introducing adap-
tive optimizations to balance the work distribution between
CPU/GPU cores and with much emphasis in software pipel-
ing techniques to hide communications between the architec-
ture nodes.

The CoreTSAR framework (Scogland et al. 2012, 2014)
addresses the same challenges as the runtime system
described in this paper. On one side, these works take
advantage of two existing programming models OpenMP
and OpenACC to mix them and activate simultaneously
compute units of different nature. If CUDA or HIP were to be
also included, the system described in Scogland et al. (2014)
should include runtime primitives similar to those described
in this paper, specially for solving the entanglement between
the data placement and the task scheduling. In terms of
the proposed schedulers, the CoreTSAR framework includes
dynamic support to solve the mapping between compute

units and tasks at runtime, not needing offline profiler-based
data samples to perform the actual scheduling. Nevertheless,
the proposed static scheduler, makes the work distribution
in a similar fashion as CoreTSAR, given that both schedule
the tasks according to estimates for the task execution time.
The differences arise in how the estimates are generated.
For CoreTSAR, regression techniques are used. For our
proposal, direct measurements are made prior the actual
execution. Therefore, CoreTSAR is more versatile and can
cover a broader spectrum of applications, while the proposal
in this paper is limited to applications that expose sources
of parallelism that are executed many times and always
deploying the same structure. But for scientific computing,
it is common that applications fall in to this category.

OmpSS Elangovan et al. (2013); Duran et al. (2011);
Bueno et al. (2012) is a task-based programming model
targeting heterogeneous architectures. It includes a full-
stack software support including a directive-based language
and compiler and run-time system support for its own
parallel task execution model. In general, the parallel
strategy described in this paper is supported in OmpSS. For
instance, the inter-zone loops in the NPB-MZ benchmarks
can be mapped to task-definition directives in OmpSS.
Communications for the border computations can be mapped
to in,out constructs to specify producer-consumer relations.

StarPU Augonnet et al. (2011, 2010) is a framework based
on a runtime library that enable the execution of linear
algebra kernels on heterogeneous architectures. StarPU is
based on codelets to specify the computations. StarPU then
implements codelets drivers using vendor libraries such
as CUDA to automate the execution of StarPU kernels
on hybrid platforms. StarPU includes several scheduling
strategies to offload the computation on CPUs or GPUs, or
co-processors like the IBM Cell BE (Pham et al. 2005). One
main difference with StarPU is the utilization of OpenMP
as main programming framework to deploy a hybrid
parallelization. StarPU does not consider OpenMP nor
its inter-operability with CUDA/HIP frameworks. Besides,
the concept of compute unit including the aggregation of
CPU cores is not considered. Another significant difference
corresponds to the architectures StarPU targeted and those
explored in this paper. For StarPU, the core count is very
small compared to current heterogeneous architectures with
more than 64 CPU cores and 2-4 GPU devices.

Performance models have been proposed to implement
work distribution schemes (Choi et al. 2013; Zhong et al.
2012). In Ogata et al. (2008), the authors present a library

Prepared using sagej.cls



16 Journal Title XX(X)

for 2D Fast Fourier Transform (FFT) that automatically
uses both CPUs and GPUs to achieve optimal performance.
Using a performance model, it evaluates the respective
contributions of each computing unit and then makes an
estimation of total execution times. Other recent works
introduce application specific work distributions between
CPUs and GPUs. In Zhang et al. (2021), a cooperative
framework to access a data base is described showing the
benefits of the hybrid execution in terms of total throughput.
Similarly, in Gowanlock (2021) a hybrid knn-joins algorithm
is implemented with an CPU/GPU approach for low-
dimensional KNN-joins, where the GPU is not yielding
substantial performance gains over parallel CPU algorithms.
The paper introduces priority work queues that enable the
computation over data points in high density regions on the
GPU, and low density regions on the CPU.

Conclusions
In this paper we have described and evaluated the design and
implementation of the runtime support for hybrid applica-
tions that mix both OpenMP and CUDA/HIP programming
models. The runtime bridges both programming frameworks
and allows the simultaneous activation of both host and
device computing units. For that purpose, we have intro-
duced the abstractions of computing unit and data placement
in order to bridge the two programming models. These
abstractions are exposed to the programmer in the form
of additional runtime primitives build on top of the native
OpenMP runtime system. Besides, we have introduced vari-
ants of the static and dynamic task-based schedulings to cope
with the different computing power of the CPU and GPU
compute units.

The methodology and runtime support have been
evaluated within the NPB-MZ benchmark suite. We have
shown how the suite has been effectively ported to a hybrid
system, being able to simultaneously offload computation
over both host and device computing units. On a computing
node composed of one AMD EPYC 7742 @ 2.250GHz (64
cores and 2 threads/core, total 128 threads per node) and 2 x
GPU AMD Radeon Instinct MI50 with 32GB each we have
observed speedup factors that range from 1.08x up to 3.18x
over a non-hybrid implementation, depending on the number
of activated computing units.

Acknowledgments
This work was supported by the Spanish Ministry of Science
and Technology (PID2019-107255GB).

References

Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro
C, Corrado G, Davis A, Dean J, Devin M, Ghemawat S,
Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz
R, Kaiser L, Kudlur M, Levenberg J, Mané D, Monga
R, Moore S, Murray D, Olah C, Schuster M, Shlens J,
Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V,
Vasudevan V, Viégas F, Vinyals O, Warden P, Wattenberg
M, Wicke M, Yu Y and Zheng X (2015) TensorFlow:
Large-Scale Machine Learning on Heterogeneous Distributed

Systems. URL http://download.tensorflow.org/

paper/whitepaper2015.pdf.
Augonnet C, Thibault S and Namyst R (2010) StarPU: a

Runtime System for Scheduling Tasks over Accelerator-Based
Multicore Machines. Research Report RR-7240, INRIA. URL
https://hal.inria.fr/inria-00467677.

Augonnet C, Thibault S, Namyst R and Wacrenier PA (2011)
Starpu: A unified platform for task scheduling on heteroge-
neous multicore architectures. Concurr. Comput. : Pract.
Exper. 23(2): 187–198. DOI:10.1002/cpe.1631. URL https:

//doi.org/10.1002/cpe.1631.
Awan AA, Manian KV, Chu CH, Subramoni H and Panda DK

(2019) Optimized large-message broadcast for deep learning
workloads: MPI, MPI+NCCL, or NCCL2? Parallel Computing
85: 141–152.

Bailey D, Barszcz E, Barton J, Browning D, Carter R, Dagum L,
Fatoohi R, Frederickson P, Lasinski T, Schreiber R, Simon H,
Venkatakrishnan V and Weeratunga S (1991) The NAS Parallel
Benchmarks. Int. J. High Perform. Comput. Appl., 5(3) : 63–
73DOI:10.1177/109434209100500306. URL http://dx.

doi.org/10.1177/109434209100500306.
Belviranli ME, Bhuyan LN and Gupta R (2013) A dynamic

self-scheduling scheme for heterogeneous multiprocessor
architectures. ACM Trans. Archit. Code Optim. 9(4). DOI:
10.1145/2400682.2400716. URL https://doi.org/10.

1145/2400682.2400716.
Bueno J, Planas J, Duran A, Badia RM, Martorell X, Ayguadé E

and Labarta J (2012) Productive programming of gpu clusters
with ompss. In: 2012 IEEE 26th International Parallel and
Distributed Processing Symposium. pp. 557–568. DOI:10.
1109/IPDPS.2012.58.

Bull JM (1998) Feedback guided dynamic loop scheduling:
Algorithms and experiments. In: Pritchard D and Reeve J (eds.)
Euro-Par’98 Parallel Processing.

Chen L, Huo X and Agrawal G (2012) Accelerating MapReduce on
a Coupled CPU-GPU Architecture. ISBN 9781467308045.

Choi HJ, Son DO, Kang SG, Kim JM, Lee HH and Kim CH (2013)
An efficient scheduling scheme using estimated execution time
for heterogeneous computing systems 65(2).

Corni E, Morganti L, Morigi MP, Brancaccio R, Bettuzzi M,
Levi G, Peccenini E, Cesini D and Ferraro A (2016) X-ray
computed tomography applied to objects of cultural heritage:
Porting and testing the filtered back-projection reconstruction
algorithm on low power systems-on-chip. In: 2016 24th
Euromicro International Conference on Parallel, Distributed,
and Network-Based Processing (PDP). pp. 369–372. DOI:
10.1109/PDP.2016.60.

der Wijngaart RFV and Jin H (2003) NAS Parallel Benchmarks,
Multi-Zone Versions. Technical Report NAS-03-010, NASA
Ames Research Center.

Dümmler J and Rünger G (2013) Execution Schemes for the NPB-
MZ Benchmarks on Hybrid Architectures: A Comparative
Study. In: Procs. of the Intl. Conf. on Parallel Computing,
ParCo 2013, Advances in Parallel Computing, volume 25. pp.
733–742.

Duran A, Badia RM, Martinell L, Martorell X and Planas J (2011)
Ompss: A proposal for programming heterogeneous multi-
core architectures. In: Parallel Processing Letters. ISBN
https://doi.org/10.1142/S0129626411000151, pp. 173–193.

Prepared using sagej.cls

http://download.tensorflow.org/paper/whitepaper2015.pdf
http://download.tensorflow.org/paper/whitepaper2015.pdf
https://hal.inria.fr/inria-00467677
https://doi.org/10.1002/cpe.1631
https://doi.org/10.1002/cpe.1631
http://dx.doi.org/10.1177/109434209100500306
http://dx.doi.org/10.1177/109434209100500306
https://doi.org/10.1145/2400682.2400716
https://doi.org/10.1145/2400682.2400716


González and Morancho 17

Duran A, Gonzàlez M and Corbalán J (2005) Automatic
Thread Distribution for Nested Parallelism in OpenMP. In:
Proceedings of the 19th Annual International Conference
on Supercomputing. New York, NY, USA: Association for
Computing Machinery. ISBN 1595931678, p. 121–130. DOI:
10.1145/1088149.1088166.

Elangovan VK, Badia RM and Parra EA (2013) Ompss-opencl
programming model for heterogeneous systems. In: Kasahara
H and Kimura K (eds.) Languages and Compilers for Parallel
Computing. Berlin, Heidelberg: Springer Berlin Heidelberg.
ISBN 978-3-642-37658-0, pp. 96–111.

Giuntoli G, Grasset J, Figueroa A, Moulinec C, Vázquez M,
Houzeaux G, Longshaw S and Oller S (2019) Hybrid
CPU/GPU FE2 multi-scale implementation coupling Alya and
micropp.

Gonzalez M and Morancho E (2020) Multi-GPU Parallelization
of the NAS Multi-Zone Parallel Benchmarks. In: IEEE
Transactions on Parallel and Distributed Systems, volume 32.
IEEE, pp. 229–241.

González M and Morancho E (2021) Multi-gpu systems and
unified virtual memory for scientific applications: The
case of the nas multi-zone parallel benchmarks. Journal
of Parallel and Distributed Computing 158: 138–150.
DOI:https://doi.org/10.1016/j.jpdc.2021.08.001. URL
https://www.sciencedirect.com/science/

article/pii/S0743731521001672.
Gowanlock M (2021) Hybrid knn-join: Parallel nearest neigh-

bor searches exploiting cpu and gpu architectural fea-
tures. Journal of Parallel and Distributed Computing 149:
119–137. DOI:https://doi.org/10.1016/j.jpdc.2020.11.004.
URL https://www.sciencedirect.com/science/

article/pii/S0743731520304056.
Guan J, Yan S and Jin JM (2013) An openmp-cuda implementation

of multilevel fast multipole algorithm for electromagnetic sim-
ulation on multi-gpu computing systems. IEEE Transactions
on Antennas and Propagation 61(7): 3607–3616. DOI:10.
1109/TAP.2013.2258882.

Hamidzadeh B and Lilja DJ (1994) Self-adjusting scheduling: An
on-line optimization technique for locality management and
load balancing. In: Intl. Conf. on Parallel Processing. USA:
IEEE Computer Society. ISBN 0849324939, p. 39–46. DOI:
10.1109/ICPP.1994.179.

Hermann E, Raffin B, Faure F, Gautier T and Allard J (2010) Multi-
GPU and Multi-CPU Parallelization for Interactive Physics
Simulations. In: Euro-Par 2010 - Parallel Processing.

Jacobsen D, Thibault J and Senocak I (????) An MPI-CUDA
Implementation for Massively Parallel Incompressible Flow
Computations on Multi-GPU Clusters.

Jacobsen DA and Senocak I (2013) Multi-level parallelism for
incompressible flow computations on gpu clusters. Parallel
Computing 39(1): 1–20. DOI:https://doi.org/10.1016/j.parco.
2012.10.002. URL https://www.sciencedirect.

com/science/article/pii/S0167819112000804.
Karunadasa NP and Ranasinghe DN (2009) Accelerating high

performance applications with cuda and mpi. In: 2009
International Conference on Industrial and Information
Systems (ICIIS). pp. 331–336. DOI:10.1109/ICIINFS.2009.
5429842.

Kraus J (2013) “an introduction to cuda-aware mpi”
URL https://developer.nvidia.com/blog/

introduction-cuda-aware-mpi/.71.

LaGrone J, Aribuki A, Addison C and Chapman B (2011) A
runtime implementation of openmp tasks. In: OpenMP in the
Petascale Era. Berlin, Heidelberg: Springer Berlin Heidelberg.
ISBN 978-3-642-21487-5, pp. 165–178.

Lucco S (1992) A dynamic scheduling method for irregular
parallel programs. In: Proceedings of the ACM SIGPLAN
1992 Conference on Programming Language Design and
Implementation. New York, NY, USA: Association for
Computing Machinery. ISBN 0897914759, p. 200–211. DOI:
10.1145/143095.143134.

Manavski S and Valle G (2008) CUDA compatible GPU cards
as efficient hardware accelerators for Smith-Waterman string
alignment. BMC bioinformatics 9 Suppl 2: S10. DOI:10.1186/
1471-2105-9-S2-S10.

Markatos EP and LeBlanc TJ (1991) Load balancing vs. locality
management in shared-memory multiprocessors. Technical
report, University of Rochester, USA.

Markatos EP and LeBlanc TJ (1994) Using processor affinity in
loop scheduling on shared-memory multiprocessors. IEEE
Transactions on Parallel and Distributed Systems 5(4): 379–
400.

Message Passing Interface Forum (1994) MPI: A Message-Passing
Interface Standard. Standard, USA.

Mittal S and Vetter JS (2015) A survey of cpu-gpu heterogeneous
computing techniques. ACM Comput. Surv. 47(4). DOI:
10.1145/2788396. URL https://doi.org/10.1145/

2788396.
Nere A, Franey S, Hashmi A and Lipasti M (2013) Simulating

cortical networks on heterogeneous multi-GPU systems.
Journal of Parallel and Distributed Computing 73(7): 953–971.

NVIDIA (2020) GPU-accelerated Caffe. URL https:

//www.nvidia.com/en-gb/data-center/

gpu-accelerated-applications/caffe/.
NVIDIA (2023) CUDA Toolkit Documentation 12.1. URL

https://docs.nvidia.com/cuda/.
Ogata Y, Endo T, Maruyama N and Matsuoka S (2008) An

efficient, model-based CPU-GPU heterogeneous FFT library.
In: 2008 International Symposium on Parallel and Distributed
Processing. IEEE, pp. 1–10.

Olivier SL, Porterfield AK, Wheeler KB, Spiegel M and Prins JF
(2012) Openmp task scheduling strategies for multicore numa
systems. Int. J. High Perform. Comput. Appl. 26(2) 26(2):
110–124. DOI:10.1177/1094342011434065.

Peña AJ, Lai J, Yu H, Tian Z and Li H (2020) Hybrid mpi and cuda
parallelization for cfd applications on multi-gpu hpc clusters.
Scientific Programming 2020: 8862123.

Pennycook SJ, Hammond SD, Jarvis SA and Mudalige GR (2011)
Performance analysis of a hybrid MPI/CUDA implementation
of the NASLU benchmark. SIGMETRICS Performance
Evaluation Review 38(4): 23–29. DOI:10.1145/1964218.
1964223.

Pham D, Asano S, Bolliger M, Day M, Hofstee H, Johns C, Kahle
J, Kameyama A, Keaty J, Masubuchi Y, Riley M, Shippy
D, Stasiak D, Suzuoki M, Wang M, Warnock J, Weitzel S,
Wendel D, Yamazaki T and Yazawa K (2005) The design and
implementation of a first-generation cell processor. In: ISSCC.
2005 IEEE International Digest of Technical Papers. Solid-
State Circuits Conference, 2005. pp. 184–592 Vol. 1. DOI:
10.1109/ISSCC.2005.1493930.

Prepared using sagej.cls

https://www.sciencedirect.com/science/article/pii/S0743731521001672
https://www.sciencedirect.com/science/article/pii/S0743731521001672
https://www.sciencedirect.com/science/article/pii/S0743731520304056
https://www.sciencedirect.com/science/article/pii/S0743731520304056
https://www.sciencedirect.com/science/article/pii/S0167819112000804
https://www.sciencedirect.com/science/article/pii/S0167819112000804
https://developer.nvidia.com/blog/introduction-cuda-aware-mpi/.71.
https://developer.nvidia.com/blog/introduction-cuda-aware-mpi/.71.
https://doi.org/10.1145/2788396
https://doi.org/10.1145/2788396
https://www.nvidia.com/en-gb/data-center/gpu-accelerated-applications/caffe/
https://www.nvidia.com/en-gb/data-center/gpu-accelerated-applications/caffe/
https://www.nvidia.com/en-gb/data-center/gpu-accelerated-applications/caffe/
https://docs.nvidia.com/cuda/


18 Journal Title XX(X)

Polychronopoulos CD and Kuck DJ (1987) Guided self-scheduling:
A practical scheduling scheme for parallel supercomputers.
IEEE Transactions on Computers C-36(12): 1425–1439.

Scogland TR, Rountree B, Feng Wc and de Supinski BR (2012)
Heterogeneous Task Scheduling for Accelerated OpenMP. In:
International Parallel and Distributed Processing Symposium.
pp. 144–155. DOI:10.1109/IPDPS.2012.23.

Scogland TRW, Feng Wc, Rountree B and de Supinski BR
(2014) CoreTSAR: Adaptive Worksharing for Heterogeneous
Systems. In: Supercomputing.

Subramaniam S and Eager DL (1994) Affinity scheduling of
unbalanced workloads. In: Johnson GM (ed.) Proceedings
Supercomputing ’94, Washington, DC, USA, November 14-
18, 1994. IEEE Computer Society, pp. 214–226. DOI:10.
1109/SUPERC.1994.344281. URL https://doi.org/

10.1109/SUPERC.1994.344281.
Toharia P, Robles OD, Suárez R, Bosque JL and Pastor L (2012)

Shot Boundary Detection Using Zernike Moments in Multi-
GPU Multi-CPU Architectures 72(9).

Tzen TH and Ni LM (1993) Trapezoid self-scheduling: a practical
scheduling scheme for parallel compilers. IEEE Transactions
on Parallel and Distributed Systems 4(1): 87–98.

Xu R, Tian X, Chandrasekaran S, Yan Y and Chapman BM
(2014) NAS parallel benchmarks for gpgpus using a directive-
based programming model. In: Brodman JC and Tu P (eds.)
Languages and Compilers for Parallel Computing. ISBN 978-
3-319-17472-3, pp. 67–81. DOI:10.1007/978-3-319-3-0\ 5.

Yang C, Wang F, Du Y, Chen J, Liu J, Yi H and Lu K (????)
Adaptive Optimization for Petascale Heterogeneous CPU/GPU
Computing. In: 2010 IEEE International Conference on
Cluster Computing.

Yang C, Xue W, Fu H, Gan L, Li L, Xu Y, Lu Y, Sun J, Yang G
and Zheng W (2013) A Peta-Scalable CPU-GPU Algorithm for
Global Atmospheric Simulations 48(8).

Yang C, Zhang YK, Liang X, Olschanowsky C, Yang X and
Maxwell R (2021) Accelerating the lagrangian particle tracking
of residence time distributions and source water mixing
towards large scales. Computers & Geosciences 151:
104760. DOI:https://doi.org/10.1016/j.cageo.2021.104760.
URL https://www.sciencedirect.com/science/

article/pii/S0098300421000674.
Yang CT, Huang CL and Lin CF (2011) Hybrid cuda, openmp,

and mpi parallel programming on multicore gpu clusters.
Computer Physics Communications 182(1): 266–269.
DOI:https://doi.org/10.1016/j.cpc.2010.06.035. URL
https://www.sciencedirect.com/science/

article/pii/S0010465510002262. Computer
Physics Communications Special Edition for Conference on
Computational Physics Kaohsiung, Taiwan, Dec 15-19, 2009.

Yong Yan, Canming Jin and Xiaodong Zhang (1997) Adaptively
scheduling parallel loops in distributed shared-memory
systems, 8 (1). IEEE Trans. on Parallel and Distributed
Systems 8(1): 70–81.

Zhang F, Zhang C, Yang L, Zhang S, He B, Lu W and Du
X (2021) Fine-grained multi-query stream processing on
integrated architectures. IEEE Transactions on Parallel and
Distributed Systems 32(9): 2303–2320. DOI:10.1109/TPDS.
2021.3066407.

Zhong Z, Rychkov V and Lastovetsky A (2012) Data Partitioning
on Heterogeneous Multicore and Multi-GPU Systems Using

Functional Performance Models of Data-Parallel Applications.
In: IEEE International Conference on Cluster Computing. pp.
191–199. DOI:10.1109/CLUSTER.2012.34.

Prepared using sagej.cls

https://doi.org/10.1109/SUPERC.1994.344281
https://doi.org/10.1109/SUPERC.1994.344281
https://www.sciencedirect.com/science/article/pii/S0098300421000674
https://www.sciencedirect.com/science/article/pii/S0098300421000674
https://www.sciencedirect.com/science/article/pii/S0010465510002262
https://www.sciencedirect.com/science/article/pii/S0010465510002262

	Introduction
	Benchmark characterization
	NAS Parallel Benchmarks
	Sources of parallelism
	Computation period: Inter-zone Parallelism
	Computation period: Intra-zone Parallelism
	Communication period: Intra-zone Parallelism

	Hybrid parallelization

	Runtime support for OpenMP hybrid applications
	libCU-rtl
	libPLACEMENT-rtl
	libSCHEDULING-rtl
	SCHEDULING::Static
	SCHEDULING::STATIC-hybrid
	SCHEDULING::Dynamic


	Design and Implementation of Hybrid NPB-MZ
	Multi-Level Hybrid Parallelization
	Computation Period
	Communication Period

	Programmability Assessment
	Comparing with MPI + CUDA/HIP
	Comparing with OpenMP/OmpSS


	Evaluation
	Overall Performance
	SP-MZ benchmark:
	LU-MZ benchmark:
	BT-MZ benchmark:


	Related works
	Conclusions

