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A B S T R A C T   

This article investigates the damping behavior of masonry arch bridges under service loads extracted from 
experimental data and provides guidelines on how to emulate this behavior in numerical analysis, particularly in 
discrete element model applications. First, an experimental campaign is undertaken and vibrations on three 
masonry arch railway bridges under train loads were monitored. The modal damping ratios from several sensors 
on each bridge were extracted by isolating the modal component of free decay vibrations which commence 
immediately after the train leaves the bridge. The modal damping ratios identified under service loads were 
compared with their counterparts identified under ambient vibrations. The suitability of mass-proportional, 
stiffness-proportional and Rayleigh damping models in emulating damping in masonry arch bridges was eval
uated. In the numerical phase of the study, a single-arch masonry bridge was modeled using mixed discrete 
continuum approach and a moving load analysis was conducted without applying any additional viscous 
damping. The results of the numerical analysis indicate that the inherent damping in discrete element models 
provided by their nonlinear nature can be sufficient to emulate the damping behavior of masonry arch bridges 
under service loads. The research provided in this article is unique in the sense that it combines an experimental 
study and a numerical study on damping of masonry arch bridges under service loads. Unlike its counterparts in 
literature, which use either ambient vibrations or seismic action, damping values are computed under appro
priate levels of vibration amplitudes for service loads, which is critical to estimate the modal damping ratios 
accurately under these loads.   

1. Introduction 

Masonry arch bridges are a significant feature of the European road 
and railway networks, with more than 40% of railway bridges and 25% 
of road bridges being of this type [1,2]. In Turkey, over 12% of the 
railway bridges and approximately 29% of the culverts are masonry arch 
structures. Additionally, there are over 2,000 masonry arch bridges in 
the Turkish road network. These bridges are not only important for the 
transportation network but also have cultural and architectural signifi
cance. However, their safety and continued use are threatened by factors 
such as material decay, fatigue, strength degradation, changes in 
boundary conditions, and increased traffic loads over time. As such, 
structural analysis of masonry arch bridges has received significant 
attention in the last decades [3]. Most of the studies focused on the 

numerical analysis of masonry bridges under vertical loading for service 
conditions [4–11], or under horizontal loading under seismic actions 
[12–18], or under support settlements caused by scour actions [19,20]. 
Researchers used different experimental approaches to calibrate their 
numerical models and to attain better approximations of the physical 
behavior [21–28]. Amongst these approaches, operational modal anal
ysis (OMA) or modal identification using vibration signatures is the most 
common strategy as it allows obtaining the dynamic properties, such as 
modal frequencies, damping ratios, and mode shapes, pertaining to the 
global behavior of structures [29–38]. 

Of these parameters, damping remains arguably the most elusive 
because, unlike stiffness and mass, it cannot be defined directly from the 
geometric and material properties. Therefore, empirical data on damp
ing provides valuable information for accurately modeling this 
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parameter. In literature, several studies [29–38] estimated the modal 
damping ratios of masonry arch bridges under ambient vibrations when 
the bridge was closed to the traffic and reported that these values vary 
between 0.5 and 4%, where the first mode damping ratio rarely excee
ded 2%. 

However, damping of a structure is dependent on the type of exci
tation and its amplitude, and the damping ratio under higher vibration 
amplitudes can be much higher compared to those obtained from 
ambient vibrations. This observation is confirmed by a rare example of 
dynamic identification of a masonry arch bridge under service condi
tions [39], where the damping ratios under service loads were measured 
between 2 and 6%; significantly higher than those obtained under 
ambient vibrations. As the dynamic analysis of masonry arch bridges 
under service conditions requires accurate representation of the damp
ing in the bridge, there is clearly a need for more empirical data on the 
modal damping ratios of masonry bridges under service loads. 

In addition to the experimental studies that are mainly conducted 
under ambient vibrations, there are also several studies that focus on the 
response of masonry arch bridges to seismic actions. The damping aspect 
of the dynamic response of masonry arch bridges has also been studied 
extensively in these studies. Research that focus on railway bridges 
[9,24,40] and their dynamic behavior under seismic loads [41–44] are 
mainly numerical studies and their suggestions aim to ensure that the 
numerical analysis can be conducted in a reasonable time and does not 
lead to overdamping in the first mode [43,45,46]. As such most of the 
numerical studies, in particular those that use discreet element method, 
either ignore damping completely assuming that undamped models will 
provide conservative results or strive to emulate stiffness-proportional 
damping, which is assumed to be the most reliable option but comes 
at a very high computational cost in discrete element method applica
tions. Mass-proportional part of Rayleigh damping is avoided as it is 
considered to provide unconservative estimates of the ultimate limit 
state of the arches [47–49]. Although, these arguments make valid 
points, none of them are based on physical data that has been experi
mentally confirmed either through field tests or laboratory experiments. 
In other words, there is a gap in the literature on how the energy is 
dissipated in masonry arch bridges, especially under service loads 
because most of the experimental studies use data from ambient vibra
tions while the numerical research focus on seismic analysis. 

The current study addresses this gap by presenting an overview of 
modal damping ratios extracted from measurements on three masonry 
arch railway bridges under train loads. A locomotive was driven mul
tiple times on each bridge at different speeds and both the forced vi
brations created by the locomotive and the vibrations in the free decay 
phase which starts immediately after the locomotive leaves the bridge 
were recorded with several accelerometers. The vibrations during free 
decay after each train crossing are then decomposed into its modal 
components and the damping at each modal frequency was estimated at 
each sensor. Through analysis of the extracted damping values for 
several cases, the variation of damping in masonry arch bridges with 
modal frequency is established. Then, we conducted a numerical anal
ysis where we analyzed the dynamic response of a single-span masonry 
arch bridge under moving loads. A mixed discrete-continuum approach, 
presented previously in other studies [7,50–52], is utilized to perform 
moving load analysis without considering damping to evaluate if the 
energy dissipation through inherent inelastic action in this modeling 
approach is enough to justify not using damping in such models under 
service loads. 

The research presented in this article stands out due to its distinct 
approach of integrating both experimental and numerical investigations 
to examine the damping characteristics of masonry arch bridges when 
subjected to service loads. In contrast to existing studies that primarily 
focus on ambient vibrations or seismic actions, this research specifically 
estimates damping values using vibration amplitudes that are relevant 
to service loads. As a result, this study provides valuable insights that go 
beyond existing literature, contributing to a better understanding of 

damping behaviour in masonry arch bridges under service loads, which 
is essential for reliably estimating the vibration levels on bridges under 
service loads both for ballast stability and passenger comfort [53]. 
Further, the study uses moving load analysis on a mixed discrete- 
continuum model including all parts of the bridge such as spandrel 
walls which has been rarely addressed in the literature. Combining a 
mixed discrete-continuum model with a moving load analysis, we could 
capture the response of the masonry arch bridge under dynamic loads 
including the potential nonlinear behavior of the bridge through 
different mechanisms such as inter-block joint openings, sliding, friction 
between different parts, and plastic deformation within the continuous 
medium. This modeling approach allowed us to capture the energy 
dissipation inherent in the mixed discrete-continuum model and accu
rately evaluate the need for additional viscous damping in such models 
under service loads. 

2. Experimental campaign 

Vibrations on three different masonry arch bridges were measured 
during and after train crossing. All three bridges are located on the same 
railway along with several other masonry arch bridges [33]. These 
bridges represent similar designs: number of spans, barrel arches, 
sandstone or limestone, mortar and infill as a building material, and a 
similar deck width of around five meters. Geometric properties of the 
bridges are presented in Table 1. Bridges 13, 41 and 5 have three, four 
and five arches, respectively, as seen in Fig. 1-Fig. 3. These bridges were 
selected as they typify the groups of three-, four- and five-span bridges, 
and produced particularly clear results during the measurement 
campaign. Further details of the experimental campaign are presented in 
[30,33,54]. 

A cabled data acquisition system, force-balance accelerometers 
(FBA), and 24-bit recorders were used as instrumentation. Bridge 13 was 
equipped with 12 uniaxial FBA sensors during the vibration survey, 
while Bridges 41 and 5 had a setup of 20 FBA sensors. The sensors were 
placed longitudinally, vertically, and out-of-plane (transversely) over 
the arches and piers at the lateral edges of the deck to capture acceler
ations in three orthogonal directions as well as torsional rotations. 
Figs. 1-3 provide the sensor layout for the bridges. The system’s sam
pling frequency was set to 200 Hz. 

First, for each bridge, ambient vibrations were recorded continu
ously for approximately an hour. The ambient data was used to extract 
the natural modal frequencies, modal damping ratios, and the mode 
shapes of each bridge. Frequency Domain Decomposition (FDD) [55] 
technique is used for identifying the modal properties of a system based 
on its output response. Details of the system identification of the three 
bridges using different methods is previously summarized in [30]. 
Table 2 presents the frequencies of the first four modes of each bridge 
identified using the ambient vibrations when the bridges were closed to 
traffic. Also presented in Table 2 are the modal damping ratios estimated 
from the ambient vibrations. Considering the uncertainties in estimating 
the modal damping ratios under ambient vibrations, they are presented 
as a range rather than a single value. 

On each bridge, a locomotive was driven six times with speeds be
tween 20 km/h and 60 km/h and both the forced vibrations during the 
train crossing and the free decay after the locomotive leaves the bridge 
are recorded at each accelerometer. The locomotive, which is shown in 
Fig. 2, is a LDH125 type locomotive with four axles and a total weight of 
70 tons. Its total length is 13.7 m with 2.5 m axle spacing. The 

Table 1 
List of presented bridges in this paper.  

Bridge ID Spans (m) Total Length (m) Max Height (m) 

5 6-10-10-6-6  64.3  17.55 
13 8-8-8  40.7  13.70 
41 10-10-10-10  59.3  10.77  
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locomotive crossing created forced vibrations in both transverse and 
vertical directions. On average, 60 s long data was obtained during each 
locomotive crossing. Fig. 4 shows the train crossing data for Bridge 41 
measured at sensor 12. It is easily noticed that the vibration amplitudes 
during train crossings are much higher than the ambient vibrations 
without traffic. Therefore, the damping under the train loads can differ 
significantly from those obtained under ambient vibrations. 

3. Damping in structures: a brief overview 

In the dynamic response analysis of multi-degree-of-freedom sys
tems, obtaining the damping matrix arguably provides the biggest 
challenge because, unlike the mass and the stiffness matrices, it cannot 
be directly determined from the structural dimensions and material 
properties. Therefore, it is common to specify the damping in structures 
via numerical values for the modal damping ratios. These modal 

damping ratios can then be combined to construct the damping matrix of 
the structure. 

The modal damping ratios of structures are estimated from the vi
brations recorded on the structures. However, it is impractical to mea
sure the vibrations in each structure. Further, it is clearly impossible to 
measure the damping properties of a structure that will be designed and 
is yet to be constructed. Thus, we rely on empirical data that has been 
previously gathered from similar structures. However, damping in 
structures depends also on the amplitude of the vibrations and, thus, not 
all data gathered on similar structures is necessarily fit for use if the 
vibration amplitudes during the vibration measurements are very 
different from the vibration amplitudes expected under the analysis 
loads. For example, Chopra [56] summarizes that the modal damping 
ratios in the Millikan library building varies from approximately 1% 
under low-amplitude forced vibration tests to 3% when the building is 
subjected to relatively small earthquake motion to 7% under a strong 

Fig. 1. (a) Bridge 13, (b) data collection, (c) sensor layout.  

Table 2 
Modal frequencies of the bridges identified from ambient vibrations.   

Bridge 5 Bridge 13 Bridge 41 

Mode Shape f(Hz) Modal Damping (%) f(Hz) Modal Damping (%) f(Hz) Modal Damping (%) 

1st – transverse  6.01 0.43–1.32  6.23 0.45–1.00  5.72 1.22–4.44 
2nd - transverse  8.50 0.06–0.33  8.37 0.97–1.30  8.49 1.02–1.56 
3rd - transverse  10.55 0.27–0.44  9.98 0.79–1.14  15.33 1.16–3.57 
1st - vertical  18.90 0.60–1.29  16.66 1.65–5.22  18.44 0.03–0.67  
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earthquake motion. Thus, the modal damping ratios that will be used in 
the numerical analysis should be chosen carefully from data for similar 
structures under similar vibration amplitudes. Similarly, modal damp
ing ratios extracted from ambient vibration tests may vary significantly 
from those under service loads and, thus can be unfit to use in numerical 
analysis under such loads. 

Once the modal damping ratios are specified, they can be combined 
to create the damping matrix using different approaches. Rayleigh 
damping and its two variations, mass-proportional damping and 
stiffness-proportional damping, are arguably the most widely used 
classical damping models. In mass-proportional and stiffness- 
proportional damping, the damping matrix is related to mass and stiff
ness matrices through C = ao M and C = a1 K, respectively. The co
efficients ao and a1 can be computed as a0 = 2ξiωi and a1 = 2ξi/ωi where 
ωi and ξi are the frequency and the damping ratio of the ith mode at 
which the models are anchored. Used alone, the two models provide 
very different damping-frequency curves as shown in Fig. 5. One of the 
main shortcomings of these two models is that they can only control the 
modal damping ratio at one modal frequency. 

Rayleigh damping overcomes this shortcoming by combining these 
two models into a single model and defines the damping matrix as: C =
ao M þ a1 K. The coefficients ao and a1 can be determined from the 
specified modal damping ratios ξi and ξj at the respective modal fre
quencies ωi and ωj by solving the linear system of equations: 

1
2

[
1/ωi ωi
1/ωj ωj

]{
a0
a1

}

=

{
ξi
ξj

}

(2) 

The damping ratio of the nth mode can then be computed as: 

ξn =
a0

2
1

ωn
+

a1

2
ωn (3) 

The resulting damping-frequency curve is plotted in Fig. 5. By pre
scribing the modal damping ratio at two modal frequencies, Rayleigh 
damping provides an improved control of the damping behavior of the 
structure compared to mass- and stiffness-proportional damping models 
and used often in dynamic analysis of structures. 

4. Extraction of damping ratios from experimental data 

To evaluate the damping of masonry arch bridges under service 
loads, we extracted the modal damping ratios from the vibrations in the 
free-decay stage after each train crossing. The steps of this extraction 
process, which has been repeated for each bridge, each train crossing, 
and each natural frequency given in Table 2 are summarized below: 

1. For each sensor, visually identify the two points in time when the 
free-decay phase of the vibration starts and ends. These two points form 
the basis for modal damping extraction using the principle of decay of 
motion [56]. 

2. For each modal frequency, extract the narrowband component of 
the free decay vibration. In this study, we used band-pass filtering for 
this purpose. The width of the band-pass filter was set to 0.2 Hz to avoid 
any interference from other frequencies that can be associated with the 
train-track system (loading) or other modes of the bridge. 

3. The narrowband free-decay vibration for each modal frequency 
represents the free-decay vibration of the equivalent single-degree-of- 
freedom system. The envelope curve of the narrowband free-decay vi

Fig. 2. (a) Bridge 41, (b) train crossing, (c) sensor layout [54].  
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brations can be represented by the equation ∓ρe− ξnwnt where 

ρ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

[u(0) ]2 +
[

u̇(0) + ξnωnu(0)
ωD

]2
√

(4) 

In Eqn.4, u(0) and u̇(0) are the initial displacement and velocity of 
the free-decay motion, respectively, ξn is the modal damping ratio, and 
ωn and ωD are the undamped and damped natural frequencies, 
respectively. 

4. Fitting an exponential function, f(t) = aebtwhere a and b are the 
equation constants to the narrowband free-decay motion, the modal 

damping ratio for each modal frequency can be computed from 
b = − ξnωn since ξn is the only unknown in this expression. 

An example application of this procedure is summarized next. Fig. 6 
(a) depicts the vibrations recorded in the transverse direction at the 
middle of the second arch of the four-span bridge, i.e. sensor number 3 
shown in Fig. 2(c), during the crossing of the train. In this figure, the 
free-decay part can be identified between approximately t = 10.5 s and t 
= 14.0 s; see Fig. 6(a). For the first modal damping ratio, a bandpass 
filter with a window of 5.6 Hz to 5.8 Hz is applied to the free-decay 
motion and the resulting narrowband component is plotted in Fig. 6 
(b). Also plotted in Fig. 6(b) is the exponential curve fitted to the 

Fig. 3. (a) Bridge 5, (b) test preparation, (c) sensor layout.  

Fig. 4. Data of the train crossings over Bridge 41 recorded by sensor 12.  

Fig. 5. Variation of damping ratio with frequency for different damp
ing models. 
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narrowband component together with its equation. Using the relation
ship b = − ξ1ω1 and setting b = − 1.444 and ω1 = 5.72Hz*2π rad/s, the 
modal damping ratio for this case can be computed as, ξ1 = 4.02%. The 
same procedure was repeated for each of the four modal frequencies 
given in Table 2. 

This procedure is repeated for the vibrations recorded at each sensor 
and each train crossing for each of the four modes. For the transverse 
modes, vibration data from the sensors located along the transverse 
direction in the middle of each arch (for example, sensors 1, 3, 5, and 7 
in Fig. 2(c)) is used while data from the vertical sensors (sensors 8, 10, 
12, and 14 in Fig. 2(c)) is used for the vertical mode. As a result, for each 
mode, 24 modal damping ratios from four sensors and six train crossings 
were extracted for the four-span bridge. Each of the extracted modal 
damping ratios is depicted with a blue marker in Fig. 7. Also shown in 
Fig. 7 are the mean values for the model damping ratio at each natural 
frequency represented by an orange circle along with a trendline (power 
function) that is fitted to the data. It is clear from Fig. 7 that the damping 

is higher for lower frequencies for the four arch masonry arch bridge 
under service loads and decreases consistently as the frequency 
increases. 

To be able to evaluate the variation of modal damping ratio with the 
geometry and the vibration frequency of masonry arch bridges under 
service loads, we repeated the procedure summarized above for the 
three- and five-arch bridges. For each bridge, the train crossed the bridge 
six times and the data was collected in transverse and vertical directions 
at the middle of each arch. As a result, 18 modal damping ratios was 
obtained for each modal frequency for the three-arch bridge while 30 
modal damping ratios was extracted for the five-arch bridge. Fig. 8 
shows the modal damping ratios for each bridge for four modal fre
quencies along with a fitted trendline which is presented solely to better 
visualize the trend of the data. Although the steepness of the curve, 
which indicates the rate of decline in the modal damping ratio with the 
modal frequency changes from one bridge to the other, the general trend 
is the same for each bridge: The modes with lower frequencies have 
higher modal damping ratios and the modal damping ratio decreases 
with an increase in the modal frequency for masonry arch bridges under 
service loads. Considering that, in stiffness-proportional damping 
models, the modal damping ratio increases with modal frequency, which 
contradicts with the empirical data presented herein, we can confidently 
state that stiffness-proportional damping model is not suitable for dy
namic analysis of masonry arch bridges under service loads. 

Further, the damping ratios identified under service loads are 
consistently higher than those identified from ambient vibrations 
because of the higher vibration amplitudes under the service loads. This 
observation confirms that the empirical modal damping ratios obtained 
from ambient vibrations may not be fit for use in dynamic analysis of 
masonry arch bridges under service loads. 

As the next step, we evaluated the possibility of using mass- 
proportional and Rayleigh damping models anchored at different fre
quencies to emulate the damping in masonry arch bridges. For this, for 
each bridge, we used four different alternatives that defines the rela
tionship between the modal damping ratio and the modal frequencies: 
mass-proportional damping anchored at the first modal frequency and 
Rayleigh damping anchored at three different modal frequency pairs: 
first and second, first and third, and first and fourth. In this article, we 
used the mean modal damping ratio computed from the extracted 
damping values for each modal frequency, which are represented by 
orange dots in Fig. 9, to define the mass-proportional and Rayleigh 
damping curves for each bridge. As such, all the curves given in Fig. 9 
intersect the mean modal damping ratio at the respective first modal 
frequency. Further, Rayleigh damping models anchored at the second, 
third, and fourth modal frequencies intersect the mean modal ratios at 
the respective frequencies. 

The efficacy of different damping models to emulate the modal 
damping ratios extracted from experimental campaign somewhat vary 

Fig. 6. (a) Vibration data recorded at the middle of the second arch on the four- 
span bridge (sensor 3 in Fig. 2(c)) during a train crossing (b) narrowband free- 
decay data for the first natural frequency and the fitted curve. 

Fig. 7. Modal damping ratios for the four-arch bridge (Bridge 41).  Fig. 8. Variation of modal damping ratio with frequency.  
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from one bridge to the other. For the three-arch bridge (Fig. 9 (a)), 
Rayleigh damping model anchored at the first and second frequencies 
overestimates the modal damping ratios at the third and fourth modal 
frequencies significantly. Similarly, the Rayleigh damping curve 
anchored at the first and third modal frequencies of the five-span bridge 
(Fig. 9 (c)) has increasing damping ratios for frequencies higher than the 
third mode frequency and, thus, overestimates the modal damping ratio 
at the fourth modal frequency. These two cases show that, anchoring the 
Rayleigh damping at the second or third frequency can lead to 
increasing modal damping ratios for higher frequencies, which is not 
consistent with the experimental data. On the other hand, Rayleigh 
damping anchored at the first and fourth modal frequencies emulates 
the modal damping ratios for each of the bridges in a satisfactory 
manner. This observation is not surprising given the fourth mode is the 
highest mode considered in this study and anchoring the Rayleigh 
damping at this modal frequency in addition to the first modal frequency 
defines the boundaries for the modal damping ratios for each of the 
modes considered. To generalize this observation, we can rephrase the 
previous sentences as: Rayleigh damping model anchored at the first and 
nth modal frequencies, n being the highest mode number considered in 
the analysis, provides very good estimates of the modal damping ratios 
for all the modes considered. In contrast, Rayleigh damping anchored at 
the first and ith modal frequencies (i < n) can lead to unreasonably higher 

modal damping ratios for the frequencies higher than the ith modal 
frequency. 

An interesting observation from Fig. 9 is the accuracy of the mass- 
proportional damping model in estimating the modal damping ratios 
for all three bridges. Because it is anchored at only one modal frequency, 
which is generally the first mode, mass-proportional damping does not 
provide the same level of control to the analyst as Rayleigh damping. 
Despite this limitation, the damping ratio – frequency curves provided 
by the mass-proportional damping model follow the experimental modal 
damping ratios very closely for all three bridges. Further, for the three- 
span and four-span bridges, mass-proportional damping and Rayleigh 
damping anchored at the first and fourth modal frequencies are virtually 
identical to each other. 

One of the main shortcomings of the mass-proportional damping has 
been reported to be the very high modal damping ratios assigned to the 
frequencies lower than the first mode frequency [47–49]. The modal 
damping ratios at the frequencies lower than the first modal frequency 
become significant when the frequency of the bridge is reduced by the 
damage sustained by the structure under extreme events. While this is a 
legitimate concern for seismic analysis where the bridge is likely to 
sustain high levels of damage in a relatively short time, there is no 
danger for such high levels of damage that will lead to drastic changes in 
the first modal frequency under service loads. As such, use of mass- 
proportional damping provides a very attractive alternative to Ray
leigh damping for dynamic analysis of masonry arch bridges under 
service loads particularly if explicit numerical integration algorithms are 
used in the analysis because of the computational cost of the stiffness- 
proportional component of the Rayleigh damping. Specifically, the 

critical time step, i.e., Δt < 2/ωmax

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + ξ2
max

√

− ξmax

)

, required to 

ensure numerical stability during explicit numerical solutions, reduces 
drastically when stiffness proportional component of the Rayleigh 
damping model is used compared to the case when only the mass pro
portional component is used(i.e., Δt < 2/ωmax) [47]. 

So far, we anchored the damping models at the modal damping ratios 
extracted from the experiments. However, rarely an analyst has exper
imental data to use for the modal damping ratios and relies on the values 
provided in literature. As such, it is important to suggest values for the 
modal damping ratios at the modal frequencies to provide an analyst 
with all the tools needed to conduct a dynamic analysis. Since we sug
gest use of only the first and fourth modal frequencies in defining the 
damping models, we will focus on the modal damping ratios at these two 
frequencies. Further, the values of the modal frequencies for the first and 
fourth modes for the three bridges are very close to each other (Table 2) 
allowing us to combine all the data for the three bridges at these fre
quencies. Due to the limited amount of data used, we decided to refrain 
from directly using detailed statistical analysis of the extracted modal 
damping ratios at these modal frequencies for the suggestions. Instead, 
taking a close look at the extracted modal damping ratios for the first 
and fourth modal frequencies for all three bridges presented in Fig. 8 and 
the respective mean values, we propose to use 2.5% and 1.25% modal 
damping ratios at the first and fourth modal frequencies, respectively, in 
case the analyst chooses to use the Rayleigh damping. For the mass- 
proportional damping use of 2.5% damping at the first modal fre
quency would suffice. 

We would like to emphasize the fact that modal properties of ma
sonry arch bridges may significantly change for different bridges. 
However, for the similar typology of bridges used in this study, the first 
few mode shapes generally happen to be in the horizontal direction 
(either transverse or longitudinal) whereas the vertical modes are 
associated with higher modal frequencies that are difficult to obtain 
during the experiments or not in the range of interest for the analyst. 
Therefore, further experimental research should comprise a more gen
eral spectrum of bridges and allow refinement of the proposed values in 
this study. 

Fig. 9. Damping models for (a) three-arch (b) four-arch and (c) five-arch ma
sonry arch bridges under service loads. 
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5. Damping in discrete-continuum models of masonry arch 
bridges under service loads 

In addition to viscous damping, which is the sole energy dissipation 
mechanism under service loads in macro models, in the adopted 
modeling strategy, the structure can also dissipate the energy exerted by 
the external loads via non-linear action at the joints as well as within the 
continuum. To investigate the inherent damping in the mixed discrete- 
continuum models under service loads, moving load analysis of a 
single-arch bridge was conducted without assigning any additional 
viscous damping to the bridge. In this section, first, a brief summary of 
mixed continuum-discrete approach and the numerical model devel
oped will be provided and then the results of the numerical study will be 
explored. 

5.1. Dynamic analysis via discrete-continuum-approach 

Masonry arch bridges are composed of several load-bearing elements 
(e.g., soil backfill, arch barrel and piers), and they all interact under the 
external quasi-static and/or dynamic forces. To accurately predict the 
structural behavior of a masonry arch bridge, stone (or brickwork) 
skeleton and the soil backfill should be implemented in the computa
tional model. In this study, the analyzed masonry bridge is modeled 
using a system of rigid and deformable blocks based on the discrete 
element method (DEM), denoted as the mixed discrete-continuum 
(MDC) approach. More specifically, the soil backfill is modeled as a 
continuous medium with an elasto-plastic material model, while the 
stone skeleton, which includes both the arch and the spandrel walls, is 
simulated using rigid blocks with six degrees of freedom (three trans
lations and three rotations), as shown in Fig. 10. It is worth noting that 
the adopted computational modeling strategy addresses the mechanical 
interaction between the masonry units and the soil-masonry (or soil 
structure) within the discontinuum analysis framework. The proposed 
MDC model comprises of 1000 rigid blocks (Fig. 10(a)) and 

approximately 55,000 10-node high-order tetrahedra (Fig. 10(b)) ele
ments that simulate the soil backfill behavior. 

The mechanical interaction between the continuous medium and 
rigid blocks is simulated using normal and shear springs defined in 
orthogonal directions based on the point contact hypothesis [57,58]. 
Overlapping between the adjacent blocks is allowed, which is controlled 
by the defined normal (kn) and shear (ks) contact stiffnesses, as depicted 
in Fig. 11(a). At each point contact, the Coulomb-Slip joint model with 
tension cut-off is used, which uses tensile strength (fT), cohesion (c) and 
joint friction angle (ϕ) (Fig. 11(a)) as the modeling parameters. 
Throughout this study, a brittle failure criterion is followed, which 
means that upon reaching the tensile strength, the tension capacity at 
the contact is set to zero. On the other hand, for the shear behavior, a 
residual frictional resistance is considered after passing the elastic limit 
in relative shear displacement. As shown in Fig. 11(b), the same contact 

Fig. 10. Adopted computation model: (a) Stone skeleton (arch and spandrel wall) consisting of rigid blocks; (b) Continuum soil backfill; (c) Overall bridge 
configuration. 

Fig. 11. (a) Point contact (illustrated in two dimensions) and adopted contact 
constitutive laws in normal and shear directions; (b) Representation of the 
inter-block and continuum discrete rigid block interaction. 
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model is used for both masonry block interaction and soil-structure 
interaction, considering different mechanical properties. In the pre
sented discontinuum model, the normal (σn) and shear (τs,i) contact 
stresses are calculated as elastic increments (Δσn, Δτs,i) based on the 
relative normal and shear point contact displacements (Δun, Δus,i). The 
computed elastic stress increments are added to the total contact 
stresses, computed in the previous time step, and updated (if applicable) 
following the determined failure criteria. Once the new contact stresses 
are obtained, they are multiplied with the associated contact area to get 
contact forces later used in the equations of motion as explained next. 

The computational procedure of DEM relies on the explicit time 
marching scheme to predict gridpoint (or node) and rigid block veloc
ities by solving the equations of motion using the central difference 
method. Note that the continuum is discretized into higher-order 
tetrahedral elements, and gridpoint movements are computed by inte
grating the equations of motion for each node. Unlike the continuous 
medium, for masonry blocks, new translational and rotational velocities 
are obtained at the mass center of each rigid block. Accordingly, the new 
velocities are utilized to update the position of the rigid block and 
gridpoints, which is further used to calculate relative contact displace
ments. The Mohr-Coulomb yield criterion is used as the plastic material 
model for the soil backfill. Briefly, at each time step, elastic (also called a 
trial) stresses are computed and added to the old ones. If the material 
becomes plastic, the new stress state is calculated by mapping the stress 
state back to the yield surface. Finally, the mixed discrete-continuum 
models are executed using a commercial three-dimensional discrete 
element code, 3DEC, developed by Itasca [59]. 

The analyzed masonry arch bridge has a 12-meter clear span, 1/6 
rise to span ratio, 7.4 m width, 0.6 m spandrel wall thickness and 0.4 m 
arch thickness. The soil height above the keystone is 0.3 m, and the arch 
thickness does not change through the bridge span. The mechanical 
properties used in the MDC model are taken from the relevant literature 
studies (e.g., [6,7]) and are presented in Table 3. 

5.2. Numerical analysis results 

In the adopted modeling strategy used for simulating dynamic 
behavior of masonry arch bridges, energy dissipation takes place 
through the nonlinear actions at the joints as well as within the con
tinuum. As such, the numerical model used in this study has two po
tential energy dissipating mechanisms: The first is the aforementioned 
nonlinear behavior while the second is the additional viscous damping 
that can be defined as Rayleigh damping or one of its components. 
Several studies propose ignoring additional viscous damping consid
ering that the nonlinear nature of DEM provides sufficient energy 
dissipation [43,60,61]. However, most of these studies focus on seismic 
analysis where significant energy dissipation through nonlinear action is 
expected to occur and it is not certain that such a strategy would provide 
sufficient energy dissipation under service loads, which cause much 
lower vibration amplitudes in the bridge compared to seismic actions. 
These studies also do not address the MDC models. 

To investigate the inherent damping in MDC models under service 
loads, we conducted a moving load analysis without assigning any 

additional viscous damping to the bridge. A moving load, representing a 
vehicle with a mass of 20 tons, was driven numerically over the bridge 
with a speed of 20 km/h. We monitored the vibrations at three points on 
the arch: Quarter point of the arch, middle of the arch, and top of the 
spandrel wall at the middle of the arch; points 1, 2, and 3, respectively in 
Fig. 12. Fig. 13 shows the time variation of the displacement at these 
three points under the effect of the moving load. 

Analysis of the frequency content of the motion at these three points 
revealed that the motion at the quarter span (point 1 in Fig. 12) has the 
richest frequency content because, in a numerical analysis, the modes 
that are symmetrical about the mid-span are usually suppressed in the 
motions recorded at the mid-span and, are not visible in the frequency 
spectrum. Therefore, we decided to use the motion at point 1 to compute 
the modal damping ratios that are inherent in the MDC model. Fig. 14 
depicts the power spectral density (PSD) of the vertical displacements 
recorded at the quarter span. Four frequencies clearly dominate the 
vertical motion at the quarter-span of the bridge as evidenced by the 
PSD. 

We then applied the process detailed in section 3 to extract the modal 
damping ratios of the MDC model at these four modal frequencies. 
Fig. 15 shows the first and third modal components ́ free decay of the 
vibrations recorded at the quarter point and the exponential curves 
fitted to these components to estimate the modal damping ratios. As a 
result of this process, we estimated the modal damping ratios as 3.22%, 
1.69%, 1.49%, and 1.15% for the first four modal frequencies of the 
bridge. It should be reemphasized here that, these modal damping ratios 
represent the energy dissipation inherent in the MDC model through the 
nonlinear mechanisms in the joints such as inter-block joint openings, 
sliding, and plastic deformation within the continuous medium and no 
additional viscous damping was applied to the model. 

Fig. 16 shows the modal damping ratios for the first four modes of the 
numerical model along with their counterparts extracted from the ex
periments. In this figure, we presented all the experimental results 
together without distinguishing between the different bridges because 
the modal damping ratios are presented for each mode number and not 
for the frequencies of the individual bridges. The data depicted in Fig. 16 
clearly show that the inherent damping in the MDC model due to the 
nonlinear behavior in the joints is sufficient and no additional damping 
is required because the modal damping ratios of the numerical model 
are well within the experimental observations. Further, the numerical 
and experimental modal damping ratios follow the same pattern when it 
comes to their variation with the modal frequency. 

However, it should be noted that the inherent damping in the MDC 
models depends very much on the modeling parameters used in the 
joints and can vary from model to model. As such, we propose a three- 
step process to ensure that the damping in the MDC models emulates 
the damping behavior of masonry under bridges under service loads.  

i. Develop the MDC model and run an undamped moving load 
analysis. 

Table 3 
Material and contact properties used in mixed discrete-continuum model.  

Material Properties - soil backfill 
Elastic 

Modulus 
(MPa) 

Poisson’s 
ratio (-) 

Tensile 
strength (kPa) 

Cohesion 
(kPa) 

Friction 
angle (◦) 

150 0.2 5 50 60 
Contact properties within the masonry block 
kn(GPa/m) ks(GPa/m) fT(MPa) c(MPa) ϕ(◦) 
45 18 0.2 0.3 35 
Contact properties between the soil and masonry 
kn(GPa/m) ks(GPa/m) fT(MPa) c(MPa) ϕ(◦) 
45 18 0 0 20  Fig. 12. The points where the displacements are measured.  
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ii. Extract the modal damping ratios for each mode for the un
damped model and compare them with the experimental values 
presented in this study or recommended values in the literature.  

iii. If the damping inherent in the MDC model is not sufficient, 
supplementary damping in the form of mass-proportional 
damping or Rayleigh damping can be added. As discussed 
before, the modal damping ratios extracted from experiments can 
be best simulated by Rayleigh damping anchored at the first and 
nth modal frequencies n being the highest mode included in the 
analysis. However, in DEM, as mentioned previously, stiffness- 
proportional component of the Rayleigh damping leads often to 

very small time-steps and, thus, high computational costs. Mass- 
proportional damping provides an excellent alternative because, 
as shown in this study, it emulates the experimental behavior in a 
satisfactory manner and does not impact the computational cost 
of the numerical analysis. 

6. Concluding remarks 

In this article, we present the damping behavior of masonry arch 
bridges under service loads extracted from experiments and provide 
guidelines on how to emulate this behavior in numerical analysis, 
particularly in mixed discrete-continuum model applications. First, an 
experimental campaign where the vibrations on three masonry arch 
bridges were monitored under a train load is presented. The modal 
damping ratios from different sensors on each of the bridges were 
extracted by isolating the modal component of the vibrations during free 
decay after the train leaves the bridge. A single-arch masonry bridge was 
modeled using mixed discrete continuum approach and a moving load 
analysis was conducted without applying any additional viscous 
damping to evaluate the inherent damping in MDC models provided by 
their nonlinear nature. As a result of these evaluations, the following 
conclusions can be drawn:  

• For a given bridge, there is variation in the modal damping ratios 
extracted from different sensors and train crossings. This variation 
increases from one bridge to another, but, despite this variation, 
some general trends can be clearly observed.  

• Experimental data shows that the modal damping ratios in masonry 
arch bridges are highest for the first mode and decreases for the 
higher modes. Therefore, stiffness-proportional damping, where the 

Fig. 13. Displacement time history of three points on the arch under moving 
load analysis. 

Fig. 14. Power Spectrum of the displacement time-history at the quarter span.  

Fig. 15. First and third mode components of the free decay of the vibrations at the quarter span of the bridge and the fitted exponential curves to estimate the modal 
damping ratios. 

Fig. 16. Experimental and modal damping ratios.  
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modal damping ratios increase with the modal frequency, is not 
suitable to model the damping behavior of masonry arch bridges 
under service loads.  

• The damping in the monitored bridges under service loads were 
observed to be much higher than the damping under the ambient 
vibrations. Because damping is related to several mechanisms such 
as sliding and opening and closing of the cracks, the amplitude of the 
loading and the resulting vibrations play a significant role in the 
amount of damping. Therefore, the damping values extracted from 
ambient vibrations are likely to underestimate the damping in ma
sonry arch bridges under service loads.  

• Rayleigh damping anchored at the 1st and nth modal frequencies, n 
being the highest mode number that will be considered in the anal
ysis, provides the best alternative to emulate the damping behavior 
of masonry arch bridges. We recommend using this damping model 
in finite element or discrete element applications, both in macro- and 
micro-modeling, where the damping model has no impact on the 
computational costs.  

• For discrete element models, the stiffness-proportional component of 
the Rayleigh damping can adversely impact the computational cost. 
For such models, mass-proportional damping provides a very 
attractive alternative because it can emulate the damping behavior 
of masonry arch bridges under service loads satisfactorily and has no 
impact on the computational costs.  

• In literature, several studies refrain from using mass-proportional 
damping in seismic analysis using discrete element models because 
the reduction in modal frequencies due to damage under seismic 
loads can lead to very high modal damping ratios for the first mode. 
However, such a concern is not relevant for analysis of masonry arch 
bridges under service loads because the frequency of the structure 
should not vary under these loads as no sudden damage is expected.  

• Moving load analysis on a single-span masonry arch bridge modeled 
using MDC approach without providing any additional viscous 
damping showed that the inherent damping in MDC models provided 
by the nonlinear behavior at the joints and the soil continuum can be 
sufficient to emulate the damping behavior in masonry arch bridges. 
Therefore, the analysts are urged to first conduct an analysis without 
additional damping and evaluate the inherent energy dissipation in 
MDC models. In case the damping inherent in the model is deemed to 
be insufficient, additional damping can be provided as Rayleigh 
damping or mass-proportional damping. 

Experimental research that studies the damping of masonry arch 
bridges under service loads is scarce. This study shows that damping 
extracted from ambient vibrations is likely to be lower compared to the 
damping under service loads. More research that focuses on damping of 
masonry arch bridges under service loads is necessary to be able to 
understand and emulate the behavior of these structures under such 
loads. 
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[9] Carr AJ, Jáuregui DV, Riveiro B, Arias P, Armesto J. Structural evaluation of 
historic masonry arch bridges based on first hinge formation. Constr Build Mater 
2013;47:569–78. https://doi.org/10.1016/J.CONBUILDMAT.2013.05.084. 
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