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Abstract: The analysis of time series studies linking daily counts of a
health indicator with environmental variables (e.g., mortality or hospital
admissions with air pollution concentrations or temperature; or motor
vehicle crashes with temperature) is usually conducted with Poisson
regression models controlling for long-term and seasonal trends using
temporal strata. When the study includes multiple zones, analysts usu-
ally apply a two-stage approach: first, each zone is analyzed separately,
and the resulting zone-specific estimates are then combined using
meta-analysis. This approach allows zone-specific control for trends.
A one-stage approach uses spatio-temporal strata and could be seen as
a particular case of the case—time series framework recently proposed.
However, the number of strata can escalate very rapidly in a long time
series with many zones. A computationally efficient alternative is to fit
a conditional Poisson regression model, avoiding the estimation of the
nuisance strata. To allow for zone-specific effects, we propose a condi-
tional Poisson regression model with a random slope, although available
frequentist software does not implement this model. Here, we imple-
ment our approach in the Bayesian paradigm, which also facilitates the
inclusion of spatial patterns in the effect of interest. We also provide a
possible extension to deal with overdispersed data. We first introduce the
equations of the framework and then illustrate their application to data
from a previously published study on the effects of temperature on the
risk of motor vehicle crashes. We provide R code and a semi-synthetic
dataset to reproduce all analyses presented.
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he analysis of time series studies linking a health indica-

tor’s daily counts with environmental variables (e.g., mor-
tality or hospital admissions with air pollution concentrations
or temperature; or motor vehicle crashes with temperature) is
usually conducted with Poisson regression models that control
for long-term and seasonal trends. Trends can be controlled
by using splines of time or temporal strata, for example,
strata defined by the combination of year, month, and day of
the week. The latter approach is equivalent to a time-strati-
fied case—crossover analysis.! When the study includes mul-
tiple zones (e.g., cities), analysts usually apply a two-stage
approach, in which each zone is analyzed separately (first
stage) and the zone-specific results of the first stage are then
combined using univariate or multivariate meta-analysis (sec-
ond stage). This approach allows a zone-specific control for
trends.

A one-stage approach to analyze this kind of data is to
pool all data together and define strata as the combinations
of zone, year, month, and day of the week. This approach
has been called space—time-stratified case—crossover.”? Such
a model could be seen as a particular case of the case—time
series framework recently proposed.’* In that framework,
the temporal trends are captured using temporal strata that
may or may not vary by zone. Depending on how the tempo-
ral strata are defined, the number of strata can escalate very
rapidly in a long time series with many zones. A compu-
tationally efficient alternative is to fit a conditional Poisson
regression model, which uses the likelihood conditional to
the sum of events within each stratum. This method avoids
the need to estimate the strata parameters, leading to a mul-
tinomial model that provides the same estimates for the
remaining parameters.'

The case—time series approach allows estimating
zone-specific effects. For example, if one is interested in
the effect of air pollution, one can include interaction terms
between zone or zone-specific variables and the air pollution
terms.*> Another approach would be assuming zone-specific
random effects for the air pollution terms (i.e., random slope).
However, the available (frequentist) software for conditional
Poisson regression does not allow including random effects.

Here, we show how to fit a conditional Poisson regres-
sion model with a random slope using a Bayesian approach.
This is an approach similar to the conditional linear mixed
models derived for the case of linear regression.® The Bayesian
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paradigm also facilitates the inclusion of spatial structure in
the random effects. We first introduce the equations of the
modeling framework and then apply them to an illustrative
example using a previously published study on the effects of
temperature on the risk of motor vehicle crashes.” We provide
the R code used and a semi-synthetic data set to reproduce
similar results to those presented in the example.

MODELING FRAMEWORK

Consider three-level nested data in which level 1
identifies I geographical zones, that is, cities or climatic
regions; level 2 identifies J; time strata, that is, combinations
of year, month, and day of week, and level 3 identifies Kj;
daily observations. Let Y, be the outcome (e.g., motor vehi-
cle crash count) observed in the k-th day, k = 1,2,...,Kj;
, within the j-th time stratum, j=1,2,...,J;, within the
i-th zone, i = 1,2,...,1. Let X,/ =1,2,...,p, be a set
of variables potentially associated with Y, where /=1
corresponds to the exposure of interest (e.g., temperature)
and /=2,3,...,p correspond to additional time-varying
confounder variables in the relationship of interest (e.g.,
daily mean levels of humidity or rainfall in an analysis of
temperature). We consider the Generalized Linear Mixed
Model (GLMM) framework under the following assump-
tions: (1) The outcome count follows a Poisson distribution;
(2) As usual in practice, the relationship between the mean
of the outcome and a linear combination of the explanatory
variables is exponential (i.e., log—linear), which provides
estimations of the association of interest in terms of risk
ratio (RR); (3) Baseline risk varies by zone and time strata;
and (4) There is a potential geographical-specific associa-
tion between the outcome and the exposure of interest.

POISSON REGRESSION MIXED MODEL
The modeling framework just introduced above is com-
patible with the following Poisson regression mixed model:

Yijk ~ POiS()\,-jk)
p
log(Nijx) = kij + BuXum + ZZ BiXuijk
=

Bri = B + uy;

uliN/\/(O,Jl) (1)

Model (1) is a mixed-effects (or simply mixed) model,
with fixed effects in the intercept at level 2 (e.g., zone-time
level) and random effects in the slope at level 1 (e.g., zone
level). Specifically, the interpretation of terms in model (1) is
as follows:

(1) wy is related to the baseline risk (e.g., mean number of
crashes) in time stratum j in zone i. That is, the set of x;;
parameters capture variations in average mortality by zone
and zone-specific time trends and seasonality in mortal-
ity. x; parameters are treated as fixed effects. Thus, the
number of parameters /i,-j,zl(:lJ,-, is usually large (e.g.,
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in the study on motor vehicle crashes mentioned above,
S, Ji = 17,056). Further, Kj; parameters also capture
any characteristic that could be #j-stratum specific, that
is, within #j-stratum invariant but between ij-strata vary-
ing. As a particular case, ; parameters also capture any
characteristic which is i-stratum specific (e.g., percentage
of homes with air conditioning or percentage of individuals
with high or low education).

(2) B1; measures the association, in zone i, between the expo-
sure of interest, Xi(e.g., daily ambient temperature), and the
outcome,Y. B1; comprises two contributions: (1) 51, which
is the parameter of main interest, is related to the overall
(i.e., population-level, common to all zones) adjusted effect
of the exposure on the outcome; and (2) u1;, a random dis-
turbance of that association at zone level (i.e., level 1), cap-
turing the distinctive feature of each zone in the association
of interest. u1; is modeled as a random effect in the slope
of interest (53), following a normal distribution with mean
zero and standard deviation o1, which models the variabil-
ity of the association of interest across the different zones.

(3) B (I=2,3,...,p), is a set of parameters related to addi-
tional time-varying adjusting covariates X;,/ =2,3,...,p
(e.g., daily mean levels of humidity or rainfall), assumed to
be the same in all zones.

One could try to estimate model (1) using a frequentist
or Bayesian approach. Next, we describe both separately.

In the frequentist approach, in the absence of the random
slope (u1;), one can obtain a consistent estimation of 3} using
maximum likelihood.®® Standard statistical software provides
such an estimation (e.g., glm function in R). However, if the
number of nuisance parameters x;; is high enough, computa-
tional issues can arise (e.g., in the study on crashes, R freezes
on a typical computer normally when trying to fit (1) with no
random effect in the slope). In our experience, when trying to
fit model (1), including both fixed effects at level 2 (x;;) and
random slope at level 1 (u1;), with usual software for mixed
models (e.g., glmer function in the R package Ime4) the soft-
ware freezes or the algorithm does not converge, even in small
data sets.

In the Bayesian approach, using flat priors, as usual in
practice, for parameters k;;, model (1) may provide estima-
tions for the parameters of interest that are not consistent as a
consequence of the incidental parameters problem, even in the
case of not having a random slope.*!°

An efficient alternative to overcome those problems
is to work with the conditional likelihood, which avoids the
need to estimate the nuisance parameters x;;, as described
next.

CONDITIONAL POISSON REGRESSION MIXED
MODEL
To avoid the problems derived from the presence of
a high number of nuisance parameters x;; in the model (1),
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described above, we can make inference based on the con-
ditional likelihood, obtained by conditioning on a sufficient
statistic of the nuisance parameters, as is the total outcome
count in each zone-time stratum ij(less formally, making an
inference based on within-strata variability of the data). As
a result, the conditional likelihood does not depend on the
nuisance parameters. Specifically, based on conditional likeli-
hood, model (1) becomes (eAppendix, Section 1; http://links.
lww.com/EDE/C64):

Yij|S,-j X ~ Multinom(S,-j, Tj1s T2y - - ’/Tinl.j)
Ky
Si = >, Vi
k=1
Tk = Zijik/ &if
)4
ik = exp(u1 Xy + ZZ BiXiic)
=1
K
8ij = 1;1 ijk
ulin(O,al) (2)

In model (2), the vector of the K;; observations (i.e.,
days) for the outcome count in the zone-time stratum ij,
conditional to the total number of outcome counts in that
stratum, S;;, follows a multinomial distribution with Kj; prob-
ability parameters. These probability parameters depend only
(via gyx) on the 3 coefficients and the random component in
the slope u1;. Hence, in model (2) only the 3 coefficients and
o1 need to be estimated to obtain zone-specific associations
between the exposure of interest and the outcome, adjusted for
the potential confounders included in the model.

Model (2) provides consistent inference for the parame-
ters of interest. Briefly, it can be shown (eAppendix, Section 2;
http://links.lww.com/EDE/C64) that likelihood of model
(1),L, factors as

‘6(65 O—I’H|y) = ‘Cl (B’ O1, H|S)‘C2(S’ 6’ 01|y)(3)

This result implies that £, provides consistent infer-
ence for parameters 8 and 01.%'° Precisely, £; is the likelihood
associated with model (2) (eAppendix, Section 2; http://links.
Iww.com/EDE/C64). Using £, to make inference is some-
times referred to as partial likelihood estimation.”!"!? In case
of not having the random slope, model (2) can be estimated,
in the frequentist approach, with standard software (e.g., gnm
package in R).! To the extent of our knowledge, frequentist
estimation of model (2) is not implemented in standard statis-
tical software in the presence of a random slope.

We propose fitting model (2) using a Bayesian approach.
Such an approach also facilitates the inclusion of spatial struc-
ture in the random slope in the model. Specifically, eAppen-
dix Section 3; http://links.lww.com/EDE/C64, illustrates how
to fit both cases of independent random effects or spatially
patterned random effects using the Gaussian conditional
autoregressive distribution, which allows spatial correlation
between neighboring zones.! This Bayesian approach has two

© 2023 The Author(s). Published by Wolters Kluwer Health, Inc.

advantages. First, as indicated above, it provides consistent
estimations for the parameters of interest. Second, setting pri-
ors for k;; is not necessary because those nuisance parameters
are not involved in the model.

Fitting model (2) requires some data manipulation from
the original time series format. Specifically, one needs to
aggregate the data at level 2, that is, for each zone-time stra-
tum, to provide the counts of each multinomial distribution,
whose length may vary between strata. We provide an R code
to automatically convert the data set to the required format
(eAppendix, Section 3.3.1; http://links.lww.com/EDE/C64).
The Bayesian approach requires setting prior distributions for
the parameters in the model, that is, the effect of interest,f;,
the coefficient associated with the confounders,fs,. .., By,
and the standard deviation of the normal distribution of the
random effect in the slope of interest,o1. For all these param-
eters, we set noninformative priors, which we specifically
describe in the illustrative example below. All credible inter-
vals derived from Bayesian analyses presented in this work
are equal-tailed.

OVERDISPERSION

Overdispersion is not a rare situation when modeling
data sets in the kind of study analyzed here. Dealing with
overdispersion in conditional model (2) can be challeng-
ing. In the case of overdispersion, following other authors,'*
model (1) could be extended by adding an error term, &,
in the linear predictor at the observation level (e.g., day).
Then, after conditioning, the expression for gj; in model
(2) becomes g = exp(uXigk + 1| BiXup + €ijx), where
gk ~ N (0,0,,), which allows the magnitude of overdisper-
sion being different in each zone, even allowing for zones
with no overdispersion. To decide if the error term & should
be included in the model, both models, with and without the
error term, can be fitted. Then, model selection can be decided
according to some criteria such as the Deviance Information
Criteria.’® In eAppendix, Section 3.4; http://links.lww.com/
EDE/C64, we provide more details as well as R code and an
illustrative example.

ILLUSTRATIVE EXAMPLE

We illustrate our methodology using a previously
published study on the effects of temperature on the risk of
motor vehicle crashes.” Data includes all crashes involving
driver performance factors that occurred in the warm sea-
son (May 15—October 15) during the years 20002011 in 14
meteorologic regions of Catalonia. We define strata as unique
combinations of region, year, month, and day of the week,
leading to 7,056 unique strata. For these data, in models (1)
and (2), p = 4: X, as the exposure of interest, for maximum
daily temperature, and X2, X3, and X4, as confounders, for
binary indicators of the holiday, the day being the first or the
last day in a holiday period, and precipitation, respectively.
In the Bayesian models, we set noninformative priors as
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follows: For each of the § coefficients, a normally distrib-
uted prior with mean 0 and precision 10~°(i.e., variance 10°).
For o1, we defined oy = 1/,/71, where 71 followed a gamma
distribution with mean 1 and variance 10°. Figure 1 shows
the results obtained using the usual two-stage approach
(frequentist analysis), and the one-stage Bayesian approach
using independent or spatially patterned random effects. The
frequentist analysis estimated a relative risk (RR) of 1.051
(95% confidence interval = 0.999, 1.106) for a 5 °C increase
in temperature, with heterogeneity between zones 1> = 70%.
The Bayesian models estimated RRs of 1.051 (95% credible
interval = 0.976, 1.131) and 1.044 (95% credible interval =
0.995, 1.093) when including independent or spatial random
effects, respectively. The three analyses led to similar con-
clusions, all of them capturing a between-zone variability
of the association of interest. Regarding effect size, zone 5
showed the highest association consistently in the three anal-
yses and the rest of the zones having similar estimates in all
three approaches, with only some small differences observed
in zone 14.

DISCUSSION
We present an approach for one-stage analysis of
multi-city case—crossover analyses that allows estimating
city-specific effects using random effects and a Bayesian

2-stage

1-stage (independent)

implementation. This approach allows incorporating the spa-
tial structure of the data to borrow strength from neighboring
regions in the estimation process. We provide reproducible
code and a data set to facilitate the implementation of this
methodology in new studies.

Our approach is based on the mixed-effects Poisson
regression model framework to model data nested in two lev-
els, with level 1 and level 2 being cities and spatio-temporal
strata, respectively. We model baseline risk spatio-temporal
variations (at level 2) with fixed effects in the model intercept
while allowing estimation of heterogeneous effects (at level
1, between-city) by including a random slope associated with
the exposure of interest. This approach has been used in lin-
ear models.® For the Poisson case, such a model cannot be
fitted in the frequentist paradigm with the usual mixed-models
software.

The kind of two-level nested data presented here is usu-
ally analyzed with a two-stage approach. In the first stage,
data from each city (level 1) are modeled independently. In
the second stage, zone-specific measures of the association of
interest estimated in the first stage are pooled using appro-
priate fixed effects or random effects meta-analysis.,”!*!7 This
two-stage approach naturally incorporates zone-specific con-
trol for trends and estimation of zone-specific effects of the
exposure of interest. The latter can be directly obtained from

1-stage (spatial)

Zone Zone Zone
1 i—e— 1
2 —— —— 2 ——
3 — 3 — 3 —————
4 —o— 4 —— 4 ——
5 P e 5 P — 5 P —
6 - 6 —t— 6 —ie—
7 —— 7 —— 7 ——
8 —o— 8 —— 8 ——
9 —— 9 ——— 9 ———
10 ——— 10 —— 10 ——
11 ——— 11 B S — 11 —_————
12 —— 12 — 12 ————
13 —— 13 e — 13 e ——
14 — 14 ————— 14 ——o——
overall + overall + overall +
[ I I I 1 I T T T 1 I T T T 1
0.6 0.8 1.0 1.2 14 0.6 0.8 1.0 1.2 14 0.6 0.8 1.0 1.2 14
RR RR RR

FIGURE 1. Association (relative risk [RR] and 95% confidence or credible interval) between the daily number of motor vehicle
crashes involving driver performance and a 5°C increase in maximum temperature, by zone. Models were adjusted for indicator
variables for precipitation, holidays, and the day being the first or the last day in a holiday period. The left panel shows the best
linear unbiased predictions (BLUPs) of the zone-specific RRs, obtained from a meta-analysis of zone-specific estimates (two-stage
frequentist analysis); the middle panel shows the Bayesian one-stage analysis using conditional Poisson regression with indepen-
dent random effects; and the right panel shows the Bayesian one-stage analysis using conditional Poisson regression with spatially
patterned random effects, using a Gaussian conditional autoregressive (CAR) distribution.
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the analysis of each city, or instead, one can calculate the best
linear unbiased predictions from a meta-analysis. This is the
approach that we adopt in our example, as it is consistent with
the mixed-model approach we applied. The best linear unbi-
ased predictions combine the zone-specific estimate with the
average estimate, thus borrowing strength from the other zones
to obtain an estimate closer to the underlying true value.'®

Other studies have used a similar approach to the one
presented here when analyzing individual-level case—cross-
over data.!*? In that case, they used a Poisson regression model
similar to (1), with individual data, including strata as fixed
effects and allowing for spatial structure, using a Bayesian
approach. This approach can theoretically lead to inconsistent
estimates due to the incidental parameter problem.”!° Using
the multinomial model avoids the incidental data problem and
potential discrepancies of results when using different prior
distributions.

We provide a way to implement a one-stage analysis of
the data based on mixed models. However, one could also fit a
one-stage analysis by including exposure by zone interaction
terms in a space—time-stratified case—crossover analysis, or
in an individual-level case—crossover analysis. Using random
slopes, as in our analysis, is more parsimonious and intro-
duces shrinkage in the estimates, as when computing the best
linear unbiased predictions in a two-stage analysis. The model
with interaction terms would produce estimates more similar
to the first-stage estimates in a two-stage approach.

Two-stage and one-stage approaches often provide simi-
lar results. However, in some cases, both approaches could lead
to different results, triggered most likely by discrepant modeling
assumptions and specifications or by using different techniques
for obtaining estimates and their uncertainty.?! Hence, in the
example presented here, it is expected that two-stage and one-
stage approaches produce similar results because both include
the same variables in the model. However, confounders in the
model could lead to differences in results between one-stage and
two-stage approaches. In the two-stage approach, the effect of
each confounder can be different in each zone (e.g., city) while, in
the one-stage approach, it is assumed to be the same in all zones.
This can be relaxed by including in the model confounder by
zone interactions or random slopes for the confounders. Future
work can examine if there are other situations in which the two
approaches lead to different results. However, one advantage of
the Bayesian implementation we propose here is easily incorpo-
rating prior information (e.g., on the expected direction of esti-
mates) or other spatial correlation patterns, among other features.
Regarding the precision of the estimates in our illustrative exam-
ple, confidence intervals obtained in the two-stage approach are
similar to credible intervals obtained in the one-step approach,
although in some scenarios the one-stage approach could per-
form better in terms of coverage.” Nevertheless, in general, com-
paring frequentist and Bayesian results, as in our example, should
be carried out carefully since confidence and credible intervals
have different meanings.

© 2023 The Author(s). Published by Wolters Kluwer Health, Inc.

Using spatial structure is useful for capturing the poten-
tial spatial correlation of associations. This correlation often
occurs in environmental epidemiologic studies, as associa-
tions tend to be more similar in zones close to each other than
in others that are farther apart. In addition, spatial structure
can lead to more reliable estimates in small zones in which the
relatively low amount of information is enriched by borrowing
information from surrounding zones. The one-stage approach
we implement can easily accommodate the incorporation of
spatial structure. We provide an example and code to imple-
ment that. Two-stage approaches also allow the incorporation
of spatial structures. For instance, using Bayesian techniques,
one can implement the second stage assuming a spatial cor-
relation as a function of the distance between zones.”* Another
example allows for hierarchical geographic structures (e.g.,
cities within countries), although it cannot accommodate
neighborhood-based spatial structures.!’

In our example, the parameter of interest was one-di-
mensional. Studies on temperature or air pollution often use
cross-bases to model lagged effects in short-term association
studies, which implies a multidimensional parameterization.
Our framework could be extended to allow for distributed lag
effects, implementing the underlying algebra described in the
seminal paper on distributed lag nonlinear models,** although
it would require some considerations, for example, on how
to incorporate the spatial structure with multidimensional
parameters. This can be a topic for future research.

Regarding potential overdispersion, in the data of the
study on crashes, the crude ratio variance to the mean of the
daily number of crashes was 6.0. Stratifying by zone, it was
higher than 1.5 only in zones 6, 8, and 4 (ratios 2.7, 2.0, and
1.6, respectively). After adjusting for the exposure and con-
founders, those ratios were all below 1.2. Overdispersion
was not an important problem in the study on crashes, but,
in general, the presence of overdispersion should be consid-
ered. In cases where overdispersion is present, our basic meth-
odology would underestimate the variation of the estimates.
Extensions of the Bayesian conditional model we present to
account for overdispersion are not straightforward.® In case of
overdispersion, an option consists of adding an error term in
the model to allow for extra variation, in a similar way to what
other authors have suggested.'* In the eAppendix Section 3.4;
http://links.Iww.com/EDE/C64, we provide an illustration on
how to implement such an approach.

Data on crashes included only 14 zones, while, ideally, a
higher number of zones would be more appropriate to capture
spatial patterns. Despite this, we consider a spatially patterned
structure for the random effects to allow other researchers to
adapt our code in case their data expand to a higher, more
suitable, number of zones.

Another possible drawback is related to computation. In
some settings, such as including a high number of zones and
a higher number of parameters or incorporating the method
we suggest to take into account potential overdispersion, our
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approach could be computationally demanding in comparison
to the frequentist two-stage approach. Future research could
work on the implementation of more efficient algorithms con-
sidering alternative software (e.g., Stan or INLA). Incorporation
of autocorrelation could also be a topic of future research.

In conclusion, we propose a one-stage Bayesian estima-
tion process that can be fitted in a context with a large number
of spatio-temporal strata while allowing the estimated effect of
interest to vary by zone. We provide R code and a semi-synthetic
to reproduce the analyses, which are available at https://dataverse.
csuc.cat/dataset.xhtml?persistentld=doi: 10.34810/data235.
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