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Abstract: The analysis of time series studies linking daily counts of a 
health indicator with environmental variables (e.g., mortality or hospital 
admissions with air pollution concentrations or temperature; or motor 
vehicle crashes with temperature) is usually conducted with Poisson 
regression models controlling for long-term and seasonal trends using 
temporal strata. When the study includes multiple zones, analysts usu-
ally apply a two-stage approach: first, each zone is analyzed separately, 
and the resulting zone-specific estimates are then combined using 
meta-analysis. This approach allows zone-specific control for trends. 
A one-stage approach uses spatio-temporal strata and could be seen as 
a particular case of the case–time series framework recently proposed. 
However, the number of strata can escalate very rapidly in a long time 
series with many zones. A computationally efficient alternative is to fit 
a conditional Poisson regression model, avoiding the estimation of the 
nuisance strata. To allow for zone-specific effects, we propose a condi-
tional Poisson regression model with a random slope, although available 
frequentist software does not implement this model. Here, we imple-
ment our approach in the Bayesian paradigm, which also facilitates the 
inclusion of spatial patterns in the effect of interest. We also provide a 
possible extension to deal with overdispersed data. We first introduce the 
equations of the framework and then illustrate their application to data 
from a previously published study on the effects of temperature on the 
risk of motor vehicle crashes. We provide R code and a semi-synthetic 
dataset to reproduce all analyses presented.

Keywords: Epidemiologic methods; Multi-site; One-stage; Spatial 
structure; Time series
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The analysis of time series studies linking a health indica-
tor’s daily counts with environmental variables (e.g., mor-

tality or hospital admissions with air pollution concentrations 
or temperature; or motor vehicle crashes with temperature) is 
usually conducted with Poisson regression models that control 
for long-term and seasonal trends. Trends can be controlled 
by using splines of time or temporal strata, for example, 
strata defined by the combination of year, month, and day of 
the week. The latter approach is equivalent to a time-strati-
fied case–crossover analysis.1 When the study includes mul-
tiple zones (e.g., cities), analysts usually apply a two-stage 
approach, in which each zone is analyzed separately (first 
stage) and the zone-specific results of the first stage are then 
combined using univariate or multivariate meta-analysis (sec-
ond stage). This approach allows a zone-specific control for 
trends.

A one-stage approach to analyze this kind of data is to 
pool all data together and define strata as the combinations 
of zone, year, month, and day of the week. This approach 
has been called space–time-stratified case–crossover.2 Such 
a model could be seen as a particular case of the case–time 
series framework recently proposed.3,4 In that framework, 
the temporal trends are captured using temporal strata that 
may or may not vary by zone. Depending on how the tempo-
ral strata are defined, the number of strata can escalate very 
rapidly in a long time series with many zones. A compu-
tationally efficient alternative is to fit a conditional Poisson 
regression model, which uses the likelihood conditional to 
the sum of events within each stratum. This method avoids 
the need to estimate the strata parameters, leading to a mul-
tinomial model that provides the same estimates for the 
remaining parameters.1

The case–time series approach allows estimating 
zone-specific effects. For example, if one is interested in 
the effect of air pollution, one can include interaction terms 
between zone or zone-specific variables and the air pollution 
terms.4,5 Another approach would be assuming zone-specific 
random effects for the air pollution terms (i.e., random slope). 
However, the available (frequentist) software for conditional 
Poisson regression does not allow including random effects.

Here, we show how to fit a conditional Poisson regres-
sion model with a random slope using a Bayesian approach. 
This is an approach similar to the conditional linear mixed 
models derived for the case of linear regression.6 The Bayesian 
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paradigm also facilitates the inclusion of spatial structure in 
the random effects. We first introduce the equations of the 
modeling framework and then apply them to an illustrative 
example using a previously published study on the effects of 
temperature on the risk of motor vehicle crashes.7 We provide 
the R code used and a semi-synthetic data set to reproduce 
similar results to those presented in the example.

MODELING FRAMEWORK
Consider three-level nested data in which level 1 

identifies I  geographical zones, that is, cities or climatic 
regions; level 2 identifies Ji  time strata, that is, combinations 
of year, month, and day of week, and level 3 identifies Kij 
daily observations. Let Yijk be the outcome (e.g., motor vehi-
cle crash count) observed in the k-th day, k = 1, 2, . . . , Kij

, within the j-th time stratum, j = 1, 2, . . . , Ji , within the 
i-th zone, i = 1, 2, . . . , I . Let Xlijk , l = 1, 2, . . . , p, be a set 
of variables potentially associated with Yijk, where l = 1 
corresponds to the exposure of interest (e.g., temperature) 
and l = 2, 3, . . . , p correspond to additional time-varying 
confounder variables in the relationship of interest (e.g., 
daily mean levels of humidity or rainfall in an analysis of 
temperature). We consider the Generalized Linear Mixed 
Model (GLMM) framework under the following assump-
tions: (1) The outcome count follows a Poisson distribution; 
(2) As usual in practice, the relationship between the mean 
of the outcome and a linear combination of the explanatory 
variables is exponential (i.e., log–linear), which provides 
estimations of the association of interest in terms of risk 
ratio (RR); (3) Baseline risk varies by zone and time strata; 
and (4) There is a potential geographical-specific associa-
tion between the outcome and the exposure of interest.

POISSON REGRESSION MIXED MODEL
The modeling framework just introduced above is com-

patible with the following Poisson regression mixed model:




Yijk ∼ Pois(λijk)

log(λijk) = κij + β1iX1ijk +
p∑

l=2
βlXlijk

β1i = β1 + u1i

u1i ∼ N (0,σ1)

.

(1)

Model (1) is a mixed-effects (or simply mixed) model, 
with fixed effects in the intercept at level 2 (e.g., zone-time 
level) and random effects in the slope at level 1 (e.g., zone 
level). Specifically, the interpretation of terms in model (1) is 
as follows:

(1)  κij is related to the baseline risk (e.g., mean number of 
crashes) in time stratum j in zone i. That is, the set of κij 
parameters capture variations in average mortality by zone 
and zone-specific time trends and seasonality in mortal-
ity. κij parameters are treated as fixed effects. Thus, the 
number of parameters κij,

∑I
i=1 Ji, is usually large (e.g., 

in the study on motor vehicle crashes mentioned above, ∑I
i=1 Ji = 7, 056). Further, κij parameters also capture 

any characteristic that could be ij-stratum specific, that 
is, within ij-stratum invariant but between ij-strata vary-
ing. As a particular case, κij parameters also capture any 
characteristic which is i-stratum specific (e.g., percentage 
of homes with air conditioning or percentage of individuals 
with high or low education).

(2)  β1i  measures the association, in zone i, between the expo-
sure of interest, X1(e.g., daily ambient temperature), and the 
outcome,Y . β1i  comprises two contributions: (1) β1, which 
is the parameter of main interest, is related to the overall 
(i.e., population-level, common to all zones) adjusted effect 
of the exposure on the outcome; and (2) u1i, a random dis-
turbance of that association at zone level (i.e., level 1), cap-
turing the distinctive feature of each zone in the association 
of interest. u1i is modeled as a random effect in the slope 
of interest (β1), following a normal distribution with mean 
zero and standard deviation σ1, which models the variabil-
ity of the association of interest across the different zones.

(3)  βl (l = 2, 3, . . . , p), is a set of parameters related to addi-
tional time-varying adjusting covariates Xl, l = 2, 3, . . . , p
(e.g., daily mean levels of humidity or rainfall), assumed to 
be the same in all zones.

One could try to estimate model (1) using a frequentist 
or Bayesian approach. Next, we describe both separately.

In the frequentist approach, in the absence of the random 
slope (u1i), one can obtain a consistent estimation of β1 using 
maximum likelihood.8,9 Standard statistical software provides 
such an estimation (e.g., glm function in R). However, if the 
number of nuisance parameters κij is high enough, computa-
tional issues can arise (e.g., in the study on crashes, R freezes 
on a typical computer normally when trying to fit (1) with no 
random effect in the slope). In our experience, when trying to 
fit model (1), including both fixed effects at level 2 (κij) and 
random slope at level 1 (u1i), with usual software for mixed 
models (e.g., glmer function in the R package lme4) the soft-
ware freezes or the algorithm does not converge, even in small 
data sets.

In the Bayesian approach, using flat priors, as usual in 
practice, for parameters κij, model (1) may provide estima-
tions for the parameters of interest that are not consistent as a 
consequence of the incidental parameters problem, even in the 
case of not having a random slope.9,10

An efficient alternative to overcome those problems 
is to work with the conditional likelihood, which avoids the 
need to estimate the nuisance parameters κij, as described 
next.

CONDITIONAL POISSON REGRESSION MIXED 
MODEL

To avoid the problems derived from the presence of 
a high number of nuisance parameters κij in the model (1), 
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described above, we can make inference based on the con-
ditional likelihood, obtained by conditioning on a sufficient 
statistic of the nuisance parameters, as is the total outcome 
count in each zone-time stratum ij(less formally, making an 
inference based on within-strata variability of the data). As 
a result, the conditional likelihood does not depend on the 
nuisance parameters. Specifically, based on conditional likeli-
hood, model (1) becomes (eAppendix, Section 1; http://links.
lww.com/EDE/C64):




Yij|Sij, X ∼ Multinom(Sij,πij1,πij2, . . . ,πijKij)

Sij :=
Kij∑

k=1
Yijk

πijk = gijk/gij·

gijk := exp(u1iX1ijk +
p∑

l=1
βlXlijk)

gij· :=
Kij∑

k=1
gijk

u1i ∼ N (0,σ1) (2)

In model (2), the vector of the Kij observations (i.e., 
days) for the outcome count in the zone-time stratum ij,  
conditional to the total number of outcome counts in that 
stratum,Sij, follows a multinomial distribution with Kij prob-
ability parameters. These probability parameters depend only 
(via gijk ) on the β coefficients and the random component in 
the slope u1i. Hence, in model (2) only the β coefficients and 
σ1 need to be estimated to obtain zone-specific associations 
between the exposure of interest and the outcome, adjusted for 
the potential confounders included in the model.

Model (2) provides consistent inference for the parame-
ters of interest. Briefly, it can be shown (eAppendix, Section 2;  
http://links.lww.com/EDE/C64) that likelihood of model 
(1),L, factors as

L(β,σ1,κ|y) = L1(β,σ1,κ|S)L2(S,β,σ1|y).(3)

This result implies that L2 provides consistent infer-
ence for parameters β and σ1.9,10 Precisely, L2 is the likelihood 
associated with model (2) (eAppendix, Section 2; http://links.
lww.com/EDE/C64). Using L2 to make inference is some-
times referred to as partial likelihood estimation.9,11,12 In case 
of not having the random slope, model (2) can be estimated, 
in the frequentist approach, with standard software (e.g., gnm 
package in R).1 To the extent of our knowledge, frequentist 
estimation of model (2) is not implemented in standard statis-
tical software in the presence of a random slope.

We propose fitting model (2) using a Bayesian approach. 
Such an approach also facilitates the inclusion of spatial struc-
ture in the random slope in the model. Specifically, eAppen-
dix Section 3; http://links.lww.com/EDE/C64, illustrates how 
to fit both cases of independent random effects or spatially 
patterned random effects using the Gaussian conditional 
autoregressive distribution, which allows spatial correlation 
between neighboring zones.13 This Bayesian approach has two 

advantages. First, as indicated above, it provides consistent 
estimations for the parameters of interest. Second, setting pri-
ors for κij is not necessary because those nuisance parameters 
are not involved in the model.

Fitting model (2) requires some data manipulation from 
the original time series format. Specifically, one needs to 
aggregate the data at level 2, that is, for each zone-time stra-
tum, to provide the counts of each multinomial distribution, 
whose length may vary between strata. We provide an R code 
to automatically convert the data set to the required format 
(eAppendix, Section 3.3.1; http://links.lww.com/EDE/C64). 
The Bayesian approach requires setting prior distributions for 
the parameters in the model, that is, the effect of interest,β1,  
the coefficient associated with the confounders,β2, . . . ,βp, 
and the standard deviation of the normal distribution of the 
random effect in the slope of interest,σ1. For all these param-
eters, we set noninformative priors, which we specifically 
describe in the illustrative example below. All credible inter-
vals derived from Bayesian analyses presented in this work 
are equal-tailed.

OVERDISPERSION
Overdispersion is not a rare situation when modeling 

data sets in the kind of study analyzed here. Dealing with 
overdispersion in conditional model (2) can be challeng-
ing. In the case of overdispersion, following other authors,14 
model (1) could be extended by adding an error term, εijk,  
in the linear predictor at the observation level (e.g., day). 
Then, after conditioning, the expression for gijk  in model 
(2) becomes gijk = exp(u1iX1ijk +

∑ p
l=1 βlXlijk + εijk), where 

εijk ∼ N (0,σei), which allows the magnitude of overdisper-
sion being different in each zone, even allowing for zones 
with no overdispersion. To decide if the error term εijk should 
be included in the model, both models, with and without the 
error term, can be fitted. Then, model selection can be decided 
according to some criteria such as the Deviance Information 
Criteria.15 In eAppendix, Section 3.4; http://links.lww.com/
EDE/C64, we provide more details as well as R code and an 
illustrative example.

ILLUSTRATIVE EXAMPLE
We illustrate our methodology using a previously 

published study on the effects of temperature on the risk of 
motor vehicle crashes.7 Data includes all crashes involving 
driver performance factors that occurred in the warm sea-
son (May 15–October 15) during the years 2000–2011 in 14 
meteorologic regions of Catalonia. We define strata as unique 
combinations of region, year, month, and day of the week, 
leading to 7,056 unique strata. For these data, in models (1) 
and (2), p = 4: X1, as the exposure of interest, for maximum 
daily temperature, and X2, X3, and X4, as confounders, for 
binary indicators of the holiday, the day being the first or the 
last day in a holiday period, and precipitation, respectively. 
In the Bayesian models, we set noninformative priors as 
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follows: For each of the β coefficients, a normally distrib-
uted prior with mean 0 and precision 10−6(i.e., variance 106). 
For σ1, we defined σ1 = 1/

√
τ1 , where τ1 followed a gamma 

distribution with mean 1 and variance 103. Figure  1 shows 
the results obtained using the usual two-stage approach 
(frequentist analysis), and the one-stage Bayesian approach 
using independent or spatially patterned random effects. The 
frequentist analysis estimated a relative risk (RR) of 1.051 
(95% confidence interval = 0.999, 1.106) for a 5 °C increase 
in temperature, with heterogeneity between zones I2 = 70%.  
The Bayesian models estimated RRs of 1.051 (95% credible 
interval = 0.976, 1.131) and 1.044 (95% credible interval = 
0.995, 1.093) when including independent or spatial random 
effects, respectively. The three analyses led to similar con-
clusions, all of them capturing a between-zone variability 
of the association of interest. Regarding effect size, zone 5 
showed the highest association consistently in the three anal-
yses and the rest of the zones having similar estimates in all 
three approaches, with only some small differences observed 
in zone 14.

DISCUSSION
We present an approach for one-stage analysis of 

multi-city case–crossover analyses that allows estimating 
city-specific effects using random effects and a Bayesian 

implementation. This approach allows incorporating the spa-
tial structure of the data to borrow strength from neighboring 
regions in the estimation process. We provide reproducible 
code and a data set to facilitate the implementation of this 
methodology in new studies.

Our approach is based on the mixed-effects Poisson 
regression model framework to model data nested in two lev-
els, with level 1 and level 2 being cities and spatio-temporal 
strata, respectively. We model baseline risk spatio-temporal 
variations (at level 2) with fixed effects in the model intercept 
while allowing estimation of heterogeneous effects (at level 
1, between-city) by including a random slope associated with 
the exposure of interest. This approach has been used in lin-
ear models.6 For the Poisson case, such a model cannot be 
fitted in the frequentist paradigm with the usual mixed-models 
software.

The kind of two-level nested data presented here is usu-
ally analyzed with a two-stage approach. In the first stage, 
data from each city (level 1) are modeled independently. In 
the second stage, zone-specific measures of the association of 
interest estimated in the first stage are pooled using appro-
priate fixed effects or random effects meta-analysis.,7,16,17 This 
two-stage approach naturally incorporates zone-specific con-
trol for trends and estimation of zone-specific effects of the 
exposure of interest. The latter can be directly obtained from 

FIGURE 1. Association (relative risk [RR] and 95% confidence or credible interval) between the daily number of motor vehicle 
crashes involving driver performance and a 5°C increase in maximum temperature, by zone. Models were adjusted for indicator 
variables for precipitation, holidays, and the day being the first or the last day in a holiday period. The left panel shows the best 
linear unbiased predictions (BLUPs) of the zone-specific RRs, obtained from a meta-analysis of zone-specific estimates (two-stage 
frequentist analysis); the middle panel shows the Bayesian one-stage analysis using conditional Poisson regression with indepen-
dent random effects; and the right panel shows the Bayesian one-stage analysis using conditional Poisson regression with spatially 
patterned random effects, using a Gaussian conditional autoregressive (CAR) distribution.
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the analysis of each city, or instead, one can calculate the best 
linear unbiased predictions from a meta-analysis. This is the 
approach that we adopt in our example, as it is consistent with 
the mixed-model approach we applied. The best linear unbi-
ased predictions combine the zone-specific estimate with the 
average estimate, thus borrowing strength from the other zones 
to obtain an estimate closer to the underlying true value.18

Other studies have used a similar approach to the one 
presented here when analyzing individual-level case–cross-
over data.19,20 In that case, they used a Poisson regression model 
similar to (1), with individual data, including strata as fixed 
effects and allowing for spatial structure, using a Bayesian 
approach. This approach can theoretically lead to inconsistent 
estimates due to the incidental parameter problem.9,10 Using 
the multinomial model avoids the incidental data problem and 
potential discrepancies of results when using different prior 
distributions.

We provide a way to implement a one-stage analysis of 
the data based on mixed models. However, one could also fit a 
one-stage analysis by including exposure by zone interaction 
terms in a space–time-stratified case–crossover analysis, or 
in an individual-level case–crossover analysis. Using random 
slopes, as in our analysis, is more parsimonious and intro-
duces shrinkage in the estimates, as when computing the best 
linear unbiased predictions in a two-stage analysis. The model 
with interaction terms would produce estimates more similar 
to the first-stage estimates in a two-stage approach.

Two-stage and one-stage approaches often provide simi-
lar results. However, in some cases, both approaches could lead 
to different results, triggered most likely by discrepant modeling 
assumptions and specifications or by using different techniques 
for obtaining estimates and their uncertainty.21 Hence, in the 
example presented here, it is expected that two-stage and one-
stage approaches produce similar results because both include 
the same variables in the model. However, confounders in the 
model could lead to differences in results between one-stage and 
two-stage approaches. In the two-stage approach, the effect of 
each confounder can be different in each zone (e.g., city) while, in 
the one-stage approach, it is assumed to be the same in all zones. 
This can be relaxed by including in the model confounder by 
zone interactions or random slopes for the confounders. Future 
work can examine if there are other situations in which the two 
approaches lead to different results. However, one advantage of 
the Bayesian implementation we propose here is easily incorpo-
rating prior information (e.g., on the expected direction of esti-
mates) or other spatial correlation patterns, among other features. 
Regarding the precision of the estimates in our illustrative exam-
ple, confidence intervals obtained in the two-stage approach are 
similar to credible intervals obtained in the one-step approach, 
although in some scenarios the one-stage approach could per-
form better in terms of coverage.22 Nevertheless, in general, com-
paring frequentist and Bayesian results, as in our example, should 
be carried out carefully since confidence and credible intervals 
have different meanings.

Using spatial structure is useful for capturing the poten-
tial spatial correlation of associations. This correlation often 
occurs in environmental epidemiologic studies, as associa-
tions tend to be more similar in zones close to each other than 
in others that are farther apart. In addition, spatial structure 
can lead to more reliable estimates in small zones in which the 
relatively low amount of information is enriched by borrowing 
information from surrounding zones. The one-stage approach 
we implement can easily accommodate the incorporation of 
spatial structure. We provide an example and code to imple-
ment that. Two-stage approaches also allow the incorporation 
of spatial structures. For instance, using Bayesian techniques, 
one can implement the second stage assuming a spatial cor-
relation as a function of the distance between zones.23 Another 
example allows for hierarchical geographic structures (e.g., 
cities within countries), although it cannot accommodate 
neighborhood-based spatial structures.17

In our example, the parameter of interest was one-di-
mensional. Studies on temperature or air pollution often use 
cross-bases to model lagged effects in short-term association 
studies, which implies a multidimensional parameterization. 
Our framework could be extended to allow for distributed lag 
effects, implementing the underlying algebra described in the 
seminal paper on distributed lag nonlinear models,24 although 
it would require some considerations, for example, on how 
to incorporate the spatial structure with multidimensional 
parameters. This can be a topic for future research.

Regarding potential overdispersion, in the data of the 
study on crashes, the crude ratio variance to the mean of the 
daily number of crashes was 6.0. Stratifying by zone, it was 
higher than 1.5 only in zones 6, 8, and 4 (ratios 2.7, 2.0, and 
1.6, respectively). After adjusting for the exposure and con-
founders, those ratios were all below 1.2. Overdispersion 
was not an important problem in the study on crashes, but, 
in general, the presence of overdispersion should be consid-
ered. In cases where overdispersion is present, our basic meth-
odology would underestimate the variation of the estimates. 
Extensions of the Bayesian conditional model we present to 
account for overdispersion are not straightforward.8 In case of 
overdispersion, an option consists of adding an error term in 
the model to allow for extra variation, in a similar way to what 
other authors have suggested.14 In the eAppendix Section 3.4; 
http://links.lww.com/EDE/C64, we provide an illustration on 
how to implement such an approach.

Data on crashes included only 14 zones, while, ideally, a 
higher number of zones would be more appropriate to capture 
spatial patterns. Despite this, we consider a spatially patterned 
structure for the random effects to allow other researchers to 
adapt our code in case their data expand to a higher, more 
suitable, number of zones.

Another possible drawback is related to computation. In 
some settings, such as including a high number of zones and 
a higher number of parameters or incorporating the method 
we suggest to take into account potential overdispersion, our 
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approach could be computationally demanding in comparison 
to the frequentist two-stage approach. Future research could 
work on the implementation of more efficient algorithms con-
sidering alternative software (e.g., Stan or INLA). Incorporation 
of autocorrelation could also be a topic of future research.

In conclusion, we propose a one-stage Bayesian estima-
tion process that can be fitted in a context with a large number 
of spatio-temporal strata while allowing the estimated effect of 
interest to vary by zone. We provide R code and a semi-synthetic 
to reproduce the analyses, which are available at https://dataverse.
csuc.cat/dataset.xhtml?persistentId=doi:10.34810/data235.
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