

MASTER THESIS

TITLE: Intrusion Detection in IoT networks using Machine Learning

MASTER DEGREE: Master's degree in Applied Telecommunications and
Engineering Management (MASTEAM)

AUTHOR: Francisco Camilo Mejías Espinosa

ADVISOR: Olga León Abarca

DATE: October 18th, 2023

Title: Intrusion Detection in IoT networks using Machine Learning

Author: Francisco Camilo Mejías Espinosa

Advisor: Olga León Abarca

Date: October 18th, 2023

Abstract

The exponential growth of Internet of Things (IoT) infrastructure has introduced
significant security challenges due to the large-scale deployment of
interconnected devices. IoT devices are present in every aspect of our modern
life; they are essential components of Industry 4.0, smart cities, and critical
infrastructures. Therefore, the detection of attacks on this platform becomes
necessary through an Intrusion Detection Systems (IDS). These tools are
dedicated hardware devices or software that monitors a network to detect and
automatically alert the presence of malicious activity.

This study aimed to assess the viability of Machine Learning Models for IDS
within IoT infrastructures. Five classifiers, encompassing a spectrum from
linear models like Logistic Regression, Decision Trees from Trees Algorithms,
Gaussian Naïve Bayes from Probabilistic models, Random Forest from
ensemble family and Multi-Layer Perceptron from Artificial Neural Networks,
were analysed. These models were trained using supervised methods on a
public IoT attacks dataset, with three tasks ranging from binary classification
(determining if a sample was part of an attack) to multiclassification of 8 groups
of attack categories and the multiclassification of 33 individual attacks. Various
metrics were considered, from performance to execution times and all models
were trained and tuned using cross-validation of 10 k-folds.

On the three classification tasks, Random Forest was found to be the model
with best performance, at expenses of time consumption. Gaussian Naïve
Bayes was the fastest algorithm in all classification’s tasks, but with a lower
performance detecting attacks. Whereas Decision Trees shows a good
balance between performance and processing speed.

Classifying among 8 attack categories, most models showed vulnerabilities to
specific attack types, especially those in minority classes due to dataset
imbalances. In more granular 33 attack type classifications, all models
generally faced challenges, but Random Forest remained the most reliable,
despite vulnerabilities.

In conclusion, Machine Learning algorithms proves to be effective for IDS in
IoT infrastructure, with Random Forest model being the most robust, but with
Decision Trees offering a good balance between speed and performance.

I would like to thank to my Advisor Olga León Abarca,
for her guidance, support and patience during the execution of this project,

to my sister Amalia and niece Emily, for their hospitality towards me and my
family, which made my stay in Barcelona possible.

And last but not least, to my wife Olga and my daughter Eva for their
unwavering support and encouragement in the execution and completion of this

Master. To both of them, I dedicate this work.

Francisco Camilo.

CONTENTS

CHAPTER 1. INTRODUCTION .. 1

CHAPTER 2. STATE OF THE ART ... 3

2.1. Internet of Things .. 3

2.1.1. IoT Infrastructure .. 4
2.1.2. Attacks on IoT ecosystem .. 5

2.2. Intrusion Detection Systems (IDS)... 8

2.3. Machine Learning techniques .. 10

2.3.1. Datasets .. 12
2.3.2. Public IoT Attack Datasets ... 13
2.3.3. Machine Learning Classifier Models .. 14
2.3.4. Cutting-edge ML techniques... 15

CHAPTER 3. METHODOLOGY ... 17

3.1. IoT Dataset selection ... 17

3.1.1 Exploratory dataset analysis... 19

3.2. Feature extraction and reduction... 26

3.3. Model selection .. 30

3.4. Performance evaluation and metrics... 30

CHAPTER 4. RESULTS AND DISCUSSION .. 33

4.1. Hyper-parameters tuning .. 33

4.1.1 Logistic Regression Hyper-parameter tuning ... 34
4.1.2 Decision Trees Hypertuning ... 35
4.1.3 Gaussian Naive Bayes Hypertuning ... 36
4.1.4 Random Forest Hypertuning .. 37
4.1.5 Multilayer Perceptron Hypertuning ... 38

4.2. Model evaluation.. 39

4.3. Binary classification .. 40

4.4. Group classification .. 45

4.5. Multi classification .. 51

CHAPTER 5. CONCLUSIONS ... 55

5.1. Future lines of development and research ... 56

5.2. Sustainability considerations ... 57

5.3. Ethical considerations .. 57

ACRONYMS .. 59

REFERENCES ... 61

ANNEXES .. 69

Annex A: Dataset exploratory analysis ... 69

Annex B: Confusion Matrices and Reports of Multiclassification. 72

LIST OF FIGURES

Fig. 2.1 Global devices and connection growth .. 3
Fig. 2.2 Global M2M connection growth by industries .. 4
Fig. 2.3 Cloud, Fog and Edge Computing on IoT ... 5
Fig. 2.4 Security attacks on IoT devices .. 6
Fig. 2.5 Typical IDS scheme using ML ... 11

Fig. 2.6 Example of Creation of an IoT attacks dataset 13
Fig. 3.1 Topology diagram of the scenario of Dataset. 18
Fig. 3.2 Multiclass distribution of the target variable ‘label’ 26
Fig. 3.3 Attack groups categories distribution .. 26
Fig. 3.4 Binary classes distribution ... 26

Fig. 3.5 Normalised mutual information importance of every feature 28

Fig. 3.6 Correlation matrix of features vs features ... 29

Fig. 3.7 Selected features .. 29
Fig. 3.8 Confusion Matrix ... 30
Fig. 4.1 Cross-validation with 10 folds ... 33
Fig. 4.2 Comparison of metrics and results of binary classifiers 41

Fig. 4.3 Confusion matrix of binary Logistic Regression model........................ 42
Fig. 4.4 Confusion matrix of binary Decision Tree model 42

Fig. 4.5 Confusion matrix of binary Naive Bayes model 43
Fig. 4.6 Confusion matrix of binary Random Forest model 43
Fig. 4.7 Confusion matrix of binary MLPClassifier model 44

Fig. 4.8 Comparison of metrics and results of Group classifiers 46
Fig. 4.9 Confusion matrix of group Logistic Regression model 46

Fig. 4.10 Confusion matrix of group Decision Trees model 48

Fig. 4.11 Confusion matrix of group Naive Bayes model 49

Fig. 4.12 Confusion matrix of group Random Forest model 50
Fig. 4.13 Confusion matrix of group MLPClassifier model 51
Fig. 4.14 Comparison of metrics and results of Multi classifiers 53

Fig. A.1 Dataset features distribution ... 69

Fig. B.1 Confusion matrix for Logistic Regression multiclassification 72
Fig. B.2 Confusion matrix for Decision Trees multiclassification 74
Fig. B.3 Confusion matrix for Naive Bayes multiclassification.......................... 76
Fig. B.4 Confusion matrix for Random Forest multiclassification 78
Fig. B.5 Confusion matrix for MLPClassifier multiclassification 80

file:///C:/Users/fcami/Mi%20unidad/TFM%20Francisco/Master%20Thesis%20MASTEAM%20Intrusion%20Detection%20in%20IoT%20networks%20using%20Machine%20Learning.docx%23_Toc148935059
file:///C:/Users/fcami/Mi%20unidad/TFM%20Francisco/Master%20Thesis%20MASTEAM%20Intrusion%20Detection%20in%20IoT%20networks%20using%20Machine%20Learning.docx%23_Toc148935065
file:///C:/Users/fcami/Mi%20unidad/TFM%20Francisco/Master%20Thesis%20MASTEAM%20Intrusion%20Detection%20in%20IoT%20networks%20using%20Machine%20Learning.docx%23_Toc148935071

LIST OF TABLES

Table 2.1. Differences between Host-Based and Network-Based IDS 9
Table 3.1. Dataset description ... 19
Table 3.2. Feature names and descriptions ... 20
Table 3.3. Label Classes attacks description, groups and binary classification.
 ... 21

Table 3.4. Group attack description. .. 22
Table 4.1. Hyper-parameters search and result for LR model. 35
Table 4.2. Hyper-parameters search and results for DT model. 36
Table 4.3. Hyper-parameters search and results for NB model 37
Table 4.4. Hyper-parameters search and results for RF model. 38

Table 4.5. Hyper-parameters search and results for MLP model. 39

Table 4.6. Comparison for the evaluation test of the F1 versus the achieved in
the hypertuning. .. 39
Table 4.7. Metrics and Results from the binary classification by model 40
Table 4.8. Classification report by classes of binary Logistic Regression model
 ... 42

Table 4.9. Classification report by classes of binary Decision Tree model 42
Table 4.10. Classification report by classes of binary Naive Bayes model 43

Table 4.11. Classification report by classes of binary Random Forest model .. 44
Table 4.12. Classification report by classes of binary MLPClassifier model 44
Table 4.13. Metrics and Results from the group classification by model 45

Table 4.14. Classification report by classes of group Logistic Regression model
 ... 47

Table 4.15. Classification report by classes of group Decision Trees model ... 48

Table 4.16. Classification report by classes of group Naive Bayes model 49

Table 4.17. Classification report by classes of group Random Forest model .. 50
Table 4.18. Classification report by classes of group MLPClassifier model 51
Table 4.19. Metrics and Results from the multi classification by model 52

Table A.1. Dataset Features numerical description. .. 71

Table B.1. Classification report by classes of multiclass Logistic Regression
model ... 73
Table B.2. Classification report by classes of multiclassification Decision Trees
model ... 75
Table B.3. Classification report by classes of multiclassification Naive Bayes
model ... 77
Table B.4. Classification report by classes of multiclassification Random Forest
model ... 79

Table B.5. Classification report by classes of multiclassification MLPClassifier
model ... 81

CHAPTER 1. INTRODUCTION 1

CHAPTER 1. INTRODUCTION

The Internet of Things (IoT) [1] refers to the network of physical objects, or
"things", implanted with sensors, software, and other technologies with the goal
of connecting and exchanging data with other devices and systems via the
internet. These objects range from common household items to sophisticated
industrial equipment. The current growth of the Internet of Things (IoT) is
experiencing an explosive surge, as these networks become more complex and
widely available, they bring with them a host of benefits and advances. However,
the expansion of IoT systems also poses considerable cybersecurity threats,
amplifying the difficulty of safeguarding against malicious intrusions. Given the
diverse nature and widespread deployment of IoT devices, they are frequently
exposed to a variety of cyber threats, emphasising the significance of their
security.

Traditional security measures, which are based on rule-based and signature
detection techniques, often struggle to keep up with the dynamic and evolving
nature of cyber threats. In consideration of the resource constraints exhibited by
many IoT devices, including low energy storage, limited memory and low CPU,
these devices are susceptible to cyber-attacks. A notable factor contributing to
such vulnerability is their inability to support existing general-purpose security
software. By this reason, a Network Intrusion Detection Systems (NIDS) or
Intrusion Detection Systems (IDS), functions as a vigilant monitor for internet
traffic in an IoT network, acting as a protective barrier against intruders and
potential threats. Its primary role is to identify known and unknown malicious
attacks by scrutinising network actions, user behaviour, and device activities. IDS
not only detects unauthorised intrusions, but it also encourages context-
awareness among devices in the network, thereby facilitating defence
mechanisms such as firewall rules. The IDS system detects both internal attacks,
emanating from compromised IoT devices, and external attacks initiated by third
parties. Its primary components include Observation, which tracks network
patterns, and Analysis and Detection, which form the core of the system and
identify intrusions by means of algorithms. The IDS also has an alert system that
indicates any detected threat [2].

Machine learning (ML), with its capacity to analyse vast amounts of data and
identify patterns, presents a promising approach for enhancing IDS in IoT
environments and offers the promise of adaptive, data-driven solutions capable
of identifying anomalous patterns and behaviours in real-time. Given the vast
amounts of data generated by IoT devices, ML algorithms are particularly well-
suited to sifting through large datasets to identify potential threats swiftly and
accurately. However, the effectiveness of these algorithms is dependent on the
quality and importance of the datasets they have been trained on.

This master thesis project explores the evaluation of five different supervised
machine learning classifier models (Logistic Regression, Decision Trees, Naïve
Bayes, Random Forests and Multi-Layer Perceptron) in a chosen IoT attacks
dataset, analysing their performance metrics, execution times and their
adaptability in discerning legitimate from malicious activities within IoT networks.

2 Intrusion Detection in IoT networks using Machine Learning

The dataset for the study is labelled with a total of 34 classes: 33 distinct classes
corresponding to specific IoT attack types and an additional class dedicated to
benign traffic. These classes are further categorised into eight groups, with seven
of them representing different attack categories and one signifying benign traffic.
Moreover, at a broader level, the data can be bifurcated into two primary
classifications: 'attack' and 'benign', facilitating binary classification tasks.

The results obtained from this study, show the effectiveness of employing
Machine Learning algorithms for the Intrusion Detection System in IoT
infrastructure. On the three classification tasks, Random Forest was found to be
the model with best performance, at expenses of time consumption. Gaussian
Naïve Bayes was the fastest algorithm in all classification’s tasks, but with a lower
performance detecting attacks. Whereas Decision Trees shows a good balance
between performance and processing speed.

The rest of the document follows this structure. Chapter number 2 describes the
State of the Art about the IoT infrastructure, Intrusion Detection Systems in IoT,
Machine learning techniques in the detection of IoT attacks. Section one explains
concepts of the IoT infrastructure and common types of cyberattacks. Section two
describes the functions and classification of an IoT Intrusion Detection System.
Section three explains the machine learning techniques used on this work, like
models and datasets and current IoT attack datasets and related work.

Chapter number 3 explains the methodology of this project. Section one
describes the dataset used for the study. Section two covers the dimensionality
reduction of the dataset's features. In Section three, the selection of the models
used in the work is made. Section four concerns about the metrics employed on
this study.

Chapter number 4 focuses on the obtained results and discussion of this study.
Section One deals with the tuning of hyperparameters for every model for each
of the three proposed classification tasks. In section Two, each model received
final evaluation on the test set for the three supervised classification tasks: binary,
one for group categories of attacks, and another for a finer classification of
individual attacks. In the following sections results and final metrics are analysed
and compared across different models. Section Three presents and discusses
the results of the binary classification models. Section Four presents the
outcomes of the group attack classification models, which are analysed
objectively. Following this, Section Five explores the findings and interpretations
of the individual attack classification models.

CHAPTER 2. CONCEPTS REVIEW 3

CHAPTER 2. STATE OF THE ART

This chapter is divided in three sections. Section one explains concepts of the
IoT infrastructure and common types of cyberattacks. Section two describes the
functions and classification of an IoT Intrusion Detection System. Section three
explains the machine learning techniques used on this work, like models and
datasets and current IoT attack datasets and related work.

2.1. Internet of Things

Internet of Things (IoT) devices have become an integral part of our daily lives,
playing vital roles in various sectors such as healthcare, transportation, smart
homes, Industry 4.0 and critical infrastructures. Figure 2.1 illustrates the
estimation of the last Cisco Annual Internet Report global device and connection
growth, where Machine to Machine (M2M) connections, also referred as IoT, will
be half of the global connected devices and connections by this year of 2023,
having 14.7 billion connections by 2023, with a grown tendency of the 50 percent
in 2023 [3].

Fig. 2.1 Global devices and connection growth [3]

Figure 2.2 shows that, connected home applications, including home automation,
home security, video surveillance, connected white goods, and tracking
applications, are expected to comprise 48% or almost half of all M2M connections
by 2023. This demonstrates the widespread integration of M2M in our daily life
[3].

4 Intrusion Detection in IoT networks using Machine Learning

Fig. 2.2 Global M2M connection growth by industries [3]

IoT communication systems enable everyday devices to send and receive data
and are crucial for the functionality of IoT devices, including smart home
appliances and industrial sensors. To meet various requirements, such as range,
power consumption, and data transmission rates, a wide number of
communication protocols have been developed at different layers of the IoT
protocol stack such as: [2][4].

• MQTT (Message Queuing Telemetry Transport): lightweight and ideal for
use in low-bandwidth, high-latency, or unreliable networks. It is commonly
used for remote monitoring, particularly in scenarios where bandwidth is
limited.

• CoAP (Constrained Application Protocol): This web transfer protocol is
specifically designed for use with constrained nodes and networks, such
as those found in IoT environments. However, CoAP is more suitable for
devices with limited processing capabilities.

• Zigbee: is a wireless protocol explicitly designed for short-range, low-
power communications. it has become particularly popular among home
automation systems.

• Z-Wave: Another protocol for home automation, with similar functionalities
to Zigbee but different operating frequencies and specifications.

• LoRa (Long Range): As the name implies, it's specifically designed for
long-range communication. This makes it an ideal choice for agricultural
and other large-scale applications due to its long reach, even in
challenging environments.

• Bluetooth and BLE (Bluetooth Low Energy): Although Bluetooth is
commonly used for short-range communication, BLE offers a comparable
range with much lower power consumption, thus being ideal for IoT
devices that are battery-operated.

• NB-IoT (NarrowBand IoT): This cellular technology allows IoT devices to
utilize the reliable communication infrastructure of existing mobile
networks. It is engineered for usage in applications that do not need high
bandwidth but necessitate power efficiency and extended range.

• Wi-Fi: Suitable for devices that require high data rates and are within range
of a Wi-Fi network, this protocol is commonly used in smart home devices.

2.1.1. IoT Infrastructure

The IoT infrastructure [2] is complex, multi-layered, and specifically designed to
facilitate data exchange, processing, and analytics across a vast network of
interlinked devices and is dependent upon three significant elements: the cloud,
fog, and edge layers, each serving a unique purpose, as shown in Figure 2.3.

1. The cloud layer is the central repository where vast amounts of data are
stored, processed, and analysed on a grand scale. The cloud offers
unparalleled storage and computational capabilities, facilitating intricate

CHAPTER 2. CONCEPTS REVIEW 5

analytics and insights. The IoT infrastructure is designed to be scalable,
adjusting its capacity based on the influx of data from the ecosystem.

2. The fog layer, widely known as fog computing, functions as a central
processing intermediary between edge devices and the central cloud.
Situated nearer to the data source than centralised data centres but more
widely dispersed than the edge, fog nodes can locally process data,
thereby making real-time decisions and reducing the need for all data to
travel to the cloud. This leads to a reduction in latency and bandwidth
usage.

Fig. 2.3 Cloud, Fog and Edge Computing on IoT [5]

3. The edge layer sits adjacently to the fog layer and operates even closer to
IoT devices. Edge computing allows devices to process data on-site even
before it reaches the fog layer. By handling immediate data processing
needs, it further streamlines the data that must be sent to the central
system, conserving bandwidth, and ensuring timely actions.

Another essential component of the Internet of Things (IoT) infrastructure are the
Gateways. They serve as connectors between IoT devices and communication
networks, allowing the transmission of data between these devices and cloud-
based management or storage platforms. Besides their data-relaying function,
gateways have the capability to perform local data processing and analysis, thus
enabling real-time decision-making without the need for cloud-based resources.
This proves particularly beneficial in applications where latency is critical or when
the volume of data generated by devices is too vast to be continuously sent to a
centralised server [5].

Beyond their transmitting and processing capacities, gateways offer an added
layer of security for IoT systems. By acting as an intermediary, they can
implement IDS, authenticating devices, and filtering out unwanted traffic, which
shields vulnerable devices and guarantees that only valid and secure data is
transmitted to the cloud or other devices. Figure 2.4 shows an example of IoT
gateways connected to IoT networks.

2.1.2. Attacks on IoT ecosystem

While IoT devices provide tremendous benefits in terms of automation, efficiency,
and convenience, they also present significant security challenges. IoT devices
are often designed with functionality in mind, but not always with sufficient
attention to security considerations, making them a prime target for cyber-attacks.

6 Intrusion Detection in IoT networks using Machine Learning

There are numerous types of attacks targeting Internet of Things (IoT) devices
and platforms. Below, there is a list of some of the most common ones and
description of their main characteristics [2][7][8]:

• Denial of Service (DoS) and Distributed Denial of Service (DDoS) attacks
shown in Figure 2.4, are aimed at rendering a device, network or service
unusable by inundating it with a rush of internet traffic. The traffic in a DDoS
attack comes from numerous sources, most commonly from botnets
consisting of breached machines, making it more difficult to stop. IoT devices
are frequently the subject of DDoS attacks and can also play a role in the
botnets responsible for carrying out the attacks.

Fig. 2.4 Security attacks on IoT devices [5]

• Eavesdropping/Interception/Sniffing Attacks: Eavesdropping constitutes a
passive attack wherein an attacker monitors network traffic. Through this, they
could potentially obtain access to sensitive data, such as passwords, credit
card numbers, or other personal information. Additionally, the attacker might
be capable of identifying communication patterns between devices or
systems, which they could then exploit in other manners.

• Man-in-the-Middle (MitM) Attacks: where an attacker secretly interferes with
and potentially modifies the communication between two parties who assume
that they are contacting directly. In the IoT framework, MitM attack can include
an attacker intercepting communications between a user and a smart home
device, allowing unauthorized access to sensitive data or control of the device.

• Spoofing Attacks: an aggressor impersonates another user or device on a
network, with the intention of launching assaults against network hosts,
stealing data, proliferating malware, or circumventing access controls. In an
IP address spoofing attack, for example, an attacker may transmit packets
that appear to originate from a fake source IP address, thus concealing their
true identity.

CHAPTER 2. CONCEPTS REVIEW 7

• Replay Attacks: involves an assailant recording a data stream (such as a user
entering a password) and subsequently repeating it to imitate legitimate user
actions. This can enable the aggressor to acquire system access or cause
system malfunctions.

• Jamming: The vast majority of IoT devices use wireless networks to
communicate with one another. In this type of attack, the perpetrators target
a specific IoT system and send a falsified signal to disrupt the radio
transmission, leading to a reduction in available bandwidth, processing power,
and memory.

• Malware Attacks: a type of malevolent software utilised or programmed by
attackers to sabotage device operation, obtain confidential information, or
acquire entry to private systems, poses a dangerous threat to individuals and
corporations alike. In the realm of IoT devices, malware can be deployed to
commandeer a device or incorporate the same into a botnet specifically for
DDoS attacks.

• Mirai Botnet Attack: this is a type of malicious software that converts
networked devices into remotely controlled bots that cyber attackers use as
part of a botnet to conduct large-scale attacks. It focuses primarily on online
consumer devices like IP cameras and home routers. Mirai is also commonly
used as an initiator of DoS/DDoS attacks, an example is shown in Figure 2.4.

• Sybil Attack: Sybil attacks are discovered in peer-to-peer networks. A Sybil
attack undermines the identity of an IoT device to generate numerous
anonymous identities and consume a disproportionate amount of power. In
networks where an IoT device functions with multiple identities, it frequently
undermines authorized network access in reputation systems.

• Side-channel attacks target systems, like cryptographic ones, by studying
their physical characteristics during operation. By observing elements such as
power consumption, timing, and electromagnetic leaks, attackers can gather
extra information. This acquired data can subsequently be exploited to breach
cryptographic systems and access sensitive information.

• Cryptanalysis Attacks: These attacks aim to overcome the cryptographic
protections implemented on data. They may include approaches such as
ciphertext-only attacks (where the attacker only possesses encrypted data),
known-plaintext attacks (where the attacker has access to both encrypted and
unencrypted data), or chosen-plaintext attacks (where the attacker can
encrypt any data and observe the outcome).

• Tampering: Modifies the hardware or software of a device to change its
operation. Tampering may involve altering the device's programming to
disrupt its functionality, gain access to sensitive data, or enable an attacker to
control the device. Given that IoT devices are frequently deployed in
unsecured public or remote locations and are often small and constrained,
they are more vulnerable to physical attacks.

• Password Cracking: Password cracking refers to the process of guessing
passwords to gain unauthorized access to a system. A range of techniques
can be employed by attackers, including educated guessing, dictionary

8 Intrusion Detection in IoT networks using Machine Learning

attacks (where all words in a dictionary are tried), and brute force attacks
(where all possible combinations are attempted).

• Advanced Persistent Threats (APT): refers to prolonged and targeted attacks
by unauthorized individuals who attain access to a network and evade
detection for a considerable duration. The primary objective is often data theft
rather than network damage or disruption. Large organizations are typically
the targets of APTs, which require an intricate level of stealth and
sophistication.

• AI-Based Attacks: Modern hackers utilise AI-driven tools that are faster,
scalable, and more efficient compared to manual interventions. This
represents a growing threat to the ever-expanding IoT landscape. While
traditional IoT threats may appear similar, the intensity, automation, and
specificity of AI-powered attacks will make their mitigation increasingly
challenging.

Examples of real-life attacks [7]:

• In 2016, Mirai malware attacked IoT devices, including cameras and
routers, by using default credentials. Due to this malicious software, a
botnet was formed using these compromised devices to launch distributed
denial-of-service (DDoS) attacks. The DNS provider Dyn was notably
affected, causing temporary disruptions to services such as Netflix,
Twitter, and The New York Times.

• In 2015, researchers showcased remote manipulation of a Jeep
Cherokee's telematics system, gaining control over its engine, brakes, and
other key functions. Given the potential life-threatening consequences,
such as hackers tampering with the brake system, Fiat Chrysler allocated
1.4 million USD to address the system's vulnerabilities.

2.2. Intrusion Detection Systems (IDS)

In the context of IoT infrastructure, an Intrusion Detection System (IDS) is a
necessary element to identify and neutralise potential threats and attacks
objectively. IoT devices are vulnerable due to their inherent constraints and vast
numbers, making them inviting targets for attackers. State of the art network
intrusion detection systems (NIDS) used in IoT systems can be categorised into
Signature, Anomaly, Specification, and Hybrid types based on their framework,
implementation, and operation [2]:

1. Signature-based NIDS are challenging to implement in IoT systems due to the

resource limitations of IoT devices, such as memory, processing capability,
and energy constraints. Traditional signature-based systems necessitate
extensive datasets for robust detection. Therefore, there's a need to
restructure traditional signature-based NIDS to be compatible with the
resource constraints of IoT devices.

2. Anomaly-based NIDS for IoT systems compare current activities against a

standard behavioural profile and generate alerts when deviations exceed a
predetermined threshold. This approach efficiently detects emerging attacks,

CHAPTER 2. CONCEPTS REVIEW 9

particularly those that exploit IoT device resources. Unlike signature-based
NIDS that depend on recognised attack patterns, anomaly-based systems
rely on either typical or anomalous data. Given their potential for being
lightweight, many NIDS for IoT security make use of anomaly-based
approaches.

3. Specification-based Network Intrusion Detection Systems (NIDS) utilise a set

of rules, manually updated by the IoT system administrator, to detect network
intrusions. High-level rules are established based on the IoT network's
surroundings and performance to ensure comprehensibility. Resource
constraints in IoT systems make this technique preferable. However, this
approach can only locate intrusions that match its predetermined rules,
limiting its efficacy. The primary differentiation between specification-based
and anomaly-based NIDS resides in the individualised manual rule-setting for
each attack.

4. Hybrid NIDS for IoT systems combine several detection strategies, including

signature-based, anomaly-based, and specification-based methods, to
enhance strengths and minimize weaknesses. Two primary classifications for
hybrid NIDS exist [2]:

a) Sequence-based, which applies either anomaly or misuse detection first,
followed by a distinct technique.

b) Parallel-based. Multiple detectors operate simultaneously, and decisions
are reached by considering outputs from multiple sources.

Typically, hybrid NIDS incorporate both signature-based and anomaly detection.
Signature-based detection identifies known attacks, while anomaly detection
identifies new or unidentified attacks. Because IoT systems have limited
resources, implementing a hybrid-based NIDS directly in these systems often
proves impractical.

IoT NIDS designs can also be categorized based on their operational mode into
two main types: Host-based and Network-based. Table 2.1 illustrates the main
differences between them.

Table 2.1. Differences between Host-Based and Network-Based IDS [2]

The placement of an IDS in an IoT infrastructure is contingent on the specific use
case, the characteristics of the devices involved, and the network architecture.
Here are several potential locations for an IDS in an IoT infrastructure [2]:

10 Intrusion Detection in IoT networks using Machine Learning

1. Device Level (Edge IDS): Directly on IoT devices, suitable for those with
ample computational power, enabling real-time detection.

2. Gateway Level: At IoT gateways that collate data from multiple devices,
ideal when individual devices can't host their own IDS.

3. Network Level (Network-based IDS or NIDS): Monitors entire IoT network
traffic and is strategically positioned to oversee traffic flow.

4. Cloud level: Essential due to reliance on cloud platforms, it checks the
authenticity of data being transmitted.

5. Fog level: this placement helps decrease threat detection latency, which
is crucial for timely responses.

6. Host-based IDS or HIDS focuses on specific applications' activities,
ensuring they process IoT data correctly and without malicious
interference.

The most effective IoT security strategies often employ multiple IDS placements
across the infrastructure, providing layered security. This multi-tiered approach
ensures that if one IDS misses an intrusion, another might catch it. However, it's
crucial to balance security needs with the performance overhead introduced by
these systems, especially in resource constrained IoT environments.

2.3. Machine Learning techniques

Machine Learning (ML) is a subfield of Artificial Intelligence (AI) that enables
computers to learn without explicit programming. It involves developing a
predictive algorithm for each problem to be solved. These algorithms learn from
data in order to identify patterns and trends, creating a model for predicting or
classifying elements [10]. Deep Learning is a subset of Machine Learning that
uses multiple layers to progressively extract higher-level features from the raw
input. The term "deep" in "deep learning" indicates the number of layers utilized
to transform the data. Most of Deep Learning algorithms are based on Artificial
Neuron Networks (ANN) [11].

Machine learning systems can be categorised based on the level and type of
supervision during training. Three main categories exist [12]:

1. Supervised learning: where the training dataset fed into the algorithm consists
of target outcomes, referred to as labels. Supervised learning can be
subcategorised according to their tasks into two types:

a) Classification: where the target label is categorical and can be binary or
multiclass, resulting in models known as classifiers.

b) Regression: in this approach, the algorithm attempts to forecast a
numerical value. The models used for this purpose are referred to as
regressors.

2. Unsupervised learning: where training takes place on a dataset without
previous labelling or defined classes. In advance, there is no known objective
or class value, whether categorical or numerical. Typically, they are dedicated
to clustering or segmentation tasks.

CHAPTER 2. CONCEPTS REVIEW 11

3. Reinforcement learning: the learning system, called an agent within this
context, can observe the environment, choose and execute actions, and
receive rewards in return (or penalties in the guise of negative rewards). It
must subsequently learn on its own what is the optimal strategy, known as a
policy, to accumulate the maximum reward over time.

The objective of this Master Thesis is to compare different machine learning
algorithms to be used in Intrusion Detection Systems on IoT infrastructure.
Specifically, employing supervised classification models to detect various types
of attack. A typical configuration of an IDS using ML is shown in Figure 2.5.

Fig. 2.5 Typical IDS scheme using ML [13]

Therefore, an Artificial intelligence system using machine learning for detecting
attacks on the Internet of Things (IoT), must undertake the following steps:

1. Data Collection: begins by acquiring relevant data from IoT devices, can
be during normal conditions and simulated or real cyberattacks.

2. Data Cleansing: cleanse the data by omitting redundancies, rectifying
missing values, and encoding or normalising data types.

3. Feature Extraction: identify key data attributes that can enhance the
learning process.

4. Model selection and training: choose and train appropriate models for the
data.

5. Evaluation of the Model: post-training, validate the model's accuracy using
metrics.

6. Deployment and Monitoring: deploy the effective model to monitoring the
network, making adjustments as required.

7. Batch Learning: For continuously growing data, adopt a batched or
incremental learning approach to keep the model updated.

Detecting an attack is primary a binary classification task, with only one main
objective, detect or classify the traffic sample as been part of an attack or not. But
nowadays, when the world tends to specialisation, more and more data to be
analysed, more complex devices in the infrastructures, a more detailed
classification of an attack is required in order to take the appropriate measures
and possible future fixes and workarounds. Just binary classifying is not enough
to proper handle the detected threat, a more granular classification is needed.
Therefore, the classification of groups of attacks or specific attacks is the task of
multiclassification problems. This study analysed two additional
multiclassification tasks: one to detect/classify the group of the attack and another
to detect/classify the individual attack.

12 Intrusion Detection in IoT networks using Machine Learning

2.3.1. Datasets

IoT attack datasets are essential tools for comprehending cyber threats and
crafting effective protective strategies. These datasets, either drawn from real-
world scenarios or artificially constructed, detail typical and anomalous
behaviours within IoT settings. They contain several data entries, showcasing
elements like packet dimensions, time markers, IP details, and more. These
valuable resources aid researchers and cybersecurity experts in several ways:
from moulding machine learning frameworks for intrusion detection to gauging
the efficacy of security algorithms.

As IoT device adoption surges, so will the relevance of these datasets. A diverse
array of IoT datasets exists within the cybersecurity realm, but the most of them
typically exhibit certain standard attributes to ensure their utility, such as [14][15]:

1. Multidimensionality: Commonly known as features, entries often detail
several attributes, spanning from IP addresses to protocol types across
various IoT protocol stack layers.

2. Attack Diversity: An effective dataset encompasses various attack
modalities, from DDoS to malware threats like botnets. This variety aids in
building robust security models.

3. Device Diversity: Given IoT's vast device landscape, datasets should
encapsulate varying devices, makers, and OS types.

4. Temporal Characteristics: The time-sensitive essence of many IoT
transactions and threats necessitates datasets to capture time-related
features, such as inter-packet intervals.

5. Scalability: Given the large-scale nature of many IoT deployments,
datasets should be sufficiently large and scalable.

6. Labelling: For supervised learning approaches, the objective of this
project, the data points should be labelled, identifying whether the data
point represents normal behaviour or a specific type of attack.

7. Real-world Data: While synthetic data can be useful, real-world data
provides the opportunity to capture and understand the complexity of IoT
environments and attacks more accurately.

Creating datasets for Internet of Things (IoT) attacks is a complex process that
involves simulating or capturing real-world IoT environments and their associated
vulnerabilities as shown in Figure 2.6 [16] [17]:

1. IoT Environment Setup: An environment replicating authentic IoT scenarios is
established, incorporating diverse IoT devices, communication protocols, and
applications.

2. Attack Simulation: After environment setup, different types of attacks are
simulated. This can include DDoS, MitM, malware, sniffing/eavesdropping,
spoofing, etc. Attacks are often performed using penetration testing tools and
automated scripts, for example, several setups with Kali Linux executing its
known vulnerability tools.

3. Data Capture: All traffic in the IoT environment, including both normal and
malicious traffic, is captured using network sniffing tools like the well-known

CHAPTER 2. CONCEPTS REVIEW 13

Wireshark, Tcpdump, Argus, etc. The data captured includes packet-level
data like source and destination IP addresses, TCP/UDP ports, payload size,
packet timestamps, and protocol type.

4. Pre-processing and Feature Extraction: The raw captured data often needs to
be processed before it is useful. Pre-processing can include steps like noise
removal, dealing with missing data, and normalisation. Feature extraction is
performed to derive meaningful features from the raw data that can be used
for modelling and analysis. This could include statistical features, time-based
features, content-based features, etc. This step is crucial for the database.

5. Labelling: For supervised learning tasks, the dataset needs to be labelled.
This involves identifying and marking the data points associated with different
types of attacks. Labelling can be a challenging and time-consuming process,
often requiring domain expertise.

6. Data Validation: Finally, the dataset is validated to ensure its accuracy and
effectiveness. This involves using the dataset in various machine learning
models to test if it can accurately detect and classify IoT attacks. The dataset
might need to be refined and re-validated multiple times before it is considered
ready for use.

Fig. 2.6 Example of Creation of an IoT attacks dataset [18]

There are no standard procedures for creating an IoT attack dataset, it depends
on the IoT context and the types of attacks. While some datasets are generated
from controlled simulations to prevent actual damage, others are based on
genuine IoT traffic, prioritising privacy and legality.

2.3.2. Public IoT Attack Datasets

Realistic IoT attack datasets are used by researchers to design and test new
security mechanisms. These datasets are fundamental for investigating the
numerous cyber threats that target IoT systems. It is crucial to keep the datasets
up-to-date and appropriate as the nature of IoT threats changes constantly. This
facilitates the creation of robust security measures and better understanding of
emerging threats in the IoT sector [2]. For general IDSs, there are well known
and standards datasets like KDD99, NSL-KDD, UNSW-NB 15, a review of them

14 Intrusion Detection in IoT networks using Machine Learning

are explained in [19] [20]. But more specific IoT attack datasets and related work
are listed below:

• TON-IoT: is crafted for AI-based IDS within the Industry 4.0 and Industrial
Internet of Things (IIoT) setting. It aids in evaluating AI models' intrusion
detection performance using a realistic large-scale network with multiple
virtual machines and sensors. The dataset creators ran different models
from Naïve Bayes to Neural Networks, obtaining metrics from 90% to 98%
[21].

• Bot-IoT: combines genuine IoT traffic with a variety of attack traffics,
especially Botnet, filling the gap in the comprehensive collection of
network traffic and attack diversity in existing datasets [22]. The dataset,
available in both PCAP and CSV formats, organises files by attack types
for easier labelling, authors in [23] obtained a 99.99% of accuracy
employing Decision Trees models.

• MQTTset: targets intrusions against the MQTT protocol, a common IoT
application protocol. The dataset, derived from real-life sensors,
encompasses multiple attack types, including an innovative DoS attack
named SlowTe. With 33 features, it highlights various TCP and MQTT
protocol attributes. Researchers obtained accuracy between 64% and
91% running several models, from Naïve Bayes to Neural networks [24].

• N-BaIoT: use nine IoT devices. This dataset encompasses four kinds of
attacks: reconnaissance, man-in-the-middle, denial-of-service, and botnet
malware. From the PCAP files, 115 features are derived, capturing details
from packets, steam, and time frames. The authors claimed a 100% of
True Positive Rate (TPR) using deep autoencoders with neural networks
[25].

2.3.3. Machine Learning Classifier Models

The supervised classifiers that were trained and assessed fell into five distinct
categories: Logistic Regression from linear models, Naïve Bayes from
probabilistic models, Decision Trees from tree models, Random Forests from
ensemble models, and Multilayer Perceptron (MLP) from the Artificial Neural
Network category.

1. Logistic Regression (LR): Logistic Regression, also known as Logit
Regression, is a widely used method for estimating the probability of an
instance belonging to a particular class. If the estimated probability is above
50%, the model predicts that the instance belongs to that class (known as the
positive class, labelled "1"). If the estimated probability is below 50%, the
model predicts that the instance does not belong to that class (i.e., it is labelled
as "0" being part of the negative class) [12][26][27].

2. Gaussian Naive Bayes (NB): refer to a set of supervised learning algorithms
that apply Bayes’ probabilistic theorem. These methods make the "naive"
assumption of conditional independence between every pair of features, given
the value of the class variable. The likelihood of the features is assumed to be
Gaussian [26][27].

CHAPTER 2. CONCEPTS REVIEW 15

3. Decision Trees (DT): is a supervised learning method used for both
classification and regression tasks. It graphically models decisions and their
possible outcomes, including associated probabilities and costs. Starting with
a root node containing the entire dataset, it splits data based on a feature that
maximises separation. The choice of splitting is determined by criteria such
as information gain or the Gini index. Internal nodes denote decisions, while
leaf nodes represent final outcomes. They are easily interpretable and
versatile, handling both categorical and numerical data [27][28][29].

4. Random Forest (RF): Ensemble learning is the process of combining
classifiers to increase the predictive performance of using singular models,
this is the case of Random Forest where multiple decision trees are combined
into one classifier, increasing accuracy by reducing the effects a single
decision tree has on the overall outcome. This means if a decision tree has
low accuracy, it will not have a significant impact on the overall accuracy of
the random forest. Random forest utilises bagging (short for bootstrap
aggregating) where sampling is performed with replacement which is what
allows this method to achieve high classification accuracy [12][26][27][28].

5. Multilayer Perceptron (MLP): is a form of feedforward Artificial Neural
Network (FFNN) that falls into the category of supervised learning algorithms.
FFNN it's a type of artificial neural network where connections between the
nodes (also known as neurons) do not form a cycle and the data moves in
only one direction, forward. Perceptrons are the foundational units of a neural
network, behaving as single artificial neurons and functioning as single-layer
networks. In contrast, MLPs have multiple layers. The neural network can
comprise one or many hidden layers, and each layer can consist of one or
several neurons. Neurons generally employ activation functions such as
ReLU (rectified linear unit), sigmoid, or hyperbolic tangent. The output layer
is used for classification tasks and can feature a SoftMax function for multi-
class issues or a logistic (sigmoid) activation for binary classification
problems. The MLP adjusts the neurons' weights according to the output
error, which is propagated from the output layer to update the weights
throughout the network, this algorithm is called backpropagation [12]
[26][27][28].

One of the common problems associated when applying ML models is the
overfitting. Overfitting happens when a model can predict very well on the training
dataset but very badly on untrained/test data. The opposite behaviour is the
underfitting, that happens when the algorithm performs very bad on the training
and test set. [12] [26].

2.3.4. Cutting-edge ML techniques

There are several cutting-edge techniques were emerging in the field of IoT attack
detection using machine learning, such as:

• Deep Learning Models: neural networks with many layers are capable of
learning complex patterns. Types of deep learning models are
Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN)
and Long Short-Term Memory (LSTM). CNNs process grid-like data, like
images, and have potential for processing IoT network traffic. RNNs are

16 Intrusion Detection in IoT networks using Machine Learning

useful for analysing time-series IoT data. Long Short-Term Memory is a
type of recurrent neural network (RNN) designed to learn and remember
long-term dependencies in data sequences. [30][31].

• Federated Learning: this approach entails using ML to train a model across
multiple devices or servers containing local data samples, without sharing
them. Its effectiveness has been acknowledged in IoT networks, where
individual devices can learn from their data and share model updates with
a central server, thereby enhancing privacy [32].

• Transfer Learning: on the other hand, involves applying knowledge gained
from solving one problem to a different, but related, problem. For example,
a ML model trained on one IoT network may be adapted for use on a
different network. This can save considerable computational resources
and time as opposed to training the model from scratch [33].

• Automated Machine Learning (AutoML): encompasses a range of
techniques and procedures to automate the complete machine learning
process when dealing with real-world issues. Its implementation would be
particularly advantageous in an IoT environment where models may need
to be deployed across a large number of devices. Automated algorithm
and hyperparameter selection can reduce reliance on expert knowledge
[34].

• Reinforcement Learning: involves ML where an agent learns to make
decisions by taking actions in an environment to maximise a reward. On
the Internet of Things context, a model may learn to adjust network
parameters to maximise security and respond to new threats in real-time
[35].

• Explainable AI: refers to a suite of tools and frameworks that aid humans
in comprehending and interpreting ML model predictions. Concerning IoT,
it would enable a network operator to discern why the model identified
specific network traffic as possibly harmful, thereby providing an enhanced
understanding of both the model and the prospective threat [36].

CHAPTER 3. METHODOLOGY 17

CHAPTER 3. METHODOLOGY

This chapter explain the methodology used in this work and is organised as
follow. Section one describes the dataset used for the study. Section two covers
the dimensionality reduction of the dataset's features. In Section three, the
selection of the models used in the work is made. Section four concerns about
the metrics employed on this study.

The working environment utilised in the study had the following characteristics:
Operating system with Windows 11 Pro 22H2 with a 11th Gen Intel(R) Core(TM)
i5-11300H @ 3.10GHz Processor, 16GB of RAM and 512GB SSD, a NVIDIA
GeForce RTX 3050 Laptop GPU graphic card with 4GB GDDR6. The main
software used for the development was the Visual Studio Code 1.80.0 with
Jupyter Notebook support, the language used was Python 3.11.2, for
manipulating datasets in form of dataframes was used the library pandas 2.0.3,
and finally, all modelling were done using the scikit-learn library 1.3.0. Scikit-learn
is an open-source machine learning library that facilitates both supervised and
unsupervised learning. It offers a range of facilities for model training, model
selection, model evaluation, pre-processing of data, etc.

Evaluating the performance of ML models to be employed in IDS to properly
identifying and classifying attacks in IoT, is accomplished through the following
steps:

• Dataset selection.

• Feature selection and reduction.

• Model selection.

• Model Hyperparameters tuning.

• Model final evaluation.

3.1. IoT Dataset selection

Researchers from the University of New Brunswick of Canada (UnB), with the
support of the Canadian Institute for Cybersecurity (CIC), proposed an extensive
multiclass labelled dataset of IoT cyber-attacks, named by its authors,
CICIoT2023 [37]. This dataset includes 33 different types of attacks (categorised
into seven groups) performed within a topology of up to 105 IoT devices from
various types and manufacturers as shown on Figure 3.1. The diversity of this
dataset was one of the main reasons for its selection for the study. Additionally,
it is one of the most recent IoT attack datasets available within the scientific
community.

The entire dataset was released in the second quarter of 2023 and is publicly
available in [38], with 46686579 samples, exceeds 13GB and is distributed across
169 .csv files. The original traffic captures in .pcap files are also provided by the
authors, enabling researchers to develop their own feature extraction and
labelling processes.

18 Intrusion Detection in IoT networks using Machine Learning

Fig. 3.1 Topology diagram of the scenario of Dataset. [37]

Due to technical constraints and limited resources, the study analysed only the
6 percent of the total dataset, while ensuring it maintained the same
characteristics and class proportions as the original. The time required for
implementing algorithms and machine learning models was meticulously
recorded for performance analysis. The new Dataset for the analysis (a subset of
the Full Dataset) has been obtained using the function train_test_split from the
scikit-learn library, having the parameters: test_size equals to the new size
requested in percentage and stratify=df['label'] pointing to the target variable,
making a small new dataset of 2917910 samples but maintaining the same
proportion of the classes of the target variable. The resulting dataset has been
saved to an intermediate .csv file for further processing.

The obtained dataset was split into training and test sets, with an 80:20
proportion, respectively. This proportion is a common practice in machine
learning and statistics, where is desirable to have a good balance of enough data
for training and to validate and test the model. Some authors explain the
relationship with the 80-20 Pareto rule, (where 80% of the effect are due to 20%
of the cause, and vice versa) [39], and others had mathematically demonstrated
this ratio in [40], but at the end this proportion has been proved to produce the
best balanced results through many years of experimentation. The training
dataset is used to train and adjust the model whereas the test dataset is utilised
to finally evaluate the model's performance, ensuring that it can make accurate
predictions on unseen data. All subsequent operations of feature extraction,
training and work related are done in the training dataset, until the last step of
evaluation of every model where the test dataset is used.

CHAPTER 3. METHODOLOGY 19

3.1.1 Exploratory dataset analysis

All features in the entire dataset are numeric, except for the 'label' variable, which
is the target. It contains the outcome of the labelling process. Table 3.1 describes
the number of observations or instances of each packet analysed. whereas Table
3.2 shown the names of the features and its description, these features are the
result of the process of construction of the Dataset done by the authors.

Table 3.1. Dataset description

Samples Variables Label Classes

2917910 47 (including 46 features and one label) 34

Training Dataset Samples Test Dataset Samples

2334328 583582

Table A.1 from the Annex A, describes the numerical properties (mean, standard
deviation, min, max and percentiles) of each feature. It shows that every feature
has no empty records, all features show the same count of instances.

The histograms displayed in Figure A.1 and the numerical descriptions presented
in Table A.1 of Annex A reveal that the 'Telnet' feature lacks relevant points, as it
shows all zeroes. This is not a surprise, because Secure Shell Protocol (SSH)
obsoletes the old Telnet to login into remote systems. Therefore, “Telnet”
Features should be eliminated from further analysis, reducing the number of
features to 45. From a detailed analysis of the figures and tables previously
mentioned, it can be inferred that several of the features shown are binary. This
observation leads us to treat these variables as such during the processing and
normalisation. Binary features don’t require normalisation they are in range [0,1].
Some of the models analysed such as LR, NB, MLP, require variable scaling or
normalisation, because they rely on distances or gradients. Without
normalisation, features with larger scales could disproportionately influence the
model, potentially leading to misleading results or longer training times. By
scaling or normalising, we ensure that each feature contributes proportionately to
the final decision [27].

The target variable, named ‘label’ is a categorical one, describing 33 types of
attacks and one class for benign traffic, and are also classified in 7 attack groups
and one for benign traffic as shown in Table 3.3. For binary classification (last
column) it has the ‘Attack’ and ‘Benign’ labels.

20 Intrusion Detection in IoT networks using Machine Learning

Table 3.2. Feature names and descriptions

Feature name Description

flow_duration Duration of the packet’s flow

Header_Length Header Length

Protocol Type Protocol Type: IP, UDP, TCP, IGMP, ICMP, Unknown (Integers)

Duration Time-to-Live (ttl)

Rate Rate of packet transmission in a flow

Srate Rate of outbound packets transmission in a flow

Drate Rate of inbound packets transmission in a flow

fin_flag_number Fin flag value

syn_flag_number Syn flag value

rst_flag_number Rst flag value

psh_flag_number Psh flag value

ack_flag_number Ack flag value

ece_flag_number Ece flag value

cwr_flag_number Cwr flag value

ack_count Number of packets with ack flag set in the same flow

syn_count Number of packets with syn flag set in the same flow

fin_count Number of packets with fin flag set in the same flow

urg_count Number of packets with urg flag set in the same flow

rst_count Number of packets with rst flag set in the same flow

HTTP Indicates if the application layer protocol is HTTP

HTTPS Indicates if the application layer protocol is HTTPS

DNS Indicates if the application layer protocol is DNS

Telnet Indicates if the application layer protocol is Telnet

SMTP Indicates if the application layer protocol is SMTP

SSH Indicates if the application layer protocol is SSH

IRC Indicates if the application layer protocol is IRC

TCP Indicates if the application layer protocol is TCP

UDP Indicates if the application layer protocol is UDP

DHCP Indicates if the application layer protocol is DHCP

ARP Indicates if the application layer protocol is ARP

ICMP Indicates if the application layer protocol is ICMP

IPv Indicates if the application layer protocol is IP

LLC Indicates if the application layer protocol is LLC

Tot sum Summation of packets lengths in flow

Min Minimum packet length in the flow

Max Maximum packet length in the flow

AVG Average packet length in the flow

Std Standard deviation of packet length in the flow

Tot size Packet’s length

IAT The time difference with the previous packet

Number The number of packets in the flow

Magnitue
(Average of the lengths of incoming packets in the flow +
Average of the lengths of outgoing packets in the flow) ** 0.5

Radius
(Variance of the lengths of incoming packets in the flow +
Variance of the lengths of outgoing packets in the flow) ** 0.5

Covariance Covariance of the lengths of incoming and outgoing packets

Variance
Variance of the lengths of incoming packets in the flow / The
variance of the lengths of outgoing packets in the flow

Weight Number of incoming packets * Number of outgoing packets

CHAPTER 3. METHODOLOGY 21

Table 3.3. Label Classes attacks description, groups and binary classification.

Attack
number

Multiclassification Class
Name

Group
Classification

Binary
Classification

1 DDoS-RSTFINFlood DDoS Attack

2 DDoS-PSHACK_Flood DDoS Attack

3 DDoS-SYN_Flood DDoS Attack

4 DDoS-UDP_Flood DDoS Attack

5 DDoS-TCP_Flood DDoS Attack

6 DDoS-ICMP_Flood DDoS Attack

7 DDoS-
SynonymousIP_Flood

DDoS Attack

8 DDoS-ACK_Fragmentation DDoS Attack

9 DDoS-UDP_Fragmentation DDoS Attack

10 DDoS-ICMP_Fragmentation DDoS Attack

11 DDoS-SlowLoris DDoS Attack

12 DDoS-HTTP_Flood DDoS Attack

13 DoS-UDP_Flood DoS Attack

14 DoS-SYN_Flood DoS Attack

15 DoS-TCP_Flood DoS Attack

16 DoS-HTTP_Flood DoS Attack

17 Mirai-greeth_flood Mirai Attack

18 Mirai-greip_flood Mirai Attack

19 Mirai-udpplain Mirai Attack

20 Recon-PingSweep Recon Attack

21 Recon-OSScan Recon Attack

22 Recon-PortScan Recon Attack

23 VulnerabilityScan Recon Attack

24 Recon-HostDiscovery Recon Attack

25 DNS_Spoofing Spoofing Attack

26 MITM-ArpSpoofing Spoofing Attack

27 BrowserHijacking Web Attack

28 Backdoor_Malware Web Attack

29 XSS Web Attack

30 Uploading_Attack Web Attack

31 SqlInjection Web Attack

32 CommandInjection Web Attack

33 DictionaryBruteForce BruteForce Attack

34 BenignTraffic Benign Benign

It should be noted that throughout the development of the study, reference is
made to the term 'group classification'. This is essentially a more refined multi-
classification task related to 8 categories of attack groups. Whereas
multiclassification belongs to the individual identification of 34 types of attacks,
binary classification concerns determining whether a sample is part of an attack
or not. A more detailed description of the group attack categories and the number
of individual attacks is shown in Table 3.4.

22 Intrusion Detection in IoT networks using Machine Learning

Table 3.4. Group attack description.

Attack
groups

Description name
Short
name

Number
of

individual
attacks

1 Distributed Denial of Service (DDoS) DDoS 12

2 Denial of Service (DoS) DoS 4

3 Mirai Mirai 3

4 Reconnaissance attack Recon 5

5 Spoofing Spoofing 2

6 Web-Based vulnerabilities Web 6

7 Brute force attacks BruteForce 1

8 Benign Benign 1 (benign)

Total 34

A brief description of each attack group and their individual attacks can be found
below:

1. Distributed Denial of Service (DDoS) attacks: described in section 2.1.2.,

these attacks are executed from several infected devices [41].

a) DDoS-RSTFINFlood: The DDoS-RST/FIN Flood attack can disrupt
servers by overwhelming them with traffic. This type of attack exploits the
RST and FIN flags in TCP, which are responsible for controlling data
transmission. The RST flag resets connections legitimately, while the FIN
flag closes them after transmission. In the DDoS variant of this attack, an
attacker sends a multitude of TCP packets with set RST or FIN flags,
confusing the targeted server.

b) DDoS-PSHACK_Flood: an attacker overwhelms a target using TCP
packets with both the PSH and ACK flags set. PSH, representing the "push
function" in TCP, bypasses standard buffering to send data immediately.
When combined with the ACK flag in this attack, a flood of "urgent" packets
strains the target's resources, causing service disruptions by exploiting the
TCP push function.

c) DDoS-SYN_Flood: targeting the initial handshake of a TCP/IP
connection. In this attack, the attacker sends numerous SYN requests to
a server from a fake IP address. The server responds with SYN-ACK
packets, expecting ACK responses to establish a connection. Due to the
spoofed IPs, these responses never come, leading to many half-open
connections. This consumes server resources, potentially slowing it down
or causing it to crash, preventing service for genuine users.

d) DDoS-UDP_Flood: In this attack, the attacker bombards a host with
numerous UDP packets targeting random ports. The host, failing to find an
application for each port, responds with an ICMP 'Destination
Unreachable' packet. This activity uses up the host's resources, potentially
making it inaccessible.

e) DDoS-TCP_Flood: this attack disrupts servers by inundating them with
numerous TCP connections. The attacker forms an excessive number of

CHAPTER 3. METHODOLOGY 23

connections to the target server, saturating its capacity for concurrent
connections. Consequently, the server fails to process genuine requests
due to the surfeit of connections.

f) DDoS-ICMP_Flood: this attack overwhelms the target by sending
numerous Internet Control Message Protocol (ICMP) echo-request
packets or "pings". The objective is to saturate the target's network. In this
assault, attackers flood the target with a deluge of "pings". Since each ping
demands a response from the target, a constant stream of requests can
quickly consume its bandwidth and processing capacity, making it unable
to cater to genuine requests.

g) DDoS-SynonymousIP_Flood: a substantial quantity of manipulated
TCP-SYN packets is sent, their source and destination addresses being
the targeted address. This causes the server to utilise its resources in
order to process the incoming traffic.

h) DDoS-ACK_Fragmentation: manipulates the packet fragmentation
process in TCP/IP to overload a target. Here, the attacker dispatches a
barrage of fragmented ACK (Acknowledgement) packets to the victim. As
the target expends resources attempting to piece these packets back
together, it can become sluggish or entirely non-functional due to the
depletion of its resources.

i) DDoS-UDP_Fragmentation: bombards the target with numerous
fragmented UDP packets. As the victim system tries to reconstruct these
fragments, it expends considerable resources, which can cause system
slowdowns or render it non-operational.

j) DDoS-ICMP_Fragmentation: floods the target with numerous
fragmented ICMP packets. When the victim system attempts to piece
these fragments together, it uses up a lot of its resources, potentially
leading to reduced performance or system unavailability.

k) DDoS-SlowLoris: aimed to incapacitate specific web servers by
consuming all available connections. It does so by sending deliberately
prolonged partial HTTP requests, ensuring connections stay open. This
eventually maxes out the server's connection limit, preventing legitimate
users from connecting.

2. Denial of Service (DoS) attacks: very similar with DDoS and described in

section 2.1.2, a DoS attack typically comes from a single device and Internet
connection [42] [43].

a) DoS-UDP_Flood: same as the DDoS-UDP_Flood, being originated from
one single spoofed IP.

b) DoS-SYN_Flood: similar as DDoS-SYN_Flood, originating from one
single spoofed IP.

c) DoS-TCP_Flood: same effect as the DoS-TCP_Flood but conducted
from a single spoofed host.

d) DoS-HTTP_Flood: overwhelms a server with HTTP requests, aiming to
deplete its resources. These can be either GET (retrieving information) or
POST (accepting data) requests. As the server processes these, it may

24 Intrusion Detection in IoT networks using Machine Learning

neglect legitimate user requests. Notably, this attack requires minimal
resources or bandwidth from the attacker.

3. Mirai attacks are variants of the Mirai Bot, explained in section 2.1.2 [44].

a) Mirai-greeth_flood: overwhelms a system with Generic Routing
Encapsulation (GRE) packets, where the inner data consists of random
IPs and ports, and the outer layer has genuine IPs.

b) Mirai-greip_flood: like Mirai-greeth_flood, but the target is the packet
encapsulation on the ethernet header.

c) Mirai-udpplain: utilises a fixed string payload in the UDP packet known to
the Mirai malware. Its constant size and content allow rapid packet
generation to flood the target. As UDP doesn't necessitate a receiver's
response, the attacker can intensify the attack by continuously dispatching
packets.

4. Reconnaissance attacks: also known as information gathering attacks, are
initial steps by attackers to gather detailed information about their targets,
aiming to understand system vulnerabilities and plan subsequent attacks.
Being passive in nature, these attacks are challenging to detect [45] [46].

a) Recon-PingSweep: involves sending ICMP Echo Request packets
across an IP range to identify active devices.

b) Recon-OSScan: uses network probes to deduce the operating system of
target devices.

c) Recon-PortScan: also known as port scanning. This attack technique
involves systematically scanning a target network or system to identify
open ports and services available on the target devices to find potential
vulnerabilities.

d) VulnerabilityScan: specialized scanning tools are used to identify
common security flaws, such as outdated software versions,
misconfigurations, weak passwords, or missing security patches.

e) Recon-HostDiscovery: employs techniques like ping sweeps and ARP
scans to identify live hosts in a network.

5. Spoofing attacks: described in section 2.1.2, the main objective is to
masquerades as another device or user on a network to launch attacks [47]
[48].

a) DNS_Spoofing: also known as DNS cache poisoning or DNS hijacking, is
a malicious method where the DNS resolution process is altered to direct
users to harmful websites by modifying DNS records.

b) MITM-ArpSpoofing: is a tactic where an attacker disrupts network
communication between two parties by impersonating a device's MAC
address, enabling them to intercept and alter communications.

6. Brute force attacks: involve attackers using trial and error to access a
system, systematically guessing passwords until the correct one is found.

CHAPTER 3. METHODOLOGY 25

These attacks leverage computational power to check all potential
combinations [49].

a) DictionaryBruteForce: The goal of the attack is to find the correct
password by trying all the words in the dictionary.

7. Exploiting Web-Based vulnerabilities: involves attackers taking advantage
of flaws in web applications due to reasons like poor configuration, insecure
coding, or using outdated software. When exploited, these vulnerabilities can
give unauthorized access, retrieve data, or even control the system [50].

a) BrowserHijacking: Unauthorized changes to browser settings by
malicious code to redirect users to harmful websites.

b) Backdoor_Malware: Malicious software that creates a hidden entry, or
"backdoor", allowing attackers persistent unauthorized access to a
system.

c) XSS: Attackers inject malicious scripts into trusted websites, which
unsuspecting users execute, potentially allowing data theft or
unauthorized actions.

d) Uploading_Attack: Attackers exploit file upload vulnerabilities to upload
and execute harmful files on a target, compromising it.

e) SqlInjection: Attackers manipulate database queries by injecting
malicious SQL statements, enabling unauthorized access, data retrieval,
or modifications.

f) CommandInjection: Attackers execute arbitrary system commands due
to the application's failure to sanitise user input.

8. Benign traffic: as its name indicates, these are packets labelled for normal
benign traffic, considered not part of an attack.

In Figure 3.2 is shown the distribution of each class of attack of the training set,
for group classification the distribution of the seven attacks and the benign traffic
is shown in Figure 3.3, and finally for the binary classification, be part of an attack
or a normal/benign packet, Figure 3.4 shown the distribution. From the analysis
of three classes distributions, it can be observed a class imbalance in the dataset
for every classification task, and this situation will be taken into consideration in
subsequent tasks.

26 Intrusion Detection in IoT networks using Machine Learning

Fig. 3.2 Multiclass distribution of the target variable ‘label’

Fig. 3.3 Attack groups categories distribution

Fig. 3.4 Binary classes distribution

3.2. Feature extraction and reduction

Feature reduction is the process of selecting a group of most relevant features
from all the available features of a dataset. The objective of feature reduction is
to reduce the dimensionality of the dataset, preserving the most important

CHAPTER 3. METHODOLOGY 27

information. This can help improve the efficiency, speed and effectiveness of
machine learning models, and also reduce the risk of overfitting. Some of these
techniques are listed below [51] [52] [53]:

1. Principal Component Analysis (PCA): is a dimensionality reduction
technique that reduces the feature space by retaining the maximum
possible information. It creates new features from linear combinations of
the old ones and selects those capturing the most variance in the data.

2. Feature Selection using Correlation Metrics: Feature selection via
correlation metrics identifies highly correlated features using correlation
matrices. However, a strong correlation does not necessarily indicate the
significance of a feature, as it may fail to identify non-linear relationships.

3. Feature Importance from Decision Trees: Feature importance in decision
trees is determined using models like Random Forest, Gradient Boosting,
and Extra Trees. The significance of a feature is measured by the overall
reduction of the criterion attributed to that feature.

4. Permutation Importance: Permutation feature importance measures the

significance of features by shuffling their values and evaluating the
decrease in model accuracy. Features that greatly influence the model's
performance upon permutation are considered essential.

5. Mutual Information or Information Gain: The mutual information between

two variables determines whether they are dependent on each other. If
two random variables are independent, the mutual information will be zero,
but a higher value indicates a stronger dependence.

In this work it has been adopted a hybrid approach by combining Pearson's
coefficient [54][55], which is a standard correlation coefficient, with Mutual
Information (MI) [56][57]. The Pearson’s coefficient indicates the linear
relationship between two variables. The range of the coefficient goes from -1 to
1. A score of 1 shows a perfect positive correlation and the score of -1 shows a
perfect negative correlation. A score of zero, shows no correlation between the
variables. Scores in the modular range of 0.7 to 0.99 considered the variables to
be strong correlated linearly [55].

Mutual Information (MI) measures the amount of information gained about one
variable as a result of observing another variable, as quantified by information
theory. Mutual Information is closely related to entropy, which measures the
amount of uncertainty or randomness of a variable. If two variables are
independent, their mutual information is zero; they have no information about
each other. A higher mutual information indicates a stronger association between
the two variables [12] [56].

This election was based on removing the variables/features that are linear
correlated first, based on the Mutual Information that its results are not dependent
of any model evaluation, concerning models, is neutral, recalling that in this study
five models from different types are analysed, not only models related to tress

28 Intrusion Detection in IoT networks using Machine Learning

like in Feature Importance from Decision Trees. Concerning PCA, a wide
technique used, assumes linearity of the variables and a normal distribution of
them, but none of the features follow this pattern, many of them are binary as
shown in the Feature distribution of Figure A.1 of Annex A.

First, the mutual information is obtained of every feature against the target
variable by the function mutual_info_classif from the Scikit-learn library [57].
Figure 3.5 shown the normalised mutual information importance relative to the
target.

Fig. 3.5 Normalised mutual information importance of every feature

In order to reduce linear correlated variables, the Pearson coefficients are
obtained in a correlation matrix of dimension [m x m], where m is the number of
features, Figure 3.6 shows the correlation matrix as a heatmap, stronger colours
denote high correlation between features. A threshold of 0.7 was set to find sets
of strong correlated features. The objective is to select the most important feature
of every set found based of the mutual importance of the feature. For example, if
a set of three variables are found to be heavy correlated, having its correlation
coefficient between each other above the threshold, the best feature to be
selected is the one with better mutual information importance. After this
procedure, the number of features is reduced from 45 to 27 features. The value
0.7 is a conservative number between 0.5 and 0.99 of strong correlation [55].

CHAPTER 3. METHODOLOGY 29

Fig. 3.6 Correlation matrix of features vs features

With the result of 27 features, another threshold of 0.1 is set to eliminate the less
important features based on the mutual information importance, features that
have an entropy coefficient with respect the target variable below the 10% are
eliminated. After this procedure, is obtained the final reduced number of features
of 16 as shown in Figure 3.7. Notice than the same results would be obtained if
a threshold of 0.05, selecting the most important feature with more that 5% of
importance of Information Gain.

Fig. 3.7 Selected features

30 Intrusion Detection in IoT networks using Machine Learning

3.3. Model selection

As mentioned in Section 2.3.3, a selection of classification models from different
model families was made:

• From linear models: Logistic Regression (LR).

• From probabilistic models: Gaussian Naïve Bayes (NB).

• From trees models: Decision Trees (DT).

• From ensemble models: Random Forests (RF).

• From the Artificial Neural Network category: Multilayer Perceptron (MLP).

3.4. Performance evaluation and metrics

For evaluating a classifier, of the most important measure is the Confusion Matrix
(CM) [58] [59]. Although is primary oriented for binary classifying task, can be
extrapolated to multiclassification problems. Figure 3.8 shows a typical binary
confusion matrix. The purpose of the Confusion Matrix is to demonstrate how
often instances of a class are classified as another class. Actual or real instances
are represented by each row and predicted instances by each column. The
diagonal of the matrix displays values that have been predicted accurately.

Fig. 3.8 Confusion Matrix [52]

Considering as positives, the samples belonging to a real attack, and as
negatives, the samples for benign traffic, it can be found that: True positives (TP)
are accurate predictions of true events like detecting a real attack sample. False
positives (FP) are incorrect predictions of true events, for example detecting a
benign/normal traffic as an attack “false alarm”. True negatives (TN) accurately
predict false events, in this case, detecting regular traffic as such. False negatives
(FN) are inaccurate predictions of false events. It is worth noting that, in this case,
the model (IDS) misidentifies actual attacks as legitimate traffic, which enables
access to the IoT infrastructure [58] [59].

Accuracy is the proportion of correctly predicted instances (TN, TP) out of the
total number of instances evaluated and is defined in Equation (3.1) [59]. In
imbalanced datasets, where one class is far more prevalent than the other, a

CHAPTER 3. METHODOLOGY 31

model that always predicts the dominant class can achieve high accuracy, yet it's
essentially a poor classifier. For these reasons, in contexts with imbalanced data,
it's recommended to use other metrics like recall, precision and F1-score [12].

Accuracy =
TP + TN

TP + TN + FP + FN
 (3.1)

Precision/Recall Trade-off: in short terms, the precision is the accuracy of the
positive predictions and is defined in Equation (3.2) [59]. Whereas recall also
called sensitivity is the ratio of positive instances that are correctly detected and
is defined by the Equation (3.3) [59]. It's desirable for a classifier to have both
parameters high; however, this is not always achievable, unfortunately, an
increase in precision often results in a decrease in recall, and vice versa [12].

Precision =
TP

TP + FP
 (3.2)

Recall =
TP

TP + FN
 (3.3)

By this reason, it can be advantageous to merge precision and recall into an
individual metric known as the F1 score (F1), particularly when seeking a
straightforward method of comparing two classifiers. The F1 score defined in
Equation (3.4) [59] represents the harmonic mean of precision and recall. Unlike
the regular mean, which treats all values equally, the harmonic mean places
greater emphasis on lower values. Consequently, the classifier will achieve a high
F1 score only when both recall, and precision are high [12].

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
=

2 ∗ TP

2 ∗ TP + FP + FN
 (3.4)

When dealing with imbalanced datasets and multi-class classification problems,
macro metrics offers several advantages. Macro metrics give equal weight to all
classes, computing the metric independently for each class and then take the
average. They provide a holistic view of performance across all classes, without
letting the potentially skewed distribution of one class dominate the overall
evaluation metric. This helps to differentiate between good models (those that
perform well across all classes) and mediocre ones (those that only perform well
on the dominant classes). The Macro metrics is computed as the average of the
metric of every class. For instance, in a binary classification the Precision Macro
is the average of the sum of the precision of the positive class and the negative
class, on the other hand, in multiclassification tasks the precision macro is
obtained by the sum of individual precisions of each class divided by the number
of classes.

Therefore, the target metric of the tuning of hyper-parameters of every model on
the three classifications will be the F1 macro. An exhaustive search (brute force)
of every combination of the most important hyper parameters of every model
were done using for-loops, even though the scikit-learn library includes several
functions like GridsearchCV [27] to find the best combination of

32 Intrusion Detection in IoT networks using Machine Learning

hyperparameters. But due to the long execution time of each optimisation, and
some interruptions, causing irretrievable data loss, it has been decided to use to
use for-loops and store in a table all the metrics involved with all the combinations
of hyperparameters for each run.

CHAPTER 4. RESULTS AND DISCUSSION 33

CHAPTER 4. RESULTS AND DISCUSSION

Results and discussion are presented in five sections, the first one corresponding
to the tuning of hyperparameters of every model (Logistic Regression, Decision
Trees, Gaussian Naïve Bayes, Random Forest and Multilayer Perceptron) the
second for the model evaluations and the rest of the sections corresponding to
each classification task: binary, group, and multi classification on every model.

4.1. Hyper-parameters tuning

In machine learning, hyper-parameter tuning involves selecting optimal values for
controlling the learning algorithm [60][61]. A learning algorithm estimates model
parameters from a dataset and updates them throughout the learning process.
Once complete, these parameters become integral to the model. On the other
hand, hyperparameters are inherent to the algorithm and can't be derived from
data. They influence the computation of model parameters, with different
hyperparameter values yielding different model parameters for a dataset [60].

Cross-validation [61] [62] is a common technique used to evaluate a model's
performance by splitting the data into multiple subsets and testing the model on
each subset, helping in hyperparameter tuning and mitigating the risks of
overfitting.

In the Cross-validation, the model is trained using the data from k -1 of the folds,
and the remaining fold is used as the test set to evaluate performance. The final
target metric is averaged from the k evaluations as shown in Figure 4.1 [61]. In
this study is used a cross-validation of 10 stratified k folds for the tuning of hyper-
parameters [63]. The term stratified as mentioned in Section 3.1, ensures that
each fold maintains the same proportion of classes as the original imbalanced
dataset.

Fig. 4.1 Cross-validation with 10 folds [64]

34 Intrusion Detection in IoT networks using Machine Learning

4.1.1 Logistic Regression Hyper-parameter tuning

The most important hyper-parameters in the Logistic Regression classifier are
[12] [26] [27] [65] [66]:

• parameter 'C': inversely controls the strength of regularisation, with smaller
values specifying stronger regularisation. Regularisation is a technique to
prevent overfitting adding a penalty to the different parameters of the
model to reduce their magnitude.

• The 'solver': specifies the algorithm used for optimization, such as 'lbfgs'
or 'sag'. Solvers are algorithms used to optimize the cost function and find
the best-fitting parameters for the model. They determine how the logistic
regression model learns and adjusts itself to minimize the prediction
errors.

• The 'max_iter': sets the maximum number of iterations for the solver to
converge.

• The 'penalty': determines the type of regularisation applied, typically either
'l1' or 'l2', corresponding to Lasso and Ridge regularisation respectively.
Lasso regularisation adds "absolute value of magnitude" of coefficient as
penalty term to the loss function, whereas Ridge regularisation adds
"squared magnitude" of coefficient as penalty term to the loss function.

The model of LR of Scikit-learn library comes with default hyper-parameters of
Solver = 'lbfgs', Penalty = 'l2', Regularisation C=1 and max_iter = 100 [67].

Table 4.1 shows the hyper-parameters results for the Logistic Regression
classifier. The first rows show each hyperparameter searched, the first column
the name of the hyperparameter, the “Values” column corresponds to the range
of search, the values inside this range are determined by the type of
hyperparameter, and their recommended values in [65] [66], for numerical values
is frequent to search below and above the default value of the model [67]. The
last columns represent the value selected for that hyperparameter that achieved
the best score of metric F1 macro on each of the three models (Binary, Group,
Multi). The rows that follow, shows a metric comparison between the F1 macro
with default parameters and the F1 score obtained with the selected
hyperparameter. The last rows represent the average time of the training for a
single run inside the cross-validation process with the selected hyperparameters,
and finally the total execution time of the whole hypertuning process (including
the training, predict and scoring time). The total number of runs of cross-validation
for every classification task was 756 given by the combination of ranges of all
hyper-parameters searched.

CHAPTER 4. RESULTS AND DISCUSSION 35

Table 4.1. Hyper-parameters search and result for LR model.

Hyperparameter Values Selected Values per model

Binary Group Multi

Solver ['lbfgs','sag', 'saga'] 'lbfgs' 'saga' 'lbfgs'

Penalty
['l1', 'l2',

'elasticnet']
‘l2’ ‘l1’ ‘l2’

Regularisation C

[0.0001, 0.001,
0.005, 0.01, 0.05,
0.1, 0.5, 1, 5, 10,

50, 100]

100 0.1 5

Max_iter
[5, 10, 25, 50, 100,

150, 200]
50 50 200

F1 macro with default hyper-
parameters

0.780842 0.436387 0.442185

F1 macro achieved 0.782046 0.438288 0.453426

F1 macro increase (%) 0.15 0.43 2.54

Average training time for one run of
ten, inside the cross validation (s)

11.02 189.82 1269.49

Total execution time of hypertuning for
756 cross-validations (h)

48.09 100.65 123.76

4.1.2 Decision Trees Hypertuning

For the Decision Trees classifier, the most important hyper-parameters are the
following [27][28][29][68][69][70][71]:

• ‘max_feature’: limits the number of features to consider when searching
for the best split, which can help in reducing variance and speeding up the
training process.

• ‘splitter’: defines the strategy employed to choose the split at each node,
either 'best' to select the best split or 'random' for a random split.

• ‘max depth’: limits the maximum depth of the tree, preventing the tree from
growing too deep and potentially overfitting the data.

• ‘min samples split’: specifies the smallest number of samples required to
make a node split, ensuring that minor data fluctuations don't create
unnecessary branches.

• ‘min samples leaf’: sets the minimum number of samples a leaf node must
have, preventing the creation of leaves with very few samples which can
lead to overfitting.

The model of DT of Scikit-learn library comes with default hyper-parameters of
max_feature = None, equivalent to the maximum number of features of 16,
splitter = ‘best’, max_depth = None, that results on an unlimited depth, min
samples split = 2, and min samples leaf = 1 [72].

Table 4.2 shows the same descriptions and results as Table 4.1 but for the
Decision Trees classifier. The “Values” column corresponds to the range of
search, the values inside this range are determined by the type of
hyperparameter, and their recommended values in [69][70][71], for numerical

36 Intrusion Detection in IoT networks using Machine Learning

values is frequent to search below and above the default value of the model [72].
The total number of runs of cross-validation for every classification task was 960
given by the combination of ranges of all hyper-parameters searched.

Table 4.2. Hyper-parameters search and results for DT model.

Hyperparameter Values Selected Values per model

Binary Group Multi

max_feature [4, 16] 16 16 16

splitter [‘best’, ‘random’] ‘best’ ‘best’ ‘best’

max_depth
[3, 5, 8, 10, 20, 30,

40, None]
30 40 40

min_samples_split [2, 5, 10, 20, 30] 2 2 2

min samples leaf
[1, 2, 5, 10, 20, 30,

40]
5 1 1

F1 macro with default hyper-
parameters

0.958546 0.839600 0.839454

F1 macro increase (%) 0.963659 0.841027 0.841635

Performance increase (%) 0.53 0.17 0.26

Average training time for one run of
ten, inside the cross validation (s)

16.12 20.38 36.45

Total execution time of hypertuning for
960 cross-validations (h)

14.52 19.85 19.89

4.1.3 Gaussian Naive Bayes Hypertuning

The Gaussian Naive Bayes classifier, has only one hyper-parameter:
var_smoothing which adds a portion of the largest variance of all features to the
variances for calculation stability, aiding in preventing zero probabilities in the
model [26][27][73]. The model of GaussianNB of Scikit-learn library comes with
default of var_smoothing = 1e-9 [74].

Table 4.3 shows the hyper-parameters searched for the Gaussian Naive Bayes
classifier, the description of the values and columns are the same of Table 4.1.
The “Values” column corresponds to the range of search, the values inside this
range are determined by the type of hyperparameter, and their recommended
values in [73], for this numerical value the search was done below and above the
default value of the model [74].

CHAPTER 4. RESULTS AND DISCUSSION 37

Table 4.3. Hyper-parameters search and results for NB model

Hyperparameter Values Selected Values per model

Binary Group Multi

var_smoothing

[1e-12, 1e-11, 1e-
10, 1e-09, 1e-08,
1e-07, 1e-06, 1e-
05, 1e-04, 1e-03,

1e-02, 1e-01,
1e+00, 1e+01,

1e+02]

1 0.1 0.1

F1 macro with default hyper-
parameters

0.755147 0.425963 0.398259

F1 macro achieved 0.844691 0.464120 0.414518

F1 macro increase (%) 11.86 8.96 4.08

Average training time for one run of
ten, inside the cross validation (s)

2.02 2.17 2.70

Total execution time of hypertuning for
15 cross-validations (h)

0.15 0.17 0.41

4.1.4 Random Forest Hypertuning

For the Random Forest classifier, the most important hyper-parameters analysed
were the following [12][26][27][28][65][75][76][77]:

• ‘n estimators': denotes the number of trees in the forest, with a larger
number typically resulting in a more robust model at the cost of
computational complexity, in the hypertuning was set to a maximum of
300.

• 'max depth': specifies the maximum depth of each tree, limiting the number
of splits and thereby preventing the model from becoming too complex and
potentially overfitting the data.

• 'min samples split’: sets the minimum number of samples required to make
a node split, ensuring that trees don't branch out on small fluctuations or
anomalies in the data.

• ‘min samples leaf’: defines the minimum number of samples a leaf node
must contain, preventing the creation of leaves with very few samples
which can lead to overfitting.

The model of RF of Scikit-learn library comes with default hyper-parameters of
n_estimators = 100, max_depth = None, that results on an unlimited depth, min
samples split = 2, and min samples leaf = 1 [78].

For the Random Forest model Table 4.4 shows the same descriptions and results
as Table 4.1. The “Values” column corresponds to the range of search, the values
inside this range are determined by the type of hyperparameter, and their
recommended values in [65][75][76][77], for numerical values is frequent to
search below and above the default value of the model [78]. The total number of
runs of cross-validation for every classification task was 720 given by the
combination of ranges of all hyper-parameters searched.

38 Intrusion Detection in IoT networks using Machine Learning

Table 4.4. Hyper-parameters search and results for RF model.

Hyperparameter Values Selected Values per model

Binary Group Multi

n_estimators
[25, 50, 100, 150,

300]
300 300 300

max_depth
[1, 2, 5, 10, 20,
30,40, None]

40 40
None/

unlimited

min_samples_split
[2, 5, 10, 20, 30,

40]
5 2 10

min_samples_leaf [1, 2, 4] 1 2 1

F1 macro with default hyper-
parameters

0.971426 0.871982 0.853270

F1 macro achieved 0.972413 0.876360 0.855529

F1 macro increase (%) 0.10 0.50 0.26

Average training time for one run of
ten, inside the cross validation (s)

608.19 1741.48 1730.22

Total execution time of hypertuning for
720 cross-validations (h)

155.46 213.57 226.99

4.1.5 Multilayer Perceptron Hypertuning

Lastly, the hypertuning of the Multilayer Perceptron, which belongs to the Artificial
Neural Networks family, involves several hyperparameters to consider. The study
utilised just a single hidden layer approach, including more hidden layers falls into
the category of deep learning [11] [12]. There is no consensus or recipe to find
the best number of neurons for each layer, some authors suggest a minimum and
maximum number according to the number of input features and the number of
outputs, but in general, only through experimentation and evaluation can one
determine the optimal number of neurons in an MLP. Other parameters searched
are [26] [27] [28] [79] [80]:

• The 'solver' parameter determines the algorithm used for weight
optimization.

• The 'activation' parameter sets the activation function for the neurons of
the hidden layer.

• The 'alpha' parameter represents the L2 penalty (regularisation term)
which combats overfitting by constraining the magnitude of the weights in
the model.

• The 'learning_rate_init' parameter defines the initial learning rate for weight
updates, controlling the step size during optimization.

The model of MLP of Scikit-learn library comes with default hyper-parameters of
hidden_layer_sizes = (100,) defining 100 neurons in this layer, activation = ‘relu’,
solver = ‘adam’, alpha = 0.0001, learning_rate_init = 0.001 [81].

The descriptions and values in Table 4.5 share the same descriptions as the
previous tables, except for the first two rows. The first row specifies the range of
the number of neurons in the hidden_layer to be searched by each model, the
second row specify the value found. For the binary classification is set a range

CHAPTER 4. RESULTS AND DISCUSSION 39

from 2 neurons to 16 neurons [(2,)…(16,)], for group classification a range of
[(8,)…(16,)] is used, and for the multiclassification a range from [(16,)...(34,)]
neurons, all with step size = 1. Thus, for the binary task the number of runs was
of 810 cross-validation, in group classification the combination was of 486 and
for multiclassification a number of 1026 cross-validation were done.

Table 4.5. Hyper-parameters search and results for MLP model.

Hyperparameter Values Selected Values per model

Binary Group Multi

hidden_layer_size searched [(2,).(16,)] [(8,).(16,)] [(16,).(34,)]

hidden_layer_size selected 13 16 33

solver [‘adam’, ‘sgd’] ‘adam’ ‘adam’ ‘adam’

activation
[‘logistic’, ‘relu’,

‘tanh’]
‘tanh’ ‘logistic’ ‘tanh’

alpha
[0.0001, 0.001,

0.01]
0.0001 0.0001 0.0001

learning_rate_init
[0.0001, 0.001,

0.01]
0.001 0.001 0.001

F1 macro with default hyper-
parameters

0.930927 0.665187 0.658210

F1 macro achieved 0.928152 0.644880 0.652424

F1 macro increase (%) -0.29 -3.05 -0.87

Average training time for one run of
ten, inside the cross validation (s)

120.37 155.85 189.31

Total execution time of hypertuning (h) 96.26 117,20 293,42

It can be observed that the F1 macro resulting of the best combination of the
hyperparameter found of every model, is slightly below the default parameters of
the MLPClassifier, therefore the hypertuning procedure couldn’t find best
combination of hyper-parameters other that the default parameters. Thus, the
best hyperparameters to be used on the final evaluation of the MLPClassifier
were the default hyperparameters.

4.2. Model evaluation

After obtaining the best hyper parameters for each model for the three
classification tasks, every model is finally trained on the whole training set and
evaluated on the test set of unseen data created for this purpose.

Table 4.6 shows the F1 macro metric comparison after the hypertuning and the
final F1 score obtained in the prediction with the test set, on most of the cases,
there is an increment of the performance on the unseen data. Negatives values
of the differences are in acceptable ranges, because is expected that on unseen
data, the performance of the models will be slightly lower than the achieved with
the trained cross validation hypertuning procedure.

Table 4.6. Comparison for the evaluation test of the F1 versus the achieved in
the hypertuning.

40 Intrusion Detection in IoT networks using Machine Learning

Macro metric
Logistic

regression
Decision

Trees

Gaussian
Naïve
Bayes

Random
Forest

Multilayer
Perceptron

Binary Classifiers

F1 tuning 0.782046 0.963659 0.844691 0.972413 0.930927

F1 test 0.782126 0.964580 0.845388 0.973025 0.933232

Difference
(%)

0.01 0.10 0.08 0.06 0.25

Group Classifiers

F1 tuning 0.438288 0.841027 0.464120 0.876360 0.665187

F1 test 0.433896 0.847993 0.465141 0.888024 0.665175

Difference
(%)

-1.00 0.83 0.22 1.33 0.00

Multi Classifiers

F1 tuning 0.453426 0.841635 0.414518 0.855529 0.658210

F1 test 0.449604 0.846256 0.414240 0.865478 0.662976

Difference
(%)

-0.84 0.55 -0.07 1.16 0.72

4.3. Binary classification

The final evaluation/validation on the test set for every classifier yields the
following macro metrics and accuracy and is shown in Table 4.7. It also included
the times involved in the whole training and prediction using the training and test
set respectively. The last parameter of “prediction time per sample”, is calculated
by the ratio of the prediction time and the number of samples of the test set
(583582); and gives an approximate idea of the theoretical delay of the prediction
of a single packet, after all, classifier models should be part of the core of an IDS.

Table 4.7. Metrics and Results from the binary classification by model

Macro metric
Logistic

regression
Decision

Trees

Gaussian
Naïve
Bayes

Random
Forest

Multilayer
Perceptron

F1 score 0.782126 0.964580 0.845388 0.973025 0.933232

Precision 0.705891 0.946219 0.772325 0.963447 0.922242

Recall 0.977292 0.984613 0.980954 0.983029 0.944844

Accuracy 0.966551 0.996605 0.980298 0.997469 0.993701

training time
(s)

8.36 14.82 2.95 447.68 266.86

prediction
time (s)

1.26 0.04 0.56 5.92 2.58

prediction
time

per sample
(μs)

2.16 0.06 0.97 10.14 4.43

The comparison between the models is shown graphically on Figure 4.2, it should
be noted that models of Decision Trees and Random Forest outperforms the

CHAPTER 4. RESULTS AND DISCUSSION 41

other classifiers in Precision, followed by the MLPClassifier, being Logistic
Regression the worst with a value below 80%. Gaussian Naïve Bayes shows a
discrete performance above 80%. This leads that Decision Trees and Random
Forest can identify most of legitimate traffic without mistakenly flagging it as
malicious.

Respecting the recall or sensitivity, the MLPClassifier shows a minor performance
below the other classifiers, being Decision Trees, Gaussian Naïve Bayes and
Random Forest, the best algorithms indicating that the IDS should miss fewer
real attacks. The Logistic Regression performance is slightly lower than the
others, but in general all models are around the same region of values.

Concerning the training and prediction times, there are huge differences among
the classifiers, being the faster training algorithm the Gaussian Naïve Bayes, and
the worsts the Random Forest, followed by the MLPClassifier. Random Forest
speed is affected by the number of estimators that increase the learning time,
and the MLPclassifier by the number of neurons among other parameters.

A detailed analysis for each classifier is done through the confusion matrix and
the classification report. Figure 4.3 and Table 4.8 shows the normalised confusion
matrix and classification report of the Binary Logistic Regression model. The
normalised confusion matrix shows information on the accuracy of a classification
model's predictions in relative terms, instead of absolute values. When the
confusion matrix is normalised, each value in the matrix is divided by the sum of
its corresponding row. The classification report shows the Precision and Recall
of each class individually, where the average macro is the average of every metric
of each class, the support column shows the count of every class, being the last
value the total count of samples of the test set.

Fig. 4.2 Comparison of metrics and results of binary classifiers

42 Intrusion Detection in IoT networks using Machine Learning

Fig. 4.3 Confusion matrix of binary Logistic Regression model

From the confusion matrix is shown that LR can classify precisely with more than
96% both Attack and Normal samples, having a miss rate of 3.39% of True
attacks been undetected, and 1.14% of false alarms. But from the individual
report, the precision of the “benign” traffic is below the 50% degrading the overall
precision of the model.

Table 4.8. Classification report by classes of binary Logistic Regression model

 precision recall F1 score support

Attack 0.9997 0.9660 0.9826 569854

Benign 0.4121 0.9886 0.5817 13728

macro
average

0.7059 0.9773 0.7821 583582

In Figure 4.4 and Table 4.9 are shown respectively, the Normalised Confusion
Matrix and classification report for binary Decision Tree algorithm.

Fig. 4.4 Confusion matrix of binary Decision Tree model

Table 4.9. Classification report by classes of binary Decision Tree model

 precision recall F1 score support

Attack 0.9993 0.9972 0.9983 569854

Benign 0.8931 0.9720 0.9309 13728

macro
average

0.9462 0.9846 0.9646 583582

CHAPTER 4. RESULTS AND DISCUSSION 43

The Decision Tree model shows better performances than the Logistic
regression, except in the case of false positive being twice of the LR model.
Again, the precision of the “Benign” class reduces the overall metric consequence
of being the minority class. a good 0.28% of attacks overrun the classifier and got
undetected.

For the Bayes Naïve model, Figure 4.5 and Table 4.10 shows respectively, the
Normalised Confusion Matrix and Classification report.

Fig. 4.5 Confusion matrix of binary Naive Bayes model

The Binary Naive Model present results very similar to the Logistic Regression
being better in the precision of the Benign traffic. But affecting the overall metric.

Table 4.10. Classification report by classes of binary Naive Bayes model

 precision recall F1 score support

Attack 0.9995 0.9803 0.9898 569854

Benign 0.5451 0.9816 0.7010 13728

macro
average

0.7723 0.9810 0.8454 583582

Figure 4.6 shows the Normalised Confusion Matrix, and Table 4.11 shows the
classification report for binary Random Forest algorithm.

Fig. 4.6 Confusion matrix of binary Random Forest model

The Random Forest shows excellent detection of attacks 99.82% and a very good
number of False negatives of 0.182, at expense to have a bit higher false positive

44 Intrusion Detection in IoT networks using Machine Learning

score of 3.21%. It also presents a good precision even in the minority class of the
“Benign” class.

Table 4.11. Classification report by classes of binary Random Forest model

 precision recall F1 score support

Attack 0.9992 0.9982 0.9987 569854

Benign 0.9277 0.9679 0.9473 13728

macro
average

0.9634 0.9830 0.9730 583582

Finally, the binary MLPClassifier results are shown in Figure 4.7 for the Confusion
Matrix and Table 4.12 for Classification report by classes.

Fig. 4.7 Confusion matrix of binary MLPClassifier model

The MLPClassifier has an average precision and recall for the “Benign” class that
reduces the average of both metrics. Note to mention that had the worst False
Positive with 10.64%.

Table 4.12. Classification report by classes of binary MLPClassifier model

 precision recall F1 score support

Attack 0.9974 0.9961 0.9968 569854

Benign 0.8471 0.8936 0.8697 13728

macro
average

0.9222 0.9448 0.9332 583582

A summary for the binary classification is as follows: the best Model is the
Random Forest at expense of higher computational cost, followed by the Decision
Trees Algorithm which present a good time of training and prediction.
MLPClassifier had worst False Positive with 10.64%. Another important metric
from the confusion matrix and crucial for an IDS is the miss rate, where attack
traffic is detected as “normal”, compromising the security of the system, letting
pass to the infrastructure. In this case the Logistic Regression had the worst value

CHAPTER 4. RESULTS AND DISCUSSION 45

of 3.40%, then 3.40% of the anomalous traffic evade this model. The Gaussian
Naïve Bayes has this parameter near 2%.

4.4. Group classification

As with the binary classification results, Table 4.13 shows the relevant metrics
and results for every model analysed. Here, all metrics begins to suffer in
performance in comparison with the binary classification task, due to the more
complex classification involving the identification of 8 classes of attack
categories.

Table 4.13. Metrics and Results from the group classification by model

Macro metric
Logistic

regression
Decision

Trees

Gaussian
Naïve
Bayes

Random
Forest

Multilayer
Perceptron

F1 score 0.433896 0.847993 0.465141 0.888024 0.665175

Precision 0.460550 0.846068 0.521091 0.952584 0.704064

Recall 0.581369 0.850187 0.501922 0.850432 0.652549

Accuracy 0.579727 0.994791 0.717877 0.996045 0.990118

training time
(s)

186.92 18.89 5.57 820.30 218.03

prediction
time (s)

1.76 0.06 2.48 9.80 1.28

prediction
time

per sample
(μs)

3.02 0.10 4.26 16.79 2.19

The comparison between the models is shown graphically on Figure 4.8, where
Random Forest outperforms the other classifiers in the Precision with a score of
95%. The Decision Trees model follows, lagging by 10%. The MLPClassifier has
a discrete performance of 70%, being again Logistic Regression the worst model
with a value below 50%. Gaussian Naïve Bayes is merely above 50%. This leads
that Random Forest can identify most of legitimate traffic, around 95% without
mistakenly flagging it as malicious.

Regarding recall or sensitivity, both the Random Forest and Decision Trees
achieve near identical values of around 85%, with the Random Forest performing
marginally better. The MLPClassifier's performance is reduced at 65%, whilst
Gaussian Naïve Bayes and Logistic Regression fare the worst, recording 50%
and 58% respectively. Thus, the Decision Trees and Random Forest models
emerge as the superior algorithms, suggesting that an IDS would likely miss
fewer genuine attacks when using them.

In terms of timing, for both metrics, the Random Forest once again proves to be
the least efficient model by a significant margin. The faster model in the training
process is the Gaussian Naïve Bayes with around 5 seconds with the whole
training set of 2334328 samples. And the best model predicting the test set is
again the Decision Trees algorithm with only 0.06 seconds.

46 Intrusion Detection in IoT networks using Machine Learning

A detailed analysis for each classifier is done through the confusion matrix and
the classification report. Figure 4.9 and Table 4.14 shows the normalised
confusion matrix and classification report of the Group Logistic Regression
model.

Fig. 4.9 Confusion matrix of group Logistic Regression model

In the Logistic Regression case, the model performs well above 95% detecting
“DoS” and “Mirai” attacks, while the other groups of categories suffer. For
example, the 51% of “DDoS” traffic are detected as “DoS”, a value even higher
that its own score, this is why, all “DDoS” and “DoS” attacks share many
attributes, and the model is unable to distinguish between them. “Recon” attacks
are recognised as five distinct categories with more than a 5%, with a special
note of a 10% of attacks detected as “benign” traffic. “Spoofing” attacks on the
other hand, is detected with a score of more than 11% as “Web”, “Bruteforce” and
again as “benign traffic” with a dramatic score of 21%. “Web” attacks detections

Fig. 4.8 Comparison of metrics and results of Group classifiers

CHAPTER 4. RESULTS AND DISCUSSION 47

are distributed on “Spoofing” with 12%, “Bruteforce” with 35% and “Benign” traffic
with a 10%. “Bruteforce” attacks are detected with almost 50%, while is
misclassified with more than 6% as “Recon”, “Spoofing”, “Web”, and “Benign”
category. All traffic that consists of true attacks but is incorrectly predicted as
"Benign" eludes the model and IDS, entering or exiting the IoT infrastructure. This
is why a special attention should be made to the last column containing the label
“benign”. Is worth to mention, the fact that “benign” traffic is only recognised at
the 54% and rising false alarms of other categories of attacks. If one were to
comment on this model, it could be said that it is vulnerable to “Recon”,
“Spoofing”, “Web”, and “Bruteforce” attacks, while it performs well in detecting
“DoS” and “Mirai botnet” attacks and have a false alarm ratio of around 46%.

The numbers in the classification report contrasts with the above, note the very
low values of Precision for the affected attack categories and mediocre values for
the recall. This model is unable to perform well on the minority classes, although
in the “DoS” category also suffer.

Table 4.14. Classification report by classes of group Logistic Regression model

 precision recall F1 score support

DDoS 0.9871 0.4650 0.6322 424829

DoS 0.3065 0.9531 0.4639 101140

Mirai 0.9969 0.9801 0.9884 32929

Recon 0.2583 0.3338 0.2912 4401

Spoofing 0.3321 0.4928 0.3968 6081

Web 0.0164 0.3891 0.0314 311

BruteForce 0.0166 0.4969 0.0322 163

Benign 0.7704 0.5401 0.6350 13728

macro
average

0.4606 0.5814 0.4339 583582

Decision Trees results are shown in Figure 4.10 and Table 4.15 for the confusion
matrix and the classification report respectively. This Model has excellent
detection rate of “DDoS”, “DoS” and “Mirai” attacks with more than 99.95%, with
a decent score in the “Recon”, “Spoofing” and “Benign” categories. Decision
Trees is vulnerable to category of “Recon”, “Spoofing”, “Web” and “Bruteforce”,
being the metrics on these categories affecting the overall metric score.
Nevertheless, is far better than Logistic Regression Model even in the minority
classes.

48 Intrusion Detection in IoT networks using Machine Learning

Fig. 4.10 Confusion matrix of group Decision Trees model

Table 4.15. Classification report by classes of group Decision Trees model

 precision recall F1 score support

DDoS 0.9999 0.9999 0.9999 424829

DoS 0.9997 0.9997 0.9997 101140

Mirai 0.9999 0.9998 0.9999 32929

Recon 0.8200 0.8289 0.8244 4401

Spoofing 0.8573 0.8459 0.8516 6081

Web 0.5710 0.5563 0.5635 311

BruteForce 0.6023 0.6503 0.6254 163

Benign 0.9185 0.9206 0.9195 13728

macro
average

0.8461 0.8502 0.8480 583582

For Gaussian Naive Bayes, Figure 4.11 and Table 4.16 shows the normalised
confusion matrix and classification report respectively. The Gaussian Naive
Bayes only perform very well on “Mirai botnet” attack with a 98%, on “Spoofing”
and “Bruteforce” attacks the model performs very badly, and the worst behaviour
of the model, is having a lot of missed rates identified as “benign traffic” with more
than 40% on “Recon”, “Spoofing”, “Web” and “Bruteforce” categories. This model
is very vulnerable to these categories of attacks.

CHAPTER 4. RESULTS AND DISCUSSION 49

Fig. 4.11 Confusion matrix of group Naive Bayes model

Table 4.16. Classification report by classes of group Naive Bayes model

 precision recall F1 score support

DDoS 0.8679 0.7551 0.8076 424829

DoS 0.3591 0.5047 0.4196 101140

Mirai 0.9968 0.9890 0.9929 32929

Recon 0.5578 0.4254 0.4827 4401

Spoofing 0.7372 0.1615 0.2649 6081

Web 0.0061 0.3055 0.0119 311

BruteForce 0.0208 0.0307 0.0248 163

Benign 0.6230 0.8436 0.7167 13728

macro
average

0.5211 0.5019 0.4651 583582

For the model Random Forest Classifier, the Confusion matrix is shown on Figure
4.12 and the Classification report of classes is shown in Table 4.17.

The Random Forest model has excellent detection rate of “DDoS”, “DoS” and
“Mirai” attacks with more than 99.95%, and a very good score of 97% detecting
the normal traffic as such, leading to a low false alarm rate of 3%. On the
categories of “Recon” and “Spoofing” has a decent performance with more than
85%, whereas it suffers in the “Web” and “Bruteforce” categories, with a score of
49% and 64% respectively. Please take note of the values that are zero outside
the diagonal, indicating that the model is performing better because it not
detecting other true categories as this one, an ideal classifier would have all
values outside the diagonal in zero. Despite the good metrics in several
categories, it has some Miss rate of classes belonging to “Recon”, “Spoofing”,
“Web” and “Bruteforce” attacks detected as “benign traffic”.

50 Intrusion Detection in IoT networks using Machine Learning

Fig. 4.12 Confusion matrix of group Random Forest model

Table 4.17. Classification report by classes of group Random Forest model

 precision recall F1 score support

DDoS 0.9999 0.9998 0.9999 424829

DoS 0.9996 0.9997 0.9997 101140

Mirai 0.9998 0.9996 0.9997 32929

Recon 0.8603 0.8523 0.8563 4401

Spoofing 0.9168 0.8500 0.8822 6081

Web 0.9325 0.4887 0.6414 311

BruteForce 0.9906 0.6442 0.7807 163

Benign 0.9211 0.9690 0.9444 13728

macro
average

0.9526 0.8504 0.8880 583582

And finally, for the model MLPClassifier Figure 4.13 and Table 4.18 shows the
Confusion matrix and the Classification report of classes.

The MLPClassifier as the Decision Trees and Random Forest models perform
very well on the “DDoS”, “DoS” and “Mirai” categories with more than 99.80% of
score. Has a decent 93.74% detecting normal traffic as such, but surprisingly it
cannot detect the “Bruteforce” category, only a spurious misclassification from
the “Spoofing” category. Note the zero in both precision and recall of the report,
the minority class. The “Web” category also suffers with only a 5.8% score of
detection. Besides that, the models detect negatively attack traffic from the
categories of “Recon”, “Spoofing”, “Web” and “Bruteforce” as “benign”.

CHAPTER 4. RESULTS AND DISCUSSION 51

Fig. 4.13 Confusion matrix of group MLPClassifier model

Table 4.18. Classification report by classes of group MLPClassifier model

 precision recall F1 score support

DDoS 0.9993 0.9994 0.9993 424829

DoS 0.9979 0.9985 0.9982 101140

Mirai 0.9987 0.9981 0.9984 32929

Recon 0.7862 0.5740 0.6635 4401

Spoofing 0.7540 0.6552 0.7011 6081

Web 0.2951 0.0579 0.0968 311

BruteForce 0.0000 0.0000 0.0000 163

Benign 0.8014 0.9374 0.8641 13728

macro
average

0.7041 0.6525 0.6652 583582

As summary, it can be said that every model suffers classifying the minority
classes, due to the imbalance of the dataset. However, models such as Decision
Trees and Random Forest have proven to be quite robust, achieving nearly
acceptable scores. Random Forest model is the overall winner for the group
classification task, but again at a higher computational cost, Decision Trees
performs slightly below but has a good training time and the best predict time.
The worst model classifying categories of attack is the Logistic Regression.

4.5. Multi classification

The multiclassification is the most demanding task from the model, it must classify
34 individual classes of attacks. Therefore, all metrics begins to suffer in
performance in comparison with the binary classification task. Values of these
metrics are shown in Table 4.19.

52 Intrusion Detection in IoT networks using Machine Learning

Table 4.19. Metrics and Results from the multi classification by model

Macro metric
Logistic

regression
Decision

Trees

Gaussian
Naïve
Bayes

Random
Forest

Multilayer
Perceptron

F1 score 0.449604 0.846256 0.414240 0.865478 0.662976

Precision 0.464502 0.844037 0.481019 0.916407 0.725428

Recall 0.520232 0.850472 0.482601 0.839369 0.657903

Accuracy 0.777056 0.993178 0.764043 0.994484 0.985382

training time
(s)

452.31 32.24 6.31 1297.71 1148.80

prediction
time (s)

2.29 0.10 4.15 31.76 4.09

prediction
time

per sample
(μs)

3.92 0.18 7.11 54.42 7.01

The comparison between the models is shown graphically on Figure 4.14, where
Random Forest outperforms the other classifiers in the Precision with a score of
91%. The Decision Trees model follows, lagging by 7%. The MLPClassifier
shows a discrete performance of 72%, being one more time the Logistic
Regression the worst model with a value below 50% followed by the Gaussian
Naïve Bayes that slightly better in a 2%. This leads that Random Forest can
identify most of legitimate traffic, around 91% without mistakenly flagging it as
malicious.

Regarding recall or sensitivity, Decision Trees achieved the best value of 85%,
while is seconded by the Random Forest with a near value around 84%. The
MLPClassifier's performance is reduced at 65%, while Gaussian Naïve Bayes
and Logistic Regression achieves worst, recording 50% and 58% respectively.

In terms of timing, for both metrics, the Random Forest once again proves to be
the least efficient model by a significant margin, but now has MLPClassifier as a
closer competitor regarding the slowest models. The faster model in the training
process is the Gaussian Naïve Bayes with around 6 seconds with the whole
training set of 2334328 samples. And finally, Decision Trees algorithm emerges
again as the fastest model predicting the test set the with only 0.10 seconds.

CHAPTER 4. RESULTS AND DISCUSSION 53

As in the binary and group classification models, a detailed analysis must be
conducted using the confusion matrix of dimension [34x34], that are shown from
Figure B.1 to Figure B.5 of the Annex B with the corresponding classification
report for multiclass evaluation from Table B.1 to Table B.5 of the same Annex.

Beginning the analysis of the confusion matrix shown in Figure B.1 and
classification report on Table B.1 of the Annex of the worst model, the Logistic
Regression. This algorithm is able to detect many DDoS attacks, from “DDoS-
RSTFINFlood” to “DDoS-ICMPFragmentation”, achieving detection scores from
80 to 99,7%, it can detect with a score of 99% attacks of “Mirai-udpplain”, but in
general the model suffers on detecting other individual attacks being the “Recon-
OSScan” and “Recon-PortScan” the worst attack detected below 1%. The
algorithm detecting “normal” traffic has a poor metric of 39% provoking a rise of
the false alarms. Some attacks such as “Recon-PingSweep”, “Recon-OSScan”,
“DNS_Spoofing” and “MITM-ArpSpoofing” are detected with more than 10% as
benign traffic, leading to a security breach, as this abnormal traffic passed
undetected. The model misclassified several individual attacks as other types of
attacks, from the point of view of security, a positive attack detection is made, but
loose the granularity of been able to detect and correctly classified an attack.
Resuming, Logistic Regression can only detect 9 types of attack of 34 including
normal traffic.

Analysing the confusion matrix of the Random Forest algorithm in Figure B.4 and
Classification Report in Table B.4 of the Annex C, the model is able to detect 19
types of attack of 34 classes with a precision of more than 99%, being the majority
of the “DDoS”, “DoS” and “Mirai” categories. It can also detect 3 types of attack
with more than 90% rate, including the “normal traffic” with 96%. The worst
detection goes for the “Recon-PingSweep” with only 29% of score with a 46% to
be detected as the “Recon-OSScan” attack. Concerning the missing rates, the
model is vulnerable to the “Recon-OSScan” with a 21% to be detected as
“normal” traffic. Another attack with a miss rate of 14% is the “Recon-PingSweep”
and “Recon-PortScan” with 9%. It’s also vulnerable with a score of 10% to

Fig. 4.14 Comparison of metrics and results of Multi classifiers

54 Intrusion Detection in IoT networks using Machine Learning

“DNS_Spoofing” and “SqlInjection” with 11%. It worth to mention that, despite this
model of Random Forest is very robust against several types of attack, is
vulnerable to the family of Reconnaissance Attacks. Considering false alarms
rate the model achieves a reasonable 4.5% score. Just to mention, that values of
1.0000 in the Classification report are shown by the rounded decimal ciphers, but
they are all below 1.0000.

Summarising the other three models as: Decision Trees shown in Figure B.2 and
Table B.2 of the Annex, performs very similar to the Random Forest achieving
high scores of 99% in 20 types of attacks. The normal attack is detected with a
92% score, lower than the RF model, but more important are the vulnerabilities
that cannot handle very well, it has above 10% of miss rate in several types of
attacks, including the ones of the RF model of the Reconnaissance category,
from the Spoofing family and the Web category. The False alarms rate falls
around 8%.

In Figure B.3 and Table B.3 of the Annex is shown the confusion matrix of the
Gaussian Naïve Bayes, this algorithm performs well with more than 90% in 11
types of attacks, has several attacks detected below 1%, and is totally unable to
detect “BrowserHijacking” with a zero score. With a poor 65% the normal traffic
is detected, leading to a high false alarm rate of 35%. But all worries rely on the
vast number of attacks that go unnoticed from, with a ranging score of 10% up to
32% falling into the “Reconnaissance”, “Spoofing” and Web category.

Figure B.5 and Table B.5 of the Annex, shows the confusion matrix of the
MLPClassifier, this model performs well detecting several types of attack of the
majority classes, the “DDoS”, “DoS” and “Mirai” categories, achieving scores
above 98%, has a good score of 95% detecting the “normal traffic” resulting in a
low 5% of false alarms. The model is totally blind to 6 types of attacks with zero
score, these attacks are “Recon-PingSweep”, and from most of the “Web”
category, with this behaviour the algorithm adds those samples not detected to
the “normal traffic” category, increasing the miss rate, enhancing security breach.
Noticed that these attacks range from 13% up to 63%, an inacceptable situation.
Thus, MLPClassifier is vulnerable to the “Reconnaissance”, “Spoofing”, “Web”
and “BruteForce” categories.

CONCLUSIONS 55

CHAPTER 5. CONCLUSIONS

The main objective of this thesis was the evaluation of Machine Learning Models
to be used as Intrusion Detection Systems (IDS) in the IoT infrastructure. A
selection of five classifier from different families of models such as Logistic
Regression from the Linear models, Decision Trees from the Trees models,
Naïve Bayes from the probabilistic models, Random Forests from the ensemble
models, and Multi-Layer Perceptron from the Artificial Neural Networks, for the
study.

Using supervised techniques, all models were trained on a chosen public IoT
attacks dataset. Moreover, this dataset allowed the implementation of three types
of classification tasks. Binary classification, the simple one, to detect and
identified if a sample of traffic is being part of an attack or not. Group
classification, it’s nothing more than a multiclassification task to proper classified
samples into eight categories of attacks. And a multiclassification of individual 33
types of attacks. Typical tasks of exploration and features selection and reduction
were done in the selected dataset. All models were tuned with cross-validation
of 10 k-folds to find the best hyperparameter using the F1 macro as the scoring
metric. Finally, the resulting model was evaluated in the test set to validate the
model on unseen data. All results were analysed regarding performance metrics,
execution times and detection capacity of every algorithm through the confusion
matrix.

As expected, all models on the binary classification performs relatively well to
classifying attacks, the worst model in this category was the Logistic regression
from the linear models and the best, was the Random Forest from the ensemble
family. The Random Forest achieved the highest score but at expense of
computational power and time, including the time of tuning of hyperparameters,
the training and prediction time. On the other hand, the fastest model was the
Gaussian Naïve Bayes, requiring only one hyperparameter to be tuned.

If an IDS had already the trained model running, there is no need to hyper tuning
or training in the same device, unless an incremental learning approach is done
on the fly. Then, an IDS should look for the fastest prediction model, having the
Decision Trees algorithm the fastest prediction time. With the environment used
in this project, the Decision Trees reach a theoretical prediction time of 0.06 μs
per sample for the binary task, being an important parameter to be taken into
consideration to use a model inside the core on an IDS. Perhaps in a “slow” IoT
environment, this requirement is not necessary, and is always depending on the
application.

In the group classification the objective was classify a sample to be part of 8
categories of attacks, considering the normal traffic as the last category. Here the
classification was more challenging, observing that some models had
misclassified anomaly attacks as normal traffic, phenomena identified as miss
rate, and in an IDS this metric is important, trying to lower this value increase
other metric that is known as the False alarms or False Positive rate, that can
cause what is known as “alarm-fatigue”. All models are found to be somehow

56 Intrusion Detection in IoT networks using Machine Learning

vulnerable to some types of “Recon”, “Spoofing”, “Web” and “Bruteforce” attack
categories, these attacks belong to the minority classes of the imbalanced
dataset. The most vulnerable model to this attack category is the Gaussian Naïve
Bayes, whereas Random Forest is less affected by the same categories, it has
the best average precision and recall metrics for every class. The MLPClassifier
in the only model to completely fail to detect the Bruteforce category of attacks.

The time involved in the group classification increased with respect the binary
classification, and results in the same models to be the fastest tuned and trained
with Gaussian Naïve Bayes as the first on the list, again Random Forest is the
slowest model for hypertuning, training and prediction times. Decision Trees
offers the trade-off of good detection metrics with acceptable timing.

Identifying each individual attack between 33 types of attacks concern to the
multiclassification task. All models suffer a degradation of their metrics, but
Random Forest and Decision Trees maintain acceptable values being the
Random Forest the best classifier. Despite Random Forest is the best model, is
not perfect and is vulnerable to the family of Reconnaissance Attacks. The
MLPClassifier model is found to be totally blind to 6 types of attacks with zero
detection score, these attacks are “Recon-PingSweep”, and from most of the
“Web” category. Decision Trees maintain high detection rates of many types of
attacks, whereas Gaussian Naïve Bayes failed in the detection of
“BrowserHijacking” attack and has many miss rates.

Timing in multi-classification tasks was consistent with previous classifications,
with the Gaussian Naïve Bayes being the most efficient model and the Random
Forest the slowest. Notice that Decision Trees has the best time in the prediction
process.

With regards to the group categories and individual classification of attacks the
results are not so good as with the binary classification, but as mentioned in
section 2.3 and recalling Figure 2.5, the primary objective of an IDS is to binary
detect, attack or not attack, then and depending on the application, resources
assigned, a classification can be done in order to track and record the types of
attack being held to the infrastructure. IoT gateways with more computationally
resources are main target to install an IDS or an IDS being part of dedicated
hardware running inside the network. The speed of processing is also a concern,
when dealing with detection algorithms of Machine Learning.

Based on the presented findings, it can be inferred that the application of machine
learning algorithms is effective to be used as Intrusion detection system (IDS) on
the IoT infrastructure. These results, recommends the Random Forest to be the
most robust model when the speed is not an issue, whereas the application of
Decision Trees algorithms is intended for faster requirements and offering good
performance.

5.1. Future lines of development and research

The field of application of artificial intelligence and machine learning in the
intrusion detection is in constant evolution. In the specific field of IoT infrastructure

CONCLUSIONS 57

application of IDS is critical to preserve the integrity and continuity of the network
and IoT devices. Some future lines of research are listed below:

• Based on the obtained results, further improvement is required to strength
the models, for example: the MLPClassifier.

• Analysis of other models on the same dataset including the deep learning
models is strongly advised. Other techniques like Federation learning and
Transfer Learning can be explored.

• Apply the same methodology on other public IoT datasets.

• Combining multiple models in an ensemble approach, such as stacking or
boosting, might provide more robust and accurate results compared to
using individual models.

• Another line of research can be the construction of an IoT dataset by the
UPC or by collaborative efforts between academic institutions, industries,
and cybersecurity communities.

• Construction and deployment of the model in a laboratory environment to
test with real or synthetic data.

• Apply adversarial and poisoning attacks to the models to evaluate the
robustness and resilience of the algorithms.

• Use new and efficient GPU library optimised to accelerate, training, hyper-
parameters tuning, etc.

5.2. Sustainability considerations

A ML IDS can rapidly detect and prevent threats in real-time. As a result, it has
the potential to decrease the time and resources necessary to manage and
mitigate security incidents. Consequently, energy consumption can be reduced,
as unnecessary or duplicate operations are avoided. Rather than relying on
hardware-centric solutions that consistently draw power, an ML IDS can optimise
the use of existing hardware, allowing for more efficient energy use. Machine
learning systems can adapt and learn from new threats without the constant need
for hardware upgrades. This can reduce the manufacturing and disposal of
electronic devices, both processes with environmental impacts. By proactively
detecting threats, a ML IDS can minimise downtime, which in turn reduces energy
and resource consumption associated with system recovery and restarts and
infections. Worth to mention, this work consumed a lot of time of heavy
computational resources, most of the time, Machine Learning is not very eco-
friendly in that aspect, trials and error, re-runs of algorithms, etc, but the objective
is justified and many resources and even lives can be saved applying Machine
Learning Techniques to Intrusion Detection.

5.3. Ethical considerations

The implementation of ML-IDS in cybersecurity provides advanced protection
against threats and poses notable ethical implications, securing Homes up to
critical infrastructures. The adoption of ML-IDS can be viewed as a proactive
measure to protect sensitive data and maintain system integrity, which is

58 Intrusion Detection in IoT networks using Machine Learning

consistent with ethical principles of user safeguarding and data confidentiality.
Therefore, the deployment of machine learning intrusion detection systems (ML-
IDS) can greatly enhance system security. However, it is crucial to approach the
use of ML-IDS with an ethical perspective by ensuring transparency, fairness,
and responsible handling of data at every stage of implementation. For instance,
in dataset construction, the acquisition, storage, and sharing of such data must
be founded on ethical principles. It is vital to guarantee that the gathering of data
does not violate privacy rights, that it has been obtained with consent where
applicable, and that it does not unintentionally reveal vulnerabilities that
malevolent actors might exploit.

ACRONYMS 59

ACRONYMS

AI Artificial Intelligence
ANN Artificial Neural Network
ARP Address Resolution Protocol
APT Advanced Persistent Threats
AutoML Automated Machine Learning
BLE Bluetooth Low Energy
C2 Command and Control
CAGR Compound Annual Growth Rate
CIC Canadian Institute for Cybersecurity
CM Confusion Matrix
CoAP Constrained Application Protocol
CPU Central Processor Unit
DDoS Distributed Denial of Service
DL Deep Learning
DNS Domain Name System
DoS Denial of Service
DT Decision Trees
F1 Score F1
FFNN Feedforward Neural Network
FN False Negative
FNR False Negative Rate
FP False Positive
FPR False Positive Rate
HIDS Host-based Intrusion Detection Systems

 IDS Intrusion Detection Systems
 IIoT Industrial Internet of Things
 IoT Internet of Things

IP Internet Protocol
LR Logistic Regression

 M2M Machine to Machine
MAC Media Access Control
MI Mutual Information

 ML Machine Learning
 MLP Multilayer Perceptron
 MQTT Message Queuing Telemetry Transport

NB Naïve Bayes
NB-IoT Narrow Band IoT

 NIDS Network Intrusion Detection Systems
 PCA Principal Component Analysis
 ReLU Rectified Linear Unit
 RF Random Forest
 SSH Secure Shell Protocol

TCP Transfer Control Protocol
TN True Negative
TNR True Negative Rate
TP True Positive

60 Intrusion Detection in IoT networks using Machine Learning

TPR True Positive Rate
UDP User Datagram Protocol
UnB University of New Brunswick of Canada

 USD United States of America Dollars

REFERENCES 61

REFERENCES

[1] Oracle Corporation, (n.d.), “What is IoT?”, last accessed on 10 October
2023, https://www.oracle.com/internet-of-things/what-is-iot/

[2] Gyamfi, E.; Jurcut, A., “Intrusion Detection in Internet of Things Systems:

A Review on Design Approaches Leveraging Multi-Access Edge
Computing, Machine Learning, and Datasets”, Sensors 2022, 22, 3744.
https://doi.org/10.3390/s22103744

[3] Cisco Systems, Inc., March 10, 2020, “Cisco Annual Internet Report

(2018–2023) White Paper”, last accessed on 5 May 2023,
https://www.cisco.com/c/en/us/solutions/collateral/executive-
perspectives/annual-internet-report/white-paper-c11-741490.html

[4] Joyanes Aguilar, L., “Hiperconectividad: Infraestructuras de

Comunicaciones”, “Infraestructuras de la Internet de las Cosas: Cloud
Computing, Edge, y Fog computing”, “Seguridad y ciberseguridad en
Internet de las Cosas”, Internet de las cosas, Un futuro hiperconectado:
5G, Inteligencia Artificial, Big Data, Cloud, Blockchain, Ciberseguridad,
pp. 55-90, 141-178, 281-309, Marcombo, S.L., 2021

[5] Power Solution, (n.d.), “Fog Computing and Edge Computing: What You

Need to Know”, last accessed on 28 June 2023, https://www.power-
solutions.com/industry-trends/fog-computing-and-edge-computing-
what-you-need-to-know/

[6] Chaudhary, R., Aujla, G., Kumar, N., Zeadally, S., “Lattice-Based Public

Key Cryptosystem for Internet of Things Environment: Challenges and
Solutions”, IEEE Internet of Things Journal. pp. 1-1.
10.1109/JIOT.2018.2878707, 2018

[7] NordVPN, (n.d.), “What are IoT attacks?”, last accessed on 28 June

2023, https://nordvpn.com/es/blog/iot-attacks/

[8] MicroAI, (n.d.), “10 Types of Cyber Security Attacks in IoT”, last accessed

on 28 June 2023, https://micro.ai/blog/10-types-of-cyber-security-
attacks-in-the-iot

[9] Jullian, O., Otero, B., Rodriguez, E. et al. Deep-Learning Based Detection

for Cyber-Attacks in IoT Networks: A Distributed Attack Detection
Framework. J Netw Syst Manage 31, 33 (2023).
https://doi.org/10.1007/s10922-023-09722-7

[10] Torres i Viñals, J., “Que es el deep learning”, Python Deep Learning,

Introducción práctica con Keras y TensorFlow 2, pp. 25-44, Marcombo,
S.L.,2020

https://www.oracle.com/internet-of-things/what-is-iot/
https://doi.org/10.3390/s22103744
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.power-solutions.com/industry-trends/fog-computing-and-edge-computing-what-you-need-to-know/
https://www.power-solutions.com/industry-trends/fog-computing-and-edge-computing-what-you-need-to-know/
https://www.power-solutions.com/industry-trends/fog-computing-and-edge-computing-what-you-need-to-know/
https://nordvpn.com/es/blog/iot-attacks/
https://micro.ai/blog/10-types-of-cyber-security-attacks-in-the-iot
https://micro.ai/blog/10-types-of-cyber-security-attacks-in-the-iot
https://doi.org/10.1007/s10922-023-09722-7

62 Intrusion Detection in IoT networks using Machine Learning

[11] Girones Roig, J.,Casas Roma J., Minguillon Alfonso, J., Caihuelas
Quiles, R., “Introducción a la Minería de Datos”, Minería de Datos.
Modelos y algoritmos, pp. 23-33, Editorial UOC, 2017

[12] Géron A., “The Machine Learning Landscape”, Hands-On Machine

Learning with Scikit-Learn, Keras, and TensorFlow, pp. 25-66, O’Reilly
Media, Inc., 2019

[13] Kim K., Aminanto M. E., Tanuwidjaja H. C., “Network Intrusion Detection

using Deep Learning, A Feature Learning Approach. SpringerBriefs on
Cyber Security Systems and Networks., Springer Singapore, 2018.
https://doi.org/10.1007/978-981-13-1444-5

[14] Taşkın D., “IoT Learning Algorithms and Predictive Maintenance — Part

III: Few-shot Learning”, last accessed on 5 July 2023,
https://medium.com/iot-and-cloud/iot-learning-algorithms-and-
predictive-maintenance-3-few-shot-learning-95154b606197

[15] Stratosphere. (2015). Stratosphere Laboratory Datasets. Retrieved

March 13, 2020, from https://www.stratosphereips.org/datasets-overview

[16] HaddadPajouh H., Dehghantanha A., Khayami R., Raymond Choo K., “A

deep Recurrent Neural Network based approach for Internet of Things
malware threat hunting”, Future Generation Computer Systems, Volume
85, 2018, pp. 88-96, ISSN 0167-739X,

 https://doi.org/10.1016/j.future.2018.03.007

[17] Alex C., Creado G., Almobaideen W., Abu Alghanam O., Saadeh M., “A

Comprehensive Survey for IoT Security Datasets Taxonomy,
Classification and Machine Learning Mechanisms”, Computers &
Security, Volume 132, 2023,103283, ISSN 0167-4048,

 https://doi.org/10.1016/j.cose.2023.103283

[18] Kumar P., Bagga H., Netam B.S., “SAD-IoT: Security Analysis of DDoS

Attacks in IoT Networks”, Wireless Pers Commun 122, pp. 87–108
(2022). https://doi.org/10.1007/s11277-021-08890-6

[19] Alshamy, R., Ghurab, M. “A Review of Big Data in Network Intrusion

Detection System: Challenges, Approaches, Datasets, and Tools”, 2020

[20] Divekar, A., Parekh, M., Savla, V., Mishra, R., & Shirole, M. (2018).

“Benchmarking datasets for Anomaly-based Network Intrusion Detection:
KDD CUP 99 alternatives”, 2018 IEEE 3rd International Conference on
Computing, Communication and Security (ICCCS).

 doi:10.1109/cccs.2018.8586840

[21] Moustafa N., “A new distributed architecture for evaluating AI-based

security systems at the edge: Network TON_IoT datasets”, Sustainable
Cities and Society, Volume 72, 2021, 102994, ISSN 2210-6707,

 https://doi.org/10.1016/j.scs.2021.102994.

https://doi.org/10.1007/978-981-13-1444-5
https://medium.com/iot-and-cloud/iot-learning-algorithms-and-predictive-maintenance-3-few-shot-learning-95154b606197
https://medium.com/iot-and-cloud/iot-learning-algorithms-and-predictive-maintenance-3-few-shot-learning-95154b606197
https://www.stratosphereips.org/datasets-overview
https://doi.org/10.1016/j.future.2018.03.007
https://doi.org/10.1016/j.cose.2023.103283
https://doi.org/10.1007/s11277-021-08890-6
https://doi.org/10.1016/j.scs.2021.102994

REFERENCES 63

[22] Koroniotis N., Moustafa N., Sitnikova E., Turnbull B., “Towards the

Development of Realistic Botnet Dataset in the Internet of Things for
Network Forensic Analytics: Bot-IoT Dataset”, 2018.
https://www.researchgate.net/publication/328736466_Towards_the_De
velopment_of_Realistic_Botnet_Dataset_in_the_Internet_of_Things_for
_Network_Forensic_Analytics_Bot-IoT_Dataset

[23] Muhammad Shafiq, Zhihong Tian, Yanbin Sun, Xiaojiang Du, and

Mohsen Guizani. 2020. Selection of effective machine learning algorithm
and Bot-IoT attacks traffic identification for internet of things in smart city.
Future Generation Computer Systems 107 (June 2020), pp. 433–442.
https://doi.org/10.1016/j.future.2020.02.017

[24] Vaccari, I.; Chiola, G.; Aiello, M.; Mongelli, M.; Cambiaso, E. “MQTTset,

a New Dataset for Machine Learning Techniques on MQTT”, Sensors
2020-nov 18 vol. 20 iss. 22.

[25] Meidan, Y.; Bohadana, M.; Mathov, Y.; Mirsky, Y.; Shabtai, A.;

Breitenbacher, D.; Elovici, Y., “N-BaIoT - Network-Based Detection of IoT
Botnet Attacks Using Deep Autoencoders”, IEEE Pervasive Computing
2018-jul vol. 17 iss. 3.

[26] Albon C., “Machine Learning with Python Cookbook”, O'Reilly Media, Inc.

ISBN: 9781491989388, 2018.

[27] Scikit-learn 1.3.1 User Guide, last accessed on 1 Sep 2023, https://scikit-

learn.org/stable/user_guide.html

[28] Fernández A., García S., Galar M., Prati R. C., Krawczyk B., Herrera F.,

“Learning from Imbalanced Data Sets”, Springer Cham, 2018,
https://doi.org/10.1007/978-3-319-98074-4

[29] IBM (n. d.) “What is a Decision Tree?”, last accessed on 7 Jul 2023,

https://www.ibm.com/topics/decision-trees

[30] Banaamah, A.M.; Ahmad, I. “Intrusion Detection in IoT Using Deep

Learning”, Sensors 2022, 22, 8417. https://doi.org/10.3390/s22218417

[31] Shone, N., Ngoc, T. N., Phai, V. D., & Shi, Q. (2018). “A Deep Learning

Approach to Network Intrusion Detection”, IEEE Transactions on
Emerging Topics in Computational Intelligence, 2(1), pp. 41–50.
https://doi.org/10.1109/tetci.2017.2772792

[32] Dinh C. N.,Ming D., Pubudu N. P., Aruna S., Li J., Poor H. V., “Federated

Learning for Internet of Things: A Comprehensive Survey”, IEEE
Communications Surveys Tutorials, 23 (3), pp. 1622-1658, 2021,
https://doi.org/10.1109%2Fcomst.2021.3075439

https://www.researchgate.net/publication/328736466_Towards_the_Development_of_Realistic_Botnet_Dataset_in_the_Internet_of_Things_for_Network_Forensic_Analytics_Bot-IoT_Dataset
https://www.researchgate.net/publication/328736466_Towards_the_Development_of_Realistic_Botnet_Dataset_in_the_Internet_of_Things_for_Network_Forensic_Analytics_Bot-IoT_Dataset
https://www.researchgate.net/publication/328736466_Towards_the_Development_of_Realistic_Botnet_Dataset_in_the_Internet_of_Things_for_Network_Forensic_Analytics_Bot-IoT_Dataset
https://doi.org/10.1016/j.future.2020.02.017
https://scikit-learn.org/stable/user_guide.html
https://scikit-learn.org/stable/user_guide.html
https://doi.org/10.1007/978-3-319-98074-4
https://www.ibm.com/topics/decision-trees
https://doi.org/10.3390/s22218417
https://doi.org/10.1109/tetci.2017.2772792
https://doi.org/10.1109%2Fcomst.2021.3075439

64 Intrusion Detection in IoT networks using Machine Learning

[33] Prendki, J., July 8, 2018, “Transfer learning for the IoT”, last accessed on
29 July 2023, https://www.embedded.com/transfer-learning-for-the-iot/

[34] Li Y., Abdallah S., “IoT data analytics in dynamic environments: From an

automated machine learning perspective”, Engineering Applications of
Artificial Intelligence, Volume 116, 2022, 105366, ISSN 0952-1976,
https://doi.org/10.1016/j.engappai.2022.105366

[35] Uprety A., Rawat D. B., "Reinforcement Learning for IoT Security: A

Comprehensive Survey," in IEEE Internet of Things Journal, vol. 8, no.
11, pp. 8693-8706, June 1, 2021,

 https://doi.org/10.1109/JIOT.2020.3040957

[36] Kalutharage, C.S.; Liu X.; Chrysoulas C.; Pitropakis N.; Papadopoulos

P., “Explainable AI-Based DDOS Attack Identification Method for IoT
Networks.” Computers. 2023; 12(2):32.

 https://doi.org/10.3390/computers12020032

[37] Neto, E.C.P.; Dadkhah, S.; Ferreira, R.; Zohourian, A.; Lu, R.; Ghorbani,

A.A. "CICIoT2023: A real-time dataset and benchmark for large-scale
attacks in IoT environment," Sensors 2023, 23(13), 5941;
https://doi.org/10.3390/s23135941

[38] University of New Brunswick (UnB), (n.d.), “CIC_IOT_Dataset2023”, last

accessed on 25 June 2023,
 https://www.unb.ca/cic/datasets/iotdataset-2023.html

[39] Ahmed, October 18, 2022, “The Motivation for Train-Test Split”, last

accessed on 20 October 2023, https://medium.com/@nahmed3536/the-
motivation-for-train-test-split-2b1837f596c3

[40] Gholamy, A.; Kreinovich, V.; Kosheleva, O., "Why 70/30 or 80/20

Relation Between Training and Testing Sets: A Pedagogical Explanation"
(2018). Departmental Technical Reports (CS). 1209, last accessed on 20
October 2023, https://scholarworks.utep.edu/cs_techrep/1209

[41] Allot, See, Control, Secure, (n.d.), "Glossary of Common DDoS Attacks",

last accessed on 1 July 2023, https://www.allot.com/ddos-attack-
glossary/

[42] Wikipedia, (n.d.), "Denial-of-service attack", last accessed on 1 July

2023, https://en.wikipedia.org/wiki/Denial-of-service_attack

[43] Cloudfare, (n.d.), "What is a denial-of-service (DoS) attack?", last

accessed on 1 July 2023,
 https://www.cloudflare.com/learning/ddos/glossary/denial-of-service/

[44] Cloudfare, (n.d.), "What is the Mirai Botnet?", last accessed on 1 July

2023, https://www.cloudflare.com/learning/ddos/glossary/mirai-botnet/

https://www.embedded.com/transfer-learning-for-the-iot/
https://doi.org/10.1016/j.engappai.2022.105366
https://doi.org/10.1109/JIOT.2020.3040957
https://doi.org/10.3390/computers12020032
https://doi.org/10.3390/s23135941
https://www.unb.ca/cic/datasets/iotdataset-2023.html
https://medium.com/@nahmed3536/the-motivation-for-train-test-split-2b1837f596c3
https://medium.com/@nahmed3536/the-motivation-for-train-test-split-2b1837f596c3
https://scholarworks.utep.edu/cs_techrep/1209
https://www.allot.com/ddos-attack-glossary/
https://www.allot.com/ddos-attack-glossary/
https://en.wikipedia.org/wiki/Denial-of-service_attack
https://www.cloudflare.com/learning/ddos/glossary/denial-of-service/
https://www.cloudflare.com/learning/ddos/glossary/mirai-botnet/

REFERENCES 65

[45] Computer Networking Notes, (n.d.), "Reconnaissance attacks, Tools,
Types, and Prevention", last accessed on 1 July 2023,
https://www.computernetworkingnotes.com/ccna-study-
guide/reconnaissance-attacks-tools-types-and-
prevention.html#:~:text=A%20reconnaissance%20attack%20is%20a,to
ol%20for%20an%20actual%20attack

[46] Odogwu C., March 22, 2023, "What Are Reconnaissance Attacks and

How Do They Work?", last accessed on 1 July 2023,
https://www.makeuseof.com/what-are-reconnaissance-attacks-and-
how-do-they-work/

[47] Rapid7, (n.d.), "Spoofing Attacks", last accessed on 1 July 2023,

https://www.rapid7.com/fundamentals/spoofing-
attacks/#:~:text=Spoofing%20is%20the%20act%20of,often%20used%2
0to%20commit%20fraud

[48] Malwarebytes, (n.d.), "What is a spoofing attack?", last accessed on 1

July 2023, https://www.malwarebytes.com/spoofing

[49] Kaspersky, (n.d.), "Brute Force Attack: Definition and Examples", last

accessed on 1 July 2023, https://www.kaspersky.com/resource-
center/definitions/brute-force-attack

[50] OWASP Foundation, (n.d.), "Vulnerabilities, What is a vulnerability?", last

accessed on 1 July 2023, https://owasp.org/www-
community/vulnerabilities/

[51] Javatpoint, (n.d.), “Introduction to Dimensionality Reduction Technique”,

last accessed on 8 July 2023, https://www.javatpoint.com/dimensionality-
reduction-technique

[52] Kavika R., September 22, 2022, “Dimensionality Reduction Techniques

in Data Science”, last accessed on 8 July 2023,
https://www.kdnuggets.com/2022/09/dimensionality-reduction-
techniques-data-science.html

[53] Vadapalli P., August 7, 2020, “Top 10 Dimensionality Reduction

Techniques For Machine Learning”, last accessed on 8 July 2023,
https://www.upgrad.com/blog/top-dimensionality-reduction-techniques-
for-machine-learning/

[54] Statistical tools for high-throughput data analysis, “Correlation matrix : A

quick start guide to analyze, format and visualize a correlation matrix
using R software”, last accessed on 8 July 2023,
http://www.sthda.com/english/wiki/correlation-matrix-a-quick-start-
guide-to-analyze-format-and-visualize-a-correlation-matrix-using-r-
software

https://www.computernetworkingnotes.com/ccna-study-guide/reconnaissance-attacks-tools-types-and-prevention.html#:~:text=A%20reconnaissance%20attack%20is%20a,tool%20for%20an%20actual%20attack
https://www.computernetworkingnotes.com/ccna-study-guide/reconnaissance-attacks-tools-types-and-prevention.html#:~:text=A%20reconnaissance%20attack%20is%20a,tool%20for%20an%20actual%20attack
https://www.computernetworkingnotes.com/ccna-study-guide/reconnaissance-attacks-tools-types-and-prevention.html#:~:text=A%20reconnaissance%20attack%20is%20a,tool%20for%20an%20actual%20attack
https://www.computernetworkingnotes.com/ccna-study-guide/reconnaissance-attacks-tools-types-and-prevention.html#:~:text=A%20reconnaissance%20attack%20is%20a,tool%20for%20an%20actual%20attack
https://www.makeuseof.com/what-are-reconnaissance-attacks-and-how-do-they-work/
https://www.makeuseof.com/what-are-reconnaissance-attacks-and-how-do-they-work/
https://www.rapid7.com/fundamentals/spoofing-attacks/#:~:text=Spoofing%20is%20the%20act%20of,often%20used%20to%20commit%20fraud
https://www.rapid7.com/fundamentals/spoofing-attacks/#:~:text=Spoofing%20is%20the%20act%20of,often%20used%20to%20commit%20fraud
https://www.rapid7.com/fundamentals/spoofing-attacks/#:~:text=Spoofing%20is%20the%20act%20of,often%20used%20to%20commit%20fraud
https://www.malwarebytes.com/spoofing
https://www.kaspersky.com/resource-center/definitions/brute-force-attack
https://www.kaspersky.com/resource-center/definitions/brute-force-attack
https://owasp.org/www-community/vulnerabilities/
https://owasp.org/www-community/vulnerabilities/
https://www.javatpoint.com/dimensionality-reduction-technique
https://www.javatpoint.com/dimensionality-reduction-technique
https://www.kdnuggets.com/2022/09/dimensionality-reduction-techniques-data-science.html
https://www.kdnuggets.com/2022/09/dimensionality-reduction-techniques-data-science.html
https://www.upgrad.com/blog/top-dimensionality-reduction-techniques-for-machine-learning/
https://www.upgrad.com/blog/top-dimensionality-reduction-techniques-for-machine-learning/
http://www.sthda.com/english/wiki/correlation-matrix-a-quick-start-guide-to-analyze-format-and-visualize-a-correlation-matrix-using-r-software
http://www.sthda.com/english/wiki/correlation-matrix-a-quick-start-guide-to-analyze-format-and-visualize-a-correlation-matrix-using-r-software
http://www.sthda.com/english/wiki/correlation-matrix-a-quick-start-guide-to-analyze-format-and-visualize-a-correlation-matrix-using-r-software

66 Intrusion Detection in IoT networks using Machine Learning

[55] Turney S., June 22, 2023, “Pearson Correlation Coefficient (r) | Guide &
Examples”, last accessed on 8 July 2023,
https://www.scribbr.com/statistics/pearson-correlation-coefficient/

[56] Guhanesvar, June 26, 2021, “Feature Selection Based on Mutual

Information Gain for Classification and Regression”, last accessed on 8
July 2023, https://guhanesvar.medium.com/feature-selection-based-on-
mutual-information-gain-for-classification-and-regression-d0f86ea5262a

[57] Scikit-learn 1.3.1 User Guide, (n.d.) “Mutual information (MI)”, last

accessed on 12 July 2023, https://scikit-
learn.org/stable/modules/generated/sklearn.feature_selection.mutual_in
fo_classif.html

[58] Wikipedia, (n.d.), Confusion matrix, (n.d.), last accessed on 19 August

2023, https://en.wikipedia.org/wiki/Confusion_matrix

[59] Saurabh D., Confusion Matrix Explained: Calculating Accuracy, TPR,

FPR, TNR, Precision, and Prevalence. last accessed on 19 August 2023,
 https://medium.com/@saurabhdhandeblog/confusion-matrix-explained-

calculating-accuracy-tpr-fpr-tnr-precision-and-prevalence-87557fe8714d

[60] Navas J. February 8, 2022, “What is hyperparameter tuning?”, last

accessed on 23 July 2023,
 https://www.anyscale.com/blog/what-is-hyperparameter-tuning

[61] Alhamid M., December 24, 2020, “What is Cross-Validation?”, last

accessed on 23 July 2023, https://towardsdatascience.com/what-is-
cross-validation-60c01f9d9e75

[62] Refaeilzadeh, P., Tang, L., Liu, H. (2009). Cross-Validation. In: LIU, L.,

ÖZSU, M.T. (eds) Encyclopedia of Database Systems. Springer, Boston,
MA. https://doi.org/10.1007/978-0-387-39940-9_565

[63] Scikit-learn 1.3.1 User Guide, (n.d.) “Cross-validation: evaluating

estimator performance”, last accessed on 18 August 2023,
 https://scikit-learn.org/stable/modules/cross_validation.html#cross-

validation-iterators

[64] Rosaen K., June 06, 2016, last accessed on 18 August 2023

http://karlrosaen.com/ml/learning-log/2016-06-20/

[65] Brownlee J., August 28, 2020, “Tune Hyperparameters for Classification

Machine Learning Algorithms”, last accessed on 24 July 2023,
https://machinelearningmastery.com/hyperparameters-for-classification-
machine-learning-algorithms/

[66] Melanee Group, May 2021, “A Comprehensive Analysis of

Hyperparameter Optimization in Logistic Regression Models”, last
accessed on 24 July 2023, https://levelup.gitconnected.com/a-

https://www.scribbr.com/statistics/pearson-correlation-coefficient/
https://guhanesvar.medium.com/feature-selection-based-on-mutual-information-gain-for-classification-and-regression-d0f86ea5262a
https://guhanesvar.medium.com/feature-selection-based-on-mutual-information-gain-for-classification-and-regression-d0f86ea5262a
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.mutual_info_classif.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.mutual_info_classif.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.mutual_info_classif.html
https://en.wikipedia.org/wiki/Confusion_matrix
https://medium.com/@saurabhdhandeblog/confusion-matrix-explained-calculating-accuracy-tpr-fpr-tnr-precision-and-prevalence-87557fe8714d
https://medium.com/@saurabhdhandeblog/confusion-matrix-explained-calculating-accuracy-tpr-fpr-tnr-precision-and-prevalence-87557fe8714d
https://www.anyscale.com/blog/what-is-hyperparameter-tuning
https://towardsdatascience.com/what-is-cross-validation-60c01f9d9e75
https://towardsdatascience.com/what-is-cross-validation-60c01f9d9e75
https://doi.org/10.1007/978-0-387-39940-9_565
https://scikit-learn.org/stable/modules/cross_validation.html#cross-validation-iterators
https://scikit-learn.org/stable/modules/cross_validation.html#cross-validation-iterators
http://karlrosaen.com/ml/learning-log/2016-06-20/
https://machinelearningmastery.com/hyperparameters-for-classification-machine-learning-algorithms/
https://machinelearningmastery.com/hyperparameters-for-classification-machine-learning-algorithms/
https://levelup.gitconnected.com/a-comprehensive-analysis-of-hyperparameter-optimization-in-logistic-regression-models-521564c1bfc0

REFERENCES 67

comprehensive-analysis-of-hyperparameter-optimization-in-logistic-
regression-models-521564c1bfc0

[67] Scikit-learn 1.3.1 User Guide, (n.d.),

“sklearn.linear_model.LogisticRegression”, last accessed on 29 July
2023,

 https://scikit-
learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegre
ssion.html#sklearn.linear_model.LogisticRegression

[68] Singh Chauhan N., February 9, 2022, “Decision Tree Algorithm,

Explained”, last accessed on 29 July 2023,
https://www.kdnuggets.com/2020/01/decision-tree-algorithm-
explained.html

[69] Mithrakumar M., November 11, 2019,“How to tune a Decision Tree?”, last

accessed on 29 July 2023, https://towardsdatascience.com/how-to-tune-
a-decision-tree-f03721801680

[70] Ben Fraj, M., December 20, 2017 ,“InDepth: Parameter tuning for

Decision Tree”, last accessed on 29 July 2023,
https://medium.com/@mohtedibf/indepth-parameter-tuning-for-decision-
tree-6753118a03c3

[71] Keldenich T., September 16, 2022, “Decision Tree How to Use It and Its

Hyperparameters”, last accessed on 29 July 2023, https://inside-
machinelearning.com/en/decision-tree-and-hyperparameters/

[72] Scikit-learn 1.3.1 User Guide, (n.d.),
 “sklearn.tree.DecisionTreeClassifier”, last accessed on 29 July 2023,

https://scikit-
learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.
html#sklearn.tree.DecisionTreeClassifier

[73] Jain K., Apr 2, 2021, “The Naive Bayes Guide, How to Improve Naive

Bayes?”, last accessed on 30 July 2023, https://medium.com/analytics-
vidhya/how-to-improve-naive-bayes-9fa698e14cba

[74] Scikit-learn 1.3.1 User Guide, (n.d.), “sklearn.naive_bayes.GaussianNB”,

last accessed on 30 July 2023, https://scikit-
learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.h
tml#sklearn.naive_bayes.GaussianNB

[75] Koehrsen W., “Hyperparameter Tuning the Random Forest in Python”,

last accessed on 30 July 2023,
 https://towardsdatascience.com/hyperparameter-tuning-the-random-

forest-in-python-using-scikit-learn-28d2aa77dd74

[76] Arya N., August 22, 2022, “Tuning Random Forest Hyperparameters”,

last accessed on 30 July 2023,

https://levelup.gitconnected.com/a-comprehensive-analysis-of-hyperparameter-optimization-in-logistic-regression-models-521564c1bfc0
https://levelup.gitconnected.com/a-comprehensive-analysis-of-hyperparameter-optimization-in-logistic-regression-models-521564c1bfc0
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html#sklearn.linear_model.LogisticRegression
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html#sklearn.linear_model.LogisticRegression
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html#sklearn.linear_model.LogisticRegression
https://www.kdnuggets.com/2020/01/decision-tree-algorithm-explained.html
https://www.kdnuggets.com/2020/01/decision-tree-algorithm-explained.html
https://towardsdatascience.com/how-to-tune-a-decision-tree-f03721801680
https://towardsdatascience.com/how-to-tune-a-decision-tree-f03721801680
https://medium.com/@mohtedibf/indepth-parameter-tuning-for-decision-tree-6753118a03c3
https://medium.com/@mohtedibf/indepth-parameter-tuning-for-decision-tree-6753118a03c3
https://inside-machinelearning.com/en/decision-tree-and-hyperparameters/
https://inside-machinelearning.com/en/decision-tree-and-hyperparameters/
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier
https://medium.com/analytics-vidhya/how-to-improve-naive-bayes-9fa698e14cba
https://medium.com/analytics-vidhya/how-to-improve-naive-bayes-9fa698e14cba
https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html#sklearn.naive_bayes.GaussianNB
https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html#sklearn.naive_bayes.GaussianNB
https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html#sklearn.naive_bayes.GaussianNB
https://towardsdatascience.com/hyperparameter-tuning-the-random-forest-in-python-using-scikit-learn-28d2aa77dd74
https://towardsdatascience.com/hyperparameter-tuning-the-random-forest-in-python-using-scikit-learn-28d2aa77dd74

68 Intrusion Detection in IoT networks using Machine Learning

 https://www.kdnuggets.com/2022/08/tuning-random-forest-
hyperparameters.html

[77] “Hyperparameter Tuning Using Grid Search and Random Search in

Python”, last accessed on 30 July 2023,
 https://www.kdnuggets.com/2022/10/hyperparameter-tuning-grid-

search-random-search-python.html

[78] Scikit-learn 1.3.1 User Guide, (n.d.),
 “sklearn.ensemble.RandomForestClassifier”, last accessed on 30 July

2023, https://scikit-
learn.org/stable/modules/generated/sklearn.ensemble.RandomForestCl
assifier.html#sklearn.ensemble.RandomForestClassifier

[79] Fuchs M., February 3, 2021, “NN - Multi-layer Perceptron Classifier

(MLPClassifier)”, last accessed on 31 July, https://michael-fuchs-
python.netlify.app/2021/02/03/nn-multi-layer-perceptron-classifier-
mlpclassifier/

[80] Databall, (n.d.), “Parameter Tuning”, last accessed on 31 July,

https://klane.github.io/databall/model/parameters/

[81] Scikit-learn 1.3.1 User Guide, (n.d.),
 “sklearn.neural_network.MLPClassifier”, last accessed on 31 July 2023,
 https://scikit-

learn.org/stable/modules/generated/sklearn.neural_network.MLPClassif
ier.html

https://www.kdnuggets.com/2022/08/tuning-random-forest-hyperparameters.html
https://www.kdnuggets.com/2022/08/tuning-random-forest-hyperparameters.html
https://www.kdnuggets.com/2022/10/hyperparameter-tuning-grid-search-random-search-python.html
https://www.kdnuggets.com/2022/10/hyperparameter-tuning-grid-search-random-search-python.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html#sklearn.ensemble.RandomForestClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html#sklearn.ensemble.RandomForestClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html#sklearn.ensemble.RandomForestClassifier
https://michael-fuchs-python.netlify.app/2021/02/03/nn-multi-layer-perceptron-classifier-mlpclassifier/
https://michael-fuchs-python.netlify.app/2021/02/03/nn-multi-layer-perceptron-classifier-mlpclassifier/
https://michael-fuchs-python.netlify.app/2021/02/03/nn-multi-layer-perceptron-classifier-mlpclassifier/
https://klane.github.io/databall/model/parameters/
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html

ANNEXES 69

ANNEXES

Annex A: Dataset exploratory analysis

Fig. A.1 Dataset features distribution

70 Intrusion Detection in IoT networks using Machine Learning

ANNEXES 71

Table A.1. Dataset Features numerical description.

Feature count mean std min 25% 50% 75% max

flow_duration 2334328 5.63530458 262.091923 0 0 0 0.10491436 68430.7122

Header_Length 2334328 76778.2503 462321.857 0 54 54 276.5325 9806497.8

Protocol Type 2334328 9.06568768 8.94656026 0 6 6 14.31 47

Duration 2334328 66.3356124 13.9416923 0 64 64 64 255

Rate 2334328 9063.94016 99428.7596 0 2.0875004 15.7039793 117.386375 7780435.6

Srate 2334328 9063.94016 99428.7596 0 2.0875004 15.7039793 117.386375 7780435.6

Drate 2334328 3.41E-06 0.001371 0 0 0 0 1.27071333

fin_flag_number 2334328 0.08656281 0.2811934 0 0 0 0 1

syn_flag_number 2334328 0.2073736 0.40542553 0 0 0 0 1

rst_flag_number 2334328 0.09047872 0.28686644 0 0 0 0 1

psh_flag_number 2334328 0.08771732 0.28288342 0 0 0 0 1

ack_flag_number 2334328 0.1234698 0.32897576 0 0 0 0 1

ece_flag_number 2334328 1.29E-06 0.00113365 0 0 0 0 1

cwr_flag_number 2334328 8.57E-07 0.00092562 0 0 0 0 1

ack_count 2334328 0.09049278 0.28619119 0 0 0 0 5.2

syn_count 2334328 0.33046888 0.66327069 0 0 0 0.06 11.8

fin_count 2334328 0.09916589 0.34230291 0 0 0 0 110.86

urg_count 2334328 6.23206058 71.7457522 0 0 0 0 3494.3

rst_count 2334328 38.4082763 324.708597 0 0 0 0.01 9126.5

HTTP 2334328 0.04829013 0.21437867 0 0 0 0 1

HTTPS 2334328 0.05497299 0.22792759 0 0 0 0 1

DNS 2334328 0.00012038 0.010971 0 0 0 0 1

Telnet 2334328 0 0 0 0 0 0 0

SMTP 2334328 4.28E-07 0.00065451 0 0 0 0 1

SSH 2334328 3.77E-05 0.00613977 0 0 0 0 1

IRC 2334328 4.28E-07 0.00065451 0 0 0 0 1

TCP 2334328 0.57391763 0.49450611 0 0 1 1 1

UDP 2334328 0.21188753 0.40864566 0 0 0 0 1

DHCP 2334328 1.29E-06 0.00113365 0 0 0 0 1

ARP 2334328 6.47E-05 0.00804255 0 0 0 0 1

ICMP 2334328 0.16372935 0.37002987 0 0 0 0 1

IPv 2334328 0.99989162 0.01041012 0 1 1 1 1

LLC 2334328 0.99989162 0.01041012 0 1 1 1 1

Tot sum 2334328 1310.78792 2626.21915 42 525 567 567.54 103112.2

Min 2334328 91.6382647 139.621352 42 50 54 54 3416.4

Max 2334328 182.399327 526.80039 42 50 54 55.26 28854

AVG 2334328 124.841536 241.491161 42 50 54 54.0501127 7549.36127

Std 2334328 33.4557917 161.109364 0 0 0 0.37190955 7814.29924

Tot size 2334328 124.950134 242.662375 42 50 54 54.06 8409.2

IAT 2334328 83186605 17048120.7 0 83071564.1 83124522.1 83343908.2 167639430

Number 2334328 9.49871808 0.81896897 1 9.5 9.5 9.5 15

Magnitue 2334328 13.1266727 8.64063988 9.16515139 10 10.3923048 10.3967252 117.978075

Radius 2334328 47.2799398 227.862704 0 0 0 0.50592128 11051.088

Covariance 2334328 31017.2362 322733.368 0 0 0 1.35404398 69004153

Variance 2334328 0.09643977 0.23293241 0 0 0 0.08 1

Weight 2334328 141.517847 21.0664315 1 141.55 141.55 141.55 244.6

72 Intrusion Detection in IoT networks using Machine Learning

Annex B: Confusion Matrices and Reports of Multiclassification.

Fig. B.1 Confusion matrix for Logistic Regression multiclassification

ANNEXES 73

Table B.1. Classification report by classes of multiclass Logistic Regression
model

 precision recall F1 score support

DDoS-RSTFINFlood 0.9811 0.9975 0.9893 50569

DDoS-PSHACK_Flood 0.9969 0.9822 0.9895 51187

DDoS-SYN_Flood 0.6561 0.9392 0.7725 50742

DDoS-UDP_Flood 0.7198 0.9052 0.8019 67658

DDoS-TCP_Flood 0.6467 0.8045 0.7170 56223

DDoS-ICMP_Flood 0.9989 0.9981 0.9985 90011

DDoS-SynonymousIP_Flood 0.7836 0.6597 0.7163 44979

DDoS-ACK_Fragmentation 0.9233 0.9756 0.9487 3564

DDoS-UDP_Fragmentation 0.9274 0.9788 0.9524 3587

DDoS-ICMP_Fragmentation 0.9876 0.9729 0.9802 5656

DDoS-SlowLoris 0.0949 0.4266 0.1553 293

DDoS-HTTP_Flood 0.1200 0.7556 0.2071 360

DoS-UDP_Flood 0.7313 0.4187 0.5325 41485

DoS-SYN_Flood 0.5737 0.1995 0.2960 25362

DoS-TCP_Flood 0.4328 0.2499 0.3169 33395

DoS-HTTP_Flood 0.4935 0.6782 0.5713 898

Mirai-greeth_flood 0.7089 0.8222 0.7613 12399

Mirai-greip_flood 0.7047 0.5428 0.6132 9397

Mirai-udpplain 0.9883 0.9901 0.9892 11133

Recon-PingSweep 0.0034 0.1071 0.0066 28

Recon-OSScan 0.1263 0.0099 0.0183 1215

Recon-PortScan 0.0354 0.0069 0.0116 1013

VulnerabilityScan 0.0786 0.3383 0.1276 467

Recon-HostDiscovery 0.4650 0.5066 0.4849 1678

DNS_Spoofing 0.2940 0.2120 0.2464 2236

MITM-ArpSpoofing 0.4325 0.4026 0.4170 3845

BrowserHijacking 0.0037 0.0685 0.0071 73

Backdoor_Malware 0.0048 0.0500 0.0087 40

XSS 0.0053 0.0625 0.0099 48

Uploading_Attack 0.0058 0.6250 0.0114 16

SqlInjection 0.0225 0.3182 0.0421 66

CommandInjection 0.0147 0.1912 0.0272 68

DictionaryBruteForce 0.0161 0.0982 0.0276 163

BenignTraffic 0.8156 0.3937 0.5311 13728

macro average 0.4645 0.5202 0.4496 583582

74 Intrusion Detection in IoT networks using Machine Learning

Fig. B.2 Confusion matrix for Decision Trees multiclassification

ANNEXES 75

Table B.2. Classification report by classes of multiclassification Decision Trees
model

 precision recall F1 score support

DDoS-RSTFINFlood 1.0000 0.9999 1.0000 50569

DDoS-PSHACK_Flood 0.9999 0.9999 0.9999 51187

DDoS-SYN_Flood 0.9998 0.9998 0.9998 50742

DDoS-UDP_Flood 0.9998 0.9998 0.9998 67658

DDoS-TCP_Flood 1.0000 0.9999 1.0000 56223

DDoS-ICMP_Flood 0.9999 1.0000 0.9999 90011

DDoS-SynonymousIP_Flood 0.9997 0.9997 0.9997 44979

DDoS-ACK_Fragmentation 0.9992 0.9989 0.9990 3564

DDoS-UDP_Fragmentation 0.9983 0.9992 0.9987 3587

DDoS-ICMP_Fragmentation 0.9996 0.9986 0.9991 5656

DDoS-SlowLoris 0.9966 0.9932 0.9949 293

DDoS-HTTP_Flood 1.0000 1.0000 1.0000 360

DoS-UDP_Flood 0.9995 0.9996 0.9996 41485

DoS-SYN_Flood 0.9995 0.9995 0.9995 25362

DoS-TCP_Flood 0.9999 0.9999 0.9999 33395

DoS-HTTP_Flood 0.9956 0.9989 0.9972 898

Mirai-greeth_flood 0.9994 0.9995 0.9995 12399

Mirai-greip_flood 0.9991 0.9991 0.9991 9397

Mirai-udpplain 0.9996 0.9994 0.9995 11133

Recon-PingSweep 0.6818 0.5357 0.6000 28

Recon-OSScan 0.6089 0.6165 0.6127 1215

Recon-PortScan 0.6264 0.6604 0.6430 1013

VulnerabilityScan 0.9957 0.9957 0.9957 467

Recon-HostDiscovery 0.8111 0.8164 0.8138 1678

DNS_Spoofing 0.7063 0.7021 0.7042 2236

MITM-ArpSpoofing 0.8240 0.8159 0.8199 3845

BrowserHijacking 0.6061 0.5479 0.5755 73

Backdoor_Malware 0.4375 0.5250 0.4773 40

XSS 0.4000 0.4167 0.4082 48

Uploading_Attack 0.4348 0.6250 0.5128 16

SqlInjection 0.5000 0.5152 0.5075 66

CommandInjection 0.5571 0.5735 0.5652 68

DictionaryBruteForce 0.6022 0.6687 0.6337 163

BenignTraffic 0.9197 0.9166 0.9181 13728

macro average 0.8440 0.8505 0.8463 583582

76 Intrusion Detection in IoT networks using Machine Learning

Fig. B.3 Confusion matrix for Naive Bayes multiclassification

ANNEXES 77

Table B.3. Classification report by classes of multiclassification Naive Bayes
model

 precision recall F1 score support

DDoS-RSTFINFlood 0.9863 0.9829 0.9846 50569

DDoS-PSHACK_Flood 0.9989 0.9755 0.9871 51187

DDoS-SYN_Flood 0.6504 0.9565 0.7743 50742

DDoS-UDP_Flood 0.6356 0.9692 0.7677 67658

DDoS-TCP_Flood 0.6299 0.9952 0.7715 56223

DDoS-ICMP_Flood 0.9953 0.9982 0.9968 90011

DDoS-SynonymousIP_Flood 0.7411 0.6968 0.7183 44979

DDoS-ACK_Fragmentation 0.9701 0.9574 0.9637 3564

DDoS-UDP_Fragmentation 0.9790 0.9741 0.9765 3587

DDoS-ICMP_Fragmentation 0.9989 0.9691 0.9838 5656

DDoS-SlowLoris 0.1068 0.2730 0.1536 293

DDoS-HTTP_Flood 0.2158 0.7306 0.3331 360

DoS-UDP_Flood 0.6368 0.0855 0.1507 41485

DoS-SYN_Flood 0.7012 0.0878 0.1561 25362

DoS-TCP_Flood 0.2639 0.0082 0.0160 33395

DoS-HTTP_Flood 0.4131 0.6826 0.5147 898

Mirai-greeth_flood 0.5771 0.9755 0.7251 12399

Mirai-greip_flood 0.6453 0.0407 0.0765 9397

Mirai-udpplain 0.9963 0.9911 0.9937 11133

Recon-PingSweep 0.5000 0.0357 0.0667 28

Recon-OSScan 0.3529 0.0049 0.0097 1215

Recon-PortScan 0.2385 0.1234 0.1627 1013

VulnerabilityScan 0.4045 0.0771 0.1295 467

Recon-HostDiscovery 0.1814 0.7390 0.2913 1678

DNS_Spoofing 0.0370 0.0009 0.0017 2236

MITM-ArpSpoofing 0.5335 0.4393 0.4818 3845

BrowserHijacking 0.0000 0.0000 0.0000 73

Backdoor_Malware 0.0909 0.0250 0.0392 40

XSS 0.0060 0.0417 0.0105 48

Uploading_Attack 0.0045 0.5625 0.0088 16

SqlInjection 0.0474 0.3030 0.0820 66

CommandInjection 0.0364 0.0294 0.0325 68

DictionaryBruteForce 0.0204 0.0245 0.0223 163

BenignTraffic 0.7595 0.6522 0.7018 13728

macro average 0.4810 0.4826 0.4142 583582

78 Intrusion Detection in IoT networks using Machine Learning

Fig. B.4 Confusion matrix for Random Forest multiclassification

ANNEXES 79

Table B.4. Classification report by classes of multiclassification Random Forest
model

 precision recall F1 score support

DDoS-RSTFINFlood 1.0000 0.9992 0.9996 50569

DDoS-PSHACK_Flood 1.0000 0.9995 0.9997 51187

DDoS-SYN_Flood 0.9997 0.9993 0.9995 50742

DDoS-UDP_Flood 0.9996 0.9996 0.9996 67658

DDoS-TCP_Flood 1.0000 0.9998 0.9999 56223

DDoS-ICMP_Flood 0.9999 0.9998 0.9999 90011

DDoS-SynonymousIP_Flood 0.9999 0.9990 0.9995 44979

DDoS-ACK_Fragmentation 0.9911 0.9978 0.9944 3564

DDoS-UDP_Fragmentation 0.9892 0.9975 0.9933 3587

DDoS-ICMP_Fragmentation 0.9952 0.9986 0.9969 5656

DDoS-SlowLoris 0.9635 0.9898 0.9764 293

DDoS-HTTP_Flood 0.9889 0.9917 0.9903 360

DoS-UDP_Flood 0.9992 0.9997 0.9995 41485

DoS-SYN_Flood 0.9987 0.9994 0.9991 25362

DoS-TCP_Flood 0.9999 0.9993 0.9996 33395

DoS-HTTP_Flood 0.9889 0.9933 0.9911 898

Mirai-greeth_flood 0.9998 0.9990 0.9994 12399

Mirai-greip_flood 0.9988 0.9995 0.9991 9397

Mirai-udpplain 0.9992 0.9999 0.9996 11133

Recon-PingSweep 0.8000 0.2857 0.4211 28

Recon-OSScan 0.8041 0.6082 0.6926 1215

Recon-PortScan 0.6212 0.7414 0.6760 1013

VulnerabilityScan 0.9687 0.9936 0.9810 467

Recon-HostDiscovery 0.7738 0.9112 0.8369 1678

DNS_Spoofing 0.7971 0.7451 0.7702 2236

MITM-ArpSpoofing 0.8991 0.8463 0.8719 3845

BrowserHijacking 0.8000 0.4932 0.6102 73

Backdoor_Malware 0.8000 0.4000 0.5333 40

XSS 0.7241 0.4375 0.5455 48

Uploading_Attack 0.8000 0.5000 0.6154 16

SqlInjection 0.8286 0.4394 0.5743 66

CommandInjection 0.8696 0.5882 0.7018 68

DictionaryBruteForce 0.8306 0.6319 0.7178 163

BenignTraffic 0.9295 0.9555 0.9423 13728

macro average 0.9164 0.8394 0.8655 583582

80 Intrusion Detection in IoT networks using Machine Learning

Fig. B.5 Confusion matrix for MLPClassifier multiclassification

ANNEXES 81

Table B.5. Classification report by classes of multiclassification MLPClassifier
model

 precision recall F1 score support

DDoS-RSTFINFlood 0.9994 0.9989 0.9992 50569

DDoS-PSHACK_Flood 0.9983 0.9992 0.9987 51187

DDoS-SYN_Flood 0.9977 0.9970 0.9974 50742

DDoS-UDP_Flood 0.9980 0.9985 0.9983 67658

DDoS-TCP_Flood 0.9989 0.9975 0.9982 56223

DDoS-ICMP_Flood 0.9996 0.9990 0.9993 90011

DDoS-SynonymousIP_Flood 0.9986 0.9978 0.9982 44979

DDoS-ACK_Fragmentation 0.9879 0.9820 0.9849 3564

DDoS-UDP_Fragmentation 0.9805 0.9830 0.9818 3587

DDoS-ICMP_Fragmentation 0.9876 0.9820 0.9848 5656

DDoS-SlowLoris 0.7903 0.8362 0.8126 293

DDoS-HTTP_Flood 0.8960 0.8611 0.8782 360

DoS-UDP_Flood 0.9971 0.9966 0.9969 41485

DoS-SYN_Flood 0.9906 0.9950 0.9928 25362

DoS-TCP_Flood 0.9970 0.9975 0.9973 33395

DoS-HTTP_Flood 0.9109 0.8998 0.9053 898

Mirai-greeth_flood 0.9796 0.9878 0.9837 12399

Mirai-greip_flood 0.9792 0.9707 0.9749 9397

Mirai-udpplain 0.9947 0.9987 0.9967 11133

Recon-PingSweep 0.0000 0.0000 0.0000 28

Recon-OSScan 0.4577 0.1605 0.2377 1215

Recon-PortScan 0.4353 0.0997 0.1622 1013

VulnerabilityScan 0.8347 0.8437 0.8392 467

Recon-HostDiscovery 0.5941 0.7336 0.6565 1678

DNS_Spoofing 0.4134 0.4097 0.4115 2236

MITM-ArpSpoofing 0.7834 0.5644 0.6561 3845

BrowserHijacking 1.0000 0.0274 0.0533 73

Backdoor_Malware 0.0000 0.0000 0.0000 40

XSS 0.0000 0.0000 0.0000 48

Uploading_Attack 0.0000 0.0000 0.0000 16

SqlInjection 0.0000 0.0000 0.0000 66

CommandInjection 0.8750 0.1029 0.1842 68

DictionaryBruteForce 0.0000 0.0000 0.0000 163

BenignTraffic 0.7889 0.9485 0.8614 13728

macro average 0.7254 0.6579 0.6630 583582

