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Abstract 
 

 
The exponential growth of Internet of Things (IoT) infrastructure has introduced 
significant security challenges due to the large-scale deployment of 
interconnected devices. IoT devices are present in every aspect of our modern 
life; they are essential components of Industry 4.0, smart cities, and critical 
infrastructures. Therefore, the detection of attacks on this platform becomes 
necessary through an Intrusion Detection Systems (IDS). These tools are 
dedicated hardware devices or software that monitors a network to detect and 
automatically alert the presence of malicious activity. 
 
This study aimed to assess the viability of Machine Learning Models for IDS 
within IoT infrastructures. Five classifiers, encompassing a spectrum from 
linear models like Logistic Regression, Decision Trees from Trees Algorithms, 
Gaussian Naïve Bayes from Probabilistic models, Random Forest from 
ensemble family and Multi-Layer Perceptron from Artificial Neural Networks, 
were analysed. These models were trained using supervised methods on a 
public IoT attacks dataset, with three tasks ranging from binary classification 
(determining if a sample was part of an attack) to multiclassification of 8 groups 
of attack categories and the multiclassification of 33 individual attacks. Various 
metrics were considered, from performance to execution times and all models 
were trained and tuned using cross-validation of 10 k-folds. 
 
On the three classification tasks, Random Forest was found to be the model 
with best performance, at expenses of time consumption. Gaussian Naïve 
Bayes was the fastest algorithm in all classification’s tasks, but with a lower 
performance detecting attacks. Whereas Decision Trees shows a good 
balance between performance and processing speed. 
 
Classifying among 8 attack categories, most models showed vulnerabilities to 
specific attack types, especially those in minority classes due to dataset 
imbalances. In more granular 33 attack type classifications, all models 
generally faced challenges, but Random Forest remained the most reliable, 
despite vulnerabilities. 
 
In conclusion, Machine Learning algorithms proves to be effective for IDS in 
IoT infrastructure, with Random Forest model being the most robust, but with 
Decision Trees offering a good balance between speed and performance. 
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CHAPTER 1. INTRODUCTION 
 
The Internet of Things (IoT) [1] refers to the network of physical objects, or 
"things", implanted with sensors, software, and other technologies with the goal 
of connecting and exchanging data with other devices and systems via the 
internet. These objects range from common household items to sophisticated 
industrial equipment. The current growth of the Internet of Things (IoT) is 
experiencing an explosive surge, as these networks become more complex and 
widely available, they bring with them a host of benefits and advances. However, 
the expansion of IoT systems also poses considerable cybersecurity threats, 
amplifying the difficulty of safeguarding against malicious intrusions. Given the 
diverse nature and widespread deployment of IoT devices, they are frequently 
exposed to a variety of cyber threats, emphasising the significance of their 
security. 
 
Traditional security measures, which are based on rule-based and signature 
detection techniques, often struggle to keep up with the dynamic and evolving 
nature of cyber threats. In consideration of the resource constraints exhibited by 
many IoT devices, including low energy storage, limited memory and low CPU, 
these devices are susceptible to cyber-attacks. A notable factor contributing to 
such vulnerability is their inability to support existing general-purpose security 
software. By this reason, a Network Intrusion Detection Systems (NIDS) or 
Intrusion Detection Systems (IDS), functions as a vigilant monitor for internet 
traffic in an IoT network, acting as a protective barrier against intruders and 
potential threats. Its primary role is to identify known and unknown malicious 
attacks by scrutinising network actions, user behaviour, and device activities. IDS 
not only detects unauthorised intrusions, but it also encourages context-
awareness among devices in the network, thereby facilitating defence 
mechanisms such as firewall rules. The IDS system detects both internal attacks, 
emanating from compromised IoT devices, and external attacks initiated by third 
parties. Its primary components include Observation, which tracks network 
patterns, and Analysis and Detection, which form the core of the system and 
identify intrusions by means of algorithms. The IDS also has an alert system that 
indicates any detected threat [2]. 
 
Machine learning (ML), with its capacity to analyse vast amounts of data and 
identify patterns, presents a promising approach for enhancing IDS in IoT 
environments and offers the promise of adaptive, data-driven solutions capable 
of identifying anomalous patterns and behaviours in real-time. Given the vast 
amounts of data generated by IoT devices, ML algorithms are particularly well-
suited to sifting through large datasets to identify potential threats swiftly and 
accurately. However, the effectiveness of these algorithms is dependent on the 
quality and importance of the datasets they have been trained on. 
 
This master thesis project explores the evaluation of five different supervised 
machine learning classifier models (Logistic Regression, Decision Trees, Naïve 
Bayes, Random Forests and Multi-Layer Perceptron) in a chosen IoT attacks 
dataset, analysing their performance metrics, execution times and their 
adaptability in discerning legitimate from malicious activities within IoT networks. 
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The dataset for the study is labelled with a total of 34 classes: 33 distinct classes 
corresponding to specific IoT attack types and an additional class dedicated to 
benign traffic. These classes are further categorised into eight groups, with seven 
of them representing different attack categories and one signifying benign traffic. 
Moreover, at a broader level, the data can be bifurcated into two primary 
classifications: 'attack' and 'benign', facilitating binary classification tasks. 
 
The results obtained from this study, show the effectiveness of employing 
Machine Learning algorithms for the Intrusion Detection System in IoT 
infrastructure. On the three classification tasks, Random Forest was found to be 
the model with best performance, at expenses of time consumption. Gaussian 
Naïve Bayes was the fastest algorithm in all classification’s tasks, but with a lower 
performance detecting attacks. Whereas Decision Trees shows a good balance 
between performance and processing speed. 
 
The rest of the document follows this structure. Chapter number 2 describes the 
State of the Art about the IoT infrastructure, Intrusion Detection Systems in IoT, 
Machine learning techniques in the detection of IoT attacks. Section one explains 
concepts of the IoT infrastructure and common types of cyberattacks. Section two 
describes the functions and classification of an IoT Intrusion Detection System. 
Section three explains the machine learning techniques used on this work, like 
models and datasets and current IoT attack datasets and related work. 
 
Chapter number 3 explains the methodology of this project. Section one 
describes the dataset used for the study. Section two covers the dimensionality 
reduction of the dataset's features. In Section three, the selection of the models 
used in the work is made. Section four concerns about the metrics employed on 
this study. 
 
Chapter number 4 focuses on the obtained results and discussion of this study. 
Section One deals with the tuning of hyperparameters for every model for each 
of the three proposed classification tasks. In section Two, each model received 
final evaluation on the test set for the three supervised classification tasks: binary, 
one for group categories of attacks, and another for a finer classification of 
individual attacks. In the following sections results and final metrics are analysed 
and compared across different models. Section Three presents and discusses 
the results of the binary classification models. Section Four presents the 
outcomes of the group attack classification models, which are analysed 
objectively. Following this, Section Five explores the findings and interpretations 
of the individual attack classification models. 
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CHAPTER 2. STATE OF THE ART 
 
This chapter is divided in three sections. Section one explains concepts of the 
IoT infrastructure and common types of cyberattacks. Section two describes the 
functions and classification of an IoT Intrusion Detection System. Section three 
explains the machine learning techniques used on this work, like models and 
datasets and current IoT attack datasets and related work. 

2.1. Internet of Things 

 
Internet of Things (IoT) devices have become an integral part of our daily lives, 
playing vital roles in various sectors such as healthcare, transportation, smart 
homes, Industry 4.0 and critical infrastructures. Figure 2.1 illustrates the 
estimation of the last Cisco Annual Internet Report global device and connection 
growth, where Machine to Machine (M2M) connections, also referred as IoT, will 
be half of the global connected devices and connections by this year of 2023, 
having 14.7 billion connections by 2023, with a grown tendency of the 50 percent 
in 2023 [3]. 
 

 

Fig. 2.1 Global devices and connection growth [3] 
 
Figure 2.2 shows that, connected home applications, including home automation, 
home security, video surveillance, connected white goods, and tracking 
applications, are expected to comprise 48% or almost half of all M2M connections 
by 2023. This demonstrates the widespread integration of M2M in our daily life 
[3]. 
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Fig. 2.2 Global M2M connection growth by industries [3] 
 
IoT communication systems enable everyday devices to send and receive data 
and are crucial for the functionality of IoT devices, including smart home 
appliances and industrial sensors. To meet various requirements, such as range, 
power consumption, and data transmission rates, a wide number of 
communication protocols have been developed at different layers of the IoT 
protocol stack such as: [2][4].  

• MQTT (Message Queuing Telemetry Transport): lightweight and ideal for 
use in low-bandwidth, high-latency, or unreliable networks. It is commonly 
used for remote monitoring, particularly in scenarios where bandwidth is 
limited. 

• CoAP (Constrained Application Protocol): This web transfer protocol is 
specifically designed for use with constrained nodes and networks, such 
as those found in IoT environments. However, CoAP is more suitable for 
devices with limited processing capabilities. 

• Zigbee: is a wireless protocol explicitly designed for short-range, low-
power communications. it has become particularly popular among home 
automation systems.   

• Z-Wave: Another protocol for home automation, with similar functionalities 
to Zigbee but different operating frequencies and specifications. 

• LoRa (Long Range): As the name implies, it's specifically designed for 
long-range communication. This makes it an ideal choice for agricultural 
and other large-scale applications due to its long reach, even in 
challenging environments.  

• Bluetooth and BLE (Bluetooth Low Energy): Although Bluetooth is 
commonly used for short-range communication, BLE offers a comparable 
range with much lower power consumption, thus being ideal for IoT 
devices that are battery-operated. 

• NB-IoT (NarrowBand IoT): This cellular technology allows IoT devices to 
utilize the reliable communication infrastructure of existing mobile 
networks. It is engineered for usage in applications that do not need high 
bandwidth but necessitate power efficiency and extended range. 

• Wi-Fi: Suitable for devices that require high data rates and are within range 
of a Wi-Fi network, this protocol is commonly used in smart home devices. 

2.1.1. IoT Infrastructure 

 
The IoT infrastructure [2] is complex, multi-layered, and specifically designed to 
facilitate data exchange, processing, and analytics across a vast network of 
interlinked devices and is dependent upon three significant elements: the cloud, 
fog, and edge layers, each serving a unique purpose, as shown in Figure 2.3. 

1. The cloud layer is the central repository where vast amounts of data are 
stored, processed, and analysed on a grand scale. The cloud offers 
unparalleled storage and computational capabilities, facilitating intricate 
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analytics and insights. The IoT infrastructure is designed to be scalable, 
adjusting its capacity based on the influx of data from the ecosystem. 

2. The fog layer, widely known as fog computing, functions as a central 
processing intermediary between edge devices and the central cloud. 
Situated nearer to the data source than centralised data centres but more 
widely dispersed than the edge, fog nodes can locally process data, 
thereby making real-time decisions and reducing the need for all data to 
travel to the cloud. This leads to a reduction in latency and bandwidth 
usage. 

 

 

Fig. 2.3 Cloud, Fog and Edge Computing on IoT [5] 
 

3. The edge layer sits adjacently to the fog layer and operates even closer to 
IoT devices. Edge computing allows devices to process data on-site even 
before it reaches the fog layer. By handling immediate data processing 
needs, it further streamlines the data that must be sent to the central 
system, conserving bandwidth, and ensuring timely actions. 

Another essential component of the Internet of Things (IoT) infrastructure are the 
Gateways. They serve as connectors between IoT devices and communication 
networks, allowing the transmission of data between these devices and cloud-
based management or storage platforms. Besides their data-relaying function, 
gateways have the capability to perform local data processing and analysis, thus 
enabling real-time decision-making without the need for cloud-based resources. 
This proves particularly beneficial in applications where latency is critical or when 
the volume of data generated by devices is too vast to be continuously sent to a 
centralised server [5]. 

Beyond their transmitting and processing capacities, gateways offer an added 
layer of security for IoT systems. By acting as an intermediary, they can 
implement IDS, authenticating devices, and filtering out unwanted traffic, which 
shields vulnerable devices and guarantees that only valid and secure data is 
transmitted to the cloud or other devices. Figure 2.4 shows an example of IoT 
gateways connected to IoT networks. 

2.1.2. Attacks on IoT ecosystem 

 
While IoT devices provide tremendous benefits in terms of automation, efficiency, 
and convenience, they also present significant security challenges. IoT devices 
are often designed with functionality in mind, but not always with sufficient 
attention to security considerations, making them a prime target for cyber-attacks. 



6  Intrusion Detection in IoT networks using Machine Learning 

 
There are numerous types of attacks targeting Internet of Things (IoT) devices 
and platforms. Below, there is a list of some of the most common ones and 
description of their main characteristics [2][7][8]: 

• Denial of Service (DoS) and Distributed Denial of Service (DDoS) attacks 
shown in Figure 2.4, are aimed at rendering a device, network or service 
unusable by inundating it with a rush of internet traffic. The traffic in a DDoS 
attack comes from numerous sources, most commonly from botnets 
consisting of breached machines, making it more difficult to stop. IoT devices 
are frequently the subject of DDoS attacks and can also play a role in the 
botnets responsible for carrying out the attacks. 

 

 

Fig. 2.4 Security attacks on IoT devices [5] 

• Eavesdropping/Interception/Sniffing Attacks: Eavesdropping constitutes a 
passive attack wherein an attacker monitors network traffic. Through this, they 
could potentially obtain access to sensitive data, such as passwords, credit 
card numbers, or other personal information. Additionally, the attacker might 
be capable of identifying communication patterns between devices or 
systems, which they could then exploit in other manners. 

• Man-in-the-Middle (MitM) Attacks: where an attacker secretly interferes with 
and potentially modifies the communication between two parties who assume 
that they are contacting directly. In the IoT framework, MitM attack can include 
an attacker intercepting communications between a user and a smart home 
device, allowing unauthorized access to sensitive data or control of the device. 

• Spoofing Attacks: an aggressor impersonates another user or device on a 
network, with the intention of launching assaults against network hosts, 
stealing data, proliferating malware, or circumventing access controls. In an 
IP address spoofing attack, for example, an attacker may transmit packets 
that appear to originate from a fake source IP address, thus concealing their 
true identity. 
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• Replay Attacks: involves an assailant recording a data stream (such as a user 
entering a password) and subsequently repeating it to imitate legitimate user 
actions. This can enable the aggressor to acquire system access or cause 
system malfunctions. 

• Jamming: The vast majority of IoT devices use wireless networks to 
communicate with one another. In this type of attack, the perpetrators target 
a specific IoT system and send a falsified signal to disrupt the radio 
transmission, leading to a reduction in available bandwidth, processing power, 
and memory. 

• Malware Attacks: a type of malevolent software utilised or programmed by 
attackers to sabotage device operation, obtain confidential information, or 
acquire entry to private systems, poses a dangerous threat to individuals and 
corporations alike. In the realm of IoT devices, malware can be deployed to 
commandeer a device or incorporate the same into a botnet specifically for 
DDoS attacks. 

• Mirai Botnet Attack: this is a type of malicious software that converts 
networked devices into remotely controlled bots that cyber attackers use as 
part of a botnet to conduct large-scale attacks. It focuses primarily on online 
consumer devices like IP cameras and home routers. Mirai is also commonly 
used as an initiator of DoS/DDoS attacks, an example is shown in Figure 2.4. 

• Sybil Attack: Sybil attacks are discovered in peer-to-peer networks. A Sybil 
attack undermines the identity of an IoT device to generate numerous 
anonymous identities and consume a disproportionate amount of power. In 
networks where an IoT device functions with multiple identities, it frequently 
undermines authorized network access in reputation systems. 

• Side-channel attacks target systems, like cryptographic ones, by studying 
their physical characteristics during operation. By observing elements such as 
power consumption, timing, and electromagnetic leaks, attackers can gather 
extra information. This acquired data can subsequently be exploited to breach 
cryptographic systems and access sensitive information. 

• Cryptanalysis Attacks: These attacks aim to overcome the cryptographic 
protections implemented on data. They may include approaches such as 
ciphertext-only attacks (where the attacker only possesses encrypted data), 
known-plaintext attacks (where the attacker has access to both encrypted and 
unencrypted data), or chosen-plaintext attacks (where the attacker can 
encrypt any data and observe the outcome). 

• Tampering: Modifies the hardware or software of a device to change its 
operation. Tampering may involve altering the device's programming to 
disrupt its functionality, gain access to sensitive data, or enable an attacker to 
control the device. Given that IoT devices are frequently deployed in 
unsecured public or remote locations and are often small and constrained, 
they are more vulnerable to physical attacks. 

• Password Cracking: Password cracking refers to the process of guessing 
passwords to gain unauthorized access to a system. A range of techniques 
can be employed by attackers, including educated guessing, dictionary 
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attacks (where all words in a dictionary are tried), and brute force attacks 
(where all possible combinations are attempted). 

• Advanced Persistent Threats (APT): refers to prolonged and targeted attacks 
by unauthorized individuals who attain access to a network and evade 
detection for a considerable duration. The primary objective is often data theft 
rather than network damage or disruption. Large organizations are typically 
the targets of APTs, which require an intricate level of stealth and 
sophistication. 

• AI-Based Attacks: Modern hackers utilise AI-driven tools that are faster, 
scalable, and more efficient compared to manual interventions. This 
represents a growing threat to the ever-expanding IoT landscape. While 
traditional IoT threats may appear similar, the intensity, automation, and 
specificity of AI-powered attacks will make their mitigation increasingly 
challenging. 

 
Examples of real-life attacks [7]: 

• In 2016, Mirai malware attacked IoT devices, including cameras and 
routers, by using default credentials. Due to this malicious software, a 
botnet was formed using these compromised devices to launch distributed 
denial-of-service (DDoS) attacks. The DNS provider Dyn was notably 
affected, causing temporary disruptions to services such as Netflix, 
Twitter, and The New York Times. 

• In 2015, researchers showcased remote manipulation of a Jeep 
Cherokee's telematics system, gaining control over its engine, brakes, and 
other key functions. Given the potential life-threatening consequences, 
such as hackers tampering with the brake system, Fiat Chrysler allocated 
1.4 million USD to address the system's vulnerabilities. 

2.2. Intrusion Detection Systems (IDS)  

 
In the context of IoT infrastructure, an Intrusion Detection System (IDS) is a 
necessary element to identify and neutralise potential threats and attacks 
objectively. IoT devices are vulnerable due to their inherent constraints and vast 
numbers, making them inviting targets for attackers. State of the art network 
intrusion detection systems (NIDS) used in IoT systems can be categorised into 
Signature, Anomaly, Specification, and Hybrid types based on their framework, 
implementation, and operation [2]: 
 
1. Signature-based NIDS are challenging to implement in IoT systems due to the 

resource limitations of IoT devices, such as memory, processing capability, 
and energy constraints. Traditional signature-based systems necessitate 
extensive datasets for robust detection. Therefore, there's a need to 
restructure traditional signature-based NIDS to be compatible with the 
resource constraints of IoT devices. 

 
2. Anomaly-based NIDS for IoT systems compare current activities against a 

standard behavioural profile and generate alerts when deviations exceed a 
predetermined threshold. This approach efficiently detects emerging attacks, 
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particularly those that exploit IoT device resources. Unlike signature-based 
NIDS that depend on recognised attack patterns, anomaly-based systems 
rely on either typical or anomalous data. Given their potential for being 
lightweight, many NIDS for IoT security make use of anomaly-based 
approaches. 

 
3. Specification-based Network Intrusion Detection Systems (NIDS) utilise a set 

of rules, manually updated by the IoT system administrator, to detect network 
intrusions. High-level rules are established based on the IoT network's 
surroundings and performance to ensure comprehensibility. Resource 
constraints in IoT systems make this technique preferable. However, this 
approach can only locate intrusions that match its predetermined rules, 
limiting its efficacy. The primary differentiation between specification-based 
and anomaly-based NIDS resides in the individualised manual rule-setting for 
each attack. 

 
4. Hybrid NIDS for IoT systems combine several detection strategies, including 

signature-based, anomaly-based, and specification-based methods, to 
enhance strengths and minimize weaknesses. Two primary classifications for 
hybrid NIDS exist [2]:  

a) Sequence-based, which applies either anomaly or misuse detection first, 
followed by a distinct technique.  

b) Parallel-based. Multiple detectors operate simultaneously, and decisions 
are reached by considering outputs from multiple sources. 

 
Typically, hybrid NIDS incorporate both signature-based and anomaly detection. 
Signature-based detection identifies known attacks, while anomaly detection 
identifies new or unidentified attacks. Because IoT systems have limited 
resources, implementing a hybrid-based NIDS directly in these systems often 
proves impractical. 
 
IoT NIDS designs can also be categorized based on their operational mode into 
two main types: Host-based and Network-based. Table 2.1 illustrates the main 
differences between them. 
 
Table 2.1. Differences between Host-Based and Network-Based IDS [2] 

 
 
The placement of an IDS in an IoT infrastructure is contingent on the specific use 
case, the characteristics of the devices involved, and the network architecture. 
Here are several potential locations for an IDS in an IoT infrastructure [2]: 
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1. Device Level (Edge IDS): Directly on IoT devices, suitable for those with 
ample computational power, enabling real-time detection. 

2. Gateway Level: At IoT gateways that collate data from multiple devices, 
ideal when individual devices can't host their own IDS. 

3. Network Level (Network-based IDS or NIDS): Monitors entire IoT network 
traffic and is strategically positioned to oversee traffic flow. 

4. Cloud level: Essential due to reliance on cloud platforms, it checks the 
authenticity of data being transmitted. 

5. Fog level: this placement helps decrease threat detection latency, which 
is crucial for timely responses. 

6. Host-based IDS or HIDS focuses on specific applications' activities, 
ensuring they process IoT data correctly and without malicious 
interference. 

 
The most effective IoT security strategies often employ multiple IDS placements 
across the infrastructure, providing layered security. This multi-tiered approach 
ensures that if one IDS misses an intrusion, another might catch it. However, it's 
crucial to balance security needs with the performance overhead introduced by 
these systems, especially in resource constrained IoT environments. 

2.3. Machine Learning techniques 

 
Machine Learning (ML) is a subfield of Artificial Intelligence (AI) that enables 
computers to learn without explicit programming. It involves developing a 
predictive algorithm for each problem to be solved. These algorithms learn from 
data in order to identify patterns and trends, creating a model for predicting or 
classifying elements [10]. Deep Learning is a subset of Machine Learning that 
uses multiple layers to progressively extract higher-level features from the raw 
input. The term "deep" in "deep learning" indicates the number of layers utilized 
to transform the data. Most of Deep Learning algorithms are based on Artificial 
Neuron Networks (ANN) [11]. 
 
Machine learning systems can be categorised based on the level and type of 
supervision during training. Three main categories exist [12]: 

1. Supervised learning: where the training dataset fed into the algorithm consists 
of target outcomes, referred to as labels. Supervised learning can be 
subcategorised according to their tasks into two types: 

a) Classification: where the target label is categorical and can be binary or 
multiclass, resulting in models known as classifiers. 

b) Regression: in this approach, the algorithm attempts to forecast a 
numerical value. The models used for this purpose are referred to as 
regressors. 

2. Unsupervised learning: where training takes place on a dataset without 
previous labelling or defined classes. In advance, there is no known objective 
or class value, whether categorical or numerical. Typically, they are dedicated 
to clustering or segmentation tasks. 
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3. Reinforcement learning: the learning system, called an agent within this 
context, can observe the environment, choose and execute actions, and 
receive rewards in return (or penalties in the guise of negative rewards). It 
must subsequently learn on its own what is the optimal strategy, known as a 
policy, to accumulate the maximum reward over time. 

 
The objective of this Master Thesis is to compare different machine learning 
algorithms to be used in Intrusion Detection Systems on IoT infrastructure. 
Specifically, employing supervised classification models to detect various types 
of attack. A typical configuration of an IDS using ML is shown in Figure 2.5. 
 

 
Fig. 2.5 Typical IDS scheme using ML [13] 

 
Therefore, an Artificial intelligence system using machine learning for detecting 
attacks on the Internet of Things (IoT), must undertake the following steps: 

1. Data Collection: begins by acquiring relevant data from IoT devices, can 
be during normal conditions and simulated or real cyberattacks. 

2. Data Cleansing: cleanse the data by omitting redundancies, rectifying 
missing values, and encoding or normalising data types. 

3. Feature Extraction: identify key data attributes that can enhance the 
learning process. 

4. Model selection and training: choose and train appropriate models for the 
data. 

5. Evaluation of the Model: post-training, validate the model's accuracy using 
metrics. 

6. Deployment and Monitoring: deploy the effective model to monitoring the 
network, making adjustments as required. 

7. Batch Learning: For continuously growing data, adopt a batched or 
incremental learning approach to keep the model updated. 

Detecting an attack is primary a binary classification task, with only one main 
objective, detect or classify the traffic sample as been part of an attack or not. But 
nowadays, when the world tends to specialisation, more and more data to be 
analysed, more complex devices in the infrastructures, a more detailed 
classification of an attack is required in order to take the appropriate measures 
and possible future fixes and workarounds. Just binary classifying is not enough 
to proper handle the detected threat, a more granular classification is needed. 
Therefore, the classification of groups of attacks or specific attacks is the task of 
multiclassification problems. This study analysed two additional 
multiclassification tasks: one to detect/classify the group of the attack and another 
to detect/classify the individual attack. 
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2.3.1. Datasets 

IoT attack datasets are essential tools for comprehending cyber threats and 
crafting effective protective strategies. These datasets, either drawn from real-
world scenarios or artificially constructed, detail typical and anomalous 
behaviours within IoT settings. They contain several data entries, showcasing 
elements like packet dimensions, time markers, IP details, and more. These 
valuable resources aid researchers and cybersecurity experts in several ways: 
from moulding machine learning frameworks for intrusion detection to gauging 
the efficacy of security algorithms. 
 
As IoT device adoption surges, so will the relevance of these datasets. A diverse 
array of IoT datasets exists within the cybersecurity realm, but the most of them 
typically exhibit certain standard attributes to ensure their utility, such as [14][15]: 

1. Multidimensionality: Commonly known as features, entries often detail 
several attributes, spanning from IP addresses to protocol types across 
various IoT protocol stack layers. 

2. Attack Diversity: An effective dataset encompasses various attack 
modalities, from DDoS to malware threats like botnets. This variety aids in 
building robust security models. 

3. Device Diversity: Given IoT's vast device landscape, datasets should 
encapsulate varying devices, makers, and OS types. 

4. Temporal Characteristics: The time-sensitive essence of many IoT 
transactions and threats necessitates datasets to capture time-related 
features, such as inter-packet intervals. 

5. Scalability: Given the large-scale nature of many IoT deployments, 
datasets should be sufficiently large and scalable. 

6. Labelling: For supervised learning approaches, the objective of this 
project, the data points should be labelled, identifying whether the data 
point represents normal behaviour or a specific type of attack. 

7. Real-world Data: While synthetic data can be useful, real-world data 
provides the opportunity to capture and understand the complexity of IoT 
environments and attacks more accurately. 

 
Creating datasets for Internet of Things (IoT) attacks is a complex process that 
involves simulating or capturing real-world IoT environments and their associated 
vulnerabilities as shown in Figure 2.6 [16] [17]: 

1. IoT Environment Setup: An environment replicating authentic IoT scenarios is 
established, incorporating diverse IoT devices, communication protocols, and 
applications. 

2. Attack Simulation: After environment setup, different types of attacks are 
simulated. This can include DDoS, MitM, malware, sniffing/eavesdropping, 
spoofing, etc. Attacks are often performed using penetration testing tools and 
automated scripts, for example, several setups with Kali Linux executing its 
known vulnerability tools. 

3. Data Capture: All traffic in the IoT environment, including both normal and 
malicious traffic, is captured using network sniffing tools like the well-known 
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Wireshark, Tcpdump, Argus, etc. The data captured includes packet-level 
data like source and destination IP addresses, TCP/UDP ports, payload size, 
packet timestamps, and protocol type. 

4. Pre-processing and Feature Extraction: The raw captured data often needs to 
be processed before it is useful. Pre-processing can include steps like noise 
removal, dealing with missing data, and normalisation. Feature extraction is 
performed to derive meaningful features from the raw data that can be used 
for modelling and analysis. This could include statistical features, time-based 
features, content-based features, etc. This step is crucial for the database. 

5. Labelling: For supervised learning tasks, the dataset needs to be labelled. 
This involves identifying and marking the data points associated with different 
types of attacks. Labelling can be a challenging and time-consuming process, 
often requiring domain expertise. 

6. Data Validation: Finally, the dataset is validated to ensure its accuracy and 
effectiveness. This involves using the dataset in various machine learning 
models to test if it can accurately detect and classify IoT attacks. The dataset 
might need to be refined and re-validated multiple times before it is considered 
ready for use. 

 

 
Fig. 2.6 Example of Creation of an IoT attacks dataset [18] 

 
There are no standard procedures for creating an IoT attack dataset, it depends 
on the IoT context and the types of attacks. While some datasets are generated 
from controlled simulations to prevent actual damage, others are based on 
genuine IoT traffic, prioritising privacy and legality. 

2.3.2. Public IoT Attack Datasets 

 
Realistic IoT attack datasets are used by researchers to design and test new 
security mechanisms. These datasets are fundamental for investigating the 
numerous cyber threats that target IoT systems. It is crucial to keep the datasets 
up-to-date and appropriate as the nature of IoT threats changes constantly. This 
facilitates the creation of robust security measures and better understanding of 
emerging threats in the IoT sector [2]. For general IDSs, there are well known 
and standards datasets like KDD99, NSL-KDD, UNSW-NB 15, a review of them 
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are explained in [19] [20]. But more specific IoT attack datasets and related work 
are listed below: 

• TON-IoT: is crafted for AI-based IDS within the Industry 4.0 and Industrial 
Internet of Things (IIoT) setting. It aids in evaluating AI models' intrusion 
detection performance using a realistic large-scale network with multiple 
virtual machines and sensors. The dataset creators ran different models 
from Naïve Bayes to Neural Networks, obtaining metrics from 90% to 98% 
[21]. 

 

• Bot-IoT: combines genuine IoT traffic with a variety of attack traffics, 
especially Botnet, filling the gap in the comprehensive collection of 
network traffic and attack diversity in existing datasets [22]. The dataset, 
available in both PCAP and CSV formats, organises files by attack types 
for easier labelling, authors in [23] obtained a 99.99% of accuracy 
employing Decision Trees models. 

 

• MQTTset: targets intrusions against the MQTT protocol, a common IoT 
application protocol. The dataset, derived from real-life sensors, 
encompasses multiple attack types, including an innovative DoS attack 
named SlowTe. With 33 features, it highlights various TCP and MQTT 
protocol attributes. Researchers obtained accuracy between 64% and 
91% running several models, from Naïve Bayes to Neural networks [24]. 
 

• N-BaIoT: use nine IoT devices. This dataset encompasses four kinds of 
attacks: reconnaissance, man-in-the-middle, denial-of-service, and botnet 
malware. From the PCAP files, 115 features are derived, capturing details 
from packets, steam, and time frames. The authors claimed a 100% of 
True Positive Rate (TPR) using deep autoencoders with neural networks 
[25]. 

2.3.3. Machine Learning Classifier Models 

 
The supervised classifiers that were trained and assessed fell into five distinct 
categories: Logistic Regression from linear models, Naïve Bayes from 
probabilistic models, Decision Trees from tree models, Random Forests from 
ensemble models, and Multilayer Perceptron (MLP) from the Artificial Neural 
Network category. 

1. Logistic Regression (LR): Logistic Regression, also known as Logit 
Regression, is a widely used method for estimating the probability of an 
instance belonging to a particular class. If the estimated probability is above 
50%, the model predicts that the instance belongs to that class (known as the 
positive class, labelled "1"). If the estimated probability is below 50%, the 
model predicts that the instance does not belong to that class (i.e., it is labelled 
as "0" being part of the negative class) [12][26][27]. 

2. Gaussian Naive Bayes (NB): refer to a set of supervised learning algorithms 
that apply Bayes’ probabilistic theorem. These methods make the "naive" 
assumption of conditional independence between every pair of features, given 
the value of the class variable. The likelihood of the features is assumed to be 
Gaussian [26][27]. 
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3. Decision Trees (DT): is a supervised learning method used for both 
classification and regression tasks. It graphically models decisions and their 
possible outcomes, including associated probabilities and costs. Starting with 
a root node containing the entire dataset, it splits data based on a feature that 
maximises separation. The choice of splitting is determined by criteria such 
as information gain or the Gini index. Internal nodes denote decisions, while 
leaf nodes represent final outcomes. They are easily interpretable and 
versatile, handling both categorical and numerical data [27][28][29]. 

4. Random Forest (RF): Ensemble learning is the process of combining 
classifiers to increase the predictive performance of using singular models, 
this is the case of Random Forest where multiple decision trees are combined 
into one classifier, increasing accuracy by reducing the effects a single 
decision tree has on the overall outcome. This means if a decision tree has 
low accuracy, it will not have a significant impact on the overall accuracy of 
the random forest. Random forest utilises bagging (short for bootstrap 
aggregating) where sampling is performed with replacement which is what 
allows this method to achieve high classification accuracy [12][26][27][28]. 

5. Multilayer Perceptron (MLP): is a form of feedforward Artificial Neural 
Network (FFNN) that falls into the category of supervised learning algorithms. 
FFNN it's a type of artificial neural network where connections between the 
nodes (also known as neurons) do not form a cycle and the data moves in 
only one direction, forward. Perceptrons are the foundational units of a neural 
network, behaving as single artificial neurons and functioning as single-layer 
networks. In contrast, MLPs have multiple layers. The neural network can 
comprise one or many hidden layers, and each layer can consist of one or 
several neurons. Neurons generally employ activation functions such as 
ReLU (rectified linear unit), sigmoid, or hyperbolic tangent. The output layer 
is used for classification tasks and can feature a SoftMax function for multi-
class issues or a logistic (sigmoid) activation for binary classification 
problems. The MLP adjusts the neurons' weights according to the output 
error, which is propagated from the output layer to update the weights 
throughout the network, this algorithm is called backpropagation [12] 
[26][27][28]. 

One of the common problems associated when applying ML models is the 
overfitting. Overfitting happens when a model can predict very well on the training 
dataset but very badly on untrained/test data. The opposite behaviour is the 
underfitting, that happens when the algorithm performs very bad on the training 
and test set. [12] [26]. 

2.3.4. Cutting-edge ML techniques 

 
There are several cutting-edge techniques were emerging in the field of IoT attack 
detection using machine learning, such as:  

• Deep Learning Models: neural networks with many layers are capable of 
learning complex patterns. Types of deep learning models are 
Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN) 
and Long Short-Term Memory (LSTM). CNNs process grid-like data, like 
images, and have potential for processing IoT network traffic. RNNs are 
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useful for analysing time-series IoT data. Long Short-Term Memory is a 
type of recurrent neural network (RNN) designed to learn and remember 
long-term dependencies in data sequences. [30][31]. 

• Federated Learning: this approach entails using ML to train a model across 
multiple devices or servers containing local data samples, without sharing 
them. Its effectiveness has been acknowledged in IoT networks, where 
individual devices can learn from their data and share model updates with 
a central server, thereby enhancing privacy [32]. 

• Transfer Learning: on the other hand, involves applying knowledge gained 
from solving one problem to a different, but related, problem. For example, 
a ML model trained on one IoT network may be adapted for use on a 
different network. This can save considerable computational resources 
and time as opposed to training the model from scratch [33]. 

• Automated Machine Learning (AutoML): encompasses a range of 
techniques and procedures to automate the complete machine learning 
process when dealing with real-world issues. Its implementation would be 
particularly advantageous in an IoT environment where models may need 
to be deployed across a large number of devices. Automated algorithm 
and hyperparameter selection can reduce reliance on expert knowledge 
[34]. 

• Reinforcement Learning: involves ML where an agent learns to make 
decisions by taking actions in an environment to maximise a reward. On 
the Internet of Things context, a model may learn to adjust network 
parameters to maximise security and respond to new threats in real-time 
[35].  

• Explainable AI: refers to a suite of tools and frameworks that aid humans 
in comprehending and interpreting ML model predictions. Concerning IoT, 
it would enable a network operator to discern why the model identified 
specific network traffic as possibly harmful, thereby providing an enhanced 
understanding of both the model and the prospective threat [36]. 
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CHAPTER 3. METHODOLOGY 
 

This chapter explain the methodology used in this work and is organised as 
follow. Section one describes the dataset used for the study. Section two covers 
the dimensionality reduction of the dataset's features. In Section three, the 
selection of the models used in the work is made. Section four concerns about 
the metrics employed on this study. 
 
The working environment utilised in the study had the following characteristics: 
Operating system with Windows 11 Pro 22H2 with a 11th Gen Intel(R) Core(TM) 
i5-11300H @ 3.10GHz Processor, 16GB of RAM and 512GB SSD, a NVIDIA 
GeForce RTX 3050 Laptop GPU graphic card with 4GB GDDR6. The main 
software used for the development was the Visual Studio Code 1.80.0 with 
Jupyter Notebook support, the language used was Python 3.11.2, for 
manipulating datasets in form of dataframes was used the library pandas 2.0.3, 
and finally, all modelling were done using the scikit-learn library 1.3.0. Scikit-learn 
is an open-source machine learning library that facilitates both supervised and 
unsupervised learning. It offers a range of facilities for model training, model 
selection, model evaluation, pre-processing of data, etc. 
 
Evaluating the performance of ML models to be employed in IDS to properly 
identifying and classifying attacks in IoT, is accomplished through the following 
steps: 

• Dataset selection. 

• Feature selection and reduction. 

• Model selection. 

• Model Hyperparameters tuning. 

• Model final evaluation. 

3.1. IoT Dataset selection 

 
Researchers from the University of New Brunswick of Canada (UnB), with the 
support of the Canadian Institute for Cybersecurity (CIC), proposed an extensive 
multiclass labelled dataset of IoT cyber-attacks, named by its authors, 
CICIoT2023 [37]. This dataset includes 33 different types of attacks (categorised 
into seven groups) performed within a topology of up to 105 IoT devices from 
various types and manufacturers as shown on Figure 3.1. The diversity of this 
dataset was one of the main reasons for its selection for the study. Additionally, 
it is one of the most recent IoT attack datasets available within the scientific 
community. 
 
The entire dataset was released in the second quarter of 2023 and is publicly 
available in [38], with 46686579 samples, exceeds 13GB and is distributed across 
169 .csv files. The original traffic captures in .pcap files are also provided by the 
authors, enabling researchers to develop their own feature extraction and 
labelling processes. 
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Fig. 3.1 Topology diagram of the scenario of Dataset. [37] 

 
Due to technical constraints and limited resources, the study analysed only the 
6 percent of the total dataset, while ensuring it maintained the same 
characteristics and class proportions as the original. The time required for 
implementing algorithms and machine learning models was meticulously 
recorded for performance analysis. The new Dataset for the analysis (a subset of 
the Full Dataset) has been obtained using the function train_test_split from the 
scikit-learn library, having the parameters: test_size equals to the new size 
requested in percentage and stratify=df['label'] pointing to the target variable, 
making a small new dataset of 2917910 samples but maintaining the same 
proportion of the classes of the target variable. The resulting dataset has been 
saved to an intermediate .csv file for further processing. 
 
The obtained dataset was split into training and test sets, with an 80:20 
proportion, respectively. This proportion is a common practice in machine 
learning and statistics, where is desirable to have a good balance of enough data 
for training and to validate and test the model. Some authors explain the 
relationship with the 80-20 Pareto rule, (where 80% of the effect are due to 20% 
of the cause, and vice versa) [39], and others had mathematically demonstrated 
this ratio in [40], but at the end this proportion has been proved to produce the 
best balanced results through many years of experimentation. The training 
dataset is used to train and adjust the model whereas the test dataset is utilised 
to finally evaluate the model's performance, ensuring that it can make accurate 
predictions on unseen data. All subsequent operations of feature extraction, 
training and work related are done in the training dataset, until the last step of 
evaluation of every model where the test dataset is used. 
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3.1.1 Exploratory dataset analysis 

 
All features in the entire dataset are numeric, except for the 'label' variable, which 
is the target. It contains the outcome of the labelling process. Table 3.1 describes 
the number of observations or instances of each packet analysed. whereas Table 
3.2 shown the names of the features and its description, these features are the 
result of the process of construction of the Dataset done by the authors. 

 

Table 3.1. Dataset description 

Samples Variables Label Classes 

2917910 47 (including 46 features and one label) 34 

Training Dataset Samples Test Dataset Samples 

2334328 583582 

 
Table A.1 from the Annex A, describes the numerical properties (mean, standard 
deviation, min, max and percentiles) of each feature. It shows that every feature 
has no empty records, all features show the same count of instances. 
 
The histograms displayed in Figure A.1 and the numerical descriptions presented 
in Table A.1 of Annex A reveal that the 'Telnet' feature lacks relevant points, as it 
shows all zeroes. This is not a surprise, because Secure Shell Protocol (SSH) 
obsoletes the old Telnet to login into remote systems. Therefore, “Telnet” 
Features should be eliminated from further analysis, reducing the number of 
features to 45. From a detailed analysis of the figures and tables previously 
mentioned, it can be inferred that several of the features shown are binary. This 
observation leads us to treat these variables as such during the processing and 
normalisation. Binary features don’t require normalisation they are in range [0,1]. 
Some of the models analysed such as LR, NB, MLP, require variable scaling or 
normalisation, because they rely on distances or gradients. Without 
normalisation, features with larger scales could disproportionately influence the 
model, potentially leading to misleading results or longer training times. By 
scaling or normalising, we ensure that each feature contributes proportionately to 
the final decision [27].  
 
The target variable, named ‘label’ is a categorical one, describing 33 types of 
attacks and one class for benign traffic, and are also classified in 7 attack groups 
and one for benign traffic as shown in Table 3.3. For binary classification (last 
column) it has the ‘Attack’ and ‘Benign’ labels. 
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Table 3.2. Feature names and descriptions  

Feature name Description 

flow_duration Duration of the packet’s flow 

Header_Length Header Length 

Protocol Type Protocol Type: IP, UDP, TCP, IGMP, ICMP, Unknown (Integers) 

Duration Time-to-Live (ttl) 

Rate Rate of packet transmission in a flow 

Srate Rate of outbound packets transmission in a flow 

Drate Rate of inbound packets transmission in a flow 

fin_flag_number Fin flag value 

syn_flag_number Syn flag value 

rst_flag_number Rst flag value 

psh_flag_number Psh flag value 

ack_flag_number Ack flag value 

ece_flag_number Ece flag value 

cwr_flag_number Cwr flag value 

ack_count Number of packets with ack flag set in the same flow 

syn_count Number of packets with syn flag set in the same flow 

fin_count Number of packets with fin flag set in the same flow 

urg_count Number of packets with urg flag set in the same flow 

rst_count Number of packets with rst flag set in the same flow 

HTTP Indicates if the application layer protocol is HTTP 

HTTPS Indicates if the application layer protocol is HTTPS 

DNS Indicates if the application layer protocol is DNS 

Telnet Indicates if the application layer protocol is Telnet 

SMTP Indicates if the application layer protocol is SMTP 

SSH Indicates if the application layer protocol is SSH 

IRC Indicates if the application layer protocol is IRC 

TCP Indicates if the application layer protocol is TCP 

UDP Indicates if the application layer protocol is UDP 

DHCP Indicates if the application layer protocol is DHCP 

ARP Indicates if the application layer protocol is ARP 

ICMP Indicates if the application layer protocol is ICMP 

IPv Indicates if the application layer protocol is IP 

LLC Indicates if the application layer protocol is LLC 

Tot sum Summation of packets lengths in flow 

Min Minimum packet length in the flow 

Max Maximum packet length in the flow 

AVG Average packet length in the flow 

Std Standard deviation of packet length in the flow 

Tot size Packet’s length 

IAT The time difference with the previous packet 

Number The number of packets in the flow 

Magnitue 
(Average of the lengths of incoming packets in the flow + 
Average of the lengths of outgoing packets in the flow) ** 0.5 

Radius 
(Variance of the lengths of incoming packets in the flow + 
Variance of the lengths of outgoing packets in the flow) ** 0.5 

Covariance Covariance of the lengths of incoming and outgoing packets 

Variance 
Variance of the lengths of incoming packets in the flow / The 
variance of the lengths of outgoing packets in the flow 

Weight Number of incoming packets * Number of outgoing packets 

  



CHAPTER 3. METHODOLOGY   21 

Table 3.3. Label Classes attacks description, groups and binary classification. 

Attack 
number 

Multiclassification Class 
Name 

Group 
Classification 

Binary 
Classification 

1 DDoS-RSTFINFlood DDoS Attack 

2 DDoS-PSHACK_Flood DDoS Attack 

3 DDoS-SYN_Flood DDoS Attack 

4 DDoS-UDP_Flood DDoS Attack 

5 DDoS-TCP_Flood DDoS Attack 

6 DDoS-ICMP_Flood DDoS Attack 

7 DDoS-
SynonymousIP_Flood 

DDoS Attack 

8 DDoS-ACK_Fragmentation DDoS Attack 

9 DDoS-UDP_Fragmentation DDoS Attack 

10 DDoS-ICMP_Fragmentation DDoS Attack 

11 DDoS-SlowLoris DDoS Attack 

12 DDoS-HTTP_Flood DDoS Attack 

13 DoS-UDP_Flood DoS Attack 

14 DoS-SYN_Flood DoS Attack 

15 DoS-TCP_Flood DoS Attack 

16 DoS-HTTP_Flood DoS Attack 

17 Mirai-greeth_flood Mirai Attack 

18 Mirai-greip_flood Mirai Attack 

19 Mirai-udpplain Mirai Attack 

20 Recon-PingSweep Recon Attack 

21 Recon-OSScan Recon Attack 

22 Recon-PortScan Recon Attack 

23 VulnerabilityScan Recon Attack 

24 Recon-HostDiscovery Recon Attack 

25 DNS_Spoofing Spoofing Attack 

26 MITM-ArpSpoofing Spoofing Attack 

27 BrowserHijacking Web Attack 

28 Backdoor_Malware Web Attack 

29 XSS Web Attack 

30 Uploading_Attack Web Attack 

31 SqlInjection Web Attack 

32 CommandInjection Web Attack 

33 DictionaryBruteForce BruteForce Attack 

34 BenignTraffic Benign Benign 

 
It should be noted that throughout the development of the study, reference is 
made to the term 'group classification'. This is essentially a more refined multi-
classification task related to 8 categories of attack groups. Whereas 
multiclassification belongs to the individual identification of 34 types of attacks, 
binary classification concerns determining whether a sample is part of an attack 
or not. A more detailed description of the group attack categories and the number 
of individual attacks is shown in Table 3.4. 
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Table 3.4. Group attack description. 

Attack 
groups  

Description name 
Short 
name 

Number 
of 

individual 
attacks 

1 Distributed Denial of Service (DDoS) DDoS 12 

2 Denial of Service (DoS) DoS 4 

3 Mirai Mirai 3 

4 Reconnaissance attack Recon 5 

5 Spoofing Spoofing 2 

6 Web-Based vulnerabilities Web 6 

7 Brute force attacks BruteForce 1 

8 Benign Benign 1 (benign) 

Total 34 

 
A brief description of each attack group and their individual attacks can be found 
below: 
 
1. Distributed Denial of Service (DDoS) attacks: described in section 2.1.2., 

these attacks are executed from several infected devices [41]. 

a) DDoS-RSTFINFlood: The DDoS-RST/FIN Flood attack can disrupt 
servers by overwhelming them with traffic. This type of attack exploits the 
RST and FIN flags in TCP, which are responsible for controlling data 
transmission. The RST flag resets connections legitimately, while the FIN 
flag closes them after transmission. In the DDoS variant of this attack, an 
attacker sends a multitude of TCP packets with set RST or FIN flags, 
confusing the targeted server. 

b) DDoS-PSHACK_Flood: an attacker overwhelms a target using TCP 
packets with both the PSH and ACK flags set. PSH, representing the "push 
function" in TCP, bypasses standard buffering to send data immediately. 
When combined with the ACK flag in this attack, a flood of "urgent" packets 
strains the target's resources, causing service disruptions by exploiting the 
TCP push function. 

c) DDoS-SYN_Flood: targeting the initial handshake of a TCP/IP 
connection. In this attack, the attacker sends numerous SYN requests to 
a server from a fake IP address. The server responds with SYN-ACK 
packets, expecting ACK responses to establish a connection. Due to the 
spoofed IPs, these responses never come, leading to many half-open 
connections. This consumes server resources, potentially slowing it down 
or causing it to crash, preventing service for genuine users. 

d) DDoS-UDP_Flood: In this attack, the attacker bombards a host with 
numerous UDP packets targeting random ports. The host, failing to find an 
application for each port, responds with an ICMP 'Destination 
Unreachable' packet. This activity uses up the host's resources, potentially 
making it inaccessible. 

e) DDoS-TCP_Flood: this attack disrupts servers by inundating them with 
numerous TCP connections. The attacker forms an excessive number of 
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connections to the target server, saturating its capacity for concurrent 
connections. Consequently, the server fails to process genuine requests 
due to the surfeit of connections. 

f) DDoS-ICMP_Flood: this attack overwhelms the target by sending 
numerous Internet Control Message Protocol (ICMP) echo-request 
packets or "pings". The objective is to saturate the target's network. In this 
assault, attackers flood the target with a deluge of "pings". Since each ping 
demands a response from the target, a constant stream of requests can 
quickly consume its bandwidth and processing capacity, making it unable 
to cater to genuine requests. 

g) DDoS-SynonymousIP_Flood: a substantial quantity of manipulated 
TCP-SYN packets is sent, their source and destination addresses being 
the targeted address. This causes the server to utilise its resources in 
order to process the incoming traffic. 

h) DDoS-ACK_Fragmentation: manipulates the packet fragmentation 
process in TCP/IP to overload a target. Here, the attacker dispatches a 
barrage of fragmented ACK (Acknowledgement) packets to the victim. As 
the target expends resources attempting to piece these packets back 
together, it can become sluggish or entirely non-functional due to the 
depletion of its resources. 

i) DDoS-UDP_Fragmentation: bombards the target with numerous 
fragmented UDP packets. As the victim system tries to reconstruct these 
fragments, it expends considerable resources, which can cause system 
slowdowns or render it non-operational. 

j) DDoS-ICMP_Fragmentation: floods the target with numerous 
fragmented ICMP packets. When the victim system attempts to piece 
these fragments together, it uses up a lot of its resources, potentially 
leading to reduced performance or system unavailability. 

k) DDoS-SlowLoris: aimed to incapacitate specific web servers by 
consuming all available connections. It does so by sending deliberately 
prolonged partial HTTP requests, ensuring connections stay open. This 
eventually maxes out the server's connection limit, preventing legitimate 
users from connecting. 

 
2. Denial of Service (DoS) attacks: very similar with DDoS and described in 

section 2.1.2, a DoS attack typically comes from a single device and Internet 
connection [42] [43]. 

a) DoS-UDP_Flood: same as the DDoS-UDP_Flood, being originated from 
one single spoofed IP. 

b) DoS-SYN_Flood: similar as DDoS-SYN_Flood, originating from one 
single spoofed IP. 

c) DoS-TCP_Flood: same effect as the DoS-TCP_Flood but conducted 
from a single spoofed host. 

d) DoS-HTTP_Flood: overwhelms a server with HTTP requests, aiming to 
deplete its resources. These can be either GET (retrieving information) or 
POST (accepting data) requests. As the server processes these, it may 
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neglect legitimate user requests. Notably, this attack requires minimal 
resources or bandwidth from the attacker. 
 

3. Mirai attacks are variants of the Mirai Bot, explained in section 2.1.2 [44]. 

a) Mirai-greeth_flood: overwhelms a system with Generic Routing 
Encapsulation (GRE) packets, where the inner data consists of random 
IPs and ports, and the outer layer has genuine IPs. 

b) Mirai-greip_flood: like Mirai-greeth_flood, but the target is the packet 
encapsulation on the ethernet header. 

c) Mirai-udpplain: utilises a fixed string payload in the UDP packet known to 
the Mirai malware. Its constant size and content allow rapid packet 
generation to flood the target. As UDP doesn't necessitate a receiver's 
response, the attacker can intensify the attack by continuously dispatching 
packets. 
 

4. Reconnaissance attacks: also known as information gathering attacks, are 
initial steps by attackers to gather detailed information about their targets, 
aiming to understand system vulnerabilities and plan subsequent attacks. 
Being passive in nature, these attacks are challenging to detect [45] [46]. 

a) Recon-PingSweep: involves sending ICMP Echo Request packets 
across an IP range to identify active devices. 

b) Recon-OSScan: uses network probes to deduce the operating system of 
target devices. 

c) Recon-PortScan: also known as port scanning. This attack technique 
involves systematically scanning a target network or system to identify 
open ports and services available on the target devices to find potential 
vulnerabilities. 

d) VulnerabilityScan: specialized scanning tools are used to identify 
common security flaws, such as outdated software versions, 
misconfigurations, weak passwords, or missing security patches. 

e) Recon-HostDiscovery: employs techniques like ping sweeps and ARP 
scans to identify live hosts in a network. 
 

5. Spoofing attacks: described in section 2.1.2, the main objective is to 
masquerades as another device or user on a network to launch attacks [47] 
[48]. 

a) DNS_Spoofing: also known as DNS cache poisoning or DNS hijacking, is 
a malicious method where the DNS resolution process is altered to direct 
users to harmful websites by modifying DNS records. 

b) MITM-ArpSpoofing: is a tactic where an attacker disrupts network 
communication between two parties by impersonating a device's MAC 
address, enabling them to intercept and alter communications. 
 

6. Brute force attacks: involve attackers using trial and error to access a 
system, systematically guessing passwords until the correct one is found. 
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These attacks leverage computational power to check all potential 
combinations [49]. 

a) DictionaryBruteForce: The goal of the attack is to find the correct 
password by trying all the words in the dictionary. 
 

7. Exploiting Web-Based vulnerabilities: involves attackers taking advantage 
of flaws in web applications due to reasons like poor configuration, insecure 
coding, or using outdated software. When exploited, these vulnerabilities can 
give unauthorized access, retrieve data, or even control the system [50]. 

a) BrowserHijacking: Unauthorized changes to browser settings by 
malicious code to redirect users to harmful websites. 

b) Backdoor_Malware: Malicious software that creates a hidden entry, or 
"backdoor", allowing attackers persistent unauthorized access to a 
system. 

c) XSS: Attackers inject malicious scripts into trusted websites, which 
unsuspecting users execute, potentially allowing data theft or 
unauthorized actions. 

d) Uploading_Attack: Attackers exploit file upload vulnerabilities to upload 
and execute harmful files on a target, compromising it. 

e) SqlInjection: Attackers manipulate database queries by injecting 
malicious SQL statements, enabling unauthorized access, data retrieval, 
or modifications. 

f) CommandInjection: Attackers execute arbitrary system commands due 
to the application's failure to sanitise user input. 
 

8. Benign traffic: as its name indicates, these are packets labelled for normal 
benign traffic, considered not part of an attack. 

 
In Figure 3.2 is shown the distribution of each class of attack of the training set, 
for group classification the distribution of the seven attacks and the benign traffic 
is shown in Figure 3.3, and finally for the binary classification, be part of an attack 
or a normal/benign packet, Figure 3.4 shown the distribution. From the analysis 
of three classes distributions, it can be observed a class imbalance in the dataset 
for every classification task, and this situation will be taken into consideration in 
subsequent tasks. 
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Fig. 3.2 Multiclass distribution of the target variable ‘label’ 
 

  

Fig. 3.3 Attack groups categories distribution 
 

 

Fig. 3.4 Binary classes distribution 
 

3.2. Feature extraction and reduction 

Feature reduction is the process of selecting a group of most relevant features 
from all the available features of a dataset. The objective of feature reduction is 
to reduce the dimensionality of the dataset, preserving the most important 
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information. This can help improve the efficiency, speed and effectiveness of 
machine learning models, and also reduce the risk of overfitting. Some of these 
techniques are listed below [51] [52] [53]:  
 

1. Principal Component Analysis (PCA): is a dimensionality reduction 
technique that reduces the feature space by retaining the maximum 
possible information. It creates new features from linear combinations of 
the old ones and selects those capturing the most variance in the data. 
 

2. Feature Selection using Correlation Metrics: Feature selection via 
correlation metrics identifies highly correlated features using correlation 
matrices. However, a strong correlation does not necessarily indicate the 
significance of a feature, as it may fail to identify non-linear relationships. 
 

3. Feature Importance from Decision Trees: Feature importance in decision 
trees is determined using models like Random Forest, Gradient Boosting, 
and Extra Trees. The significance of a feature is measured by the overall 
reduction of the criterion attributed to that feature.  

 
4. Permutation Importance: Permutation feature importance measures the 

significance of features by shuffling their values and evaluating the 
decrease in model accuracy. Features that greatly influence the model's 
performance upon permutation are considered essential. 

 
5. Mutual Information or Information Gain: The mutual information between 

two variables determines whether they are dependent on each other. If 
two random variables are independent, the mutual information will be zero, 
but a higher value indicates a stronger dependence. 

 
In this work it has been adopted a hybrid approach by combining Pearson's 
coefficient [54][55], which is a standard correlation coefficient, with Mutual 
Information (MI) [56][57]. The Pearson’s coefficient indicates the linear 
relationship between two variables. The range of the coefficient goes from -1 to 
1. A score of 1 shows a perfect positive correlation and the score of -1 shows a 
perfect negative correlation. A score of zero, shows no correlation between the 
variables. Scores in the modular range of 0.7 to 0.99 considered the variables to 
be strong correlated linearly [55]. 
 
Mutual Information (MI) measures the amount of information gained about one 
variable as a result of observing another variable, as quantified by information 
theory. Mutual Information is closely related to entropy, which measures the 
amount of uncertainty or randomness of a variable. If two variables are 
independent, their mutual information is zero; they have no information about 
each other. A higher mutual information indicates a stronger association between 
the two variables [12] [56]. 
 
This election was based on removing the variables/features that are linear 
correlated first, based on the Mutual Information that its results are not dependent 
of any model evaluation, concerning models, is neutral, recalling that in this study 
five models from different types are analysed, not only models related to tress 
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like in Feature Importance from Decision Trees. Concerning PCA, a wide 
technique used, assumes linearity of the variables and a normal distribution of 
them, but none of the features follow this pattern, many of them are binary as 
shown in the Feature distribution of Figure A.1 of Annex A. 
 
First, the mutual information is obtained of every feature against the target 
variable by the function mutual_info_classif from the Scikit-learn library [57]. 
Figure 3.5 shown the normalised mutual information importance relative to the 
target.  
 

 

Fig. 3.5 Normalised mutual information importance of every feature 
 
 
In order to reduce linear correlated variables, the Pearson coefficients are 
obtained in a correlation matrix of dimension [m x m], where m is the number of 
features, Figure 3.6 shows the correlation matrix as a heatmap, stronger colours 
denote high correlation between features. A threshold of 0.7 was set to find sets 
of strong correlated features. The objective is to select the most important feature 
of every set found based of the mutual importance of the feature. For example, if 
a set of three variables are found to be heavy correlated, having its correlation 
coefficient between each other above the threshold, the best feature to be 
selected is the one with better mutual information importance. After this 
procedure, the number of features is reduced from 45 to 27 features. The value 
0.7 is a conservative number between 0.5 and 0.99 of strong correlation [55]. 
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Fig. 3.6 Correlation matrix of features vs features 
 

With the result of 27 features, another threshold of 0.1 is set to eliminate the less 
important features based on the mutual information importance, features that 
have an entropy coefficient with respect the target variable below the 10% are 
eliminated. After this procedure, is obtained the final reduced number of features 
of 16 as shown in Figure 3.7. Notice than the same results would be obtained if 
a threshold of 0.05, selecting the most important feature with more that 5% of 
importance of Information Gain. 
 

 

Fig. 3.7 Selected features 
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3.3. Model selection 

As mentioned in Section 2.3.3, a selection of classification models from different 
model families was made: 

• From linear models: Logistic Regression (LR). 

• From probabilistic models: Gaussian Naïve Bayes (NB). 

• From trees models: Decision Trees (DT). 

• From ensemble models: Random Forests (RF). 

• From the Artificial Neural Network category: Multilayer Perceptron (MLP). 

3.4. Performance evaluation and metrics 

 
For evaluating a classifier, of the most important measure is the Confusion Matrix 
(CM) [58] [59]. Although is primary oriented for binary classifying task, can be 
extrapolated to multiclassification problems. Figure 3.8 shows a typical binary 
confusion matrix. The purpose of the Confusion Matrix is to demonstrate how 
often instances of a class are classified as another class. Actual or real instances 
are represented by each row and predicted instances by each column. The 
diagonal of the matrix displays values that have been predicted accurately. 
 

  

Fig. 3.8 Confusion Matrix [52] 
 
Considering as positives, the samples belonging to a real attack, and as 
negatives, the samples for benign traffic, it can be found that:  True positives (TP) 
are accurate predictions of true events like detecting a real attack sample. False 
positives (FP) are incorrect predictions of true events, for example detecting a 
benign/normal traffic as an attack “false alarm”. True negatives (TN) accurately 
predict false events, in this case, detecting regular traffic as such. False negatives 
(FN) are inaccurate predictions of false events. It is worth noting that, in this case, 
the model (IDS) misidentifies actual attacks as legitimate traffic, which enables 
access to the IoT infrastructure [58] [59]. 
 
Accuracy is the proportion of correctly predicted instances (TN, TP) out of the 
total number of instances evaluated and is defined in Equation (3.1) [59]. In 
imbalanced datasets, where one class is far more prevalent than the other, a 
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model that always predicts the dominant class can achieve high accuracy, yet it's 
essentially a poor classifier. For these reasons, in contexts with imbalanced data, 
it's recommended to use other metrics like recall, precision and F1-score [12]. 
 

Accuracy =
TP + TN

TP + TN + FP + FN
   (3.1) 

 
Precision/Recall Trade-off: in short terms, the precision is the accuracy of the 
positive predictions and is defined in Equation (3.2) [59]. Whereas recall also 
called sensitivity is the ratio of positive instances that are correctly detected and 
is defined by the Equation (3.3) [59]. It's desirable for a classifier to have both 
parameters high; however, this is not always achievable, unfortunately, an 
increase in precision often results in a decrease in recall, and vice versa [12]. 

 

Precision =
TP

TP + FP
   (3.2) 

 

Recall =
TP

TP + FN
   (3.3) 

 
By this reason, it can be advantageous to merge precision and recall into an 
individual metric known as the F1 score (F1), particularly when seeking a 
straightforward method of comparing two classifiers. The F1 score defined in 
Equation (3.4) [59] represents the harmonic mean of precision and recall. Unlike 
the regular mean, which treats all values equally, the harmonic mean places 
greater emphasis on lower values. Consequently, the classifier will achieve a high 
F1 score only when both recall, and precision are high [12]. 
 

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
=

2 ∗ TP

2 ∗ TP + FP + FN
   (3.4) 

 
When dealing with imbalanced datasets and multi-class classification problems, 
macro metrics offers several advantages. Macro metrics give equal weight to all 
classes, computing the metric independently for each class and then take the 
average. They provide a holistic view of performance across all classes, without 
letting the potentially skewed distribution of one class dominate the overall 
evaluation metric. This helps to differentiate between good models (those that 
perform well across all classes) and mediocre ones (those that only perform well 
on the dominant classes). The Macro metrics is computed as the average of the 
metric of every class. For instance, in a binary classification the Precision Macro 
is the average of the sum of the precision of the positive class and the negative 
class, on the other hand, in multiclassification tasks the precision macro is 
obtained by the sum of individual precisions of each class divided by the number 
of classes. 
 
Therefore, the target metric of the tuning of hyper-parameters of every model on 
the three classifications will be the F1 macro. An exhaustive search (brute force) 
of every combination of the most important hyper parameters of every model 
were done using for-loops, even though the scikit-learn library includes several 
functions like GridsearchCV [27] to find the best combination of 
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hyperparameters. But due to the long execution time of each optimisation, and 
some interruptions, causing irretrievable data loss, it has been decided to use to 
use for-loops and store in a table all the metrics involved with all the combinations 
of hyperparameters for each run. 
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CHAPTER 4. RESULTS AND DISCUSSION 
 
Results and discussion are presented in five sections, the first one corresponding 
to the tuning of hyperparameters of every model (Logistic Regression, Decision 
Trees, Gaussian Naïve Bayes, Random Forest and Multilayer Perceptron) the 
second for the model evaluations and the rest of the sections corresponding to 
each classification task: binary, group, and multi classification on every model. 

4.1. Hyper-parameters tuning 

 
In machine learning, hyper-parameter tuning involves selecting optimal values for 
controlling the learning algorithm [60][61]. A learning algorithm estimates model 
parameters from a dataset and updates them throughout the learning process. 
Once complete, these parameters become integral to the model. On the other 
hand, hyperparameters are inherent to the algorithm and can't be derived from 
data. They influence the computation of model parameters, with different 
hyperparameter values yielding different model parameters for a dataset [60]. 
 
Cross-validation [61] [62] is a common technique used to evaluate a model's 
performance by splitting the data into multiple subsets and testing the model on 
each subset, helping in hyperparameter tuning and mitigating the risks of 
overfitting. 
 
In the Cross-validation, the model is trained using the data from k -1 of the folds, 
and the remaining fold is used as the test set to evaluate performance. The final 
target metric is averaged from the k evaluations as shown in Figure 4.1 [61]. In 
this study is used a cross-validation of 10 stratified k folds for the tuning of hyper-
parameters [63]. The term stratified as mentioned in Section 3.1, ensures that 
each fold maintains the same proportion of classes as the original imbalanced 
dataset. 
 

 
Fig. 4.1 Cross-validation with 10 folds [64] 
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4.1.1 Logistic Regression Hyper-parameter tuning 

 
The most important hyper-parameters in the Logistic Regression classifier are 
[12] [26] [27] [65] [66]: 

• parameter 'C': inversely controls the strength of regularisation, with smaller 
values specifying stronger regularisation. Regularisation is a technique to 
prevent overfitting adding a penalty to the different parameters of the 
model to reduce their magnitude. 

• The 'solver': specifies the algorithm used for optimization, such as 'lbfgs' 
or 'sag'. Solvers are algorithms used to optimize the cost function and find 
the best-fitting parameters for the model. They determine how the logistic 
regression model learns and adjusts itself to minimize the prediction 
errors. 

• The 'max_iter': sets the maximum number of iterations for the solver to 
converge. 

• The 'penalty': determines the type of regularisation applied, typically either 
'l1' or 'l2', corresponding to Lasso and Ridge regularisation respectively. 
Lasso regularisation adds "absolute value of magnitude" of coefficient as 
penalty term to the loss function, whereas Ridge regularisation adds 
"squared magnitude" of coefficient as penalty term to the loss function. 

 
The model of LR of Scikit-learn library comes with default hyper-parameters of 
Solver = 'lbfgs', Penalty = 'l2', Regularisation C=1 and max_iter = 100 [67]. 
 
Table 4.1 shows the hyper-parameters results for the Logistic Regression 
classifier. The first rows show each hyperparameter searched, the first column 
the name of the hyperparameter, the “Values” column corresponds to the range 
of search, the values inside this range are determined by the type of 
hyperparameter, and their recommended values in [65] [66], for numerical values 
is frequent to search below and above the default value of the model [67]. The 
last columns represent the value selected for that hyperparameter that achieved 
the best score of metric F1 macro on each of the three models (Binary, Group, 
Multi). The rows that follow, shows a metric comparison between the F1 macro 
with default parameters and the F1 score obtained with the selected 
hyperparameter. The last rows represent the average time of the training for a 
single run inside the cross-validation process with the selected hyperparameters, 
and finally the total execution time of the whole hypertuning process (including 
the training, predict and scoring time). The total number of runs of cross-validation 
for every classification task was 756 given by the combination of ranges of all 
hyper-parameters searched. 
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Table 4.1. Hyper-parameters search and result for LR model. 

Hyperparameter Values Selected Values per model 

Binary Group Multi 

Solver ['lbfgs','sag', 'saga'] 'lbfgs' 'saga' 'lbfgs' 

Penalty 
['l1', 'l2', 

'elasticnet'] 
‘l2’ ‘l1’ ‘l2’ 

Regularisation C 

[0.0001, 0.001, 
0.005, 0.01, 0.05, 
0.1, 0.5, 1, 5, 10, 

50, 100] 

100 0.1 5 

Max_iter 
[5, 10, 25, 50, 100, 

150, 200] 
50 50 200 

F1 macro with default hyper-
parameters 

0.780842 0.436387 0.442185 

F1 macro achieved 0.782046 0.438288 0.453426 

F1 macro increase (%) 0.15 0.43 2.54 

Average training time for one run of 
ten, inside the cross validation (s) 

11.02 189.82 1269.49 

Total execution time of hypertuning for 
756 cross-validations (h) 

48.09 100.65 123.76 

4.1.2 Decision Trees Hypertuning 

 
For the Decision Trees classifier, the most important hyper-parameters are the 
following [27][28][29][68][69][70][71]: 

• ‘max_feature’: limits the number of features to consider when searching 
for the best split, which can help in reducing variance and speeding up the 
training process.  

• ‘splitter’: defines the strategy employed to choose the split at each node, 
either 'best' to select the best split or 'random' for a random split.  

• ‘max depth’: limits the maximum depth of the tree, preventing the tree from 
growing too deep and potentially overfitting the data. 

• ‘min samples split’: specifies the smallest number of samples required to 
make a node split, ensuring that minor data fluctuations don't create 
unnecessary branches. 

• ‘min samples leaf’: sets the minimum number of samples a leaf node must 
have, preventing the creation of leaves with very few samples which can 
lead to overfitting. 

  
The model of DT of Scikit-learn library comes with default hyper-parameters of 
max_feature = None, equivalent to the maximum number of features of 16, 
splitter = ‘best’, max_depth = None, that results on an unlimited depth, min 
samples split = 2, and min samples leaf = 1 [72]. 
 
Table 4.2 shows the same descriptions and results as Table 4.1 but for the 
Decision Trees classifier. The “Values” column corresponds to the range of 
search, the values inside this range are determined by the type of 
hyperparameter, and their recommended values in [69][70][71], for numerical 
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values is frequent to search below and above the default value of the model [72]. 
The total number of runs of cross-validation for every classification task was 960 
given by the combination of ranges of all hyper-parameters searched. 
 

Table 4.2. Hyper-parameters search and results for DT model. 

Hyperparameter Values Selected Values per model 

Binary Group Multi 

max_feature [4, 16] 16 16 16 

splitter [‘best’, ‘random’] ‘best’ ‘best’ ‘best’ 

max_depth 
[3, 5, 8, 10, 20, 30, 

40, None] 
30 40 40 

min_samples_split [2, 5, 10, 20, 30] 2 2 2 

min samples leaf 
[1, 2, 5, 10, 20, 30, 

40] 
5 1 1 

F1 macro with default hyper-
parameters 

0.958546 0.839600 0.839454 

F1 macro increase (%) 0.963659 0.841027 0.841635 

Performance increase (%) 0.53 0.17 0.26 

Average training time for one run of 
ten, inside the cross validation (s) 

16.12 20.38 36.45 

Total execution time of hypertuning for 
960 cross-validations (h) 

14.52 19.85 19.89 

4.1.3 Gaussian Naive Bayes Hypertuning 

 
The Gaussian Naive Bayes classifier, has only one hyper-parameter: 
var_smoothing which adds a portion of the largest variance of all features to the 
variances for calculation stability, aiding in preventing zero probabilities in the 
model [26][27][73]. The model of GaussianNB of Scikit-learn library comes with 
default of var_smoothing = 1e-9 [74]. 
 
Table 4.3 shows the hyper-parameters searched for the Gaussian Naive Bayes 
classifier, the description of the values and columns are the same of Table 4.1. 
The “Values” column corresponds to the range of search, the values inside this 
range are determined by the type of hyperparameter, and their recommended 
values in [73], for this numerical value the search was done below and above the 
default value of the model [74]. 
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Table 4.3. Hyper-parameters search and results for NB model 

Hyperparameter Values Selected Values per model 

Binary Group Multi 

var_smoothing 

[1e-12, 1e-11, 1e-
10, 1e-09, 1e-08, 
1e-07, 1e-06, 1e-
05, 1e-04, 1e-03, 

1e-02, 1e-01, 
1e+00, 1e+01, 

1e+02] 

1 0.1 0.1 

F1 macro with default hyper-
parameters 

0.755147 0.425963 0.398259 

F1 macro achieved 0.844691 0.464120 0.414518 

F1 macro increase (%) 11.86 8.96 4.08 

Average training time for one run of 
ten, inside the cross validation (s) 

2.02 2.17 2.70 

Total execution time of hypertuning for 
15 cross-validations (h) 

0.15 0.17 0.41 

4.1.4 Random Forest Hypertuning 

 
For the Random Forest classifier, the most important hyper-parameters analysed 
were the following [12][26][27][28][65][75][76][77]: 

• ‘n estimators': denotes the number of trees in the forest, with a larger 
number typically resulting in a more robust model at the cost of 
computational complexity, in the hypertuning was set to a maximum of 
300. 

• 'max depth': specifies the maximum depth of each tree, limiting the number 
of splits and thereby preventing the model from becoming too complex and 
potentially overfitting the data. 

• 'min samples split’: sets the minimum number of samples required to make 
a node split, ensuring that trees don't branch out on small fluctuations or 
anomalies in the data. 

• ‘min samples leaf’: defines the minimum number of samples a leaf node 
must contain, preventing the creation of leaves with very few samples 
which can lead to overfitting.  

 
The model of RF of Scikit-learn library comes with default hyper-parameters of 
n_estimators = 100, max_depth = None, that results on an unlimited depth, min 
samples split = 2, and min samples leaf = 1 [78]. 
 
For the Random Forest model Table 4.4 shows the same descriptions and results 
as Table 4.1. The “Values” column corresponds to the range of search, the values 
inside this range are determined by the type of hyperparameter, and their 
recommended values in [65][75][76][77], for numerical values is frequent to 
search below and above the default value of the model [78]. The total number of 
runs of cross-validation for every classification task was 720 given by the 
combination of ranges of all hyper-parameters searched. 
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Table 4.4. Hyper-parameters search and results for RF model. 

Hyperparameter Values Selected Values per model 

Binary Group Multi 

n_estimators 
[25, 50, 100, 150, 

300] 
300 300 300 

max_depth 
[1, 2, 5, 10, 20, 
30,40, None] 

40 40 
None/ 

unlimited 

min_samples_split 
[2, 5, 10, 20, 30, 

40] 
5 2 10 

min_samples_leaf [1, 2, 4] 1 2 1 

F1 macro with default hyper-
parameters 

0.971426 0.871982 0.853270 

F1 macro achieved 0.972413 0.876360 0.855529 

F1 macro increase (%) 0.10 0.50 0.26 

Average training time for one run of 
ten, inside the cross validation (s) 

608.19 1741.48 1730.22 

Total execution time of hypertuning for 
720 cross-validations (h) 

155.46 213.57 226.99 

4.1.5 Multilayer Perceptron Hypertuning 

 
Lastly, the hypertuning of the Multilayer Perceptron, which belongs to the Artificial 
Neural Networks family, involves several hyperparameters to consider. The study 
utilised just a single hidden layer approach, including more hidden layers falls into 
the category of deep learning [11] [12]. There is no consensus or recipe to find 
the best number of neurons for each layer, some authors suggest a minimum and 
maximum number according to the number of input features and the number of 
outputs, but in general, only through experimentation and evaluation can one 
determine the optimal number of neurons in an MLP. Other parameters searched 
are [26] [27] [28] [79] [80]: 

• The 'solver' parameter determines the algorithm used for weight 
optimization.  

• The 'activation' parameter sets the activation function for the neurons of 
the hidden layer. 

• The 'alpha' parameter represents the L2 penalty (regularisation term) 
which combats overfitting by constraining the magnitude of the weights in 
the model. 

• The 'learning_rate_init' parameter defines the initial learning rate for weight 
updates, controlling the step size during optimization.  

 
The model of MLP of Scikit-learn library comes with default hyper-parameters of 
hidden_layer_sizes = (100,) defining 100 neurons in this layer, activation = ‘relu’, 
solver = ‘adam’, alpha = 0.0001, learning_rate_init = 0.001 [81]. 
 
The descriptions and values in Table 4.5 share the same descriptions as the 
previous tables, except for the first two rows. The first row specifies the range of 
the number of neurons in the hidden_layer to be searched by each model, the 
second row specify the value found. For the binary classification is set a range 
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from 2 neurons to 16 neurons [(2,)…(16,)], for group classification a range of 
[(8,)…(16, )] is used, and for the multiclassification a range from [(16,)...(34,)] 
neurons, all with step size = 1. Thus, for the binary task the number of runs was 
of 810 cross-validation, in group classification the combination was of 486 and 
for multiclassification a number of 1026 cross-validation were done. 
   

Table 4.5. Hyper-parameters search and results for MLP model. 

Hyperparameter Values Selected Values per model 

Binary Group Multi 

hidden_layer_size searched [(2,).(16,)] [(8,).(16, )] [(16,).(34,)] 

hidden_layer_size selected 13 16 33 

solver [‘adam’, ‘sgd’] ‘adam’ ‘adam’ ‘adam’ 

activation 
[‘logistic’, ‘relu’, 

‘tanh’] 
‘tanh’ ‘logistic’ ‘tanh’ 

alpha 
[0.0001, 0.001, 

0.01] 
0.0001 0.0001 0.0001 

learning_rate_init 
[0.0001, 0.001, 

0.01] 
0.001 0.001 0.001 

F1 macro with default hyper-
parameters 

0.930927 0.665187 0.658210 

F1 macro achieved 0.928152 0.644880 0.652424 

F1 macro increase (%) -0.29 -3.05 -0.87 

Average training time for one run of 
ten, inside the cross validation (s) 

120.37 155.85 189.31 

Total execution time of hypertuning (h) 96.26 117,20 293,42 

 
It can be observed that the F1 macro resulting of the best combination of the 
hyperparameter found of every model, is slightly below the default parameters of 
the MLPClassifier, therefore the hypertuning procedure couldn’t find best 
combination of hyper-parameters other that the default parameters. Thus, the 
best hyperparameters to be used on the final evaluation of the MLPClassifier 
were the default hyperparameters.  

4.2. Model evaluation 

After obtaining the best hyper parameters for each model for the three 
classification tasks, every model is finally trained on the whole training set and 
evaluated on the test set of unseen data created for this purpose. 
 
Table 4.6 shows the F1 macro metric comparison after the hypertuning and the 
final F1 score obtained in the prediction with the test set, on most of the cases, 
there is an increment of the performance on the unseen data. Negatives values 
of the differences are in acceptable ranges, because is expected that on unseen 
data, the performance of the models will be slightly lower than the achieved with 
the trained cross validation hypertuning procedure. 

Table 4.6. Comparison for the evaluation test of the F1 versus the achieved in 
the hypertuning. 
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Macro metric 
Logistic 

regression 
Decision 

Trees 

Gaussian 
Naïve 
Bayes 

Random 
Forest 

Multilayer 
Perceptron 

Binary Classifiers  

F1 tuning 0.782046 0.963659 0.844691 0.972413 0.930927 

F1 test 0.782126 0.964580 0.845388 0.973025 0.933232 

Difference 
(%) 

0.01 0.10 0.08 0.06 0.25 

Group Classifiers  

F1 tuning 0.438288 0.841027 0.464120 0.876360 0.665187 

F1 test 0.433896 0.847993 0.465141 0.888024 0.665175 

Difference 
(%) 

-1.00 0.83 0.22 1.33 0.00 

Multi Classifiers  

F1 tuning 0.453426 0.841635 0.414518 0.855529 0.658210 

F1 test 0.449604 0.846256 0.414240 0.865478 0.662976 

Difference 
(%) 

-0.84 0.55 -0.07 1.16 0.72 

 

4.3. Binary classification 

The final evaluation/validation on the test set for every classifier yields the 
following macro metrics and accuracy and is shown in Table 4.7. It also included 
the times involved in the whole training and prediction using the training and test 
set respectively. The last parameter of “prediction time per sample”, is calculated 
by the ratio of the prediction time and the number of samples of the test set 
(583582); and gives an approximate idea of the theoretical delay of the prediction 
of a single packet, after all, classifier models should be part of the core of an IDS. 
 

Table 4.7. Metrics and Results from the binary classification by model 

Macro metric 
Logistic 

regression 
Decision 

Trees 

Gaussian 
Naïve 
Bayes 

Random 
Forest 

Multilayer 
Perceptron 

F1 score 0.782126 0.964580 0.845388 0.973025 0.933232 

Precision 0.705891 0.946219 0.772325 0.963447 0.922242 

Recall 0.977292 0.984613 0.980954 0.983029 0.944844 

Accuracy 0.966551 0.996605 0.980298 0.997469 0.993701 

training time 
(s) 

8.36 14.82 2.95 447.68 266.86 

prediction  
time (s) 

1.26 0.04 0.56 5.92 2.58 

prediction 
time 

per sample 
(μs) 

2.16 0.06 0.97 10.14 4.43 

 
The comparison between the models is shown graphically on Figure 4.2, it should 
be noted that models of Decision Trees and Random Forest outperforms the 
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other classifiers in Precision, followed by the MLPClassifier, being Logistic 
Regression the worst with a value below 80%. Gaussian Naïve Bayes shows a 
discrete performance above 80%. This leads that Decision Trees and Random 
Forest can identify most of legitimate traffic without mistakenly flagging it as 
malicious. 
 
Respecting the recall or sensitivity, the MLPClassifier shows a minor performance 
below the other classifiers, being Decision Trees, Gaussian Naïve Bayes and 
Random Forest, the best algorithms indicating that the IDS should miss fewer 
real attacks. The Logistic Regression performance is slightly lower than the 
others, but in general all models are around the same region of values. 
 
Concerning the training and prediction times, there are huge differences among 
the classifiers, being the faster training algorithm the Gaussian Naïve Bayes, and 
the worsts the Random Forest, followed by the MLPClassifier. Random Forest 
speed is affected by the number of estimators that increase the learning time, 
and the MLPclassifier by the number of neurons among other parameters. 
 

   
 
A detailed analysis for each classifier is done through the confusion matrix and 
the classification report. Figure 4.3 and Table 4.8 shows the normalised confusion 
matrix and classification report of the Binary Logistic Regression model. The 
normalised confusion matrix shows information on the accuracy of a classification 
model's predictions in relative terms, instead of absolute values. When the 
confusion matrix is normalised, each value in the matrix is divided by the sum of 
its corresponding row. The classification report shows the Precision and Recall 
of each class individually, where the average macro is the average of every metric 
of each class, the support column shows the count of every class, being the last 
value the total count of samples of the test set. 
 

 

 
Fig. 4.2 Comparison of metrics and results of binary classifiers 
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Fig. 4.3 Confusion matrix of binary Logistic Regression model 
 
From the confusion matrix is shown that LR can classify precisely with more than 
96% both Attack and Normal samples, having a miss rate of 3.39% of True 
attacks been undetected, and 1.14% of false alarms. But from the individual 
report, the precision of the “benign” traffic is below the 50% degrading the overall 
precision of the model. 

Table 4.8. Classification report by classes of binary Logistic Regression model 

 precision recall F1 score support 

Attack 0.9997 0.9660 0.9826 569854 

Benign 0.4121 0.9886 0.5817 13728 

macro 
average 

0.7059 0.9773 0.7821 583582 

 
In Figure 4.4 and Table 4.9 are shown respectively, the Normalised Confusion 
Matrix and classification report for binary Decision Tree algorithm. 
 

 

Fig. 4.4 Confusion matrix of binary Decision Tree model 
 

Table 4.9. Classification report by classes of binary Decision Tree model 

 precision recall F1 score support 

Attack 0.9993 0.9972 0.9983 569854 

Benign 0.8931 0.9720 0.9309 13728 

macro 
average 

0.9462 0.9846 0.9646 583582 
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The Decision Tree model shows better performances than the Logistic 
regression, except in the case of false positive being twice of the LR model. 
Again, the precision of the “Benign” class reduces the overall metric consequence 
of being the minority class. a good 0.28% of attacks overrun the classifier and got 
undetected.  
 
For the Bayes Naïve model, Figure 4.5 and Table 4.10 shows respectively, the 
Normalised Confusion Matrix and Classification report. 
 

 

Fig. 4.5 Confusion matrix of binary Naive Bayes model 
 
The Binary Naive Model present results very similar to the Logistic Regression 
being better in the precision of the Benign traffic. But affecting the overall metric. 

 

Table 4.10. Classification report by classes of binary Naive Bayes model 

 precision recall F1 score support 

Attack 0.9995 0.9803 0.9898 569854 

Benign 0.5451 0.9816 0.7010 13728 

macro 
average 

0.7723 0.9810 0.8454 583582 

 
Figure 4.6 shows the Normalised Confusion Matrix, and Table 4.11 shows the 
classification report for binary Random Forest algorithm. 

 

 

Fig. 4.6 Confusion matrix of binary Random Forest model 
 
The Random Forest shows excellent detection of attacks 99.82% and a very good 
number of False negatives of 0.182, at expense to have a bit higher false positive 
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score of 3.21%. It also presents a good precision even in the minority class of the 
“Benign” class. 
 

Table 4.11. Classification report by classes of binary Random Forest model 

 precision recall F1 score support 

Attack 0.9992 0.9982 0.9987 569854 

Benign 0.9277 0.9679 0.9473 13728 

macro 
average 

0.9634 0.9830 0.9730 583582 

 
Finally, the binary MLPClassifier results are shown in Figure 4.7 for the Confusion 
Matrix and Table 4.12 for Classification report by classes. 
 

 

Fig. 4.7 Confusion matrix of binary MLPClassifier model 
 

The MLPClassifier has an average precision and recall for the “Benign” class that 
reduces the average of both metrics. Note to mention that had the worst False 
Positive with 10.64%. 
 

Table 4.12. Classification report by classes of binary MLPClassifier model 

 precision recall F1 score support 

Attack 0.9974 0.9961 0.9968 569854 

Benign 0.8471 0.8936 0.8697 13728 

macro 
average 

0.9222 0.9448 0.9332 583582 

 
A summary for the binary classification is as follows: the best Model is the 
Random Forest at expense of higher computational cost, followed by the Decision 
Trees Algorithm which present a good time of training and prediction. 
MLPClassifier had worst False Positive with 10.64%. Another important metric 
from the confusion matrix and crucial for an IDS is the miss rate, where attack 
traffic is detected as “normal”, compromising the security of the system, letting 
pass to the infrastructure. In this case the Logistic Regression had the worst value 
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of 3.40%, then 3.40% of the anomalous traffic evade this model. The Gaussian 
Naïve Bayes has this parameter near 2%. 

4.4. Group classification 

 
As with the binary classification results, Table 4.13 shows the relevant metrics 
and results for every model analysed. Here, all metrics begins to suffer in 
performance in comparison with the binary classification task, due to the more 
complex classification involving the identification of 8 classes of attack 
categories. 
 

Table 4.13. Metrics and Results from the group classification by model 

Macro metric 
Logistic 

regression 
Decision 

Trees 

Gaussian 
Naïve 
Bayes 

Random 
Forest 

Multilayer 
Perceptron 

F1 score 0.433896 0.847993 0.465141 0.888024 0.665175 

Precision 0.460550 0.846068 0.521091 0.952584 0.704064 

Recall 0.581369 0.850187 0.501922 0.850432 0.652549 

Accuracy 0.579727 0.994791 0.717877 0.996045 0.990118 

training time 
(s) 

186.92 18.89 5.57 820.30 218.03 

prediction  
time (s) 

1.76 0.06 2.48 9.80 1.28 

prediction 
time 

per sample 
(μs) 

3.02 0.10 4.26 16.79 2.19 

 
The comparison between the models is shown graphically on Figure 4.8, where 
Random Forest outperforms the other classifiers in the Precision with a score of 
95%. The Decision Trees model follows, lagging by 10%. The MLPClassifier has 
a discrete performance of 70%, being again Logistic Regression the worst model 
with a value below 50%. Gaussian Naïve Bayes is merely above 50%. This leads 
that Random Forest can identify most of legitimate traffic, around 95% without 
mistakenly flagging it as malicious. 
 
Regarding recall or sensitivity, both the Random Forest and Decision Trees 
achieve near identical values of around 85%, with the Random Forest performing 
marginally better. The MLPClassifier's performance is reduced at 65%, whilst 
Gaussian Naïve Bayes and Logistic Regression fare the worst, recording 50% 
and 58% respectively. Thus, the Decision Trees and Random Forest models 
emerge as the superior algorithms, suggesting that an IDS would likely miss 
fewer genuine attacks when using them. 
 
In terms of timing, for both metrics, the Random Forest once again proves to be 
the least efficient model by a significant margin. The faster model in the training 
process is the Gaussian Naïve Bayes with around 5 seconds with the whole 
training set of 2334328 samples. And the best model predicting the test set is 
again the Decision Trees algorithm with only 0.06 seconds.  
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A detailed analysis for each classifier is done through the confusion matrix and 
the classification report. Figure 4.9 and Table 4.14 shows the normalised 
confusion matrix and classification report of the Group Logistic Regression 
model. 
 

 

Fig. 4.9 Confusion matrix of group Logistic Regression model 
 
In the Logistic Regression case, the model performs well above 95% detecting 
“DoS” and “Mirai” attacks, while the other groups of categories suffer. For 
example, the 51% of “DDoS” traffic are detected as “DoS”, a value even higher 
that its own score, this is why, all “DDoS” and “DoS” attacks share many 
attributes, and the model is unable to distinguish between them. “Recon” attacks 
are recognised as five distinct categories with more than a 5%, with a special 
note of a 10% of attacks detected as “benign” traffic. “Spoofing” attacks on the 
other hand, is detected with a score of more than 11% as “Web”, “Bruteforce” and 
again as “benign traffic” with a dramatic score of 21%. “Web” attacks detections 

 

 
Fig. 4.8 Comparison of metrics and results of Group classifiers 
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are distributed on “Spoofing” with 12%, “Bruteforce” with 35% and “Benign” traffic 
with a 10%. “Bruteforce” attacks are detected with almost 50%, while is 
misclassified with more than 6% as “Recon”, “Spoofing”, “Web”, and “Benign” 
category. All traffic that consists of true attacks but is incorrectly predicted as 
"Benign" eludes the model and IDS, entering or exiting the IoT infrastructure. This 
is why a special attention should be made to the last column containing the label 
“benign”. Is worth to mention, the fact that “benign” traffic is only recognised at 
the 54% and rising false alarms of other categories of attacks. If one were to 
comment on this model, it could be said that it is vulnerable to “Recon”, 
“Spoofing”, “Web”, and “Bruteforce” attacks, while it performs well in detecting 
“DoS” and “Mirai botnet” attacks and have a false alarm ratio of around 46%. 
 
The numbers in the classification report contrasts with the above, note the very 
low values of Precision for the affected attack categories and mediocre values for 
the recall. This model is unable to perform well on the minority classes, although 
in the “DoS” category also suffer. 
 

Table 4.14. Classification report by classes of group Logistic Regression model 

 precision recall F1 score support 

DDoS 0.9871 0.4650 0.6322 424829 

DoS 0.3065 0.9531 0.4639 101140 

Mirai 0.9969 0.9801 0.9884 32929 

Recon 0.2583 0.3338 0.2912 4401 

Spoofing 0.3321 0.4928 0.3968 6081 

Web 0.0164 0.3891 0.0314 311 

BruteForce 0.0166 0.4969 0.0322 163 

Benign 0.7704 0.5401 0.6350 13728 

macro 
average 

0.4606 0.5814 0.4339 583582 

 
Decision Trees results are shown in Figure 4.10 and Table 4.15 for the confusion 
matrix and the classification report respectively.  This Model has excellent 
detection rate of “DDoS”, “DoS” and “Mirai” attacks with more than 99.95%, with 
a decent score in the “Recon”, “Spoofing” and “Benign” categories. Decision 
Trees is vulnerable to category of “Recon”, “Spoofing”, “Web” and “Bruteforce”, 
being the metrics on these categories affecting the overall metric score. 
Nevertheless, is far better than Logistic Regression Model even in the minority 
classes. 
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Fig. 4.10 Confusion matrix of group Decision Trees model 
 

Table 4.15. Classification report by classes of group Decision Trees model 

 precision recall F1 score support 

DDoS 0.9999 0.9999 0.9999 424829 

DoS 0.9997 0.9997 0.9997 101140 

Mirai 0.9999 0.9998 0.9999 32929 

Recon 0.8200 0.8289 0.8244 4401 

Spoofing 0.8573 0.8459 0.8516 6081 

Web 0.5710 0.5563 0.5635 311 

BruteForce 0.6023 0.6503 0.6254 163 

Benign 0.9185 0.9206 0.9195 13728 

macro 
average 

0.8461 0.8502 0.8480 583582 

 
For Gaussian Naive Bayes, Figure 4.11 and Table 4.16 shows the normalised 
confusion matrix and classification report respectively. The Gaussian Naive 
Bayes only perform very well on “Mirai botnet” attack with a 98%, on “Spoofing” 
and “Bruteforce” attacks the model performs very badly, and the worst behaviour 
of the model, is having a lot of missed rates identified as “benign traffic” with more 
than 40% on “Recon”, “Spoofing”, “Web” and “Bruteforce” categories. This model 
is very vulnerable to these categories of attacks. 
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Fig. 4.11 Confusion matrix of group Naive Bayes model 
 

Table 4.16. Classification report by classes of group Naive Bayes model 

 precision recall F1 score support 

DDoS 0.8679 0.7551 0.8076 424829 

DoS 0.3591 0.5047 0.4196 101140 

Mirai 0.9968 0.9890 0.9929 32929 

Recon 0.5578 0.4254 0.4827 4401 

Spoofing 0.7372 0.1615 0.2649 6081 

Web 0.0061 0.3055 0.0119 311 

BruteForce 0.0208 0.0307 0.0248 163 

Benign 0.6230 0.8436 0.7167 13728 

macro 
average 

0.5211 0.5019 0.4651 583582 

 
For the model Random Forest Classifier, the Confusion matrix is shown on Figure 
4.12 and the Classification report of classes is shown in Table 4.17.  
 
The Random Forest model has excellent detection rate of “DDoS”, “DoS” and 
“Mirai” attacks with more than 99.95%, and a very good score of 97% detecting 
the normal traffic as such, leading to a low false alarm rate of 3%. On the 
categories of “Recon” and “Spoofing” has a decent performance with more than 
85%, whereas it suffers in the “Web” and “Bruteforce” categories, with a score of 
49% and 64% respectively. Please take note of the values that are zero outside 
the diagonal, indicating that the model is performing better because it not 
detecting other true categories as this one, an ideal classifier would have all 
values outside the diagonal in zero. Despite the good metrics in several 
categories, it has some Miss rate of classes belonging to “Recon”, “Spoofing”, 
“Web” and “Bruteforce” attacks detected as “benign traffic”. 
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Fig. 4.12 Confusion matrix of group Random Forest model 
 

Table 4.17. Classification report by classes of group Random Forest model 

 precision recall F1 score support 

DDoS 0.9999 0.9998 0.9999 424829 

DoS 0.9996 0.9997 0.9997 101140 

Mirai 0.9998 0.9996 0.9997 32929 

Recon 0.8603 0.8523 0.8563 4401 

Spoofing 0.9168 0.8500 0.8822 6081 

Web 0.9325 0.4887 0.6414 311 

BruteForce 0.9906 0.6442 0.7807 163 

Benign 0.9211 0.9690 0.9444 13728 

macro 
average 

0.9526 0.8504 0.8880 583582 

 
And finally, for the model MLPClassifier Figure 4.13 and Table 4.18 shows the 
Confusion matrix and the Classification report of classes. 
 
The MLPClassifier as the Decision Trees and Random Forest models perform 
very well on the “DDoS”, “DoS” and “Mirai” categories with more than 99.80% of 
score. Has a decent 93.74% detecting normal traffic as such, but surprisingly it 
cannot detect the “Bruteforce” category, only a spurious misclassification from 
the “Spoofing” category. Note the zero in both precision and recall of the report, 
the minority class. The “Web” category also suffers with only a 5.8% score of 
detection. Besides that, the models detect negatively attack traffic from the 
categories of “Recon”, “Spoofing”, “Web” and “Bruteforce” as “benign”. 
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Fig. 4.13 Confusion matrix of group MLPClassifier model 
 

Table 4.18. Classification report by classes of group MLPClassifier model 

 precision recall F1 score support 

DDoS 0.9993 0.9994 0.9993 424829 

DoS 0.9979 0.9985 0.9982 101140 

Mirai 0.9987 0.9981 0.9984 32929 

Recon 0.7862 0.5740 0.6635 4401 

Spoofing 0.7540 0.6552 0.7011 6081 

Web 0.2951 0.0579 0.0968 311 

BruteForce 0.0000 0.0000 0.0000 163 

Benign 0.8014 0.9374 0.8641 13728 

macro 
average 

0.7041 0.6525 0.6652 583582 

 
As summary, it can be said that every model suffers classifying the minority 
classes, due to the imbalance of the dataset. However, models such as Decision 
Trees and Random Forest have proven to be quite robust, achieving nearly 
acceptable scores. Random Forest model is the overall winner for the group 
classification task, but again at a higher computational cost, Decision Trees 
performs slightly below but has a good training time and the best predict time. 
The worst model classifying categories of attack is the Logistic Regression. 

4.5. Multi classification 

 
The multiclassification is the most demanding task from the model, it must classify 
34 individual classes of attacks. Therefore, all metrics begins to suffer in 
performance in comparison with the binary classification task. Values of these 
metrics are shown in Table 4.19. 
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Table 4.19. Metrics and Results from the multi classification by model 

Macro metric 
Logistic 

regression 
Decision 

Trees 

Gaussian 
Naïve 
Bayes 

Random 
Forest 

Multilayer 
Perceptron 

F1 score 0.449604 0.846256 0.414240 0.865478 0.662976 

Precision 0.464502 0.844037 0.481019 0.916407 0.725428 

Recall 0.520232 0.850472 0.482601 0.839369 0.657903 

Accuracy 0.777056 0.993178 0.764043 0.994484 0.985382 

training time 
(s) 

452.31 32.24 6.31 1297.71 1148.80 

prediction  
time (s) 

2.29 0.10 4.15 31.76 4.09 

prediction 
time 

per sample 
(μs) 

3.92 0.18 7.11 54.42 7.01 

 
The comparison between the models is shown graphically on Figure 4.14, where 
Random Forest outperforms the other classifiers in the Precision with a score of 
91%. The Decision Trees model follows, lagging by 7%. The MLPClassifier 
shows a discrete performance of 72%, being one more time the Logistic 
Regression the worst model with a value below 50% followed by the Gaussian 
Naïve Bayes that slightly better in a 2%. This leads that Random Forest can 
identify most of legitimate traffic, around 91% without mistakenly flagging it as 
malicious. 
 
Regarding recall or sensitivity, Decision Trees achieved the best value of 85%, 
while is seconded by the Random Forest with a near value around 84%. The 
MLPClassifier's performance is reduced at 65%, while Gaussian Naïve Bayes 
and Logistic Regression achieves worst, recording 50% and 58% respectively. 
 
In terms of timing, for both metrics, the Random Forest once again proves to be 
the least efficient model by a significant margin, but now has MLPClassifier as a 
closer competitor regarding the slowest models. The faster model in the training 
process is the Gaussian Naïve Bayes with around 6 seconds with the whole 
training set of 2334328 samples. And finally, Decision Trees algorithm emerges 
again as the fastest model predicting the test set the with only 0.10 seconds. 
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As in the binary and group classification models, a detailed analysis must be 
conducted using the confusion matrix of dimension [34x34], that are shown from 
Figure B.1 to Figure B.5 of the Annex B with the corresponding classification 
report for multiclass evaluation from Table B.1 to Table B.5 of the same Annex. 
 
Beginning the analysis of the confusion matrix shown in Figure B.1 and 
classification report on Table B.1 of the Annex of the worst model, the Logistic 
Regression. This algorithm is able to detect many DDoS attacks, from “DDoS-
RSTFINFlood” to “DDoS-ICMPFragmentation”, achieving detection scores from 
80 to 99,7%, it can detect with a score of 99% attacks of “Mirai-udpplain”, but in 
general the model suffers on detecting other individual attacks being the “Recon-
OSScan” and “Recon-PortScan” the worst attack detected below 1%. The 
algorithm detecting “normal” traffic has a poor metric of 39% provoking a rise of 
the false alarms. Some attacks such as “Recon-PingSweep”, “Recon-OSScan”, 
“DNS_Spoofing” and “MITM-ArpSpoofing” are detected with more than 10% as 
benign traffic, leading to a security breach, as this abnormal traffic passed 
undetected. The model misclassified several individual attacks as other types of 
attacks, from the point of view of security, a positive attack detection is made, but 
loose the granularity of been able to detect and correctly classified an attack. 
Resuming, Logistic Regression can only detect 9 types of attack of 34 including 
normal traffic. 

 
Analysing the confusion matrix of the Random Forest algorithm in Figure B.4 and 
Classification Report in Table B.4 of the Annex C, the model is able to detect 19 
types of attack of 34 classes with a precision of more than 99%, being the majority 
of the “DDoS”, “DoS” and “Mirai” categories. It can also detect 3 types of attack 
with more than 90% rate, including the “normal traffic” with 96%. The worst 
detection goes for the “Recon-PingSweep” with only 29% of score with a 46% to 
be detected as the “Recon-OSScan” attack. Concerning the missing rates, the 
model is vulnerable to the “Recon-OSScan” with a 21% to be detected as 
“normal” traffic. Another attack with a miss rate of 14% is the “Recon-PingSweep” 
and “Recon-PortScan” with 9%. It’s also vulnerable with a score of 10% to 

 

 
Fig. 4.14 Comparison of metrics and results of Multi classifiers 
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“DNS_Spoofing” and “SqlInjection” with 11%. It worth to mention that, despite this 
model of Random Forest is very robust against several types of attack, is 
vulnerable to the family of Reconnaissance Attacks. Considering false alarms 
rate the model achieves a reasonable 4.5% score. Just to mention, that values of 
1.0000 in the Classification report are shown by the rounded decimal ciphers, but 
they are all below 1.0000. 
 
Summarising the other three models as: Decision Trees shown in Figure B.2 and 
Table B.2 of the Annex, performs very similar to the Random Forest achieving 
high scores of 99% in 20 types of attacks. The normal attack is detected with a 
92% score, lower than the RF model, but more important are the vulnerabilities 
that cannot handle very well, it has above 10% of miss rate in several types of 
attacks, including the ones of the RF model of the Reconnaissance category, 
from the Spoofing family and the Web category. The False alarms rate falls 
around 8%.  
 
In Figure B.3 and Table B.3 of the Annex is shown the confusion matrix of the 
Gaussian Naïve Bayes, this algorithm performs well with more than 90% in 11 
types of attacks, has several attacks detected below 1%, and is totally unable to 
detect “BrowserHijacking” with a zero score. With a poor 65% the normal traffic 
is detected, leading to a high false alarm rate of 35%. But all worries rely on the 
vast number of attacks that go unnoticed from, with a ranging score of 10% up to 
32% falling into the “Reconnaissance”, “Spoofing” and Web category. 
 
Figure B.5 and Table B.5 of the Annex, shows the confusion matrix of the 
MLPClassifier, this model performs well detecting several types of attack of the 
majority classes, the “DDoS”, “DoS” and “Mirai” categories, achieving scores 
above 98%, has a good score of 95% detecting the “normal traffic” resulting in a 
low 5% of false alarms. The model is totally blind to 6 types of attacks with zero 
score, these attacks are “Recon-PingSweep”, and from most of the “Web” 
category, with this behaviour the algorithm adds those samples not detected to 
the “normal traffic” category, increasing the miss rate, enhancing security breach. 
Noticed that these attacks range from 13% up to 63%, an inacceptable situation. 
Thus, MLPClassifier is vulnerable to the “Reconnaissance”, “Spoofing”, “Web” 
and “BruteForce” categories. 
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CHAPTER 5. CONCLUSIONS 
 
The main objective of this thesis was the evaluation of Machine Learning Models 
to be used as Intrusion Detection Systems (IDS) in the IoT infrastructure. A 
selection of five classifier from different families of models such as Logistic 
Regression from the Linear models, Decision Trees from the Trees models, 
Naïve Bayes from the probabilistic models, Random Forests from the ensemble 
models, and Multi-Layer Perceptron from the Artificial Neural Networks, for the 
study. 
 
Using supervised techniques, all models were trained on a chosen public IoT 
attacks dataset. Moreover, this dataset allowed the implementation of three types 
of classification tasks. Binary classification, the simple one, to detect and 
identified if a sample of traffic is being part of an attack or not. Group 
classification, it’s nothing more than a multiclassification task to proper classified 
samples into eight categories of attacks. And a multiclassification of individual 33 
types of attacks. Typical tasks of exploration and features selection and reduction 
were done in the selected dataset.  All models were tuned with cross-validation 
of 10 k-folds to find the best hyperparameter using the F1 macro as the scoring 
metric. Finally, the resulting model was evaluated in the test set to validate the 
model on unseen data. All results were analysed regarding performance metrics, 
execution times and detection capacity of every algorithm through the confusion 
matrix. 
 
As expected, all models on the binary classification performs relatively well to 
classifying attacks, the worst model in this category was the Logistic regression 
from the linear models and the best, was the Random Forest from the ensemble 
family. The Random Forest achieved the highest score but at expense of 
computational power and time, including the time of tuning of hyperparameters, 
the training and prediction time. On the other hand, the fastest model was the 
Gaussian Naïve Bayes, requiring only one hyperparameter to be tuned.  
 
If an IDS had already the trained model running, there is no need to hyper tuning 
or training in the same device, unless an incremental learning approach is done 
on the fly. Then, an IDS should look for the fastest prediction model, having the 
Decision Trees algorithm the fastest prediction time. With the environment used 
in this project, the Decision Trees reach a theoretical prediction time of 0.06 μs 
per sample for the binary task, being an important parameter to be taken into 
consideration to use a model inside the core on an IDS. Perhaps in a “slow” IoT 
environment, this requirement is not necessary, and is always depending on the 
application. 
 
In the group classification the objective was classify a sample to be part of 8 
categories of attacks, considering the normal traffic as the last category. Here the 
classification was more challenging, observing that some models had 
misclassified anomaly attacks as normal traffic, phenomena identified as miss 
rate, and in an IDS this metric is important, trying to lower this value increase 
other metric that is known as the False alarms or False Positive rate, that can 
cause what is known as “alarm-fatigue”. All models are found to be somehow 
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vulnerable to some types of “Recon”, “Spoofing”, “Web” and “Bruteforce” attack 
categories, these attacks belong to the minority classes of the imbalanced 
dataset. The most vulnerable model to this attack category is the Gaussian Naïve 
Bayes, whereas Random Forest is less affected by the same categories, it has 
the best average precision and recall metrics for every class. The MLPClassifier 
in the only model to completely fail to detect the Bruteforce category of attacks. 
 
The time involved in the group classification increased with respect the binary 
classification, and results in the same models to be the fastest tuned and trained 
with Gaussian Naïve Bayes as the first on the list, again Random Forest is the 
slowest model for hypertuning, training and prediction times. Decision Trees 
offers the trade-off of good detection metrics with acceptable timing. 
 
Identifying each individual attack between 33 types of attacks concern to the 
multiclassification task. All models suffer a degradation of their metrics, but 
Random Forest and Decision Trees maintain acceptable values being the 
Random Forest the best classifier. Despite Random Forest is the best model, is 
not perfect and is vulnerable to the family of Reconnaissance Attacks. The 
MLPClassifier model is found to be totally blind to 6 types of attacks with zero 
detection score, these attacks are “Recon-PingSweep”, and from most of the 
“Web” category. Decision Trees maintain high detection rates of many types of 
attacks, whereas Gaussian Naïve Bayes failed in the detection of 
“BrowserHijacking” attack and has many miss rates. 
 
Timing in multi-classification tasks was consistent with previous classifications, 
with the Gaussian Naïve Bayes being the most efficient model and the Random 
Forest the slowest. Notice that Decision Trees has the best time in the prediction 
process. 
 
With regards to the group categories and individual classification of attacks the 
results are not so good as with the binary classification, but as mentioned in 
section 2.3 and recalling Figure 2.5, the primary objective of an IDS is to binary 
detect, attack or not attack, then and depending on the application, resources 
assigned, a classification can be done in order to track and record the types of 
attack being held to the infrastructure. IoT gateways with more computationally 
resources are main target to install an IDS or an IDS being part of dedicated 
hardware running inside the network. The speed of processing is also a concern, 
when dealing with detection algorithms of Machine Learning. 
 
Based on the presented findings, it can be inferred that the application of machine 
learning algorithms is effective to be used as Intrusion detection system (IDS) on 
the IoT infrastructure. These results, recommends the Random Forest to be the 
most robust model when the speed is not an issue, whereas the application of 
Decision Trees algorithms is intended for faster requirements and offering good 
performance. 

5.1. Future lines of development and research 

The field of application of artificial intelligence and machine learning in the 
intrusion detection is in constant evolution. In the specific field of IoT infrastructure 
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application of IDS is critical to preserve the integrity and continuity of the network 
and IoT devices. Some future lines of research are listed below: 

• Based on the obtained results, further improvement is required to strength 
the models, for example: the MLPClassifier.  

• Analysis of other models on the same dataset including the deep learning 
models is strongly advised. Other techniques like Federation learning and 
Transfer Learning can be explored. 

• Apply the same methodology on other public IoT datasets. 

• Combining multiple models in an ensemble approach, such as stacking or 
boosting, might provide more robust and accurate results compared to 
using individual models.  

• Another line of research can be the construction of an IoT dataset by the 
UPC or by collaborative efforts between academic institutions, industries, 
and cybersecurity communities. 

• Construction and deployment of the model in a laboratory environment to 
test with real or synthetic data. 

• Apply adversarial and poisoning attacks to the models to evaluate the 
robustness and resilience of the algorithms. 

• Use new and efficient GPU library optimised to accelerate, training, hyper-
parameters tuning, etc. 

5.2. Sustainability considerations 

 
A ML IDS can rapidly detect and prevent threats in real-time. As a result, it has 
the potential to decrease the time and resources necessary to manage and 
mitigate security incidents. Consequently, energy consumption can be reduced, 
as unnecessary or duplicate operations are avoided. Rather than relying on 
hardware-centric solutions that consistently draw power, an ML IDS can optimise 
the use of existing hardware, allowing for more efficient energy use. Machine 
learning systems can adapt and learn from new threats without the constant need 
for hardware upgrades. This can reduce the manufacturing and disposal of 
electronic devices, both processes with environmental impacts. By proactively 
detecting threats, a ML IDS can minimise downtime, which in turn reduces energy 
and resource consumption associated with system recovery and restarts and 
infections. Worth to mention, this work consumed a lot of time of heavy 
computational resources, most of the time, Machine Learning is not very eco-
friendly in that aspect, trials and error, re-runs of algorithms, etc, but the objective 
is justified and many resources and even lives can be saved applying Machine 
Learning Techniques to Intrusion Detection. 

5.3. Ethical considerations 

 
The implementation of ML-IDS in cybersecurity provides advanced protection 
against threats and poses notable ethical implications, securing Homes up to 
critical infrastructures. The adoption of ML-IDS can be viewed as a proactive 
measure to protect sensitive data and maintain system integrity, which is 
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consistent with ethical principles of user safeguarding and data confidentiality. 
Therefore, the deployment of machine learning intrusion detection systems (ML-
IDS) can greatly enhance system security. However, it is crucial to approach the 
use of ML-IDS with an ethical perspective by ensuring transparency, fairness, 
and responsible handling of data at every stage of implementation. For instance, 
in dataset construction, the acquisition, storage, and sharing of such data must 
be founded on ethical principles. It is vital to guarantee that the gathering of data 
does not violate privacy rights, that it has been obtained with consent where 
applicable, and that it does not unintentionally reveal vulnerabilities that 
malevolent actors might exploit. 
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ACRONYMS 

 

AI   Artificial Intelligence 
ANN   Artificial Neural Network 
ARP  Address Resolution Protocol 
APT   Advanced Persistent Threats 
AutoML  Automated Machine Learning 
BLE   Bluetooth Low Energy 
C2  Command and Control 
CAGR  Compound Annual Growth Rate 
CIC   Canadian Institute for Cybersecurity 
CM  Confusion Matrix 
CoAP   Constrained Application Protocol 
CPU  Central Processor Unit 
DDoS   Distributed Denial of Service 
DL  Deep Learning 
DNS  Domain Name System 
DoS   Denial of Service 
DT  Decision Trees 
F1   Score F1 
FFNN   Feedforward Neural Network 
FN  False Negative 
FNR  False Negative Rate 
FP  False Positive 
FPR   False Positive Rate 
HIDS   Host-based Intrusion Detection Systems 

 IDS  Intrusion Detection Systems 
 IIoT   Industrial Internet of Things 
 IoT  Internet of Things 

IP  Internet Protocol 
LR  Logistic Regression 

 M2M  Machine to Machine 
MAC  Media Access Control 
MI  Mutual Information 

 ML  Machine Learning 
 MLP  Multilayer Perceptron 
 MQTT  Message Queuing Telemetry Transport 

NB  Naïve Bayes 
NB-IoT  Narrow Band IoT 

 NIDS   Network Intrusion Detection Systems 
 PCA   Principal Component Analysis 
 ReLU  Rectified Linear Unit 
 RF  Random Forest 
 SSH   Secure Shell Protocol 

TCP  Transfer Control Protocol 
TN  True Negative 
TNR  True Negative Rate 
TP   True Positive 
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TPR   True Positive Rate 
UDP  User Datagram Protocol 
UnB  University of New Brunswick of Canada 

 USD  United States of America Dollars 
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Annex A: Dataset exploratory analysis 

Fig. A.1 Dataset features distribution 

 

 

 

 

 

 



70  Intrusion Detection in IoT networks using Machine Learning 

 

 

 

 

 

 
 
 
 
 
 
  



ANNEXES   71 

Table A.1. Dataset Features numerical description. 

 
 
 
 
 
 
 
 
 
 

  

Feature count mean std min 25% 50% 75% max

flow_duration 2334328 5.63530458 262.091923 0 0 0 0.10491436 68430.7122

Header_Length 2334328 76778.2503 462321.857 0 54 54 276.5325 9806497.8

Protocol Type 2334328 9.06568768 8.94656026 0 6 6 14.31 47

Duration 2334328 66.3356124 13.9416923 0 64 64 64 255

Rate 2334328 9063.94016 99428.7596 0 2.0875004 15.7039793 117.386375 7780435.6

Srate 2334328 9063.94016 99428.7596 0 2.0875004 15.7039793 117.386375 7780435.6

Drate 2334328 3.41E-06 0.001371 0 0 0 0 1.27071333

fin_flag_number 2334328 0.08656281 0.2811934 0 0 0 0 1

syn_flag_number 2334328 0.2073736 0.40542553 0 0 0 0 1

rst_flag_number 2334328 0.09047872 0.28686644 0 0 0 0 1

psh_flag_number 2334328 0.08771732 0.28288342 0 0 0 0 1

ack_flag_number 2334328 0.1234698 0.32897576 0 0 0 0 1

ece_flag_number 2334328 1.29E-06 0.00113365 0 0 0 0 1

cwr_flag_number 2334328 8.57E-07 0.00092562 0 0 0 0 1

ack_count 2334328 0.09049278 0.28619119 0 0 0 0 5.2

syn_count 2334328 0.33046888 0.66327069 0 0 0 0.06 11.8

fin_count 2334328 0.09916589 0.34230291 0 0 0 0 110.86

urg_count 2334328 6.23206058 71.7457522 0 0 0 0 3494.3

rst_count 2334328 38.4082763 324.708597 0 0 0 0.01 9126.5

HTTP 2334328 0.04829013 0.21437867 0 0 0 0 1

HTTPS 2334328 0.05497299 0.22792759 0 0 0 0 1

DNS 2334328 0.00012038 0.010971 0 0 0 0 1

Telnet 2334328 0 0 0 0 0 0 0

SMTP 2334328 4.28E-07 0.00065451 0 0 0 0 1

SSH 2334328 3.77E-05 0.00613977 0 0 0 0 1

IRC 2334328 4.28E-07 0.00065451 0 0 0 0 1

TCP 2334328 0.57391763 0.49450611 0 0 1 1 1

UDP 2334328 0.21188753 0.40864566 0 0 0 0 1

DHCP 2334328 1.29E-06 0.00113365 0 0 0 0 1

ARP 2334328 6.47E-05 0.00804255 0 0 0 0 1

ICMP 2334328 0.16372935 0.37002987 0 0 0 0 1

IPv 2334328 0.99989162 0.01041012 0 1 1 1 1

LLC 2334328 0.99989162 0.01041012 0 1 1 1 1

Tot sum 2334328 1310.78792 2626.21915 42 525 567 567.54 103112.2

Min 2334328 91.6382647 139.621352 42 50 54 54 3416.4

Max 2334328 182.399327 526.80039 42 50 54 55.26 28854

AVG 2334328 124.841536 241.491161 42 50 54 54.0501127 7549.36127

Std 2334328 33.4557917 161.109364 0 0 0 0.37190955 7814.29924

Tot size 2334328 124.950134 242.662375 42 50 54 54.06 8409.2

IAT 2334328 83186605 17048120.7 0 83071564.1 83124522.1 83343908.2 167639430

Number 2334328 9.49871808 0.81896897 1 9.5 9.5 9.5 15

Magnitue 2334328 13.1266727 8.64063988 9.16515139 10 10.3923048 10.3967252 117.978075

Radius 2334328 47.2799398 227.862704 0 0 0 0.50592128 11051.088

Covariance 2334328 31017.2362 322733.368 0 0 0 1.35404398 69004153

Variance 2334328 0.09643977 0.23293241 0 0 0 0.08 1

Weight 2334328 141.517847 21.0664315 1 141.55 141.55 141.55 244.6
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Annex B: Confusion Matrices and Reports of Multiclassification. 

 
Fig. B.1 Confusion matrix for Logistic Regression multiclassification 
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Table B.1. Classification report by classes of multiclass Logistic Regression 
model 

 precision recall F1 score support 

DDoS-RSTFINFlood 0.9811 0.9975 0.9893 50569 

DDoS-PSHACK_Flood 0.9969 0.9822 0.9895 51187 

DDoS-SYN_Flood 0.6561 0.9392 0.7725 50742 

DDoS-UDP_Flood 0.7198 0.9052 0.8019 67658 

DDoS-TCP_Flood 0.6467 0.8045 0.7170 56223 

DDoS-ICMP_Flood 0.9989 0.9981 0.9985 90011 

DDoS-SynonymousIP_Flood 0.7836 0.6597 0.7163 44979 

DDoS-ACK_Fragmentation 0.9233 0.9756 0.9487 3564 

DDoS-UDP_Fragmentation 0.9274 0.9788 0.9524 3587 

DDoS-ICMP_Fragmentation 0.9876 0.9729 0.9802 5656 

DDoS-SlowLoris 0.0949 0.4266 0.1553 293 

DDoS-HTTP_Flood 0.1200 0.7556 0.2071 360 

DoS-UDP_Flood 0.7313 0.4187 0.5325 41485 

DoS-SYN_Flood 0.5737 0.1995 0.2960 25362 

DoS-TCP_Flood 0.4328 0.2499 0.3169 33395 

DoS-HTTP_Flood 0.4935 0.6782 0.5713 898 

Mirai-greeth_flood 0.7089 0.8222 0.7613 12399 

Mirai-greip_flood 0.7047 0.5428 0.6132 9397 

Mirai-udpplain 0.9883 0.9901 0.9892 11133 

Recon-PingSweep 0.0034 0.1071 0.0066 28 

Recon-OSScan 0.1263 0.0099 0.0183 1215 

Recon-PortScan 0.0354 0.0069 0.0116 1013 

VulnerabilityScan 0.0786 0.3383 0.1276 467 

Recon-HostDiscovery 0.4650 0.5066 0.4849 1678 

DNS_Spoofing 0.2940 0.2120 0.2464 2236 

MITM-ArpSpoofing 0.4325 0.4026 0.4170 3845 

BrowserHijacking 0.0037 0.0685 0.0071 73 

Backdoor_Malware 0.0048 0.0500 0.0087 40 

XSS 0.0053 0.0625 0.0099 48 

Uploading_Attack 0.0058 0.6250 0.0114 16 

SqlInjection 0.0225 0.3182 0.0421 66 

CommandInjection 0.0147 0.1912 0.0272 68 

DictionaryBruteForce 0.0161 0.0982 0.0276 163 

BenignTraffic 0.8156 0.3937 0.5311 13728 

macro average 0.4645 0.5202 0.4496 583582 
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Fig. B.2 Confusion matrix for Decision Trees multiclassification 
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Table B.2. Classification report by classes of multiclassification Decision Trees 
model 

 precision recall F1 score support 

DDoS-RSTFINFlood 1.0000 0.9999 1.0000 50569 

DDoS-PSHACK_Flood 0.9999 0.9999 0.9999 51187 

DDoS-SYN_Flood 0.9998 0.9998 0.9998 50742 

DDoS-UDP_Flood 0.9998 0.9998 0.9998 67658 

DDoS-TCP_Flood 1.0000 0.9999 1.0000 56223 

DDoS-ICMP_Flood 0.9999 1.0000 0.9999 90011 

DDoS-SynonymousIP_Flood 0.9997 0.9997 0.9997 44979 

DDoS-ACK_Fragmentation 0.9992 0.9989 0.9990 3564 

DDoS-UDP_Fragmentation 0.9983 0.9992 0.9987 3587 

DDoS-ICMP_Fragmentation 0.9996 0.9986 0.9991 5656 

DDoS-SlowLoris 0.9966 0.9932 0.9949 293 

DDoS-HTTP_Flood 1.0000 1.0000 1.0000 360 

DoS-UDP_Flood 0.9995 0.9996 0.9996 41485 

DoS-SYN_Flood 0.9995 0.9995 0.9995 25362 

DoS-TCP_Flood 0.9999 0.9999 0.9999 33395 

DoS-HTTP_Flood 0.9956 0.9989 0.9972 898 

Mirai-greeth_flood 0.9994 0.9995 0.9995 12399 

Mirai-greip_flood 0.9991 0.9991 0.9991 9397 

Mirai-udpplain 0.9996 0.9994 0.9995 11133 

Recon-PingSweep 0.6818 0.5357 0.6000 28 

Recon-OSScan 0.6089 0.6165 0.6127 1215 

Recon-PortScan 0.6264 0.6604 0.6430 1013 

VulnerabilityScan 0.9957 0.9957 0.9957 467 

Recon-HostDiscovery 0.8111 0.8164 0.8138 1678 

DNS_Spoofing 0.7063 0.7021 0.7042 2236 

MITM-ArpSpoofing 0.8240 0.8159 0.8199 3845 

BrowserHijacking 0.6061 0.5479 0.5755 73 

Backdoor_Malware 0.4375 0.5250 0.4773 40 

XSS 0.4000 0.4167 0.4082 48 

Uploading_Attack 0.4348 0.6250 0.5128 16 

SqlInjection 0.5000 0.5152 0.5075 66 

CommandInjection 0.5571 0.5735 0.5652 68 

DictionaryBruteForce 0.6022 0.6687 0.6337 163 

BenignTraffic 0.9197 0.9166 0.9181 13728 

macro average 0.8440 0.8505 0.8463 583582 
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Fig. B.3 Confusion matrix for Naive Bayes multiclassification 
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Table B.3. Classification report by classes of multiclassification Naive Bayes 
model 

 precision recall F1 score support 

DDoS-RSTFINFlood 0.9863 0.9829 0.9846 50569 

DDoS-PSHACK_Flood 0.9989 0.9755 0.9871 51187 

DDoS-SYN_Flood 0.6504 0.9565 0.7743 50742 

DDoS-UDP_Flood 0.6356 0.9692 0.7677 67658 

DDoS-TCP_Flood 0.6299 0.9952 0.7715 56223 

DDoS-ICMP_Flood 0.9953 0.9982 0.9968 90011 

DDoS-SynonymousIP_Flood 0.7411 0.6968 0.7183 44979 

DDoS-ACK_Fragmentation 0.9701 0.9574 0.9637 3564 

DDoS-UDP_Fragmentation 0.9790 0.9741 0.9765 3587 

DDoS-ICMP_Fragmentation 0.9989 0.9691 0.9838 5656 

DDoS-SlowLoris 0.1068 0.2730 0.1536 293 

DDoS-HTTP_Flood 0.2158 0.7306 0.3331 360 

DoS-UDP_Flood 0.6368 0.0855 0.1507 41485 

DoS-SYN_Flood 0.7012 0.0878 0.1561 25362 

DoS-TCP_Flood 0.2639 0.0082 0.0160 33395 

DoS-HTTP_Flood 0.4131 0.6826 0.5147 898 

Mirai-greeth_flood 0.5771 0.9755 0.7251 12399 

Mirai-greip_flood 0.6453 0.0407 0.0765 9397 

Mirai-udpplain 0.9963 0.9911 0.9937 11133 

Recon-PingSweep 0.5000 0.0357 0.0667 28 

Recon-OSScan 0.3529 0.0049 0.0097 1215 

Recon-PortScan 0.2385 0.1234 0.1627 1013 

VulnerabilityScan 0.4045 0.0771 0.1295 467 

Recon-HostDiscovery 0.1814 0.7390 0.2913 1678 

DNS_Spoofing 0.0370 0.0009 0.0017 2236 

MITM-ArpSpoofing 0.5335 0.4393 0.4818 3845 

BrowserHijacking 0.0000 0.0000 0.0000 73 

Backdoor_Malware 0.0909 0.0250 0.0392 40 

XSS 0.0060 0.0417 0.0105 48 

Uploading_Attack 0.0045 0.5625 0.0088 16 

SqlInjection 0.0474 0.3030 0.0820 66 

CommandInjection 0.0364 0.0294 0.0325 68 

DictionaryBruteForce 0.0204 0.0245 0.0223 163 

BenignTraffic 0.7595 0.6522 0.7018 13728 

macro average 0.4810 0.4826 0.4142 583582 
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Fig. B.4 Confusion matrix for Random Forest multiclassification 
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Table B.4. Classification report by classes of multiclassification Random Forest 
model 

 precision recall F1 score support 

DDoS-RSTFINFlood 1.0000 0.9992 0.9996 50569 

DDoS-PSHACK_Flood 1.0000 0.9995 0.9997 51187 

DDoS-SYN_Flood 0.9997 0.9993 0.9995 50742 

DDoS-UDP_Flood 0.9996 0.9996 0.9996 67658 

DDoS-TCP_Flood 1.0000 0.9998 0.9999 56223 

DDoS-ICMP_Flood 0.9999 0.9998 0.9999 90011 

DDoS-SynonymousIP_Flood 0.9999 0.9990 0.9995 44979 

DDoS-ACK_Fragmentation 0.9911 0.9978 0.9944 3564 

DDoS-UDP_Fragmentation 0.9892 0.9975 0.9933 3587 

DDoS-ICMP_Fragmentation 0.9952 0.9986 0.9969 5656 

DDoS-SlowLoris 0.9635 0.9898 0.9764 293 

DDoS-HTTP_Flood 0.9889 0.9917 0.9903 360 

DoS-UDP_Flood 0.9992 0.9997 0.9995 41485 

DoS-SYN_Flood 0.9987 0.9994 0.9991 25362 

DoS-TCP_Flood 0.9999 0.9993 0.9996 33395 

DoS-HTTP_Flood 0.9889 0.9933 0.9911 898 

Mirai-greeth_flood 0.9998 0.9990 0.9994 12399 

Mirai-greip_flood 0.9988 0.9995 0.9991 9397 

Mirai-udpplain 0.9992 0.9999 0.9996 11133 

Recon-PingSweep 0.8000 0.2857 0.4211 28 

Recon-OSScan 0.8041 0.6082 0.6926 1215 

Recon-PortScan 0.6212 0.7414 0.6760 1013 

VulnerabilityScan 0.9687 0.9936 0.9810 467 

Recon-HostDiscovery 0.7738 0.9112 0.8369 1678 

DNS_Spoofing 0.7971 0.7451 0.7702 2236 

MITM-ArpSpoofing 0.8991 0.8463 0.8719 3845 

BrowserHijacking 0.8000 0.4932 0.6102 73 

Backdoor_Malware 0.8000 0.4000 0.5333 40 

XSS 0.7241 0.4375 0.5455 48 

Uploading_Attack 0.8000 0.5000 0.6154 16 

SqlInjection 0.8286 0.4394 0.5743 66 

CommandInjection 0.8696 0.5882 0.7018 68 

DictionaryBruteForce 0.8306 0.6319 0.7178 163 

BenignTraffic 0.9295 0.9555 0.9423 13728 

macro average 0.9164 0.8394 0.8655 583582 
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Fig. B.5 Confusion matrix for MLPClassifier multiclassification 
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Table B.5. Classification report by classes of multiclassification MLPClassifier 
model 

 precision recall F1 score support 

DDoS-RSTFINFlood 0.9994 0.9989 0.9992 50569 

DDoS-PSHACK_Flood 0.9983 0.9992 0.9987 51187 

DDoS-SYN_Flood 0.9977 0.9970 0.9974 50742 

DDoS-UDP_Flood 0.9980 0.9985 0.9983 67658 

DDoS-TCP_Flood 0.9989 0.9975 0.9982 56223 

DDoS-ICMP_Flood 0.9996 0.9990 0.9993 90011 

DDoS-SynonymousIP_Flood 0.9986 0.9978 0.9982 44979 

DDoS-ACK_Fragmentation 0.9879 0.9820 0.9849 3564 

DDoS-UDP_Fragmentation 0.9805 0.9830 0.9818 3587 

DDoS-ICMP_Fragmentation 0.9876 0.9820 0.9848 5656 

DDoS-SlowLoris 0.7903 0.8362 0.8126 293 

DDoS-HTTP_Flood 0.8960 0.8611 0.8782 360 

DoS-UDP_Flood 0.9971 0.9966 0.9969 41485 

DoS-SYN_Flood 0.9906 0.9950 0.9928 25362 

DoS-TCP_Flood 0.9970 0.9975 0.9973 33395 

DoS-HTTP_Flood 0.9109 0.8998 0.9053 898 

Mirai-greeth_flood 0.9796 0.9878 0.9837 12399 

Mirai-greip_flood 0.9792 0.9707 0.9749 9397 

Mirai-udpplain 0.9947 0.9987 0.9967 11133 

Recon-PingSweep 0.0000 0.0000 0.0000 28 

Recon-OSScan 0.4577 0.1605 0.2377 1215 

Recon-PortScan 0.4353 0.0997 0.1622 1013 

VulnerabilityScan 0.8347 0.8437 0.8392 467 

Recon-HostDiscovery 0.5941 0.7336 0.6565 1678 

DNS_Spoofing 0.4134 0.4097 0.4115 2236 

MITM-ArpSpoofing 0.7834 0.5644 0.6561 3845 

BrowserHijacking 1.0000 0.0274 0.0533 73 

Backdoor_Malware 0.0000 0.0000 0.0000 40 

XSS 0.0000 0.0000 0.0000 48 

Uploading_Attack 0.0000 0.0000 0.0000 16 

SqlInjection 0.0000 0.0000 0.0000 66 

CommandInjection 0.8750 0.1029 0.1842 68 

DictionaryBruteForce 0.0000 0.0000 0.0000 163 

BenignTraffic 0.7889 0.9485 0.8614 13728 

macro average 0.7254 0.6579 0.6630 583582 

 


