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Abstract—Rapid development in the network infrastructure
has resulted in sophisticated attacks which are hard to detect us-
ing typical network intrusion detection systems (NIDS). There is a
strong need for efficient NIDS to detect these known attacks along
with ever-emerging zero-day exploits. Existing NIDS are more
focused on detecting known attacks using supervised machine
learning approaches, achieving better performance for known
attacks but poor detection of unknown attacks. Many NIDS
have utilized the unsupervised approach, which results in better
detection of unknown anomalies. In this paper, we proposed
a Hybrid NIDS based on Semisupervised One-Class Support
Vector Machine (OC-SVM) and Supervised Random Forest (RF)
algorithms. This detection system has several stages. The First
stage is based on OC-SVM, which filters benign and malicious
traffic. The next stages use many parallel supervised models and
an additional OC–SVM model to separate known and unknown
attacks from malicious traffic. The previous process is done so
that known attacks are classified by their type, and unknown
attacks are detected. The proposed NIDS is tested on the standard
public dataset CSE-CIC-IDS-2018. The evaluation results show
that the system achieves a high accuracy, 99.45%, for detecting
known attacks. Our proposed NIDS achieves an accuracy of
93.99% for unknown or zero-day attacks. The overall accuracy of
the proposed NIDS is 95.95%. The system significantly improves
the detection of known and unknown anomalies using a hybrid
approach.

Index Terms—Cyber Security, Network Intrusion Detection
System, Machine Learning, One–Class SVM, Random Forest.

I. INTRODUCTION

Consulting the news about recent network cyberattacks that
have occurred worldwide, we can verify how the range of
targets of hackers varies, from government and academic
institutions to private companies, manufacturers, etc. [1]. They
have diverse objectives, seeking to harm in different ways
ranging from spying, interrupting processes, and creating
chaos to damaging reputations. Recognizing that attackers can
be successful in their attempts causes a growing concern re-
garding cybersecurity in all areas that depend almost 100% on
the Internet in their operations. Finding vulnerability gaps in
the Information Technology (IT) systems should be a primary
objective for most companies and manufacturers since having
a weakness in the IT system could affect customer operations.
No matter how small a company is, if it is part of a supply
chain, not taking cybersecurity measures could affect the entire
range of companies participating in the chain.

Among the protection methods are Network Intrusion De-
tection Systems (NIDS), tools for network protection, which
aim to analyze network traffic to detect malicious traffic. NIDS

become one of the first lines of defense [2]. In this research, a
NIDS is proposed to detect anomalies in network traffic. This
system is based on several supervised learning algorithms for
detecting known attacks and unsupervised learning One–Class
Support Vector Machine (OC–SVM) for detecting unknown
attacks. The Network IDS (NIDS) developed in this paper has
high accuracy in detecting known attacks and in reducing the
rate of false positives, as well as detecting zero-day attacks,
showing a whole accuracy of 96.0%.

It is worth mentioning that the above-described model in
this paper is an improvement of our previous work [12]. We
refer to this previous work as PNIDS. In summary, PNIDS was
composed of two components, the supervised models as the
first component and the second one the OC–SVM component,
classifying between attack or benign entry. Despite the promis-
ing results in detecting known attacks, PIDS was not good
enough when detecting benign entries. This fact came from
two different causes: first, the supervised models in the first
component detected many benign entries as known attacks;
second, we consider that the OC–SVM hyperparameters can
be improved.

Regarding the problem of detecting benign entries and
compared with PNIDS, we tried to solve this weakness by
changing the order of components and optimizing the OC–
SVM hyperparameters. We refer to this architecture as NIDS-
1, which is depicted in Fig 1. Although NIDS-1 proved to
be better than PNIDS, we consider we consider, that there
is room for more improvement and novelty with respect to
PNIDS. Thus, we propose adding an additional unsupervised
component OC–SVM to NIDS-1, which plays two prominent
roles. First, it acts as a filter for those (few) misclassified
entries under the action of the supervised component. Second,
it works jointly with the previous OC–SVM component to
catch those benign entries misclassified as anomalies. The
proposed second architecture will be referred to as NIDS-2,
as shown in Fig. 2.

This paper is organized as follows, Section 2 reviews
some related works in the literature. Section 3 describes the
NIDS system proposed in this paper, Section 4 depictes the
implementation of the proposed NIDS, Section 5 presents and
compares the results, and finally Section 6 concludes the paper
and presents future work.

II. STATE OF THE ART

There are multiple studies in the literature on NIDS based on
ML techniques [3]. Several researchers have used supervised
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machine learning techniques as the core of the IDS. In [4],
authors present an IDS based on a Multi-layer Perceptron
Neural Network for intrusion detection. Authors in [5] propose
a Support Vector Machines-based IDS to detect routing layer
attacks in an IoT system. In [6], the authors perform empirical
experiments using four machine learning classifiers, Random
Forest, Decision Tree, Multi-layer Perceptron, and Support
Vector Machine, to test and evaluate the efficiency and perfor-
mance of IDSs. The main criticism of IDS based on supervised
learning is the non detection of zero-day attacks (unknown
attacks). In addition, as labelled data is required, a large part of
these works are based on public datasets that are not updated
[7]. On the other hand, other studies rely on unsupervised
algorithms to detect zero-day attacks. In [8], authors com-
pare the performance and computational cost of classification
models trained with unsupervised ML techniques: Principal
Components Analysis, Isolation Forest, One-Class SVM and
Autoencoder for the CIC-IDS-2017 dataset. Winter et al. [9]
propose an optimized NIDS concerning its false alarm rate;
this system uses OC–SVM model as an analysis engine that
has been trained using malicious network data. Choi et al. [10]
develop a NIDS using autoencoders as the analysis engine;
this system verifies that its performance accuracy exceeds the
one obtained by a NIDS from previous studies developed
with cluster analysis algorithms. Authors in [11] propose a
NIDS that consists of two classification stages. In the first
stage, an unsupervised OC–SVM model is used, which has
been trained with the malicious flow as the positive class to
separate the threat flow from benign network traffic. In the
second stage, a Self Organizing Map (unsupervised neural
network) is used to group the malicious flow into different
alert clusters. The main weakness of these reviewed NIDS
is that unsupervised ML models are less accurate than those
developed with supervised techniques. However, as previously
remarked, supervised methods do not detect zero-day attacks.

In this work, we take advantage of both techniques. In the
same NIDS, we combine several models trained by both types
of learning, supervised algorithms for detecting known attacks
and unsupervised algorithms for detecting unknown attacks,
achieving a high global accuracy compared with previous
works.

III. NIDS PROPOSED ARCHITECTURE

Although two different architectures appear in this section,
NIDS-1 and NIDS-2, we propose the second one as a novelty.
NIDS-2 is the evolution of NIDS-1 and applies two different
uses of the OC–SVM algorithm in two steps. The first step
is the classical one which makes a binary classification. In
the second, this algorithm filters the misclassified entries for
proper re-classification.

We briefly describe the algorithms used in the proposed
architectures. First we describe the unsupervised algorithm,
OC-SVM (used in one or two steps of our architecture), and
then the supervised algorithm, Random Forest (one step on
both architectures).

The OC–SVM algorithm classifies data from a set with
only two different classes, the positive and negative ones. For
training, only one class is needed, the positive one1. Here we
summarize how this algorithm works.

Let {x1, . . . ,xm} ⊂ Rn be the dataset composed by a
given class of interest (the positive class). The radial kernel is
defined by K(x,y) = e−γ||x−y||2 with γ ∈ [0,+∞). In this
summary, there are other possible kernels to play with, so we
describe the algorithm using a generic form, K(·, ·), for the
kernel. Given ν ∈ (0, 1] and γ ∈ [0,+∞), we get a vector
α = (α1, . . . , αm) ∈ Rm solving the non-linear optimization
problem

min
α

1

2

m∑
i,j=1

αiαjK(xi,xj)

constrained to 0 ≤ αi ≤ 1
νm and

∑m
i=1 αi = 1. This

problem allows us to select a set of vectors xi, for i ∈ I ⊂
{1, 2, . . . ,m}, with αi ̸= 0 as a support vectors. Then, an
offset ρ is computed by ρ =

∑m
j=1 αjK(xi,xj), where αi is

taken among the values {α1, . . . , αm} not being an upper nor
lower bound. Then, we decide whether a vector x belongs to
the positive class or not depending on whether the function
f(x) = sign

(∑m
j=1 αjK(x,xj)

)
is positive or negative.

The computation of α and ρ corresponds to the training
process. The validating step uses the resulting function f(x).
Obtaining good accuracy (or any other parameter of the
resulting model) directly depends upon the values of γ and
ν, the hyper-parameters of this algorithm.

Thus, optimizing accuracy corresponds to finding optimal
values of both hyper-parameters, which is a time consuming
task. This task has been proven to be critical when using this
algorithm. We have searched for appropriate values of ν and
γ, selecting the radial kernel for our dataset.

Our supervised step in the proposed architecture is based
on a Random Forest algorithm. The Random Forest algorithm
consists of multiple decision trees. Each tree is created with a
randomly chosen subset of features and votes in parallel and
independently for a class prediction. The final result is the
most voted class after obtaining the predictions made by all
the trees [16].

A. NIDS-1 Architecture

The NIDS-1 is shown in Fig. 1. The input data shown in the
figure is a network flow, and the system consists of two com-
ponents. While the first one performs a binary classification
of system inputs, categorizing each network flow as benign or
abnormal (anomaly), the second performs multiple classifica-
tions to detect known attacks. The whole NIDS-1 performance
is based on Machine Learning. The detection engine of the first
component is based on unsupervised learning, specifically an
OC–SVM, and is intended to detect anomalous traffic. Then,
when the output of the first component is classified as an
anomaly, it is sent to the second component. This component

1For this reason this algorithm is said to be a semi-supervised algorithm.
Nevertheless, many authors refers it as an unsupervised algorithm.
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Fig. 1. NIDS-1 architecture

will try to classify the type of attack when the entry is a
known attack. Otherwise, the entry is outputted as an unknown
attack when the anomaly is unknown. In the case of a known
attack, the detection engine is based on supervised learning
and contains as many supervised models as the number of
known attacks. The system has been developed so that each
trained model detects a specific known attack.

These supervised models work in a parallel way to detect
known attacks. The input network flows which enter in the
second component are passed to all of these trained models.
Each trained model tries to classify this input as an attack
of a specific type of the nature for which it was trained.
The prediction results of all models are stored in a list. Two
checks are performed on these results. Firstly, the known
attack having maximum accuracy is obtained. Secondly, the
maximum accuracy for a particular known attack must be
greater than a given threshold value used to classify this entry
as an attacking entry. The success of these checks leads to the
classification of a particular type of known attack. The failure
of the second check suggests that this entry doesn’t belong
to any of the known attacks, so it should be an unknown
attack or false anomaly detection by the first component. The
Second component of the NIDS-1 may exploit the parallelism
architecture of the hardware; thus, not adding overhead in the
detection.

B. NIDS-2 Architecture

As commented before, an additional ML model is proposed
to be included in NIDS-1 depicted in Fig. 1. Another OC–
SVM is added after the second component. This addition gives
the NIDS-2 architecture that is described in Fig. 2.

This second OC–SVM model helps in correcting some
failures of the second check, supervised component, (as it
has been commented in the previous section) in NIDS-1.

Fig. 2. NIDS-2 architecture

More precisely, when a benign entry has been detected as an
unknown attack by the NIDS-1 architecture is passed to the
second OC–SVM.

Thus, two OC–SVM different models are included in
NIDS-2. The first model classifies entries between benign or
anomaly. The second one filters false anomaly detections and
corrects them.

IV. NIDS IMPLEMENTATION

We have used the CSE-CIC-IDS-2018 [13] dataset to im-
plement the proposed NIDS. This dataset is a collaboration
between the Communications Security Establishment (CSE)
and the Canadian Institute for Cybersecurity (CIC). It was
created to test and evaluate NIDSs. It includes 80 features
of network traffic captured by CICFlowMeter-V3 from 7
different attack scenarios: Brute-force, Heartbleed, Botnet,
DoS, DDoS, Web attacks, and network infiltration from inside.
We carried out the implementation of the NIDS using the
statistical software R. We use a Linux virtual box provided
with 40 Athlon@2.5Gh processors and 125Gb Ram. R code
is developed on a MacBook Pro, with a 2.8 GHz Intel Core i7
quad-core processor for debugging and then sent to the Linux
box for processing.

Datasets need to be preprocessed. For instance, the Times-
tamp feature is removed because it was not considered relevant
to the study. Entries with missing data were not considered.
Finally, numerical features were properly scaled. The first
selection of features applied was made through the Boruta
algorithm, and 20 out of 80 were considered irrelevant.
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A. Training

We used the OC-SVM algorithm to train the unsupervised
component. We trained it with data of the same type (positive
class) to learn its characteristics and made predictions about
inputs that did not fit them. We used OC–SVM because it
has advantages in high-dimensional spaces over other single-
classifiers [14].

Table I shows the dataset for training and validating OC–
SVM models. Notice that attacks of type Bot are not included
in this dataset. These types of attacks are selected to act as
the unknown attacks.

Type # Entries
Benign 50000
DoS GoldenEye 3000
DoS Slowloris 1000
DDoS LOIC-http 4000
DDoS HOIC 4850
DDoS LOIC-udp 150
BF ftp 4000
BF ssh 4000

TABLE I
TRAINING AND VALIDATING DATA-SET FOR THE OC–SVM MODEL

Type # Entries
Benign 1000
DoS GoldenEye 100
DoS Slowloris 100
DDoS LOIC-http 100
DDoS HOIC 100
DDoS LOIC-udp 100
BF ftp 100
BF ssh 100
Bot 200

TABLE II
TEST DATA–SET FOR THE NIDS

The test dataset for the IDS is shown in Table II. It contains
1000 benign entries and 900 anomalies (200 of them are
unknown ones).

B. NIDS-1

As we mentioned in the NIDS architecture section, the
proposed NIDS is composed of two components. The first
component contains an OC-SVM model that has been trained
using benign inputs as the positive class. More precisely, the
OC–SVM model has been trained using 30% of data. The
hyper-parameter optimization obtained the values ν = 0.0101
and γ = 1.1000. The related accuracy is 90.4% on the
validating set of data.

The second component classifies the anomalies between
different types of attacks, including unknown ones. This
component contains several monitored models.

Because the different types of attacks in CSE-CIC-IDS-2018
are not balanced, we decided to train a specific model for
each type of attack. For this task, we considered binary sets
that included data of its corresponding type of attack plus
benign data. Table III shows the datasets used for training and
validating these supervised models. We used 90% of the data

to train and the remaining 10% to validate the models. The
Proportion column shows the percentage of data taken from
the original dataset.

Attack Type # Benign # Attack Proportion (%)
FT-BF 63635 18370 7.8
SSH-BF 63635 17995 7.8
DoS GoldenEye 95042 3915 9.4
DoS SlowLoris 38016 1043 9.2
DDoS LOIC-http 92860 7140 1.3
DDoS HOIC 34535 65297 9.5
DDoSLOIC-udp 1726 168 0.2

TABLE III
TRAINING AND VALIDATING DATA-SET FOR SUPERVISED COMPONENT

We used the mlr3 ecosystem of R [15] to train supervised
models with the Random Forest, Neural Network, XGBoost
and SVM algorithms. In each case, we made new feature
selections by applying the package mlr3fselect to identify the
significant characteristics of each type of attack. We compared
their performances. Models trained using the Random Forest
algorithm obtained the best scores.

As it is commented in [7], let us denote TP (true positive) as
the number of anomalies correctly detected; TN (true negative)
as the number of benign entries correctly detected; FP (false
positive) as the number of benign entries detected as anomalies
and FN as the number of anomalies detected as benign entries.
Thus, standard performance indicators given by default in R
are

• Overall Accuracy (Acc) is the probability that an entry is
correctly classified between benign or anomaly.

Acc =
TP + TN

TP + TN + FP + FN

• Precision (Pre) is the ratio between detected anomalies
that are truly anomalies.

Pre =
TP

TP + FP

• Recall (Rec) is the true anomaly rate.

Rec =
TP

TP + FN

Table IV presents the performance metrics of the supervised
models included in the second component, and Table V shows
the number of features that have been used to train the models.

Model Accuracy Precision Recall
FT-BF 100 100 100
SSH-BF 99.99 100 99.98
DoS GoldenEye 99.99 100 99.94
DoS SlowLoris 99.96 99.89 98.94
DDoS LOIC-http 99.99 99.98 99.92
DDoS HOIC 100 100 100
DDoSLOIC-udp 100 100 100

TABLE IV
SUPERVISED COMPONENT: PERFORMANCE METRICS OF THE MODELS
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Model # Features
FT-BF 15
SSH-BF 50
DoS GoldenEye 31
DoS SlowLoris 43
DDoS LOIC-http 45
DDoS HOIC 19
DDoSLOIC-udp 19

TABLE V
SUPERVISED COMPONENT: # FEATURES OF THE MODELS

C. NIDS-2

We use the same dataset for training the new OC–SVM
model we add to NIDS-1 to obtain NIDS-2. Supervised models
are known to be very precise generically. Thus, most known
attacks detections in the second component are correctly clas-
sified. However, non-known attacks outputs of this component
will include some benign entries also. This is a main weakness
in NIDS-1.

To reduce this weakness a second OC–SVM is added to
NIDS-1 architecture. This new OC–SVM filters those benign
entries badly forwarded to the second component by the first
OC–SVM.

We decided to increase the percentage data to 50% for
training this new OC–SVM. Now, the optimization of the
hyper-parameter values gives ν = 0.07 and γ = 1.0, using
the same kernel. The resulting training accuracy is 92% over
the validating data.

V. RESULTS

We use the standard notation for studying the goodness of
a NIDS. Thus, we add two more indicators to those defined
in the previous section

• Fallout (Fo) is the false anomaly rate.

Fo =
FP

TN + FP
A high fallout limits the performance of an IDS. Users
tend to be non-confident with it.

• Miss Rate (Mr) is the false benign rate.

Mr =
FN

TP + FN
Obviously, for the measure of the ‘global’ performance of

a NIDS, one wants high values of Acc, Pre and Rec, and low
values of Fo and Mr. We also include other ‘local’ measures
for the different components of the proposed NIDS.

A. NIDS-1

After the training process, NIDS-1 has been tested using
the previously described test dataset. We have obtained the
following values of the basic global parameters TP = 896,
TN = 890, FP = 110 and FN = 4. So, the related metrics
are Acc = 0.9400, Pre = 0.8907, Rec = 0.9956, Fo = 0.1100
and Mr = 0.0044.

Although the accuracy of 94% is not bad, the precision
should be over 90% and the false anomaly rate should be under
10%. These figures have to be improved. On the contrary,

the false benign rate 0.44% is low, which is essential to be
confident with the NIDS-1.

Focusing on some improvements of NIDS-1, let’s see some
local figures:

• Component C1:
Detects 890 benign entries.
Misdetects 4 false benigns.
True attacks forwarded to C2 896.
False attacks forwarded to C2 110.

• Component C2:
696 true known attacks are detected correctly.
All of them are correctly classified.
5 false known attacks are misdetected.

• Unknown Attacks Detection:
True Unknown Attacks detected 200.
False Unknown Attacks misdetected 105.

These figures show some weak points: 4 false benigns are
misdetected by the first component, 110 benign entries have
been sent to the second component and 105 false unknown
attacks are misdetected by the second component. That is, the
OC-SVM model has misclassified some benign entries in the
first component. These facts suggest us to filter these benign
entries after they pass through the second component.

B. NIDS-2

The basic global parameters for NIDS-2, using the same
test dataset, are TP = 896, TN = 927, FP = 73 and FN = 4.
Clearly, the value of TN has been improved from 890 to 927 as
we expected. Thus, this additional model acts like a filter that
recovers some false attacks forwarded by the first component
of the previous NIDS-1.

The global parameters of NIDS-2 are Acc = 0.9595,
Pre = 0.9247, Rec = 0.9956, Fo = 0.0730 and Mr = 0.0044.
Now, accuracy and precision have been significantly improved.
Moreover, the true anomaly rate is almost full, the false
anomaly rate is under 10%, and the false benign rate is very
low.

As it has been done before, we include here additional local
figures of NIDS-2:

• Components C1 and C3 (both OC-SVM models):
Detects 927 benign entries.
Missdetects 4 false benigns.

• Component C1:
True attacks forwarded to C2 896.
False attacks forwarded to C2 73.

• Component C2:
696 true known attacks are detected correctly.
All of them are correctly classified.
5 false known attacks are misdetected.

• Unknown Attacks Detection:
True Unknown Attacks detected 200.
False Unknown Attacks detected 68.
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Fig. 3. Overall NIDS’ metrics percentages

VI. PERFORMANCE EVALUATION

The overall metrics of NIDS-1 and NIDS-2 are included
in Figure 3. The recall and miss rate are the same because
the overall parameters TP and FN remains unchanged in
both architectures. Values of TN and FN have been improved
in NIDS-2, thus accuracy, precision and fallout have been
improved also. The previous section shows that classification
between different known attacks has been correctly done by
the second component in both architectures. This fact is a
consequence of the generic good behaviour of supervised
models included in this component.

Now we comment the local metrics, that is metrics related
to either known-only attacks or unknown-only ones.

Fig. 4. Known attacks metrics percentages

Looking at Figure 4, related to known-only attacks, it can
be noted that minor improvements appear. However, accuracy
and fallout are a little better. In fact, metrics related to known-
only attacks can not be sensibly improved because component
C2 has not been changed. So, Figure 4 reflects expected
results. The addition of the second OC-SVM model to NIDS-
2 results in a better performance of accuracy, precision and
fallout related to unknown-only attacks. This fact can be
noted at Figure 5. As we have commented in the previous
section, the overall accuracy is the probability that a NIDS

Fig. 5. Unknown attacks metrics percentages

correctly classifies an entry between anomaly or benign. If we
denote by Xi the random variable that represents the number
of entries correctly classified by the NIDS–i, i ∈ {1, 2},
this variable has a Binomial distribution. And the overall
accuracy Acci represents the second parameter of the Binomial
distribution. With these hypotheses we performed the test
H0 : Acc1−Acc2 = 0, H1 : Acc1−Acc2 < 0, and we obtained
the p-value p = 0.003. This result allows us to conclude that
the metric Acc2 is greater than Acc1 not only at the sample
level but for the entire statistical population. In addition, we
performed the test H0 : Acc2 = 0.96, H1 : Acc2 ̸= 0.96,
and obtained the p-value p = 0.907. This allows us to
conclude that the overall accuracy of NIDS-2 has an order
of 96.0%. Therefore, the NIDS-2 developed in this paper has
high accuracy in detecting known and unknown attacks.

VII. CONCLUSIONS

The literature contains NIDS against closed or open
datasets, that is, those datasets containing benign & known
or benign & unknown attacks, respectively. In this work, we
propose the NIDS-2 against closed and open datasets.

NIDS-2 combines unsupervised and supervised ML models.
Components one and three contains unsupervised OC–SVM
models, while component two contains multiple trained su-
pervised models. Working together, these two types of ML
techniques perform well in detecting and classifying known
attacks and, at the same time, detecting unknown attacks.
Generically, detecting unknown attacks is usually hard to
achieve.

The first OC–SVM model does the binary classification
of benign or not–benign entries. This task is the same in
NIDS–1 and NIDS–2. Nonetheless, adding a second OC–SVM
in NIDS-2 (third component) has been used for correcting
false unknown attacks (thus, improving the Fo value). Figures
in Figure 3 show that this addition enhances precision and
accuracy.

Local analysis of the detection of unknown-only attacks
shows a better performance than known-only ones. See the
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metrics related to NIDS-2 in figures 4 and 5. Thus, for
future detection improvements against unknown-only attacks,
several binary classification actions working together are worth
considering.

Finally, it is worth noting that we are currently working
on extending the proposed work. The main idea is to check
the NIDS-2 architecture against several different datasets.
Different types of anomalies playing the role of unknown
attacks will also be tested.
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