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Lucas Morais, Carlos Álvarez, Daniel Jiménez-González, Juan Miguel de Haro, Guido Araujo,
Michael Frank, Alfredo Goldman, and Xavier Martorell

Abstract—
Dynamic Task Scheduling is an enticing programming model aiming to ease the development of parallel programs with intrisically
irregular or data-dependent parallelism. The performance of such solutions relies on the ability of the Task Scheduling HW/SW stack
to efficiently evaluate dependencies at runtime and schedule work to available cores. Traditional SW-only systems implicate
scheduling overheads of around 30K processor cycles per task, which severely limit the (core count, task granularity) combinations
that they might adequately handle. Previous work on HW-accelerated Task Scheduling has shown that such systems might support
high performance scheduling on processors with up to eight cores, but questions remained regarding the viability of such solutions to
support the greater number of cores now frequently found in high-end SMP systems.
The present work presents an FPGA-proven, tightly-integrated, Linux-capable, 30-core RISC-V system with hardware accelerated
Task Scheduling. We use this implementation to show that HW Task Scheduling can still offer competitive performance at such high
core count, and describe how this organization includes hardware and software optimizations that make it even more scalable than
previous solutions. Finally, we outline ways in which this architecture could be augmented to overcome inter-core communication
bottlenecks, mitigating the cache-degradation effects usually involved in the parallelization of highly optimized serial code.

Index Terms—Parallel programming, hardware acceleration, Task Scheduling, RISC-V, custom ISA, FPGA.

✦

1 INTRODUCTION

PARALLEL programming is widely considered to be
more challenging than sequential software develop-

ment. Both correctness and high performance are difficult to
achieve in parallel programs, and validating parallel code
can be particularly challenging due to the added indeter-
minism arising from multiple simultaneous workers. This
can lead to low-probability but critical errors that may not
be identified during preliminary testing. Such challenges
are further compounded by the use of relaxed memory
models in many modern high-performance parallel archi-
tectures such as ARM, PowerPC, and RISC-V.

Achieving high performance requires evenly partition-
ing computation among workers across the whole appli-
cation execution, such that idleness is minimized. Work-
loads such as matrix multiplication, n-body analysis, and
much of image processing can be made to comply with
this requirement without much effort, but applications not
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falling into the data parallel category can have control-flow
constraints that hamper their ability of being partitioned
into program segments (function calls, loop iterations, etc)
taking about the same amount of compute time. Keeping
multiple compute units busy with such irregular program
segments might then require more complex coordination,
such that compute units get dynamically fed with available
work as they finish their previous assignment.

Additionally, maximizing the utilization of all available
compute units may demand not only correct and efficient
work coordination, but also that such work be partitioned
as finely as possible, such that, at any moment during the
program execution, there are enough pieces of available
work to feed all units. Nevertheless, fine-grained work par-
titioning poses its own threats to application performance,
since it amplifies data traffic and related issues. The work in
[1], for instance, illustrates both the potential and hurdles
of exploring fine-grained parallelism in a HW-accelerated
graph mining workload, with substantial speedups being
achieved only after great care had been taken to minimize
greater orchestration and communication overheads.

Several parallel programming frameworks were pro-
posed to improve programmer productivity under the pre-
viously discussed constraints. Such frameworks might vary
substantially in their level of abstraction, target hardware,
and supported programming models, as discussed next.
Pthreads [2], MPI [3], and CUDA [4] offer fine-grained
control over data and computation distribution, but require
ad hoc implementation of work distribution logic for each
application [5], [6]. Frameworks such as OpenMP [7], Intel
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oneAPI [8], and OmpSs-2 [9] map more abstract parallel
constructs to these lower-level libraries, making applica-
tions easier to validate. Other frameworks, such as Ten-
sorFlow [10] and PyTorch [11], offer even higher levels of
abstraction but are specific to certain application domains,
such as machine learning. More abstract frameworks often
make it easier for programmers to validate their applica-
tions by reliably implementing lower-level mechanics that
would otherwise need to be developed and debugged.

The OpenMP, oneAPI, and OmpSs-2 frameworks
support various parallel programming models, includ-
ing OpenMP’s concise data-parallel constructs, oneAPI’s
pipeline and graph-based parallelism, and OmpSs-2’s dy-
namic Task Parallelism. The latter programming model
allows data dependency relationships between tasks to
be detected at runtime, permitting available workers to
execute tasks in parallel in any order that respects these
relationships. This allows for more thorough parallelism ex-
ploitation than pipeline or traditional graph-based models,
as there are parallelization opportunities that only occur
for specific inputs and must be handled conservatively by
programming models that make decisions at compile time.

While programmer-defined data and computation dis-
tribution schemes require minimal runtime overhead, mak-
ing dynamic decisions during execution can lead to signif-
icant penalties. These penalties can include tens of thou-
sands of cycles for every scheduled task [12] and addi-
tional memory-related delays due to increased instruction
cache pressure or the use of data synchronization barriers
in relaxed-memory systems. As a result, dynamic Task
Scheduling may not be as effective as other parallelization
strategies in certain scenarios. The more workers available,
the larger the tasks must be to ensure cores receive a new
task before the previous one has finished, avoiding idleness.

Previous work filled that literature gap by providing
evidence that HW-based Task Scheduling can dramatically
outperform SW-only solutions at scheduling fine-grained
tasks to general purpose CPUs, showing that a HW Sched-
uler tightly integrated to a 8-core processor can reduce
scheduling overheads by up to 300x with respect to that
baseline, leading to substantial applications speedups. Still,
such core count was somewhat limited compared to what
can be found in high-end SMP systems. The present work
thus builds upon that foundation to deliver comparable
advantages for larger processors, and describes further op-
timizations that make this new version even more capable
than its original form. Alongside these extensions, this
paper essentially contains the following main contributions:

• the description of a hardware architecture providing
low-latency access to HW-accelerated Task Schedul-
ing through custom instructions, bypassing DMA
and OS-driver overheads;

• Phentos, a purpose-built, lightweight, user-level
software runtime providing highly efficient access
to hardware Task Scheduling acceleration;

• a roofline model for Task Scheduling performance
centered on the Maximum Task Throughput metric.

2 BACKGROUND AND TERMINOLOGY

2.1 Task Scheduling
In the context of this paper, Task Scheduling involves the
scheduling of elementary computational units called tasks
to processor cores according to data dependency relation-
ships between them. This paradigm resembles the out-of-
order behavior of many modern processors, but allowing
function calls (tasks), rather than instructions, to be auto-
matically dispatched to different computational units [13].

Task dependencies are such that task B is said to depend
on some task A if, and only if, B is generated after A and at
least one of the following propositions is true:

• Task A writes to some memory position p and B
reads from p (RAW dependency)

• Task A writes to some memory position p and B
writes to p (WAW dependency)

• Task A reads from some memory position p and B
writes to p (WAR dependency)

Figure 1 exemplifies how OpenMP 4.0 pragmas [14] can
be used to spawn tasks. In that example, every time the
outer loop is executed, one task encapsulating the fun1
procedure is generated, while the inner loop generates tasks
encapsulating fun2. The fun3 call is not encapsulated by
any task. The IN (read), OUT (write) and INOUT (read and
write) constructs indicate how the tasks interact with their
pointer parameters. Figure 1 also contains the task graph
for N = 3. Node labels reflect the order at which tasks are
submitted.

In software, pointer-based dependency relationships
can be evaluated in several ways. One solution relies on
holding task-specific arrays of accessed pointers, so that one
might easily check which pointers are touched by any par-
ticular task, and pointer-to-task hashmaps, for efficiently
determining which task (or group of tasks) accesses any
particular pointer. A hardware accelerator for doing the
same might employ similar data-structures.

A detailed description of how dependency resolution
is performed by the specific dependency-resolution accel-
erator employed in this work can be found in [15], while
an account of how the Nanos6 Runtime solves the same
problem in software can be found in [16].

for (int i=1; i<N; i��) {
  #pragma omp task depend(in:v[i-1])
   ↪ depend(out:v[i])
  fun1(&v[i-1], &v[i]);

  for (int j=0; j<i; j��) {
    #pragma omp task depend(in:v[i])
        ↪ depend(inout:u[j])
    fun2(&v[i], &u[j]);
  }

  fun3(3 * i);
}

Fig. 1. Sample code leveraging OpenMP 4.0 task constructs.
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2.2 Maximum Task Throughput (MTT)
The number of tasks that a given task scheduling system
is able to retire per unit of time, considering all scheduling
overheads and assuming that task payloads are instantly
executed by worker processors.

2.3 Internal speedup
Measure of the average core utilization by task contents. In
a system with N cores, core utilization will vary between 0
and N . It is closer to the maximum value whenever runtime
overheads are negligible in comparison to task size and
there is enough parallelism to maintain all cores occupied.

3 PROPOSED ARCHITECTURE

3.1 Architecture Overview
Our work adds native Task Scheduling support to a Rocket
Chip [17] processor by integrating it with the Picos Task
Scheduling accelerator. This involves the introduction of
two significant Chisel [18] modules: Picos Manager, which
is instantiated once in the system and accessible to all cores,
and the Picos Delegate module, instantiated once in each
core. Figure 2 provides an overview of the system.

Top-level module

Interface with remaining FPGA components

L1-I L1-D

Rocket
Core

(with FPU)

Picos Delegate

L1-I L1-D

Rocket
Core

(with FPU)

Picos Delegate

Picos

Picos Manager

TileLink

L1-I L1-D

Rocket
Core

(with FPU)

Picos Delegate

Fig. 2. Overview of the Picos + Rocket Chip system architecture

Picos Delegate instances expose Task Scheduling capa-
bilities to individual cores by implementing custom instruc-
tions. These instances interact with Picos through Picos
Manager, which arbitrates the distribution of ready-to-run
tasks to cores, ensures transaction atomicity, buffers Picos-
CPU transactions to conceal downtimes, and conciliates the
different queue interfaces used by Picos and other modules.

The TileLink module in the above figure is a system-
wide bus synthesized automatically by the Rocket Chip
generator, providing cache-coherent memory accesses to all
connected agents. A Tile refers to a block consisting of a
single core along with its accelerators and caches.

Further discussion of the nature and functionality of
Rocket Chip, Picos, Picos Manager, and Picos Delegates can
be found throughout the rest of this Section.

3.2 Rocket Chip
We take benefit of Rocket Chip to generate a 30-core RISCV
processor with Linux support and cache parameters that
maximize cache size within our FPGA resource constraints.
We use its RoCC interface to define custom instructions that
allow user-level programs to interact with the Picos HW
task Scheduler, as we discuss in Subsection 3.7.

Our FPGA prototype includes Rocket Chip instances
with relatively large1 private L1 caches (128 KB for data,
64 KB for instructions) but no L2 caches, allowing us to fit
many more cores than if a shared L2 cache was added. As a
result, workloads issuing memory accesses with poor local-
ity or exceeding L1 capacity should perform poorly in this
system. In any case, this system characteristic makes it very
capable to detect memory locality regressions that could be
caused by the various evaluated Task Scheduling runtimes.
Furthermore, since more realistic systems with shared L2 or
L3 caches can perform inter-core communication in a much
more efficient way, the scalability results we collect with
our system can be aptly understood as lower bounds for
what could be achieved by less constrained configurations.

3.3 RoCC Interface
This interface, present in all Rocket Chip cores by de-
fault, allows compliant accelerators to make cache-coherent
memory accesses and be exposed to user programs through
custom instructions. The RoCC instruction format is de-
scribed by Figure 3. There, fields rs1 and rs2 indicate the
two optional operand registers; rd encodes the optional
destination register; operands xd, xs1, and xs2 indicate
whether rs1, rs2, or rd, respectively, are used; opcode
stores the instruction opcode; finally, funct7 encodes the
desired behavior, allowing instructions with identical op-
codes to trigger distinct accelerator functionalities.

A Rocket Chip Tile might include zero or more RoCC
accelerators alongside its core and caches. In the system
here described, all Tiles include a single instance of the Pi-
cos Delegate accelerator, which implements the task-related
instructions described in Subsection 3.10.

funct7 rs2 rs1 xd rd opcodexs1 xs2

roccinst[6:0] src2 src1 dest custom-0/1/2/3
7 5 5 1 1 1 5 7

31 24 19 14 13 12 11 625 20 15 7 0

Fig. 3. Format of RoCC instructions.

3.4 Picos
Picos is a Hardware Task Scheduling accelerator developed
at the Barcelona Supercomputing Center supporting multi-
ple worker classes (SMP cores, accelerators, etc) and nested
task scheduling. In our system, Picos is configured to only
feed SMP cores, and, for simplicity, all benchmarks are
implemented in such a way that avoids nested tasks.

1. For comparison, the L1 data and instruction caches are, respec-
tively, 4 and 2 times the size of those found in an AMD 7950x
processor. Their large size aims to minimize, under the FPGA resource
constraints, the need for higher-level caches.
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This accelerator has undergone a major revision since
it was first integrated to a RISC-V system as reported in
[12]. This revision changed its signal interface and packet
API, requiring hardware modules handling Processor-Picos
communication to be rewritten, but allowing scheduling
overheads to be substantially reduced as a result of a more
compact task packet representation.

3.5 Phentos
Phentos is a highly-optimized, light-weight, header-only
C++ library that abstracts our custom Task Scheduling
instructions, allowing for easier interaction with Task
Scheduling software, and enabling tasks to be transparently
distributed to workers from a fixed pool of threads.

While Phentos heavily relies on macros and inline func-
tions for minimizing memory operations, its impact on in-
struction caches is very small compared to larger runtimes
such as Nanos6 and OpenMP. In fact, compiling a Task
Scheduling program with support for Phentos only impacts
its binary size by less than 15 KB, while interaction with the
shared libraries from those two non-accelerated runtimes
requires several extra megabytes to be loaded to memory.

Phentos does not prevent context switches in any way.
Also, to avoid deadlocks, Phentos allows task creation
actions to be interleaved with task execution when submis-
sion is blocked, such as when Picos internal memory is full.

A mechanism must be in place to make sure that,
after a task is submitted to Picos, the software runtime
keeps track of its metadata (related function pointer, input
parameters, etc) up to the point when Picos sends the task
to a worker, which will require such metadata to execute
the task. Picos could be configured to hold that information
in memory, but doing so might considerably increase its
on-chip resource utilization. Our integrated system thus
implements two different software-based mechanisms for
that, leading to two Phentos APIs (ORD-Phentos and FAST-
Phentos), which only differ in their submission procedure,
but not on other actions (such as work-fetching, task-
waiting, signaling of task completion, etc). We shall detail
their nature and tradeoffs in the following two Subsections.

3.5.1 ORD-Phentos
ORD-Phentos stores all task metadata on a custom-typed
cache-aligned array such that each of its elements can hold
a 64-bit task function pointer and either 7 or 15 input
parameters. The 15-input version of this array takes 2 cache
lines per element, doubling the requirements of the 7-input
version, so the shorter version is used whenever the system
does not include any task with more than 7 inputs, which is
not rare, considering that constant scalar parameters might
be held as global variables.

The 7-input configuration will thus generate one cache
line write per submission, one cache miss per ready task
fetched (not considering the loading of function instruc-
tions), and one cache line write for making the array entry
as empty once the task finish executing. In total, for the
7-input configuration, 3 cache transactions are required
for every task managed by the system, compared to 5
transactions for the 15-input configuration.

3.5.2 FAST-Phentos
The FAST-Phentos API was designed with the goal of
substantially reducing the number of cache transactions
required for managing task metadata, although restrictions
apply to when it might be used, as shall be explained
next. When a task application is amenable to it, FAST-
Phentos might be used to reduce the number of metadata-
related cache transactions per task by up to 100% when
compared with ORD-Phentos, depending on the memory
access patterns of the parallelized task kernels.

FAST-Phentos derives its benefits from two facts:

1) Task Parallel programs usually have very few dif-
ferent functions encoded as tasks.

2) Often, task inputs are of the kind (base_pointer
+ constant * index), where the index can of-
ten be encoded with not more than 20 bits.

Observation (1) suggests that task function pointers
might be stored in a global shared array, rather than be-
ing repeatedly propagated from the submission thread to
worker threads for every task. Given that such tasks are
very few, holding all their pointers on shared memory
might not require more than one or two lines in the data
caches from every core (up to 8 64-bit pointers might be
held per 64 byte cache line). This allows function pointers,
under certain conditions, to be directly fetched from L1
cache, rather than leading to a compulsory cache miss as
with ORD-Phentos.

To understandand the significance of Observation (2),
it is useful to acknowledge how ORD-Phentos identifies
correspondences between ready-tasks made available by
Picos and the metadata entries stored in processor memory
during submission. This is achieved by simply having Picos
refer to ready tasks using a 64-bit identifier provided by
Phentos during task creation.

It is worth noting that the validity of Observation (2)
depends solely on the workload being executed, not the
processor bit-width. It is valid, for example, for workloads
such that each of their task parameters is sampled from an
array of no more than one million positions, where each of
these array positions has some arbitrary constant size.

But as both Observations (1) and (2) indicate, using 64-
bit identifiers for tasks (as defined by Picos API regardless
of processor bit-width) is frequently very wasteful, as the
number of combinations of task function pointers and
input values is very limited. This allows FAST-Phentos
to encode all the metadata from each task within 64-
bits, in the form (function_idx, input1_idx, ...,
inputn_idx)2. Whenever this is not possible for all func-
tions, Phentos-based applications might simply fallback to
the ORD-Phentos API.

Compressing input values as indicated before might
require additional shared variables to be kept in memory,
such as when these inputs index some shared array. While
that allows for a worst-case scenario where FAST-Phentos
generates even more cache misses during work-fetches than

2. This is possible even if one of the fields takes more than the 20-bits
suggested by Observation (2), provided that the remaining ones are
small enough to still fit in a Picos-compliant 64-bit submission packet.

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TC.2023.3323781

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



IEEE TRANSACTIONS ON COMPUTERS, 2023 5

ORD-Phentos (one for the function retrieval plus one per
compressed input, compared to exactly one miss for 7-input
ORD-Phentos), the fact that there are usually very few dif-
ferent memory regions indexed by these inputs frequently
allows all of them to be kept within a single cache line.
As a result, whenever task execution does not thrash all
private data cache contents, work-fetching might recover
both function address and input base pointers without
incurring on any cache miss.

Furthermore, while ORD-Phentos requires, for each
completed task, a memory write for marking its defunct
metadata element as free to be overwritten, FAST-Phentos
does not, given that it does not hold any task-specific data
structure in memory.

Under the optimal scenario, FAST-Phentos eliminates all
task handling cache misses, even though that is only possi-
ble when data touched by compute kernels fit in L1 cache.
In the worst case, FAST-Phentos issues one cache miss per
compressed task datum (input or function pointer).

Regardless of FAST-Phentos ability to hold arbitrary
task metadata in cache for any given application, it never
requires memory writes during task creation or termina-
tion, with favorable performance implications. RISC-V has
a relaxed memory model, so inter-core data propagation
requires explicit memory barriers that can impact unrelated
memory operations, degrading performance. ORD-Phentos
must store task metadata in a way that is visible to all
worker cores, requiring such a barrier at the end of each
submission and consequently limiting task creation rate.
The same is not true for FAST-Phentos, so its task creation
latency should be strictly lower than that of ORD-Phentos.

In summary, FAST-Phentos should display higher aver-
age performance than ORD-Phentos, even though perfor-
mance degradation might be triggered in some cases.

3.6 The Nanos-RV Hardware Accelerated Runtime
Nanos-RV is a variant of the Nanos Task Scheduling Run-
time where most SW-based dependency management code
is replaced with calls to our HW-accelerated Task Schedul-
ing instructions. Such use of hardware acceleration allows
this variant to substantially outperform its non-acelerated
baseline. At the same time, our experience with it suggested
that its inherited Nanos complexity greatly impacted Task
Scheduling throughput. Our work with this runtime thus
motivated the design of a clean slate alternative, eventually
materialized as Phentos. Given that the latter generally
outperforms Nanos-RV by a large margin, the remaining
of this work will mostly focus on Phentos.

3.7 The Software Interface
The main goal of this work was to develop a system with as
little scheduling overhead as possible. To this effect, we not
only leverage the power of Picos to track task dependencies
much faster than software runtimes but we also try to
keep communication latencies between Task Scheduling
applications and Picos to a minimum. In our system, com-
munication latencies are limited by the use of low-latency
Picos-CPU dedicated datapaths bypassing system memory

TABLE 1
Custom Task Scheduling instructions supported by the system.

Name Description

Initiate Task Informs the system about the swID and
number of dependencies of a new task.

Add Info
Allows the runtime to inform Picos about

task metadata relevant to nested task
scheduling.

Send IN Dep
Used during task submission to encode a
single 64-bit memory pointer referring to

an IN dependency.

Send IN Deps
Used during task submission to encode two

64-bit memory pointers referring to IN
dependencies.

Send OUT Dep
Used during task submission to encode a
single 64-bit memory pointer referring to

an OUT dependency.

Send OUT
Deps

Used during task submission to encode two
64-bit memory pointers referring to OUT

dependencies.

Fetch SW ID
If the ready queue of the execution core is
not empty, it returns the SW ID relative to

the front element of the queue.

Retire Task Informs the system about the retirement of
the task with the Picos ID given.

Fetch Picos ID

If the ready queue of the execution core is
not empty and the SW ID relative to the

front element of the queue has already been
fetched, it returns the Picos ID of the same

element and pops the queue.

Ready Task
Request

Requests the system to move one more
Ready Task packet from the global Ready
Queue to the queue of the executing core.

and by the provision of custom processor instructions for
requesting Task Scheduling functionality. The existence of
such instructions simplifies the construction of middleware
to connect task applications to the underlying Task Schedul-
ing hardware, thus avoiding additional software overheads.

While designing Picos Manager and the auxiliary RoCC
accelerator, we opted for making all the new instructions
non-blocking. In this context, blocking instructions are
those that only return after the corresponding transaction
between Picos Manager and the core executing the instruc-
tions has completed. Making all instructions non-blocking
gives more freedom for the runtime programmer to decide
what to do in cases where Picos might not be able to accept
a new task or reply with a new ready task. If the system
is not able to service any of these requests, the instruction
returns a failure flag value and the program is free to keep
trying. By quickly replying with these failure values, our
system allows the runtime programmer to ask the core to
sleep for a certain amount of time, saving energy; to per-
form alternative work actions; or even to request a context
switch to the operating system. Additionally, having non-
blocking instructions eases the development of deadlock-
free systems, as we discuss in Subsection 3.8.

All instructions implemented by the Picos Delegates are
described by Table 1.

3.8 Averting deadlocks with non-blocking instructions
As previously mentioned, ensuring that submission and
work-fetching instructions are non-blocking eases the de-
velopment of deadlock-free systems. In the following lines,
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we present two scenarios where blocking instructions could
lead to deadlocks and discuss ways to avoid them.

Deadlock Scenario 1: blocking submission instructions
Let us suppose that some thread T might execute ready
tasks and that it is the only allowed to submit new tasks
to Picos. Let us also suppose that it successfully executes
Ready Task Request while trying to fetch a new task but
fails to get one by running Fetch SW ID. Finally, let us
suppose that just after the latter instruction was executed,
Picos Manager fills the core-specific ready queue of T with
a new descriptor. Then, if for some reason T blocks while
running any submission-related instruction, it might never
recover from it.

This can happen because of the two following facts: (1)
submissions fail when buffers and other data structures in
Picos or Picos Manager become full; and (2) it is possible
that more space might be available in these buffers and
data structures only after the task descriptor now sitting in
the core-specific ready queue of T is executed.

Consequently, if T blocks while performing a
submission-related operation in a situation where it can
only succeed after T consumes at least one element of its
own core-specific ready queue, the system stalls.

Deadlock Scenario 2: blocking work-request instruction
As before, let us suppose that thread T might execute
ready tasks and that it is the only one allowed to submit
tasks to Picos. Let us further suppose that just prior to the
execution of Ready Task Request by T , the centralized ready
task request queue in the Work Fetch Controller3 is full.
In this case, the Ready Task Request instruction issued by T
will block until writing to that routing queue is possible
again. Nonetheless, if it is also true that there are no ready
task descriptors in Picos, the routing queue will never be
depleted — since there are no ready tasks to distribute —
and the Ready Task Request being executed by T will never
return. Ready tasks will only be available after a new task
submission succeeds, but a new submission can only take
place after at least one ready task is fed to Picos Manager.
Since these two events depend on each other, none of them
will never happen, leading to a deadlock.

These deadlock scenarios can be avoided in several
manners. In our system, we opted for making all instruc-
tions (related to submission, work-fetching, and retirement)
non-blocking, which allows a thread holding the responsi-
bilities of both generating and running tasks to freely switch
between these roles.

3.9 Avoiding load imbalance
Load imbalance refers to the uneven distribution of work
among computation units (such as processor cores), often
leading some of them to spend time idling, reducing av-
erage utilization rates and limiting maximum speedups
with respect to serial execution. Our system avoids these

3. This module, shown in Fig. 4, arbitrates ready task requests com-
ing from all cores into a single routing queue, whose data determines
the order at which requests are fulfilled.

problems by storing ready tasks in a single shared queue
that all cores are allowed to fetch work from. Such work-
pull operations are triggered by the Ready Task Request
instructions described in Segment 3.10.5.

Although the system allows for buffering of ready tasks
by the cores, both our Nanos-RV and Phentos implemen-
tations avoid having multiple pending Ready Task Request
operations, such that whenever such requests are fulfilled
by Picos, the core receiving the new ready task immediately
starts executing it. In this manner, the situation whereby a
core keeps a ready task to itself while other cores starve
for work is made impossible, and work stealing never
becomes necessary. The core-private buffers thus behave as
passthrough channels.

3.10 The RoCC Accelerator
The ISA extension defined by our architecture is imple-
mented by the RoCC-compliant Picos Delegate modules
instantiated in every core, as described in what follows.

3.10.1 Initiate Task
The Picos Delegate RoCC accelerators implement this in-
struction by pushing swID and dependency count values to
independent buffers implemented within the core-specific
Submission Handler corresponding to the core executing
this instruction (see Figure 5). If both buffers can simultane-
ously accept the insertion, the instruction returns a success
flag. Otherwise, a failure flag is issued.

3.10.2 Add Info
This instruction implements support for nested tasks by
allowing tasks to be described as children of previous tasks.
This is achieved by letting tasks be assigned a parentID.

This instruction is implemented in a way similar to that
of Initiate Task: it leads the Picos Delegate handling the
instruction to write parentID information to a buffer in the
core-specific Submission Handler related to the core issuing
the instruction. If the transaction succeeds, the instruction
returns a success flag. If not, the failure flag is produced.

3.10.3 Send IN / OUT Deps
These two instructions are implemented by sending the two
56-bit pointers provided by the instruction caller, alongside
a two-bit token indicating their IN, OUT, or invalid nature,
to a core-specific buffer similar to those from Initiate Task.
If that is possible, a success flag is returned. Otherwise, the
failure flag is generated.

3.10.4 Send IN / OUT Dep
These are single-dep versions of the instructions in 3.10.3.

3.10.5 Ready Task Request
Our RoCC accelerators do not have direct access to the
single ready queue of Picos. Rather, each of them is allowed
to pop contents of its core-specific ready queue inside Picos
Manager. On the other hand, Picos Manager only forwards
ready packets from Picos to these private queues after being
requested to do so. RoCC accelerators issue such requests
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upon the decoding of Ready Task Request instructions. After
receiving such request R from a core ci with ready queue
Qi, Picos Manager is guaranteed to only answer later work-
fetch requests by any core after having satisfied R. Thus,
Picos Manager distributes ready-to-run tasks in the same
order that work-fetch requests come from the cores.

3.10.6 Fetch SW ID

Suppose that core ci, with private ready queue qi, issues a
Fetch SW ID instruction. If qi is empty, the RoCC accelerator
instance in that core fulfills the instruction by returning
a failure value; otherwise, it returns the SW ID encoded
by the front element of the queue and setting an internal
success flag. In either case, it does not pop qi.

3.10.7 Fetch Picos ID

Suppose that core ci, with private ready queue qi, issues
a Fetch Picos ID instruction. If qi is empty, the RoCC
accelerator instance in that core fulfills the instruction by
returning a failure value; otherwise, if qi is not empty and
a previous Fetch SW ID instruction succeeded at retrieving
the SW ID encoded by the front element of qi, it fulfills the
instruction by returning the Picos ID encoded by the front
element, popping qi, and resetting the internal flag marking
the success of a previous Fetch SW ID instruction.

3.10.8 Retire Task

The RoCC accelerator fulfills Retire Task instructions by
pushing the payload of the operand register to the Retire-
ment Controller in Picos Manager (see Figure 4). If that
operation might be completed within a single cycle, the
instruction succeeds and a success flag is produced as a
return value; otherwise, a failure flag is returned.

3.11 Picos Manager

Work Fetch
Controller

Submission
Controller

Retirement
Controller

retInterface: N

readyRequestInterface: N

argsAndParentInfoVec: N

taskInfoVec: N

depInfoVec: N

picosReadyInterface

picosAckInterface
picosSubInterface

picosFinishedInterface

ReadyQInterface: N

Fig. 4. Internals of the Picos Manager module.

Picos Manager arbitrates all data communication be-
tween Picos and individual cores. It serves as a protocol
converter between the interface defined by core-specific
Picos Delegates (which implement the custom RoCC in-
structions) and Picos itself. By virtue of that, in the event
that the Picos interface is ever changed, only changes to
Picos Manager are required, not to the cores.

picosSubData

routingInfoOuter

Core Submission
Handler 1

picosSubData

routingInfoOuter

Core Submission
Handler N

Guided
Arbiter

Resubmission
Handler

Round Robin
Arbiter

picosSubInterface

argsAndParentInfoVec: N

taskInfoVec: N

depInfoVec: N

picosAckInterface

Fig. 5. Block diagram of the Submission Controller, a module instan-
tiated by Picos Manager for carrying out transmission of new task
descriptors to Picos.

3.11.1 Interface
As shown by Figure 2, Picos Manager is connected to
Picos and each of the core-specific RoCC accelerators (here
called Picos Delegates). Its core-specific interface, which
is replicated for each core, includes (1) a ready queue,
(2) a retirement queue, (3) three submission queues, and
(4) a work fetch request queue; its Picos-facing interface
includes (5) a ready queue, (6) a retirement queue, and (7)
a submission queue.

3.11.2 Structural elements
As described by Figure 4, Picos Manager comprises three
basic components: the Work-Fetch Controller, the Retire-
ment Controller, and the Submission Controller. In the
following lines, we will discuss the behavior and inner
mechanics of each of them.

Submission Controller
This component — shown in detail by Figure 5 — is the
module that handles processing of submission packets in
behalf of Picos Manager. It serves two main purposes:
(1) making sure that submission packet sequences coming
from cores are not interleaved, given that Picos requires task
submissions need to happen atomically; (2) implement pro-
tocol crossing logic to ensure that communication between
the various cores and Picos comply with Picos interface.

Picos Manager instantiates a Core Submission Handler
for each core in the system. Each of these instances con-
sumes data from the elementary submission queues com-
ing from its corresponding core to build packet sequences
compliant with Picos interface. Additionally, they interact
with arbiters instantiated within the Submission Controller
to secure permission for atomically sending data to Picos.

The routingInfoOuter interface from each Core Sub-
mission Handler contains a submission request describing
the length of the corresponding submission sequence. The
Guided Arbiter forwards data from the core whose submis-
sion request it receives through the Round Robin Arbiter,
ensuring that packets from different submissions are never
interleaved. The Round Robin Arbiter selects submission
requests from the cores in round-robin fashion.

The Guided Arbiter does not send data directly to Picos,
but to a Resubmission Handler, which allows submission
actions to be re-attempted whenever Picos issues a negative
acknowledgment signal indicating that it has not been
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TABLE 2
Summary of system characteristics.

Number of cores 30
Clock 60 MHz
Architecture RV64G
Rocket-Chip version Customized 525ddd37a
Front-end capabilities In-order, single-issue
Number of MSHRs 1
L1 Data Cache size 128 KB
L1 Instruction Cache size 32 KB
L1 cache wayness D-Cache: 16; I-Cache: 4
Cache line size 64 bytes
D-TLB topology Fully associative, 32 entries
I-TLB topology Fully associative, 32 entries
DDR capacity 16 GB
DDR generation DDR4
DDR Clock 1200 MHz (2400 MT/s)
CAS latencies Read: 17 cycles; write: 12 cycles
Number of memory channels 1
OS Linux 5.10.7
Buildroot version 2021.8.1
GCC version 10.3.0
Mercurium version 2.3.0
Cache coherence protocol MESI4

able to handle the latest submission. That usually only
occurs when internal Picos memories do not have space
for additional in-flight tasks.

Each of the three elementary submission queues con-
nected to each Core Submission Handler transmit data from
a different class of submission instruction ({Initiate Task},
{Add Info}, or {Send IN Dep(s), Send OUT Dep(s)}).

Work-Fetch Controller
This module is responsible for distributing ready-to-run
task descriptors to cores according to the total-order at
which they requested such data.

Retirement Controller
This unit arbitrates retirement data coming from each core
in the system. Collisions are frequent whenever core utiliza-
tion is high and tasks are relatively small. When a collision
occurs, this controller picks one core to send data in round-
robin fashion and causes other cores to retry the retirement
operation. This module is also responsible for converting
single-packet retirement streams coming from the cores to
three-packet retirement streams expected by Picos.

4 EXPERIMENTAL SETUP

4.1 System characteristics

Each experiment is executed on a FPGA instantiation of the
system described by Table 2. As discussed in Subsection
3.2, this system has several characteristics that make it very
sensitive to excessive inter-core data traffic, such as having
no shared caches, only one MSHR per core, as much as
30 cores, and employing a snoop-based coherence protocol
rather than a directory-based one. As a result, the hardware-
based Task Scheduling acceleration here described is likely

4. MESI implies a write-back policy and usage of snooping protocol.

to display even higher scalability in systems with more
performant multi-core cache configurations.

The Linux 5.10.7 environment that all evaluated appli-
cations depend on is built using Buildroot 2021.8.1, which
generates an initramfs (a memory-only file system) with
the Linux kernel, system packages, and our benchmark
binaries. The Linux kernel and basic packages are compiled
from source by Buildroot, while the compilation of our
binaries is handled separately. All ORD- and FAST-Phentos
applications are built with RV-enabled GCC 10.3.0, while
Nanos applications are compiled by Mercurium 2.3.0 [19],
which transpiles application code into C and C++ tempo-
rary files that are finally compiled by GCC 10.3.0 as well.

All cores include a floating-point unit and custom RoCC
instructions enabling interaction with Picos, being all sym-
metrical with respect to their HW Task Scheduling capabil-
ities. Even so, to eliminate the effects of thread migration
on application behavior, threads are locked to cores in all
program executions in a way that cores [1, N−1] are limited
to task execution while core 0 is left to handle both task
creation and execution, where N is the number of cores.

Internal speedups (average core utilization by task ker-
nels rather than runtime overheads) are measured accord-
ing to the following formula, where T is the set of all tasks
of a program P , and W (x) is the wall-time of x, in cycles:

Si(P ) =

∑
t∈T W (t)

W (P )

The wall-time of a task refers to the number of processor
cycles elapsed during a task execution. It is measured by
issuing rdcycle instructions immediately before and after
the task payload (which is always a function) is called,
to evaluate the difference between these cycle counts. All
time-consuming operations are taken into account: cache
misses, context switches, page faults, etc.

4.2 Benchmarks

System performance is evaluated with programs from four
different domains, as described next:

1) The blackscholes application, from the Financial
Analysis domain, solves the Black-Scholes partial
differential equation for evaluating how the price
of an European-style option varies as a result of
changes to the value of its underlying asset. It is a
highly data-parallel application from Parsec [20].

2) The sparseLU, jacobi, matmul, and dot-product appli-
cations represent the Linear Algebra domain. The
first of them solves pseudo-random sparse linear
systems, the second uses the Jacobi iterative equa-
tion solver for solving the Poisson equation in one
dimension, the third performs block-based matrix
multiplication, and the last implements inner prod-
uct calculation. Such programs are derived from the
implementations found in the Kastors Benchmark
Suite [21] and the ompss-ee5 Github repository.

5. https://github.com/bsc-pm/ompss-ee
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3) The stream-deps and the stream-barr programs are
micro-benchmarks that evaluate system perfor-
mance at handling routines of very high memory
intensity. Examples of these routines include copy-
ing data among memory positions; adding two
arrays and storing the result in a third; producing
scaled versions of an original array, etc. The fact
that these benchmarks compound these operations
in a complex scheme of data dependencies make
them good targets for parallelization using Task
Scheduling. The implementations of these bench-
marks found at the ompss-ee repository as well.

4) Finally, the nbody benchmark computes N-body
gravitational interactions, representing the physics
simulation domain.

Each benchmark can be executed with inputs of varying
task granularity, which is frequently achieved by partition-
ing input matrices in blocks of arbitrary size.

5 RESULTS AND DISCUSSION

5.1 Comparing Phentos and Nanos
Figure 6 summarizes how speedups over serial execution
vary with respect to runtime and input selection. We can see
that both Phentos variants outperform Nanos 41 out of 42
times, frequently by a substantial margin. The same figure
also suggests that, as expected, such speedups are usually
greater for larger block sizes. This is generally true up to
the largest block size for which individual tasks do not
exceed the data cache capacity of a single core. Experiments
not displayed in this figure indicate that having tasks with
larger work sets can lead to much poorer performance.

Figure 7 summarizes the Phentos advantage with re-
spect to Nanos, which it clearly suggests to be greatest for
scenarios with small tasks. The geometric mean Phentos
speedup over Nanos is around 7.5x for ORD-Phentos and
9.4x for FAST-Phentos. As expected, Phentos-over-Nanos
speedups approach unity as task sizes increase, given that
larger tasks more effectively amortize scheduling over-
heads and, provided that applications are sufficiently paral-
lel, might saturate worker cores even if the Task Scheduling
system is only capable of issuing a comparatively low
amount of tasks per unit of time.

5.2 Deriving theoretical speedup bounds from MTT
As described in Subsection 2.2, Maximum Task Through-
put (MTT) is the maximum number of tasks that a given
Task Scheduling platform might execute per unit of time.
This metric is very important for comparing different Task
Scheduling systems, given that it defines constraints for the
(task granularity, number of cores) pairs that such systems
are able to efficiently service.

In fact, in a system with N cores being served by a
Task Scheduling runtime with an MTT of K , the following
inequality must hold:

Nactive

Texec
≤ K,

where Texec is the fixed task size and Nactive is the average
number of cores actively running tasks — rather than
waiting to be fed with more work by the Task Scheduling
runtime. Thus, one might derive a speedup bound MS for
that system as a function of mean task size as the following:

MS(t) = min(N,K × t)

Considering that K = 1
Lo

, where Lo is the mean Task
Scheduling overhead experienced by tasks during their
whole lifetime, MS might then be defined as a function
of Lo and Texec as the following:

MS(Lo, t) = min(N,
t

Lo
) (1)

Having this in mind, for four different workloads, we
measured the mean Task Scheduling overhead of Nanos-
RV and Phentos, as shown by Figure 8.

Figure 8 clearly shows to which extent Nanos-RV and
Phentos were able to reduce lifetime Task Scheduling over-
heads for varying workloads. In fact, Phentos presents
lifetime overhead reductions of up to 253x with respect
to Nanos-SW, while Nanos-RV shows reductions of up to
3.39x. Such measurements were taken with two different
lifetime-overhead-measuring benchmarks: Task Free, which
generates independent tasks with any number of monitored
pointer parameters from 0 to 15; and Task Chain, which gen-
erates inter-dependent tasks forming a data dependency
chain where all tasks have the same number of monitored
pointer parameters similarly ranging from 0 to 15.

Based on the figures for the Task-Free (1 dep) case and
on Equation 1, we might then evaluate maximum speedup
bounds for the various different Task Scheduling platforms
as a function of mean task size as shown by Figure 9. That
figure shows that the reduced lifetime overheads of Phentos
substantially improve MTT-based maximum speedup with
respect to any other platform for a wide range of mean
task sizes. As an example, for task sizes around 10000 cy-
cles, MTT-based maximum speedups for FAST- and ORD-
Phentos are greater than 30x and 24x, respectively, while all
other platforms have maximum speedups lower than 0.8x.

Finally, we overlay MTT upper bounds to performance
data collected for each runtime on Figure 10, where we can
see that MTT curves serve as a strong performance limit for
all runtimes, with no over-serial speedup or core utilization
datapoint placed above it.

There, we can see that utilization figures are more likely
to be close to MTT limits than over-serial speedups. This is
mostly due to the fact that over-serial speedups can only
exceed core utilization if the total computation time in the
parallel scenario is smaller than the total computation time
of a serial execution, which only occurs in the somewhat
rare case where the parallel version is more cache amenable
than the serial version. Among all reported datapoints, this
only occurs for the (Nanos, matmul, 64) execution,
where over-serial speedup slightly surpasses utilization.
This workload benefits from the Nanos scheduling opti-
mization that, given some core c retiring some task T ,
preferentially assigns tasks made ready by the completion
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Fig. 6. Speedups at 30 cores for all benchmarks. Solid bars represent speedups over serial execution, muted bars show effective core utilization.
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Fig. 7. Speedups of all applications executed on Phentos, taking benefit
of HW-acceleration, over equivalent SW-only executions on Nanos6.

of T to c, since that new task is likely to find relevant data
produced by T in that core’s cache. If this optimization is
disabled, over-serial speedup drops by around 10% while
utilization remains virtually the same.

For all considered benchmarks, both Phentos versions
are generally capable of saturating cores with useful work
(reaching an internal speedup close to 30) when block sizes
are large enough, as suggested by Figure 6. Nanos, on the
other hand, can only approach doing so for half of the
benchmarks, likely as a result of its lower MTT and its need
to occupy worker cores with task management actions.

Moreover, since our internal speedup (effective utiliza-
tion) measures exclude CPU runtime overheads, it tends
to be smaller whenever these overheads take a substantial
portion of CPU time. This is frequently the case for Nanos,
since its non-accelerated nature requires all dependence
management to consume CPU cycles both in the submis-
sion thread and the worker threads. This Nanos peculiarity
is one reason why utilization is less likely to approach the
MTT bound for this runtime than for either Phentos variant.

Still, while runtime overheads are generally much lower

for Phentos than for Nanos, the task management over-
heads of both Phentos versions is still sensitive to the gen-
eral memory behavior of the application being executed.
This is because memory operations performed by either
FAST- and ORD-Phentos to achieve data communication
between the submission thread and the worker threads take
different amounts of cycles to be completed depending on,
among other things, average memory contention.

Finally, it is interesting to note that FAST-Phentos data
in Figure 10 seems to be, with respect to ORD-Phentos data,
compressed beyond the 1K cycles vertical line. This follows
from the fact that task sizes are also dependent on memory
contention, given that the execution time of most tasks
tends to be dominated by memory operations. Since FAST-
Phentos tends to issue tasks to cores at a higher frequency
than ORD-Phentos, tasks managed by FAST-Phentos tend
to cause greater contention, which then cause these tasks to
take more time to execute. In any case, this does not prevent
FAST-Phentos to outperform ORD-Phentos in the general
case or even in the instances where this effect is most
noticeable, such as for the (FAST-Phentos, sparselu,
1) datapoint, where FAST-Phentos is able to outperform
the other Phentos variant by more than 2x even with a
much larger task size.

5.3 Resource utilization

Table 3 showcases the resource utilization of several rel-
evant system components. In particular, it shows that,
for any given FPGA resource class, less than 3.8% of the
whole-design utilization of that resource is due to the Task
Scheduling subsystem (comprising Picos, Picos Manager,
and Delegates). Considering that the CPU cores are in-
order, single-issue, and relatively simple, one expects that
the same set of HW modules would take an even lower
fraction of a production-grade SoC featuring out-of-order
cores with a more complete cache hierarchy. Moreover, the
Task Scheduling subsystem has buffers that could be scaled
down to further reduce resource utilization if needed.
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6 LIMITATIONS AND FUTURE WORK

While our system significantly reduces Task Scheduling
overheads with respect to solutions without hardware ac-
celeration, much opportunity exists for further improving
its memory behavior.

Ideally, tasks should be allocated to cores in a way
that maximizes cache locality, avoiding unnecessary bus
contention and cache misses. In its present form, our system
significantly departs from that ideal by allocating tasks to
cores in near random fashion, not making any effort to
ensure better data reuse.

The negative impact of random work allocation is
greater for systems with larger numbers of cores. This
is partially explained by the fact that if N idle workers
are available, the probability that any given task will be
assigned to the optimal core is 1

N , assuming that no cores
have equal allocation fitness for that task. Consequently,
random allocation impairs our system’s scalability, and
should be replaced with a more cache-sensitive allocation
strategy in future revisions of our integration.

Concretely, we plan to develop a new configuration
where cache-aware task clustering is performed prior to
task allocation, such that tasks sharing substantial amounts
of data belong to the same cluster and tasks from the same
cluster are assigned, when possible, to the same worker,
maximizing cache temporal locality. Strong theoretical and

TABLE 3
Resource usage breakdown for single instances of various relevant
system modules, including submodules. Percentage values for any

resource class are calculated with respect to FPGA capacity.

Module Cardinality LUT FF BRAM
Alveo U-200 - 1182240 2364480 2160

Top level One per
system 89.8% 24.3% 93.9%

Core 30 2.65% 0.67% 2.73%

FPU 30 (one per
core) 1.03% 0.16% 0.00%

D-Cache 30 (one per
core) 0.44% 0.14% 2.22%

I-Cache 30 (one per
core) 0.07% 0.04% 0.51%

Coherence Bus One per
system 1.32% 0.06% 0.00%

Delegate 30 (one per
core) 0.04% 0.01% 0.00%

Picos Manager One per
system 1.49% 0.11% 0.00%

Picos One per
system 0.69% 0.54% 2.57%

Picos + Picos
Manager +
Delegates

One per
system 3.34% 0.90% 2.57%

simulation-based arguments have been made in favor of
such approach [22], [23], but its practical hardware im-
plementation within a SMP system, with support for fine-
grained tasks, remains to be achieved.

Task Scheduling systems hold precise information on
the data dependencies among future tasks, and it should be
possible to leverage that information to design improved
cache replacement policies. Such a policy should be more
likely to discard data that is not going to be used by the next
task coming to a worker, and less likely to evict data that
is certainly going to be needed by that next task. If hints
are provided to the HW Task Scheduler about the size of
the various memory regions accessed by each task, it could
even prevent data that is not going to be re-accessed in
the near future from being cached, making caches strongly
resilient to scan and thrashing access patterns.

Other cache replacement policies exist that provide
these resilience properties [24], [25], [26], [27], [28], but
they usually act in a reactive way, learning memory access
patterns after the fact, and performing poorly until enough
data has been gathered about the current application phase.
Task-aware policies should not suffer from this issue, given
that they would be based on certain or highly-likely future
application behavior, and are likely to be especially ad-
vantageous for applications that frequently switch between
very disparate program stages.

As described in Subsection 4.1, our system blocks thread
migration. This is in place to reduce execution time variabil-
ity and, more importantly, ensure CPU-Picos transactions
are not interrupted by thread movements, possibly corrupt-
ing Picos submission packet sequences. On the other hand,
the work in [29] describes the advantages of supporting
untied tasks, that is, tasks that might resume execution from
a different thread after being interrupted for any reason.
Such flexibility might be beneficial to load balancing, while
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Fig. 10. Experimental speedup data of Task Scheduling applications over corresponding serial executions compared with theoretical MTT-derived
bounds. Solid dots represent speedup over serial execution, cross markers depict internal speedups (effective core utilization). Dashed and solid
horizontal lines represent arithmetic and geometric mean speedups, respectively. As it is the case for Figure 9, MTT values are derived from
Task-Free executions involving fifteen monitored pointer parameter par task.

possibly reducing data locality and adding context migra-
tion overheads. Minimizing such overheads was one of
the main contributions of [29]. Figure 6 shows that our
system already achieves good load balancing under the
described test conditions. Yet, one could devise scenarios
where adversarial software running on the same processor
could impair the Task Scheduling application by exces-
sively engaging one of the cores (the one holding the thread
creating most tasks, for example). We could prevent such
performance degradation by either adding full support for
untied tasks or by lifting the requirement that Phentos
threads do not move across cores. To ensure the integrity of
CPU-Picos transactions is preserved, this requirement could
be relaxed to ensure threads are fixed to cores during such
communication but allowed to migrate at other times. This
should be enough to reap some of the benefits of supporting
untied tasks, but would still come short from allowing work-
first scheduling as described in [29]. In the future, we plan
to make a more thorough characterization of typical Task
Scheduling workloads to assess whether the additional
complexity required by full untied task support are justified
by any improvements in load balancing it might uncover.

Picos is built in such a way that, if its task-nesting
functionality is used, interfacing hardware and software
are required to implement a certain deadlock-avoidance
fallback mechanism. The exact scenario where this behavior
must be triggered, as well as the workload classes that
might produce it, are described in [30]. Whenever that
condition occurs, the fallback mechanism will enforce new
ready tasks to run on the same thread where they were
created until the deadlock condition is averted. In the near
future, we plan to build this functionality into Picos Man-
ager and Phentos so that the system might exploit nested
parallelism. No changes would be required to the proposed
ISA extension, and the performance of applications not
using nesting should not be affected [30].

Finally, we note that our current system cannot simul-
taneously handle more than one Picos-enabled application.
This is inconvenient in several ways, and particularly in
that it limits system throughput when each application
execution does not have enough intrinsic parallelism to
utilize all available workers. Moved by this, we plan to
include basic virtualization support to new versions of the
system, such that the HW Task Scheduler might simultane-

ously hold and process information from the disjoint virtual
memory spaces of different applications. This would let the
system handle not only context switches between a single
Picos-based application and multiple non-Picos applica-
tions, but also between any number of Picos applications.

7 RELATED WORK

Our approach for supporting fine-grained Task Schedul-
ing relies on minimizing the overhead for maintaining a
dynamic task graph. The system proposed in [31] avoids
maintaining such a data structure by allowing tasks to
execute speculatively, taking benefit of Intel’s Transactional
Synchronization Extensions. Simulated results indicate that
it should provide compelling performance, provided that
transactions are fine-grained enough to avoid high abort
rates. One downside of speculative systems such as this is
that abort decisions might be based on conservative order-
ing constraints, possibly limiting parallelism [32]. Also, it
might be difficult to simultaneously achieve fine-grained
parallelism and low abort rates for some applications with
many data dependencies per task [33].

Some works have been proposed in the past that also
attempt to reduce Task Scheduling overheads with HW
acceleration. Nevertheless, they come short in either not
providing detailed full system evaluation, with FPGA pro-
totyping or at least RTL simulation [13], [34], [35], [36]; only
being able to feed tasks to a handful of general-purpose
cores [30], or none at all [15]; or having their performance
strongly limited by poor CPU-accelerator communication
mediated by main memory [30], [37], rather than by custom
datapaths and instructions as in our case.

Task Scheduling, as supported by our system, can be
understood as a means to approximate dataflow behavior
on multicore CPUs [13]. Special-purpose dataflow architec-
tures find ample use in machine learning accelerators, and
were proven useful since the first attempts to accelerate
CNNs with fixed-function hardware [38], [39]. Some recent
works have attempted to improve the programmability of
CGRA-based dataflow systems by increasing their ability
to handle complex control-flow [40]. Others propose pro-
cessors with a tree-like microarchitecture that is specially
apt at mapping irregular DAG applications [41]. A holistic
Task Scheduling solution is presented in [42], where a HW
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task scheduler with the ability to drive CPUs, GPUs, and
FPGAs is described. Other approaches use Task Schedul-
ing program representations to automatically synthesize
equivalent hardware [43] or configure dataflow systems
[44]. These solutions offer substantial energy and latency
advantages over ordinary CPU or GPU execution, but lack
the versatility that these baselines or our proposal offer.
Also, some of these works limit their evaluation to pre-RTL
software simulation [42], [44].

8 CONCLUSION

This work presents a hardware-software co-designed ar-
chitecture allowing for efficient Task Scheduling on large
multi-core systems. By allowing Phentos, a novel light-
weight Task Scheduling runtime, to access HW-acceleration
through low latency custom RoCC instructions, we reduce
scheduling overheads by up to 253x, allowing task parallel
workloads with tasks as short as 10K cycles long to saturate
the 30 cores of our FPGA-based RISC-V multiprocessor. We
also point out the sensitivity of such a system to cache
behavior, suggesting that new revisions of this architecture
include cache-aware task placement mechanisms for reduc-
ing memory contention and miss frequency.
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González, C. Alvarez, X. Martorell, E. Ayguadé, and J. Labarta,
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