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A B S T R A C T   

Masonry structures composed of two distinct material phases (units and mortar) with potentially vastly different 
elastic properties are characterised by strong orthotropy. The variety of commonly employed bond typologies for 
masonry walls, featuring unit groups and mortar joints with different orientation with respect to the plane of the 
wall, result in complex stress and strain interactions between the material phases. This interaction is further 
complicated by the high volume ratio of the units within the masonry composite. Therefore, classical homoge-
nisation schemes for matrix-inclusion composite materials, mortar being the matrix and units the inclusions, are 
suitable for only a narrow range of relative unit and mortar stiffness, expressed as the ratio of the Young’s moduli 
of the two phases. This feature makes their application in nonlinear analysis of masonry structures, which have a 
strong tendency to crack under mechanical loading, problematic. 

The paper presents a novel homogenisation scheme based on different mean-field homogenisation schemes 
combined through a process derived from the discretisation of the masonry cells using a method-of-cells 
approach. This approach allows the intuitive interpretation of the stress and strain interaction of the material 
phases and yields good predictions of the elastic properties of a variety of masonry bonds over an extensive range 
of relative unit and mortar stiffness.   

1. Introduction 

Masonry construction is a widespread structural typology, encom-
passing a wide array of different bonding patterns and accounting for a 
large percentage of the inventory of existing structures, such as 
vernacular and monumental buildings and infrastructure. Therefore, the 
accurate prediction of the behaviour of masonry structures under me-
chanical loading caused by tectonic [21] or induced [16] earthquake 
action or differential settlement [14] has important financial, social and 
cultural implications. 

The structural analysis of masonry structures is complicated due to 
their construction using materials, namely the units and the mortar, with 
potentially very different mechanical properties, bonded in widely 
different bonding patterns, in single- or double-wythe layouts. Even 
when considering isotropic properties for the material phases, ortho-
tropy arises in the masonry as a whole due to these bonding patterns 
[26,25,29]. A further implication of the different properties of the ma-
terial phases of masonry is their widely different mechanical strength 
and durability. Consequently, the detection of damage in masonry 

structures using structural monitoring techniques ideally needs to be 
performed at the material level of the units and mortar [17]. Thus, the 
structural analysis component of digital twinning operations on ma-
sonry structures needs to be able to provide stress–strain data at the 
material level instead of at the level of the composite. 

The orthotropy of masonry can be modelled through approaches that 
take into account the stress–strain interaction of the material phases. 
Direct finite element simulation of the material phases of masonry 
provides data on the stress–strain condition of each material phase with 
the highest level of geometrical fidelity [9,10,23,34]. However, these 
approaches are prohibitively cumbersome for the analysis of large 
structures and for the efficient processing and interpretation of the 
generated data. 

As an alternative to such computationally-intensive approaches, 
analytical models developed for the analysis of composite materials 
composed of a matrix with embedded inclusions comprise a useful and 
flexible family of tools in efforts to accurately simulate masonry struc-
tures. Such schemes can be adopted for the simulation of either 
regularly-bonded masonry [2,7,33,36] or be suitably adapted to 
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consider irregularly-bonded masonry through statistical approaches 
[5–6]. 

In adopting micromechanical models for the analysis of masonry, the 
mortar can usually be treated as the matrix and the units as the 
embedded inclusions [4,11,12], although inverse and mixed approaches 
have also been developed [38] in order to more directly capture the finer 
geometrical details of the units and mortar within the composite. 
Method-of-cells approaches [1] suitably adapted for the linear [39] and 
nonlinear analysis [8] of masonry composites have also been developed 
in an effort to more naturally capture the geometrical arrangement of 
the matrix and inclusions in the composite. These approaches too, 
however, despite their accuracy, are cumbersome to apply in double- 
wythe masonry typologies due to the difficulty in deriving the large 
number of analytical stress–strain relations between the individual cells. 
Regardless of the underlying assumptions and general approach, 
implementation of these homogenisation schemes allows capturing the 
complex mechanical behaviour of masonry structures through finite 
element macromodels, thus eliminating the requirements for full 
geometrical representation of the masonry bond and facilitating the 
detailed analysis of large structural systems. Further, these methods are 
typically only applicable in the case of units embedded in mortar, 
namely with all joints (bed, head and transversal) completely filled. 
Further, very thin joints may render these approaches inaccurate due to 
the resulting low volume ratio of the mortar matrix. In such cases, 
empirical homogenisation techniques may be more suitable [19]. 

Simple mean-field homogenisation methods can be employed as a 
first step in the determination of the elastic properties of composite 
materials. These include classical approaches, such as the Reuss [31] 
and Voigt [35] schemes, usually accepted as providing a lower and 
upper bound for the stiffness of the composite. These schemes can be 
enhanced by taking into account the Poisson’s ratios of the material 
phases for obtaining a more realistic interaction between them [24]. 
This is an important refinement of the classical schemes given the strong 
influence of the Poisson’s ratios of the phases on the elastic properties 
and nonlinear response of the composite [13]. Even so, and despite the 
simplicity of their implementation, these schemes fail to take into ac-
count finer geometric details for the matrix and inclusions which are the 
main source of the differences between the properties of different ma-
sonry bond typologies. Additionally, these schemes tend to lose accuracy 
for diverging relative stiffness of the phases, namely they are accurate 
for phases of roughly equal stiffness. This fact makes their application in 
nonlinear analysis, where typically one of the phases will have an 
effective stiffness tending to 0, problematic. 

Additional geometric information related to the inclusions as well as 
their interaction in tightly-packed configurations in a composite can be 
introduced through the adoption of the Mori-Tanaka scheme [27]. This 
mean-field homogenisation scheme introduces more geometrical infor-
mation regarding the inclusions, most importantly the aspect ratio and 
orientation with respect to the axes of the composite material. Never-
theless, geometrical information related to the matrix is not taken into 
account. This is in stark contrast with the actual stress–strain conditions 
encountered in masonry under different states of macroscopic applied 
stress. For instance, in the common case of running bond masonry the 
bed joints are in nearly isostress conditions when the composite is 
subjected to vertical or in-plane shear stresses, while the head joints are 

only partially in isostress conditions when the composite is subjected to 
horizontal stresses. 

The principal objective of the present paper is the development of a 
mixed mean-field homogenisation scheme for the most common bond 
types for masonry walls: stack, running, English and Flemish bond. The 
scheme was designed to take into account using a unified approach the 
different stress–strain conditions encountered in different parts of the 
mortar matrix in order to more accurately model the interaction of units 
and mortar in the composite. Further, the was designed to be able to 
consider different groups of units, namely units with both longitudinal 
and transversal orientation with respect to the plane of the wall. Finally, 
the proposed scheme was required to be characterised by low compu-
tational cost in order to be competitive with homogenisation methods 
based on finite element calculations. The proposed model was validated 
against a finite element benchmark over a wide range of material and 
geometric properties. Finally, the proposed model was compared against 
the Mori-Tanaka mean-field homogenisation scheme for demonstrating 
the increase in accuracy compared to more classical homogenisation 
approaches. 

2. Derivation of masonry periodic unit cells 

Overall, the derivation of the masonry periodic unit cell (PUC) for 
each of the bonding patterns examined relies on the identification of a 
repeating geometric pattern and its subdivision into macroscopically 
distinct sectors, or cuboids. 

Four different types of PUC for masonry wall typologies were studied 
in this paper: stack bond (SB), running bond (RB), English bond (EB) and 
Flemish bond (FB) (Figure 1). These bonding patterns, characterised by 
different unit interlocking patterns, represent a large percentage of the 
inventory of existing masonry structures constructed using regularly- 
sized brick or, less commonly, stone units. While masonries comprised 
of irregularly-sized units can be numerically studied using statistical 
techniques [11], the present study is limited to regularly-bonded 
masonries. 

The two steps for the derivation of the PUCs for each of the consid-
ered masonry bonding patterns are presented in Figure 2. In the first 
step, the repeating geometric pattern is identified. Subsequently, the 
repeating pattern is further simplified due to the existence of three 
planes of symmetry. Also indicated in Figure 2 is the axis convention 
adopted in the study: x corresponds to the horizontal direction along the 
length of the wall, y corresponds to the vertical direction along the 
height of the wall and z corresponds to the transversal direction normal 
to the plane of the wall. The increase in the complexity of the bonding 
pattern and the introduction of a combination of stretcher and header 
units in the EB and FB cases results in an increase in the size of the PUC. 

The masonry PUCs were subdivided into cuboids corresponding to 
geometrically distinct entities within the cell in a manner similar to the 
one adopted in the method-of-cells approach for the analysis of com-
posite materials [1]. The geometric interlocking of the units in each 
bonding pattern gives rise to distinct cuboids arranged in a three- 
dimensional orthogonal grid. Each cuboid belongs entirely to one ma-
terial phase: mortar or unit. According to the derived grid, and based on 
the traditional naming convention of units and mortar joints in masonry, 
each cuboid corresponds to a specific type. Mortar cuboids can belong to 

Fig. 1. Types of masonry bonding patterns investigated in the p resent paper: a) stack bond, b) running bond, c) English bond, d) Flemish bond.  
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bed (b), cross (c), head (h) or transversal (t) joints. Bed joints are ori-
ented in the xz plane between the unit beds. Head joints are oriented in 
the yz plane adjacent to the units or between units. Transversal joints are 
oriented in the xy plane between units. Cross joints are defined as the 
remaining mortar cuboids, at the intersection between bed, head and 
transversal joints and represent a very low percentage of the total mortar 
volume. Unit cuboids can belong to either stretcher (s) or header (d) 
units. Stretcher units are oriented with their length along the x axis 
while header units are oriented with their length along the z axis. Each 
cuboid was further assigned a subindex for the purpose of identification. 
Cuboids with identical dimensions and function were assigned the same 
subindex for the purpose of simplicity. 

The discretisation of the investigated bonding patterns into cuboids 

is shown in Figure 3. The naming convention for the dimensions of the 
components is also introduced here. Lengths along the x, y and z di-
rections were designated with the parameters l, h and t respectively. 
Dimensions specific to the units and the mortar joints were designated 
with the subindices u and j respectively. As such, the length, height and 
width of the units were designated as lu, hu and tu respectively, while the 
thicknesses of the head, bed and transversal joints are designated as lj, hj 

and tj respectively. For maintaining geometric compatibility in the 
transversal direction in EB and FB walls, meaning that the header units 
do not protrude from the transversal face of the wall at the xy plane, it is 
required that: 

lu = 2tu + tj (1) 

Fig. 2. Derivation of periodic unit cells for masonry bonding patterns. Identification of repeating geometric pattern and simplification due to symmetry: a) stack 
bond, b) running bond, c) English bond, d) Flemish bond. 
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The derived total orthogonal dimensions of the PUCs (length lc, 
height hc and width tc) are presented in Table 1. 

The total volume of each cell Vc is equal to the product of its three 
orthogonal dimensions: 

Vc = lchctc (2) 

Based on the dimensions of the cuboids, it is possible to determine 
the volume fractions for each of the unit and mortar types, namely the 
proportion of the volume taken up by each component with respect to 
the total volume of the PUC: ωs for stretcher units, ωd for header units, ωb 

for bed joints, ωc for cross joints, ωh for head joints and ωt for transversal 
joints. These volume fractions are equal to the volume fraction of the 
cuboid type with respect to the volume of the cell Vc. These volume 
fractions are expressed symbolically as a function of the characteristic 
dimensions of the units and joints in Table 2. 

The total volume fractions of the phases (ωu for the units and ωj for 
the mortar joints) are calculated for each bonding pattern according to 
the expressions: 

ωu = ωs +ωd  

ωj = ωb +ωc +ωh +ωt = 1 − ωu (3) 

Finally, it is possible to calculate the relative volume fraction of each 
joint type designated as n with respect to the volume of the mortar phase 
as a whole using the expression: 

ω̂n = ωn
/

ωj (4) 

Fig. 3. Subdivision of masonry PUCs into cuboids: a) stack bond, b) running bond, c) English bond, d) Flemish bond.  

Table 1 
PUC dimensions for investigated bonding patterns.  

Bond lc hc tc 

SB lu/2 + lj/2 hu/2 + hj/2 tu/2 
RB lu/2 + lj/2 hu + hj tu/2 
EB lu/2 + lj/2 hu + hj tu + tj/2 
FB lu/2 + tu/2 + lj hu + hj tu + tj/2  

A. Drougkas                                                                                                                                                                                                                                      
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n = {b, c, h, t}

3. Homogenisation scheme 

3.1. Overview 

The adopted analysis approach was that of a first-order two-scale 
model for masonry wall structures [18]. In this context, the wall struc-
ture comprises the macro-scale while the PUC comprises the micro- 
scale. The relation between strains and stresses in the coarse macro- 
scale is accomplished through an intermediate analysis step for the 
calculation of the finer stresses and strains in the micro-scale. A scheme 
of this process is presented in Figure 4. Firstly, for each sampling point in 
a structure, which would correspond to a Gauss point in a finite element 
analysis context, a macro-scale strain ̄ε is defined and passed to the PUC. 
Secondly, the PUC is solved for this applied macro-strain under defined 
periodic boundary conditions, thus calculating the micro-scale stresses 

and strains. Finally, as a function of these micro-scale stresses and 
strains, the macro-scale stress σ̄ at the sampling point is calculated. 

Masonry was treated as a composite material with the mortar acting 
as the matrix and the units acting as the inclusions. All material phases 
were considered homogeneous and isotropic, although anisotropic in-
clusions can be readily considered without any modification of the 
method apart from the stiffness tensor of the inclusions. All analyses in 
the present study were performed under the conditions of linear elas-
ticity, discounting possible changes in the stiffness of the constituent 
materials due to confinement or multi-axial loading. The homogenisa-
tion scheme developed here was a weighted combination of three clas-
sical mean-field homogenisation schemes: the Reuss [31], Voigt [35]and 
Mori-Tanaka [27] schemes. The classical Voigt and Reuss schemes 
ignore all geometric information regarding the inclusions and rely only 
on the volume fractions of the phases, while the Mori-Tanaka scheme 
additionally takes into account the shape of the inclusions. Therefore, 
the arrangement of the matrix within the composite, which can directly 
affect its stress and strain, is not included in any of these schemes. This is 

Table 2 
Volume fraction of each unit and mortar type for the investigated bonding patterns.  

Bond ωs ωd ωb ωc ωh ωt 

SB hulutu
8Vc 

0 hjlutu
8Vc 

hjlj tu
8Vc 

huljtu
8Vc 

0 

RB hulutu
4Vc 

0 hjtu
(
lu − lj

)

4Vc 

hjlj tu
2Vc 

huljtu
4Vc 

0 

EB hulutu
4Vc 

(
lu − lj

)
hu
(
tj + 2tu

)

8Vc 

(
lu − 2lj

)
hjtu

2Vc 

hj
(
ljtj + 6ljtu + lutj

)

4Vc 

ljhu
(
tj + 3tu

)

4Vc 

(
lj + lu

)
hutj

8Vc 
FB hulutu

2Vc  

(
tj + 2tu

)
hutu

4Vc  

(
lu − 2lj + tu

)
hjtu

2Vc  

hj
(
2lj tj + 8lj tu + lutj + tjtu

)

4Vc  

ljhu
(
tj + 2tu

)

2Vc  

luhutj
4Vc   

Fig. 4. First-order two-scale problem solution scheme.  

Fig. 5. Illustration of stress–strain conditions for macroscopic strain applied in the xx direction on a composite material consisting of a matrix j and embedded 
inclusions u: a) Reus, b) Voigt, c) dilute. 
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considered unrealistic given the patently different function of the bed, 
head and transversal joints to mechanical strains applied in different 
directions or planes. For example, the bed joints respond in a nearly 
isostress condition for loading in the yy direction or xy plane, while their 
confinement between the units in the xx direction means that they 
respond in a manner closer to isostrain conditions. This feature was 
addressed in the proposed scheme by applying weighing factors in a 
combination of the three schemes according to the relative volume 
fraction of the matrix participating in stress–strain conditions that can 
be described as isostrain, isostress or dilute for each loading component. 
Perfect bond between the material phases is considered in all three 
stress–strain conditions. The three stress–strain conditions in a two- 
phase composite material considered in this paper are schematically 
illustrated in Figure 5. 

In contrast with other mixed mean-field schemes, founded on cali-
brated interpolations between individual schemes [22], iterative ap-
proaches [37] or on permutation between function of the matrix and 
inclusions[30], the scheme proposed here was based on an intuitive, 
closed-form, geometry-based weighted combination of classic schemes. 
Thus, neither the physical meaning of the interaction between phases 
nor the interpolation between constituent schemes is opaque. 

3.2. Stiffness tensors for different stress–strain conditions 

The three-dimensional stiffness tensor Ck of an isotropic material 
phase k with Young’s modulus Ek and Poisson’s ratio νk is equal to: 

Ck =
Ek

(1+νk)(1 − 2νk)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 − νk νk νk 0 0 0
νk 1 − νk νk 0 0 0
νk νk 1 − νk 0 0 0
0 0 0 1 − 2νk 0 0
0 0 0 0 1 − 2νk 0
0 0 0 0 0 1 − 2νk

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(5) 

For the individual material phases studied in this paper, subindex k 
can refer to either the unit inclusions u or the mortar joint matrix j. 

According to the classic Reuss scheme, also referred to as isostress or 
inverse rule of mixtures, the expression of the stiffness tensor of the 

composite Ĉ
V
m is a function of the stiffness tensors of the matrix Cj and 

the inclusions Cu and of their respective volume fractions ωj and ωu as 
follows: 

Ĉ
R
m =

(
ωjC− 1

j + ωuC− 1
u

)− 1
(6) 

This approach neglects the influence of the Poisson’s ratios of the 
material phases on the volumetric stiffness of the composite. Taking into 
account the Poisson’s ratios of the phases, the resulting composite is 
transversely isotropic with a Young’s modulus ER

m in the principal di-
rection and Poisson’s ratio νR

m of the composite perpendicular to the 
principal direction. These parameters are calculated as [24]:   

Substituting the values obtained from Eq. (7) into eq. (5) we obtain 

the tensor C̃
R
m. The final enhanced expression of the Reuss stiffness tensor 

CR
m for the composite is calculated as: 

CR
m =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C̃
R
m(1, 1) C̃

R
m(1, 2) C̃

R
m(1, 3) 0 0 0

C̃
R
m(2, 1) C̃

R
m(2, 2) C̃

R
m(2, 3) 0 0 0

C̃
R
m(3, 1) C̃

R
m(3, 2) C̃

R
m(3, 3) 0 0 0

0 0 0 Ĉ
R
m(4, 4) 0 0

0 0 0 0 Ĉ
R
m(5, 5) 0

0 0 0 0 0 Ĉ
R
m(6, 6)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(8) 

with the two indices in parentheses corresponding to the lines and 
columns respectively of the indicated tensors. According to eq. (8), in 
the enhanced expression of the stiffness tensor according to the Reuss 
scheme, the normal stiffness includes the influence of the Poisson’s ra-
tios of the material phases, leading to a more realistic representation of 
their mechanical interaction, while the shear stiffness is calculated as 
per the classic approach. 

Similarly, according to the classic Voigt scheme, also known as iso-

strain or rule of mixtures, the stiffness tensor of the composite Ĉ
V
m is 

calculated as follows: 

Ĉ
V
m = ωjCj +ωuCu (9) 

The Young’s modulus EV
m in the principal direction and Poisson’s 

ratio νV
m of the composite perpendicular to the principal direction taking 

into account the Poisson’s ratios are equal to [24]: 

EV
m =

(
ωj(1 − νu)Ej + ωu

(
1 − νj

)
Ej
)(

ωj(1 + νu)Ej + ωu
(
1 + νj

)
Eu
)

(
ωj
(
1 − ν2

u

)
Ej + ωu

(
1 − ν2

j
)
Eu  

νV
m =

ωjνj
(
1 − ν2

u

)
Ej + ωuνu

(
1 − ν2

j

)
Eu

(
ωj
(
1 − ν2

u

)
Ej + ωu

(
1 − ν2

j
)
Eu

(10) 

Substituting the values obtained from Eqn 10 to eq. (5) the tensor C̃
V
m 

is obtained. The final expression of the composite stiffness tensor CR
m 

according to the enhanced Voigt approach is: 

ER
m =

EjEu
(
ωj(1 − νu)Ej + ωu

(
1 − νj

)
Eu
)

EjEu
(
ω2

j (1 − νu) + ω2
u

(
1 − νj

) )
+ ωjωu

(
(1 + νu)(1 − 2νu)E2

j + 4νjνuEjEu +
(
1 + νj

)(
1 − 2νj

)
E2

u

)

νR
m =

EjEu
(
ωj(1 − νu)νj + ωu

(
1 − νj

)
ωu
)

EjEu
(
ω2

j (1 − νu) + ω2
u

(
1 − νj

) )
+ ωjωu

(
(1 + νu)(1 − 2νu)E2

j + 4νjνuEjEu +
(
1 + νj

)(
1 − 2νj

)
E2

u

) (7)   
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CV
m =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C̃
V
m(1, 1) C̃

V
m(1, 2) C̃

V
m(1, 3) 0 0 0

C̃
V
m(2, 1) C̃

V
m(2, 2) C̃

V
m(2, 3) 0 0 0

C̃
V
m(3, 1) C̃

V
m(3, 2) C̃

V
m(3, 3) 0 0 0

0 0 0 Ĉ
V
m(4, 4) 0 0

0 0 0 0 Ĉ
V
m(5, 5) 0

0 0 0 0 0 Ĉ
V
m(6, 6)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(11) 

According to the dilute inclusion approach to micromechanics [15], 

Fig. 6. Ellipsoidal inclusion in three-dimensional space with half- 
lengths indicated. 

Fig. 7. Illustration of stress–strain conditions and combinations thereof for mortar joints in a staggered masonry bond pattern: a) applied strain in xx direction, b) 
applied strain in yy direction, c) applied strain in xy plane. 

Table 3 
Participation factors Pc,n

ab for each joint type n for loading in the direction ab in stress–strain condition c for the masonry typologies investigated.  

Bond Joint type n PR,n
xx /PV,n

xx /PMT,n
xx PR,n

yy /PV,n
yy /PMT,n

yy PR,n
zz /PV,n

zz /PMT,n
zz PR,n

yz /PV,n
yz /PMT,n

yz PR,n
xz /PV,n

xz /PMT,n
xz PR,n

xy /PV,n
xy /PMT,n

xy 

SB Bed 0.0/1.0/0.0 1.0/0.0/0.0 0.0/1.0/0.0 1.0/0.0/0.0 0.0/1.0/0.0 1.0/0.0/0.0 
Cross 1.0/0.0/0.0 1.0/0.0/0.0 0.0/1.0/0.0 1.0/0.0/0.0 1.0/0.0/0.0 1.0/0.0/0.0 
Head 1.0/0.0/0.0 0.0/0.5/0.5 0.0/1.0/0.0 0.0/1.0/0.0 1.0/0.0/0.0 1.0/0.0/0.0 
Transversal 0.0/0.0/0.0 0.0/0.0/0.0 0.0/0.0/0.0 0.0/0.0/0.0 0.0/0.0/0.0 0.0/0.0/0.0 

RB Bed 0.0/1.0/0.0 0.5/0.0/0.5 0.0/1.0/0.0 1.0/0.0/0.0 0.0/1.0/0.0 1.0/0.0/0.0 
Cross 0.5/0.0/0.5 0.0/0.0/1.0 0.0/1.0/0.0 1.0/0.0/0.0 0.5/0.5/0.0 1.0/0.0/0.0 
Head 0.5/0.0/0.5 0.0/0.5/0.5 0.0/1.0/0.0 0.0/1.0/0.0 0.5/0.5/0.0 0.5/0.5/0.0 
Transversal 0.0/0.0/0.0 0.0/0.0/0.0 0.0/0.0/0.0 0.0/0.0/0.0 0.0/0.0/0.0 0.0/0.0/0.0 

EB/FB Bed 0.0/0.5/0.5 0.5/0.0/0.5 0.0/0.5/0.5 1.0/0.0/0.0 0.0/1.0/0.0 1.0/0.0/0.0 
Cross 0.0/0.5/0.5 0.5/0.0/0.5 0.0/0.5/0.5 1.0/0.0/0.0 0.5/0.5/0.0 1.0/0.0/0.0 
Head 0.5/0.0/0.5 0.0/0.5/0.5 0.0/0.5/0.5 0.0/1.0/0.0 0.5/0.5/0.0 0.5/0.5/0.0 
Transversal 0.0/0.5/0.5 0.0/1.0/0.0 0.5/0.0/0.5 0.5/0.0/0.5 1.0/0.0/0.0 0.0/0.0/1.0  

Fig. 8. Finite element meshes of periodic unit cells: a) stack, b) running, c) English and d) Flemish bond.  

Table 4 
Parameters used in parametric analysis.  

Parameter Range Reference value 

hu 0.35 ÷ 0.78 tu 0.52 tu 

lj = hj = tj 0.05 ÷ 0.20 tu 0.10 tu 

Ej 0.001 ÷ 10 Eu 0.1 Eu 

νu = νj 0.15 0.15  

A. Drougkas                                                                                                                                                                                                                                      



Structures 56 (2023) 105006

8

Fig. 9. Results of parametric analysis for stack bond masonry: a) reference, b) hu = 0.35tu, c) hu = 0.78tu, d) lj = hj = tj = 0.05tu, e).lj = hj = tj = 0.20tu  
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a single inhomogeneity is embedded in an infinite, homogeneous and 
isotropic matrix. Assuming that the matrix and the inclusion have 
different elastic properties, an applied strain in the matrix causes a 
different strain in the inclusion. The eigenstrain ε* is defined as the strain 

state within the inclusion upon removal of the constraint provided to it 
by the surrounding matrix. As such, the components of the strain within 
the inclusion itself are equal to: 

εij = Sijklε*
kl (12) 

Fig. 10. Results of parametric analysis for running bond masonry: a) reference, b) hu = 0.35tu, c) hu = 0.78tu, d) lj = hj = tj = 0.05tu, e) lj = hj = tj = 0.20tu.  
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Fig. 11. Results of parametric analysis for English bond masonry: a) reference, b) hu = 0.35tu, c) hu = 0.78tu, d) lj = hj = tj = 0.05tu, e) lj = hj = tj = 0.20tu.  
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where Sijkl are the components of Eshelby’s tensor S. These compo-
nents are a function of the shape and aspect ratio of the inclusions. In the 
present investigation ellipsoidal inclusions will be considered for the 
analysis of cuboidal masonry units, an assumption that has been 
demonstrated to be sufficiently accurate through comparison with 
experimental data [4]. The expression defining the outer surface of an 
ellipsoid is: 

x2

a1
2 +

y2

a2
2 +

z2

a3
2 = 1 (13) 

where a1, a2 and a3 are the half-length, half-height and half-width of 
the ellipsoid respectively along the x, y and z axes, as shown in Figure 6. 

The form of Eshelby’s tensor S is: 

S =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

S1111 S1122 S1133 0 0 0
S2211 S2222 S2233 0 0 0
S3311 S3322 S3333 0 0 0

0 0 0 S2323 0 0
0 0 0 0 S1313 0
0 0 0 0 0 S1212

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(14) 

The components of the tensor in the case of ellipsoidal inclusions are 
calculated as follows[28]: 

S1111 =
3

8π
(
1 − νj

)a1
2I11 +

1 − 2νj

8π
(
1 − νj

)I1  

S1122 =
1

8π
(
1 − νj

)a2
2I12 +

1 − 2νj

8π
(
1 − νj

)I1  

S1133 =
1

8π
(
1 − νj

)a3
2I13 +

1 − 2νj

8π
(
1 − νj

)I1  

S1212 =
a1

2 + a2
2

16π
(
1 − νj

)I12 +
1 − 2νj

16π
(
1 − νj

) (I1 + I2) (15) 

where νj is the Poisson’s ratio of the matrix. The parameters Ii and Iij 

are calculated according to the elliptical integrals [32]: 

I1 = 2πa1a2a3

∫∞

0

ds
(a1

2 + s)Δ(s)

I11 = 2πa1a2a3

∫∞

0

ds
(a1

2 + s)2Δ(s)

I12 = 2πa1a2a3

∫∞

0

ds
(a1

2 + s)(a2
2 + s)Δ(s)

(16) 

with: 

Δ(s) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(a1

2 + s)(a2
2 + s)(a3

2 + s)
√

(17) 

The remaining parameters Ii and Iij are calculated by cyclic permu-
tation through subscripts 1,2,3. 

For an elliptical cylinder inclusion infinitely long in the transversal 
direction (a3→∞), the components of Eshelby’s tensor S are simplified 
to the following expressions [4]: 

S1111 =
a

2
(
1 − νj

)

(
2 + a

(1 + a)2 +
1 − 2νj

1 + a

)

S1122 =
a

2
(
1 − νj

)

(
a

(1 + a)2 −
1 − 2νj

1 + a

)

S1133 =
νj

1 − νj

a
1 + a  

S2211 =
1

2
(
1 − νj

)

(
1

(1 + a)2 −
1 − 2νj

1 + a

)

S2222 =
1

2
(
1 − νj

)

(
1 + 2a
(1 + a)2 +

1 − 2νj

1 + a

)

Table 5 
Results of parametric analysis for reference values. Average value in parentheses.  

Bond Êxx Êyy Êzz Ĝxy Ĝxz Ĝyz ν̂xy ν̂yx ν̂xz ν̂zx ν̂yz ν̂zy 

SB 0.87÷1.07 
(1.01) 

0.83÷1 
(0.94) 

1÷1 (1) 0.98÷1 
(0.99) 

0.86÷1.02 
(0.99) 

0.85÷1.01 
(0.99) 

1÷1.16 
(1.09) 

1÷1.1 
(1.01) 

0.87÷1.07 
(1.01) 

1÷1 (1) 0.83÷1 
(0.94) 

1÷1 (1) 

RB 0.94÷1.02 
(1.01) 

0.96÷1 
(0.98) 

1÷1 (1) 0.96÷1.03 
(1) 

0.95÷1.04 
(1) 

0.95÷1.01 
(1) 

1÷1.16 
(1.08) 

1÷1.12 
(1.05) 

0.94÷1.02 
(1.01) 

1÷1 (1) 0.96÷1 
(0.98) 

1÷1 (1) 

EB 0.9÷1.01 
(0.97) 

0.97÷1 
(0.98) 

0.23÷1.01 
(0.83) 

0.98÷1.02 
(1.01) 

0.87÷1.06 
(1.01) 

0.87÷1 
(0.97) 

1÷1.4 
(1.18) 

1÷1.46 
(1.2) 

0.65÷1.03 
(0.9) 

0.16÷1.02 
(0.8) 

0.67÷1.17 
(0.92) 

0.16÷1.09 
(0.81) 

FB 0.92÷1.02 
(0.99) 

0.96÷1 
(0.99) 

0.27÷1.03 
(0.85) 

0.94÷1.03 
(1.01) 

0.87÷1.05 
(1) 

0.89÷1 
(0.98) 

1÷1.33 
(1.15) 

1÷1.33 
(1.15) 

0.54÷1.06 
(0.88) 

0.15÷1.03 
(0.8) 

0.58÷1.22 
(0.92) 

0.16÷1.16 
(0.83)  

Table 6 
Results of parametric analysis for hu = 0.35tu. Average value in parentheses.  

Bond Êxx Êyy Êzz Ĝxy Ĝxz Ĝyz ν̂xy ν̂yx ν̂xz ν̂zx ν̂yz ν̂zy 

SB 0.89÷1.02 
(0.99) 

0.82÷1 
(0.95) 

1÷1 (1) 0.97÷1 
(0.98) 

0.85÷1 
(0.97) 

0.84÷1.01 
(0.98) 

1÷1.12 
(1.07) 

1÷1.04 
(1.02) 

0.89÷1.02 
(0.99) 

1÷1 (1) 0.82÷1 
(0.95) 

1÷1 (1) 

RB 0.92÷1.01 
(0.98) 

0.97÷1 
(0.99) 

1÷1 (1) 0.96÷1.01 
(0.99) 

0.8÷1.01 
(0.94) 

0.94÷1.01 
(1) 

1÷1.13 
(1.06) 

1÷1.16 
(1.07) 

0.92÷1.01 
(0.98) 

1÷1 (1) 0.97÷1 
(0.99) 

1÷1 (1) 

EB 0.92÷1.01 
(0.97) 

0.97÷1 
(0.98) 

0.26÷1 
(0.84) 

0.95÷1 
(0.97) 

0.84÷1.02 
(0.96) 

0.88÷1 
(0.98) 

1÷1.28 
(1.12) 

1÷1.35 
(1.14) 

0.61÷1.03 
(0.88) 

0.17÷1 
(0.79) 

0.69÷1.12 
(0.93) 

0.19÷1.08 
(0.83) 

FB 0.91÷1.01 
(0.96) 

0.96÷1 
(0.99) 

0.31÷1.02 
(0.86) 

0.91÷1 
(0.99) 

0.84÷1.02 
(0.96) 

0.89÷1 
(0.98) 

1÷1.22 
(1.1) 

1÷1.34 
(1.14) 

0.48÷1.04 
(0.84) 

0.16÷1.01 
(0.79) 

0.6÷1.19 
(0.94) 

0.19÷1.14 
(0.85)  
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S2233 =
νj

1 − νj

1
1 + a  

S3311 = S3322 = S3333 = 0  

S2323 =
1

2(1 − a)

S1313 =
a

2(1 − a)

S1212 =
a

4
(
1 − νj

)

(
1 + a2

(1 + a)2 −
(
1 − 2νj

)
)

(18) 

with a = a2/a1 being the aspect ratio of the inclusion. 
In the Mori-Tanaka scheme, different families of inclusions can be 

considered for the calculation of the stiffness tensor of the composite 
material. In this context, the dilute estimate of the strain concentration 
tensor for the i-th inclusion family embedded in the matrix j is calculated 
as: 

Ti =
(

I + Si
(
Cj
)− 1( Ci − Cj

) )− 1
(19) 

where I is the 6 × 6 identity tensor and Si is Eshelby’s tensor as 
defined for the i-th inclusion family according to eq. (14). 

The strain concentration factor of the matrix j with different 
embedded inclusion families is equal to: 

Aj =

(

ωjI +
∑

i
ωiTi

)− 1

(20) 

where ωi is the volume fraction of the i-th inclusion family within the 
composite. 

The strain concentration tensor for the i-th inclusion family is equal 
to: 

Ai = TiAj (21) 

Finally, the stiffness tensor of the composite according to the Mori- 
Tanaka scheme is equal to: 

CMT
m = Cj +

∑

i
ωi
(
Ci − Cj

)
Ai (22)  

3.3. Combination of the stress–strain conditions 

The final expression of the stiffness tensor of the composite CMF
m was a 

combination of the Reuss (R), Voigt (V) and Mori-Tanaka (MT) mean- 
field homogenisation stiffness tensors (eq. (8), eq. (11) and eq. (22) 
respectively) according to the equation: 

CMF
m =

(
IRCR

m
− 1

+ IV CV
m
− 1IMT CMT

m
− 1
)− 1

(23) 

where IR, IV and IMT are diagonal weighing tensors expressing the 
contribution of each stress–strain condition to the mechanical response 
of the composite. These weighing tensors contain the relative volume 
ratio of the matrix understood to be participating in each of the 
stress–strain conditions (R, V or MT) for each direction or plane of 
loading (xx, yy, zz, yz, xz or xy). The weighted combination of mean- 
field homogenisation schemes as expressed in eq. (23) can be under-
stood as an enhanced inverse rule of mixtures between the various 
stress–strain conditions involved in the response of the composite. 

The weighing tensors assume the following diagonal form: 
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Ê

zz
 

Ĝ
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Ic =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ω̂c
xx 0 0 0 0 0

0 ω̂c
yy 0 0 0 0

0 0 ω̂c
zz 0 0 0

0 0 0 ω̂c
yz 0 0

0 0 0 0 ω̂c
xz 0

0 0 0 0 0 ω̂c
xy

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(24) 

where the superscript c indicates the stress–strain condition with c =

{R,V,MT}, the subscripts (xx, yy, etc.) indicate the direction or plane of 
the load and ω̂ indicates the relative volume ratio of the matrix 
participating in the load condition. For example, ω̂R

xx indicates the 
relative volume ratio of the matrix participating in the composite under 
Reuss stress–strain conditions for a macroscopic stress applied on the 
composite in the xx direction. 

Each parameter ω̂c
ab is calculated as: 

ω̂c
ab =

∑

n
Pc,n

ab ω̂n (25) 

with n = {b, c, h, t} as defined in eq. (4) and Pc,n
ab indicating partici-

pation factors in the c stress–strain condition. For example, PR,b
yy = 1.0 

means that the bed joint (n = b) participates entirely in the Reuss 
stress–strain condition (c = R) for macroscopic loading applied in the 
vertical direction (ab = yy). Naturally, the sum of participation factors 
in every joint n for a given loading direction ab needs to comply with 
∑

nP
c,n
ab = 1.0. 

3.4. Implementation 

The homogenisation scheme was applied according to eq. (23) using 
the volume fractions shown in Table 2 for the different masonry bonds. 
Eshelby’s tensor S is calculated according to the values given in eq. (18) 
for stretcher units in SB and RB masonry and for header units in EB and 
FB masonry. This is due to these units extending through the entire 
transversal thickness of the cell. Conversely, the parameters for Eshel-
by’s tensor for stretcher units in EB and FB masonry are calculated ac-
cording to eq. (15). 

For clarifying the determination of participation factors Pc,n
ab , the 

stress–strain condition for each joint type in a staggered masonry bond 
pattern for different macroscopic strain loads is illustrated in Figure 7. 
For loading in the xx direction, the bed joints are in isostrain conditions 
due to their positioning between the beds of the units. Conversely, the 
head and cross joints are in an intermediate state between isostress and 
dilute conditions, the former due to their orientation with respect to the 
load direction and the latter due to the restriction of their deformation 
from the neighbouring unit bed. For loading in the yy direction, the bed 
joints are in isostress conditions due to their unrestricted deformation in 
the direction of the load, which is a consequence of the continuity of the 
bed joint. Conversely, the deformation of the head joints is restricted by 
the unit headers, resulting in a condition between isostrain and dilute. 
The cross joints are considered to be in a dilute condition. Finally, for 
loading in the xy plane, the continuity of the bed joints results in the bed 

and cross joints to be in isostress conditions, while the head joints are in 
isostrain conditions due to their position between the unit headers 
which restricts their deformation. 

According to the above scheme, the resulting participation factors 
Pc,n

ab used in eq. (25) presented in Table 3. As mentioned, the elected 
participation factors Pc,n

ab reflect the stresses developed in a joint type for 
a given applied macroscopic stress. For instance, in the case of SB ma-
sonry, the head and cross joints are in isostress conditions for loading in 
xx, therefore PR,c

xx = PR,h
xx = 1.0. In the usual case of staggered inter-

locking of the stretcher units, such as that encountered in RB, EB and FB 
masonry, the head joints are only partially in isostress condition for the 
same horizontal loading case. This behaviour is reflected by introducing 
the contribution of a dilute condition by setting PMT,h

xx = 0.5. Generally, 
when the stress–strain condition of a joint cannot be interpreted as being 
purely isostress or isostrain, a value of 0.5 is adopted for the most 
appropriate of these two conditions and 0.5 for the dilute condition. This 
semi-empirical approach allows the simultaneous representation of the 
stress–strain condition of the joint and its interaction with the unit in-
clusions embedded in the composite. 

4. Model validation 

4.1. Finite element benchmark comparison 

The accuracy of the proposed homogenisation scheme was evaluated 
through comparison with results obtained from a finite element 
benchmark. Finite element models of masonry PUCs were generated and 
analysed using the FEniCS computing platform [3]. The finite element 
meshes were composed of quadratic tetrahedrons with a maximum 
length of 5 mm. Representative finite element meshes of the four ma-
sonry bonds are illustrated in Figure 8. The PUCs were subjected to 6 
load cases, each consisting of a displacement applied to the external 
faces of the cell resulting in strain along each normal direction or shear 
plane ab, simultaneously complying with periodic boundary conditions 
at the opposing faces of the domain. The resulting macroscopic stress 
and strain components were calculated numerically within the volume 
of the cell according to the Hill-Mandel averages [20]: 

σ̄ab =
1
Vc

∫

V
σabdV  

ε̄ab =
1
Vc

∫

V
εabdV (26) 

Finally, the stiffness tensor of the composite material CFE
m according 

to the finite element analysis is computed as: 

CFE
m = (ε̄)− 1σ̄ (27) 

where ε̄ and ε̄ are the average strain and stress vectors. 
A parametric analysis was performed in order to obtain a wide array 

of results for each bond type. The dimension and material parameters 
used are presented in a normalised format in Table 4. The width tu and 
the Young’s modulus Eu of the units were kept constant, while small 
adjustments were made to the length of the units lu for maintaining 

Table 10 
Results of parametric analysis using plain Mori-Tanaka scheme for reference values. Average value in parentheses.  

Bond Êxx Êyy Êzz Ĝxy Ĝxz Ĝyz ν̂xy ν̂yx ν̂xz ν̂zx ν̂yz ν̂zy 

SB 1÷1.5 (1.2) 0.96÷1 
(0.98) 

0.01÷1 
(0.51) 

1÷2.89 
(1.96) 

1÷1.34 
(1.14) 

1÷2.08 
(1.56) 

1÷2.32 
(1.55) 

1÷1.49 
(1.24) 

1÷133.89 
(22.19) 

1÷1.23 
(1.11) 

1÷119.36 
(20.17) 

1÷1.71 
(1.38) 

RB 1÷1.14 
(1.06) 

0.97÷1.13 
(1) 

0.01÷1 
(0.51) 

1÷2.57 
(1.83) 

0.75÷1.03 
(0.92) 

1÷2.09 
(1.58) 

1÷2.33 
(1.54) 

1÷1.98 
(1.42) 

1÷101.67 
(17.2) 

1÷1.23 
(1.11) 

1÷119.53 
(20.23) 

1÷1.71 
(1.38) 

EB 0.91÷1 
(0.97) 

0.81÷1.02 
(0.9) 

0.04÷1 
(0.62) 

1÷2.12 
(1.63) 

1÷1.49 
(1.24) 

1÷1.93 
(1.51) 

1÷2.63 
(1.71) 

1÷2.33 
(1.56) 

1÷32.36 
(6.27) 

1÷1.58 
(1.26) 

1÷38.16 
(7.2) 

1÷2.1 
(1.51) 

FB 0.97÷1.01 
(0.99) 

0.81÷1 
(0.9) 

0.05÷1 
(0.62) 

1÷2.15 
(1.63) 

1÷1.46 
(1.23) 

1÷1.94 
(1.52) 

1÷2.55 
(1.68) 

1÷2.12 
(1.48) 

1÷27.6 
(5.57) 

1÷1.55 
(1.26) 

1÷31.95 
(6.31) 

1÷2.16 
(1.55)  
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conformity with the condition expressed in eq. (1). Changes in the 
height of the units hu and the thickness of the joints lj = hj = tj were 
applied individually. Conversely, the entire range of values for the 
Young’s modulus of the mortar Ej was applied for each modification 
instance of the geometric parameters. The range of the ratio of Young’s 
moduli of units and mortar Eu/Ej reflects the realistically expected range 
for the relative elastic stiffness of the material phases (namely Eu/Ej =

0.1 ÷ 10). Additionally, the range also extends to relative stiffness in the 
case of yielding of the mortar, at which point the ratio tends to infinity 
due to loss of stiffness in the mortar (Eu/Ej→ + ∞) [39]. 

The results of the parametric analysis are presented in Figure 9 
through Figure 12. The horizontal axis in all graphs indicates the vari-
ation of the Eu/Ej ratio while the vertical axes indicate the ratio between 
the value of an elastic modulus Eii, Gij or Poisson’s ratio νij calculated 
using the proposed model over the value calculated through finite 
element analysis. An ordinate equal to 1.0 in the graphs indicates 
equality between the predictions of the scheme and the finite element 
analysis result. The Young’s moduli were predicted with good accuracy 
for the majority of the cases, with accuracy being lost for a stiffness ratio 
approaching Eu/Ej→0.1 for SB and for RB with lj = hj = tj = 0.20tu. 
Similarly, the Young’s moduli predictions lost accuracy for a stiffness 
ratio approaching Eu/Ej→1000 for SB, EB and FB with lj = hj = tj =

0.20tu. While the transversal Young’s modulus Ezz was predicted with 
excellent accuracy for SB and RB, which are single-wythe typologies, the 
model underestimated the stiffness in the EB and FB cases for 
Eu/Ej > 100. However, normal macroscopic stresses are typically not 
applied transversally on masonry walls in buildings, thus reducing the 
practical impact of this discrepancy in the prediction. The shear moduli 
were overall predicted with good accuracy with a few exceptions, such 
as RB and EB with hu = 0.78 tu. Finally, there were inaccuracies in the 
prediction of the Poisson’s ratios for Eu/Ej > 100, mostly notable in the 
double-wythe EB and FB cases. Overall, the proposed model presented 
higher accuracy for cases where the units are stiffer than the mortar, 
which represents the vast majority of masonry construction made with 
solid brick and stone units. 

The results of the parametric analysis are also summarised in Table 5 
through Table 9. The accuracy of the prediction of the elastic properties 
is presented in terms of the minimum, maximum and average of the ratio 
of the proposed scheme prediction value over the finite element result. 
This ratio is symbolised as Êii, Êij or ν̂ij for the Young’s moduli, shear 
moduli and Poisson’s ratios respectively. The average was calculated 
disregarding the trivial case of Eu/Ej = 1.0. All Young’s and shear 
modulus predictions presented excellent accuracy in terms of the 
average, apart from the aforementioned discrepancy in the transversal 
stiffness prediction in the EB and FB cases. 

4.2. Comparison with other mean-field models 

A comparison of the results between the proposed scheme and the 
plain Mori-Tanaka (MT) scheme for the reference values is presented in 
Table 10. This scheme produces the most realistic results among the 
three classical homogenisation schemes considered in this paper, as the 
Reuss scheme typically results in too low stiffness while Voigt results in 
too high stiffness. The proposed mixed model was notably more accurate 
in terms of predicted horizontal, vertical and especially transversal 
stiffness compared to the plain MT scheme. Conversely, the proposed 

scheme was substantially more accurate in the prediction of all shear 
moduli and the Poisson’s ratios. A further important weakness of the 
plain MT scheme is that its predictions for the SB and RB cases are 
identical due to them having the same mortar volume fraction ωj. This 
feature is resolved in the proposed scheme, which takes into account the 
bonding pattern of the masonry and the geometrical arrangement of the 
joint types. 

The MT results for the RB masonry are also visualised in Figure 13. 
While the MT scheme offers reasonable accuracy for Exx and Eyy, espe-
cially for a stiffness ratio Eu/Ej between 0.1 and 10, it is particularly 
inaccurate in predicting the shear moduli, of which the in-plane Exy is of 
the highest importance in shear walls, and the Poisson’s ratios, which 
are substantially overestimated. Finally, the proposed model is more 
accurate than the plain MT scheme for Eu/Ej→0.1, thus proving superior 
to the classical MT scheme for the case of mortar with higher stiffness 
than the units. 

Overall, the proposed scheme provided significant accuracy advan-
tages compared to classical mean-field homogenisation techniques by 
taking into account the stress–strain conditions of different areas of the 
matrix, namely the joints, under different types of macroscopic loading. 

Finally, the proposed scheme was compared with the results of 
recently elaborated mean-field homogenisation scheme based on an 
interpolation between different considerations for the behaviour of the 
inclusions [38]. The comparison was performed in terms of the mean 
absolute error of the predictions of the elastic properties of Flemish bind 
masonry in the range of Eu/Ej = [1, 1000] and presented in Table 11. The 
proposed model provided an improvement in the accuracy of the pre-
diction of the Young’s and shear moduli. Conversely, the accuracy of the 
Poisson’s ratios was reduced. However, the magnitude of the Poisson’s 
ratios of the composite for which the proposed model loses accuracy is 
small (lower than 0.05), which reduces the impact of this inaccuracy in 
practical terms. 

5. Conclusions 

A mixed mean-field homogenisation scheme for various types of 
masonry bonding patterns was proposed. The scheme, based on the 
weighed combination of classical mean-field homogenisation schemes, 
is capable of taking into account the geometry and different stress–strain 
conditions at different joints in the masonry composite, thus overcoming 
the problem of loss of geometric information of the matrix in other 
mean-field homogenisation schemes, such as the Reuss, Voigt and dilute 
approaches. The scheme, due to its analytical nature and very low 
computational intensity, allows the analysis of large structural systems 
without resulting in excessive computational cost through imple-
mentation in a finite element macromodel context. 

The scheme was verified against results from a finite element 
benchmark, providing very accurate results for a wide spectrum of 
material and geometrical parameters. The proposed model presents a 
substantial improvement in terms of accuracy compared to other mean- 
field homogenisation schemes while simultaneously not requiring 
computational resources for its implementation, thus being more 
attractive compared to computationally intensive finite element ho-
mogenisation approaches. 

The scheme is primarily applicable in masonry with solid units and 
completely filled joints, and is primarily intended for structures 
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Fig. 12. Results of parametric analysis for Flemish bond masonry: a) reference, b) hu = 0.35tu, c) hu = 0.78tu, d) lj = hj = tj = 0.05tu, e) lj = hj = tj = 0.20tu.  
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composed of units stiffer than the mortar, corresponding to traditional 
and historic masonry typologies. Despite the width of the parametric 
investigation, the accuracy of the scheme in predicting the properties of 
thin-joint and block masonry with perforated or otherwise orthotropic 
blocks has not been yet established, although the latter case is in prin-
ciple within the scope of the proposed model. 

The present investigation is a first step in a future line of investiga-
tion containing its implementation for nonlinear analysis of masonry 
shear walls. Additionally, the scheme can be implemented in a multi- 
scale model for three-leaf walls, accounting for the behaviour of the 
external leaves of the structure. 

Improvements of the model to be pursued in future include a move 
from the semi-empirical determination of the participation factors to a 
more robust calculation according to geometric and relative stiffness 
parameters of the material phases. Additionally, an improvement in the 
prediction of the transversal stiffness of double-wythe typologies, 
namely, English and Flemish bond, for highly deformable mortar is also 
motivated. 
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Fig. 13. Results of parametric analysis for reference values using the plain Mori-Tanaka scheme for running bond masonry.  

Table 11 
Comparison of proposed scheme with the model proposed by Zhou et al. in terms of mean absolute error compared with FE analyses.  

Model Exx Eyy Ezz Gxy Gxz Gyz νxy νxz νyz 

Zhou et al.  8.8%  5.3%  31.0%  4.2%  6.0%  2.8%  7.6%  3.0%  5.7% 
Proposed model  1.2%  1.1%  18.2%  2.0%  2.3%  1.0%  15.9%  19.3%  17.8%  
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