
id177883

KERNEL METHODS WITH MIXED DATA TYPES
AND THEIR APPLICATIONS

ARNAU ARQUÉ MARTÍNEZ

Thesis supervisor: LUIS ANTONIO BELANCHE MUÑOZ (Department of Computer Science)

Degree: Master's degree in data science

Thesis report

Facultat d'Informàtica de Barcelona (FIB)

Universitat Politècnica de Catalunya (UPC) - BarcelonaTech

26/06/2023

Abstract

Support Vector Machines (SVMs) represent a category of supervised machine learning al-
gorithms that find extensive application in both classification and regression tasks. In these
algorithms, kernel functions are responsible for measuring the similarity between input samples
to generate models and perform predictions.

In order for SVMs to tackle data analysis tasks involving mixed data, the implementation of a
valid kernel function for this purpose is required. However, in the current literature, we hardly
find any kernel function specifically designed to measure similarity between mixed data. In ad-
dition, there is a complete lack of significant examples where these kernels have been practically
implemented. Another notable characteristic of SVMs is their remarkable efficacy in addressing
high-dimensional problems. However, they can become inefficient when dealing with large vol-
umes of data.

In this project, we propose the formulation of a kernel function capable of accurately captur-
ing the similarity between samples of mixed data. We also present an SVM algorithm based on
Bagging techniques that enables efficient analysis of large volumes of data. Additionally, we im-
plement both proposals in an updated version of the successful SVM library LIBSVM. Moreover,
we evaluate their effectiveness, robustness and efficiency, obtaining promising results.

Agraïments (Acknowledgements)

M’agradaria començar agraint al director d’aquest projecte, Lluís Belanche, el seu guiatge
durant el desenvolupament del treball. A més a més, agrair a vosaltres, família; pare, mare i
Martina, el vostre suport incondicional durant aquest llarg procés. A tu, Míriam, per ser un dels
meus pilars fonamentals. Per acabar, amb especial record i estima,

Sempre a tu, iaia.

Contents

1 Introduction 4
1.1 Identification of the problem . 4
1.2 Objectives and requirements . 5
1.3 Tasks definition . 6
1.4 Planification . 8
1.5 Obstacles and risks . 8
1.6 Project structure . 9

2 Support Vector Machines and Kernel Functions 10
2.1 Major Events in Machine Learning and Support Vector Machines 10
2.2 Support Vector Machines formulation . 11
2.3 Kernel Functions . 13

3 Kernels on mixed data 17
3.1 Data types and Kernel Functions in modern problems 17
3.2 The Aggregation Kernel . 22

4 Support Vector Machines on large problems 24
4.1 Efficiency improvements in Support Vector Machines 24
4.2 The Bagging Support Vector Machine . 25

5 Foundations of the Implementation 29
5.1 Support Vector Machines implementations . 29
5.2 Analysis of LIBSVM . 31
5.3 Implementation of the Aggregation Kernel . 33
5.4 Implementation of the Bagging-SVM . 42
5.5 Other tools . 43

6 Experimentation 45
6.1 Experiment 1: Basic functionality . 45
6.2 Experiment 2: Execution time overhead . 49
6.3 Experiment 3: Bagging-SVM use case . 52
6.4 Experiment 4: Mixed data real-world problem . 55

7 Conclusions 61
7.1 Review of the objectives . 61
7.2 Analysis and interpretation of the experiments 63
7.3 Overall analysis and conclusions . 64
7.4 Future work . 65
7.5 Personal thoughts and assessments . 66

1

List of Figures

1.1 Planification of the project. 8

2.1 Examples of hyperplanes that separate data samples of different classes. 11
2.2 Non-linearly separable data examples. 14

3.1 Segmentation of circular values in the (0, 1] range. 21

4.1 Diagram of SVM model generation using the conventional algorithm. 27
4.2 Diagram of SVM model generation using the Bagging approach. 28

5.1 Graphical representation of the svm_problem of LIBSVMaggr. 39

6.1 Example of synthetic 2D data generated from the circular data generator script. . 46
6.2 Graphical representation of the datasets used in Experiment 1. 46
6.3 Average execution time obtained in Experiment 2 using the Linear kernel. 50
6.4 Average execution time obtained in Experiment 2 using the Polynomial kernel. . 50
6.5 Average execution time obtained in Experiment 2 using the Linear kernel. 51
6.6 Execution time and error rates obtained in Experiment 3. 53
6.7 Execution time and error rates obtained in Experiment 3 (range [1, 50]). 54
6.8 Distribution of wingspan, length and height features of the Aircraft Dataset. . 56
6.9 Distribution of serviceCeiling variable of the Aircraft Dataset. 57
6.10 Distribution of cannons and machineGuns features of the Aircraft Dataset. 57
6.11 Correlation between numerical features of the Aircraft Dataset. 58
6.12 Value counts of the country and type features of the Aircraft Dataset. 59

List of Tables

6.1 Parametrizations used for each kernel in Experiment 1. 47
6.2 Experiment 1 Confusion Matrices (Polynomial kernel with d = 3, γ = 0.1, c0 = 10). 47
6.4 Experiment 1 Confusion Matrices (RBF kernel with γ = 0.01). 47
6.6 Results of Experiment 1 using the Linear Kernel. 48
6.7 Results of Experiment 1 using the Polynomial Kernel. 48
6.8 Results of Experiment 1 using the RBF Kernel. 49
6.9 Percentage of additional time required by LIBSVMaggr compared to LIBSVM. . . 51

2

List of Listings

5.1 New svm_node structure of LIBSVMaggr library. 34
5.2 Derived class for data stored as an integer in LIBSVMaggr library. 35
5.3 kernel_params pure virtual structure of LIBSVMaggr. 36
5.4 Data structure to store the parameters of the Polynomial kernel. 36
5.5 Summary of the new header of the svm_parameter structure. 37
5.6 Header of the new feature_set data structure. 38
5.7 Header of the modified svm_problem data structure. 38

6.1 Experiment 4 configuration file using textual features. 59

3

1 Introduction

This document represents the master’s thesis report titled "Kernel Methods with Mixed Data
Types and Their Applications." The project was conducted at the Polytechnic University of Cat-
alonia, specifically at the Faculty of Informatics in Barcelona, as part of the Master’s program
in Data Science.

The first section aims to provide an introduction to the project’s topic. We will begin by iden-
tifying the problem that motivated us to undertake this research. Subsequently, we will state
the objectives, sub-objectives, as well as the functional and non-functional requirements that we
aim to address in solving the problem.

Next, we will present the proposed plan to achieve the objectives within the established time-
frame, outlining the tasks that will enable us to do so. Following that, we will analyze the
potential obstacles and risks that may hinder the project’s development. Finally, we will outline
the project’s structure to ensure coherence in explanations and procedures.

1.1 Identification of the problem

In the field of data science, we are increasingly confronted with diverse problems. The large
volumes of data generated by society and the tools we have implemented for their collection and
processing have been key factors in this phenomenon [1]. In these modern problems, we en-
counter a wide variety of data types, ranging from numerical and binary to categorical variables,
among many others. In recent years, thanks to advancements in machine learning algorithms,
we have begun efficiently working with texts, images and videos.

One of the most widely used algorithms in the field of machine learning is Support Vector
Machines (SVM) [2]. SVMs are supervised learning algorithms that solve classification and
regression problems. These algorithms reach a solution using, among other elements, kernel
functions that measure the similarity between input samples [3].

The first problem to highlight is the almost completely lack of references in the current lit-
erature to kernel functions that can handle mixed data, which refers to samples composed of
features of different types. According to our knowledge, we have only come across the proposal
by Daemen et al., who formulates a kernel function for clinical data. However, we consider that
the proposal is rather straightforward and is only designed to handle continuous and binary data
[4]–[6]. This absence of kernel functions that adequately capture the degree of similarity between
mixed samples poses a significant problem, leaving SVM algorithms in a weakened position when
facing modern problems. Not only are there no formulations of kernel functions that can handle
such data types, but there are also no available tools that implement them.

It is worth noting that SVMs are exceptional algorithms in several aspects. One of them is
their efficiency, unlike, for example, Neural Networks, in handling samples with a large number of
features (high dimensionality). However, SVMs encounter performance issues when dealing with
large volumes of data. This is because the complexity of their formulation primarily depends on
the number of input samples rather than the dimensionality of these samples [7].

4

In the current literature, we find some algorithm proposals aiming to address this problem [8]–
[11]. However, some of these proposals, despite improving efficiency in handling large volumes
of data, present significant drawbacks such as increased prediction error or high complexity in
implementing the techniques. In some cases, the theoretical aspects of the techniques are formu-
lated without providing any open-source code implementation.

Considering the aforementioned challenges, we believe that there are two significant gaps in the
current data science literature regarding SVMs. Firstly, there is a lack of effective formulations
and implementations of kernel functions to address problems based on mixed data. Secondly,
we consider that there is room for improvement in techniques that facilitate solving problems
with large volumes of data using SVMs. Therefore, in this project, our focus is on formulating
theoretical solutions to address these issues and providing simple, effective, scalable and open-
source implementations to tackle these challenges.

1.2 Objectives and requirements

Having reached this point, we have been able to identify the inherent challenges in the field of
Data Science and Machine Learning that have motivated us to develop this project. Based on
these challenges, in this section, we will begin by formulating the main objectives of this project.
Finally, we will state the functional and non-functional requirements that the proposed solutions
must meet.

The main objective of this project is to formulate and provide a functional implementation of
a valid kernel function that is capable of analyzing mixed data samples in a way that accurately
captures the degree of similarity between them. Consequently, this kernel function can be effec-
tively utilized in Support Vector Machine algorithms, among others.

As a secondary objective, we aim to theoretically define an alternative to the conventional
Support Vector Machine algorithm that can efficiently handle problems involving large quantities
of data while maintaining a similar error rate. Furthermore, we look forward to providing an
effective implementation of this algorithm that validates our hypotheses.

Functional requirements

Once the project objectives have been defined, we believe it is necessary to state the functional
requirements that our solutions must satisfy. These requirements are aimed at establishing the
constraints that need to be met regarding the theoretical proposals, the training and prediction
capabilities of the algorithms and the evaluation of the obtained results.

1. Firstly, it is necessary for the proposed kernel function to represent a valid kernel and
this fact should be demonstrated based on the definition and properties inherent to kernels.

2. Additionally, the proposed alternative algorithm for utilizing Support Vector Machines
(SVMs) in problems involving large quantities of data must be theoretically valid and
adhere to the fundamental principles of these algorithms.

3. In terms of training capacity, the solutions should allow for the processing and analysis
of mixed data through the development and adjustment of models based on SVMs.

4. Regarding prediction capability, the project proposals must provide valid predictions
based on the Machine Learning models generated during the training phase.

5. Lastly, the implemented procedures should facilitate metrics and tools that enable the
evaluation of model performance in a simple, intuitive and reliable manner.

5

Non-functional requirements

To conclude, in this section, we will state the non-functional requirements that arise from the
previously proposed objectives. These requirements establish constraints not directly related to
the functionality of our solutions, such as performance, usability and robustness, among others.

1. The primary non-functional requirement is the efficiency of the proposed solutions. Both
the algorithm proposal for handling large datasets and the inclusion of new kernel func-
tion formulations should demonstrate good performance in terms of execution time and
computational resources.

2. Another important requirement is the usability of the solutions. The implemented tools
should be intuitive, user-friendly and have a clear interface that allows users in the Data
Science community to use them without difficulties.

3. In terms of scalability, the new algorithms should be capable of working with large vol-
umes of data without sacrificing other fundamental aspects such as efficiency and accuracy
in problem solving.

4. Lastly, it will be necessary for the proposed solutions in this project to be easily manipu-
lable. This will ensure that users from any field can extend and complement the proposals
by, among others, adding new kernel functions and support for new types of data in a
simple, unrestricted and effective manner.

1.3 Tasks definition

At this point, we have introduced the project and identified the problem that has motivated its
development. Next, we have defined the project’s objectives and subobjectives and stated the
functional and non-functional requirements. In this section, we will design the set of tasks that
will help us achieve the previously established objectives.

Prior to any process or activity associated with a project, it is necessary to carry out a research
stage. Therefore, the first group of tasks we will undertake is Research (R). The research tasks
are oriented towards activities such as state-of-the-art analyses or exhaustive investigations.
Through these tasks, we will conduct a thorough investigation of existing SVM libraries and
kernel functions developed for mixed variables. This research will provide us with the necessary
theoretical basis for the progress of the project and allow us to understand the current limitations
and opportunities for improvement in this area. We will divide the research tasks into five distinct
subtasks:

R1 Study and analyze of the fundamentals of Support Vector Machines algorithms and kernel
functions.

R2 Examine and assess the state-of-the-art concerning the types of variables present in the
current literature and the corresponding implemented kernel functions.

R3 Study of kernel functions from the current literature that are oriented towards handling
mixed data.

R4 Investigate and analyze the current state-of-the-art of Support Vector Machines algorithms
designed for handling large-scale datasets as documented in the existing literature.

R5 Examine and analyze the state-of-the-art regarding efficient implementations of Support
Vector Machines algorithms found in the current literature.

6

Once the research stage is complete, it will be time to initiate a process of study and design
of the techniques that we intend to implement. Therefore, we have decided to define a set of
Design (D) tasks, which are divided into three subtasks:

D1 Design and formulate kernel functions for different types of variables.

D2 Design and formulate a kernel function that allows us to measure similarity between mixed
data.

D3 Design and formulate a Support Vector Machines algorithm capable of efficiently addressing
problems involving large volumes of data.

At this point, ideally, we will have gathered the necessary information to design and formu-
late the techniques that correspond to the previously established objectives. Next, it will be
necessary for us to provide a functional implementation of these methodologies. For this reason,
we will define a set of Implementation (I) tasks, which can be broken down into the following
subactivities:

I1 Incorporate support for mixed data into a renowned Support Vector Machines library
widely recognized in the current literature.

I2 Implement kernel functions for various types of variables within the library..

I3 Incorporate the previously designed kernel function into the software to handle mixed data
vectors.

I4 Integrate the Support Vector Machines-based algorithm capable of efficiently handling large
quantities of data.

Subsequently, once we have studied, designed and implemented the methodologies proposed
for our objectives, we believe it is necessary to conduct a series of experiments to evaluate their
correctness, robustness and efficiency, among other factors. Therefore, we will define the set of
Experimentation (E) tasks, which include:

E1 Validate the fundamental functionality of the implemented techniques and methodologies.

E2 Apply the mixed data kernel function to solve a real-world problem.

E3 Apply the Support Vector Machines algorithm to handle large quantities of data in a
specific use case to validate its effectiveness and efficiency.

Finally, the Documentation tasks will allow us to compile and document the entire process
and the results obtained throughout the project. This task is essential for the creation of the
final report, which will comprehensively reflect the work carried out, the methodologies used,
the results obtained and the conclusions reached.

Through this organization into task groups, we establish a clear and logical structure to address
the project’s objectives, ensuring adequate progression and efficiency in their achievement. Each
group of tasks is closely related to the corresponding objectives, thus ensuring a close association
between the tasks performed and the expected objectives to be achieved.

7

1.4 Planification

Given the magnitude of the project, we have decided to make an estimate of the time it will take
us to carry out each of the tasks defined above. In this way, it will be easier for us to organize
ourselves and mitigate the possible obstacles that we may encounter during the development of
the work.

You can see an approximation of the duration of each group of tasks in Figure 1.1. The
estimated time for the Research, Design + Implementation and Experimentation tasks are in-
dicated in yellow, green and blue, respectively. Notice that we have combined the design and
implementation tasks as they are closely related and it is challenging to estimate the individual
time required for each one.

It is planned that the Documentation of the project will be carried out continuously during
its development. Even so, we have planned to reserve the last two weeks of the project entirely
for the writing of the final report (gray).

Figure 1.1: Planification of the project.

1.5 Obstacles and risks

During the development of large-scale projects in the field of data science and machine learning,
it is inevitable to encounter various obstacles and assume certain risks. As responsible authors,
it is vital to be aware of them in order to find effective solutions if necessary.

Firstly, we highlight the potential lack of computational resources. It is possible that the de-
vices we are working with may not be powerful enough to perform the required tasks, resulting
in high computation times. This limitation can negatively impact the overall performance of the
project, delaying progress and increasing the complexity of the tasks to be performed.

Furthermore, it is important to consider the possibility of unforeseen issues related to the de-
vices used in the project’s resolution. Therefore, it would be advisable to have viable alternatives
or contingency plans in case of equipment failure or unavailability.

8

It should be noted that, despite having previous experience in the field of SVMs and kernel
functions, the specific challenges of this project may place us in a position of limited expertise in
this area. This lack of experience can generate additional difficulties during project execution,
requiring greater dedication to acquire the necessary knowledge.

It is also crucial to bear in mind that, when working on data science projects, maintaining an
ethical perspective and respecting the privacy of the data used is paramount. As data scientists,
it is essential to consider and address gender, race or nationality biases that may exist in the data
to prevent resulting algorithms from being discriminatory or perpetuating unfair inequalities.

In the theoretical resolution of data science problems, delays in planning may arise due to the
inherent complexity of the project. This complexity may require additional time to properly
understand and address specific issues that arise, which can impact the overall development of
the project.

Lastly, it is important to emphasize that project deadlines and presentations are fixed and
inflexible. This implies the need for rigorous control of planning at all times and the ability to
overcome setbacks and adversities that may arise throughout the process.

By considering these potential obstacles and risks, we will be prepared to face the difficulties
that may arise during the project’s development and will be better equipped to find effective
solutions to achieve the proposed objectives.

1.6 Project structure

At this point, we can consider the introduction to the project concluded. In this section, we will
discuss the structure followed in this report.

Firstly, we will briefly review the historical background in the field of data science and ma-
chine learning that led to the definition and development of Support Vector Machines (SVM)
algorithms. Next, we will analyze the main characteristics of SVMs and the role that kernel
functions play in them.

Next, we will study the main types of variables found in current literature and the imple-
mented kernel functions for each type. Subsequently, we will analyze, define and formulate a
kernel function to handle mixed data.

Following that, we will explore the techniques found in the current literature that are oriented
towards handling large quantities of data using Support Vector Machine algorithms. Then, we
will propose a new algorithm motivated by the same objective, formulate it and study its com-
plexity.

At this stage, we will study the leading libraries in the field of SVMs found in current liter-
ature. Based on this analysis, we will select one of them and expand it to include support for
the techniques studied earlier. Once the implemented techniques are available, we will begin
an experimentation phase to test their correctness, effectiveness and efficiency on synthetic and
real-world problems.

Finally, we will review the objectives set forth in this section, analyze and interpret the results
of the experiments and provide an overall conclusion of the project. We will also estimate possible
future work and offer a personal assessment of the work accomplished.

9

2 Support Vector Machines and Kernel
Functions

In this chapter, we will briefly review some of the main events in the history of machine learning,
Kernel Methods and the early developments of Support Vector Machines (SVM). Subsequently,
we will analyze the principles underlying this type of algorithms.

Next, we will study the advantages and drawbacks arising from their application to real-world
problems. Once this introduction to SVMs is completed, we will describe the mathematical
formulations that underlie them. Finally, we will analyze the role of kernel functions in this
procedure.

2.1 Major Events in Machine Learning and Support Vector
Machines

In this section, we will explore the development and background of the field of Machine Learning
and Support Vector Machines. We will begin by reviewing the key events that have laid the
foundation for Support Vector Machines (SVMs).
In 1950, Alan Turing created the Turing Test, establishing the foundations of modern com-

puting and introducing the concept of a computer [12]. Over the following years, computing
underwent remarkable advancements, largely driven by the constant increase in computational
and storage capabilities of the computer systems of that era.

In the realm of algorithms, Arthur Samuel started working for IBM in 1949. In 1959, he
published the first algorithm capable of autonomous learning [13]. This algorithm focused on
the computer’s ability to win in the game of checkers without any external intervention. Samuel
envisioned the potential of teaching computers through games to develop techniques that could
be applicable to broader problems. This groundbreaking algorithm, now known as Alpha-Beta
Pruning, marked a turning point in the fields of algorithms and Machine Learning. In the same
article, Samuel introduced the term "Machine Learning" for the first time in history, defining
it as "the field of study that gives computers the ability to learn without being explicitly pro-
grammed".

The subsequent years were marked by hope and expectations regarding Machine Learning and
Artificial Intelligence. Unfortunately, those expectations did not materialize and a period known
as "The AI Winter" ensued [14]. During this time, investment and development in these fields
significantly declined.

However, in 1990, there was a significant resurgence of optimism in the field of Machine Learn-
ing, thanks to notable contributions in this domain [15]. In fact, in 1992, Boser et al. developed
a novel Machine Learning algorithm at AT&T laboratories, known as Support Vector Machines
(SVMs) [3]. SVMs are a set of supervised learning algorithms that allow solving classification
and regression problems by analyzing datasets.

10

These powerful tools are applicable to both classification and regression problems, among oth-
ers. In classification, SVMs aim to generate a hyperplane that adequately separates samples from
each class. In some cases, this separation is not feasible in the original data space and it becomes
necessary to generate the hyperplane in a higher-dimensional space using kernel functions [16].
Regarding regression problems, the solution also involves generating a hyperplane, but in this
case, the goal is to achieve the best possible fit of the data in a continuous space.

In the following sections, we will delve into the formulation and analysis of Support Vector
Machines, as well as the crucial role played by kernel functions in these algorithms. Please note
that from now on, we will use bold notation to refer to the vectors appearing in the equations.

2.2 Support Vector Machines formulation

At this point, we have provided a brief introduction to the history of Machine Learning and
the beginnings of Support Vector Machines. However, in order to work with and manipulate
these types of algorithms—which is precisely one of the objectives of this project—we need to
understand and break down the mathematical concepts that underpin them.

The main objective of a classifier is to identify the class to which the different instances in
the problem belong. As mentioned before, in the realm of SVMs, this identification is achieved
by generating a hyperplane that separates the instances of each class. However, in many cases,
there are infinitely many different hyperplanes that can correctly separate the data, as depicted
in Figure 2.1. In addition to generating this hyperplane, the goal of SVMs is to maximize the
distance between the plane and the closest samples. This distance is called the margin, while the
samples closest to the hyperplane (which also define the margin) are called Support Vectors (SV).

Figure 2.1: Examples of hyperplanes that separate data samples of different classes.

Source: Own elaboration.

Let x ∈ Rd, ω = (ω1, . . . , ωd) and b = ω0 (bias). We can define a hyperplane as:

π : ωᵀx+ b = 0 (2.1)

In order to ensure a unique solution, it will be required for the vector ω to be normalized.
This way, the constraint stated in equation 2.2 will be satisfied for the vectors xn ∈ Rd that are
closest to the plane (support vectors, SVs).

|ωᵀxn + b| = 1 (2.2)

To maximize the distance between the points close to the plane and the plane itself, we need

11

to determine how to calculate this distance. Let x ∈ π be a point on the plane and ω̂ = ω/‖ω‖
be the unit vector. We know that the distance between an SV xn and the plane π is given by:

dist(xn, π) = |ω̂(xn − x)| = 1

‖ω‖
· |(ωᵀxn + b)− (ωᵀx+ b)|

Considering the definition of the plane (equation 2.1) and the restrictions imposed on xn

(equation 2.2), we obtain that the distance between xn and the plane becomes:

dist(xn, π) =
1

‖ω‖
· |1− 0| = 1

‖ω‖
This distance is, in essence, the width of the margin separating the support vectors from the

plane (see Figure 2.1). Considering that the main objective of SVMs is to maximize this margin,
the above equation becomes the objective function (OF) of the following optimization problem
(OP):

max
1

‖ω‖
subject to min

n=1...N
|ωᵀxn + b| = 1

(2.3)

Where N is the number of samples in the problem. To simplify the subsequent steps, we will
use the following optimization problem (OP), which is equivalent to the statement in equation
2.3:

min
1

2
ωᵀω (2.4)

subject to yn(ωᵀxn + b) ≥ 1, for n = 1 . . . N (2.5)

Where yn ∈ {−1, 1} is the class label associated with instance xn. To solve this OP, we will
use its Lagrange formulation. We will start by converting constraint 2.5 into its zero form, so
it becomes yn(ωᵀxn + b) − 1 ≥ 0. Then, we will introduce a non-negative Lagrange multiplier
αn to ensure that the constraint is effectively greater than or equal to zero. Finally, we will
add the constraint as part of the objective function. These modifications result in the following
equivalent OP:

min
ω, b

L(ω, b,α) =
1

2
ωᵀω −

N∑
n=1

αn(yn(ωᵀxn + b)− 1) (2.6)

At this point, we could already solve the problem. However, current SVM implementations
further simplify the resolution process by using what is known as the dual form. This equivalent
formulation is based on finding the hyperplane using an OP that only depends on α.

To achieve this new form, we need to consider the constraints we will state below. Since
we are ultimately looking for maxima and minima, it must hold that both the gradient of the
Lagrangian (w.r.t. ω) and the derivative of the Lagrangian (w.r.t. b) are zero:

∇ωL = 0 ⇐⇒ ω −
N∑
n=1

αnynxn = 0 ⇐⇒ ω =
N∑
n=1

αnynxn (2.7)

δL
δb

= 0 ⇐⇒
N∑
n=1

αnyn = 0 (2.8)

12

By substituting these constraints into the Lagrangian in equation 2.6, we obtain a new La-
grangian that depends only on α:

L(α) =
N∑
n=1

αn − 1

2

N∑
n=1

N∑
m=1

ynymαnαm(xn)ᵀxm (2.9)

From this new Lagrangian, we can redefine the optimization problem (OP) in equation 2.6
using the constraints we have determined, including the constraint in equation 2.8:

min
α

1

2

N∑
n=1

N∑
m=1

ynymαnαm(xn)ᵀxm −
N∑
n=1

αn (2.10)

subject to αn ≥ 0, for n = 1 . . . N and (2.11)
N∑
n=1

αnyn = 0 (2.12)

This optimization problem can be solved using Quadratic Programming (QP). The solution
to the problem will be the vector α = (α1 . . . αN). However, we should not forget that our
ultimate goal is still to obtain the hyperplane ωᵀx + b = 0 that separates the data points of
different classes. Therefore, to obtain ω from α, we can use the equation 2.7 derived from the
Lagrangian and finally, we can isolate b using the constraint 2.2 established at the beginning of
the explanation. Note that only those points xn ∈ SV will have an associated αn > 0. For the
rest of the points xm /∈ SV =⇒ αm = 0. Thus, we can simplify equation 2.7 to:

ω =
∑
xn∈SV

αnynxn

2.3 Kernel Functions

If we look at the title or the objectives of this project, we realize that the concept of kernel
functions stands out above everything else. However, despite having defined the mathematical
foundations of Support Vector Machines (SVM), this term has not been mentioned. Therefore,
the question arises: what does a kernel function have to do with the operation of an SVM?

As we have seen in the examples we presented at the beginning of the previous section (Figure
2.1), the data on which SVMs operate are located in a space X = Rd of dimensionality d and
the goal is to determine a hyperplane that separates the samples in this space. However, what
would happen if the data were not linearly separable in X , as shown in the examples in Figure
2.2? This is where kernel functions come into play.
The general idea of kernels lies in the desire to find a higher-dimensional space Z in which it is

possible to separate the data using a hyperplane and moreover, without having to explicitly visit
this new space. But how is it possible to work in a space Z without the need to explicitly access it?

First, we must ensure that access to this new space Z is carried out through a transformation
that depends exclusively on xn ∈ X . In other words, there must exist a function Φ : X → Z
such that Φ(xn) = zn. Considering this premise, we see that we have defined the new Z space,
but we are still explicitly visiting it through Φ. It is not difficult to realize that this is precisely
what we are trying to avoid. For this reason, an additional restriction will be necessary.

Second, we must ensure that all access to the Z space is done through a scalar product of
the form (zn)ᵀzm, with zn, zm ∈ Z. As stated in the previous paragraph, by construction of
zn and zm, this scalar product can be expressed as Φ(xn)ᵀΦ(xm). In this way, the product

13

Figure 2.2: Non-linearly separable data examples.

Source: Own elaboration.

becomes an operation that depends exclusively on xn,xm ∈ X . That is, we will be accessing Z
(and thus generating the hyperplane that separates the data in this space) without the need to
explicitly visit it.

The expression of the scalar product in the Z space in terms of xn and xm is what we call
a Kernel Function (KF). These functions are defined as k : X × X → R, where k(xn,xm) =
Φ(xn)ᵀ · Φ(xm) = (zn)ᵀzm.

One of the main properties that arises from the definition of KFs is that it doesn’t matter what
the initial space X of the samples is. The only requirement is that the KF, which handles the
scalar products in Z, represents a valid kernel. In fact, if we look at the formulation we intro-
duced in the previous section, without KFs, SVMs would only be able to deal with real-valued
data (i.e. X ⊆ Rd) that is linearly separable in the input space.

Later on, we will see that it is not necessary to find the expression of Φ to validate a KF. How-
ever, before that, let’s see how the formulation of SVMs we introduced in the previous section is
affected when we introduce the handling of data in the Z space using kernel functions.

Let’s start by revisiting the Lagrangian L(α) (equation 2.10), which represents the objective
function (OF) of the optimization problem (OP) that needs to be solved in order to obtain the
multipliers αn:

L(α) =
1

2

N∑
n=1

N∑
m=1

ynymαnαm(zn)ᵀzm −
N∑
n=1

αn =

=
1

2

N∑
n=1

N∑
m=1

ynymαnαmk(xn,xm)−
N∑
n=1

αn

14

In this way, the optimization problem becomes:

min
α

1

2

N∑
n=1

N∑
m=1

ynymαnαmk(xn,xm)−
N∑
n=1

αn

subject to αn ≥ 0, for n = 1 . . . N and
N∑
n=1

αnyn = 0

As we can see, the constraints of the problem are not affected since they do not depend on
the samples in the X space. Another element of the formulation that will be affected is the
computation of ω (see equation 2.7) based on the values of α obtained in the solution of the
previous problem:

ω =
∑

zm∈SV

αmymzm (2.13)

It is evident that we do not have a way to represent ω as the scalar product of two samples
in the Z space. Therefore, if it were necessary to compute its value, we would have to explicitly
visit Z, which is precisely what we are trying to avoid. However, we will see next that it will
not be necessary to perform this calculation under any circumstances.

In order to classify a sample xn ∈ X , it is only necessary to determine:

g(xm) = sign(ωᵀxn + b)

Taking into account that we are working in the Z space, we obtain:

g(zm) = sign(ωᵀzn + b) = [considering 2.13]

= sign

(∑
zm∈SV

αmym(zm)ᵀzn + b

)

Having represented ωᵀzn as a scalar product in the Z space, we only need to ensure that b
can also be defined in terms of the same terms. Let’s see:

b = yn − ωᵀzn = [considering 2.13]

= yn −
∑

zm∈SV

αmym(zm)ᵀzn

Therefore, the classification of an instance into a class using kernel functions becomes:

g(xm) = sign

(∑
zm∈SV

αmymk(xm,xn) + b

)
, with

b = yn −
∑

zm∈SV

αmymk(xm,xn)

Therefore, it has been demonstrated that we can generate a separating hyperplane in a higher-
dimensional space Z without the need to explicitly visit it. We only need to ensure that the
kernel function is valid.

15

As mentioned earlier, it is not necessary to determine Φ in order to validate and consequently
use a kernel function. We can determine the validity of a kernel function using the following
methodologies:

1. By construction: We prove that the kernel function k(xm,xn) can be represented as the
dot product of the transformations Φ(xm) and Φ(xn).

2. By mathematical properties: Every kernel function k(xm,xn) will be valid if and only if
(1) k is symmetric (i.e., k(xm,xn) = k(xn,xm)) and (2) the matrix K (where Kij =
k(xi,xj)) is positive semi-definite for all x1, . . . ,xN . This condition is known as Mercer’s
condition. The matrix K is defined such that Kij = k(xi,xj). This matrix is commonly
referred to as the Kernel Matrix.

3. By closure properties: We can use the following properties [17] to form new kernel functions
from other expressions:

a) k(xn,xm) = k1(x
n,xm) + k2(x

n,xm)

b) k(xn,xm) = a · k1(xn,xm)

c) k(xn,xm) = k1(x
n,xm)k2(x

n,xm)

d) k(xn,xm) = f(xn)f(xm)

e) k(xn,xm) = k3(Φ(xn),Φ(xm))

f) k(xn,xm) = (xn)ᵀBxm

Where k1, k2 : X ×X → R, X ⊆ Rd, a ∈ R+, f : X → R, Φ : X → RM , k3 : RM ×RM → R
and B is a symmetric positive semi-definite matrix of dimension d× d.

La teoria dels kernels es pot extendre a Hilbert Spaces, que són espais euclidians de dimen-
sionalitat finita o infinita [16].

In addition to enabling us to separate a dataset in a higher-dimensional space, kernel functions
can be understood from the perspective of analyzing the similarity between two samples. Often,
a scalar product is interpreted as a measure of similarity between two vectors [18]. In our case,
the vectors are the data samples in the input space and the scalar product is implicitly carried
out through the kernel functions. Hence, the resulting value from these functions also indicates
how similar two samples are.

16

3 Kernels on mixed data

In this chapter, we will study and review some of the most common types of data and variables
found in modern problems. We will also explore the existing kernel functions designed to handle
these types of variables, if they have been defined. In cases where formulations of kernel functions
for specific data types are not found, we will attempt to propose a function that can capture the
similarity between samples of the respective variables.

Furthermore, we will analyze the kernel functions tailored to address mixed data found in the
current literature. Additionally, we will justify the need to define kernel functions that handle
data vectors of different types. Finally, we will state and formulate a new kernel function that
will allow us to handle vectors of non-real variables and capture the similarity between this type
of data.

3.1 Data types and Kernel Functions in modern problems

Until a few years ago, most problems consisted of simple data types such as continuous numeri-
cal, binary or categorical data. However, in recent years, advancements in the field of Machine
Learning, its algorithms and the increased computing power of available devices have allowed
us to tackle problems with more complex variables. Examples of such variables include circular
variables, fuzzy variables, textual variables and even data in the form of images and videos.

In this first section, we will study the different types of data found in modern problems and
the kernel functions that enable us to measure similarity between them.

Continuous variables

We will begin by analyzing continuous numerical variables. Continuous numerical variables, also
known as real-valued variables, are essential in various fields of study. These types of variables,
which take values on the real number line R, represent continuous quantities such as ages, tem-
peratures or income. For example, in a real estate price prediction problem, a real-valued variable
could be the surface area of a house. Their utility is widely recognized and numerous studies
have been conducted on these variables.

In the current literature, we find multiple kernel functions focused on dealing with data of this
type. The most basic of all is the linear kernel, whose expression can be found in equation 3.1.
Essentially, the linear kernel evaluates the similarity of data points in the original input space
using a dot product.

klinear(x
i,xj) = (xi)ᵀxj (3.1)

Another well-known kernel for continuous data is the polynomial kernel. It leverages the ex-
pression of the original samples in the form of a polynomial to evaluate their similarity.

As we can see in equation 3.2, this kernel function has three main hyperparameters: d ∈
R+ denotes the degree of the polynomial, c0 ∈ R represents its coefficient and γ ∈ R is a
hyperparameter that acts as a multiplier of the dot product of the samples in the input space.

17

kpoly(xi,xj) = (γ(xi)ᵀxj + c0)
d (3.2)

It is not difficult to notice that the linear kernel (equation 3.1) is a special case of the polyno-
mial kernel where d = 1, c0 = 0 and γ = 1.

One of the most well-known kernels in the field of numerical data is the Radial Basis Function
(RBF) kernel. Gaussian kernels are among the most widely used in the literature and have been
employed in multiple areas of study [18]. The most common expression of this kernel is shown
in equation 3.3.

krbf(x
i,xj) = exp

(
−
∥∥xi − xj∥∥2

2σ2

)
(3.3)

Where the quadratic term
∥∥xi − xj∥∥2 represents the squared Euclidean distance between the

two samples xi and xj . The parameter σ ∈ R+ controls the influence that each data point has
on the others in the similarity calculation.

An equivalent formulation of the RBF kernel widely used in the literature is shown in equation
3.4. In this case, γ = 1

2σ2 ∈ R+.

krbf(x
i,xj) = exp(−γ

∥∥∥xi − xj∥∥∥2) (3.4)

In addition to the aforementioned kernels, we can also find other alternative kernels such as
the sigmoid kernel. This function, as the name implies, takes the form of a sigmoidal function,
similar to the logistic regression function. As we can see in equation 3.5, this function has two
hyperparameters. Firstly, γ ∈ R+ regulates, similarly to how it does in, for example, the RBF
kernel, the amount of influence each data point has in the similarity calculation. On the other
hand, the coefficient c0 ∈ R is a hyperparameter that allows us to control the level of shifting of
the sigmoidal function.

ksigmoid(xi,xj) = tanh(γ(xi)ᵀxj + c0) (3.5)

Binary variables

Binary variables are widely known in the field of Machine Learning. From a purely mathemat-
ical perspective, a binary variable b can take values b ∈ 0, 1. However, in the literature, we can
find binary variables that express their values in the form of two categories, where one cate-
gory is the negation of the other. Examples of such variables include blue_eyes ∈ {yes, no},
state ∈ {open, close} or exam ∈ {pass, fail}.

In the domain of kernel functions, one of the most well-known for dealing with binary variables
is the Jaccard kernel. This function is based on the Jaccard index, introduced by the ecologist
Paul Jaccard in his article "The Distribution of Flora in the Alpine Zone" [19]. Originally, this
index determined the similarity between two samples using the following equation:

Jac(A,B) =
|A ∩B|
|A ∪B|

(3.6)

Where A and B are the samples. We can observe that, ultimately, the similarity is measured
by dividing the size of the intersection of the sets by the size of their union.

18

From the above expression, we can derive measures of similarity between two vectors of binary
variables xi, xj ∈ {0, 1}n using the following metrics (with l = 1 . . . n):

N00 = Number of attributes such that xil = xjl = 0.
N01 = Number of attributes such that xil = 0 and xjl = 1.
N10 = Number of attributes such that xil = 1 and xjl = 0.
N11 = Number of attributes such that xil = xjl = 1.

From these metrics, we can obtain the expression of the kernel function:

kjaccard(xi,xj) =
N11

N01 +N10 +N11
(3.7)

Note that for those samples in which all matches are of typeN11, there will be an indeterminacy
of the form 0/0 when applying the kernel function. Therefore, if implemented, the procedure to
follow when both samples have all their attributes set to 0 will need to be determined.

Another kernel function based on the binary similarity metrics we just discussed is the Simple
Matching Coefficient kernel (SMC) [20]. The SMC measures the ratio between the number of
matching attributes and the total number of attributes in the samples. We can see the kernel
function in question in equation 3.8.

ksmc(x
i,xj) =

N11 +N11

N00 +N01 +N10 +N11
(3.8)

Unlike the Jaccard kernel (equation 3.7), the similarity measure of the SMC cannot lead to
any indeterminacy.

Categorical variables

Another widely used type of variable in the literature is categorical variables. This type of data is
primarily characterized by the composition of its domain, which consists of a finite set of values
with or without order, known as categories [21]. We can distinguish two types of categorical
variables: ordinal and nominal variables [22].

On the one hand, ordinal categorical variables are those that take categorical values in a
differentiated order. An example of an ordinal categorical variable would be coffeeSize ∈
{small, medium, large}. On the other hand, nominal categorical variables are those whose
domain does not have a pre-established order. An example of a nominal categorical variable
would be city ∈ {Barcelona, Girona, Lleida, Tarragona}.

During the research process regarding kernel functions associated with this type of variable,
we have found that there is not a wide variety available. In the SVM domain, we do not find
any available software that allows us to handle problems with mixed data. In fact, usually only
kernel functions for continuous numerical variables are implemented. Therefore, in most cases,
users tend to convert the values of categorical variables to numerical values using techniques such
as OneHotEncoding [23].

One of the most basic functions for measuring the similarity of this type of variable is the
equality kernel. However, please note that this function only accepts individual categorical values
and not vectors of categorical variables. Its operation is simple: if the categories match, the
similarity measure becomes 1. Otherwise, the similarity is 0. We can see its definition in
equation 3.9.

19

keq(x
i
`, x

j
`) =

{
1 if xi` = xj`
0 otherwise

(3.9)

Nevertheless, Belanche et al. propose an interesting family of positive definite kernels for
measuring similarity between categorical variables. The kernel is called the univariate kernel
and is based on determining the similarity between two categories using the proportion with
which they appear in the dataset [24]. We can see the definition of the function in equation 3.10.

kunivariate(x
i
`, x

j
`) =

{
hα(PZ(xi`)) if xi` = xj`
0 otherwise

(3.10)

Where xi`, x
j
` represent the categories associated to the ` feature of each sample xi,xj and

Z is the categorical variable that follows a distribution PZ (note that PZ(xi`) indicates the
probability that the variable Z takes the value xi`). On the other hand, α is a hyperparameter
that parametrizes the inversion function hα defined in equation 3.11. This function introduces a
nonlinear behavior in the calculation of the similarity index between the data.

hα(a) = (1− (a)α)1/α (3.11)

The univariate kernel provides a more accurate reasoning of the concept of similarity and es-
tablishes that not all matches have the same importance compared to the behavior of the equality
kernel. Moreover, one of the strengths of the methodology followed by the univariate kernel is
that if the probability PZ(xi) is very low, the fact that there is a match between two individuals
with value xi` becomes highly significant.

On the other hand, if the probability of occurrence of a category is very high, it means that
the categorical value is very common. Consequently, the fact that two individuals have the same
value is not as relevant. The function hα is responsible for assessing the degree of importance of
a match.

Circular variables

One variable that is often under-referenced in the current literature is circular variables. These
variables are characterized by having a domain that exhibits a circular ordered structure [25]. In
other words, if we choose a value and move from one value to the next in order, we will eventually
return to the beginning of the cycle.

An example of a circular variable could be windDirection ∈ {0 . . . 359}. Another possibility
could be month ∈ {Jan, Feb, Mar, . . . , Nov, Dec}. Note that the domain of a circular variable can
be either numerical or categorical, as the only requirement for a variable to be considered of this
type is that its structure is cyclical.

We have conducted an extensive research on kernel functions designed to handle this type of
variable and unfortunately, we have not found any existing ones. Therefore, we have proposed
defining a new one. The formula for the function in question can be seen in Equation 3.12.

kcircular(x
i
`, x

j
`) = 1−min{z, 1− z} (3.12)

Where z = |xi`x
j
` | ∈ [0, 1) is the absolute difference between the circular values xi` and x

j
` . Note

that the circular kernel is intended to handle numerical circular variables, specifically values
within the range (0, 1] (see Figure 3.1). In other words, it is expected that xi`, x

j
` ∈ (0, 1].

Therefore, before using the kernel, it will be necessary to associate each element of the variable’s
domain with a value within the established range.

20

Figure 3.1: Segmentation of circular values in the (0, 1] range.

Source: Own elaboration.

String variables

The last type of variable we will study is string variables. Nowadays, texts have gained significant
importance in the field of Machine Learning and Data Analysis. We can understand a string as
a structured sequence of zero or more characters.

Some examples of string variables include a tweet, a paragraph from a book, the description
of symptoms presented by an examined individual in a hospital or a character sequence repre-
senting an individual’s DNA sequence. In fact, textual variables are widely used in the field of
bioinformatics [17].

It is not difficult to realize that being able to analyze the texts that surround us and include
them in data analysis problems can improve the problem-solving capabilities of our algorithms.

In the current literature, we find different kernels that deal with textual variables. The simplest
one is called the p-spectrum kernel. It evaluates the similarity between two textual samples by
computing the matches of sub-strings of size p [26]. Its formulation can be seen in Equation 3.13.

kspectrum(s, t) =

|s|−p+1∑
i=1

|t|−p+1∑
j=1

kp(si:i+p, tj:j+p) (3.13)

Where s and t are textual variables. The notation si:j indicates the substring in s that contains
the characters from position i to position j. |s| represents the size (number of characters) of string
s. kp is another kernel function (see equation 3.14) that returns 1 if the substrings si:i+p and
tj:j+p are equal and 0 otherwise.

kp(s, t) =

{
1 if s = t

0 otherwise
(3.14)

We can find more efficient formulations of the p-spectrum kernel based on dynamic program-
ming and the use of data structures called tries [27]. However, the details of the formulation and
implementation are beyond the scope of this project, so we will only mention their existence.

21

3.2 The Aggregation Kernel

At this point, we have defined the formulation of a Support Vector Machine (SVM) and the
role played by Kernel Functions (KF) in these algorithms. Furthermore, we have studied the
variables that appear in the main problems of the current literature and the kernels defined for
each of them.

We have also observed that while using SVMs, there is nothing preventing us from working
with different types of data vectors (real data vectors or binary data vectors, among others) as
long as we have a valid kernel capable of capturing the similarity between these vectors.

Despite the existence of kernels designed to handle different types of data (such as RBF for
continuous data, SMC for binary data or Univariate for categorical data, among others), we
have not seen any cases addressing what happens when the samples to be analyzed consist of
mixed data. In fact, this is not a matter that can be overlooked, as the majority of contemporary
problems are indeed composed of data of different types. So, can we analyze datasets with mixed
data using Support Vector Machines?

As we mentioned, it is indeed possible to solve problems composed of mixed data vectors as
long as we find a valid kernel that captures the similarity between them. In the current literature,
we have found only one reference to kernels for mixed data in the article "Improved modeling of
clinical data with kernel methods". In this article, Daemen et al. define an additive kernel (which
we will rename as the average kernel) designed to handle medical data consisting of ordinal and
binary variables.

The authors define the new kernel based on closure properties 3a (which ensures that the sum
of kernels is also a kernel) and 3b (which ensures that a kernel multiplied by a value a ∈ R+ is
also a kernel). You can find the formulation of the kernel function in equation 3.15.

kavg(x
i,xj) =

1

L

L∑
`=1

k`(x
i,xj) (3.15)

In the mentioned function, L is the number of vectors to be processed with different kernels
and k` with ` ∈ [1, L] is a valid kernel that captures the similarity between each of these vectors.
For example, let’s assume our samples consist of a data vector of size d. Features [1, d/2− 1] are
continuous, while features [d/2, d] are binary. We can evaluate the similarity of the first subset
of features using, for instance, k1 = krbf (xi,xj) and the similarity of the second subset using,
for instance, k2 = ksmc(x

i,xj). Once we have obtained these similarity scores, we calculate the
overall similarity by averaging the scores: 1/2(k1 + k2). However, besides the definition of the
kernel function, the authors do not propose any operational and open implementation to test
the results they present.

While it is true that kavg is sufficient for dealing with mixed data vectors, we believe that we
can improve the similarity measure by defining a new kernel function based on the aggregation
kernel proposed in [6]. We will refer to this new function as the Aggregation Kernel. You can
find its formulation in equation 3.16.

kaggr(x
i,xj) =

exp(γ kavg(x
i,xj))− 1

exp(γ)− 1
(3.16)

On one hand, the new function introduces a hyperparameter γ ∈ R+, which will help define the
extent to which a sample influences the generation of the separating hyperplane. If the value of
γ is high, we will obtain a hyperplane that separates the data by giving significant consideration

22

to samples near the decision boundary, practically ignoring the more distant samples. On the
other hand, if γ takes a very low value, distant data will have a considerably higher weight in
the definition of the hyperplane, while nearby data will have little influence. To conclude, notice
that kaggr : X × X −→ (0, 1], where X is the input space of the data.

Additionally, the application of the exponential function to the resulting value of the average
kernel is also incorporated to introduce non-linear behavior in the similarity measure.

The proof that the aggregation kernel represents a valid kernel arises from the closure properties
of kernels stated in Section 2.3. Let’s see it:

kavg is kernel ⇐⇒ [by closure 3b]

γ kavg is kernel ⇐⇒ [by closures 3b, 3a]

exp(γ kavg) is kernel ⇐⇒ [k kernel− 1 is kernel]
exp(γ kavg)− 1 is kernel ⇐⇒ [by closure 3b]

exp(γ kavg)− 1

exp(γ)− 1
is kernel �

(3.17)

Having defined the aggregation kernel, we have now developed a new kernel function that
can serve various purposes. This kernel opens up opportunities to tackle more diverse problem
domains, capture the semantics of data more effectively and find applications in fields such as
education and research.

The improved kernel has the potential to enhance the performance and flexibility of Support
Vector Machines, enabling them to handle mixed data types and provide richer insights. Its
implementation can enable the analysis of complex datasets and facilitate advancements in data-
driven research and educational applications.

23

4 Support Vector Machines on large
problems

At this stage, we have examined the formulation of Support Vector Machines (SVMs) and Kernel
Functions. Additionally, we have studied and analyzed the different types of data encountered
in modern data analysis problems, along with the kernel functions designed to handle them. Fi-
nally, we have proposed a new kernel function, named the Aggregation Kernel, which is capable
of capturing the similarity between vectors composed of mixed data.

One of the main objectives of this project is to propose an alternative to the conventional
algorithm of Support Vector Machines (SVMs) in order to improve their efficiency when dealing
with large datasets. In this chapter, we will begin by conducting a state-of-the-art review of the
various efficiency improvements in SVMs found in the current literature. Subsequently, we will
assess an alternative to these existing solutions based on some fundamental principles of Bagging
theory.

4.1 Efficiency improvements in Support Vector Machines

While it is true that Support Vector Machines (SVMs) are widely used algorithms in solving
modern problems, they also have some drawbacks that make them less attractive when dealing
with large amounts of data. In fact, from the algorithm’s formulation, it can be inferred that
the training complexity of an SVM is at least O(N2), where N is the number of training samples.

For this reason, in the current literature, we can find multiple approaches that attempt to
mitigate this inefficiency using various techniques. In this section, we will describe and analyze
some of them.

One of the first techniques that caught our attention in this field is the one proposed by Awad
et al. in 2004. This technique is based on using clustering techniques to reduce the number of
candidate samples to become Support Vectors [8]. Specifically, they start by performing cluster-
ing analysis to approximate the samples that would become Support Vectors in a standard SVM
training. Subsequently, training is carried out using a much smaller training set, resulting in a
significant decrease in training time.

Osuna et al. propose two methodologies to reduce the runtime complexity of the dual formu-
lation of Support Vector Machines. Firstly, they propose a procedure that employs a regression
SVM to approximate the decision boundary. Secondly, they approach the problem from a refor-
mulation of the primal formulation of SVMs that maintains the original primal structure while
incorporating the use of kernel functions [9]. This way, the same hyperplane as with the original
formulation is obtained, but fewer basis functions are used. By applying both methodologies,
an improvement in the training phase execution time is achieved without any noticeable system
degradation.

Another approach that also focuses on reducing the training dataset before training the SVM
is proposed by Zhan et al. The authors define a new methodology that is based on eliminating
candidates for Support Vectors (SVs) that may cause the generated hyperplane to have a highly

24

convoluted shape [10]. Subsequently, the SVM is trained with reduced complexity due to the
prior elimination of these problematic SV candidates.

Bottou et al. propose an algorithm that is similar to what we have in mind to study and, if
applicable, design in subsequent sections. It is called Cross-Training SVM [28]. This reinter-
pretation of the original algorithm involves partitioning the training data into different subsets.
Then, different SVMs are trained using each subset. Subsequently, the decision functions of
the trained SVMs are used to selectively discard some of the training examples. This way, the
SVM is retrained without including the discarded samples, resulting in a significant reduction in
overall training execution time.

Another methodology that also involves partitioning the training dataset is proposed by Graf
et al. As mentioned earlier, this methodology starts by generating a set of data partitions from
the training data. Instead of training the SVM using all the data, an SVM is trained for each
partition. Then, the results are successively combined to train new SVMs. The algorithm stops
either after a specific number of user-defined iterations or when a global optimum is reached
[29]. The authors have named this technique Cascade SVM. One of the strengths of the new
algorithm is that it allows for parallelization of the different cascade steps to achieve an even
more significant reduction in training time.

Scholkopf et al. propose a modification of the original Support Vector Machines algorithm
to reduce the long training execution time that can occur when analyzing problems with large
amounts of data [11]. The new algorithm starts by introducing an efficient and effective method
for selecting a good set of training data. Then, they propose a reduction strategy (referred to
as shrinking) for the optimization problem, taking into account that many machine learning
problems have few Support Vectors (SVs) compared to the training samples and many SVs with
αi close to the value of the parameter C (i.e. there are many samples considered SVs with
very little margin). Finally, they propose other computational improvements such as including
a cache that stores the most recent results of the sample comparison using the kernel function.

One favorable aspect of the previous article is that it includes the implementation of the tech-
niques described in an open-source library called SVMlight [11]. In fact, it is one of the few
publications we have found that presents the obtained results along with the complete code of
its implementation. It is worth mentioning that these techniques are currently widely used in
multiple Support Vector Machine libraries such as LIBSVM [30], among others.

With this last article, we conclude the state of the art regarding efficient implementations of
algorithms based on Support Vector Machines. However, other articles addressing the inherent
challenges in handling large amounts of data using SVMs can also be found in the current
literature. Nevertheless, we believe that we have conducted a comprehensive enough research to
consider that the approach we want to study has not yet been proposed by any author. In the
next section, we will provide a detailed description of this new methodology.

4.2 The Bagging Support Vector Machine

In this section, we will describe a proposed algorithm based on Support Vector Machines (SVMs)
and some principles of Bagging theory. The goal of this new methodology is to attempt to reduce
the computational time required to train SVMs when dealing with large volumes of data. Before
that, however, we will conduct a brief analysis of Bagging theory and its main principles.

25

The bagging theory

In 1996, Breiman proposed a technique aimed at improving classification processes through the
random generation of multiple subsets of training data, which he named Bootstrap Aggregating
or commonly known as Bagging [31].

The algorithm in question can be divided into three distinct phases [32]. First, bootstrap
sampling is applied to an original dataset D of size |D| = n. This technique involves generating
m ∈ R+ training multisets (i.e. they can contain repeated elements) {D1, . . . , Dm}. The original
samples are randomly assigned to each multiset with replacement.

Second, a machine learning model Mi is trained for each previously generated multiset Di,
where i = 1, . . . ,m. Since each dataset is generated independently, this part of the algorithm
can be performed in parallel.

Finally, the aggregation phase is initiated and the procedure depends on the type of task being
performed. In classification problems, each testing sample is evaluated using the generated mod-
els and each model produces a predicted label. The models act as an expert committee and the
accepted class is determined through a majority voting procedure. In regression problems, each
model generates a prediction for each testing sample and the accepted value for each individual
becomes the average of the predictions.

One of the main advantages of using Bagging in the training of machine learning models is the
fact that it reduces the contribution of variance to the prediction error through the bootstrap
process. This helps prevent models from being prone to overfitting. However, this methodology
may not be as effective for stable algorithms (i.e. those algorithms that are not sensitive to data
variance).

Bagging-SVM approach

At first glance, Bagging may not seem like a suitable technique to implement in the training
process of a Support Vector Machine (SVM). As we mentioned, Bagging helps reduce the con-
tribution of variance to the prediction error, but SVMs are already highly stable algorithms.
Furthermore, if we consider the project objectives and, more specifically, this chapter, we intend
to study and propose a modification to the SVM algorithm that reduces the training execution
time. However, Bagging techniques are primarily focused on improving model accuracy and, in
some cases, may even be inefficient.

In this section, we will explore how we can leverage some fundamental principles of Bagging
Theory to improve the performance of SVM training on problems with a large amount of data
while maintaining the accuracy provided by a conventional model. We have decided to name
this algorithm Bagging-SVM.

Let’s examine the diagram of the training process of a conventional Support Vector Machine
shown in Figure 4.1. It is evident that when dealing with large datasets, the bottleneck in terms
of execution time lies in the model generation stage (Figure 4.1a).

Conversely, the prediction phase usually does not represent a significant overhead in execution
time (Figure 4.1b). Our algorithm proposes to address the high complexity of the training stage
by adopting a procedure similar to Bagging:

26

1. We generate m subsets of training data randomly.

2. We train m SVM models.

3. We make predictions using majority voting in the case of classification problems or by using
an appropriate statistical measure (such as mean or median) in regression problems.

(a) Training stage. (b) Prediction stage.

Figure 4.1: Diagram of SVM model generation using the conventional algorithm.

Note: t1 . . . tn and p1 . . . pl represent the training and testing samples, respectively. The predicted
values by the SVM model for the testing samples are denoted as p̂1 . . . p̂l

(Source: Own elaboration).

The main difference lies in how we generate the training subsets (stage 1). Firstly, as mentioned
before, SVMs are highly stable algorithms. Therefore, we consider it unnecessary to benefit from
the variance reduction provided by conventional bootstrapping techniques.

Consequently, the proposed Bagging-SVM will generate m training subsets {T1, . . . , Tm} ran-
domly and with replacement from the original training sample set T of size n (i.e. |T | = n).
Additionally, we will distribute all the training data among the different subsets, ensuring the
following conditions hold. You can see a graphical representation in Figure 4.2a and the mathe-
matical representation of the subset constraints in Equations 4.1, 4.2, 4.3. From these equations,
it can also be deduced that

∑m
i=1 |Ti| = n.

m⋃
i=1

Ti = T (4.1)

m⋂
i=1

Ti = ∅ (4.2)

|Ti| =

⌊ n
m

⌋
+ 1 if i ≤ mod(n,m)⌊ n

m

⌋
otherwise

(4.3)

From this point onwards, stages 2 and 3 are carried out in the same manner as in the original
Bagging technique. The different stages can be visually represented in Figure 4.2.

27

(a) Training stage. (b) Prediction stage.

Figure 4.2: Diagram of SVM model generation using the Bagging approach.

Note: t1 . . . tn and p1 . . . pl represent the training and testing samples, respectively. Submodels
M1 . . .Mm are generated for each training subset. Given a testing sample pi and a model Mj , Mj(pi)

denotes the predicted value of the sample by the corresponding model (Source: Own elaboration).

Complexity of the Bagging-SVM

Once the theoretical foundations of Bagging-SVM have been defined, we will study the complex-
ity of the training stage in this new methodology. The proposed algorithm evenly distributes
the n training samples formed by p features into m subsets. Each subset consists of n/m dif-
ferent data points and is used to train a model. Therefore, we obtain a total ofm distinct models.

The complexity of training a conventional SVM scales between O(pn2) and O(pn3) depending
on the algorithm implementation and the dataset used [33]. In the Bagging approach each model
is trained with n/m input samples. It seems reasonable to assume that the resulting complexity
of training a model using Bagging-SVM will be O(pn2/m2). Since we need to train m models,
the resulting complexity will be O(m(pn2/m2)) = O(pn2/m).

Thus, the training time of Bagging-SVM should be m times faster than the training time of
a conventional SVM. If we have m or more execution threads available, we can parallelize the
training process, achieving an execution timem2 times faster than that of training a conventional
SVM.

In conclusion, the Bagging-SVM is a novel tool that we have theoretically defined and we are
eagerly anticipating its application in subsequent sections. Its potential as a promising approach
makes us enthusiastic about its implementation in future work. The Bagging-SVM offers a
sophisticated framework that combines the benefits of Bagging with the robustness and stability
of Support Vector Machines. We believe that its utilization in real-world applications will provide
valuable insights and contribute to advancements in machine learning.

28

5 Foundations of the Implementation

In previous chapters, we have carried out a brief overview of the history of Support Vector Ma-
chines in the field of Data Science. Subsequently, we have studied the different kernels found
in the current literature, aimed at handling various types of data and we have stated the for-
mulation of a new kernel function (Aggregation kernel, Section 3.2) that allows evaluating the
similarity of mixed data samples.

We have also examined the main efficiency improvements found in the current literature regard-
ing the massive processing of data using Support Vector Machines. Finally, we have proposed
a theoretical algorithm for SVM based on some principles of Bagging theory (Bagging-SVM,
Section 4.2).

In this section, our goal is to expand an existing library in the literature in order to effectively
implement the proposals of the Aggregation kernel and Bagging-SVM. To do so, we will begin
by conducting a state-of-the-art review of current implementations of Support Vector Machine
algorithms. Subsequently, we will perform an analysis of the selected library. Finally, we will
implement both the Aggregation kernel function and the Bagging-SVM algorithm into the library,
discussing the main changes and new functionalities introduced.

5.1 Support Vector Machines implementations

In this initial section, we will analyze a set of functional implementations of Support Vector
Machine algorithms found in the current literature. To avoid bias in our research, we will examine
libraries programmed in different programming languages that offer diverse functionalities.

Kernlab

Kernlab is a library written in the R language, designed to provide basic kernel functionalities
to R users [34]. This library allows users to switch between kernels in an existing algorithm and
utilize their own kernel functions. Kernlab offers a flexible and comprehensive implementation
of SVM, supporting various types of SVM, including binary classification SVM, multiclass SVM
and regression SVM.

Additionally, Kernlab implements online kernel algorithms for classification, novelty detection
and regression, as well as spectral clustering algorithms, Kernel Principal Component Analysis
(PCA) and Kernel Feature Analysis. Despite these functionalities, it is important to note that
Kernlab is programmed in R. Despite the critical parts of the library being programmed in C,
we believe it would be more suitable to implement the library’s functionalities natively in C or
C++.

SVMlight

SVMlight is a library written in C that was developed in 1998 and has proven to be a valuable
tool for solving classification and regression problems using Support Vector Machines (SVM) [35].

29

One of the key techniques that SVMlight implements is the shrinking heuristic, which improves
efficiency in handling large volumes of data. Moreover, SVMlight employs reasonable descent-
based working set selection and kernel evaluation caching, among other strategies, to optimize
algorithm performance.

A notable advantage of SVMlight is its implementation in C, which enables the generation of
efficient and high-performance code. The library provides various predefined kernels such as
Linear, Polynomial, RBF and Sigmoid, while also allowing users to define and use custom kernel
functions.

However, it is important to highlight that, compared to other libraries implemented in the
same language, such as LIBSVM, SVMlight may exhibit lower efficiency results [36].

LIBSVM

LIBSVM is a Support Vector Machine (SVM) library written in C/C++ and was initially devel-
oped in 2001 [30]. The main objective of this library is to assist users in easily applying SVM to
their applications, providing an efficient and robust implementation.

LIBSVM is capable of solving classification and regression problems using various SVM al-
gorithms. In addition to the basic SVM optimization algorithms, it also implements advanced
techniques such as multiclass classification and probability estimation.

To improve computational efficiency, LIBSVM employs techniques such as shrinking and
caching, which reduce the runtime during training and prediction. These strategies optimize
the utilization of computational resources and enhance the overall performance of the algorithm.

A notable feature of LIBSVM is its precise and comprehensive documentation, along with the
availability of well-documented source code. Due to its demonstrated efficiency and effectiveness
in various problems, this library has received several awards recognizing its excellence [37]. More-
over, LIBSVM provides a wide range of library interfaces implemented in multiple programming
languages.

LIBSVM also offers the capability to perform parallel training, leveraging the advantages of
multi-core and distributed architectures to accelerate the training process on large datasets.

Shark

Shark is a fast, modular, open-source Machine Learning library written in C++, created in 2008
[38]. This library offers an excellent balance between flexibility and ease of use on one hand and
computational efficiency on the other.

Shark includes numerous algorithms from various areas of machine learning and computational
intelligence. This encompasses methods for linear and nonlinear optimization, kernel-based learn-
ing algorithms, neural networks and various other machine learning techniques.

One of the advantages of Shark is that it provides an effective solution for real-world machine
learning problems. Additionally, this library offers a plethora of powerful algorithms that, ac-
cording to its authors, are not implemented in any other library.

A notable aspect of Shark is its detailed and well-commented documentation through Doxy-
gen. This feature facilitates its usage and understanding, as the code comments provide clear
explanations of the functionality and usage of different components within the library.

30

Final choice and justification

In the literature, besides the previously discussed libraries, we can find other SVM libraries such
as mySVM [39] or SVMTorch [40]. However, in our study, we have focused on analyzing the
most successful and cited libraries in the current literature.

After a comprehensive analysis, we have decided to implement the techniques proposed in
previous sections using the LIBSVM library. This choice is based on several reasons. Firstly, we
have prior experience in manipulating LIBSVM thanks to our undergraduate final project [41].
This familiarity and knowledge of the library will facilitate the development of new functionalities.

Secondly, we have exclusively opted for libraries written in C/C++, as we consider it to be
the language that allows us to achieve maximum efficiency, which is one of the most important
requirements for our project. This choice is based on the ability of C/C++ to generate efficient
and fast code, which will be crucial for tackling real-world problems with large volumes of data.

Lastly, another important reason is that LIBSVM offers clean, well-organized and easily ma-
nipulable code. This will allow us to implement the new functionalities in a clear and efficient
manner.

5.2 Analysis of LIBSVM

Once the choice of the Support Vector Machine library we want to extend has been made and
the reasons for it have been justified, we will briefly analyze some of its main features. In this
section, however, we will specifically focus on the implementation details, which are ultimately
the ones that interest us the most in order to be able to extend it.

LIBSVM is a library that implements various Support Vector Machine algorithms. Its authors,
Chang et al., have been awarded different prizes for the efficiency of the software they created
in 1998. Over the years, the library has been updated multiple times, adding new features and
functionalities. On their website, we can see that there are versions of the library available for
a wide range of programming languages [37]. However, as mentioned before, in this project, we
will be working exclusively with the C++ version. This version is structured with the following
files:

• svm-train.c handles the SVM training process.

• svm-predict.c implements the SVM prediction procedure.

• svm-scale.c is a program focused on data scaling, prior to the SVM training or prediction
phase.

• svm.h and svm.cpp contain the declaration and implementation, respectively, of the data
structures and main methods that underlie the training and predictions performed by the
SVM.

The library allows for handling continuous data in sparse format. The main data storage
structure is the svm_node, which contains the value of a feature characteristic of the problem. It
consists of the index (int) of the respective feature and its value (double).

To store the different samples, LIBSVM implements the svm_problem structure. It is com-
posed of the number of samples comprising the problem, the samples represented by a pointer
to an array of svm_node pointers and the labels associated with each sample.

31

To store the SVM parameters, the svm_parameter data structure is used, which contains,
among others, attributes representing the type of algorithm to be used and its parameters or
the type of kernel to employ and its parameters. On the one hand, LIBSVM supports C-SVC,
ν-SVC, One-Class, ε-SVR and ν-SVR SVM types. On the other hand, the library also imple-
ments the Linear, Polynomial, Radial Basis Function (RBF), Sigmoid and Precomputed kernel
functions. The Precomputed kernel allows for directly inputting the similarity measures between
samples (i.e. the Kernel Matrix) instead of providing the different training samples.

During the training process, a model is generated and its information is stored in the svm_model
structure. This structure contains, among other things, a copy of the SVM parameters (svm_parameter),
the number of classes present in the data, the number of Support Vectors (SV) generated and
the coefficients of the SVs.

In addition to the data structures, the library implements multiple methodologies that enable
the training phase and subsequent prediction phase of the algorithm. For the sake of simplicity
and due to space limitations in the project, we will not discuss all of them but rather focus on
the parts responsible for executing the kernel functions.

The Kernel class is primarily responsible for executing the different kernel functions. It con-
tains the C++ code for the previously mentioned functions. LIBSVM utilizes a caching system
to store recently computed similarity measures. Hence, it also requires swap operations between
the different elements of the kernel matrix. Consequently, each kernel function has two associated
implementations within the same class.

On the one hand, the library uses a class method for each kernel function. These methods
analyze the samples during the training stage and, therefore, allow for the swap operations if
necessary. These functions also feature procedures that significantly improve efficiency during
this stage of the algorithm.

On the other hand, each kernel function also has an associated static method. These functions
are designed to be executed during the prediction stage. The main reason is that during this
second stage of the algorithm, a high level of optimization is not required. For example, as men-
tioned earlier, the cache is used during the training stage to avoid a high number of comparisons
between individuals in the dataset. In the prediction stage, however, there is no need to keep
the kernel matrix in memory and consequently, the caching system becomes unnecessary.

Of course, LIBSVM includes other very important and fundamental methodologies related to
SVM algorithms. If you want to explore what they are and the functions they perform, you can
find more information in the associated paper for the library.

In summary, LIBSVM is a well-structured, efficient and open-source library that perfectly
implements various classification and regression algorithms based on SVMs. Nonetheless, we
believe it also has some limitations.

To begin with, as mentioned earlier, it only allows working with real-valued variables. Both its
data structures and the main algorithms and methods it implements are limited by this restric-
tion. Consequently, any attempt to implement new kernel functions is also limited to working
with continuous data.

In the following sections, we will provide an alternative implementation of LIBSVM that we
will call AggSVM. This new version will allow for analyzing problems consisting of mixed data.

32

In order to measure the similarity between such data, we will also implement multiple compatible
kernel functions. Primarily, a functional version of the Aggregation Kernel described in Section
3.2 will be included. Additionally, we will incorporate the ability to train and make predictions
using the Bagging-SVM algorithm formulated in Section 4.2, which will enable us to tackle
problems with large volumes of data efficiently without sacrificing prediction accuracy.

5.3 Implementation of the Aggregation Kernel

At this point, we have been able to analyze and evaluate the main characteristics of LIBSVM.
Furthermore, we have identified the critical code points that will be crucial when implementing
new features. In this section, we aim to implement the Aggregation Kernel defined in Section
3.2. In addition to the main implementation, the code will require several deep modifications
that we will analyze and specify below.

The first modification we have made is a complete migration of the original library to the
C++ language. This way, we can take advantage of the latest language features such as regular
expressions or lambda functions. The language version we will adopt from now on is C++17.

General structure

In the new version of the library, we have kept the general file structure of the original version,
avoiding the need to create new files or remove any existing ones. However, we have restructured
the content of the svm.cc and svm.hh files to improve their organization. We have chosen to
move the method and class headers to the svm.hh file, while the implementations have been
placed in the svm.cc file.

Regarding the svm-scale.cc file, we have decided not to update the data scaling procedure
at this stage of the project. This task will be left for future projects, although it will not be
complicated. It will only be necessary to adapt the scaling methodologies to take into account
that the data can now have different types.

On the one hand, the svm-train.cc file will be responsible for parsing the SVM parameter-
ization, reading the data in the appropriate format and calling the training and model storage
methodologies.

On the other hand, the svm-predict.cc file will be responsible for reading the models gener-
ated during the training phase, parsing the parameters associated with the prediction phase and
calling the prediction methodologies.

With this file structure, we have organized the functionalities related to SVM model training
and prediction in a clear and separate manner. This will facilitate code maintenance and under-
standing, as well as provide an organized structure for implementing future improvements and
extensions.

Data Structure updates

One of the most important points to address is how we have modified the basic data structures
of LIBSVM to allow for handling multiple kernel functions and, consequently, different types
of data simultaneously. In this section, we will discuss the modifications made to the existing
structures and the new structures required for the proper functioning of the new version of the
library.

33

1 struct svm_node {
2 int index;
3 // Converts and sets index and value attributes from string
4 // In case of error, returns an error message reporting it
5 virtual const std::string set_index_value(std::string &index, std::string &

value) = 0;
6 // Returns the node_type associated with the derived struct
7 virtual node_type get_type() const = 0;
8 // Returns the string representation of the node_type of the derived struct
9 const std::string get_stype() const;

10 // Returns the string representation of the node_type passed as a parameter
11 static const std::string get_stype(const node_type t);
12 // Returns the address (this + i)
13 virtual svm_node* get_ith_node(int i) const = 0;
14 // Prints the content of the node in INDEX:VALUE format
15 virtual void print(FILE *fp) const = 0;
16 // Allocates/deallocates an array for each of the derived data types
17 static void allocate_space(std::vector<svm_node*> &space, std::vector<int>

&num_nodes);
18 static void free_space(std::vector<svm_node*> &space);
19 };

Listing 5.1: New svm_node structure of LIBSVMaggr library.

Basic node

After a thorough analysis of the original LIBSVM library, we consider the svm_node structure
to be the most fundamental structure. A node stores the index of a feature and its value. Recall
that LIBSVM allows for inputting data in sparse format, which we want to maintain in our
version.

To enable a svm_node to store different types of data, we have determined that the best ap-
proach is to convert the structure into a pure virtual one. A pure virtual structure in C++ is
one that can only be instantiated by its derived structures. In a way, we can understand it as a
Parent class that stores common information of the Derived classes.

The new code for the svm_node can be seen in Listing 5.1. As we can observe, the node still
maintains the integer attribute index. This is because regardless of the data type to be stored,
it will be necessary to have the feature index information.

In addition to this main attribute, we can see that different pure abstract functions are defined.
These functions are the ones that will facilitate creating, storing and displaying the content of
the new data types that users want to implement. Note that all the derived classes (representing
new data types) will be required to implement these methods.

In this new version of the LIBSVMaggr library, we have decided to implement support for con-
tinuous, binary, categorical and string data. Therefore, we have created three derived structures
from svm_node, namely real_node (for continuous data), int_node (for binary and categorical
data) and string_node (for textual data).

Note that allowing the use of a new data type in the library does not necessarily require the
implementation of a new derived class from svm_node. For example, binary and categorical
variables can both be stored using an int_node interchangeably (see listing 5.2). However, when
introducing a new variable type, it will be necessary to define its kernel and, as we will see later,
its associated structure will be responsible for correctly reading, encoding and storing the feature
in an svm_node.

34

1 struct int_node: svm_node {
2 int value;
3 const std::string set_index_value(std::string &index, std::string &value)

override;
4 node_type get_type() const override;
5 svm_node* get_ith_node(int i) const override;
6 void print(FILE *fp) const override;
7 };

Listing 5.2: Derived class for data stored as an integer in LIBSVMaggr library.

Kernel parameters

Let’s briefly interrupt the inspection of the changes implemented in the existing data structures
to advance the definition of a new data structure essential for implementing the Aggregation
Kernel. So far, choosing which kernel function to use for each problem was a task for the user
through the command line using the -t flag. However, we will now have a global kernel (Aggre-
gation) and multiple sub-kernels for different features or feature vectors.

In the original library, the svm_parameter structure was used to store the parameters of the
kernel to be used. However, now the user will be able to use multiple kernel functions on the
same dataset. In subsequent sections, we will specify how we will facilitate the establishment
of parameters for each kernel. In this section, we will outline the new structure that will be
responsible for storing them during runtime.

Similarly to the data types, the user should be able to define multiple kernel functions. That
is why we have defined a new data structure called kernel_params. It is self-evident that all
kernel functions will share certain characteristics. Therefore, this new structure will also be a
pure virtual one. In listing 5.3, you can see the simplified header of the new structure. For space
limitations, we have only included the most important virtual functions.

As we have seen, every instance of kernel_params will store the number of features associated
with the kernel, as well as the indices of these features in the input dataset.
If the users whish to include a new kernel function, they will need to implement its correspond-

ing substructure of kernel_params. In this initial version of LIBSVMaggr, we have implemented
the Linear, Polynomial and RBF kernels for continuous variable vectors. For binary variable
vectors, we have implemented the SMC and Jaccard kernels. The Univariate kernel will han-
dle categorical variables, while the Circular kernel will estimate the similarity between circular
variables. Lastly, we will use the p-Spectrum kernel to handle string variables. Consequently,
all kernel_params substructures associated with these kernel functions are already included in
LIBSVMaggr.

We can see an example of the parameter storage structure for the Polynomial kernel in Listing
5.4. This kernel consists of three hyperparameters: the degree of the polynomial (degree), the
scalar product multiplier (gamma) and the polynomial coefficient (coef0).

We briefly pause to discuss the importance of the virtual structures svm_node and kernel_params
in the new library. With their presence, we greatly facilitate the implementation of new functions
and data types. For instance, implementing the fill_node method as a pure virtual function
in kernel_params allows us to achieve significant milestones in terms of code simplicity and
execution efficiency.

35

1 struct kernel_params {
2 int *indexes = nullptr; // Feature indexes that the kernel will use
3 int num_features; // Number of features that the kernel uses
4
5 // Sets all the kernel parameters from a ConfigStorage instance
6 virtual const std::string set_params(ConfigStorage &cfg) = 0;
7 // Returns the kernel_type
8 virtual kernel_type get_type() const = 0;
9 // Returns the kernel’s node_type

10 virtual node_type get_dtype() const = 0;
11 // Checks the correctness of the kernel parameters
12 virtual const std::string check_params() const = 0;
13 // Clone (deep copy) the kernel parameters
14 virtual kernel_params* clone() = 0;
15 // Sets the index and value of the svm_node received as a parameter,
16 // taking into account the format of the ’value’ supported by
17 // the kernel in question
18 virtual const std::string fill_node(svm_node *space, int i_space, int &

index, std::string &value) const = 0;
19 // ... Some methods are omitted for simplicity ...
20 };

Listing 5.3: kernel_params pure virtual structure of LIBSVMaggr.

1 struct poly_params: kernel_params {
2 double gamma = −1;
3 double coef0 = −1;
4 int degree = −1;
5 // Constructor
6 poly_params() {}
7 // Setters
8 const std::string set_params(ConfigStorage &cfg) override;
9 const std::string fill_node(svm_node *space, int i_space, int &index, std::

string &value) const override;
10 // ... Some methods are omitted for simplicity ...
11 };

Listing 5.4: Data structure to store the parameters of the Polynomial kernel.

On one hand, we ensure that the instantiation of svm_node objects is only required in this
function. Since providing the code for the fill_node method is mandatory when creating a new
kernel_params (due to it being a pure virtual function), we ensure that the correct instantiation
of the data type is implemented at compile-time. Overall, we consider this feature to be very
useful, straightforward, clean and conducive to code expansion.

On the other hand, we are decoupling the data type associated with the kernel from the
svm_node substructure that will contain the feature value. A clear example of this situation
arises with categorical variables: the user can input categories as strings. Nevertheless, the cor-
responding instance of univariate_params will implement the fill_node procedure, converting
the string into an integer value and storing it in an int_node. This "translation" enables more
efficient comparisons of categorical values in subsequent computations.

Overall parameters and model

The svm_parameter structure also undergoes changes in the new library. As we have mentioned
on multiple occasions, unlike LIBSVM, LIBSVMaggr requires the use of multiple kernel func-
tions. At this point, we know that we will store their parameters in the structures derived from

36

1 struct svm_parameter {
2 svm_type svmtype = C_SVC;
3 int bagging = 0; /* indicates if we are training a

bagging−SVM */
4 double gamma = −1.0; /* for aggregation kernel */
5 int num_kernels = 0; /* number of kernels that will be used

*/
6 int num_total_features = 0; /* overall number of features of the

problem */
7 kernel_params **kparams = nullptr; /* kernel parameters */
8 // ... Some attributes and methods are omitted for simplicity ...
9 };

Listing 5.5: Summary of the new header of the svm_parameter structure.

kernel_params. A direct consequence of this modification is that it is no longer necessary to
store the kernel parameters directly in svm_parameter. Instead, it will be necessary to store the
set of kernel_params defined by the user.

We can observe the most important features of the new header code for svm_parameter in
listing 5.5. In this code, we can see a new array that will contain the kernel_params for
all the kernels used in problem resolution. We can also observe that we have retained the
attribute gamma. In the previous version, this attribute was used as the γ hyperparameter for the
Polynomial and RBF kernels. In LIBSVMaggr, the attribute represents the γ hyperparameter for
the Aggregation Kernel.
A delicate part of all the implementations we have discussed so far was to ensure that no part

of the base Support Vector Machines algorithm was modified. While it is true that, on one hand,
the original library does not allow for mixed data handling, on the other hand, its authors have
done an exceptional job in terms of algorithm programming.

One of the reasons why the structures have been implemented in this way is precisely what
we mentioned in the previous paragraph. Among other benefits, the modification made so far
has allowed us to avoid practically modifying the svm_model structure, which is responsible for
storing the model generated by SVM and is a fundamental part of its training.

Main problem

In the original version of LIBSVM, only the svm_node structure (non-virtual) is required to store
the data. As we have mentioned in the analysis of the library, a node consists of the index of the
feature and its value, which is always of real type. Therefore, a problem only requires an array
of nodes (all the data stored continuously) and the total number of data (to determine the size
of the previous array).

In the new version of the library, we need to consider that we will be working with multiple
kernel functions. Thus, we need to ensure that each kernel function has the least costly access
to the data it needs to process. To achieve this goal, we have had to redefine the structure of
the svm_problem.

Firstly, we have defined the concept of a feature set and its structure, feature_set. A feature
set will contain a set of attributes from an input sample. These features will be associated with
a single kernel. Therefore, an individual will consist of different feature sets, as many as the
kernels we need to use in the given problem.

37

1 struct feature_set {
2 // Attributes
3 int n = 0;
4 svm_node *data = nullptr;
5 // ... Some methods are omitted for simplicity ...
6 };

Listing 5.6: Header of the new feature_set data structure.

1 struct svm_problem {
2 int l = 0;
3 int num_kernels = 0;
4 double *y = nullptr;
5 feature_set **x = nullptr;
6 // ... Some methods are omitted for simplicity ...
7 };

Listing 5.7: Header of the modified svm_problem data structure.

Programmatically, a feature_set will be composed of an array of svm_node and an integer n
indicating the size of the array (i.e. the number of features contained in the feature_set). You
can find the code for the feature_set header in Listing 5.6.

While in LIBSVM an svm_problem contained a pointer to pointers to svm_node, now LIBSVMaggr

will contain a pointer to pointers to feature_set. You can find a graphical representation of
the new problem storage methodology in Figure 5.1. We have also included the new code for the
svm_problem header in listing 5.7.

Kernel Functions

Regarding the Kernel class, we have decided to keep the same structure as in the original library.
This implies maintaining two functions for each kernel: a class function for the training stage
and a static function for the prediction stage. The class function is used during training, while
the static function is applied for prediction, as it is not necessary to instantiate the Kernel class
to make predictions.

To maximize efficiency in executing the aggregation kernel during the training stage, we have
modified the structure of the Kernel class. With the presence of multiple kernel functions, we
have indexed pointers to each of these functions in an array. This allows us to avoid repetitive
if-then-else comparisons and directly access the appropriate kernel function during training,
as the svm_parameter stores which kernel to use at each moment.

Regarding prediction, we have implemented a mechanism that dynamically determines which
kernel function to call in each case. Since the kernel functions are now static, we no longer have
the array of pointers to the kernel functions. This may imply additional time in the prediction
stage, but it will be thoroughly studied during the experimentation phase to assess its impact.

In this initial version of the LIBSVMaggr library, we have decided to implement the Linear
kernel (equation 3.1), Polynomial kernel (equation 3.2), RBF kernel (equation 3.4) for continu-
ous variables. For binary variables, we have implemented the Jaccard kernel (equation 3.7) and
the Simple Matching Coefficient kernel (equation 3.8). To evaluate the similarity of categorical
variables, we have included the Univariate kernel function (equation 3.10). Finally, to analyze
string-type variables, we will use the p-Spectrum kernel (equation 3.13).

38

Figure 5.1: Graphical representation of the svm_problem of LIBSVMaggr.

In the upper left corner, we can find a sample example. Positioned in the upper right corner is the
configuration file. Below, the representation of the storage of the sample in question

(Source: Own elaboration).

In addition to implementing the aforementioned features, we have considered a modification
of the original kernel function formulation to allow for the execution of problems with a single
kernel. In cases where the user wishes to use only one kernel, there is no need to calculate the
average similarity value and apply the aggregation kernel since there will be only one similarity.
Therefore, in these cases, only the specific kernel function that has been selected will be executed.
You can see the alternative formulation in equation 5.2.

kavg(x
i,xj ;L) =

1

L

L∑
`=1

k`(x
i,xj) (5.1)

kaggr(x
i,xj ;L) =

exp(γ kavg(x

i,xj ;L))− 1

exp(γ)− 1
if L > 1

k1(x
i,xj) otherwise

(5.2)

Where L is the number of kernels defined for the different data vectors and k1 represents the
single kernel used in the case of a single-kernel problem.

The expansion of the Kernel class has been carried out with a focus on achieving maximum
efficiency in both the training and prediction stages. However, we recognize the importance of
conducting thorough testing to evaluate and verify the performance of the new code. This testing
phase will allow us to ensure the robustness, effectiveness and efficiency of our implementation
in different scenarios and using diverse datasets.

39

The configuration file

In the original version of the library, it was only necessary to parameterize a single kernel, which
could be specified through the command line. However, with the introduction of multiple kernels
in the new version, this method of parameterization becomes confusing and error-prone.

In order to simplify and improve the kernel parameterization in problem resolution, we have
introduced a new element in SVM training stages: the configuration file. This file will contain
the information associated with all the kernels that are desired to be used.

The configuration file must follow a specific structure. In the first line, a positive integer value
indicating the total number of features in the problem is expected. Subsequently, in the following
lines, the parameterization of each kernel will need to be specified using the following syntax:

<INDICES> <KTYPE> <PARAMS>

In the above syntax, <INDICES> represents a list of positive integer values separated by com-
mas, indicating the features on which the kernel will be applied. For example, if we want to
apply the kernel to attributes 1,3,5,6 and 7, we would specify: 1,3,5,6,7. <KTYPE> indicates
the type of kernel we want to use and <PARAMS> represents the parameters associated with that
kernel. The file syntax also allows for adding comments using the # character.

This way, through the configuration file, we can specify the parameterization of all the kernels
that are part of the problem resolution. This approach avoids common confusion and errors in
command line parameterization, improving the clarity and efficiency of the SVM configuration
process.

Next, we will proceed to detail the possible parameterizations for each of the kernels imple-
mented in LIBSVMaggr. This information will be crucial for users when configuring the kernels
in the configuration file, thus ensuring an optimal and customized utilization of the library.

Linear, SMC, Jaccard and Circular kernels

The Linear, Simple Matching Coefficient (SMC), Jaccard and Circular kernels do not have any
specific hyperparameters. Therefore, in the configuration file, we only need to specify the asso-
ciated indices and the <KPARAM> key as follows:

<INDICES> LINEAR
<INDICES> SMC
<INDICES> JACCARD
<INDICES> CIRCULAR

Polynomial kernel

To specify the features associated with a Polynomial kernel, we will use the <KTYPE> POLY. This
kernel function has three hyperparameters: degree (positive integer), gamma (positive double)
and c0 (double). We can specify these parameters using the flags -d, -c, -c, respectively. Here
is an example of parameterization:

<INDICES> POLY -d 3 -g 1.3 -c 4.7

40

Radial Basis Function kernel

To specify the attributes associated with an RBF kernel, we will use the <KTYPE> RBF. This
kernel requires a single hyperparameter γ (positive double). To set its value in the configuration
file, we can use the flag -g. As we will discuss in upcoming sections, LIBSVMaggr provides a
methodology to estimate the value of this parameter. To indicate the intention to estimate the
value of γ, the flag should be entered with the value -1. Let’s see an example:

<INDICES RBF -g -1 # Gamma estimation
<INDICES RBF -g 3.3

Univariate kernel

We will specify the use of the Univariate kernel using the <KTYPE> UNIVARIATE. This function re-
quires a hyperparameter α (positive double). In addition to the hyperparameters, it is necessary
to enter all possible categories associated with the attribute, separated by a whitespace. To spec-
ify the value of α, we will use the flag -a, while the flag -c should be used to specify the categories.

Note that this kernel does not allow working with vectors of categorical variables. Therefore,
instead of entering a list of indices, only one index will be accepted.

In addition to the mandatory parameters, the Univariate kernel, as we mentioned in its the-
oretical definition, uses the probabilities of obtaining each category to measure the similarity
between samples. LIBSVMaggr provides an automatic method to compute these probabilities
using the training data. However, the user can optionally set the probabilities for each category
using the flag -p. Here are some examples of parameterization:
<INDEX> UNIVARIATE -a 0.5 -c category1 category2 category3
<INDEX> UNIVARIATE -a 1.0 -c category1 category2 -p prob1 prob2

Spectrum kernel

The last kernel we have implemented in the library is the p-Spectrum kernel. As the name
suggests, it has a hyperparameter p (positive integer) that can be defined using the flag -p.
Similar to the Univariate kernel, the Spectrum kernel does not allow handling vectors of string
variables and, therefore, only one index will be accepted. To specify the use of this kernel in the
configuration file, it is necessary to use the <KTYPE> SPECTRUM, as shown below:

<INDEX> SPECTRUM -p 3

Parameters estimation

During the training phase, estimating the optimal parameters and hyperparameters of SVMs
can become a real challenge. For this reason, in addition to having implemented the aggregation
kernel and completely restructured the library, we have decided to provide specific procedures
to help the user estimate some of these algorithm parameters. Below, we will detail these proce-
dures to facilitate a simpler and more effective use of the library.

Firstly, we have developed a methodology to estimate the value of the parameter C in a C-
SVM. This procedure is based on applying the Cross-Validation technique using the training
data, with a specific number of partitions (folds) and a set of predefined C values.

41

The value of C that offers the best results will be selected as the final value for the training
process. The user is free to determine the number of partitions and the values of C to use
through the options -v and -i in the library execution, respectively. To indicate that the value
of the parameter C is to be estimated, it will be necessary to enter the option -c -1 through
the command line when running the SVM training program.

Secondly, we have provided a methodology to estimate the hyperparameter γ of the aggrega-
tion kernel. This method is based on calculating the similarities using the average kernel (see
equation 5.1) for 5000 random samples from the training set. The similarities are sorted from
lowest to highest and the value of γ is set as the average between the first and third quartile of
these sorted similarities. Similar to the case of the parameter C, if the value of the hyperparam-
eter γ is to be estimated, it will be necessary to enter the option -g -1 on the command line
when running the svm-train program.

To estimate the γ of RBF kernels, we have also provided a procedure similar to the estimation
of the γ of the aggregation kernel. In this case, instead of using the average kernel to calculate
the similarities of the selected samples, the squared Euclidean distance is used. As we have
mentioned in the description of the configuration file, to indicate that the value of the parameter
γ of an RBF subkernel is to be estimated, it will be necessary to enter the option -g -1 in the
corresponding line of the configuration file.

The addition of these parameter estimation procedures to the library represents a notable
simplification of use for users as it allows for a more agile and efficient configuration of the algo-
rithms. With these integrated tools, the need for additional calculations or reliance on external
resources for optimal parameter adjustment is significantly reduced, saving time and effort dur-
ing the development and analysis of machine learning predictive models.

Overall, this implies a substantial simplification of the algorithm configuration task and pro-
vides professionals with the convenience of using a comprehensive and autonomous solution for
parameter optimization, eliminating the need to work with multiple tools or depend on external
procedures.

5.4 Implementation of the Bagging-SVM

We have successfully implemented the new Bagging-SVM algorithm (see Section 4.2) in our li-
brary, making several modifications for this purpose. As mentioned in previous sections, using
Bagging-SVM involves training a set of m models using subsets of the input data, determining
their size as stated in equation 4.3.

Implementing this technique in the library has not been a trivial process. We had to reinter-
pret the way models are generated, trained and stored. It has been a complex and delicate task
in terms of implementation. Not only have we incorporated the functionality of Bagging-SVM
into LIBSVMaggr, but we have also ensured the coherence and effectiveness of the algorithm to
achieve optimal results.

In order to use the Bagging-SVM in our library, the command -b num_models dirPath needs
to be specified during the execution of svm-train program. This command indicates the library
that we want to train a Bagging-SVM using num_models models and, once they have been gen-
erated through multiple training processes, store them in dirPath directory. The library will
automatically process this information and train the set of models that will constitute the com-
mittee of experts for Bagging-SVM.

42

In the training of Bagging-SVM, we have also provided methodologies to estimate some of the
hyperparameters for each generated submodel. Note that now it will be necessary to estimate
the parameters for each model, as each one will be trained from a different subset of the input
data. Similar to the conventional SVM algorithm, the parameters C of the C-SVM, γ of the
aggregation kernel and γ of the RBF subkernels will be estimated. The user can indicate their
desire to perform this estimation by setting the parameter value as -1.

Regarding predictions, it is necessary to use the command -b dirPath in the execution of the
svm-predict program. This way, the library will identify that predictions need to be made using
Bagging-SVM and classify the testing samples using the models as the committee of experts as
stated in Section 4.2.

Once we have implemented the training and prediction methodologies of the new algorithm,
we conducted a preliminary test to evaluate its behavior and ensure its correctness. The obtained
results were positive and promising. It seems reasonable to think that this algorithm has poten-
tial and can be useful in many situations involving large amounts of data. In subsequent sections,
we will carry out a thorough experimentation with the new software to confirm its proper func-
tioning. During this phase, we will analyze the performance of the new Bagging-SVM in detail
to fully validate its effectiveness and usefulness.

5.5 Other tools

In addition to the previously mentioned functionalities, we have made several other significant
modifications to our SVM library that we consider important but have not described earlier to
simplify the explanation. Below, we will enumerate these modifications and provide a detailed
explanation of each.

Firstly, we have implemented a new class called MessageHandler in the library. This class
allows us to manage all the messages generated at any point in the library. The class stores
pointers to the functions responsible for releasing the global parameters of the library when
execution ends. This way, in the event of an unforeseen error or simply when the execution is
completed, we can ensure that there will be no memory leaks or similar issues. Additionally,
the class handles debugging messages and notifications of the status of parameter estimation,
training, prediction steps, among others.

Another important modification that has not been previously mentioned is the data reading
methodology. In LIBSVM, this task was performed using methods like strtok and similar ones.
The new version LIBSVMaggr allows for new types of data with different characteristics and for-
mats. This fact has rendered the reading procedures obsolete. Consequently, we have completely
rethought the way data is read, utilizing new functionalities of the C++17 language, such as
regular expressions.

Another challenge we have faced is the reading of the configuration file. One of our main
motivations was to ensure that the library is easily extensible. For this reason, we have invested
significant efforts in determining the best way to read and parse the contents of this file. If we
had established specific reading methods for the configuration of each kernel, users implementing
new kernel functions would have had to face the complexity of implementing complicated and
error-prone reading and parsing methodologies.

43

To overcome this challenge, we have implemented the ConfigStorage class. This class is re-
sponsible for reading the content of the configuration file line by line and storing the indexes,
kernel types and their parameters in an intuitive and accessible manner. The ConfigStorage
class contains three main variables: kernel_id, which is a character string that identifies the
kernel (the <KTYPE> keyword defined in Section 5.3), indexes, which is an array of integers con-
taining the indexes of the features associated with the respective kernel and params, which is an
std::map where the keys represent the different flags (parameters) of the kernel and the values
are instances of std::vectorstd::string that contain the parameters in string format.

Each derived class of kernel_param will receive an instance of ConfigStorage to initialize the
kernel parameters. This way, if a user needs to create a new kernel function, they will know that
the parameters will always have the specified format and can appropriately analyze and validate
them without worrying about their reading and subsequent parsing.

With these implementations, LIBSVMaggr has significantly enriched itself, providing essential
functionalities for message management, a more flexible and robust data reading system and
an extensible and solid configuration system. We consider these improvements reinforce the
robustness, utility and manipulability of our library.

44

6 Experimentation

Upon reaching this point, we have designed and described the kernel function of the Aggregation
Kernel (Section 3.2) and completed its implementation in the LIBSVM library (Section 5.3).
Additionally, we have also proposed a modification to the conventional Support Vector Machines
algorithm based on Bagging techniques to improve the efficiency of these algorithms when dealing
with large amounts of data (Section 4.2). Similar to the Aggregation Kernel, we have included
the implementation of Bagging-SVM in the LIBSVM library (Section 5.4).

In this chapter, we will propose a series of experiments to evaluate the performance of the
new software in different contexts. The primary objective is to determine if the improvements
implemented in the LIBSVM software are significant and provide good results.

6.1 Experiment 1: Basic functionality

The first thing we want to test is that the basic functionality of the new software is correct. As we
have mentioned in previous sections, although we have established the Aggregation Kernel as the
main kernel of the algorithm, when using a single kernel, the original aggregation methodology
(see equation 3.16) will not be applied. Instead, this single kernel will be used to evaluate the
similarity between different samples (see equation 5.2). This implies that in these situations, we
can compare the behavior of LIBSVMaggr with the original version of LIBSVM.

Hypothesis

Our hypothesis is that by parameterizing LIBSVMaggr and LIBSVM in the same way (i.e. us-
ing the same type of SVM and exactly the same parameterized kernel), the results in terms of
accuracy should be the same. However, it is expected that the execution time will increase due
to, among other factors, the additional data structure accesses required by the new version.

If our hypothesis is confirmed, it would mean that the new features implemented in LIBSVMaggr

do not affect the standard functioning of the SVM algorithm. This would imply that we can use
LIBSVMaggr and LIBSVM interchangeably in single-kernel problems with continuous data.

Circular data generator

The data we will use will be synthetically generated and of continuous type. This way, we can
use them in both LIBSVMaggr and the original version. To have maximum control over the data
generation process, we have implemented a data generation Python script, which can be found
at data/data-generator.py.

The data generator implements a procedure to create samples distributed into three classes.
The samples will be grouped in the form of circumscribed circles. It is possible to generate sam-
ples in two or three dimensions. For each dimension, the script allows setting a noise multiplier
in the range of [0, 1]. The program also enables data division into training and testing sets (by
specifying the percentage of data to be included in the training set), displaying a portion of the
data in a graph and saving the data in LIBSVM format. An example of data generation can be
seen in Figure 6.1.

45

Figure 6.1: Example of synthetic 2D data generated from the circular data generator script.

Note: The samples have been generated in two dimensions with 200 instances per class. The noise
multiplier is set to 0.2 in both dimensions (Source: Own elaboration).

Procedure and results

The procedure associated with this first experiment is as follows: we will start by generating
three data sets using the circular data generator described earlier. For each data set, we will set
a different noise level: Low (with a noise multiplier of 0.2 in each dimension), Medium (with a
noise of 0.4 in each dimension) and High (with a noise of 0.6 in each dimension).

All three data sets will consist of a total of 50100 samples (16700 samples per class), of which
40080 will be part of the training subset and 10,020 will be part of the testing subset. The
representation of the three data sets can be seen in Figure 6.2 (for simplicity, only 40% of the
data has been plotted).

(a) Low (noise at 0.2). (b) Medium (noise at 0.4). (c) High (noise at 0.6).

Figure 6.2: Graphical representation of the datasets used in Experiment 1.

Source: Own elaboration.

For each data set, we will train a C-SVM with a constant parameter value of C = 10. We will
run LIBSVMaggr and its original version using three different kernels for continuous data: Linear,
Polynomial and RBF (Radial Basis Function) kernels. For the Polynomial and RBF kernels, we
will use three and four different parameterizations, respectively (note that the Linear kernel has
no hyperparameters and therefore cannot be parameterized). A summary of the parameters used
in each case can be seen in Table 6.1.

46

Table 6.1: Parametrizations used for each kernel in Experiment 1.

Kernel Parameters Param. 1 Param. 2 Param. 3 Param. 4

Linear – – – – –
Polynomial (d, γ, c0) (2, 0.1, 10) (3, 0.1, 10) (3, 10, 100) –
RBF γ 0.01 0.1 10 100

Note: In all cases, the C parameter of the C-SVM has been set to 10.
Source: Own elaboration.

We can observe the results obtained from the aforementioned execution in Tables 6.6 for the
Linear Kernel, 6.7 for the Polynomial Kernel and 6.8 for the RBF Kernel. As can be seen,
the accuracy percentages coincide for all the executions performed using our implementation
LIBSVMaggr and the original software.

One might think that, despite obtaining the same accuracies, the confusion matrices could
differ. To rule out this possibility, we generated the confusion matrices for each execution and
verified that they match perfectly. Due to space constraints, we will not include all the matrices
in this document, but you can see two comparisons in Tables 6.2 and 6.4. In all tables, the rows
represent the predicted labels, while the columns represent the true labels of the samples.

Table 6.2: Experiment 1 Confusion Matrices (Polynomial kernel with d = 3, γ = 0.1, c0 = 10).

(a) Using LIBSVMaggr

Class 1 Class 2 Class 3
Class 1 3199 141 0
Class 2 244 2949 147
Class 3 0 176 3164

(b) Using original LIBSVM

Class 1 Class 2 Class 3
Class 1 3199 141 0
Class 2 244 2949 147
Class 3 0 176 3164

Table 6.4: Experiment 1 Confusion Matrices (RBF kernel with γ = 0.01).

(a) Using LIBSVMaggr

Class 1 Class 2 Class 3
Class 1 2677 649 14
Class 2 671 2023 646
Class 3 25 668 2647

(b) Using original LIBSVM

Class 1 Class 2 Class 3
Class 1 2677 649 14
Class 2 671 2023 646
Class 3 25 668 2647

Having analyzed the results, we consider our hypothesis proven. It seems reasonable to as-
sume that if we use the same parameterization in LIBSVMaggr and LIBSVM, we obtain exactly
the same results. Therefore, we believe that the base implementation of our software version
maintains correctness in both the training and prediction phases of the SVMs.

As we had anticipated, the execution time appears to be higher when using LIBSVMaggr.
However, we consider that performing a single execution with different parameterizations is not
sufficient to estimate the temporal overhead introduced by our version compared to the use of
LIBSVM. In the next experiment, we will approximately study the percentage that this overhead
represents in relation to the original execution time.

47

In this early stage of testing the new library, the results obtained are promising and we are ea-
ger to continue experimenting. Thus far, everything appears to be functioning perfectly, demon-
strating the effectiveness of the implemented features. We look forward to conducting further
experiments and validations to gain deeper insights into the performance and capabilities of the
software.

Table 6.6: Results of Experiment 1 using the Linear Kernel.

Noise level
Parameters Accuracy (%) Execution time (s)

– Original Aggregation Original Aggregation

Low – 100.000 100.000 0.087 0.728
Medium – 85.838 85.838 7.338 11.761
High – 72.725 72.725 15.489 23.031

Note: The C = 10 value of the C-SVM is constant.
Source: Own elaboration.

Table 6.7: Results of Experiment 1 using the Polynomial Kernel.

Noise level
Parameters Accuracy (%) Execution time (s)
d γ c0 Original Aggregation Original Aggregation

Low
2 0.1 10 100.000 100.000 0.067 0.724
3 0.1 10 100.000 100.000 0.100 0.716
3 10 100 100.000 100.000 0.050 0.725

Medium
2 0.1 10 91.766 91.766 8.510 12.052
3 0.1 10 98.393 98.393 6.278 8.370
3 10 100 98.922 98.932 15.547 16.910

High
2 0.1 10 83.124 83.124 17.026 23.592
3 0.1 10 92.934 92.934 11.646 15.242
3 10 100 93.523 93.543 57.083 61.721

Note: d, γ and c0 are the degree, gamma and coeficient hyperparameters
of the polynomial kernel. The C = 10 value of the C-SVM is constant.
Source: Own elaboration.

48

Table 6.8: Results of Experiment 1 using the RBF Kernel.

Noise level
Parameters Accuracy (%) Execution time (s)

γ Original Aggregation Original Aggregation

Low
0.01 100.000 100.000 0.872 2.052
0.1 100.000 100.000 0.220 0.956
10 100.000 100.000 0.111 0.767
100 100.000 100.000 0.841 1.621

Medium
0.01 86.267 86.267 14.397 26.710
0.1 95.898 95.898 8.850 14.124
10 98.882 98.882 1.317 2.243
100 98.802 98.802 2.412 3.984

High
0.01 73.323 73.323 25.445 37.824
0.1 89.651 89.651 17.560 24.352
10 93.473 93.473 6.649 8.641
100 93.323 93.323 10.487 13.520

Note: γ is the gamma hyperparameter of the RBF kernel. The C = 10
value of the C-SVM is constant.
Source: Own elaboration.

6.2 Experiment 2: Execution time overhead

In the previous experiment, we have observed that the use of the new version LIBSVMaggr in-
troduces an overhead in the execution time. This behavior is expected primarily due to the
restructuring of the data structures that we had to implement in order for the library to work
with mixed data.

One possible cause of this overhead is the increase in the number of data structure accesses in
LIBSVMaggr compared to LIBSVM. For instance, in the original version, we only needed to access
the node values (node.value). On the other hand, in LIBSVMaggr, we first have to navigate
through the different feature_sets to reach the specific kernel. Then, we need to access the
specific kernel function and perform various static_casts (since svm_node is now an abstract
structure) in order to obtain the correct node type. At first glance, these additional accesses may
seem negligible. However, it should be noted that we are dealing with extremely large kernel
matrices. Therefore, increasing the number of accesses is critical.

Hypothesis

In this experiment, we aim to estimate the overhead introduced in the execution time when
comparing the use of LIBSVMaggr with the original version of LIBSVM. Our hypothesis is that
the execution time will increase due to, among other factors, the additional accesses required for
the library to handle mixed data.

49

Procedure and results

To conduct this experiment, we will use the Medium dataset from the previous experiment (see
Figure 6.2b), which is generated with a noise multiplier of 0.4 (see Section 6.1). Once again,
we will employ a C-SVM with different parameterizations of the Linear, Polynomial and RBF
kernels. For each parameterization, we will perform a total of 50 repetitions.

Based on these results, we will calculate the average training time and prediction time, pre-
senting them in separate graphs. Finally, we will estimate the percentage of extra time required
when using LIBSVMaggr compared to the base execution time obtained with LIBSVM.

You can observe the graphs representing the execution times for each parameterization of the
Linear, Polynomial and RBF kernels in Figures 6.3, 6.4 and 6.5, respectively.

(a) Training stage. (b) Prediction stage.

Figure 6.3: Average execution time obtained in Experiment 2 using the Linear kernel.

Note: Each bar set corresponds to a different parameterization of the SVM. Each bar represents the
average time of executing 50 repetitions (Source: Own elaboration).

(a) Training stage. (b) Prediction stage.

Figure 6.4: Average execution time obtained in Experiment 2 using the Polynomial kernel.

Note: The C = 10 parameter of the C-SVM is constant. Each bar set corresponds to a different
parameterization of the SVM. Each bar represents the average time of executing 50 repetitions

(Source: Own elaboration).

50

(a) Training stage. (b) Prediction stage.

Figure 6.5: Average execution time obtained in Experiment 2 using the Linear kernel.

Note: Each bar set corresponds to a different parameterization of the SVM. Each bar represents the
average time of executing 50 repetitions (Source: Own elaboration).

In general, we consider our hypothesis to be proven. It seems reasonable to assume that the
use of the new software, LIBSVMaggr, introduces an overhead in the execution time, both in
the training and prediction stages. We can also observe that, as expected, the prediction time
remains lower compared to the training time.

The percentage of extra time incurred by using LIBSVMaggr can be seen in Table 6.9. Inter-
estingly, the percentage of extra time is higher in the prediction phase. We believe this difference
is caused by the way the kernel function to analyze each feature vector of the different samples
is identified. However, it is important to note that, in general, the prediction time is much lower
than the training time. Therefore, this overhead should not have a significant impact on the
overall execution time of the SVM.

Table 6.9: Percentage of additional time required by LIBSVMaggr compared to LIBSVM.

Kernel Train (%) Predict (%)

Linear 34.71 55.62
Polynomial 23.62 79.56
RBF 33.52 66.10

Source: Own elaboration.

51

6.3 Experiment 3: Bagging-SVM use case

Once the baseline effectiveness of our LIBSVMaggr implementation has been proven (Sections 6.1
and 6.2), we want to test the performance of the Bagging-SVM algorithm described in Section
4.2. This algorithm, based on Bagging theory, aims to reduce the complexity of training a
Support Vector Machine (SVM) when dealing with large amounts of data.

Hypothesis

Our hypothesis is that the training time of the Bagging-SVM, using a significantly large dataset
of size n and a total of m models comprising the committee of experts, should be of the order of
O(pn2/m), as estimated in the theoretical study of Bagging-SVM complexity (Section 4.2).

In terms of prediction time, unlike the training time, we believe that it will increase. This
assumption seems reasonable since the Bagging-SVM algorithm requires m predictions for each
training sample, whereas the conventional SVM algorithm only requires one prediction per sam-
ple.

Finally, regarding the error rate, we believe that for relatively low values of m, it should not
be significantly affected. We consider that the error rate should remain stable as long as the
total number of data points is sufficiently high and, consequently, the number of samples used
in the training of each model is large.

Procedure and results

The objective of this experiment is to analyze the evolution of the execution time (in both the
training and prediction stages) and the prediction error of the Bagging-SVM algorithm as we
increase the number of models m used in the execution. The procedure will involve training the
pseudo-model (committee of experts) multiple times using n� 2 · 105 data points and progres-
sively increasing the number of models m.

To ensure that the measurement of execution times is meaningful and robust, we will conduct
a total of R repetitions for each value of m. The choice of the value of R is not trivial. It
should be noted that training a single SVM with such a large amount of data can result in a long
execution time, possibly taking several hours. With many repetitions, the execution could tie
up our computer for days. Due to time constraints of the project, we cannot afford such a delay.
Therefore, we have determined that a value of R = 3 will be sufficient to obtain representative
average execution times while keeping the overall execution time manageable.

Another important factor to consider is the choice of values for m to test. Having conducted
a preliminary study on the behavior of Bagging-SVM, we have found that variations in m when
m < 100 have a more significant impact on the training time compared to variations when m is
large. Therefore, we have decided to establish three ranges of increasing values for the number of
models to be used, which we believe will allow us to clearly observe the evolution of the metrics
under study:

1. From m = 1 to m = 70 by steps of length=1 (i.e. m = 1, 2, 3 . . . 79).

2. From m = 80 to m = 1480 by steps of length=100 (i.e. m = 80, 180, 280 . . . 1480).

3. Fromm = 1600 tom = 6100 by steps of length=500 (i.e. m = 1600, 2100, 2600 . . . 6100).

52

As mentioned earlier, for each value of m, we will conduct R = 3 repetitions and collect the
training and prediction execution times, as well as the obtained error rate.

The last factor to determine is the dataset to be used. As we mentioned, the main requirement
is that it contains a significantly large number of data points (on the order of n� ·105). Initially,
we considered using a real-world dataset. Although we were able to gather some, either they
required extremely meticulous preprocessing or they did not meet the minimum required number
of samples. Therefore, we have decided to use our circular data generator again (see Section 6.1).

The advantages of using the data generator are that we can instantiate as many samples as
needed and introduce noise to make the problem resolution non-trivial. On the other hand, the
data generated by the script are continuous, so we will not be able to fully exploit the imple-
mented Aggregation Kernel. Nonetheless, although we would have liked to test the functionality
of the new kernel as well, this limitation is not a significant concern because the sole purpose of
this experiment is to evaluate the performance of Bagging-SVM.

The generated data consists of a total of 4.5 ·105 instances (1.5 ·105 per class), of which 3.6 ·105

form the training set and 9 · 104 form the testing set. The noise multiplier for each dimension
of the data is set to 0.4. To train the sub-models (forming the committee of experts) of the
Bagging-SVM, we will use a C-SVM with the parameter C = 100 and the RBF kernel. The
value of the hyperparameter γ of the kernel function will be estimated for each sub-model using
the methodology outlined in Section 5.3.

(a) Execution time of train and predict stages as a
function of the number of generated models.

(b) Error rate obtained as a function of the
number of generated models.

Figure 6.6: Execution time and error rates obtained in Experiment 3.

Source: Own elaboration.

In Figure 6.6, we can observe the results obtained from the experiment. First, let’s analyze
the graph in Figure 6.6a. Here, we can see the different execution times for training (blue),
prediction (orange) and the estimated training time (dashed red) based on the complexity of
Bagging-SVM that we had estimated (Section 4.2).

On one hand, one of the most immediate observations when looking at the training cost trend
is that once we surpass the barrier of m = 2 models, the execution time decreases drastically.
Furthermore, it appears to follow the function of Bagging-SVM complexity. In fact, it can be in-
ferred that we don’t even need to reach 100 models per execution for the training time to stabilize.

53

On the other hand, we can see that the cost of predictions increases as we increment the num-
ber of models, as we had predicted in our initial hypothesis. Nevertheless, the rate of growth
in execution time is more moderate in this case compared to the rate of decrease in training time.

Finally, regarding the error (Figure 6.6b), we also observe an upward trend as we increase the
number of models employed. However, the growth of the error is not comparable in any way
to the speed of growth and decrease observed in the previous graph. As we mentioned in the
hypothesis definition, this moderate increase in error is justified.

It should be noted that for low values of m, each model still has a large number of samples
and therefore, the committee of experts can generate considerably reliable predictions. However,
as we increase the value of m, each model has very few samples, resulting in significantly biased
predictions and consequently, the decisions of the committee of experts tend to have more error.

Although the graphs in Figure 6.6 seem to support our hypotheses, it is evident that the critical
values of m in terms of execution time are located in an approximate range of m ∈ [1, < 100].
Therefore, we consider it interesting and enriching to analyze the behavior of the algorithm on
a smaller scale. You can find the enlarged graphs for the range m ∈ [1, 50] in Figure 6.7.

(a) Execution time of train and predict stages as a
function of the number of generated models.

(b) Error rate obtained as a function of the
number of generated models.

Figure 6.7: Execution time and error rates obtained in Experiment 3 (range [1, 50]).

Source: Own elaboration.

Firstly, if we observe Figure 6.7a, we can see how, indeed, when transitioning from using a
single model (conventional SVM) to just two models, the training time is reduced by almost
half. At this scale, the prediction time increases by just over two seconds. We can appreciate
a significant reduction in training time without perceiving major variations in the increase in
prediction time until the generation of m = 10 models.

Secondly, in Figure 6.7b, we can clearly see how the increase in error in the initial executions
is negligible. As mentioned earlier, the improvement in execution time becomes evident in the
range m ∈ [1, 10]. Within this range, the error rate does not increase even by 0.5% (0.44%). In
fact, the difference in error between executions with m = 1 and m = 50 does not exceed 2%
(1.65%).

In conclusion, the results of the experiment allow us to confidently state that our initial hy-
pothesis has been proven. The Bagging-SVM has demonstrated itself as a viable and promising
alternative for tackling problems with large amounts of data using SVMs.

54

Our study has revealed a significant reduction in training time for the Bagging-SVM compared
to the conventional SVM. Furthermore, the increase in prediction time has been moderate, indi-
cating that this technique can be considered for cases where training time is a critical factor.

We are excited to continue testing the performance of the Bagging-SVM in future projects.
There are numerous real-world areas and problems where this promising tool could be applied.
Further exploration through these experiments will provide a better understanding of its ca-
pabilities and limitations and explore its potential across various scientific and technological
disciplines.

6.4 Experiment 4: Mixed data real-world problem

This fourth and final experiment is focused exclusively on evaluating the results obtained from
applying the Aggregation Kernel to a real-world problem. Additionally, we aim to assess whether
the level of expressiveness provided by this new kernel, in terms of measuring similarity between
samples, is sufficient to outperform the algorithm and pre-established kernels in LIBSVM.

Hypothesis

The main hypothesis established in this experiment is simple: we believe that using a specific
kernel based on the nature of each variable (or vectors of variables) can yield better results than
using a single kernel when dealing with mixed data in real-world problems.

As mentioned in previous sections, we believe that the expressiveness and analytical capability
offered by evaluating each variable type, taking into account their inherent properties and seman-
tics, can be significant in the domain of problem-solving using Support Vector Machines (SVMs).

In addition to the main hypothesis, we also want to propose a secondary hypothesis based
on the following: we believe it is reasonable to think that if we have a vector of variables of
the same type, it may be beneficial to divide this vector into different groups of variables that
exhibit similar structure or semantics when assigning kernels in the Aggregation Kernel. We do
not have theoretical foundations to justify this premise, but it may make sense when analyzing
the similarity between different samples.

Aircraft dataset

For conducting this experiment, we will utilize a real-world dataset referred to as the Aircraft
Dataset. This dataset has been extracted from [42]. The data was graciously provided by Eduard
Morillo, a student enrolled in the Bachelor’s Degree program in Data Science and Engineering
(FIB, UPC). In return, we furnished a preliminary copy of the LIBSVMaggr software to facilitate
its utilization in his project.

The dataset comprises 22 features of diverse typologies (continuous, categorical and textual
or string) concerning 345 combat aircraft operational between the years 1928 and 1947. The
information was programmatically collected from various specialized sources.

Significantly, this dataset is currently unobtainable in any online repository, rendering it an
exclusive resource for our study. Moreover, since no prior works have employed this particular
dataset, direct comparisons with existing solutions are not feasible. Nonetheless, the data ex-
hibits high quality and fulfills all the requisite criteria for our research objectives.

55

The inherent problem within the dataset revolves around classification. More precisely, we aim
to reasonably infer the country of origin for an aircraft based on its distinctive characteristics.
Alternatively, an auxiliary objective involves determining the aircraft type.

Prior to addressing the core problem, we will conduct a concise inspection and preprocessing
phase on the dataset. Initial scrutiny has revealed the presence of four anomalous samples. Given
their negligible representation within the dataset, we have opted to remove them, resulting in a
refined dataset comprising 341 samples. Subsequently, we will perform a brief analysis encom-
passing variable types and their corresponding distributions.

The only textual variable is plane. This feature contains the name of each aircraft. Some
examples include Airspeed Oxford Mk.I, Yakovlev Yak-9D and Blohm und Voss Bv.138 C-1.

Regarding the numerical variables, there are a total of 18. Some examples include year (year
of manufacture), wingspan, length, height, engines (number of engines) and cannons (number
of cannons). In general, the numerical features encode technical characteristics of the aircraft,
such as crew capacity, payload or bomb load capacity, among others.

Due to space limitations in the project, we will not include all the graphs depicting the dis-
tribution of the numerical variable values. Nonetheless, it is worth mentioning a few. Firstly, in
Figure 6.8, we can observe the histograms of the wingspan, length and height variables. It is in-
teresting to note that all three variables exhibit relatively similar distributions. The distributions
appear to be not far from a normal distribution, although slightly right-skewed.

(a) wingspan variable. (b) length variable. (c) height variable.

Figure 6.8: Distribution of wingspan, length and height features of the Aircraft Dataset.

In contrast, we can observe that the variable serviceCeiling (Figure 6.9) exhibits a distri-
bution more closely resembling a standard normal distribution. We have chosen not to modify
the original features. However, to correct the skewness of the aforementioned variables, we could
compute their logarithms.

Regarding the aircraft armament, in Figure 6.10 we observe that the majority of aircraft tend
not to have machine guns or cannons. We could consider generating a binary variable, par-
ticularly for cannons (Figure 6.10a), indicating whether they have machine guns or cannons.
However, we believe that this level of specificity in encoding the armament can be beneficial in
solving the problem.

To conclude the analysis of numerical variables, we will conduct a study of the correlation
between all the numerical variables. The correlations can be seen in Figure 6.11. We can observe
that there are some variables that are significantly correlated. For example, wingspan, length,

56

Figure 6.9: Distribution of serviceCeiling variable of the Aircraft Dataset.

(a) cannons variable. (b) machineGuns variable.

Figure 6.10: Distribution of cannons and machineGuns features of the Aircraft Dataset.

height, engines and takeoffWeight. This behavior is expected, as larger aircraft will also
require more engines and be able to carry more payload during takeoff.

As for the targets of possible classification problems, we have two categorical variables: country
and type. The distribution of counts can be seen in the graph in Figure 6.12. In the graph of
countries (Figure 6.12a), it is evident that the majority of aircraft are from the United States
(USA) and Germany (D). France (F) has the least representation, although we consider that there
are enough samples to classify them correctly.

Regarding the aircraft types, we observe a less proportionate distribution of sample counts
compared to the countries (Figure 6.12b). It is clear that the majority of aircraft are of type
Fighter and Bomber. However, we have decided not to redistribute the categories in order to
avoid biasing the results.

Finally, we have generated the train and test splits (with 80% and 20% of the data, respectively)
and stored them in LIBSVM format. In order to compare the performance of the new software
and verify that it indeed provides better results, we have created a dataset compatible with
the original LIBSVM library. We have converted the categorical variables to numerical using
the One-Hot Encoding technique. However, since we do not have a method to convert textual
variables to numerical, we have excluded the plane variable from this dataset.

57

Figure 6.11: Correlation between numerical features of the Aircraft Dataset.

Procedure and results

The first step will be to run the original version of LIBSVM with the compatible data (i.e. the
dataset containing only numerical variables). For the execution, we have chosen to use an RBF
kernel with a C-SVM. Since the software does not provide any tools for parameter estimation,
we have performed a 10-fold cross-validation process (using only the training data) with different
parameterizations to estimate the most suitable values of C and γ beforehand.

Once the parameters have been estimated, we have executed the SVM with C = 316.2278 and
γ = 0.1. The accuracy percentage obtained was 47.83%. These results do not seem particularly
promising.

For the second execution, we want to use the Aggregation Kernel for the first time. In this ini-
tial test of the new kernel, we aim to group the numerical variables using different RBF kernels.
We will distribute the features into different kernels based on their meaning. For example, we
believe it would be beneficial to group variables such as wingspan, length and height together
in one kernel. For the categorical variables, we will use the Univariate kernel. We will set the
hyperparameter α to 1 since we do not have an effective technique to estimate its value. As
for the textual variable plane, we will use the Spectrum kernel with a window size of p = 5
characters. You can see the configuration file used in Listing 6.1.

As we can see from the previous configuration file, the γ parameters of the different RBF
kernels will be estimated using the procedure described in previous sections. Similarly, the C
parameter of the C-SVM and the γ parameter of the Aggregation kernel will be automatically
estimated through the estimation process implemented in LIBSVMaggr.

58

(a) country variable. (b) type variable.

Figure 6.12: Value counts of the country and type features of the Aircraft Dataset.

1 21
2 1 spectrum −p 5 # plane
3 2 univariate −a 1 −c Fighter Bomber Reconnaissance Transport Training Assault

Liaison Torpedo FighterBomber # type
4 3,7,8,9,13,14,15,16,19,20,21 rbf −g −1 # others
5 4,5,6 rbf −g −1 # wingspan, length, height
6 17,18 rbf −g −1 # cannon, cannonmm
7 10,11,12 rbf −g −1 # engines, cylinders, cv

Listing 6.1: Experiment 4 configuration file using textual features.

The results obtained in this execution are much better than expected, with an accuracy of
92.75%. This outcome is a clear demonstration of how the expressiveness allowed by the Aggre-
gation Kernel translates into a significant improvement in results.

Despite the good results obtained in this second part of the experiment, we believe that the
high accuracy percentage may be influenced by an unidentified strong correlation between the
plane variable (which encodes the aircraft’s name) and the country target. Recall that the
Spectrum kernel evaluates the similarity between samples by computing substring matches of
size p. Moreover, it is evident that aircrafts from Japan, for example, will have very specific com-
binations of characters in their names, which differ from those of Russian or American Aircraft.

Therefore, we have decided to carry out a new execution, this time without using the plane
variable. The rest of the parameterizations (both the configuration file and the estimation of the
C and γrbf and γaggr parameters) will remain the same as in the previous experiment. In this
new execution, as expected, the accuracy has dropped to 49.28%. While it is true that we have
surpassed the results of the execution with the original library, we believe that we can achieve
better results with the Aggregation Kernel.

To verify if the reason for the drop in accuracy (besides the removal of the plane variable) is
the grouping of variables based on their semantics, we have decided to perform one last execu-
tion. In this execution, we will associate each numerical variable with a different kernel (note
that the Univariate kernel for categorical variables only accepts a single feature, so we do not
need to modify anything in this regard compared to the previous execution). Once again, we
will use the options to estimate all the parameters C and γ.

59

We consider the improvement achieved in these results to be quite significant: the accuracy
has increased to 54%. Therefore, it seems that grouping variables based on their semantics is
not necessarily beneficial. In this case, we can conclude that using a kernel for each variable and
estimating their parameters provides more satisfactory results.

We want to conclude this experimental stage by checking if there are differences in predicting
the aircraft type instead of the country of origin. Once the experimentation with the plane
target is completed, it appears that identifying the country of origin of an aircraft based on its
characteristics is rather challenging in general.

After reorganizing the datasets, we have retrained LIBSVM (manually estimating the C and
γ parameters) and LIBSVMaggr (using the parameter estimation implemented in the software).
The accuracy obtained with the original software is 63.77%. In contrast, using the Aggregation
Kernel, the accuracy reaches 74.34%.

The Aggregation kernel function appears to improve the results compared to the use of a
single kernel function. The obtained results are promising, demonstrating a significant intuition
for the effectiveness of the kernel. Although it is true that the dataset used has a limited number
of samples, we believe that the results provide meaningful insights into the performance of the
kernel. Due to time constraints, we were unable to further experiment with the new kernel, but
we are eager to explore its potential in future projects.

60

7 Conclusions

At this point, we have completed all the stages of research, theoretical formulation and practical
resolutions of the project. Therefore, it remains to state the conclusions we have drawn from its
development.

In this final section, we will begin by analyzing the achievement of objectives and the fulfillment
of requirements. Subsequently, we will analyze and evaluate the results obtained during the
experimentation phase, drawing the necessary conclusions. Next, we will present our overall
project conclusions. Finally, we will discuss what we believe will be the future work in the
project’s domain and conclude with a personal assessment of the work at hand.

7.1 Review of the objectives

In this first section, we will analyze the objectives we set at the beginning of the project and
evaluate their achievement. Additionally, we will revisit both the functional and non-functional
requirements and assess to what extent we have fulfilled them.

Regarding the main objective of the project, we have successfully formulated an effective
kernel function capable of measuring similarity between vectors of mixed variables, which we
have named the Aggregation Kernel (Section 3.2). This kernel function is simple, intuitive and
designed to accurately capture the degree of similarity between the analyzed samples. We believe
that we have conducted thorough work, validated its effectiveness and ensured that it meets the
requirements of the stated objective.

Furthermore, we have not only limited ourselves to the theoretical formulation of the kernel
function but also provided its practical implementation in the LIBSVM library. Through this
integration, we have enabled support for mixed data, reading parameters for different kernels,
training and storing new models, as well as making predictions using mixed samples, among
other functionalities. This incorporation of the Aggregation Kernel into the LIBSVM library
represents a significant advancement in the application of SVMs for the manipulation and analy-
sis of mixed data, providing users with an effective and comprehensive tool to tackle these types
of problems.

As for the secondary objective, we have successfully formulated an effective new SVM al-
gorithm called Bagging-SVM based on Bagging techniques (Section 4.2). This formulation aims
to address the challenges arising from the treatment of large volumes of data in conventional
SVM algorithms, with the goal of reducing the complexity of model generation from samples
and maintaining a stable error rate.

On the one hand, we have successfully estimated the complexity of the Bagging-SVM algo-
rithm and the results indicate a significant reduction in training time compared to traditional
SVM algorithms (Section 4.2). This ensures the efficiency and scalability of the algorithm when
dealing with large volumes of data, which is a critical aspect when tackling real-world problems.

61

On the other hand, we have successfully implemented the Bagging-SVM algorithm in the
LIBSVM library. This functional implementation has allowed us to create and store multiple
models in a single training stage, make predictions using multiple models and modify the main
SVM algorithm to adapt to the Bagging technique. This has provided us with a powerful
and comprehensive tool to address large-scale problems with these algorithms, resulting in a
significant improvement in efficiency and the effectiveness of the obtained results.

Requirements review

In this section, we will analyze and evaluate the compliance of the different requirements, both
functional and non-functional, that we have established at the beginning of the project (see Sec-
tion 1.2 and 1.2). We will start by addressing the functional requirements.

First and foremost, we have demonstrated the validity of the Aggregation Kernel by ap-
plying the closure properties of kernels (Section 3.2). Furthermore, we have validated the
Bagging-SVM algorithm as a viable method within the SVM framework by providing a theoret-
ical formulation and studying its complexity (Section 4.2). During the experimentation phase,
we have confirmed that this algorithm is highly efficient in handling large volumes of data, thus
satisfying the efficiency requirements.

Both the Aggregation Kernel and the Bagging-SVM algorithm have been successfully im-
plemented in a new version of the LIBSVM library called LIBSVMaggr. This facilitates the
processing and analysis of mixed data. Moreover, the implementations have proven to be effec-
tive in fitting Support Vector Machine models, validating their functionality.

Regarding the predictive capabilities, we have validated the proposed hypotheses and
demonstrated that the Aggregation Kernel is effective in measuring similarity between sam-
ples of mixed data. On the other hand, the Bagging-SVM algorithm has allowed us to reduce
complexity in the training stages and maintain a stable error rate in predictions.

All the methodologies implemented in LIBSVMaggr continue to provide the same metrics
offered by the original LIBSVM library to evaluate the performance of the generated models.
In classification problems, we obtain the percentage of accuracy, while in regression problems,
we obtain the Mean Squared Error (MSE) and the Squared Correlation Coefficient (R2). Upon
completing the prediction stage, we also have the option to generate a file with the predicted
values for each sample.

Regarding the non-functional requirements, we consider that the efficiency of the pro-
posed software, which includes the functional implementation of the Aggregation Kernel and the
Bagging-SVM algorithm, is acceptable. Although LIBSVMaggr introduces a certain overhead in
execution time due to issues associated with handling mixed data, we believe that the benefits
and new functionalities it provides fully justify this small additional cost.

The usability of the proposed solution is excellent. We have maintained the simplicity in
parameterization and execution that LIBSVM provided (i.e. through the command line). Addi-
tionally, we have implemented the configuration file feature, which allows us to easily, intuitively
and quickly parameterize the subkernels used in model generation and the application of the
Aggregation Kernel.

Finally, the proposed solutions, both in theory and practice, have been designed with scal-
ability and manipulability in mind. We have carefully defined the theoretical proposals for
both the Aggregation Kernel and the Bagging-SVM algorithm to allow for possible modifications,
variations and updates proposed by the data science and machine learning community.

62

Likewise, during the process of implementing these features in LIBSVMaggr, we have taken
into consideration the simplicity and ease of code extension. Some examples include efforts
to ensure that supporting new data types and implementing new kernel functions do not become
a complex task. This approach allows users to develop their own methodologies in a simple and
intuitive manner.

In conclusion, we believe that we have fulfilled the objectives and requirements, both functional
and non-functional, that we set at the beginning of the project. Thus, we have been able to
provide a set of effective, efficient and functional solutions to the main challenges we have stated.

7.2 Analysis and interpretation of the experiments

Once the objectives and requirements of the project have been analyzed, we will review the
results obtained in the experimentation phase and state the conclusions drawn.

In the first experiment, we verified that our version of LIBSVM, LIBSVMaggr, is capable of
reproducing the same results as the original version, as long as we parameterize the algorithms
in the same way. This allows us to conclude that the basic implementation of LIBSVMaggr is
correct and, therefore, valid for future explorations and experiments. However, we observed a
slight increase in execution time compared to the original version. Therefore, we decided to
define a new experiment.

In the second experiment, we aimed to determine the exact overhead introduced by LIBSVMaggr

in execution time. We assumed that our version requires more execution time since it needs to
access data structures more frequently in order to be compatible with mixed data problems. Our
hypotheses were confirmed as we found that, on average, LIBSVMaggr requires 31.61% more time
during training and 67% more time during prediction compared to the original LIBSVM.

Regarding the obtained percentages, it is important to note that the number of data used dur-
ing the training phase was much higher than during the prediction stage. Therefore, the overall
weighted average of the execution time overhead remains at an acceptable level. Additionally, we
identified the code points responsible for this time overhead in prediction, with the perspective
of reducing this expense in future updates.

The third experiment focused on testing the functionality of the Bagging-SVM algorithm
implementation (see Section 4.2) in the LIBSVMaggr library. We expected the training time to
be reduced by approximately m units (as estimated in Section 4.2), where m is the number of
submodels used in the algorithm. Our hypotheses were successfully verified and we demonstrated
that the proposed Bagging-SVM algorithm is much more efficient than the conventional SVM
algorithm in training models with large volumes of data. Specifically, Bagging-SVM was able
to reduce the training time by half using a total of m = 2 models and practically reduce it to
one-tenth using m = 10 models.

In addition to the aforementioned results, we found that the error rate does not significantly
increase when using this Bagging-based approach. Considering the results obtained, we consider
Bagging-SVM as a promising alternative for addressing problems with large volumes of data
using SVMs and it can have very interesting applications in the current field of data science.

63

Finally, in the fourth experiment, we aimed to test the effectiveness of the Aggregation ker-
nel in a real-world problem. By using the Aggregation kernel, we were able to improve prediction
accuracy by a range of 5 to 10% compared to the traditional approach that transforms mixed
data into real-number vectors and uses a single RBF kernel.

This leads us to conclude that the inclusion of the Aggregation kernel is a functional tool for
addressing real-world problems with mixed data. Furthermore, we believe that this kernel has
potential applications in various areas, such as education or data analysis, among others.

7.3 Overall analysis and conclusions

At this point, we have been able to verify the fulfillment of the objectives and requirements we
established at the beginning of the project. Next, we have reviewed the results obtained in the
experimentation phase and stated our conclusions. In this section, we will recap the achieved
milestones and present our final conclusions.

We initiated this project by studying and analyzing the formulation of Support Vector Ma-
chines (SVM) and the role that kernel functions play in these algorithms. This knowledge was
instrumental in approaching the design and implementation stages of the techniques we will out-
line below.

Subsequently, we conducted a state-of-the-art review regarding the types of variables encoun-
tered in modern problems and the kernel functions found in current literature for each of these
variable types. Specifically, we observed that some of the most common variables in contemporary
problems are continuous, binary, categorical, circular and textual. For all the aforementioned
variable types, we have successfully identified suitable kernel functions, with the exception of
circular variables, for which we have introduced a novel kernel function (refer to Section 3.1).

In the realm of the state-of-the-art review, we examined proposals for Support Vector Machine
algorithms found in current literature that are aimed at improving the efficiency of these algo-
rithms when dealing with large volumes of data.

Based on the preceding research stage, we observed that current literature lacks a kernel func-
tion fully focused on handling mixed data and there is room for improvement in the efficient
implementation of SVM algorithms for addressing problems with significant amounts of data.

Subsequently, we formulated and demonstrated the validity of a new kernel function called the
Aggregation kernel, which allows for the treatment of mixed data. Additionally, we provided the
formulation of a variant of the Support Vector Machine algorithm based on Bagging techniques,
which improves the efficiency of these algorithms in handling large volumes of data without in-
creasing the prediction error. We named it Bagging-SVM.

Once the Aggregation kernel and Bagging-SVM were outlined, we provided a new version
of the renowned Support Vector Machine library LIBSVM [30], which we named LIBSVMaggr.
This version effectively implements both the Aggregation kernel and the Bagging-SVM algorithm.

Furthermore, we included additional functionalities such as support for and treatment of mixed
data, the implementation of kernel functions for the aforementioned data types, the possibility to
parameterize the kernels through a new configuration file and the implementation of techniques
for parameter and hyperparameter estimation for SVM and kernels, among others.

64

The design and implementation of this new version of LIBSVM have adhered to strict princi-
ples of efficiency, effectiveness, usability, scalability and manipulability. We have confirmed the
efficiency, effectiveness and scalability of the proposed techniques through four experiments that
have yielded promising results. Regarding the usability and manipulability of LIBSVMaggr, we
believe that we have designed the code in such a way that both experts and novice users can
employ and expand the library in a simple and intuitive manner.

In general terms, we consider that we have designed, studied and provided different techniques
and tools in the field of data science, machine learning and, specifically, Support Vector Machines
that fill an important gap in the use and study of these algorithms. We firmly believe that our
proposals have a promising future with multiple applications ranging from research to pedagogy
and best practices.

7.4 Future work

Once the final conclusions of the project have been stated, we believe it is necessary to analyze
future work in order to continue improving and developing our proposals. In this section, we will
describe the factors that we consider key for the project’s continuity.

One aspect we aim to improve is the efficiency of the Aggregation kernel during the prediction
stage. We believe that restructuring the function calls to the kernel functions can significantly
reduce execution time. Due to time limitations, we have not been able to include this modifica-
tion in the current framework of the project. Nevertheless, we consider it a promising direction
for future investigations. This efficiency improvement can contribute to better applicability of
LIBSVMaggr in real-world problems.

Another important line of work is to implement support for new data types in LIBSVMaggr.
This expansion will allow addressing a wider range of problems and enhance the library’s flexi-
bility to adapt to different data science scenarios.

It is crucial to test and evaluate the performance and functionality of the Aggregation
kernel in diverse real-world problems. Despite conducting an extensive experimentation process,
we believe it is necessary to put the kernel to the test in real situations with different application
domains. This will enable us to gain a deeper understanding of the behavior, strengths and
limitations of our proposal.

To contextualize our work within a broader framework of machine learning, it is essential to
make comparisons with other relevant algorithms. This will enable us to evaluate the
relative behavior of the Aggregation kernel and Bagging-SVM compared to other existing tech-
niques. Through this comparison, we can identify the strengths and weaknesses of our proposal
and provide a more comprehensive understanding of its effectiveness in different contexts.

Lastly, we want to continue improving and updating the new version of the library with
the aim of providing the data science community with a powerful, robust and effective tool.
This entails ongoing code development, algorithm fine-tuning and feature expansion. It is also
important to maintain open communication with the user community and be attentive to their
needs and contributions in order to constantly improve the library and make it more useful for
data science professionals.

65

7.5 Personal thoughts and assessments

Once the conclusions have been finalized, I cannot help but share some brief personal reflections
and thoughts. From the moment we began planning the project proposal with Lluís Belanche,
my supervisor, I anticipated that it would be an enriching experience.

The completion of this work has not been an easy path. It has required a significant number
of hours dedicated to research and studying the current scientific literature in the field of data
science and machine learning. We have faced challenges and difficulties along the way. The task
of extending the LIBSVM library, in particular, has been far from trivial. We have had to design
new and innovative techniques, overcoming obstacles that, given the project’s time constraints,
could have become critical points.

I consider the solutions we have developed to be innovative and the results obtained during
the experimentation phase are promising. I am especially moved by the opportunity to share
with the scientific community the tools we have had the opportunity to create and develop in
this project.

Despite the adversities and challenges we have faced, the development of this project has been
an incredibly motivating, stimulating and challenging experience. I have felt deeply satisfied with
the opportunity to work on this project and contribute to the field of data science and machine
learning with this research.

66

Bibliography

[1] S. Lohr, “The age of big data,” The New York Times, Feb. 11, 2012. [Online]. Available:
https://www.nytimes.com/2012/02/12/sunday-review/big-datas-impact-in-the-
world.html (visited on 06/01/2023).

[2] B. Mahesh, “Machine learning algorithms-a review,” International Journal of Science and
Research (IJSR).[Internet], vol. 9, pp. 381–386, 2020.

[3] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm for optimal margin
classifiers,” in Proceedings of the fifth annual workshop on Computational learning theory,
1992, pp. 144–152.

[4] A. Daemen, O. Gevaert, and B. De Moor, “Integration of clinical and microarray data with
kernel methods,” in 2007 29th Annual International Conference of the IEEE Engineering
in Medicine and Biology Society, IEEE, 2007, pp. 5411–5415.

[5] A. Daemen and B. De Moor, “Development of a kernel function for clinical data,” in 2009
Annual International Conference of the IEEE Engineering in Medicine and Biology Society,
IEEE, 2009, pp. 5913–5917.

[6] A. Daemen, D. Timmerman, T. Van den Bosch, C. Bottomley, E. Kirk, C. Van Holsbeke,
L. Valentin, T. Bourne, and B. De Moor, “Improved modeling of clinical data with kernel
methods,” Artificial intelligence in medicine, vol. 54, no. 2, pp. 103–114, 2012.

[7] J. Cervantes, X. Li, W. Yu, and K. Li, “Support vector machine classification for large data
sets via minimum enclosing ball clustering,” Neurocomputing, vol. 71, no. 4-6, pp. 611–619,
2008.

[8] M. Awad, L. Khan, F. Bastani, and I.-L. Yen, “An effective support vector machines (svms)
performance using hierarchical clustering,” in 16th IEEE international conference on tools
with artificial intelligence, IEEE, 2004, pp. 663–667.

[9] E. Osuna and F. Girosi, “Reducing the run-time complexity of support vector machines,”
in International Conference on Pattern Recognition (submitted), Citeseer, 1998.

[10] Y. Zhan and D. Shen, “Increasing the efficiency of support vector machine by simplifying
the shape of separation hypersurface,” in International Conference on Computational and
Information Science, Springer, 2004, pp. 732–738.

[11] B. Scholkopf, C. J. Burges, A. J. Smola, et al., Advances in kernel methods: support vector
learning. MIT press, 1999.

[12] A. M. Turing, Computing machinery and intelligence. Springer, 2009.

[13] A. L. Samuel, “Some studies in machine learning using the game of checkers,” IBM Journal
of research and development, vol. 3, no. 3, pp. 210–229, 1959.

[14] D. Crevier, AI: the tumultuous history of the search for artificial intelligence. Basic Books,
Inc., 1993.

[15] A. Aggarwal, Resurgence of artificial intelligence during 1983-2010, 2018.

[16] A. J. Smola and B. Schölkopf, Learning with kernels. Citeseer, 1998, vol. 4.

[17] J. Shawe-Taylor, N. Cristianini, et al., Kernel methods for pattern analysis. Cambridge
university press, 2004.

67

https://www.nytimes.com/2012/02/12/sunday-review/big-datas-impact-in-the-world.html
https://www.nytimes.com/2012/02/12/sunday-review/big-datas-impact-in-the-world.html

[18] J. D. McCaffrey, Using dot product as a measure of similarity, Mar. 2022. [Online]. Avail-
able: https://t.ly/cj8NC.

[19] P. Jaccard, “The distribution of the flora in the alpine zone. 1,” New phytologist, vol. 11,
no. 2, pp. 37–50, 1912.

[20] J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques, 3rd. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 2011, isbn: 0123814790.

[21] R. D. Banker and R. C. Morey, “The use of categorical variables in data envelopment
analysis,” Management science, vol. 32, no. 12, pp. 1613–1627, 1986.

[22] F. Blog, Nominal vs ordinal data: 13 key differences and similarities, Oct. 2022. [Online].
Available: https://t.ly/kWKc.

[23] P. Rodríguez, M. A. Bautista, J. Gonzalez, and S. Escalera, “Beyond one-hot encoding:
Lower dimensional target embedding,” Image and Vision Computing, vol. 75, pp. 21–31,
2018.

[24] L. A. Belanche and M. A. Villegas, “Kernel functions for categorical variables with applica-
tion to problems in the life sciences,” in Artificial Intelligence Research and Development,
IOS Press, 2013, pp. 171–180.

[25] H. Singh, V. Hnizdo, and E. Demchuk, “Probabilistic model for two dependent circular
variables,” Biometrika, vol. 89, no. 3, pp. 719–723, 2002.

[26] A. Martins, “String kernels and similarity measures for information retrieval,” in Technical
Report, 2006.

[27] S. Sonnenburg, G. Rätsch, and K. Rieck, “Large scale learning with string kernels,” Large
Scale Kernel Machines, pp. 73–103, 2007.

[28] L. Bottou, J. Weston, and G. Bakir, “Breaking svm complexity with cross-training,” Ad-
vances in neural information processing systems, vol. 17, 2004.

[29] H. Graf, E. Cosatto, L. Bottou, I. Dourdanovic, and V. Vapnik, “Parallel support vector
machines: The cascade svm,” Advances in neural information processing systems, vol. 17,
2004.

[30] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector machines,” ACM Trans-
actions on Intelligent Systems and Technology, vol. 2, 27:1–27:27, 3 2011, Software available
at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[31] L. Breiman, “Bagging predictors,” Machine learning, vol. 24, pp. 123–140, 1996.

[32] I. Corporation,What is bagging? 2023. [Online]. Available: https://www.ibm.com/topics/
bagging.

[33] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M.
Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal
of Machine Learning Research, vol. 12, pp. 2825–2830, 2011. [Online]. Available: https:
//scikit-learn.org/stable/modules/svm.html#complexity.

[34] A. Karatzoglou, K. Hornik, A. Smola, and A. Zeileis, “Kernlab-an s4 package for kernel
methods in r,” Journal of statistical software, vol. 11, no. 9, 2004.

[35] T. Joachims, “Making large-scale svm learning practical,” Technical report, Tech. Rep.,
1998.

[36] G. Kim, C.-H. Wu, and Y.-S. Jung, “A new ν-svm model for classification,”

[37] C.-C. Chang and C.-J. Lin, Libsvm – a library for support vector machines (official website),
2023. [Online]. Available: https://www.csie.ntu.edu.tw/~cjlin/libsvm/.

68

https://t.ly/cj8NC
https://t.ly/kWKc
http://www.csie.ntu.edu.tw/~cjlin/libsvm
https://www.ibm.com/topics/bagging
https://www.ibm.com/topics/bagging
https://scikit-learn.org/stable/modules/svm.html#complexity
https://scikit-learn.org/stable/modules/svm.html#complexity
https://www.csie.ntu.edu.tw/~cjlin/libsvm/

[38] C. Igel, V. Heidrich-Meisner, and T. Glasmachers, “Shark,” Journal of Machine Learning
Research, vol. 9, pp. 993–996, 2008.

[39] S. Rüping, “Mysvm-manual,” 2000. [Online]. Available: http://www-ai.cs.uni-dortmund.
de/SOFTWARE/MYSVM/.

[40] R. Collobert and S. Bengio, “Svmtorch: Support vector machines for large-scale regression
problems,” Journal of machine learning research, vol. 1, no. Feb, pp. 143–160, 2001.

[41] A. Arqué, “Disseny, implementació i estudi de funcions de kernel per a vectors de variables
no reals,” B.S. thesis, Universitat Politècnica de Catalunya, 2021.

[42] E. Angelucci and P. Matricardi, Aviones de todo el mundo. La Segunda Guerra Mundial.
Madrid: Espasa Calpe, 1979.

69

http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/
http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/

	Introduction
	Identification of the problem
	Objectives and requirements
	Tasks definition
	Planification
	Obstacles and risks
	Project structure

	Support Vector Machines and Kernel Functions
	Major Events in Machine Learning and Support Vector Machines
	Support Vector Machines formulation
	Kernel Functions

	Kernels on mixed data
	Data types and Kernel Functions in modern problems
	The Aggregation Kernel

	Support Vector Machines on large problems
	Efficiency improvements in Support Vector Machines
	The Bagging Support Vector Machine

	Foundations of the Implementation
	Support Vector Machines implementations
	Analysis of LIBSVM
	Implementation of the Aggregation Kernel
	Implementation of the Bagging-SVM
	Other tools

	Experimentation
	Experiment 1: Basic functionality
	Experiment 2: Execution time overhead
	Experiment 3: Bagging-SVM use case
	Experiment 4: Mixed data real-world problem

	Conclusions
	Review of the objectives
	Analysis and interpretation of the experiments
	Overall analysis and conclusions
	Future work
	Personal thoughts and assessments

