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Abstract

Worldwide growing water demand has been forcing utilities to successfully manage their costs. Contemporarily, within an era
of tight budgets in most economic and social sectors, it affects also Water Distribution Networks (WDN). So, an efficient
urban water management is needed to get a balance between consumer satisfaction and infrastructural assets inherent to
WDN. Particular case is referred to pipe networks which suffer for frequent leaks, failures and service disruptions. The
ensuing costs due to inspection, repair and replacement, are a significant part of operational expenses and give rise to difficult
decision making. Recently, the goal regarding the improvement of the traditional leakage management process through the
development of analytical leakage localization tools has been brought to the forefront leading to the proposal of several
approaches. The basis of all methods relies on the fact that leaks can be detected correlating changes in flow to the output of a
simulation model whose parameters are related to both location and severity of the leak.

This paper, starting from a previous work of the authors, shows how the critical phases of leak localization can be
accomplished through a combination of hydraulic simulation and clustering. The research deals with the benefits provided by
Spectral Clustering which is usually adopted for network analysis tasks (e.g., community or sub-network discovery). A
transformation from a data points dataset, consisting of leakage scenarios simulated through a hydraulic simulation model, to
a similarity graph is presented. Spectral Clustering is then applied on the similarity graph and results are compared with those
provided by traditional clustering techniques on the original data points dataset. The proposed spectral approach proved to be
more effective with respect to traditional clustering, having a better performance to analytically localize leaks in a water
distribution network and, consequently, reducing costs for intervention, inspection and rehabilitation.
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1. Introduction

Water is crucial in human society for both social and economic development (Adams, 2006; Hoekstra, 2006;
Jung et al., 2011). Nowadays, water distribution networks (WDN) need to face with a rising demand, dynamic
modifications due to change in consumer profiles and often aged assets. Urban WDN management has to deal
with these issues by developing and implementing strategies focused on reaching a balance between a
maximization of consumer satisfaction and a minimization of efforts in terms of water, energy - and consequently
costs - savings.

In particular, water demand is usually affected by time granularities, seasonal influences and climatic
conditions (Shvartser et al., 1993; Zhou S.L., et al., 2002; Herrera M., et al., 2010). This dynamic behaviour
produces fast variations in pressure and flow within the network, consequently affecting structural components as
pipes and junctions of the distributions systems. The most common consequences are breakages and leakages,
generating both financial losses and social impacts, i.e., increasing costs related to the increased request for
energy to satisfy demand (Puust et al., 2010), replacement and rehabilitation costs and finally, social/health costs
related to water quality and diffused infections due to leakages (Puust et al., 2010).

Under these premises, a better water distribution network management is needed to standardize higher levels
of efficiency. IWA performance indicators (Alegre et al., 2006) detail the relevance to improve the leakage
management process, generally defined on three different steps: assessment, detection and physical localization
(Preis et al., 2010).

This paper is an extension of previous works developed by the authors and oriented to develop decision
support services for leakage localization through a combination of clustering techniques and hydraulic simulation
of “leakage scenarios”. The main goal was to identify, according to pressure and flow measurements acquired on
the real WDN, the most similar simulated “leakage scenarios” and select a restricted set of pipelines as probably
affected by a leak. In this way, physical check can be targeted more effectively and efficiently, reducing time and
cost both for inspection and consequent rehabilitation (Candelieri & Messina, 2012; Candelieri et al., in press).

This study deals with the same paradigm but it investigates the benefits provided by Spectral Clustering
techniques compared to other classical partitioning strategies (K-means, K-Medoids, etc.). Recently, Spectral
Clustering (Luxburg, 2007) has become very popular due to its easy implementation and good results in
comparing with classical clustering algorithms, in particular in the fields of graph clustering (Schaeffer, 2007)
and network analysis — even social network analysis, such as to identify communities (Aggarwal, 2011). Spectral
Clustering-based approaches have been proposed to optimize WDN management taking into account the natural
relationship between a WDN and a graph. In (Herrera, 2011) graph/spectral clustering is used to improve leak
detection and to screen system vulnerabilities in a WDN of downtown Celaya city (Guanajuato, Mexico), in the
same line, (Herrera et al., 2012) address clustering approaches to manage node-pipe in hydraulic sectorization by
combining these techniques with multi-agent systems and finally, in (Gutierrez-Perez et al., 2012) spectral
clustering supported by a rank function - very similar to PageRank widely used by Google to classify web pages —
is performed to get supply groups as a management strategy to vulnerability assessment processes within a WDN.

Differently, our study proposes the adoption of Spectral Clustering in order to compute a possible similarity
relationship between different “leakages scenarios” generated and then use this relationship to create a network of
leakage scenarios on which Spectral Clustering has been performed.

The paper is structured as follows: section 2 describes material and methods, in section 3 experiments are
presented and results are provided. Section 4 closes the paper with conclusions and future works.
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2. Materials and methods
2.1 The case study and the available data

The data used in this study are related to a real WDN (H2OLeak Italian project) serving about 2600 users for
an average consumption of 0.03302 I/s (each user). The WDN covers a geographical zone of almost 5 km?; it has
more than 45 km of pipes. The network is composed of 931 pipelines and 898 junctions (only one reservoir). A
Supervisory Control And Data Acquisition (SCADA) system is used to acquire pressure and flow values at
specific monitoring points (1 for flow monitoring at the pumping station and 6 for pressure).

Information about the water distribution infrastructure and data about customer consumption have been used
to configure a hydraulic model and then simulate different “leakage scenarios” by placing, in turn, a virtual leak
on each pipe, with different severities.

Hydraulic simulation was performed by using the open-source software, EPANET 2.0 from the Environmental
Protection Agency (EPA). After each simulation, resulting pressure and flow values, in correspondence of the
real monitoring points, have been stored in order to built our leakage scenarios dataset. Clustering techniques
have been then applied on this dataset; in particular, the open-source statistical software R (R Core Team, 2013)
has been used to perform the clustering algorithms both classical partitioning algorithms (PAM-Clara) and the
Spectral ones.

2.2 Building and labeling of leakage scenarios

EPANET 2.0 permits to place leaks within a WDN model. The water flow rate depends on the pressure at the
leak location. It follows this mathematical relation:

q=0Cp’ ey

Here, g is the flow rate, p is the pressure, C is the discharge coefficient and y is the pressure exponent. While
wider is the set of leakage scenarios (generated and simulated) more accurate will be the association between the
set of pipes affected by a leak and the pressure and flow at the monitoring points. Hydraulic simulation was
carried out by following the following strategy: a leak was applied, in turn, on each pipe with C varying from
0.001 to 0.03 with a step of 0.001. So, the whole number of leakage scenarios is given by n, * n., with n, as
number of pipelines and 7, as number of possible values for C. The resulting dataset is composed by 27930
instances (931 pipelines * 30 discharge coefficient values, C). This dataset has 9 attributes; the first 7 are
computed as the difference between values of each leakage scenario and faultless network: 6 for pressures at the
monitoring points and the last one for flow at the pumping system. Attributes 8 and 9 describes ID of pipelines
and discharge coefficient associated to each ID; these last two features have been ignored while clustering.

2.3 Spectral Clustering

Spectral Clustering (Luxburg, 2007) has become one of the most popular modern clustering algorithms. It is
simple to implement, can be solved efficiently by standard linear algebra software (but it has high computational
costs and time consuming in large datasets). Although it has been proposed to solve graph clustering problems in
the network analysis domain, it very often outperforms traditional clustering algorithms, such as the k-means
algorithm or other partitioning algorithm, when applied on traditional data points datasets. Although the
advantages it provides, such as easy implementation and good performance, some authors report disadvantages
mainly related to the tuning of parameters (i.e., definition of the similarity/affinity matrix) and the computational
effort on large datasets.

237
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In particular, given a set of data points x;, ..., x, and some similarity measure s; > 0 between each x; and x;,
traditional clustering approaches identify a partition of the data points into several groups in order to minimize
intra cluster similarity and maximize inter cluster similarity. The matrix S is usually defined as affinity matrix
and denoted by A.

A possible way of representing the data points consists of building a similarity graph G = ( V, E ), where
vertices v; are the original data points x; and edges e; are weighted by the corresponding s;; of the Affinity matrix
(v; and v; are not connected by any edge if s;=0). At this point, the problem can be reformulated as a graph
clustering task with the aim to identify a partition of the undirected similarity graph such that the edges between
different groups have a very low weight (i.e. points in different clusters are dissimilar from each other) and the
edges within a group have high weight (i.e. points within the same cluster are similar to each other).

Laplacian

o 0o
o] [ Postprocessing ]4——[ Eigenvectors ]4—[Spectrum

Fig. 1. Application of spectral Clustering to a data points dataset

In our case, the hydraulic simulation of several leakage scenarios were represented as an undirected graph,
where each vertex represents a leakage scenario and each edge is weighted by the similarity between pairs of
leakages scenarios.

Given an undirected graph with its Affinity matrix A it is possible to compute its Degree matrix D as follows:

D(i,i) = 3. j A(i,)) )

D(ij)=0,i#]j 3)

The core of Spectral Clustering technique is the graph Laplacian matrix. Different alternative definition exist
for this matrix, and graph theory is devoted to their study (Chung, 1997). The (not normalized) Laplacian matrix
L is defined as :

L=D-A )

The most important properties of the L matrix are:

e it is symmetric and positive semi-definite;
e its smallest eigenvalue is O;
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e it has n non-negative, real-valued eigenvalues 0 <1; <1, <... <4,.

Many applications use a normalized Laplacian instead of basic Laplacian shown in (4). We have adopted the
following normalized Laplacian matrix notation:

Lnorm — I_D-I/ZA D-IO (5)

Given a similarity graph with affinity matrix A, the simplest and most direct way to construct a partition is to
solve the mincut problem. In particular, given two sets of vertices, C; and C,, the objective is to minimize:

cut(C,,C,) = Y A,

x€Cy,x;€C,

In the case of bi-partitioning the mincut problem is relatively easy to be solved efficiently. In detail, a N-
dimensional vector p is used to represent the association of each instance (vertex in the similarity graph) to one of
the two possible clusters C; and C, , where:

I+l ifxeC
PiZ1a1 ipxec,

The mincut problem can be formulated as minimization of the following function f{p):

f(p): ZLij(pi_pj)z :PTLP

X, x, €V

Solving this combinatorial problem can be complex for real world networks (from thousand to million or
billion of vertices). However, a simple algebraic solution to the problem was proposed in (Fiedler, 1973): in
particular, he used the result of the Rayleigh theorem and identified the 2™ smallest eigenvector of the Laplacian
matrix (usually known as Fiedler vector) as the vector p which partitions the graph through the minimum cut
(algebraic connectivity).

This result has permitted to implement recursive bi-partitioning spectral clustering approaches (Hagen and
Kahng, 1992) in order to perform partitioning in K > 2 groups (usually known as K-way graph cuts). However
this approach requires the computation of matrices and eigenvalues, as well as the use of the Fielder vector, for
each sub-networks until the desired number of groups is reached.

Another possible schema to solve the K-way graph cuts uses the eigenvectors differently by providing a data
representation in the — usually low-dimensional — space of relevant eigenvectors (Luxburg, 2007; Ng et al.,
2001). The relevant eigenvectors are the first / smallest according to the eigengap that is the difference between
two successive eigenvalues, where eigenvalues are sorted in ascending order.

For example, the K-way partitioning approach proposed in (Shi and Malik, 2000), consists in selecting the /
smallest non-zero eigenvalues and performing a traditional k-means clustering on the resulting dataset having N
rows (vertexes of the similarity graph, that are initial instances) and / columns (eigenvectors corresponding to the
[ smallest eigenvalues).

According to the latest approach, the Spectral Clustering procedure adopted in this study consists of the
following steps:
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e Step 1. “R”, original dataset. This is the N x m-dimensional data that user is interested to cluster. The m
features are related to pressure and flow measurements.

e Step 2. “A”, Affinity (or Adjacency) matrix, the N x N similarity matrix between each pair of instances
of R. Different type of similarity measure can be used, such as correlation, Euclidean distance based
similarity, kernel functions.

e Step 3. “D”, Diagonal degree matrix, also N x N, formed by summing, for each vertex, the weight of the
edges incident on it.

e Step 4. “L”, Normalized and symmetric Laplacian matrix, computed according to (4) and (5).

Step 5. “U”: A N x N matrix having the eigenvectors of L as columns.
Step 6. “U"": Select [ eigenvectors corresponding to the [ lowest eigenvalues (non-zero) in order to
define a [-dimensional subspace. U’ is a N x [ matrix obtained from U’ through column selection.

e Step 7. K-means (or other partition clustering) is performed on the rows of U’ (leakage scenarios in the /
smallest eigenvectors space).

e  Step 8. Evaluation of resulting clusters.

2.4 Experiments design

In this work, experiments have been designed by following the step by step procedure described at the end of
section 2.3. However, some additional issues were added in order to create a comparative analysis.

First, a sampling approach was decided in order to avoid high computation and time consuming. From the
initial 27930 instances, two samples of size 3000 instances (each one) were extracted randomly from the whole
dataset without overlapping. These samples were labeled as “sampling 1 and “sampling 2.

Second, quality measures regarding the choice in the number of clusters “k” (for clustering purposes) are
presented. Silhouette (Rousseeuw, 1987) and Calinski-Harabasz index (Calinski & Harabasz, 1974) were
calculated for several values of k in each clustering algorithm over the spectral data. A short definition and
interpretation of these two quality measures is given as follows:

Silhouette (Rousseeuw, 1987): For each observation i, the silhouette width s(i) is defined. Put a(i) = average
dissimilarity between i and all other points of the cluster to which i belongs (if i is the only observation in its
cluster, s(i) = 0 without further calculations). For all other clusters C, put d(i,C) = average dissimilarity of i to all
observations of C. The smallest of these d(i,C) is b(i) = minc {d(i,C)}, and can be seen as the dissimilarity
between 7 and its “neighbor” cluster, i.e., the nearest one to which it does not belong,

s(i) = (b(i) - a(i) )/ max( a(i), b(i) ) (6)
Observations with a large s(i) (almost 1) are very well clustered, a small s(i) (around 0) means that the

observation lies between two clusters, and observations with a negative s(i) are probably placed in the wrong
cluster.

Calinski-Harabasz (Calinski & Harabasz, 1974): Calinski-Harabasz statistic, which is
CH(cn)=(n-cn)*sum(diag(B))/((cn-1)*sum(diag(W))) @)
Where, n as number of instances, cn as number of clusters, B being the between-cluster means, and W being

the within-clusters covariance matrix. The value of ¢n which maximizes CH(cn), is regarded as specifying the
number of clusters.
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Within these previous definitions and remarks, spectral clustering should be performed in our data set as
follows:

e Step 1. Obtain samples of the whole dataset (only in case of computing restrictions). Simple-random
without replacement is recommended. These samples will be representations of whole dataset. They are
the N x m-dimensional datasets in the original space of pressure and flow measurements. In our study
N=3000 and m=7.

e  Step 2. Create “A” matrix. Affinity matrix is obtained by calculating correlation on each pair of points
X;, x; in samplings. Give names S; S, _ S, (¢, number of samples). Here, two matrixes (1=2) of type “S”
were obtained with a dimension of 3000%*3000. Then, assign A= § — I (matrix notation) for each sample.

e  Step 3. Compute “D” matrix. Diagonal degree matrix, also of the type N x N (3000%3000). It is obtained
by summing the degree of each vertex and placing it on the diagonal like an almost full connected graph.
Here again, two matrixes D will be present in our experiments.

e Step 4. Obtain “L”, Normalized Laplacian matrix for each A. Then, eigenvalues and eigenvectors over
each L are calculated.

e Step 5. Get “U”, matrix of eigenvectors of L.

e Step 6: Choose the number of eigenvalues and criteria to build-up U’ (Gutierrez-Perez et al., 2012). In
this study, the four lowest eigenvalues and theirs correspondent eigenvectors were selected to define the
new 4-dimensional subspace (Ul). This choice of eigenvalues was taken due to that from all over 3000
eigenvalues, the last four have the biggest difference amongst them. Previous 2995 eigenvalues have
minimal difference, almost imperceptible. Eigenvalue number 3000 is zero and it is not taken within
spectral analysis.

e Step 7: Clustering

e Step 7.1. Hierarchical clustering (distance “Euclidean”, method “ward”) and partition
algorithms (k-means and Partitioning around Medoids (PAM)) could be applied for different
values of k (number of clusters) over U'. Silhouette and Calinski-Harabasz index will be used
to determine both the best value of k and the algorithm which performs better these quality
measures.

e  Step 7.2. Elected algorithm could be applied to “non-transformed dataset” (N x m dimension) in
order to establish benchmarking analysis.

e Step 8. Interpretation of clusters results will be done by comparing spectral clustering results versus
traditional clustering approaches (in particular by taking into account the fitness function defined in the
next section 3.1).

3. Experiments

Experiments were developed by following the methodological outline explained in section 2.4. Steps 1 to 6
correspond essentially to matrix computing. With U’ matrices step 7.1 was performed to determine the best
clustering algorithm which fits the best values for the quality measures with the corresponding “optimal” k
(number of clusters) value. This step is supported by simulating clustering techniques for several values of k
within different algorithms (hierarchical, k-means and PAM-Clara).
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Unsupervised approach was taken at the beginning with hierarchical clustering (distance criterion =
“Euclidean”, method = “Ward”) to determine an initial range for k. Analysis made on dendogram’s height
suggested k values equal to 4, 5 and 8. Under these premises, simulated clustering with k values fromk =2 to 8
were performed (k-means and PAM) and quality measures were calculated in order to select the best algorithm.
Fig. 2 shows an example of this type of simulation by using k-means and Calinski-Harabasz index.

Calinski
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Fig. 2. Detecting optimal k value in K-means algorithm by using Calinski-Harabasz Index

From Fig. 2, it could be seen that k= 8 maximizes the value of the Calinski-Harabasz index. However, values
from k= 5 to 7 have similar Calinski-Harabasz indexes (a choice among this range could be also feasible). In
order to refine procedure and made a decision, Silhouette criterion is also performed. Fig.3 shows that Silhouette
values for k=5 and k=8 are similar and around 0.65 (a good average value).

Values for k = 5 and/or 8 seem to be optimal and are closer to values detected from the first unsupervised
approach (hierarchical clustering). So, a previous decision was made, i.e., clustering analysis would be performed
by using k=5 and k=8 over the two samples and the non-transformed dataset.
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Silhouette plot of (x=KM5Scluster, dist=hdist) Silhouette plot of (x=KM8Scluster, dist=hdist)
n=3000 Cluster:n | avgs n=3000 Cluster:n | avgs
"1¢100 | 0.81 1:99 | 0.82
2:124 | 0.65 2:121 | 0.66
3:924 | 0.87 3:924 | 0.87
4:413 | 0.64
5:158 | 0.55
4:1129 | 0.40 6:126 | 0.71
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Fig. 3. Detecting optimal k value in K-means algorithm by using Silhouette

Then, a comparative analysis was made by selecting the algorithm which maximized both Calinski-Harabasz
index and Silhouette with k=5 and k=8 from three options: hierarchical (cutting dendogram in 5 and 8), K-means
and Partitioning around Medoids (PAM). The best performance regarding the two quality measures was found
with Partitioning around Medoids. So, PAM (with k=5 and k=8) was used to interpret clustering over spectral
data. Also, these algorithms were applied over the non-transformed data to establish comparative analysis.

3.1 Clustering Fitness

While clustering is focused on grouping leakage scenarios by maximizing intra cluster similarity and
minimizing the inter cluster similarity (only according to pressure and flow values) the results provided by the
different strategies have been evaluated according to the capability to generate a greater number of localizing
clusters. More in detail, a localizing cluster contains scenarios referred to a limited set of (simulated) leaky
pipelines with no respect to discharge coefficient. According to this definition, features 8, ignored in clustering,
has been then used for results interpretation.

The procedure was as follows, in each dataset we proceeded to count the numbers of unique pipes from de
total number of 931 which contains our case of study (notice that for each dataset, there are pipes which appears
repeatedly because each pipe ID has associated with itself different values of discharge coefficients). For
sampling 1 and its non-transformed dataset, the total of unique pipes was 903. On the other hand, for sampling 2
and its non-transformed data, this total was 901. Both sampling 1 and 2 have a high numbers of pipes in relation
to the whole set of pipelines (931) of the system. In both samplings this representation reaches almost 97%
(903/931 and 901/931, respectively). This procedure was repeated to extract unique pipelines from each group
obtained from clustering. In particular we have computed the following index:
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Network Coverage Function (%) = (TNPinK / TNPinD)*100 (8)

where TNPinK is the total number of unique pipes related to scenarios into cluster K and TNPinD is the total
number of unique pipes into the whole dataset (samplingl and sampling2, non-transformed datasets).
The following Fig. 4 shows, on a toy WDN, an example of “good” and “bad” localizing clusters.

Fig. 4. An example of a “good” (left) and “bad” (right) localizing cluster (highlighted pipelines are

those related to scenarios belonging to the cluster)

The next figures and tables summarize our results by showing localizing clusters for each sampling, non-
transformed dataset and the clustering algorithm performed, i.e., PAM with K= 5 and 8.

Table 1. Number of pipes (left) and Network Coverage Function (right) for each cluster - Spectral vs Non-Transformed Data - Sampling 1

K=5 K=8 K=5 K=8
Spectral NTD Spectral NTD Spectral NTD Spectral NTD

315 474 271 426 34,88% 52,49% 30,01% 47,18%
304 473 242 353 33,67% 52,38% 26,80% 39,09%
221 468 217 344 24,47% 51,83% 24,03% 38,10%
36 463 70 336 3,99% 51,27% 7,75% 37.21%
30 448 39 307 3,32% 49,61% 4,32% 34,00%

33 281 3,65% 31,12%

31 279 3,43% 30,90%

30 273 3,32% 30,23%




Table 2. Number of pipes (left) and Network Coverage Function (right) for each cluster - Spectral vs Non-Transformed Data - Sampling 2
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307

300

229
40
29

K=5

Spectral

NTD
496
466
462
445
428

K=8 K=5
Spectral NTD Spectral
269 389 34,07%
239 366 33,30%
219 346 25,42%
73 321 4,44%
39 308 3,22%
35 301
29 281
24 280

NTD
55,05%
51,72%
51,28%
49,39%
47,50%

Spectral
29,86%
26,53%
24,31%
8,10%
4,33%
3,88%
3,22%
2,66%

K=8

NTD
43,17%
40,62%
38,40%
35,63%
34,18%
33,41%
31,19%
31,08%

Results from Table 1 and 2 are appreciated graphically in Fig. 5 and 6.

Fig.5. Network Coverage Function for each cluster: Spectral versus Non-transformed data, Sampling 1 (For K=5 and K=8)
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Fig.6. Network Coverage Function for each cluster: Spectral versus Non-transformed data, Sampling 2 (For K=5 and K=8)

In Fig.5 it is possible to realize that clusters obtained through spectral clustering versus traditional are more
localizing. Notice that for K=5, in spectral data, there are three groups of pipes with Network Coverage Function
lower than 25% and the other two groups have a Network Coverage Function lower than 40%. Meanwhile, for
non-transformed data, the Network Coverage Function is higher than 50% in four groups and the last one is over
the border of 50% (49.61%), so it is evident that spectral approach is capable to obtain a better leak localization
on our simulation scenarios. The same occurs with K=8: Although performances improved for non-transformed
data, its performance is absolutely inferior when compared to spectral clustering. Same observation could be
extracted from Fig.6 that shows results for sampling 2.

Now, if we consider benchmarking all results for K=5 and K=8 (Fig. 7), it is seen that for both values of K,
spectral clustering over the two samplings has a decreasing trend related to localizing index. This decreasing
behavior is optimal for our purposes because while more highly localizing clusters more the efficiency in leakage
localization (a smaller number of pipes to check implies that costs regarding inspection, rehabilitation or
replacement reduce considerably). In addition, note from Fig. 7, that average percentage in spectral clustering is
less than 20% which implies that most clustering groups are highly localizing. On the other hand, the
performance for classical partition clustering applied directly to non-spectral data is over 50% for K=5 which
indicates that cluster groups are not so effective in localizing a leak. For K=8 there is an improvement for the
traditional approach, however, its performance continues to be inferior when compared to spectral clustering.
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Fig. 7. Network Coverage Function: Spectral Clustering versus PAM, both on sampling 1 and sampling 2, for K=5 and 8, separately

Conclusion & Future works

This paper deals with the adoption of Spectral Clustering approaches to develop a leak localization task based
on a combination of hydraulic simulation and clustering. In particular, this work represents an extension of a
previous approach using traditional data points clustering and proved to be useful in order to improve the
traditional leakage management process in WDN (Candelieri & Messina, 2012; Candelieri et al., in press). The
advances proposed by the authors in this paper are related to the transformation of a data points dataset, related to
leakage scenarios, into a similarity graph on which is possible to apply Spectral Clustering techniques. Although
it has been usually adopted to solve graph clustering problems in the network analysis domain, it proved to
outperform traditional clustering algorithms when applied on traditional data points datasets.

Results obtained in this work have confirmed the benefits of Spectral Clustering, offering higher performances
with respect to traditional, even if recent, data points clustering approaches. According to these results, the
overall approach previously proposed by the authors may be further improved, enabling a more reliable leakage
localization and a consequent reduction for time and costs of intervention, investigation and rehabilitation.
Moreover, the spectral approach appears to be more effective with respect to those previously proposed by the
authors and based on partition clustering approaches proposed in other application domain (Archetti et al. 2006;
Fersini et al., 2010).

As future works, authors are planning to investigate strategies in order to identify the best number of cluster k
to be used according to the structural properties of the network as well as of the leakage scenarios simulated.
Moreover, a more accurate fitness function for clustering will be defined. Finally, high performance computing
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solutions, hardware and software, will be investigated in order to use the spectral approach on the overall leakage
scenarios dataset, avoiding sampling.
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