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Abstract

In-Vitro Fertilization is among the most widespread and successful treat-
ments for infertility. One of its main challenges is the evaluation and selec-
tion of embryos for implantation, a process which suffers from large inter- and
intra-observer variability. Due to the advancements in time-lapse imaging, Deep
Learning (DL) methods are gaining attention to address this issue, raising both
technical and ethical questions. The published works on the topic either fail
to address the generality of the problem by focusing on a particular approach
or compare different approaches in a misleading manner. In this master thesis,
we present and compare different DL-based alternatives delving into technical
characteristics, explainability aspects, ethical considerations and clinical applic-
ations. Moreover, we propose a set of guidelines for the development of an AI
model for embryo selection based on the previous analysis of the literature. Our
ultimate goal is to offer a better understanding of the complexities involved in
this problem as a necessary first step while working in such a sensitive domain.
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Chapter 1

Introduction

Infertility is a common reproductive health problem that affects millions of
people worldwide, causing social, psychological, physical and economic distress
to the ones seeking to conceive [1]. In the coming years infertility rates are
projected to grow due to environmental and lifestyle factors [2, 3]. In vitro
fertilization (IVF) technology is used to overcome infertility, it involves the fer-
tilization of an oocyte with sperm in the laboratory, followed by the transfer of
the resulting embryos into the patient’s uterus. The main challenge of IVF is
the selection of the embryos that will be either selected for implantation, cryo-
preserved (for later implantation) or discarded (if they exhibit undesirable fea-
tures). This selection is to be performed during the early days after embryo
insemination, typically between three and five days. During this time, embryos
are monitored in time-lapse imaging incubators (TLI), facilitating uninterrupted
embryo growth within stable culture conditions (Figure 1.1). This technology
offers a dynamic perspective on in vitro embryonic development, augmenting
the clinical effectiveness of IVF [4].

To assess embryo quality, embryologists evaluate different morphological
characteristics depending on the embryo development phase. Early develop-
ment (days one to three) focus on cell number, symmetry and fragmentation
rate, while embryos reaching bastocyst stage (day five) are also assessed by their
expansion grade and the appearance of the inner cell mass (ICM) and the Zona
Pellucida (ZP), as well as to the trophectoderm cells (TE) [5]. Figure 1.2 il-
lustrates a 3 day embryo and a 5 day embryo along their main morphological
features. These features are currently the best available evidence regarding the
quality of embryos, and represent the foundation of current development as-
sessment guidelines such as Gardner’s [6] or ASEBIR in Spain. However, these
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Figure 1.1: Embryoscope. Wings Embryoscope by Dr. Jayesh Amin, CC BY-SA 3.0

approaches are limited by the subjective assessment of embryologists, which
causes inter- and intra-observer variability, and restricts the success rates of IVF.
According to [7], the national pregnancy rate in Spain via IVF in the year 2019
stood at 41.9%, while the birth rate stood at 30,7%.

Artificial Intelligence (AI), and specially Deep Learning (DL) due to its ca-
pacity for dealing with images, have recently been considered to assist in the
embryo assessment and selection process. AI has the potential to facilitate and
improve the process of embryo selection, increasing the implantation success
rates, and reducing the chances of multiple pregnancies. AI can also mitigate
inter- and intra-observer variability, making results more reproducible and con-
sistent [9]. Finally, AI can help reduce the financial, physical and emotional
burden on patients, by optimising the treatment plan and minimising the need
for repeated cycles of IVF.

Nonetheless, several aspects of AI models for embryo selection remain un-
clear and challenging. One major problem is the lack of standardisation and
openness of the procedures for training these kinds of systems, which hinders
reproducibility and comparability of results across different models. A variety of
performance metrics are used in the field, making it difficult to directly compare
the effectiveness of different approaches. Furthermore, comparisons between
studies are often made on different outcomes and data foundations, e.g., using
different patient demographics, unbalanced data, or sub-cohorts, further com-
plicating the ability to draw meaningful conclusions from literature [10]. The
absence of a framework makes difficult the assessment and comparison of differ-
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Figure 1.2: Morphological features of D3 and D5 embryos (blue) and culture
well (orange). Edited images, originals from [8].

ent systems. Thus, establishing a common ground for reporting and comparing
performance metrics is required.

Despite its importance and criticality, the potential bias of AI systems in em-
bryo selection is rarely addressed in the literature. Biases in AI-assisted em-
bryo selection can appear in many forms; while the model itself may present
biases favoring or discriminating subpopulations (e.g., patient age or fertiliza-
tion method), biases may also be present in the use of these systems in a clinical
context, over-relaying or subjectively interpreting recommendations. Moreover,
the adoption of theses system is currently limited by their lack of explainability
due to their opaque nature, which can have significant implications. Clinicians
and patients need to understand the decision-making process behind the outputs
of these models to establish trust in their recommendations. Assuring that the
decisions of the model are explainable is a requisite for assuring trustworthiness
and building acceptance in these systems.

The work done within this thesis is part of an interdisciplinary collabora-
tion between the HPAI research group at the Barcelona Supercomputing Cen-
ter (BSC) and expert embryologists from the Clinic Hospital in Barcelona. The
preliminary goals of this collaboration encompass a comprehensive review and
critique of all aspects related to AI-Assisted embryo selection as a necessary first
step towards more ambitious goals. For that purpose, this thesis will produce
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a set of recommendations for the responsible and reliable development of such
systems. These comprehend best practices for each phase of model develop-
ment, including defining the intended use of the system, data pre-processing,
and model design, as well as evaluation methodologies. The long-term goals
of this collaboration involve the development of AI models for embryo selection
based on the findings and recommendations produced in this thesis. The insights
gained from the literature review and critical analysis presented in this work will
heavily influence the development of the models, with the aim of building reli-
able and robust systems in which experts can find value.

4 Exploring the Complexities of AI-Assisted Embryo Selection



Chapter 2

Background and Related Work

2.1 Embryo Selection in IVF

In vitro fertilization is an assisted reproductive technology that involves the
manipulation of oocytes and sperm outside of the human body, in a controlled
laboratory environment, to facilitate fertilization and the development of em-
bryos. In this section, a review the IVF process and the data associated to it is
carried out.

2.1.1 The IVF Process

The first step of the process is ovarian hyperstimulation, where the patient
receives medication to stimulate the maturation of multiple eggs within the ovar-
ies. This step aims to increase the number of eggs available for retrieval during
the subsequent stages of the procedure. Once the eggs have sufficiently ma-
tured, they are retrieved from the ovaries in a procedure known as transvaginal
oocyte retrieval. Simultaneously, the male partner or sperm donor provides a
semen sample, which undergoes laboratory processing to isolate and prepare
the sperm for fertilization.

After the eggs and sperm have been collected, fertilization can be achieved
through two methods: conventional insemination, referred to as IVF in this pro-
ject, or Intracytoplasmic Sperm Injection (ICSI). In conventional insemination,
the eggs and sperm are combined in a culture dish, and the egg naturally se-
lects a spermatozoon for fertilization. In ICSI, a single sperm is injected directly
into the egg. It is important to note that the choice of insemination method can
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introduce visual differences in the resulting embryos, as the injection method
may leave a visible tail on the embryo while conventional insemination not, but
in turn can leave free spermatozoon in the culture dish. This variations im-
portant for the task at hand, as it can potentially introduce a visual bias when
developing an AI model for embryo selection. In clinical practice, individual oo-
cytes are typically inseminated in batches and assigned the same starting point
timestamp for practical reasons. However, it is important to consider that there
may be variations of up to 10 minutes in the recorded timestamps. This consid-
eration is crucial since the time of development between different stages plays
a significant role in the morphokinetic evaluation during clinical assessments.

Following fertilization, the resulting embryos are cultured in a TLI. During
this culture period, cumulus cells, which are the tissue that surrounds and pro-
tects the egg, are manually removed. However, some remnants of cumulus cells
may remain visible. Although they do not interfere with embryo development,
it is important to consider this potential source of bias in the AI model. Yet other
potential source of biases include the change or alternation of culture medium
used during embryo development or the performance of genetic tests such as
PGT-A.

After cultivation, embryos must be either selected for insemination, crypto-
preserved for future cycles or discarded. The final step of the IVF process in-
volves transferring the selected embryos into the patient’s uterus. The number
of embryos transferred depends on the patient’s clinical condition an also in the
legislation of the region on which the procedure is performed. For example, in
Spain, no more than three embryos can be transferred to the patient in a single
cycle [11]. Following embryo transfer, the patient undergoes monitoring to de-
termine if a successful pregnancy has been achieved. In cases where pregnancy
is not achieved, the couple may opt to repeat the IVF cycle.

This section provides an overview of the fundamental steps involved in the
IVF process, highlighting key factors that may introduce potential biases. These
factors encompass the choice of fertilization method and its timing, the selec-
tion of culture medium, the technique employed for embryo transfer, and the
incorporation of genetic testing.

2.1.2 Embryo Development: Stages and Morphokinetic Fea-
tures

Embryos undergo different stages during the incubation, as illustrated in
Figure 2.1. During the initial stages of embryo culture, typically from day 1

6 Exploring the Complexities of AI-Assisted Embryo Selection



CHAPTER 2. BACKGROUND AND RELATED WORK

until around day 3, embryos go through the cleavage stage, which corresponds
to approximately 70 hours post-insemination (hpi). This stage is characterized
by the division of cells, known as blastomeres, derived from the fertilized egg.
Blastomeres form a compact mass called the morula. During days 2 and 3 of
development, clinicians assess the quality of the embryos. This project focuses
on ASEBIR grading methodology, which is the grading system employed by the
Clinic Hospital in their clinical practice. Relevant features in this stage include:

• Number of cells and division rate

• Percentage and type of cellular fragmentation

• Blastomer size

• Visualization of nuclei and degree of multi-nucleation

• ZP appearance

• Degree of compactation

• Early adhesion

After the cleavage stage, the embryo progresses to the blastocyst stage, which
typically lasts until 140 hpi, which corresponds to the fifth day. At this point,
the embryo undergoes significant morphological changes, and the evaluation
parameters shift accordingly. During the blastocyst stage, clinicians assess the
following features:

• Expansion grade

• ICM appearance

• TE appearance

When to Transfer? Day 3 vs. Day 5

One of the most important factors to consider in IVF is the time of transfer.
Most frequently, this happens at either day 3 (70 hpi, end of cleavage stage) or
at day 5 (120 hpi, blastocyst stage). Embryo transfer to the uterus at Day 3 (D3)
has its own set of advantages and disadvantages. One of the main advantages
is that there is a larger number of embryos ready to be transferred at this stage.
This increases the chances of finding viable embryos for transfer and potentially
achieving a successful pregnancy. Additionally, a higher number of embryos can
be frozen for future use, providing an advantage in subsequent cycles if needed.

Exploring the Complexities of AI-Assisted Embryo Selection 7
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Figure 2.1: Development phases of the embryo during culture [8]. The images
shows sequentially, from top left to bottom right, the main stages through which
the embryo undergoes. Phases p8 and pB correspond to days 3 and 5 respect-
ively.

However, there are some drawbacks to D3 transfer. The methods used for
morphological scoring of pre-implantation embryos at this stage may not be suf-
ficient to accurately select the embryo with the highest implantation potential.
Even if the embryo with the best apparent quality is chosen, there is no definitive
proof that it will continue to develop successfully after the transfer, particularly
during the key stage of blastocyst formation. Furthermore, in order to increase
the chances of success, multiple embryos are often transferred, which can lead
to a higher likelihood of multiple pregnancies. This, in turn, carries potential
risks for both the mother and the babies.

The alternative to D3 transfer, is to transfer once the blastocyst is success-
fully formed, that is on day 5 (D5), and offers its own set of advantages [6].
D5 transfer is associated with higher implantation rates, primarily because it
allows for a better selection of embryos. At this point, the improved synchroniz-
ation between the embryo and the endometrium closely resembles the natural
conditions, which may increase the likelihood of successful implantation. With
more information available, embryos can be selected more accurately based on
their kinetics (i.e., the evolution of visual features through time), and morpho-
logy, increasing the likelihood of selecting the embryo with the best implant-
ation potential. Furthermore, transferring embryos at D5 increases pregnancy
success rates since most embryos with abnormalities are unable to progress to
the blastocyst stage. This selection process reduces the chances of transferring
embryos with low implantation potential. As a result, and given the increased
certainty on the embryo selection, success rates of single embryo transfer are
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increased, minimizing the risks associated with multiple pregnancies.

Let us now consider the limitations of with D5 transfer. It is possible for
genetically normal embryos to fail to reach the blastocyst stage due to intrinsic
embryo factors or clinical conditions. A high number of viable embryos may be-
come nonviable by day 3 of development, and this proportion can be even more
significant for older women [12]. This highlights the potential limitation of rely-
ing solely on blastocyst stage transfer, as it may result in the loss of embryos that
could have been viable at an earlier stage. In conclusion, the choice between D3
and D5 transfer is not a trivial decision and solutions to make a more informed
decision are needed.

2.1.3 Source and Nature of Embryo-related Data

Obtaining data and preparing datasets for the training of AI models in the
field of embryo selection must be done with special care given its direct implica-
tions with human life. Embryo images used for training AI models are typically
captured using microscopes contained in TLI devices. Due to the sensitivity of
this data and the interest of scientists in having exclusive access to train their
models, there is a limited availability of publicly accessible datasets in this do-
main.

The availability of public datasets is crucial, as it enables the development
of new models and techniques. Secondly, public datasets serve as a benchmark
for comparing the performance of different models. Without publicly available
datasets, the ability to compare and evaluate the performance of AI models and
to reproduce their results becomes limited.

As of today, there are a few public embryo datasets available, such as the
dataset published by Gomez et al. [13], which provides data of 704 time-lapse
(TL) embryo videos obtained by the EmbryoScope incubator at different time
steps and focal planes, accounting for a total of 2,4M images. Early this year
another dataset was been published by Kromp et al. [14]; it contains static
blastocyst images from single focal planes as well as Gardner score annotations,
making this dataset suitable for embryo quality grading. Although these datasets
contribute to the open source community and can be highly useful, they lack
essential metadata, necessary to design reliable experimentation. For example
patient demographics and clinical settings related information. The absence of
this information makes it difficult to assess and mitigate potential biases in the
model evaluation process.

Exploring the Complexities of AI-Assisted Embryo Selection 9
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The issue of data availability is not the only problem associated to embryo
related data. The question of whether data related to an embryo is considered
personal data falls within the scope of the General Data Protection Regulation
(GDPR) [15] in European Union (UE). According to the GDPR, "Personal data
is any information that relates to an identified or identifiable living individual",
where an identifiable person can be directly or indirectly identified using identi-
fiers such as name, identification number, location data, or other specific factors
related to their identity.

In the medical domain, compliance with the GDPR is of high importance as
most patient related data is considered personal data and must be processed in
accordance with the regulation. When it comes to embryology, different kinds
of data are involved in the process, such as data related to the IVF patient (e.g.,
age, location) and embryo images. However, there is some ambiguity regarding
the classification of embryo images as personal data. Nonetheless, as a precau-
tionary measure, this project has chosen to treat the images as personal data.

2.1.4 Embryo Images and Metadata

Embryo data typically consists of two main types: embryo images and asso-
ciated metadata.

Images

In recent years, there has been a shift towards using TLIs for culturing em-
bryos, which offer uninterrupted growth and stable conditions. This technology
provides a dynamic perspective on in vitro embryonic development, allowing
for the extraction of kinetic parameters in addition to standard morphological
parameters.

TLIs capture snapshots of embryos at regular intervals, providing a temporal
dimension to the data, e.g., an image every 10 minutes during the 5-6 days
of embryo development. Some time-lapse incubators even have the capability
to capture images from different focal planes, e.g., 7 different focal planes for
each image. This feature is particularly useful for tasks such as cell counting,
where overlapping cells may obscure others. However, analyzing large amounts
of data corresponding to multiple focal planes and temporal frames becomes
challenging.

In the context of AI models, different approaches can be taken with respect
to how these embryo images are treated. Figure 2.2 illustrates different sample
types for training the model. The simplest approach is to treat each image as
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Figure 2.2: Sample types. From left to right: static image, time-lapse video of the
same embryo at different time stamps, and collection of images of an embryo
from different focal planes at the same time stamp. An additional and more
complex sample type merges TL frames and focal planes in the same sample.

an individual sample, disregarding the temporal information and multiple focal
planes. While this approach can increase data volume, it results in the loss of
valuable kinetic information about the embryos as temporal evolution is lost.
More ambitious solutions treat the entire TL video as a single sample, incorpor-
ating all the images captured over time and potentially combining them with
data from different focal planes. This approach considers the complete devel-
opmental trajectory of the embryo. However, it also increases the complexity of
the problem, requiring more advanced modeling techniques and computational
resources. The definition of what constitutes a sample is crucial as it influences
the intended use and performance of the AI model. Different approaches have
their advantages and limitations, and the choice depends on the specific goals
and requirements of the study or application.

Metadata

In addition to the embryo images, associated metadata can be collected, e.g.,
clinical data, patient-related data and sample-related data. As mentioned earlier,
this data serves not only as input for the AI model alongside the images but also
as a means to account for potential biases that may exist within the dataset. It
is known among clinicians that one of the most important factors to determine
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the success of an implantation is the age of the patient [12]. As a result, a model
may demonstrate good performance for patients above the age of e.g., 38 but not
for younger patients. Having the relevant metadata helps identify and address
such biases.

The metadata associated with embryo data includes information about the
IVF clinical procedure itself, such as the insemination procedure, culture me-
dium used, transfer protocol, the day of transfer, and the year of treatment.
Patient-related data, such as maternal age, paternal age, and body mass index,
also play a significant role in understanding the context of the data. Further-
more, sample-related data is collected, including the number of IVF cycles un-
dergone, the number of embryos obtained per cycle, the number of images avail-
able per embryo, and the specific stage of development at which the embryos
are imaged (e.g., Day 3 or Day 5).

2.2 Related work

Let us now summarize previous analyses of the AI-Assisted embryo selection
field. These studies explore various aspects of this domain, and their limitations,
as we will see by the end of the section, motivate our work and contributions.

Dimitriadis et al. [16] provide a broad overview of AI applications through-
out the various stages of the IVF procedure, covering topics ranging from sper-
matozoa and oocyte analysis to models that target pronuclear, cleavage, and
blastocyst stages. Conversely, there are other studies specifically focused on the
stage of embryo selection in IVF. These can be categorized based on the specific
task the studies perform.

For instance, Isa et al. [17] analyze papers that develop Machine Learning
(ML) models for blastocyst grading, encompassing embryo classification models
and embryo segmentation techniques. Others aim to encompass a wider array
of tasks. Konstantinos et al. [18] discuss models for predicting clinical preg-
nancy, clinical pregnancy with fetal heartbeat, and ploidy status. The work of
Louis et al. [19] explores approaches for embryo development phase annota-
tion, including cell counting, detection and tracking, blastocyst formation and
implantation potential prediction, and embryo grading and selection. Lundin et
al. [20] focus on works related to TLI for embryo assessment and ploidy status
determination. Zaninovic et al. [21] limit their study to ML models for auto-
matic annotation, embryo grading and selection, and ploidy status prediction.
Fernandez et al. [22] present a review that includes both traditional algorithms,
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such as Bayesian Networks and Support Vector Machines (SVM), as well as more
modern approaches for embryo evaluation. Additionally, there are analysis, such
as the one by Kim et al. [23], which provide a biological perspective, specific-
ally discussing morphokinetic markers for predicting implantation potential and
highlighting deep learning-based models developed for this purpose. Nonethe-
less, this studies are not without flaw, several issues can be identified within
them.

Broad reviews and outdated literature

Firstly, some reviews aim to cover a broad range of tasks related to embryo
selection without delving into the specific nuances of the problem. As a result,
they may not provide comprehensive insights into the specific challenges and
considerations that are relevant in the design of AI models. Furthermore, it is
important to note that some of these reviews may be outdated, failing to capture
recent advancements and breakthroughs in the field of DL methods specifically
applied to embryo selection. Given the rapidly evolving nature of AI technolo-
gies, it is essential to rely on updated and relevant literature to gain accurate
and reliable insights.

Lack of explainable AI

Importantly, while these reviews analyze the technical aspects of embryo
selection, the topic of explainable AI in this context has not been adequately
addressed. It is crucial to showcase the approaches that have been developed in
explainability, highlighting their strengths and limitations, to guide future work.
Explainable AI plays a critical role in ensuring that the decision-making process
of the algorithm is transparent and understandable to clinicians and patients.
Without explainability, there is a risk of lacking trust in the technology, which
can ultimately hinder its widespread adoption.

Methodological shortcomings

Another significant drawback of these reviews is the methodology employed
to compare the papers. Most of them separate studies by task, such as preg-
nancy prediction, and compare their performance using inconsistent metrics or
experimental settings. This practice leads to inconsistent evaluation and can
potentially mislead readers, as there is substantial variation in input data, em-
bryo populations, and outcome measures across studies. For instance, Fernan-
dez et al. [22] compare accuracy measures across different studies and datasets
without considering the differences in embryo populations and label distribu-
tions within the test sets.
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Lack of ethical considerations

Furthermore, an important concern regarding these reviews is the lack of
attention given to the ethical aspects of AI-Assisted embryo selection, which are
highly relevant in this application. The introduction of these models as Decision
Support Systems (DSSs) in the clinical context remains largely unexplored. Con-
sequently, crucial questions such as how to interpret the model’s results, how to
effectively communicate the decision to the patient or what impact can these
systems have in the society are left unanswered. The implications of AI-assisted
embryo selection in IVF must be thoroughly examined to ensure that the tech-
nology is developed and implemented in an ethical and responsible manner.
While a few studies have studied these ethical considerations, such as the works
[24, 25, 26], there is currently no comprehensive review that analyzes both the
technical and ethical dimensions of this topic.

Given the drawbacks and limitations encountered in existing reviews, this
project aims to provide a holistic overview of the topic, encompassing both tech-
nical and ethical aspects. Moreover, the objective is to compare the papers in a
meaningful and non-misleading manner, addressing the gaps in previous com-
parative methodologies. By using this comprehensive approach, a more robust
understanding of AI-assisted embryo selection can be achieved, serving as the
foundation for the development of practical guidelines on designing reliable and
trustworthy models in this project.
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Methodology

The preliminary goals of this project encompass a comprehensive review and
critique of the aspects related to AI-Assisted embryo selection, with the aim of
providing a set of recommendations for the development of robust and trust-
worthy AI-Assisted embryo selection models. This section outlines the method-
ology employed for the literature review process.

3.1 Search Strategy

To ensure comprehensive coverage of the literature, two search strategies
were employed to identify and evaluate relevant studies. The first strategy fo-
cused on identifying papers that introduce novel DL models for embryo selection,
while the second involved identifying papers that implement or assess explain-
ability methods within their models. In terms of the timeframe, papers published
from 2018 onwards were considered, as DL models in this field are relatively re-
cent and rapidly evolving, with sigficand advances withing the last 5 years such
as EfficientNet, ConvNext, visual transformers and diffussion models.

Three academic journal databases were used for all searches: PubMed, Scopus
and IEEE. The common keywords used for the queries were: embryo selection,
artificial intelligence, deep learning and IVF; for the search of explainability pa-
pers explainability and XAI were added. It should be noted that, although papers
on explainability can be considered as a subset of papers on DL models, different
results were obtained by using different key words in the queries. After search-
ing in all the databases, 171 papers were identified in total for screening.
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3.2 Study Selection

For papers proposing a DL model, this review has focused on three specific
tasks: Blastocyst Formation Prediction, Pregnancy Prediction, and Live Birth Pre-
diction. As a result, the in-depth analysis of other tasks related to AI-assisted
embryo selection (e.g., embryo segmentation, development stage identification)
has been deferred to future work. In the case of explainability related papers,
the inclusion was limited to works that applied any form of XAI method to their
model, introduced a novel XAI method, or conducted comparisons between dif-
ferent XAI methods.

It is important to note that the literature review conducted for this study
encompasses articles published up until June 2023. Finally, out of the 171 papers
identified in the search, after duplicate removal, abstract screening and review
of additional papers obtained from the references of selected studies, a total of
28 were fully reviewed and included in the study.

3.3 Information Extraction

As seen in the previous chapters, there are many variables involved in the
design of AI models of embryo selection. One of the objectives of the review
is to analyze and compare studies based on the consideration and selection of
these variables. To provide methodological consistency, a series of parameters
were defined to be annotated during the review of each paper.

1. Data related information: This included number of embryos considered,
developmental stages of the embryos, fertilization method employed, use
of fresh or frozen embryos, ploidy status of the embryos, hours post im-
plantation of embryos in the images, frequency of image acquisition, im-
age resolution, utilization of discarded embryos, labels and their distri-
bution, number of images or videos utilized, number of patients involved,
number of IVF cycles included, number of participating clinics or hospitals,
study design (retrospective or prospective), and the imaging device em-
ployed TLI, microscope). Additionally, information regarding the number
and types of focal planes used was also extracted.

2. Model related information: This included the specific task for which the
model was designed (blastocyst formation prediction, pregnancy predic-
tion or live birth prediction), the objective of the model (whether it focused
on embryo-level prediction or patient-level embryo ranking), whether the
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model incorporated explainability techniques, the type of explainable XAI
method used if applicable, and the architecture of the model employed.

3. Evaluation related information: This involved the metrics used to evalu-
ate the model’s performance, the achieved performance results, whether
subpopulation analysis was conducted to assess potential bias, the type
of validation employed, evaluation of predictive performance over time,
clinical assessment of the model, and whether an ethical evaluation was
conducted.

The information extraction process consisted of two distinct phases. A first
screening was centered in studies containing explainability methods, and was
done in collaboration with other members of the HPAI research group, who re-
viewed XAI aspects from up to 25% of all found papers. Subsequently, a com-
prehensive and detailed review of all 28 papers was conducted solely by the
author of this thesis. By extracting and analyzing these characteristics, along
with the inclusion of papers focusing on ethical considerations, a comprehens-
ive and holistic analysis of the current state of AI-assisted embryo selection in
IVF was conducted.

To facilitate a comprehensive understanding and comparison of AI models,
we adopt and extend the framework proposed by Kragh et al. [10], which util-
izes a population-outcome scheme to characterize AI models in embryo evalu-
ation based on their data foundation. In our extension, we include additional
fields such hours post implantation, time intervals between image acquisition,
use of discarded embryos, and labels and their distribution. This comprehens-
ive framework allows for a better comparison between papers. Tables 3.1, 3.2,
3.3 and 3.4 show the data foundation of the different studies grouped by task.
Symbol "-" was used to express that the information was not provided in that
study, which in turn indicates the lack of transparency and reproducibility of
these studies.
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Ref.
N. of
Embryos

Fert.
Method

Fresh/
Frozen

Hours post
Implantation

Image
Frequency

Used
Discarded
Embryos

Labels &
Distribution

[27] 3,300 - - - 5 min1 - Blastocyst, non-blastocyst

[28] 2,898 - - 0-168 h 6 h -
Blastocyst (56.38%),
non-blastocyst (43.62%)

[29] 12,9122 IVF, ICSI - - 5-10 min3 No
Blastocyst (n=5061),
non-blastocyst (n=3285)

[30] >6,200 ICSI - - Unknown4 Unknown5 Blastocyst (50%),
non-blastocyst (50%)6

Table 3.1: Data Foundation Blastocyst Formation Prediction Task

1 After, key-frame selection model reduces frame number.
2 Initially 26113, after D3 transferred/cryopreserved/discarded embryos elimination 12912 remained, not all were used for training.
3 Frequency of the imaging device, unknown if it is the same frequency of input frames.
4 Frequency seems to be different in different modules of the network.
5 Embryos that underwent genetic testing were discarded.
6 Balanced dataset is reported so 50% is inferred.



Ref. N. of
Embryos

Fert.
Method

Fresh/
Frozen

Hours post
Implantation

Image
Frequency

Used
Discarded
Embryos

Labels &
Distribution

[31] 181,428 ICSI, IVF
Fresh,
Frozen

20-148 hpi, 20-
84 hpi2

1 h Yes1 KID+ (50%), KID- (25%), dis-
carded (25%)3

[32] 9,3594 IVF Fresh -
Static
images

Unknown5 KID+ (50%), KID- (50%),

[33] 115,832 ICSI, IVF
Fresh,
Frozen

12-140 hpi 1 h Yes
KID+ (50%), KID- (10%), dis-
carded (40%)

[34] 17,984 ICSI, IVF - -
Static
images

No KID+, KID-

[29] 12,912 IVF, ICSI - - 5-10 min No
Usable blastocysts (n=2,922),
unusable blastocysts
(n=1,356)6

[35] 946 ICSI Fresh -
Static
images

Yes
Good prognosis, bad
prognosis7

Table 3.2: Data Foundation Pregnancy Prediction Task (Part 1)

1 Genetic testing was performed only to selected embryos.
2 First time interval corresponds to Day 5+ model and second to Day 2/3 model. Embryos cultivated for less than 36 hpi and between
84-108 hpi were excluded.
3 This data corresponds to Day 5+ model. Day 2/3 employs a more complex data split mechanism.
4 Number of images, the number of embryos is not disclosed.
5 Images were excluded if taken after biopsy for PGT-A or cryopreservation.
6 A usable blastocyst means to have been chosen for transfer or vitrication. Reported data account for training set.
7 A good prognosis is defined as either having a report of euploidy after PGT-A or a positive beta-hCG result.



Ref.
N. of
Embryos

Fert.
Method

Fresh/
Frozen

Hours post
Implantation

Image
Frequency

Used
Discarded
Embryos

Labels &
Distribution

[36] 310 - Fresh 113 hpi
Static
images

- KID+, KID-

[30] >5,500 ICSI - - Unknown No KID+ (50%), KID (50%)3

[37] 272 - - - - - KID+ (n=216), KID- (n=56)

[38] 8,886 ICSI Fresh4 -
Static
images

Yes4 KID+ (50%), KID- (50%)5

[39] 8,836 -
Fresh,
Frozen

- - No6 KID+ (n=694), KID- (8,142)7

[40] 344 - - -
Static
images

- KID+ (n=258), KID- (n=86)8

Table 3.3: Data Foundation Pregnancy Prediction Task (Part 2)

1 A usable blastocyst means to have been chosen for transfer or vitrication. Reported data account for training set.
2 A good prognosis is defined as either having a report of euploidy after PGT-A or a positive beta-hCG result.
3 A balanced dataset is reported so 50% is inferred.
4 Images were only accepted if they were taken prior to PGS biopsy or freezing.
5 A balanced dataset is reported so 50% is inferred.
6 Embryos that underwent embryo biopsy for pre-implantation genetic testing were included.
7 Highly unbalanced dataset. A large proportion of predicted non-viable embryos were never actually transferred.
8 Data augmentation was performed in the negative class to balance the dataset.



Ref.
N. of
Embryos

Fert.
Method

Fresh/
Frozen

Hours post
Implantation

Image
Frequency

Used
Discarded
Embryos

Labels &
Distribution

[41] 15,434 -
Fresh,
frozen

105-125 hpi - Yes
Live birth (50%), No live birth
(50%)1

[34] 1,358 ICSI, IVF - -
Static
images

No Live birth, no live birth

[42] 470 ICSI, IVF
Fresh,
frozen

-
Static
images

Unknown2 Live birth, no live birth3

[43] 4,104 IVF
Fresh,
frozen

115, 139 hpi
Static
images

-
Live birth (38.7%), no live birth
(61.3%)

[44] 263 IVF - - - No Live birth, no live birth

[45] 5,691 IVF
Fresh,
frozen

115, 139 hpi
Static
images

-
Live birth (27.9%), no live birth
(72.1%)

Table 3.4: Data Foundation Live Birth Prediction Task

1 The dataset was initially unbalanced, it was balanced oversampling positive class.
2 No PGT-A testing was done. Poor quality embryos were included for training.
3 Unbalanced dataset. 5-fold cross-validation was performed with 18 positive embryos and 76 negative ones in each fold.





Chapter 4

Results

This section encompasses the presentation and discussion of the selected
papers. Initially, the papers are organized and discussed based on the three
distinct tasks identified in this study: Blastocyst Formation Prediction, Pregnancy
Prediction and Live Birth Prediction (Figure 4.1). Subsequently, the focus shifts
to the papers that incorporate an XAI component, where they are presented and
analyzed in detail.

4.1 Tasks in AI-Assisted Embryo Selection

AI models of embryo selection can be categorized based on the specific task
they aim to optimize. This task, in turn, depends on the specific time or stage of
embryo development at which the selection is performed.

One common task is Embryo Quality Grading, which assess the quality of em-
bryos based on their observable morphokinetic features. This assessment can be
conducted at any stage during the culture period of the embryo. The commonly
used ground truth for this task involves quality annotations made by experts dur-
ing the embryo’s development, following morphological annotation guidelines
such as Gardner’s or ASEBIR. However, it is important to note that the grading
process is subjective and can vary among specialists, leading to potential inter-
and intra-observer variability in the ground truth annotations. This approach is
commonly adopted when Known Implantation Data (KID) is unavailable.

Another task related to embryos in cleave stage, at D3, is Blastocyst Formation
Prediction. The objective of this task is to identify which embryos, at D3 of
development, have the potential to progress and reach the blastocyst stage by
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Figure 4.1: Evolution of an embryo and associated tasks.

D5, as elaborated upon in Section 2.1.2. This task will be explored further in
the subsequent subsection.

When KID data is available, more ambitious tasks can be undertaken in the
selection of embryos, which are based on their potential for successful implant-
ation in the uterus and, ultimately, live birth. These are other of the two central
tasks that occupy this study, Pregnancy Prediction and Live Birth Prediction, and
will be discussed in depth in the following subsections.

Embryo selection can extend beyond considering only morphokinetic para-
meters related to their appearance. An optional practice is to perform genetic
tests such as PGT-A on embryos to analyze their ploidy status, , which refers
to having the correct number of chromosomes. Embryos that are aneuploid,
meaning they have abnormal chromosome numbers, are less likely to develop
into a healthy fetus and may result in miscarriage or birth defects. However, it
is worth noting that methods like PGT-A are invasive and carry a risk of embryo
damage or loss. As a result, researchers have developed DL models capable of
performing Ploidy Prediction. These models aim to non-invasively predict the
ploidy status of embryos, offering a potential alternative to invasive procedures
like PGT-A.

In conjunction with the previous tasks, there are auxiliary tasks that comple-
ment the previous models. The Development Stage Identification of the embryo
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is necessary in automated labelling in TLIs. Automated tools are required for
accurately measuring the timing parameters of multiple embryos in order to
track the duration of their development stages. Such tools need to provide pre-
cise outcomes and be able to handle various challenges, including deforming
cell shapes, poor visual features, and similarities between embryos at different
stages. Finally, Embryo Segmentation can also be beneficial to the above tasks.
Specifically, models have been developed to segment embryos by identifying
their main biological structures. This segmentation allows for the extraction
of parameters related to specific parts of the embryo or enables the training of
models that specifically focus on processing these parts.

4.1.1 Blastocyst Formation Prediction Task

As explained in section 2.1.2, the decision of transferring the embryo on D3
or on D5 is not trivial, as both options present advantages and drawbacks. De-
veloping models which are able to predict which embryos at D3 will develop
into blastocysts by D5 is valuable for selecting the embryos with the greatest po-
tential, specially in the case of older patients where development until D5 can
result in arrested development. By accurately identifying these embryos, clini-
cians could potentially increase success rates while minimising risks associated
with multiple pregnancies.

Table 4.1 contains the identified papers in the literature that perform Blastocyst
Formation Prediction task. The four studies found are relatively recent, compris-
ing years 2020-2022. All of them use TL videos for the development of the mod-
els, which allows them to capture the kinetic information from day 1 to day 3.
Chen et al. [27] propose a framework that adaptively selects informative frames
to predict blastocyst formation using TL videos at the cleavage stage on day 3. To
complement it, another network generates predictions using the morphokinetics
features of the selected frames. Xie et al. [28] develop a so-called multi-focus
selection network (AMSNet) which includes an attention mechanism to exploit
the features of TL images captured at multiple focal planes, as well as a tem-
poral feature channel shift operation which enables it memory capability over
TL videos.

Liao et al. [29] build a multi-module network. It is composed by an LSTM-
based temporal stream model which, in turn, is combined with the output of a
cell-counting module, and a spatial stream module which captures morpholo-
gical features. Kan-Tor et al. [30] propose a two objective model: blastulation
prediction and implantation potential prediction. In first place, TL images from
each embryo are divided in 5-frame long "packets" and a network is trained to
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Ref. Input
Embryo
Population

Clinician
vs. Model

Metrics

[27]
TL video, frame
number

D1-D3 -
Accuracy, sensitiv-
ity, specificity, PPV,
NPV, F1, AUC

[28]
TL video, focal
planes

D1-D7 -
Accuracy, AUC,
ROC

[29]
TL video, frame
number, cell count

D1-D3 -
Accuracy, sensitiv-
ity, specificity, PPV,
NPV, AUC, ROC

[30] TL video D3 -
Sensitivity, PPV,
AUC

Table 4.1: Studies on Blastocyst Formation Prediction Task. Input refers to the
type of data used to train the model, Embryo Population to the kind of embryos
that compose the dataset, Clinician vs. Model reports whether the performance
the model has been validated by experts or compared to their performance, and
Metrics, to the evaluation metrics that have been employed.

identify the time window to which the frames belong. Then a random forest and
a logistic regression are trained with the previous output to predict blastulation
and implantation potential.

4.1.2 Pregnancy Prediction Task

Pregnancy Prediction is a task that has gained significant attention in the liter-
ature, which is in turn more ambitious than the previous one. The development
of AI models for pregnancy prediction from embryo images relies on the avail-
ability of known implantation data, in other words, if the embryo resulted or not
in a successful pregnancy upon transfer. However, obtaining KID may be chal-
lenging as it requires continuous monitoring and data collection of the embryo
after it has been implanted in the patient’s uterus. Consequently, KID may be
scarcer compared to annotations by experts on embryo quality.

Pregnancy can be measured using different endpoints, with fetal heart preg-
nancy being a common one. Fetal heart pregnancy refers to the detection of
fetal heartbeats in the uterus through ultrasound, and it can be detected from
week 5 onward. Other pregnancy indicators include the measurement of Hu-
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man chorionic gonadotropin (hCG), a hormone produced by the placenta during
pregnancy. HCG levels typically rise after conception and continue to increase
until about 10 weeks into pregnancy. Additionally, ultrasound visualization of
the gestational sacs can serve as an indicator of pregnancy.

These pregnancy indicators provide the basis for developing AI models to
predict the likelihood of pregnancy. Among them, fetal heart pregnancy is the
most commonly utilized. However, it is important to note that the successful im-
plantation of a good-quality embryo does not guarantee a successful pregnancy.
Various factors, such as the patient’s age, pregnancy history, endometrial thick-
ness, or progesterone levels, can influence the outcome and act as confounders
in the model’s predictions. In fact, according to [35], over 200 confounders ex-
ist affecting outcomes in assisted reproduction; as a result, it is unrealistic to
expect that any embryo assessment can currently guarantee 100% prediction of
a successful outcome. Therefore, the predictions made by the AI model should
be understood as a likelihood of implantation rather than an assurance of preg-
nancy success. Table 4.2 contains the identified papers in the literature that
perform Pregnancy Prediction task.

Lassen et al. [31] have published the latest work in implantation potential
prediction measured by fetal heartbeat. It is worth noting that the authors are
affiliated with Vitrolife, a prominent manufacturer of TLIs. They have developed
the model with the largest and most diverse dataset until the moment, with
data from 181,428 embryos from 22 different IVF clinics. Discarded embryos
are included on the dataset, meaning that no previous evaluation by experts is
required for the use of the models. Two different models have been developed,
one for prediction of implantation at D2/3 and another for prediction at D5+.
While the architecture of each of the models is slightly different, both are based
on a combination of 3D-CNNs and logistic regression operations.

One year before, same authors from [31] (Lassen 2023) published the work
[33] (Berntsen 2022), a model developed in a similar style which accomplishes
the same task. The main difference lays in the design of the architecture of the
DL model which, in addition to using a 3D-CNN to process the sequences of TL
videos, they train a bidirectional LSTM which is able to capture the temporal
information within the frames.
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Ref. Outcome Input
Embryo
Population

Clinician
vs. Model

Metrics

[46] Fetal heartbeat TL videos
D1-D2; D1-
D3; D1-D5+

- AUC

[32] Fetal heatbeat Static Image D5
Accuracy, TPR,
TNR, AUC, TTP

[33] Fetal heartbeat TL video D0-D5 - AUC

[34]
Fetal heartbeat,
hCG

Static image, clin-
ical data

D5 -
Accuracy, sensitiv-
ity, specificity, PPV,
F1, AUC

[29] Gestational sacs
TL video, frame
number, cell count

D1-D3 -
Accuracy, sensitiv-
ity, specificity, PPV,
NPV, AUC, ROC

[35] Ploidy, hCG

Static image,
patient age,
blastocyst age, lab
settings

D5,D6
Accuracy, sensitiv-
ity, specificity, PPV,
AUC, NDGG

[36] "Pregnancy" Static image D5 Accuracy, AUC

[30]
Fetal heartbeat,
gestational sacs

TL video D3, D5 -
Sensitivity, PPV,
AUC

[37]
Fetal heartbeat,
gestational sacs

TL video - PPV, NPV, AUC

[38] Fetal heartbeat Static image D5
Accuracy, sensitiv-
ity, specificity

[39] Fetal heartbeat TL video D5 - AUC

[40] "Pregnancy" Static Image - -
Accuracy, sensitiv-
ity, specificity

Table 4.2: Studies on Pregnancy Prediction Task. Outcome refers to the variable meas-
ured to report pregnancy, Clinician vs. Model reports whether the performance the
model has been validated by experts or compared to their performance.
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Diakiw et al. [32] follow a different approach, where the aim is to de-
velop models which perform embryo ranking within simulated cohorts instead
of providing individual predictions of the embryos. To provide further insights,
they compare the ranking provided by their model from the ranking resulting
from traditional Gardner scoring system. Enatsu et al. [34] develop two kinds
of models, one is a ResNet18-based model trained solely on static images and
another is an ensemble model, also based in ResNet18 and a Random Forest Clas-
sifier, trained on both static images and clinical data. Results show that higher
AUC is reached by the ensemble model, even trained with less data points than
the former one.

The work of Liao et al. [29] is explained in Blastocyst Formation Prediction
task, as it is its main goal. Nevertheless, as they also have implantation data
for some of the embryos, they extend their model to predict implantation poten-
tial. It should be noted that due to the scarcity of KID, only the validation test
set is composed by KID embryos. Chavez-Badiola et al. [35] propose a model
for ploidy an implantation prediction composed by two modules. The first is
designed to extract texture patterns from the images by applying a series of con-
volutions and then, segmenting the images into ROIs and extracting predictor
features of embryo viability from each region. The second module is designed to
rank embryos based on the scoring obtained form a DNN trained with previously
obtained image-based features and metadata of each embryo.

While the main task of the work by Bormann et al. [36] is to discrimin-
ate blastocysts vs non-blastocysts in D5 in order to rank them within patient
cohorts, the secondary objective is to predict implantation potential. To accom-
plish the latter task, they train a Xception-based Deep Neural Network (DNN)
using KID data from 310 static images. Silver et al. [37] train a CNN autoen-
coder on individual frames of TL videos of unknown stage embryos in order to
extract features; next, these features are used as input of an LSTM trained with
10 cross-validation which predicts implantation potential. Ver-Mileya et al. [38]
present Life Whisperer model, an ensemble of eight different CNN-based models
with a voting strategy on top. The models, which are based on different archi-
tectures such as ResNet, DenseNet and others, are trained on D5 static images of
embryos. Results show an improved performance on accuracy of 30.8% when
compared to the performance of embryologists in the same test set.

Tran et al. [39] published in 2019 IVY model, which predict fetal heartbeat
via TL videos. Nevertheless, the performance of this model has been criticised
due to the highly unbalanced dataset that they used for training. Cao 2018 [40]
published in 2018 the first known approach for pregnancy prediction using a
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small dataset of static images; the model is based on a custom 10 layer DNN.

4.1.3 Live Birth Prediction Task

The next task to be addressed is Live Birth Prediction. This task can be seen
as an extension of Pregnancy Prediction. While both tasks make use of known
implantation data, live birth prediction is even more ambitious due to the multi-
tude of factors that influence the successful birth of a child. Furthermore, failed
implantation, miscarriage or embryo development failure can cause cost and
time loss, and bring negative psychological outcome to the patient [43]. Table
4.3 shows the identified papers in the literature that perform Live Birth Prediction
task.

Huang et al. [41] propose a custom CNN with residual connections to predict
the live birth from TL videos of blastocyst stage embryos, although it remains
unclear whether they process each frame individually or consider the TL video
as a whole input. In a similar manner to Lassen et al. [31], they use discarded
embryos and pseudo-label them as the negative class of "non live birth", this in-
duces a source of bias since the label is inferred. Furthermore, they add that
results of predicting live birth from cleavage stage embryos (D3) were not satis-
factory. Sawada et al. [42] develop Attention Branch Network model, a 2D-CNN
composed of two modules: a classifier and an attention module which outputs
attention maps later used for visualization purposes. Although they have TL
videos of variable length of 470 embryos, they process each frame individually
and compute a weighted average for the final prediction at embryo level.

Miyagi et al. (2019) [45] develop a model for predicting live birth from
static embryo images of blastocyst stage. On year later (2020), the same au-
thors developed an enhanced version of the model [43] which, in addition to
being trained with images, is trained with conventional evaluation parameters
comprising patient data, clinical data and morphological embryo related data.
Both types of data are combined by concatenating the feature maps of the im-
ages resulting from the CNN with the output of univariate regression functions
for each variable of the metadata. When comparing the latest model’s perform-
ance to the only-image model, they report that when the patient’s age is less
than 39 years old, the combined model outperforms the only-image one.

Silva-Rodriguez et al. [44] propose a model that, instead of predicting the
probability of implantation from images, morphokinetic features are extracted
in order to use them to train a Random Forest Classifier. The feature extraction
module is composed of two methods: first, a CNN is trained to predict the num-
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Ref. Outcome Input
Embryo
Population

Clinician
vs. Model

Metrics

[41] Live birth TL video D5 - AUC

[34]
Pregnancy, Live
birth

Static image D5 -
Accuracy, sensitiv-
ity, specificity, PPV,
F1, AUC

[42] Live birth Static image
D0-D3,
D0-D5

Sensitivity, spe-
cificity, PPV, NPV,
AUC

[47] Live birth - D5 -
Accuracy, PPV,
NPV, AUC

[43] Live birth
Static image, an-
notations, patient
data (age, BMI...)

D5/D6 -

Accuracy, sensit-
ivity, specificity,
informedness,
PPV, NPV, AUC

[44] Live birth TL video D0-D4 - Accuracy

[45] Live birth Static image D5-D6 -
Accuracy, sensitiv-
ity, specificity, AUC

[48] Live birth
Static image,
morphokinetic
parameters

D5 - Accuracy, AUC

Table 4.3: Studies on Live Birth Prediction Task. Clinician vs. Model reports whether
the performance the model has been validated by experts or compared to their per-
formance.

ber of cells in each frame of the TL video, then, temporal information is obtained
by calculating intensity changes from on frame to another, which, according to
them, is related with cell division.
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4.2 Explainable Artificial Intelligence in Embryo Se-
lection

The use of XAI on embryo images is reviewed in this section. It is worth not-
ing that XAI is critical to ensure that the decision-making process of an algorithm
is as transparent and understandable to clinicians and patients as possible. The
lack of explainability can lead to a lack of trust in the technology, which ulti-
mately hinders its adoption. Within the domain of images, explainable AI meth-
ods are often feature scorers, representing their output as saliency maps on the
input image. Figure 4.2 shows saliency maps of two different methods applied in
the same embryo image. Moreover, XAI techniques can also be used to investig-
ate feature relevance of metadata associeted to images. By nature, XAI methods
for DL are approximations to the model’s real behavior. Given the limited avail-
ability of papers that implement XAI in the aforementioned tasks, the scope of
the review was expanded to include other tasks within the field of embryo se-
lection. These additional tasks include Embryo Quality Grading, Embryo Devel-
opment Stage Identification, Ploidy Prediction and Embryo Segmentation, which
have been introduced in section .

Table 4.4 shows studies found in the literature which integrate a XAI compon-
ent. We can differentiate between those applied after the model is trained (post-
hoc), and those where the explainability is part of the model architecture and
design (intrinsic). Post-hoc methods include model-agnostic approaches such as
LIME [49] and KernelSHAP [50], that obtain the explanations by perturbing the
inputs and observing the changes caused on the outputs; also, model-specific
methods such as Grad-CAM [51] and Deep SHAP [50], that use the parameters
of neural network models to obtain the saliency maps. Among intrinsic methods,

Figure 4.2: Saliency maps for Score-CAM and BR-NPA XAI methods from [8].
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we can find attention-based CNNs, where the explainability is obtained from at-
tention layers. A different approach is the use of Speeded Up Robust Features
(SURF) [52] to extract local visual features, in conjunction with Gaussian Mix-
ture Models (GMM) to obtain a Fisher vector per image [53].

Ref. Task XAI Method(s)
Clinically
Assessed XAI

[32] Quality Grading Grad-CAM++ -

[54] Quality Grading Grad-CAM -

[53] Quality Grading BVW, Grad-CAM -

[55] Embryo Segmentation Grad-CAM -

[56]
Development Stage Identi-
fication

Grad-CAM, SHAP, LIME

[57] Quality Grading Grad-CAM -

[8]
Development Stage Identi-
fication

B-CNN, Attention Branch
Network, InterByParts,
Grad-CAM++, RISE, Score-
CAM, Ablation-CAM, AM

-

[34]
Fetal Heart Pregnancy, Live
Birth

Grad-CAM, SHAP -

[42] Live Birth Attention Branch Network

[58] Quality Grading Grad-CAM -

[59] Quality Grading CAM -

Table 4.4: Papers on Explainable AI. Clinically Assesed XAI reports studies where
experts evaluate the explanations provided by XAI techniques from a clinical per-
spective.
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Only two studies have involved clinicians in the evaluation process. In the
study conducted by Sharma et al. [56], three embryologists assess the biolo-
gical relevance of heatmaps generated by Grad-CAM and LIME. The findings
suggest that LIME explanations may be less consistent with biologically signific-
ant regions, while SHAP could potentially identify reasons for misclassification
between adjacent cleavage stages. Sawada et al. [42] employ an Attention
Branch Network for Live Birth Prediction, allowing experts to visualize relevant
embryo features through the attention mechanism. These features are assessed
by clinicians using saliency maps, but the evaluation reveals no common visual
features associated with the predicted outcomes of live or non-live birth.

Some researchers utilize XAI techniques solely for visualization purposes
without involving clinicians in the evaluation process. Paya et al. [57] employ
Grad-CAM and note that the key regions highlighted by the model align with
common interpretations made by clinicians. Diakiw et al. [32] utilize Grad-
CAM++ for visualization while statistically correlating model outputs with the
Gardner score. Thiramalaju et al. [59] directly use CAM saliency maps and
observe that their model focuses on well-known features such as cellular frag-
mentation, blastomeres, or vacuoles. In a different approach, Kallipolitis et al.
[53] compare Grad-CAM with SURF, finding that the former may erroneously
focus on irrelevant areas according to the authors. However, these studies lack
the involvement of clinicians in evaluating the XAI results.

Enatsu et al. [34] use Grad-CAM to detect morphological features that con-
tribute to the classification, while incorporating SHAP to account for relevant
metadata influencing the model’s decisions. Their findings indicate that embryo
images are the most effective predictor for fetal heart rate, followed by age and
pregnancy history. Additionally, Arslan et al. [55] propose a multi-scaling ar-
chitecture that segments embryos into distinct regions and applies Grad-CAM to
different layers of the network, enabling visualization of feature attributions in
various segmented parts of the embryo. This approach provides a higher level
of granularity in the explanations by visualizing saliency maps at different seg-
mented regions.

To the best of our knowledge, other very important challenges in this field,
such as Blastocyst Prediction or Ploidy Detection, are not addressed in the context
of explainability. This highlights the need for further research in these tasks.
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Discussion

So far, a literature review has been designed and conducted (Chapter 3) and
the studies have been analyzed for a comprehensive understanding of the State
of the Art (Chapter 4). In this chapter, the contributions are completed by ana-
lyzing and discussing the intricacies AI-assisted embryo selection. The discussed
contributions are organized in three sections: IVF-related data for model de-
velopment, model evaluation and ethical considerations of AI-Assisted embryo
selection.

5.1 IVF-related Data for Model Development

In the field of IVF, the selection and quality of data are vital for the develop-
ment and effectiveness of AI models. This section examines which data is com-
monly used (i.e., images and metadata) and how it is integrated in the models.

5.1.1 Data Selection based on Intended Use

The selection of data for training models is strongly linked to their intended
use in a real clinical context. For example, a model trained for the prediction
of blastocyst formation should not be used to predict pregnancy or live birth.
Ideally, experts should be involved in almost every step of the process. The
correct definition of the intended use empowers users and enables the safe use of
the system. Disregarding the intended use may lead to unpredictable, unreliable
or unsafe system behavior and, as a consequence, a direct impact on the patient
and their well-being. The intended use of a model can be defined from two
different perspectives.
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Embryo types and image selection

First, embryologists should define what types of embryos they want to screen,
which should be reflected in the selection of images for model training. For ex-
ample, for Pregnancy Prediction and Live Birth Prediction tasks a choice can be
made between using images from a single day (D5), or using images of the com-
plete development of the embryo up to day 5 (D0-D5). However, it is possible
that experts may want to have the extra functionality to predict these events at
D3, such situations should be considered in the design phase.

Another aspect related to intended use is the possible pre-selection of em-
bryos by experts prior to the use of the model. Not all embryos are of good qual-
ity, some may present malformations, defects or suffer arrested development for
unknown reasons. Defining whether an expert pre-selection of embryos will be
done is vital to ensure that the capacity of the model is not exceeded by cases that
have not been seen during training. Some studies in the literature aim to auto-
mate the embryo selection process entirely and do not rely on pre-selection by
embryologists [39, 33, 46], while others focus on discriminating only between
previously transferred embryos [38, 37, 36, 60, 30, 45, 46]. Systems that do
not require prior review of embryos by experts should be used with caution, as
automation bias may arise.

Clinical settings

Aspects related to the clinical setting should also be defined. For example, it
has been seen that images of embryos that have been fertilized by IVF differ from
those fertilized by ICSI, since in the former case, spermatozoa may remain vis-
ible in the well. Therefore, it should be defined whether, in the clinical context,
images of embryos obtained by different fertilization methods will be used.
Similarly, the method of embryo transfer should also be defined, whether the
embryos are transferred fresh or transferred after cryopreservation. In addi-
tion, other aspects such as genetic testing must be specified in advance. Tests
such as PGT-A have been shown to produce a morphological alteration to the
embryo due to the invasiveness of the operation; this may create differences
between images of embryos that have been tested PGT-A and embryos that have
not.

Tables 3.1, 3.2, 3.3 and 3.4 show the data related to these variables that have
been defined in the studies. At a glance, the general lack of information disclos-
ure can be observed. This highlights the lack of robustness and reliability of
the models that have been developed. Another consequence of not defining this
information is that comparison between studies becomes practically impossible,
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since the characteristics of the data on which the models have been trained may
differ greatly.

5.1.2 Pre-processing of Embryo Images

Embryo images obtained from microscopes can be susceptible to various
forms of corruption, which requires careful consideration and pre-processing
solutions during the model development process (Figure 5.1). As stated in the
previous section, developers must explicitly state the intended use of their model
to set expectations regarding its capability to handle corrupted and low quality
images. It is important to clarify whether the model is designed to be capable of
dealing with such images or if clinicians are expected to pre-select high quality
images for the training of the models.

Image resolution

The visibility of biological structures and their changes during embryo de-
velopment plays a crucial role in their assessment. However, the resolution of
the images used for training the model can pose challenges to this visibility. In
the literature, both low-resolution images (e.g., 50x50 px as seen in Miyagi et
al. [43]) and higher-quality images (e.g., 480x640 px as utilized by Enatsu et
al. [34]) have been employed. However, it is difficult to know the impact of res-
olution since, on the one hand, ablation studies with different resolutions have
not been done in the same work, and on the other hand, comparison between
studies is impossible due to the use of different data and models. On the one
hand, the selection of lower quality images may lead to loss of information. On
the other hand, utilizing high-quality images can enhance performance, but it
may require extensive computational resources while increasing the dimension-
ality of inputs, with the consequent implications for the learning procedure (e.g.,
curse of dimensionality, increase in model complexity, overfitting and generaliz-
ation challenges). We recommend to work at the highest resolution possible if
feasible with the aim of not losing key information.

Embryo detection in the well

Embryos are cultured in a well, which has a round shape and is visible in the
images taken by the microscope (Figure 1.2). One common issue is the presence
of impurities scattered around it; these impurities can result from the detach-
ment of granulose cells from the zona pellucida, gel residue or sperm in the case
of standard IVF procedure, leading to artifacts in the image. Furthermore, the
position of the embryo within the culture well is not fixed, as it tends to move
during the developmental process and thus, can be a source of noise.
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Figure 5.1: Examples of bad-quality images. From left to right: granulose cells
impurities in the well, air bubbles that turn image dark and out of focus image.

These type of challenges call for solutions that allow the detection of the
embryo in the well to isolate it from its environment. Some researchers opt for
traditional computer vision techniques for embryo detection [44], while others
employ DL-based alternatives. For instance, Wang et al. [58] use YOLO v3, a
DL-based object detection algorithm which is used to detect and position the
embryo at the center of the image. Kan-Tor et al. [30], on the other hand,
train an image segmentation model, U-Net specifically, to isolate the embryo
form the environment. While traditional computer vision techniques are less
complex and have lower computational requirements, DL-based techniques can
be more robust but in turn involve more complexity and higher computational
demands. In future research, it is recommended to explore the effectiveness
of newer techniques, such as Visual Transformers, which are known to be less
vulnerable to changes in the embryo’s position within the well. Additionally, the
evaluation of novel segmentation models, like SAM [61], could prove valuable,
as it has demonstrated high performance even with limited training examples.

Manual curation of images

Instead of developing models capable of handling image quality, some stud-
ies resort to manual curation of images. For example, Liao et al. [29] and
Bormann et al. [36] discard misplaced embryos and images with occluded em-
bryos, while Chavez-Badiola et al. [35] select images based on criteria such as
sufficient light, sharp focus, absence of instruments or artifacts, and complete
visualization of the embryo. Overall, manual curation varies in its approach to
address issues like misplacement, occlusion, and image quality. Manual curation
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has nonetheless several limitations: it places an added workload on embryolo-
gists and it adds a implicit bias by this curation process, which makes systems
brittle and unstable in the presence of noise. Therefore, it is believed that solu-
tions such as those presented above are more appropriate and more robust.

5.1.3 Integration of Images and Metadata

Developing models that include both images and metadata can result in
higher performance, particularly for long-term prediction tasks like predicting
pregnancy or live birth, where many other factors influence the outcome. These
factors include patient related data (e.g., patient age, endometrial thickness, hor-
mone levels), clinical data (e.g., embryo culture conditions) or morphokinetical
data (e.g., cell symmetry, presence of vacuoles).

There are few cases in the literature where these parameters are included.
Enatsu et al. [34] use both static images from blastocysts and clinical data for the
development of their Pregnancy Prediction task model and report higher perform-
ance than simply using the embryo images. One approach to combine images
and metadata in the models is to process them separately before integrating the
extracted representations at a later stage. This can involve separate branches
for image and metadata inputs, followed by fusion layers for combining the in-
formation. This approach has the benefit of increasing the transparency of the
model, as the relevance of visual and non-visual features can be assessed separ-
ately. Furthermore, attention mechanisms could be employed to focus on differ-
ent aspects of the image and metadata. For example, in an embryo image, the
model should attend to specific regions of interest (e.g., cytoplasm) based on the
metadata information (e.g., fragmentation rate). In any case, the performance
of this type of model should be studied in the form ablation studies to evaluate
the contribution of each of the modules.

5.1.4 Integration of Time Dimensionality in TL Videos

TL videos are able to capture kinetic information of embryo development,
which allow for a more comprehensive understanding of evolution throughout
different stages of embryo growth. However, developing models that utilize TL
videos as input introduces greater complexity and requires the development of
more advanced models. The predominant approaches observed in the literature
include the utilization of 3D-CNNs, LSTM networks, or a combination of both.
However, a comprehensive analysis of the individual properties and performance
characteristics of these techniques is lacking, as no ablation studies have been
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Figure 5.2: A: images of embryo development from D0 to D5. B: stacked frames
of a TL video of an embryo.

conducted to date. Thus, determining the optimal technique remains an open
question.

There are cases where even if developers have access to TL videos, they
choose to process each frame as static images. This approach, while simpli-
fying the problem, can lead to the loss of relevant information contained in the
temporal dimension of the data, as well as to higher tendency towards overfit-
ting. That is the case of the work of Sawada et al. [42], where they treated
each frame of the TL videos as individual samples. Consequently, their dataset
initially comprised of 470 unique embryos, is converted into a 141,444 instance
dataset; this causes to be limited variability among the samples.

The relevance of the temporal factor for embryo assessment is well known,
as its present in most embryo assessment guidelines. It is important to note
that analyzing TL videos is not a trivial problem, as each video can consist of
hundreds of frames, around 700 images in a 5 day development span of time
with an image acquisition frequency of one image per 10 minutes. There are
works such as [29, 30] which use the whole TL video for training the models.
In turn, if only a subset of the TL video is selected, the sampling frequency used
for the selection of images that will be used as input to the model has to be
defined. Communication with the experts on this subject allows to define which
phases or time intervals are important in the evolution of the embryo, which will
allow the developers to select a optimal sampling frequency. The approaches to
address the challenge of time dimensionality in TL videos can be divided into
two main groups: development of specific models trained for detecting the most
informative frames and selection of specific time frames in an arbitrary manner.
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Chen et al. [27] propose a model that aims to identify key-frames of variable
length within the video, which in turn captures relevant temporal information
while reducing the overall dimensionality of the data. This model is composed of
both a CNN and an LSTM, in addition to a policy that is responsible for evaluating
the relevance of each temporal frame. It should be added that, in the case of
using this type of model, the selection of frames should also be evaluated by
experts during the design phase to validate the relevance of the frames from a
clinical perspective. As an alternative, works by Lassen et al. and Berntsen et al.
[46, 33] arbitrarily select the frames or the used sampling frequency. While this
is a simpler approach, it has the limitation of selecting low informative frames
if the sample rate is set too low.

Using images of TL videos as input to the network is not the only way to
process temporal information. Silva-Rodriguez et al. [44] extract morphokinetic
parameters from the image sequences instead of using the TL videos directly for
model training. A limitation of not using the image directly as a predictor and,
instead, using morphokinetic parameters extracted from the image, is that these
parameters have to be sufficiently representative of the images for the model to
make accurate predictions.

In summary, it is advisable to avoid treating individual frames of TL videos as
separate samples to mitigate issues like overfitting. Instead, it is recommended
to develop more complex architectures that can process the entire video of a
specific embryo as a single sample. Moreover, when sampling video frames, it
is strongly recommended to validate the selection in consultation with clinical
experts. This collaborative approach ensures the inclusion of relevant frames
and enhances the overall accuracy and reliability of the models.

5.1.5 Integration of Multiple Focal Planes

The integration of multiple focal planes presents another layer of complexity
in the development of embryo selection models. TLIs have the capability to
capture images from up to nine different focal planes, depending on the specific
brand and equipment used. Each focal plane can be understood as a different
slice of the embryo, where different structures can be seen (Figure 5.3).

Clinicians typically rely on the equatorial focal plane to assess embryo devel-
opment, as it provides a generic view for evaluating the embryo’s appearance.
However, different focal planes can offer additional information, particularly in
cases where cells overlap, making tasks such as cell counting more challenging.
By incorporating multiple focal planes, it is possible to capture a more compre-
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Figure 5.3: Five hypothetical focal planes of an embryo.

hensive understanding of the embryo’s characteristics and potentially improve
the performance of the model.

The simplest and most frequent approach found in the literature review is
the arbitrary selection of a single focal plane. For example, Lassen et al. [46]
and Bertsen et al. [33] select a single central focal plane of each embryo, even
though having access to the data from several focal planes. Due to the large
amount of data with which these models have been trained, it would have been
interesting to see a more complex architecture capable of processing different
planes to see if there is an added value in terms of performance.

Nonetheless, two studies has been found that processes multiple focal planes,
namely Wang et al. and Kan-Tor et al. [58, 30]. Wang et al. [58] propose three
different methods to deal with multi-focal images: (1) a shared network extracts
features from the 11 focal planes, which are stacked together and used for final
classification; (2) predictions for each focal plane are made independently and
a voting mechanism is used for the final classification; and (3) the model calcu-
lates the overall sharpness of every focal plane and chooses the top 3 clearest
images, which are then fed as different channels to the network. This last model
is the one which shows best performance and is used for Blastocyst Formation
Prediction task, although it could also be adapted for Pregnancy Prediction and
Live Birth Prediction tasks.

The previous methods methods are capable of processing one or more focal
planes of the same embryo, although none of them deal jointly with temporal
dimensionality, all of them process static images. Only one study has been found
that integrates both types of data. Xie et al. [28] develop a custom architecture
which first extracts features from different focal planes in a single frame, and
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combines them sequentially with features from future frames. An ablation study,
shows that performance is highest when the model combines both temporal and
focal plane information. Since the benefit of integrating both temporal and focal
information has been observed, training these models for other tasks could also
represent interesting lines of research.

5.1.6 Impact of Class Imbalance

Class imbalance in IVF datasets has significant implications for the develop-
ment and evaluation of AI models. In the context of traditional IVF, the success
rate of transferred embryos is typically around 30% [7]. Consequently, data-
sets which contain data of transferred embryos tend to have several times more
negative outcomes than positives.

To properly assess the impact of class imbalance, it is crucial to report the
test set prevalence when reporting results, which refers to the proportion of
positive samples in the dataset. This allows for evaluating class imbalance and
comparing model performance against random chance or naive guessing. For
example, in a dataset with a prevalence of 30%, naive guessing by always pre-
dicting "negative" would yield a naive accuracy of 70%. Therefore, model per-
formance should be compared to a random chance of 70% instead of the typical
50% [10]. The class balance and distribution of images/videos in the current
literature are presented in the Labels Distribution column of tables 3.1, 3.2, 3.3,
and 3.4. However, it is worth noting that not all papers include this informa-
tion, making it challenging to assess their performance and correct selection of
evaluation metrics.

Addressing class imbalance requires careful consideration. Undersampling
the negative outcomes is a simplistic approach that comes at the cost of losing
valuable data, which is already limited in the field of embryo selection; thus, this
solution should be disregarded. Alternative strategies include oversampling the
positive outcomes, as Huang et al. [41] do in their study. Weighted sampling
techniques and adjusting the optimization algorithm to assign equal importance
to misclassifying positive and negative examples [10] are other viable options
more suitable for this problem. Other novel techniques such as synthetic data
generation which resemble the original data could be explored in the future to
account for data imbalance.

On another note, several studies have been identified where DL models are
trained using unbalanced datasets [42, 39]. For instance, Tran et al. [39] util-
ize a heavily unbalanced dataset, with negative pregnancy instances comprising
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92% of the entire data. However, training a DL model for embryo selection us-
ing such unbalanced data presents significant risks. The model may exhibit bias
towards the negative class, resulting in skewed performance and lower accur-
acy for the positive class. Additionally, the model’s ability to generalize becomes
limited, as it struggles to predict outcomes for the underrepresented class.

In summary, it is crucial to avoid training models with unbalanced data, and
the techniques employed to address this issue should be both robust and capable
of mitigating the imbalance without sacrificing valuable information.

5.2 Model Evaluation

The evaluation of AI models in the context of embryo selection plays a cru-
cial role in assessing their effectiveness, reliability, and generalizability. In this
section, various aspects of model evaluation are analyzed, ranging from the se-
lection of appropriate evaluation metrics to data splitting strategies. Further-
more, the importance of evaluating models beyond their performance on test
sets is discussed in order to gain a deeper understanding of their real world
applicability.

5.2.1 Evaluation Metrics for Embryo Selection

Several evaluation metrics are employed to assess the performance of AI
models in embryo selection. Pregnancy prediction will be used as an example in
order to understand the meaning an impact of the different evaluation metrics.
In this context, a false positive translates to a failed implantation or miscarriage
after transfer of a chosen embryo, whereas a false negative translates to a missed
pregnancy because the embryo was incorrectly deprioritized for transfer.

Accuracy, which measures the proportion of correct implantation predic-
tions, is commonly used as a performance measure as it is easy to understand.
However, it should be carefully used when the dataset being evaluated is unbal-
anced. For example, Chen et al. [62] use a highly unbalanced dataset and report
an accuracy of 91%, which can be highly misleading for the reader. Hence, it is
essential to compare reported accuracies to a baseline that reflects naive classi-
fication performance [10].

Positive predictive value (PPV), also precision, and negative predictive
value (NPV) are metrics that describe the proportion of positive predictions
that were in fact pregnancies and the proportion of negative predictions that
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were in fact failed implantations or miscarriages. Sensitivity, also recall or True
Positive Rate (TPR), and specificity, also True Negative Rate (TNR), describe the
proportion of positive pregnancies that were predicted correctly as positive and
the proportion of negative pregnancies that were predicted correctly as negative,
respectively. True negatives represent non-viable embryos that are important to
consider in order to minimize the time to pregnancy and associated costs.

While many prediction models generate continuous predictions, binary val-
ues are often obtained through dichotomization, which involves setting a threshold
to classify predictions into binary outcomes (e.g., pregnancy/no-pregnancy).
However, this dichotomization process may discard valuable information and
assumes a single clinically relevant threshold [63]. Therefore, other metrics re-
lated to discrimination operate on continuous prediction values. The area un-
der the curve (AUC) of the receiver operating characteristic (ROC) is a metric
that summarizes the model’s performance across the entire range of scores, in-
dependent of a specific threshold. Almost all studies evaluate their models based
on this metric.

Few metrics have been reported to rank embryos within a single patient co-
hort. Chavez et al. propose [35] the normalized discounted cumulative gain
(nDCG), which measures the ranking quality within a cohort by considering the
relevance and position of embryos in the sorted list of model scores. In the study,
relevance is determined based on the outcomes of preimplantation genetic test-
ing (PGT). Diakiw et al. [32] also provide a metric to reflect the performance in
embryo ranking, Time to Pregnancy (TTP). TTP is calculated as the position of
the top viable embryo in the ranked cohort.

It must be remembered tha there are expenses associated with misclassifica-
tion in embryo selection, and the optimal compromise between these may differ
between clinics and patients, as the trade-off is defined by multiple factors. In
IVF, these could involve financial costs related to embryo cryopreservation and
emotional costs of patients related to transferring embryos that most likely will
not result in pregnancies or financial costs. [10].

5.2.2 Data Split Strategy

An important decision related on the evaluation of the model is the selection
of the data split strategy. Typically, a dataset is divided into train, validation
and test splits, but special attention must be placed when working with medical
data. The dataset should be divided at the patient or treatment level to avoid
splitting embryos from the same patient into different subsets. Splitting solely
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Figure 5.4: Validation type distribution across tasks in the literature.

at the embryo level may introduce bias due to the correlation between embryo
images/videos and their associated outcomes [10]. Furthermore, for an even
stronger data split strategy, the dataset could be split by time, training the model
on an early time period and evaluating it on a later time period [63]. The way
in which the model is validated is another crucial factor that demonstrates the
model’s robustness and generalization ability.

Internal Validation

The weakest kind of evaluation is the internal evaluation, where the test set
is a data subset representing the same population and distribution as the training
and validation set of the model. Using data from the same distribution does not
allow to test how the model generalizes to different subpopulations in the data
and also to account for possible biases. Most papers found in the review process
fall into this group [27, 41, 34, 44], among others.

Internal Validation with Subpopulation Analysis

In cases where external data with different distributions is unavailable, re-
searchers can still perform subpopulation analysis within the data split strategy.
Subgroups based on factors such as patient age, body mass index, fertilization
method, transfer protocol or ploidy status can be analyzed to detect potential
biases. Even factors like different culture mediums are worth studying, because
they have shown to impact on the model’s predictions [18]. This approach al-
lows for analyzing and detecting potential biases or the presence of confounders.

This approach is commonly used to assess the model’s generalization cap-
abilities to new healthcare facilities, such as different clinics or hospitals. Stud-
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ies that collect data from multiple centers conduct this type of analysis. For
example, studies by Tran et al. and Berntsen et al. [39, 33] performe cross-
validation on different subgroups, including clinics, maternal age, insemination
method, length of incubation, and fresh vs. cryopreserved embryo transfer. They
report varying performance results across subgroups, indicating potential differ-
ences in generalization and biases within the dataset.

One notable study by Lassen et al. [46] comprehensively analyzes subpop-
ulations in terms of age, insemination method, transfer protocol, year of treat-
ment, and IVF clinic. Significant differences in performance are observed among
age groups, transfer protocols, specific years of treatment, and certain clinics.
These results underscore the importance of performing this type of validation
in all the models developed, since failure to do so could discriminate against or
disadvantage certain groups of patients.

External Validation

Moreover, a more rigorous evaluation method known as external validation
assesses the model’s performance in a completely different setting, such as a
new clinic, time period, country, or population that was not part of the model’s
development [63]. For a pure external validation, the new setting, like a clinic,
must be completely separate and independent during the model’s development,
as exemplified by studies employing "double-blind test sets". That is the case
of Ver-Mileya et al. [38], where they test the generalization capability of their
model to independent clinics that did not provide any data for training. Res-
ults show the model accuracy to be marginally lower due to the introduction of
inter-clinic variability, which may have affected efficacy due to varying patient
demographics and different equipment and methods for image acquisition.

Figure 5.4 illustrates the distribution of validation methodologies employed
in the literature across different tasks. The data highlights that a significant
portion of studies primarily rely on internal validation, while only a subset of
these papers conduct subpopulation analysis. Furthermore, only one study goes
a step further and performs an external validation of their model. This data
emphasizes the need for stronger evaluation methodologies in future research.

5.2.3 Evaluation of Predictive Performance over Time

The evaluation of predictive performance over time is a critical aspect of
assessing the robustness and reliability of AI models used in embryo selection.
When a model utilizes TL videos, where the images capture different develop-
mental stages of embryos, it becomes crucial to understand how the model’s
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predictions may vary based on the specific temporal frames.

For instance, if a model has been trained on a dataset that includes images
ranging from the cleavage stage (D3) to the blastocyst stage (D5), it is necessary
to evaluate its performance when using images from different time intervals
within that overall time span. This evaluation helps determine if the model’s
predictions remain consistent across various stages of embryo development. By
systematically testing the model’s performance using different time intervals,
researchers can gain insights into its temporal sensitivity and assess its suitability
for clinical use.

Lassen et al. [46] asses the predictive performance over time by evaluat-
ing the model at 12 hour intervals. Results show a significant improvement in
predictive performance for later predictions on D2 and D5. This correlates with
the decision of clinicians of selecting the embryo at later stages, where embryos
appearance is more informative. Other works such as Kan-Tor et al. [30] also
perform this kind of study, and they show that for Blastocyst Formation Prediction
task AUC increased monotonically with time of prediction.

The need for evaluating predictive performance over time becomes partic-
ularly important to address potential misuse of the system in a clinical setting.
Clinicians may unintentionally introduce images from only the beginning or the
end of the developmental sequence, deviating from the intended usage of the
model. By conducting evaluations that simulate such scenarios, researchers can
identify any performance limitations of the model when used outside the expec-
ted temporal range.

5.2.4 Model Evaluation inside a Clinical Context

The evaluation of AI models often concludes upon achieving satisfactory per-
formance on a test set. However, this limited evaluation raises concerns re-
garding the clinical validity of these models. It is crucial to assess their use-
fulness and practicality from the perspective of clinicians, as their acceptance
and integration into clinical workflows greatly influence their real-world impact.
Therefore, comprehensive evaluations should involve testing the performance
enhancement of these models when utilized as DSSs by clinicians.

Although one of the primary motivations behind the development of AI mod-
els is to ensure their robustness in handling inter- and intra-observer variability,
it is expected that the performance of these models is not lower than experts’.
However, to accurately assess the performance offered by AI models, it is crucial
to compare their results with the current methodologies employed by clinicians.
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Nonetheless, only a limited number of studies in the existing literature conduct
such evaluations, where the model’s performance is directly compared to a group
of experts using traditional evaluation methods on the same test set.

This kind of evaluation can lead to unexpected results, as demonstrated by
Sawada et al. [42]. They compare the performance of the DL model and the
performance of embryologist using traditional Gardner score. They report that
the two evaluations are not concordant, suggesting that the AI model may focus
on embryo features other than the ones assessed by embryologists. Nonetheless,
they show that using the DL model as a DSS, in conjunction with conventional
morphological evaluation, leads to improve performance for Live Birth Prediction
compared to selecting embryos solely based on the AI system or conventional
morphological evaluation alone.

Conversely, Bornmann et al. [36] demonstrate that their DL model can out-
perform 15 different embryologists in identifying embryos with implantation
potential. Similarly, Wu et al [54], test the clinical value of their embryo qual-
ity grading model by asking 5 embryologists to grade the embryos in a test set
by the aid of the model. They show that embryologists improved the AUCs by
between 2% and 7%, thus also confirming how these systems can be helpful in a
clinical setting. These studies further emphasize the clinical value and potential
of these AI models.

In conclusion, evaluating AI models beyond their performance on a test set
is crucial for assessing their clinical validity. While the aim of these models is
to enhance the decisions of experts when used as DSSs, only a limited number
of studies perform this kind of analysis. Further research and comprehensive
evaluations are needed to fully understand their benefits and limitations.

5.3 Ethical Perspective of AI-Assisted Embryo Se-
lection

The use of AI-Assisted embryo selection systems has both medical potential
and ethical concerns. The integration of these models in human reproduction
introduces new possibilities and complexities, giving rise to ethical questions
for IVF patients, clinicians (especially embryologists), and society as a whole.
In this section, a study of the different ethical dimensions that are involved in
this complex topic is carried out. To this end, the framework proposed by [25]
is taken as a basis, which combines two sets of principles: human-centric AI
ethics and patient-centric principles of bioethics. Contributions from [24, 26]
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have also been insightful for the development of this section.

5.3.1 Transparency and Patient Autonomy

The principle of procreative or reproductive autonomy refers to the freedom
of prospective parents to decide when, how, and under what circumstances they
want to have children [25]. Transparency plays a vital role in the ethical use of
AI in assisted reproduction. Prospective parents have the right to know the tech-
nical details of how their child is conceived through AI models. According to the
Ethics guidelines for trustworthy AI developed by the European Commission’s
High-Level Expert Group on AI [64], individuals should be aware of interacting
with an AI system and informed about its capabilities and limitations.

However, complete technical transparency may overwhelming and difficult
to understand by patients. Instead, prospective parents should receive appro-
priate information from the fertility clinic or clinician about the functionalities
of the AI models for embryo selection, the roles of AI and embryologists in the
procedure and the specific benefits, risks, and limitations involved [25]. This
empowers patients to make informed decisions and maintains a collaborative
relationship between clinicians and individuals seeking reproductive assistance.
By providing patients with clear and easy to understand explanations of cer-
tain decisions, they can be more involved and better equipped for the decision-
making process regarding their own care.

Furthermore, an informed consent is vital in this process. According to [25],
an appropriate informed consent requires that the IVF clinician appropriately in-
form prospective parents about: (a) embryo evaluation and selection to be per-
formed automatically using an AI tool; (b) the distinguished, respective roles of
AI and the embryologist in the process (e.g., decision-support-system, automated
system); and (c) specific utilities as well as potential risks and limitations.

5.3.2 Trust and Explainability

Explainability of AI systems is fundamental, specially in this sensitive do-
main, and a lack of it can pose a significant challenge and undermine trust
among clinicians. The opaque nature of these models makes it difficult to un-
derstand how they arrive at their decisions, which in turn hinders the ability to
explain and justify their recommendations. This lack of transparency can create
skepticism and reluctance to fully trust AI systems in clinical decision-making
processes.
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Furthermore, the successful integration of AI-assisted embryo selection sys-
tems in the medical context heavily depends on the acceptance by the clinicians
and, consequently, their trust in them. According to [65], there are several levels
of trust which fall along a spectrum, ranging from complete distrust to over-
reliance on AI systems. Studies have shown that over-reliance on the suggestions
can cause clinicians to take less initiative [66] and also to be more likely to ac-
cept incorrect diagnosis [67]; this is known as automation bias [68]. Moreover,
heavy reliance on AI tools might lead to the deskilling of embryologists [25]. On
the other side of the spectrum lie clinicians which do not trust an algorithm that
they do not understand [69], a phenomenon known as algorithmic aversion.

In the current literature, a limited amount of research comprehends the use
of AI-assisted IVF in combination with XAI methods; this studies have been
presented in section 4.2. In many cases XAI is only considered through the il-
lustration and minor discussion of a few saliency maps [55, 53, 59, 54]. This
approach is not without flaws. It can induce confirmation bias (i.e., a clinician
may only review the evidence that supports its own hypothesis). Others take
one more step and analyze the map activations in order to correlate them to
morphological features [56, 58] or to the objective [34]. Few share the saliency
maps with expert embryologists for evaluation [56, 42]. Meanwhile, several
studies conclude that saliency maps should not be used as the sole source of
explainability in high risk medical domains [70, 71].

In summary, the explainability of AI systems in the field of embryo selection
is crucial for building trust among clinicians. Sharing XAI results with expert
embryologists and contextualizing their interpretation under clinician supervi-
sion is essential for meaningful and reliable explainability in this sensitive med-
ical domain. Furthermore, the study of explainability within topic has served
as a basis for the development of a publication submitted to CCIA conference,
to which few members of the HPAI research group, including the author of this
project, have contributed.

5.3.3 Non-Maleficence: from the Lab to the Clinic

The principle of non-maleficence is highly relevant in the context of AI-
Assisted embryo selection systems. This principle emphasizes the importance
of taking precautionary measures during the research phase to ensure the well-
being of participants, including the potential children conceived through assisted
reproductive technologies [25]. The application of non-maleficence requires
that the benefits of these technologies outweigh the associated risks, maintain-
ing a reasonable risk-benefit ratio.
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One of the main limitations of current AI-assisted embryo selection is the
lack of Randomized Controlled Trials. As [24, 25, 26] point out, the field of re-
productive medicine largely relies on small retrospective studies, lacking RTCs
to validate and optimize the utilization of AI models. Introducing AI-assisted
embryo selection into clinical practice poses its own challenges, requiring suc-
cessful and ethically approved RCTs. While one trial has been registered, it is
important to wait for trial results before implementing the technology. RCTs
are crucial for evaluating new interventions and ensuring patient safety. Thus,
until RTCs show the true potential of this systems, the real validity will remain
unknown.

Furthermore, the focus of research should be on maintaining the autonomy
of prospective parents in the experimental group, ensuring transparency in the
informed consent process [25]. In later stages of the research, close monitoring
of pregnant women and child follow-up should be conducted to identify any
potential long-term effects for both the mother and the conceived children.

5.3.4 Beneficence for Patients, Clinicians and Society

AI-Assisted embryo selection models holds promise for potential benefits
such as improved pregnancy success rates or reduction of healthcare costs. This
offers valuable advantages to various stakeholders, including prospective par-
ents, particularly women undergoing IVF, as well as embryologists, fertility doc-
tors, and society at large. These AI systems can greatly benefit the physician-
patient relationship by allowing physicians to dedicate more time to strengthen
their interactions with patients [26]. Additionally, this technology holds poten-
tial benefits specifically for the patients. The increased efficiency of treatment
enables better life planning, including personal and professional trajectories,
granting women greater control over their reproductive journey [25].

Furthermore, these systems can have great impact at a societal level. The
integration of AI with embryo selection raises concerns regarding its association
with eugenics. This topic is addressed in the "Beneficence" section because some
could argue that the selection of favorable human traits can be seen as benefi-
cial for society, although this viewpoint is highly debatable. AI systems offer
prospective parents the opportunity to select the most viable embryos, effect-
ively allowing them to choose the "best" offspring in terms of viability. While the
current focus is primarily on selecting embryos based on viability, it is important
not to disregard the potential for more elective and nuanced selection of genetic
traits, which directly relates to the concept of eugenics [25].
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This approach could be seen as discriminatory against individuals with disab-
ilities and convey a negative message about the value of their lives. For instance,
screening for conditions like Down Syndrome has been criticized for expressing
a negative view about the worth of people with Down Syndrome. While this
objection applies not only to AI selection but also to clinical selection in general,
AI has the potential to significantly expand the scope of this concern [24].

5.3.5 Responsability and Accountability

The use of opaque AI models raises ethical and legal accountability concerns
[24], particularly when clinicians can not explain the decision-making process.
This creates a "responsibility gap", and without established accountability mech-
anisms it is challenging to determine who should be held responsible for any
potential harm. For example, in cases of sub-optimal embryo selection or injury
due to model recommendations, the decision-making process must be explain-
able to patients seeking to understand what happened or, in more extreme cases,
seeking compensation for the damage caused. As of today, distrust in AI applic-
ations in medicine also comes from doctors fear of legal repercussions if some-
thing goes wrong due to unclear liability regimes [65]. If clinicians base their
decision on these opaque AI models, the evaluation of the decision-making pro-
cess and, consequently, the determination of who is responsible will be greatly
hampered.

5.3.6 Reproductive Access and Social Justice

Works such as [26, 25] have studied how social justice in terms of eligibility
and access is addressed in the topic of AI-Assisted IVF. The affordability of AI in
IVF and its impact on accessibility are key factors in analyzing social justice. The
cost of AI in IVF should not become a barrier to treatment access, particularly for
individuals with limited financial resources. While traditional IVF treatments are
already unaffordable for many, the initial stages of implementing AI in IVF may
further exacerbate this issue. However, one advantage of the implementation of
this technology is the potential long-term reduction in treatment costs, leading
to increased affordability and equal accessibility.

Nevertheless, to achieve cost reduction for patients and the healthcare sys-
tem, the use of AI-based technologies in reproductive medicine must be efficient
and not entail disproportionately higher costs. Tied to this idea, [24] puts for-
ward the following problem: if a clinic decides to adopt a specific AI model for
reproductive medicine, they would need to adhere to the ecosystem and pro-
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tocols associated with that model, including ovarian stimulation regimens, the
use of specific incubators, culture medium, and other variables. This effectively
gives AI companies significant economic power over clinics, potentially leading
to increased treatment costs.

5.3.7 Algorithmic Bias and Fairness

Throughout this study, various forms of bias have been identified and dis-
cussed, highlighting their presence in different contexts. One aspect of bias
stems from a poor definition of the intended use of the model. Where image
pre-processing techniques or the inclusion criteria of certain types of embryos is
not clearly defined. Furthermore, factors such as genetic abnormalities, devel-
opmental stages, fertilization methods, and the use of fresh or frozen embryos
can introduce unbalanced data within sub-populations, leading to biases against
specific classes or traits. It is important to explicitly address these biases and
consider sub-cohort analysis when developing AI models for embryo selection.

In addition to data-related biases, biases can also emerge during the im-
plementation of AI systems in real clinical settings. Automation bias, for in-
stance, refers to the tendency to unquestioningly accept incorrect diagnoses or
recommendations generated by AI models. Confirmation bias is another con-
cern, where clinicians may interpret medical results in a way that aligns with
their preconceived notions or hypotheses. In summary, biases permeate various
stages of the development and implementation of AI-assisted embryo selection
systems.

These biases underscore the need for rigorous scrutiny and ongoing evalu-
ation of AI models in reproductive medicine. Overcoming biases in AI-assisted
embryo selection is no easy task, as it requires a comprehensive approach that
encompasses data collection, model development, implementation, and evalu-
ation, as well as compliance with ethical and legal standards through all the
stages. Transparency and interpretability in AI models also play a significant
role, as it has been discussed. Building models that provide insights into the
decision-making process enables clinicians to evaluate and potentially correct
biases. Addressing and mitigating biases is essential to ensure fair outcomes for
patients and to maintain the trust and reliability of these AI systems.
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Conclusions

AI-assisted embryo selection is a highly promising field of research, yet it also
presents multiple complexities. These have been overlooked in previous studies,
raising doubts about their reliability. This project has aimed to bridge the gap in
the current literature by analyzing both technical and ethical aspects that need
to be considered in the development of these systems.

Special emphasis has been placed on the importance of involving expert em-
bryologists throughout the model development and evaluation, ensuring that
they are reliable and provide added value to their decisions. It has been learned
that a lack of collaboration may lead to overlooking crucial aspects that could
impact future patients. For instance, an important aspect of explainability is the
subsequent validation of produced explanations by domain experts. There have
been cases where generated saliency maps have failed to provide any value in
terms understanding the model or enhancing the decision-making process. This
highlights the need for an interdisciplinary approach in the matter.

Ethical aspects associated with AI-assisted embryo selection are also a topic
of great relevance, and they should be considered for the development of such
systems. In this work, we have discussed various ethical perspectives, from bi-
ases present in model development to transparency, accountability or potential
societal impact. By incorporating these ethical dimensions, we aim to ensure
fair and safe outcomes.

As a result of the analysis and discussion of the aforementioned aspects, this
work proposes a series of recommendations for the development of AI-assisted
embryo selection models:
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1. Collaborate with clinical experts and end users throughout model devel-
opment to incorporate their expertise and needs.

2. Define the task of interest and intended use of the model early on, specify-
ing the types of embryos that will be screened and the clinical settings.

3. Prioritize models trained on pre-selected embryos to maximize perform-
ance and prevent automation bias.

4. From the start of the project, purposefully design the model with a focus
on integrating explainability methods.

5. Build a robust pipeline which itegrates image pre-processing techniques
and develop models capable of integrating information related to time
and focal planes.

6. Report results using relevant evaluation metrics and integrate experts in
the evaluation of the model e.g., simulating the use of the model as a DSS.

7. Report data-related and model-related information using tools such as
Datasheets for Datasets [72] or Model Cards [73] in order to increase
transparency, and follow ethical standards such as the Assessment List for
Trustworthy AI [64].

By following these recommendations, researchers and practitioners can work
towards developing reliable and trustworthy AI models for embryo selection,
ultimately improving clinical outcomes and reproductive healthcare practices.

56 Exploring the Complexities of AI-Assisted Embryo Selection



Chapter 7

Future Work

The work done within this thesis is part of an interdisciplinary collaboration
between the HPAI research group at the BSC and the Clinic Hospital in Bar-
celona. The initial objectives of this collaboration encompass the work presented
in the preceding sections, which includes a comprehensive review and critique
of all aspects related to AI-Assisted embryo selection. Additionally, the long-term
goals of this collaboration involve the development of AI models for embryo se-
lection, which will be heavily influenced by the findings of this thesis. The focus
of these models comprise three key tasks that have been presented in the cur-
rent study: Blastocyst Formation Prediction, Pregnancy Prediction and Live Birth
Prediction.

7.1 Data Management

In the development of the AI models, both patient metadata and clinical data,
along with embryo images, will be used. To ensure compliance with GDPR reg-
ulations regarding personal data protection, extensive documentation has been
developed. This documentation specifies technical measures for access control
and data storage. The responsibility for data anonymization lies with IDIBAPS,
who performs this process at the hospital. Patient identifiers and any identifying
metadata are removed to ensure the data’s anonymity. The data is stored in the
EmbryoScope, located at the same center, and managed by IDIBAPS.
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The process of accessing the EmbryoScope data has been carefully outlined.
Access to the device is restricted by the IDIBAPS security network. To enable
BSC’s access, IDIBAPS provides a certificate that allows secure and auditable
data retrieval through the REST API of the EmbryoScope. This connection is
established via VPN through the private network of the EmbryoScope. BSC se-
curely stores the encrypted data obtained from the EmbryoScope on a dedicated
storage device within their premises. Importantly, the data is never stored on
personal computers, and it remains encrypted throughout the process, ensuring
data security and privacy.

7.2 Use-case Definition

The first task to be tackled in this project is Blastocyst Formation Prediction.
This task consists of predicting which of the embryos developed up to day 3 have
the potential to develop to blastocyst stage at day 5. It is of great relevance since,
in the case of patients with few eggs available or with a high probability that they
will not develop until day 5, the transfer can be performed on day 3 when more
embryos are available. In this section, a methodology for the development of
predictive models for Blastocyst Formation Prediction is outlined.

Definition of Indented Use with Clinicians

The initial step in addressing this task involves establishing the intended use
of the model in collaboration with experts from Clinic Hospital. The following
aspects have been defined to guide the development process:

1. Consideration of clinical settings: The dataset encompasses embryos res-
ulting from both ICSI and IVF. Additionally, the presence of fresh and
cryptopreserved implanted embryos will be analyzed in addition to those
that have been genetically tested for aneuploidy (see Section 5.1.1).

2. Clinician’s pre-selection of embryos: It is crucial to determine whether the
model will evaluate all embryo types, including both high and low quality,
or if a pre-selection by clinicians is anticipated. In this specific use case,
clinicians will perform a pre-selection of good quality embryos, enabling
the model to discriminate among them (see Section 5.1.1).

3. Selection of images based on embryo state: The model should use TL im-
ages capturing embryo development from D0 to D3, enabling the incor-
poration of both morphological and kinetic features. Various approaches
for integrating temporal information will be explored during model devel-
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opment (see Section 5.2).

In the discussions with the experts, an essential aspect that has been emphas-
ized is the need for explainability in this project (see Section 5.3.2). It has been
established that the developed models should provide explainability through sa-
liency maps for images and other feature attribution techniques for metadata.
These explanations will undergo evaluation by the experts during the develop-
ment phase to ensure that they highlight relevant features and facilitate their
understanding of the model’s functioning and decision-making process.

Data Pre-processing Requirements

The following data pre-processing steps have been defined for this project:

1. Data quality: Images of embryos obtained through microscope are subject
to corruption and artifacts. Therefore, this project will explore methods to
deal with these problems. For example, techniques such as segmentation
can be explored to isolate the embryo from the well, as it may contain
remains of the clinical process that can introduce noise into the model.
Additionally, by isolating the embryo from the medium and cropping the
image based on its contour, the issue of embryo movement within the well
will be avoided, which can also introduce harmful variability to the model.
Furthermore, other methods should be analyzed to address the challenges
posed by blurry or darkened images (see Section 5.1.2).

2. Sampling frequency: Another important step of data pre-processing is
the selection of the sampling frequency when dealing with TL videos.
The minimum sampling frequency should be the one that allows to cap-
ture relevant morphokinetical changes in the embryo development. High
sampling frequencies may result in the oversight of important indicators
of inadequate development, such as rapid cell division (direct cleavage).
Hence, sampling frequency will be discussed with Clinic experts (see Sec-
tion 5.2).

3. Focal planes: Additionally, the selection of focal planes used for model
training needs careful consideration. Clinic experts primarily evaluate im-
ages using the equatorial plane but may resort to other focal planes if the
equatorial view is insufficient. Therefore, different sampling frequencies
and the integration of various focal planes will be explored in this project
(see Section 5.3).
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Figure 7.1: Illustration of raw image-based model. Dotted line indicates
metadata can also be used as input.

7.3 Model Design

Due to the diverse range of data types collected in the process of embryo se-
lection (time, focal planes, metadata), there is no single definitive model to ad-
dress the problem. For this project, specifically focusing on the task of Blastocyst
Formation Prediction, several models of varying complexity have been devised,
taking into consideration the requirement of explainability for each of them.

Image-based and Image- and Metadata-based Models

The simplest yet less explainable model involves training a DNN directly on
embryo images from D0 to D3 to classify them based on their potential to de-
velop into a blastocyst (Figure 7.1). To handle the temporal dimensionality, the
simplest option is to treat each frame as an individual sample and then aggreg-
ate the output of each frame, for example, using a voting system to obtain an
embryo-level classification. Taking it further, the entire TL video can be used as
input, and more complex methods like 3D convolutions can be employed to cap-
ture temporal information, directly yielding an embryo-level classification. How-
ever, this approach offers low explainability as saliency maps obtained through
methods like Grad-CAM attribute the score to the entire image, often resulting
in diffuse and challenging-to-interpret areas of high attribution.

An extended option for this model is to incorporate additional metadata col-
lected during the patient’s clinical process, such as age, biological indicators, or
expert annotations on the embryo’s appearance, alongside the images. This ad-
ditional data could potentially improve the model’s performance. It’s important
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Figure 7.2: Segmentation-based models. A: different sub-networks are trained
for each segmented image. B: segmented images are inputed to the same net-
work as different channels.

to note that this model is designed to be simple and serves as a starting point
for further development. Its purpose is to establish a baseline and pave the way
for more advanced models in the future.

Segmentation Masks-based Models

An alternative that offers greater traceability of the final classification in-
volves training specific sub-networks for different parts of the embryo. This ap-
proach includes segmenting the embryo based on its main morphological struc-
tures (e.g., ZP, blastomeres, polar corpuscles) and using the resulting segmented
images as input for these specialized subnetworks (Figure 7.2). By doing so, spe-
cific feature maps can be obtained for each relevant zone, enabling the creation
of more specialized and potentially interpretable saliency maps. One drawback
of this approach is that since the network only attends to isolated parts of the
embryo, information regarding the collective appearance of the parts is lost. It
must be added that metadata can also be used as input as in the previous ex-
ample.

Therefore, an alternative to this network is to use the segmented parts of the
embryo as different channels in the input. This means training a single model
instead of separate models for each mask, as in the previous case. Additionally,
this approach has the advantage that all parts of the embryo influence the final
decision, while maintaining explainability as feature maps can be visualized for
each channel, thus obtaining localized feature attributions for each structure of
the embryo.
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Model Evaluation

Finally, once the models have been trained, they will be evaluated to en-
sure their reliability and robustness. As discussed in the evaluation section, sub-
population studies will be conducted to detect possible biases and confounders
in the models. Sub-populations such as patient age or fertilization and transfer
methods will be examined for this purpose. Additionally, since these models pro-
cess TL videos, their predictive performance over time will be studied to assess
their discrimination ability at different stages of embryo development.

Furthermore, to increase transparency, tools such as Datasheets for Datasets
[72] and Model Cards [73] will be employed. Datasheets for Datasets provide
detailed information about the dataset used for training, including its compos-
ition, biases, and limitations. This information helps stakeholders understand
the data and its implications better. Model Cards, on the other hand, provide
insights into the model itself, including its architecture, training process, and
performance metrics. These documents facilitate a better understanding of the
model’s strengths, weaknesses, and potential ethical considerations.

By leveraging these methods, the transparency and accountability of the de-
veloped models can be enhanced. This is crucial in the context of AI-assisted em-
bryo selection, as it promotes trust among clinicians, patients, and stakeholders
involved in the decision-making process.
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