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Abstract
BACKGROUND 
Cardiovascular disease is the main cause of death in metabolic-associated fatty 
liver disease, and gut microbiota dysbiosis is associated with both of them.

AIM 
To assess the relationship between gut dysbiosis and cardiovascular risk (CVR) in 
an experimental model of steatohepatitis.

METHODS 
Adult male Sprague-Dawley rats were randomized to a control group (n = 10) fed 
a standard diet and an intervention group (n = 10) fed a high-fat choline-deficient 
diet for 16 wk. Biochemical, molecular, hepatic, and cardiac histopathology. Gut 
microbiota variables were evaluated.

RESULTS 
The intervention group had a significantly higher atherogenic coefficient, 
Castelli’s risk index (CRI)-I and CRI-II, interleukin-1β, tissue inhibitor of metallo-
proteinase-1 (all P < 0.001), monocyte chemoattractant protein-1 (P = 0.005), and 
plasminogen activator inhibitor-1 (P = 0.037) than the control group. Gene 
expression of miR-33a increased (P = 0.001) and miR-126 (P < 0.001) decreased in 
the intervention group. Steatohepatitis with fibrosis was seen in the intervention 
group, and heart computerized histological imaging analysis showed a significant 
decrease in the percentage of cardiomyocytes with a normal morphometric 
appearance (P = 0.007), reduction in the mean area of cardiomyocytes (P = 0.037), 
and an increase of atrophic cardiomyocytes (P = 0.007). There were significant 
correlations between the cardiomyocyte morphometry markers and those of 
progression and severity of liver disease and CVR. The intervention group had a 
lower Shannon diversity index and fewer changes in the structural pattern of gut 
microbiota (both P < 0.001) than controls. Nine microbial families that are 
involved in lipid metabolism were differentially abundant in intervention group 
and were significantly correlated with markers of liver injury and CVR.

CONCLUSION 
The study found a link between gut dysbiosis and significant cardiomyocyte 
abnormalities in animals with steatohepatitis.

Key Words: Animal model; Cardiovascular diseases; Gut microbiota; Metabolic-associated 
fatty liver disease; Predicted lipid metabolism; Risk cardiovascular; Steatohepatitis

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Cardiovascular disease is the main cause of death in metabolic-associated 
fatty liver disease (MAFLD) and gut microbiota dysbiosis is associated with both. 
Among the risk factors, we report significant correlations between the presence of 
atherogenic dyslipidemia, systemic inflammation, endothelial dysfunction, liver 
fibrogenesis, and gut dysbiosis, all of which contributed to the progression of MAFLD 
and increased cardiovascular risk.
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INTRODUCTION
Nonalcoholic fatty liver disease (NAFLD) is the most common form of liver disease 
and a leading cause of morbidity and mortality in both developed and developing 
countries[1]. The natural course the disease encompasses a pathological spectrum of 
liver injury ranging from simple steatosis to steatohepatitis and progressive liver 
fibrosis that can result in cirrhosis and other complications, including liver 
decompensation and hepatocellular carcinoma (HCC)[1,2]. Recently, a new 
nomenclature, metabolic-associated fatty liver disease (MAFLD) was suggested 
because the disease is not only confined to the liver only, but rather represents a major 
part of a multisystemic disease that includes cardiovascular manifestations[3-6]. 
Indeed, cardiovascular disease (CVD) is the leading cause of death in patients with 
MAFLD, accounting approximately 40%–45% of the total deaths[4,7,8].

The association of steatohepatitis with CVD is related to the metabolic risk factors 
that they have in common, such as obesity, diabetes mellitus, hypertension, and 
dyslipidemia. However, multiple studies have shown that steatohepatitis is also 
independently associated with several markers of subclinical atherosclerosis[4,7,8]. 
Although the putative pathophysiological mechanisms that link steatohepatitis and 
CVD are still not completely explained, many nontraditional and emerging risk 
factors, including proinflammatory cytokines and procoagulant factors (e.g., 
fibrinogen, plasminogen, and vascular adhesion molecules) are associated with the 
process[7,9]. Recently, the intestinal microbiome and its highly complex and interde-
pendent interaction with host metabolism, immunity, and disease have opened a new 
horizon of investigation into the link between these clinical conditions[4,9,10]. Gut 
microbiota, or the bacterial components and metabolites carried to the liver through 
the portal vein, overstimulate immune cells and may result in more severe liver 
damage, inflammation, and fibrosis, thus accelerating the development of steatohep-
atitis and inducing the systemic inflammation and endothelial dysfunction that 
promotes increased cardiovascular risk (CVR)[4,10]. Despite considerable progress, 
understanding of the molecular mechanisms governing microbiota-host interactions is 
far from complete. Experimental studies are needed to further explore the mechanisms 
whereby gut microbiota contribute to steatohepatitis-associated CVR.

The goal of this study was to assess the relationships of the gut microbiota, steato-
hepatitis, and CVR, by describing the crosstalk among gut dysbiosis, associated 
metabolic predictions, systemic inflammation, endothelial dysfunction, paracrine cell 
signaling, and cardiomyocyte morphology in an experimental nutritional steatohep-
atitis model that mimics the metabolic changes found in humans.

MATERIALS AND METHODS
Animals and experimental model
Twenty 60-day-old adult male Sprague-Dawley rats weighing 280-350 g were used. 
The animals were kept in groups inside two polypropylene boxes in a controlled-
temperature environment (22 ± 2 °C) and a 12-h light/dark cycle. All experimental 
procedures were approved by the Ethics Committee for the Use of Animals (No. 17-
0021 and No. 17-0531) and were conducted following the international guidelines for 
animal welfare. Measures were taken to minimize animal pain and discomfort.

After acclimatization to the environment, the animals were randomized to two 
experimental groups according to their weight, as previously described[11]. The 
control group (n = 10) received a standard diet (Nuvilab CR-1, Quimtia S.A., Brazil). 
The intervention group (n = 10) received a high-fat, choline-deficient diet consisting of 
31.5% total fat and enriched with 54.0% trans fatty acids (Rhoster Ltda., Brazil) to 
induce steatohepatitis. Both groups received water and food ad libitum during the 
study. After 16 wk of treatment, the animals were fasted for 8 h, anesthetized with 
isoflurane, and euthanized by cardiac exsanguination. Blood samples were collected 
and centrifuged to obtain the serum, which was kept at −80 °C until the analyses were 
performed. Pieces of hepatic and cardiac tissue were fixed in 10% formaldehyde for 
histopathological evaluation. Feces present in the intestine were collected aseptically 
and kept at −80 °C for analysis of the gut microbiota.

Atherogenic ratios
Serum total cholesterol (TC), low density lipoprotein-cholesterol (LDLC), high-density 
lipoprotein cholesterol (HDLC) and triglycerides (TG) were assayed with a Labmax 
560[11]. Atherogenic ratios were calculated from the lipid profile and used as a tool for 
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the prediction of CVR. The ratios included Castelli’s risk index (CRI)-I = TC/HDLC, 
CRI-II = LDLC/HDLC and the atherogenic coefficient (AC) = (TCH − DLC)/HDLC
[12].

Systemic inflammation and endothelial dysfunction
The serum markers of inflammation and endothelial dysfunction markers included in 
the analysis were monocyte chemoattractant protein (MCP)-1, tissue inhibitor of 
metalloproteinase (TIMP)-1 and plasminogen activator inhibitor (PAI)-1, and were 
determined by multiplex assay with the Luminex platform (Millipore, Germany). The 
results were expressed as ng/mL. Serum interleukin (IL)-1β was measured with an 
enzyme-linked immunosorbent assay kit (Thermo Scientific, United States). 
Absorbance was measured spectrophotometrically at a wavelength of 450 nm with a 
Zenyth 200rt microplate reader (Biochrom). The results were expressed in pg/mL. All 
procedures were performed in duplicate following the manufacturer's instructions.

Analysis of circulating microRNAs
Total RNA was extracted from serum using miRNeasy serum/plasma kits (Qiagen, 
United States). A cel-miR-39 (1.6 × 108 copies) spike-in control (Qiagen, United States) 
was added to provide an internal reference. cDNA conversion was performed with 10 
ng of total RNA using TaqMan microRNA reverse transcription kits (Applied 
Biosystems, United States). Amplification of miR-33a, miR-126, miR-499, miR-186 and 
miR-146a, was performed by quantitative real-time PCR using the TaqMan assay 
(Applied Biosystems, United States) and expression as normalized against cell-miR-39. 
The sequences and codes of the assessed miRNAs are listed in Supplementary Table 1 
(Private sharing link for Figshare data https://figshare.com/s/2d858620da6b13fe2fec
). Values were calculated by the 2−(ΔΔCt) method.

Hepatic histopathological analysis
Formalin-fixed liver tissue samples were embedded in paraffin, sectioned, and stained 
with hematoxylin and eosin (H&E) and picrosirius red. Histopathological lesions of 
the different evolutionary stages of liver disease were scored as previously described 
by Liang et al[13]. The score is highly reproduceable and applicable to experimental 
models in rodents. The analysis was performed by an experienced pathologist who 
was blinded to the experimental groups. Fibrosis was quantified by morphometric 
analysis after picrosirius red staining. Ten randomly selected fields were observed per 
animal to measure staining intensity using an Olympus BX51 microscope, and 
QCapture 64-bit (QImaging) at × 200 magnification. The evaluation was performed 
using ImageJ (version 1.51p, https://imagej.nih.gov/ij/).

Cardiomyocytes morphometric analysis
Cardiomyocyte morphometric analysis (CMA) was performed based on adaptations of 
the nuclear morphometric analysis developed by Filippi-Chiela et al[14]. 
Cardiomyocyte size and shape were measured using Image Pro Plus 6.0 (IPP6, Media 
Cybernetics). H&E images from hearts of animals were acquired. Five different fields 
were photographed in tissue from each animal using QCapture 64-bit software and an 
Olympus BX51 microscope. At least 50 cross-sectioned cardiomyocytes of each animal 
were analyzed. The outlines of single cells were marked using the magic wand tool of 
IPP6, followed by acquisition the cell area, aspect, area/box, radius ratio, and 
roundness. The last four measurements were used to define the cardiomyocyte irregu-
larity index (CII) of each cell (CII = area + aspect – area/box + roundness). These 
variables were used to report the size and shape of single cardiomyocytes. In addition 
to the average size and regularity, the plot of area vs CMA also defined the percentage 
of normal, hypertrophic, and atrophic cells.

DNA extraction, 16S rRNA sequencing and bioinformatics analysis
A detailed description of the methods used for 16S ribosomal RNA gene sequencing 
and analyses is provided in the Supplementary Information (Private sharing link for 
Figshare data https://figshare.com/s/2d858620da6b13fe2fec). Briefly, after DNA 
extraction, the V4 hypervariable region of the 16S rRNA gene was amplified using 
515F–806R primer pair and sequencing was performed with Ion Torrent (Thermo 
Fisher Scientific, United States). A custom pipeline in Mothur was used for 16S rRNA 
reads processing. Subsequent analysis of the sequence dataset and data visualization 
were performed in R using the vegan, phyloseq, ggplot2, and MicrobiomeAnalystR 
packages or QIIME.

https://f6publishing.blob.core.windows.net/115a490d-06d2-4576-be9c-699454090ea7/WJH-13-2052-supplementary-material.pdf
https://figshare.com/s/2d858620da6b13fe2fec
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Correlations between analyzed markers
For this analysis, we selected the histopathological NAFLD score, quantification of 
liver collagen, TIMP-1, MCP-1, and IL-1β as markers of severity and progression of 
steatohepatitis. For the correlation of CVD risk factors and lipid metabolism, we 
selected miR-33a, miR-126, PAI-1, CRI-I, CRI-II and AC. We selected the percentage of 
normal cardiomyocytes, percentage average area of cardiomyocytes, and percentages 
of atrophic cardiomyocyte morphological characteristics. The overall microbiota 
composition was correlated with the variables.

Statistical analysis
Data symmetry was tested using the Shapiro-Wilk test. Student-t and Mann-Whitney 
U tests were performed. Spearman's correlation coefficient was performed, with 
moderate (0.3 < r < 0.6), strong (0.6 < r < 0.9), or very strong (0.9 < r < 1.0) correlations. 
Quantitative variables were expressed as means ± standard deviation or medians with 
minimum and maximum values. P ≤ 0.05 was considered statistically significant. Data 
were analyzed with SPSS 18.0 (IBM Corp., United States).

RESULTS
Atherogenic ratios, inflammation, and endothelial dysfunction to assess CVR
The results obtained for these parameters are shown in Table 1. There were significant 
increases in AC), CRI-I, and CRI-II (all P < 0.001) in the intervention group, indicating 
that the animals had an increased CVR. There were significant increases in the serum 
concentrations of IL-1β (P = 0.001), MCP-1 (P = 0.005), TIMP-1 (P < 0.001), and PAI-1 (P 
= 0.037) in the intervention group compared with the control group. Together, the 
results suggest the study intervention had increased systemic inflammation and 
endothelial dysfunction.

Level of circulating microRNAs related to CVR
The levels of circulating microRNAs related to CVR are shown in Figure 1. There was 
a significant increase in the gene expression of miR-33a (P = 0.001) in the intervention 
group compared with the control group, the opposite was reported for miR-126 (P < 
0.001). There were no between-group differences in the expression of miR-499 (P = 
0.171), miR-186 (P = 0.151), and miR-146a (P = 0.151).

Liver histopathological analysis
No abnormalities were seen in the livers of the control group animals, whereas 
animals in the intervention group had predominantly microvesicular steatosis along 
with macrovesicular steatosis of moderate intensity, inflammatory activity, and a mild 
degree of fibrosis. In the histopathological staging of lesions, seven animals in the 
intervention group had steatohepatitis and three had simple steatosis. Picrosirius red 
staining of collagen was more intense (P < 0.001) in animals in the intervention group 
than in the control group (4.10, range: 3.02-6.04 vs 1.35, range: 1.21-1.55) relative 
luminescence units, indicating a significant increase in the deposition of connective 
tissue fibers in the liver.

Morphometric and histopathological evaluation of cardiomyocytes
Myocardial steatosis was not observed in either the control of intervention group. The 
evaluation of cardiomyocyte morphometry (i.e. size and shape) demonstrated the 
percentages of normal size, large, or small cells and their shape regularity (Figure 2A). 
There was a significant decrease in the percentage of cardiomyocytes with a normal 
morphometric appearance (P = 0.007) in the intervention group compared with the 
control group (Figure 2B). Among the most clinically relevant morphometric changes, 
there was a significant reduction in the mean area of cardiomyocytes (P = 0.037, 
Figure 2C) and a significant increase in the percentage of atrophic cardiomyocytes in 
the intervention group (P = 0.007, Figure 2D) in relation to the control group. Finally, 
we separated the animals in the intervention group into two subgroups by the median 
percentages of normal cardiomyocytes (Figure 2E) and atrophic cardiomyocytes 
(Figure 2F) and the average area (Figure 2G) and then compared the data. Animals 
with a percentage of normal cardiomyocytes higher than the median had higher liver 
tissue levels of TIMP-1, IL-1β, IL-6 and myeloid differentiation primary response 
(Myd)-88, and lower levels of IL-1β/IL-10 (Figure 2E). Animals with a percentage of 
atrophic cardiomyocytes above the median had lower liver tissue levels of IL-1β 
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Table 1 Atherogenic ratios, inflammation and endothelial dysfunction markers in a nutritional model of steatohepatitis

Variable Control (n = 10) Intervention (n = 10) P value

AC 0.6 (0.2–0.9) 2.5 (1.5–3.4) < 0.001a

CRI-I 1.6 (± 0.4) 3.5 (± 1.1) < 0.001a

CRI-II 0.3 (± 0.1) 0.8 (± 0.2) < 0.001a

IL-1β (pg/mL) 367.7 (± 31.2) 465.9 (± 52.7) 0.001a

MCP-1 (ng/mL) 2.7 (± 0.6) 3.8 (± 0.9) 0.005a

TIMP-1 (ng/mL) 7.1 (± 1.4) 12.4 (± 2.3) < 0.001a

PAI-1 (ng/mL) 0.11 (± 0.05) 0.17 (± 0.06) 0.037a

Data are means ± standard deviation or medians (25th-75th percentiles).
aP ≤ 0.05 was considered statistically significant.
AC: Atherogenic coefficient; CRI: Castelli’s risk index; IL: Interleukin; MCP: Monocyte chemoattractant protein; PAI: Plasminogen activator inhibitor; 
TIMP: Tissue inhibitor of metalloproteinase.

(Figure 2F). Animals with an average cardiomyocytes area greater than the median 
had lower liver tissue levels of tumor necrosis factor-α/IL-10 (Figure 2G).

Gut microbiota diversity and composition
The Shannon diversity index was significantly lower (P < 0.001) in intervention than in 
the control group (Figure 3A). In addition, analysis of similarities (ANOSIM) revealed 
that the structural pattern of the gut microbiota in intervention group was clearly 
distinct from that of the control group (P < 0.001) by principal coordinates analysis 
(PCoA) using the Bray-Curtis distance metric (Figure 3B). In terms of composition (i.e. 
taxonomic identification), 1266 bacterial taxa (operational taxonomic units) that 
belonged to 112 genera, 41 families, and eight phyla were identified. Firmicutes (53.1%) 
and Bacteroidetes (43.1%) were the most abundant phyla in all samples. The most 
abundant families were Muribaculaceae (21.7%), Lachnospiraceae (20.8%), Ruminococ-
caceae (18.5%), and Bacteroidaceae (15.4%, Figure 3C). The four families represented 
76.4% of all observed taxa. Differential abundance analysis identified nine families that 
were associated with the intervention group and one family associated with control 
group (Linear discriminant analysis score > 2.0; Figure 3D).Bacteroidaceae, Ruminococ-
caceae, Peptostreptococcaceae, Peptococcaceae, Erysipelotricaceae, Clostridiaceae, B- urkhold-
eriaceae, Streptococcaeae, and Tannerellaceae were differentially abundant in the 
intervention group. Lachnospiraceae was differentially abundant in control group. The 
distribution of the 41 families and their features are shown in Figure 3E. Most of the 
taxa prevalent in control group were less prevalent or absent in intervention group. 
The reverse was also observed.

Lipid metabolism prediction
PCoA using the Bray-Curtis distance metric indicated that the clustering of the 
predicted lipid metabolic pathways in the study groups was clearly distinct (ANOSIM, 
P < 0.001) As shown in Figure 4A, two samples, R01 and R11, were considered outliers 
and were not included in further statistical analysis (e.g., LefSe analysis). The distri-
bution of the predicted lipid metabolic pathways is shown in Figure 4B. In total, 12 
metabolic pathways were identified in which the between-group difference in the 
relative frequency was significant (P < 0.001, linear discriminant analysis score > 2.0; 
Figure 4C). The results showed that metabolic pathways involved in sphingolipid 
metabolism, fatty acid biosynthesis, fatty acid metabolism, steroid hormone biosyn-
thesis, and arachidonic acid metabolism were significantly increased in intervention 
group, and glycerophospholipid metabolism, glycerolipid metabolism, synthesis and 
degradation of ketone bodies, biosynthesis of unsaturated fatty acids, alpha-linolenic 
acid metabolism, linoleic acid metabolism, and ether lipid metabolism were 
significantly increased in control group.

Correlations between steatohepatitis, CVR, and gut microbiota
The correlations between markers of liver disease progression and severity, CVR 
factors, cardiomyocyte morphometry and microbiota composition are shown in 
Table 2. Additional correlations can be found in Supplementary Table 2 (Private 
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Longo L et al. Cardiomyocyte abnormalities in model of steatohepatitis

WJH https://www.wjgnet.com 2058 December 27, 2021 Volume 13 Issue 12

Table 2 Correlation of steatohepatitis, cardiovascular risk, and microbiota composition

Severity and progression of liver injury CVR factors and metabolism of lipids Cardiomyocyte 
morphometry

Microbiota 
composition

Variable1

Quantification of collagen 
(picrosirius) TIMP-1 MCP-1 IL-1β miR-33a miR-126 PAI-1 CRI-I CRI-II AC

% 
Normal 
CAR

Average 
area of 
CAR

% 
Atrophic 
CAR

NAFLD score 0.8792 0.7912 0.6732 0.347 0.6392 -0.7772 0.4443 0.8092 0.8202 0.8092 -0.5193 -0.6302 0.7212 0.6942

Quantification 
of collagen 
(picrosirius) 

0.6112 0.4563 0.7522 0.5713 -0.6832 0.415 0.8192 0.8212 0.8192 -0.205 -0.312 0.238 0.3782

TIMP-1 0.8032 0.7262 0.7282 -0.8122 0.5353 0.6912 0.7472 0.6912 -0.6942 -0.405 0.6072 0.5392

MCP-1 0.5673 0.4923 -0.6232 0.336 0.5493 0.5613 0.5493 -0.4903 -0.390 0.4983 0.2323

Severity and 
progression of 
liver injury

IL-1β 0.8092 -0.6883 0.5443 0.6453 0.6882 0.6453 -0.4373 -0.393 0.382 0.2933

miR-33a -0.6552 0.363 0.5293 0.6033 0.5293 -0.7042 0.038 0.232 0.1603

miR-126 -0.6342 -0.7122 -0.7302 -0.7122 0.4593 0.320 -0.364 0.3682

PAI-1 0.4873 0.6712 0.4873 -0.317 0.389 -0.289 0.103

CRI-I 0.8632 1.0002 -0.234 -0.4593 0.386 0.4692

CRI-II 0.8632 -0.399 -0.4923 0.5513 0.5842

CVR factors 
and 
metabolism of 
lipids

AC -0.236 -0.4573 0.389 0.4772

% Normal 
cardiomyocytes

0.105 -0.058

% Average area 
of 
cardiomyocytes

-0.8182

Cardiomyocyte 
morphometry

% Atrophic 
cardiomyocytes

1Variables were evaluated by Spearman's r correlation coefficient: moderate (0.3 < r < 0.6), strong (0.6 < r < 0.9) or very strong (0.9 < r < 1.0).
2Correlation significant at the 0.01 level.
3Correlation significant at the 0.05 level.
AC: Atherogenic coefficient; CAR: Cardiomyocytes; CRI: Castelli’s risk index; CVR: Cardiovascular risk; IL: Interleukin; MCP: Monocyte chemoattractant protein; NAFLD: Nonalcoholic fatty liver disease; PAI: Plasminogen activator 
inhibitor; TIMP: Tissue inhibitor of metalloproteinase.
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Figure 1 Gene expression of circulating microRNAs. A: miR-33a (P = 0.001); B: miR-126 (P < 0.001); C: miR-499 (P = 0.171); D: miR-186 (P = 0.151); E: 
miR-146a (P = 0.151). aP < 0.05, Significant effect of the high-fat and choline-deficient diet. Data are medians (25th-75th percentile), Mann-Whitney U test.

sharing link for Figshare data https://figshare.com/s/2d858620da6b13fe2fec). There 
was a positive correlation between the markers of steatohepatitis severity and 
progression with CVR factors, such as miR-33a, PAI-1, and atherogenic ratios. 
Negative correlations were observed for miR-126. Regarding cardiomyocyte 
morphometry, there were negative correlations between the average area and the 
percentage of normal cardiomyocytes with the NAFLD score. There was a positive 
correlation of histopathological NAFLD score with the percentage of atrophic 
cardiomyocytes, a negative correlation between the percentage of normal 
cardiomyocytes with MCP-1 and TIMP-1 and a positive correlation of those markers 
with the percentage of atrophic cardiomyocytes. Furthermore, the average area of 
cardiomyocytes correlated negatively with atherogenic ratios, CRI-I, CRI-II and AC. 
miR-33a correlated negatively and miR-126 and positively with the percentage of 
normal cardiomyocytes.

The composition of the microbiota was positively correlated with markers of liver 
injury and CVR. The correlation of each family of microorganisms with markers of 
liver disease progression and severity and CVR factors are shown in Table 3. 
Significant moderate and strong correlations were observed between nearly all 
families of bacteria and the hepatic histopathology score, collagen fiber deposition in 
hepatic tissue, TIMP-1, microRNAs, and atherogenic ratios. Families of interest in the 
underlying disease including Bacteroidaceae, Clostridiaceae, Firmicutes and Lactobacil-
laceae were correlated with the evaluated markers. No correlation was observed 

https://figshare.com/s/2d858620da6b13fe2fec
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Table 3 Correlation of gut microbiota at family level, steatohepatitis, and cardiovascular risk factors

Severity and progression of liver injury CVR factors and metabolism of lipids
Variable1 (Family)

NAFLD score Quantification of collagen (picrosirius) TIMP-1 MCP-1 miR-33a miR-126 PAI-1 CRI-I CRI-II AC
Actinomycetaceae 0.5842

Aerococcaceae

Anaeroplasmataceae -0.5532 -0.6142 -0.6142

Atopobiaceae 0.6272 0.6102 0.5922 0.6632 0.5922

Bacillales_unclassified 0.5492 -0.5482 -0.5332 -0.5482

Bacteroidaceae 0.8362 0.7462 0.7842 0.6892 -0.7542 0.6622 0.7322 0.6622

Bacteroidales_unclassified -0.5602 -0.5892 -0.4922

Burkholderiaceae 0.5642

Clostridiaceae 0.8072 0.7232 0.6452 0.5932 -0.6692 0.6762 0.6382 0.6762

Clostridiales_unclassified -0.6282 -0.5292 -0.5352 -0.5762 -0.5862 -0.5252

Clostridiales_vadinBB60 -0.6022 -0.6712 -0.5272 -0.5582 0.5242 -0.6262 -0.5022 -0.6262

Corynebacteriaceae -0.6692 -0.5452 -0.6802 -0.7822 0.6112 -0.5712 -0.6222 -0.5712

Desulfovibrionaceae -0.8062 -0.6032 -0.8722 -0.7762 -0.6312 0.7552 -0.7292 -0.7462 -0.7292

Eggerthellaceae 0.4902

Firmicutes_unclassified -0.7972 -0.6372 -0.6872 -0.6552 0.5942 -0.6292 -0.6992 -0.6292

Gastranaerophilales -0.8222 -0.6562 -0.6442 -0.6432 0.6572 -0.6982 -0.5862 -0.6982

Lachnospiraceae -0.8502 -0.6532 -0.7892 -0.7882 -0.6132 0.7662 -0.6432 -0.6292 -0.6432

Lactobacillaceae -0.6162 -0.6332 0.7952 -0.5292

Lactobacillales_unclassified

Micrococcaceae 0.6692 0.5342 -0.5282 0.4932

Mollicutes_RF39_fa -0.6502 -0.6182 -0.5902 -0.6092 0.7132 -0.8572 -0.7682 -0.8572

Moraxellaceae -0.6692 -0.5362 -0.5572 -0.5432 -0.5992 -0.4732 -0.5992

Muribaculaceae -0.8162 -0.7942 -0.5762 0.6932 -0.6842 -0.8272 -0.8462 -0.8272

Pasteurellaceae

Prevotellaceae -0.7052 0.6032 -0.5222 -0.4862
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Rikenellaceae -0.6792

Saccharimonadaceae -0.7372 -0.5592 -0.6192 -0.6742 0.6562 -0.7762 -0.7592 -0.7762

Staphylococcaceae -0.7342 -0.6472 -0.8082 -0.8382 0.7162 -0.6162 -0.6792 -0.6162

Streptococcaceae 0.7902 0.7262 0.6372 0.5952 -0.6222 0.7242 0.5152

1Variables were evaluated by Spearman's r correlation coefficient, moderate (0.3 < r < 0.6) or strong (0.6 < r < 0.9).
2Correlation significant at the 0.05 level.
AC: Atherogenic coefficient; CRI: Castelli’s risk index; CVR: Cardiovascular risk; MCP: Monocyte chemoattractant protein; NAFLD: Nonalcoholic fatty liver disease; PAI: Plasminogen activator inhibitor; TIMP: Tissue inhibitor of 
metalloproteinase.

between families of gut microbiota and measurements of cardiomyocyte 
morphometry.

DISCUSSION
Steatohepatitis and CVD are both associated with metabolic risk factors, including 
glucose abnormalities, dyslipidemia, chronic inflammation, endothelial dysfunction, 
and gut dysbiosis. The relationship is recognized in the clinical setting, but the links 
among steatohepatitis, CVD, and gut dysbiosis needs to be better understood. This 
study provided evidence of the role of MAFLD as an adjuvant risk factor for the 
development of CVD. We found that dysbiotic bacteria and their metabolites were 
translocated to the liver through the ruptured intestinal barrier, causing impaired 
hepatic triglyceride metabolism, inflammatory responses, and fibrogenesis, which are 
necessary for the development and progression of MAFLD[11]. We also found 
significant correlations between the activation of pathophysiological pathways that 
link MAFLD and increased risk of developing cardiovascular events, such as 
atherogenic dyslipidemia, systemic inflammation, endothelial dysfunction, gut 
dysbiosis, and changes in cardiomyocyte morphometry. In this study, the significant 
associations between steatohepatitis and CVR, justify the screening of MAFLD and its 
associated risk factors in high-risk patients, in order to intervene effectively, with a 
focus on new approaches aimed at directing the composition of the intestinal 
microbiota as a potential therapeutic target.

In a recent publication, we reported that the experimental nutritional model 
developed in this study is capable of causing marked deposition of body and liver fat, 
changes in biochemical parameters, activation of microRNAs, receptors, mediators, 
and inflammatory cytokines, an increase in intestinal permeability, and hepatic 
histopathological changes, similar to steatohepatitis in humans[11]. This robust experi-
mental model of steatohepatitis of metabolic origin allows evaluating 
pathophysiological mechanisms related to the development of CVD in MAFLD. We 



Longo L et al. Cardiomyocyte abnormalities in model of steatohepatitis

WJH https://www.wjgnet.com 2062 December 27, 2021 Volume 13 Issue 12

Figure 2 Cardiomyocytes morphometric analysis. The area and cross-sectional shape of cardiomyocytes were determined from images of hematoxylin and 
eosin-stained tissue. A: Dot plot of cardiomyocyte area vs cardiomyocyte irregularity index in control (blue) and intervention (red) groups. Each dot represents a 
population of cardiomyocytes with different morphometry. N–normal area and shape, Ir–normal area and irregular shape, HR–hypertrophic and regular 
cardiomyocytes, HIr–hypertrophic and irregular cardiomyocytes, AR–atrophic and regular cardiomyocytes, AIr–atrophic and irregular cardiomyocyte; B: Average area 
of cardiomyocytes; C: Percentage of normal cardiomyocytes; D: Percentage of atrophic cardiomyocytes; E-G: We segregated the animals in the intervention group 
into two subgroups and the data were compared. IL: Interleukin; TNF: Tumor necrosis factor.

demonstrated that abnormalities of lipid metabolism and atherogenic ratios were 
related to greater propensity to develop CVD associated with steatohepatitis. The 
results are consistent with other experimental and clinical studies[7,15-18]. In addition, 
we report a significant increase of systemic markers of inflammation and endothelial 
dysfunction in animals with steatohepatitis. The worsening of the inflammatory state 
in MAFLD is associated with worse cardiometabolic outcomes. PAI-1 is a marker of 
endothelial dysfunction, being released in response to low-grade inflammation, free 
fatty acids, and atherogenic lipoproteins[19,20]. A previous study reporting that an 
increase in PAI-1 was correlated with the histological severity of MAFLD and 
alterations in the lipid profile, promoting a more atherogenic phenotype[21]. PAI-1 
also plays a vital role in liver fibrosis, promoting increased deposition of extracellular 
matrix in liver tissue, in which TIMP-1 performs a similar function[22]. In that sense, 
liver fibrosis can lead to severe hepatic dysfunction and even life-threatening 
conditions such as liver cirrhosis and HCC. The mechanism of liver fibrosis is 
multifaceted and, in this study, animals with steatohepatitis had an increase in TIMP-1 
concentration and deposition of collagen fibers in liver tissue, markers that 
significantly correlated with increased CVR.

Assessment of microRNAs has been used for the early detection and monitoring of 
the progression of MAFLD, and to assess clinical and subclinical CVD. miR-33a 
inhibits genes involved in high-density lipoprotein synthesis and the reverse transport 
of cholesterol[23,24]. In this study, animals with steatohepatitis had a significant 
increase in miR-33a expression that was positively correlated with atherogenic ratios 
and markers of severity and progression of liver injury. miR-126 expression, which is 
high in endothelial cells and regulates the migration of inflammatory cells, formation 
of capillary networks, and cell survival[25], was decreased in animals with steatohep-
atitis. In fact, there was an inverse correlation between miR-126 expression and 
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Figure 3 Gut microbiota changes in intervention and control groups. A: Shannon diversity index; B: Principal coordinate analysis based on Bray-Curtis 
distance metric; C: Relative abundance of gut microbiota at the family level; D: Differential abundance by linear discriminant analysis; E: Heatmap distribution of the 
41 families among the samples. LDA: Linear discriminant analysis.
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Figure 4 Sixteen predicted functional Kyoto Encyclopedia of Genes and Genomes lipid metabolism pathways in intervention and control 
group. A: Principal coordinate analysis; B: Heatmap distribution; C: Linear discriminant analysis (LDA) of the 16 differentially abundant KEGG lipid metabolism 
pathways.

atherogenic ratios, endothelial dysfunction, inflammation, fibrogenesis, and severity of 
liver injury. As established in the literature, microRNAs act in the epigenetic 
regulation of intricate processes[24,25]. In this study, we clearly demonstrated that the 
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expression of miR-33a and miR-126 was involved in the regulation of cholesterol, lipid 
metabolism, and endothelial dysfunction, and contributed to the development of 
metabolic disorders and CVD related to steatohepatitis.

The morphometric evaluation of cardiomyocytes was an interesting and innovative 
analysis in this study, and it found that animals with steatohepatitis had a significant 
decreases in the percentage of cardiomyocytes with a normal appearance and the 
mean area of cardiomyocytes relative to the control group. In addition, animals with 
steatohepatitis had a significant increase in the percentage of atrophic cardiomyocytes. 
To the best of our knowledge, morphometric analysis of cardiomyocytes in MAFLD 
has not been previously reported, which makes it difficult to discuss the data obtained. 
Several cellular processes can be inferred through morphometric analysis, and the 
method can be used in the diagnosis and prognosis of some clinical conditions[14,26,
27]. In this study, we reported that the percentage of normal cardiomyocytes was 
negatively correlated with the histological severity of liver damage, fibrogenesis, and 
inflammation. Furthermore, the percentage of atrophic cardiomyocytes correlated 
positively with the liver injury markers. Clinical manifestations of MAFLD, such as 
steatosis and inflammation, are additional risk factors for the development of CVD[3,
9]. However, the exact mechanisms for this complex relationship are unclear[3,9]. It is 
likely that several highly interrelated factors contribute to the increase of CVR in 
steatohepatitis and changes in the morphometry of cardiomyocytes. However, more 
studies are needed to evaluate the morphometry of cardiomyocytes in more advanced 
stages of MAFLD.

The “multiple parallel hits” hypothesis highlights the importance of the gut 
microbiota and seems to provide a more accurate explanation of the pathogenesis of 
steatohepatitis and its contribution to the increase in CVR[3,10]. The liver is closely 
related to the intestine both anatomically and functionally, and recent evidence 
demonstrates that the type and quantity of intestinal microorganisms determine 
important characteristics related to the pathogenesis and progression of these clinical 
conditions[28-30]. Our data corroborate with experimental and clinical studies 
reporting that the development and progression of MAFLD is associated with a 
significant decrease in the diversity and structure of the bacterial communities of the 
gut microbiota[29,31,32]. In this study, we report an increase in the abundance of 
family Bacteroidaceae and a decrease in the abundance of Prevotellaceae in animals with 
steatohepatitis. It is known that the diet directly influences the composition of the gut 
microbiota. Western diets abundant in fat, animal protein, and sugar have been 
associated with steatohepatitis and increased risk of CVD. That diet favors the 
abundance of family Bacteroidaceae; while diets high in fiber, starch, and plant polysac-
charides promote the abundance of family Prevotellaceae[30,33,34]. In this study, we 
report an increase in the abundance of family Bacteroidaceae and a decrease in the 
abundance of Prevotellaceae in animals with steatohepatitis, which is consistent with 
another study[30]. Regarding the increase in the relative abundance of family Rumino-
coccacea observed in the animals of the intervention group, a previous report that 
demonstrated the Ruminococcus increased in more severe disease, especially if advanced 
hepatic fibrosis was diagnosed. The decrease in its abundance has also been reported 
in lean steatohepatitis patients[30,35]. There are reports that associate the abundance 
of Ruminococcaceae with the development of CVD[36,37]. However, we found no 
correlations between the presence of Ruminococcaceae and the CVR markers that were 
assessed in this study. Genus Ruminococcus is quite heterogeneous, including both 
beneficial and deleterious bacteria, making data discussion difficult. Family Rumino-
coccaceae is associated with aerobic fermentation that leads to the production of short 
chain fatty acids and alcohol, and this can have detrimental effects on intestinal 
permeability and hepatic inflammation[30,35].

Some of the metabolites produced by gut flora are already biologically active, 
whereas others are further metabolized by the host, generating secondary mediators 
that influence the microbiota-host interaction. In this study, we predicted the lipid 
metabolic pathways that were expressed as a result of the gut dysbiosis observed in 
steatohepatitis. Animals with steatohepatitis had a significant increase in sphingolipid 
metabolism. The sphingolipids are membrane lipids that participate in cell division, 
differentiation, gene expression, and apoptosis. The study data corroborate emerging 
evidence that support the role of sphingolipids in hepatocellular death, which 
contributes to the progression of MAFLD[38]. Additionally, there are reports that 
dysregulation of circulating sphingolipids was independently associated with CVD 
and subclinical atherosclerosis[39,40]. In this study, arachidonic acid metabolism was 
significantly increased in animals with steatohepatitis. In addition, a significant 
decrease in linoleic acid metabolism was reported in this experimental group. 
Arachidonic acid is synthesized from polyunsaturated fatty acids, and can be derived 
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from linoleic acid, which is an essential fatty acid[41]. The products resulting from 
arachidonic acid metabolism are linked to the inflammation and vasodilation of 
MAFLD and CVD, mainly by the action of the enzyme cyclooxygenase[41,42]. 
Therefore, as reported in this study, an increase in arachidonic acid metabolism in 
steatohepatitis and CVD is expected. We report an increase in glycerophospholipid 
metabolism in animals in the control group. As described by Schnabl and Brenner[43], 
a high-fat diet causes the gut microbiota to convert choline in the diet to methyl-
amines, consequently reducing the plasma levels of phosphatidylcholine, which is a 
glycerophospholipid. Phosphatidylcholine is an important constituent of the cell 
membrane of very low density lipoproteins. Without its presence triglycerides cannot 
attach to the lipoprotein and start to accumulate in the liver tissue, causing MAFLD
[43]. In parallel, there were increases in plasma trimethylamine, and its hepatic 
metabolism to trimethylamine-N-oxide has been associated with the appearance of 
CVD. This compound is considered harmful, as it changes the way cholesterol and 
steroids are metabolized and inhibits the reverse transport of cholesterol, causing the 
accumulation of fat on the internal walls of arteries[44,45]. Therefore, in this study, the 
predicted lipid metabolism in animals with steatohepatitis did not include expression 
of glycerophospholipid metabolism, probably because of the action of the gut 
microbiota in the metabolic pathway.

CONCLUSION
In summary, it is known that steatohepatitis and CVD have many risk factors in 
common. Among those, we report significant correlations between the presence of 
atherogenic dyslipidemia, systemic inflammation, endothelial dysfunction, liver 
fibrogenesis, and gut dysbiosis, all of which contribute to the progression of MAFLD 
and increased CVR. In addition, we infer, through the composition of the gut 
microbiota, which lipid metabolism pathways are activated in animals with steatohep-
atitis and their relationship with CVR. Subsequent metabolomic studies may aid in 
elucidating the influence of gut microbial function with the development of 
cardiometabolic disorders related to steatohepatitis. The gut microbiota may be a 
potential therapeutic target for both clinical conditions.

ARTICLE HIGHLIGHTS
Research background
Metabolic-associated fatty liver disease (MAFLD), in addition to being a progressive 
liver disease, is an independent and significant risk factor for the development of 
cardiovascular disease, and dysbiosis of the intestinal microbiota is associated with 
both.

Research motivation
The motivation was to explore the mechanisms whereby gut microbiota contribute to 
steatohepatitis-associated increased cardiovascular risk.

Research objectives
The objective was to assess the relationship between gut dysbiosis and cardiovascular 
risk in an experimental model of steatohepatitis.

Research methods
Adult male Sprague-Dawley rats were randomized to a control group given a 
standard diet or an intervention of a high-fat and choline-deficient diet for 16 wk of 
ten animals each. Biochemical, molecular, hepatic, and cardiac histopathology and gut 
microbiota variables were evaluated.

Research results
We reported significant correlations between the presence of atherogenic dyslip-
idemia, systemic inflammation, endothelial dysfunction, liver fibrogenesis and gut 
dysbiosis, all of which contributed to the progression of MAFLD and increased CVR.
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Research conclusions
This study shows that there is a link between gut dysbiosis and significant 
cardiomyocyte abnormalities in animals with steatohepatitis.

Research perspectives
Metabolomic studies may aid in elucidating the association of gut microbial function 
with the development of cardiometabolic disorders related to steatohepatitis. The gut 
microbiota may be a potential therapeutic target for both clinical conditions.
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