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Abstract: Studies of fungal communities through amplicon metagenomics in aquatic environments,
particularly in freshwater ecosystems, are still relatively recent. Unfortunately, many of these water
bodies are facing growing threats from human expansion, such as effluent discharge from various
human activities. As a result, these effluents have the potential to significantly alter the characteristics
of water bodies and, subsequently, impact the diversity of their resident microorganisms. In this
context, our objective was to investigate whether the fungal community structure varies according to
the presence of different anthropic disturbances. We expect (i) the diversity of fungi will be greater
and (ii) more specific unique operational taxonomic units (OTUs) related to each ecotonal system will
be found compared to other sites of a lagoon. The study was conducted in the Tramandaí Lagoon
(subtropical southern Brazil) at four distinct sampling points (estuary, middle of the lagoon, crop field
area, and near a residential area where the Tramandaí River flows into the lagoon). As expected, the
estuary and residential zones, which are ecotones, exhibited greater fungal diversity and more specific
OTUs compared to the middle of the lagoon and crop field area. Moreover, a substantial proportion
of fungal taxa could not be identified at the genus level, with many only classified at the phylum
level, indicating potential new lineages. These findings underscore our limited understanding of the
subtropical freshwater mycobiota.

Keywords: freshwater; fungi; amplicon metagenomics
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1. Introduction

Freshwater ecosystems are vital as they provide habitats for nearly 9.5% of all described
species [1,2]. These ecosystems are distributed worldwide and exist in various forms,
including rivers, lakes, swamps, ponds, and streams. Nevertheless, the rapid deterioration
of these water bodies due to human activities, driven by population growth, poses a
significant threat to the biodiversity of aquatic habitats [3]. This detrimental impact extends
to microorganisms, such as fungi, which are key players in these environments even though
they are highly understudied [1].

It was once believed that fungi were not as diverse or abundant in aquatic ecosys-
tems as compared to terrestrial ones [4]. Nonetheless, recent studies conducted in var-
ious freshwater and marine habitats have shown that fungi can be a significant part
of the eukaryotic community in aquatic environments [5–7], even reaching a biomass
comparable to that of prokaryotes in highly productive offshore systems [8]. In aquatic
ecosystems, fungi play fundamental functional roles, such as leaf decomposers, in rivers,
mangroves, and wetlands [9], as well as acting as parasites and saprophytes in lacustrine
ecosystems [6,10]. Nonetheless, their high local diversity and substrate heterogeneity make
it difficult to assess spatial and temporal changes in their diversity, especially on large spa-
tiotemporal scales. Furthermore, the limitations of traditional culture-dependent or direct
examination approaches may also highly underestimate fungal diversity and complexity.

Recently, the analysis of fungal DNA in freshwater rivers and lakes has shown the
possibility of efficiently assessing fungal diversity in ecosystems and highlighted gaps
in our understanding of their phylogeny [5]. This method enables the detection of taxa
presence without relying on culture-dependent or direct examination approaches. It utilizes
indicators such as enzymes, feces, and epidermal cells, which are left behind by organ-
isms, specifically for fungi, spores, and fragments of mycelia [11,12]. Additionally, the
use of molecular-based detection of genomic markers can also provide insights into the
functional roles of fungi in aquatic ecosystems, such as their roles in nutrient cycling and
carbon sequestration [13]. Although molecular techniques have been frequently used to
estimate the diversity of fungi (and other microorganisms) in different locations [14–16],
these studies are still rare in tropical and subtropical freshwater environments [5]. The
subtropical region is a transitional zone between tropical and temperate climates, character-
ized by cold and usually dry winters and rainy and moderate temperatures in summer [17].
Subtropical areas can be found in various continents, such as the Mediterranean region, the
southern United States, parts of Australia, South Africa, Asia, and South America (as in
southern Brazil) [18].

Tropical and subtropical freshwater environments are known for their high levels of
biodiversity and unique ecological niches. Despite advances in sequencing technologies,
there still are, however, few studies estimating fungal diversity in those regions [19]. As
a result, 96% of all fungal taxa have been recorded in temperate regions, with fewer
recorded in tropical and subtropical regions [20]. Moreover, human habitat modification
and pollution are drastically impacting microbial diversity in tropical and subtropical
regions to an unknown extent since few previous data are available. In lagoons, it is
common to receive daily discharges from rivers and the sea, making them transition
zone ecosystems, often known as ecotones [21]. Apart from these contributions, they can
also receive localized and diffuse sources of effluents of domestic and industrial origins.
Consequently, these distinct local contributions can create different environments in the
same lagoon (spatial heterogeneity), resulting in alterations in the components of aquatic
ecosystems. As fungal diversity and abundance are affected by the physical and chemical
conditions of the water [22], it is expected that the diversity of fungal communities will
vary depending on the degree of human impact.

In this study, we conducted a metabarcoding survey to evaluate the fungal community
structure across a South American lagoon with spatial heterogeneity in local discharges.
Our objective was to investigate whether the fungal community structure varies according
to the presence of different anthropic disturbances, in terms of species diversity, community



J. Fungi 2023, 9, 890 3 of 19

structure, and composition. Specifically, we anticipated (i) the diversity of fungi would be
greater and (ii) more specific unique taxa related to each ecotonal system (close to the lagoon
and river mouths) would be found compared to other sites of the lagoon. Consequently,
we expected that beta diversity would differ among areas.

2. Materials and Methods
2.1. Study Area

We collected water samples from the Tramandaí Lagoon, Rio Grande do Sul state,
Brazil (29◦58′12.59′′ S; 50◦9′19.72′′ W) [23]. This lagoon is part of the Tramandaí hydro-
graphic basin and has a surface area of 18.8 km2. Uses of the Tramandaí Lagoon water
include irrigation of rice, activities related to summer holidaymaking, public supply, and
dilution of domestic and industrial wastes, particularly near urban areas [24]. These activ-
ities have the potential to cause significant impacts by negatively altering the hydraulic
attributes of the system and affecting its biodiversity.

Sampling within the Tramandaí Lagoon was conducted during the ebbing tide [25].
Sampling points were selected according to types of anthropic disturbance (Figure 1).
Sampling point 1 (29◦58′34.7′′ S 50◦ 07′ 18.8′′ W) was situated at the estuarine mouth;
sampling point 2 (29◦ 58′12.2” S 50◦09′19.7” W) was in the middle of the lagoon without
any direct anthropogenic pressure; sampling point 3 (29◦57′05.8′′ S 50◦10′41.7′′ W) was in a
non-urbanized area, surrounded by native forest with nearby crop fields; and sampling
point 4 (29◦58′10.4′′ S 50◦08′20.7′′ W) was most protected from marine currents, located
closest to a connection with the Tramandaí River through which water flows from other
locations in the Basin to enter the Tramandaí Lagoon, and was in a densely urbanized
zone (Figure 1).
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Figure 1. Location of the study area and sampling points of the Tramandaí Lagoon. P1 was situated
inside an estuary, P2 was in the middle of the lagoon without marginal anthropogenic pressure,
P3 was in a non-urbanized area and surrounded by native forest with nearby crop fields, and P4 was
near a residential area where the Tramandaí River flows into the lagoon.

2.2. Sampling Design and Collection

In each sampling area (P1–P4), a total of three sampling units, spaced at a distance of
approximately 1 m, were obtained and named S1, S2, S3 for P1; S4, S5, S6 for P2; S7, S8, S9
for P3; and S10, S11, S12 for P4; totaling 12 sampling units. The distance among the points
was at least 3 km from P1 to P4 and from P2 to P3; 1.56 km from P2 to P4; and 7 km from
P3 to P1. In addition to sample collection for analyzing fungal communities, water samples
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were collected at the water subsurface (5–10 cm). A total of 1050 mL per sampling area
(350 mL per sampling unit) was collected during the summer (March 2019).

Water temperature (◦C), pH, and conductivity (µs/cm) were measured using a portable
multiparametric (PHOX P50 and C50) probe during the collections. Initial dissolved oxygen
(mg L−1) and biological oxygen demand (mg L−1) were measured in the laboratory using
the Winkler (iodometric) method [26]. Chloride concentration (mg L−1) and salinity (‰)
were also measured in the laboratory using the argentometric method [26].

2.3. eDNA Extraction, Amplification, and High-Throughput Sequencing

A total of 100 mL subsample was filtered using a 0.22 µm membrane (Millipore),
in triplicate, and the filtrate was submitted to eDNA extraction using the DNeasy Pow-
erSoil Kit (QIAGEN). The quality and quantity of eDNA were evaluated using spec-
trophotometry (NanoDrop ND 1000, NanoDrop Technologies, Wilmington, DE, USA).
For the metabarcoding approach, PCR was performed using the primers fITS7
(5’-GTGARTCATCGAATCTTTG-3’) [27] and ITS4 (5’-TCCTCCGCTTATTGATATGC-3’) [28],
which target the ITS2 region of the fungal nuclear ribosomal DNA. While the selection of a
specific genomic region might lead to the targeting of a particular group of fungi, the use
of ITS markers stands out for yielding a significantly higher number of reads. Therefore,
the increased read counts compensate for the use of this region when studying fungal
communities [29]. PCR amplification was performed as follows: 94 ◦C for 2 min, followed
by 35 cycles of denaturation at 94 ◦C for 1 min, annealing at 60 ◦C for 1 min, extension at
72 ◦C for 3 min, and a final extension step at 72 ◦C for 5 min. At least three independent
amplification reactions were performed from the same DNA extraction to account for the
stochasticity. PCR products were then pooled in equimolar proportions based on their
DNA concentrations and purified using AMPure beads.

The DNA was quantified using a fluorescence assay using Qubit 2.0 Fluorometer
(Thermo, Waltham, MA, USA) and Qubit dsDNA BR Assay Kit (Thermo, Waltham, MA, USA).
Sequencing libraries were generated using a TrueSeq DNA PCR-Free Sample Preparation
Kit (Illumina, San Diego, CA, USA), following the manufacturer’s recommendations,
and index codes were added. The library quality was assessed using a Qubit@ 2.0 Fluo-
rometer (Thermo Scientific, Waltham, MA, USA) and the Bioanalyzer 2100 system (Ag-
ilent, Santa Clara, CA, USA), and then sequenced on a HiSeq 2500 platform (Illumina,
San Diego, CA, USA). All raw generated sequences were deposited in NCBI SRA under
BioProject ID: PRJNA991127.

2.4. Bioinformatic Analyses

The output files (FASTQ format) of the metabarcoding sequencing of each sample
comprised our raw primary data. The bioinformatics pipeline was elaborated and
run on an Operational System Ubuntu 16.04.5 LTS system. The following programs
were used: VSEARCH v2.9.1 [30] and BLAST v2.2.31 [31]. Scripts in Bash [32] and
Python v3.0 [33] programming languages were written to automate some tasks, such as
merging samples or generating the abundance table. The reference database used for fungal
taxonomic identification was UNITE v. 9.0 [34]. The pipeline comprised the following
steps: (i) quality and length filtering was performed with VSEARCH, with sequences
smaller than 300 bp removed and default settings for quality filtering; (ii) dereplication
was performed with VSEARCH; (iii) detection and removal of chimeric sequences was
performed using the UNITE database (uchime_reference_dataset_untrimmed.fasta) and
de novo implementation was performed with VSEARCH; (iv) clustering sequences with
similarity above 97% was performed with VSEARCH; (v) taxonomic classification of OTUs
was performed with the SINTAX algorithm [35], which is part of USEARCH [36], and the
fungal taxonomic database UNITE UCHIME reference dataset v 9.0 [34], and consolidation
of the table of OTU abundance with taxonomic classifications was performed using the
get_abundances_table_asv.py script included in the source code of the pipeline for am-
plicon analysis deposited on our lab GitHub: https://github.com/LBMCF/pipeline-for-
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amplicon-analysis, accessed on 30 January 2023. Trophic mode, ecological guilds, and body
morphology were annotated to OTUs identified at the genus level with FUNGuild [37],
using the FUNGuild.py script (https://github.com/UMNFuN/FUNGuild, accessed on
March 2023) (Table S1). After analyzing the taxonomic abundance of the OTUs, we se-
lected the 10% most dominant OTUs (n = 193) to perform phylogenetic analysis, complex
network analysis, and canonical correspondence analysis (CCA) in order to improve the
interpretation of the results.

2.5. Phylogenetic Analyses

As less than 37.5% of sequences were identified to any infrakingdom taxonomic level
using BLAST, we used the phylogenetic tree topology to verify the closer taxa and improve
the taxonomic attribution of putative phylum for each OTU. Representative sequences of
the recovered OTUs (n = 1930) were used for the phylogenetic analysis. The alignment of
the ITS2 region was performed using Geneious Prime v. 2022.1.1 [38] with the MUSCLE
algorithm. The final alignment length was 5891 bp, comprising 3984 parsimony-informative
and 898 singleton sites. For selecting the evolutionary model for the phylogenetic analysis,
we used ModelFinder [39], which selected the TIM + F + G4 model according to the Bayesian
Information Criteria (BIC score: 1232018.287). Maximum likelihood analysis was performed
with IQ-TREE multicore v. 1.6.12 [40], generating 1000 bootstrap iterations. The consensus
tree was visualized using FigTree v. 3.5.9 [41]. Numerical values on branches indicate
bootstrap percentages (>50%) and colors on tips indicate the phylum of the sequences
identified using BLAST. Branches including OTUs that were not identified at any taxonomic
level were collapsed at the tree to improve the visualization of the nodes.

The maximum likelihood phylogenetic analysis of the 10% most dominant OTUs (n = 193)
was generated from a final alignment length of 1472 bp. We used the GTR + F + I + G4
evolutionary model to perform 1000 bootstrap iterations, using the same criteria as the
former analysis.

2.6. Community Ecology Analyses

Ecological and statistical analyses were performed using R v. 4.3.0 [42] or Python
customized scripts and Microbiome Analyst [43,44] to assess the taxonomic composition,
richness, and abundance of probable species (OTUs). Sampling sufficiency was evaluated
by generating rarefaction curves by samples and by OTUs, and read count data were
centered and log-ratio transformed before all statistical analyses [45]. Subsequently, the
following analyses were performed to jointly analyze the microbiome: alpha and beta
diversities [43], co-occurrence analyses using complex networks [46], and canonical corre-
spondence analyses (CCA).

2.6.1. Alpha Diversity

Alpha diversity values, based on the Shannon index at OTU taxonomic level, were
calculated for the distinct areas (P1, P2, P3, and P4). Differences among areas were tested
with ANOVA. All alpha diversity analyses were performed based on scripts and packages
in R software v. 4.3.0 [42], and data visualization was produced using the package ggplot2
in R.

2.6.2. Beta Diversity

Pairwise beta diversity among areas was calculated with the Bray-Curtis index of
distance at the OTU taxonomic level. Differences in OTU composition among areas were
tested with permutational multivariate analysis of variance (PERMANOVA) [47]. In order
to test if groups of samples had a difference in intragroup community variation, also known
as heterogeneity of multivariate dispersion, the PERMDISP2 procedure was used [48].
Additionally, we also ran non-metric multidimensional scaling (NMDS) using the
Bray–Curtis index. All beta diversity analyses were performed based on scripts and

https://github.com/LBMCF/pipeline-for-amplicon-analysis
https://github.com/LBMCF/pipeline-for-amplicon-analysis
https://github.com/UMNFuN/FUNGuild
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packages in R software v. 4.3.0 [42], and data visualization was performed using the
package ggplot2 in R.

2.6.3. Complex Network Analyses

We constructed two co-occurrence networks, one with all OTUs (n = 1930) and another
with the 10% most dominant OTUs (n = 193). The co-occurrence networks were generated
considering each OTU as a node. The nodes were connected whenever two or more OTUs
co-occurred in the same environment. The node size is proportional to the number of
environments in which the OTU occurred. For instance, larger nodes represent OTUs that
are present in more environments. The colors represent the environments and different
combinations of environments in which an OTU occurred. The software Gephi v. 0.9.2 was
used to plot networks [46].

2.6.4. Canonical Correspondence Analyses

The two canonical correspondence analyses (CCAs), one with all OTUs and another
with the 10% most dominant OTUs (n = 193) were implemented in PAST v. 4.08 [49]
in accordance with the eigenanalysis algorithm [50]. The ordinations were given as site
scores, and physicochemical variables (salinity, pH, conductivity, total dissolved chlorides,
dissolved oxygen, biological oxygen demand, and water temperature) were plotted as
correlations with site scores.

3. Results
3.1. Taxonomic Composition

A total of 788,365 reads were sequenced, but only 68.8% could be confidently assigned
to any infrakingdom taxonomic levels (Figure 2A). When considering only the relative
abundance assigned for each phylum in the assigned infrakingdom levels, Basidiomycota
represented 53.2%, while Ascomycota represented 45.4%, and the other fungal phyla
accounted for only 1.4% of the reads (Figure 2C).
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Additionally, a total of 1930 putative fungal species (OTUs) were identified in all
sampling points. Nonetheless, approximately only 37.5% of sequences were identified to
any infrakingdom taxonomic level. After using the phylogenetic tree topology to verify the
closer taxa (Figure S1), we greatly improved the taxonomic classification to 86.8% assigned
to any infrakingdom taxonomic levels (phylum, class, order, family, or genus) (Figure 2B).
The majority of identified OTUs comprised Ascomycota (69.8%), whereas Basidiomycota
encompassed 22.7%, Chytridiomycota encompassed 7.4%, and Monoblepharomycota ac-
counted for 0.1% (Figure 2D). Phylogenetic analysis of the 10% most dominant OTUs
showed that only Ascomycota, Basidiomycota, and Chytridiomycota were among the most
dominant taxa (Figure 3).
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Figure 3. Maximum likelihood phylogenetic tree using the 10% most dominant OTUs retrieved
(n = 193 OTUs) in all sampling points, generated with 1000 bootstrap replicates. Node tips are identi-
fied at the three phyla recovered: Ascomycota (orange), Basidiomycota (green), and Chytridiomycota
(blue). Monoblepharomycota is not included in this phylogeny since it is underrepresented.

Additionally, a total of 84 fungal genera were identified (43 in Ascomycota, 39 in
Basidiomycota, and 2 in Chytridiomycota). Most were saprotrophs and/or patotrophs with
mycelial body morphology, occurring in both terrestrial and aquatic environments [37]
(Table 1).

The three most prevalent (occurring in all areas) and abundant taxa (with a total
number of reads > 50,000) (OTUs: 1, 4, and 6) could not even be assigned at the subphylum
level using BLAST. Furthermore, for those OTUs that could be identified at the genus
level, the Ascomycota Metarhizium and Trichoderma were the most prevalent and abundant
identified fungal genera. Specifically, 62.2% of Metarhizium were found in P1, 31.3% in P4,
5% in P3, and 1.5% in P2. Regarding Trichoderma, 51.8% were registered in P4, 27.3% in P3,
14% in P1, and 6.5% in P2. Meanwhile, Schizophyllum was the most abundant and prevalent
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Basidiomycota genus, considering that 68.4% were found in P1, 23.2% in P4, 6.6% in P3,
and 1.8% in P2.

Table 1. Fungal taxa and their corresponding main mode of nutrition, ecological guild, and body
morphology (Rhizomycelial: fungi whose body structure is a rhizomycelium) identified at the genus
level in the superficial water of Tramandaí Lagoon. Information obtained from FUNGuild [37]. ‘na’
represents information not found.

Genus Trophic Mode Ecological Guild Body Morphology

ASCOMYCOTA

Alternaria Pathotroph-Saprotroph-Symbiotroph Animal Pathogen-Endophyte-Plant
Pathogen-Wood Saprotroph Mycelial

Apiospora Pathotroph-Saprotroph Plant Pathogen Mycelial

Aureobasidium Pathotroph-Saprotroph-Symbiotroph Animal Pathogen-Endophyte-Epiphyte-
Plant Pathogen-Undefined Saprotroph Yeast

Cercospora Pathotroph Plant Pathogen Mycelial
Clonostachys Pathotroph Plant Pathogen Mycelial

Colletotrichum Pathotroph-Symbiotroph Endophyte-Plant Pathogen Mycelial
Coniella Pathotroph Plant Pathogen Mycelial

Curvularia Pathotroph Plant Pathogen Mycelial
Diaporthe Pathotroph-Symbiotroph Endophyte-Plant Pathogen Mycelial
Erysiphe Pathotroph Plant Pathogen Mycelial

Exserohilum Pathotroph Plant Pathogen Mycelial

Fusarium Pathotroph-Saprotroph-Symbiotroph
Animal Pathogen-Endophyte-Lichen

Parasite-Plant Pathogen-Soil
Saprotroph-Wood Saprotroph

Mycelial

Gliomastix Saprotroph Undefined Saprotroph Mycelial
Lophiostoma Saprotroph Animal Pathogen Mycelial
Metarhizium Pathotroph na Mycelial
Meyerozyma na na Yeast

Microdochium na na Mycelial
Nannizzia na na Mycelial

Neodevriesia na na Mycelial
Neopyrenochaeta na Undefined Saprotroph Mycelial

Neurospora Saprotroph Undefined Saprotroph Mycelial
Niesslia Saprotroph Animal Pathogen Mycelial

Nigrograna Pathotroph Undefined Saprotroph Mycelial
Nigrospora Saprotroph na Mycelial

Omnidemptus na na Mycelial

Paracylindrocarpon na Dung Saprotroph-Undefined
Saprotroph-Wood Saprotroph Mycelial

Penicillium Saprotroph Endophyte-Plant
Pathogen-Wood Saprotroph Mycelial

Periconia Pathotroph-Saprotroph-Symbiotroph Plant Pathogen Mycelial
Phaeoacremonium Pathotroph Endophyte-Plant Pathogen Mycelial
Plectosphaerella Pathotroph-Symbiotroph Plant Pathogen Mycelial

Pseudocercospora Pathotroph na Mycelial

Pseudopyricularia na Endophyte-Lichen Parasite-Undefined
Saprotroph Mycelial

Pyrenochaetopsis Pathotroph-Saprotroph-Symbiotroph na Mycelial
Ramichloridium na Undefined Saprotroph Mycelial
Saccharomyces Saprotroph na Yeast
Striaticonidium na Undefined Saprotroph Mycelial

Talaromyces Saprotroph Undefined Saprotroph Mycelial
Teichospora Saprotroph Endophyte-Plant Pathogen Mycelial

Toxicocladosporium Pathotroph-Symbiotroph

Animal
Pathogen-Endophyte-Epiphyte-Fungal

Parasite-Plant Pathogen-Wood
Saprotroph

Mycelial
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Table 1. Cont.

Genus Trophic Mode Ecological Guild Body Morphology

Trichoderma Pathotroph-Saprotroph-Symbiotroph Endophyte Mycelial
Trichomerium Symbiotroph Undefined Saprotroph Mycelial
Uwebraunia Saprotroph na Mycelial

Zymoseptoria na Mycelial
BASIDIOMYCOTA

Agaricus na na Mycelial
Amanita Saprotroph-Symbiotroph Ectomycorrhizal-Undefined Saprotroph Mycelial

Atractidochium na na Mycelial
Chaetospermum na na Mycelial

Cintractia Pathotroph Plant Parasite-Plant Pathogen Mycelial
Coprinellus Saprotroph Undefined Saprotroph Mycelial

Crustoderma Saprotroph Wood Saprotroph Mycelial
Curvibasidium na na Yeast

Erythrobasidium na na Yeast
Farysia Pathotroph Plant Pathogen Yeast

Fellomyces na na Yeast
Hannaella na na Yeast

Kockovaella Symbiotroph Epiphyte Yeast
Limonomyces Pathotroph Plant Pathogen Mycelial

Lyomyces na na Mycelial
Malassezia Pathotroph-Saprotroph Animal Pathogen-Undefined Saprotroph Yeast

Marchandiomyces Pathotroph Lichen Parasite Mycelial
Meira na na Yeast

Moesziomyces Pathotroph Plant Pathogen Yeast
Naganishia na na Yeast

Papiliotrema na na Yeast
Peniophora Pathotroph-Saprotroph Plant Pathogen-Wood Saprotroph Mycelial

Peniophorella Saprotroph Undefined Saprotroph Mycelial
Phellinus Pathotroph-Saprotroph Plant Pathogen-Wood Saprotroph Mycelial

Phlebiopsis Saprotroph Undefined Saprotroph Mycelial
Pseudohyphozyma na na Yeast
Pseudomicrostroma na na Yeast

Resinicium Saprotroph Undefined Saprotroph Mycelial
Rhizopogon Symbiotroph Ectomycorrhizal Mycelial

Rhodotorula Pathotroph-Saprotroph
Animal Endosymbiont-Animal

Pathogen-Endophyte-Plant
Pathogen-Undefined Saprotroph

Yeast

Saitozyma na na Yeast
Schizophyllum Saprotroph Wood Saprotroph Mycelial

Sterigmatomyces na na Yeast
Suillus Symbiotroph Ectomycorrhizal Mycelial

Trechispora Saprotroph Wood Saprotroph Mycelial
Tritirachium Saprotroph Undefined Saprotroph Mycelial

Vishniacozyma na na Yeast
Wallemia Saprotroph Undefined Saprotroph Yeast
Xylodon Saprotroph Undefined Saprotroph Mycelial

CHYTRIDIOMYCOTA
Entoplyctis na na Rhizomycelial
Rhizoplyctis na na Rhizomycelial

3.2. Alpha Diversity

The Shannon diversity index values of the three sampling points were significantly
distinct (ANOVA, p < 0.05). The residential area (P4) was the most diverse, followed by
the estuary mouth (P1). The middle of the lagoon (P2) and crop field area (P3) exhibited
significantly lower Shannon diversity (Figure 4).
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Figure 4. Boxplot representing each sampling point with all samples (three per point). Shannon
diversity index values are depicted on the vertical axis while the distinct sampling points are shown
on the horizontal axis (ANOVA significant difference at p < 0.05).

3.3. Beta Diversity

Beta diversity profiling by NMDS (stress = 0.05) displayed sampling units of the same
area grouped together, and axis 1 was the main determinant for the ordination of the
areas (Figure 5). Moreover, there was a significant difference (PERMANOVA: F(3,8) = 3.61,
p < 0.5) among the four areas (P1, P2, P3, and P4) of the Tramandaí Lagoon. Additionally,
this difference in composition between the points did not occur due to a difference in
intragroup community variation (PERMDISP: F(3,8) = 1.79, p = 0.22).
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3.4. Co-Occurrence Networks

The co-occurrence network of the 10% most dominant OTUs in the distinct sampling
areas had order (N) 193 nodes and size (M) 17,264 edges. The average degree <k> = 177.264,
the average clustering coefficient C = 0.958, and modularity md = 0.07 (Figure 6). The
strictest core mycobiome community, i.e., those OTUs that co-occurred in all samples
in all areas, comprised 46 distinct OTUs (Table S2), mainly Ascomycota, Basidiomycota,
and unidentified fungi. The residential area (P4), followed by the estuary (P1), exhibited
most of the unique OTUs, 50 and 14, respectively. On the other hand, the middle of the
lagoon (P2) exhibited 2 unique OTUs, and the crop field area (P3) did not exhibit unique
OTUs (Figure 6).
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Figure 6. Co-occurrence network of putative species (OTUs) in the sampling areas (estuary, middle
of the lagoon, residential area, and crop field area). Nodes represent the 10% most dominant OTUs,
and edges indicate that OTUs co-occur in two or more sampling areas. Node size is proportional to
the number of sampling areas in which such OTU occurred. The phyla Ascomycota, Basidiomycota,
and Chytridiomycota are represented, and NA represents unidentified fungi.

The co-occurrence network of all OTUs had order (N) 1930 nodes and size (M)
1,883,862 edges (<k> = 1.952; C = 0.944; md = 0.322; Figure S2). The strictest core mycobiome
community comprised 61 distinct OTUs (Table S3), mainly Ascomycota, Basidiomycota,
and unidentified fungi. The estuary (P1) exhibited most of the unique OTUs (n = 815),
followed by the residential area (P4) (n = 602). The crop field area (P3) exhibited 123 unique
OTUs, and the middle of the lagoon (P2) exhibited 108 unique OTUs (Table S3).
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3.5. Canonical Correspondence Analyses

Both CCAs demonstrated that the physicochemical variables influenced species com-
position. Regarding the CCA for only the 10% most abundant OTUs (n = 193), we observed
that the CCA was significant (pseudo-F = 2.30, p = 0.001), and the constraining variables
explained 0.5% of the total inertia (unadjusted R2). The first (53.2%) and second (24.6%)
canonical axes accounted for 77.8% of the total constrained variance explained. Up to
one axis was significant at α = 0.05, CCA1: pseudo-F = 4.68; p = 0.001. The variables
with the highest contribution per axis in decreasing importance (higher loadings) were as
follows: axis 1: BOD, DO, and pH (Figure 7).
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Figure 7. Integrative mycobiome and physicochemical analysis of the four sampling areas of the
Tramandaí Lagoon by canonical correspondence analysis (CCA). Black dots are sampling areas, blue
dots are the 10% most dominant OTUs, and green vectors are environmental variables. The P2 and
P3 samples overlapped near axis 1, and the pH, salinity, total chlorides, and conductivity variables
also showed overlap. The identification of OTUs (blue dots) is not depicted in order to maintain the
clarity of the figure but can be consulted in Table S1.

In relation to the CCA for all OTUs, the CCA was significant (pseudo-F = 2.58,
p = 0.01), and the constraining variables explained 0.5% of the total inertia (unadjusted R2).
The first (68.4%) and second (30.4%) canonical axes accounted for 98.4% of the total constrained
variance explained. Up to two axes were significant at α = 0.05, CCA1: pseudo-F = 5.31;
p = 0.001, and CCA2: pseudo-F = 2.36, p = 0.05. The variables with the highest contribution
per axis in decreasing importance (higher loadings) were as follows: axis 1: BOD, DO, and
pH, and axis 2: pH, DO, and BOD (Figure S3).

4. Discussion

We used a metabarcoding approach to demonstrate that the fungal communities in the
Tramandaí Lagoon exhibited variations based on the major direct environmental and an-
thropic influences. During the study period, we identified 1930 fungal OTUs in the lagoon.
As expected, the estuary (P1) and residential (P4) zones, which are ecotones, exhibited
greater fungal diversity than the middle of the lagoon and crop field area. Nonetheless,
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it is worth noting that despite 86.8% of the OTUs being identified at the phylum level,
which was similar to other studies [51,52], only 16.2% of these were identified at the genus
level, indicating that even with the advances in metabarcoding techniques, this method
is relatively new and several taxa are still underrepresented in databases. As such,
a large number of unknown fungi may be undetected. Thus, the fungal community of
subtropical water bodies is still largely unknown. Without identifying these fungi, it is
not possible to determine their role in the environment or the extent of their response to
anthropogenic impacts.

The Tramandaí Lagoon displays different microenvironments in the same lagoon. Nev-
ertheless, we observed the dominance of Ascomycota, Basidiomycota, and Chytridiomycota
fungi, which was consistent with previous studies in freshwater environments [10,52,53].
Fungi found in aquatic environments can be dependent on this habitat throughout their
entire life cycle or at least part of it. Based on their degree of adaptation, activity, and
dependence on aquatic habitats, these fungi can be categorized into three groups [54]:
(i) residents, comprising well-adapted fungi that are consistently active in aquatic environ-
ments; (ii) periodic immigrants, encompassing less adapted fungi that are only periodically
active in aquatic environments, and (iii) versatile immigrants, which are poorly adapted
fungi that are only sporadically active in aquatic habitats [5]. The genera Metarhizium and
Trichoderma were the most abundant and prevalent Ascomycota in our study, whereas
Schizophyllum was the most abundant and prevalent Basidiomycota genus. Both Ascomy-
cota genera are soilborne fungi used as biocontrol agents [55–57]. These fungi produce a
high load of spores and are commonly used as suspensions for several crops, which can
be washed from the soil surface and carried into adjacent rivers and lagoons. Since these
organisms were present at all points of the lagoon, but in a larger proportion at points
P1 and P4, they could enter the lagoon through these ecotone zones. Notably, P3 did not
exhibit the highest Metarhizium and Trichoderma abundance. This suggested that a small
portion of the waste originating from crop fields could be deposited in the lagoon, while
the majority could be deposited into other rivers in the region. As a result, these waste
materials indirectly reach the lagoon through the region’s rivers, which could explain the
heightened presence and prevalence of Metarhizium and Trichoderma in ecotone regions.
The Tramandaí River runs through a large area that includes regions near rice and other
crops, so it is possible that it transports a substantial volume of pesticides used in these
agricultural activities into the lagoon [23,58]. The genus Schizophyllum comprises species
with a wide distribution that are often parasites of trees, but they mainly adopt a saprobic
lifestyle causing white rot [59,60]. The spores of this fungus are likely carried to the lagoon
either by rain or the river that flows into it. This could explain the fact that we observed a
higher proportion of these organisms at points P1 and P4, which are ecotone areas subject
both to marine and fluvial influences. Therefore, the most abundant and prevalent genera
of fungi in the Tramandaí Lagoon were versatile immigrants carried by rain, rivers, or
sewage into the lagoon.

Nearly 8% of the identified OTUs belonged to the phylum Chytridiomycota, which
are commonly considered resident fungi of aquatic environments due to their production
of flagellated and motile zoospores [4,61,62]. These spores can move in water and moist
soil, enabling them to spread to new food sources or hosts. Perhaps due to their reliance on
water, we observed a higher abundance of fungi from this phylum at point P4 of the lagoon,
which is under the influence of the sea and rivers in the region [24,25]. Consequently,
these organisms might originate from various locations and find their way into the lagoon
through rivers or the sea. This phylum plays a crucial ecological role, particularly in
aquatic ecosystems, where they are involved in decomposing organic materials and cycling
nutrients [4]. Among the Chytridiomycota found in the Tramandaí Lagoon, the identified
OTUs belonged to the orders Chytridiales and Rhizophlyctidales. The former encompasses
cosmopolitan organisms that exhibit a wide distribution across aquatic, continental, marine,
and even moist terrestrial environments [4]. These organisms can be found engaged in
saprophytic lifestyles or parasitizing various biological entities, such as algae, microscopic
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animals, other fungi, and amphibians [63]. Rhizophlyctidales, in turn, are typically found in
freshwater habitats and are known for parasitizing algae and aquatic plants [64]. Members
of this order are characterized by the presence of a rhizomycelial system, which helps
them anchor to their host and absorb nutrients [64]. This supports our results of having
encountered organisms of this order in a higher proportion at point P4, in an area near
the Tramandaí River [24,25]. Rhizophlyctidales play an essential role in the ecology of
freshwater ecosystems by regulating the growth of algae and aquatic plants [64]. They also
serve as a food source for many aquatic animals, including insects, fish, and crustaceans.
It is important to highlight that a significant proportion of Chytridiomycota OTUs were
only identified at the phylum level, and despite the importance of this phylum for aquatic
environments, current knowledge about their specific ecological role is still very limited.

The co-occurrence network exhibited a moderate to low level of modularity, but within
these modules, the nodes were highly connected. Additionally, we observed nodes that
were unique to specific areas and others that were shared (Figure 6). When we observed
the OTUs commonly found across all areas, they were mainly composed of fungi from the
phyla Ascomycota and Basidiomycota (Table S2), with the most abundant and prevalent
genus being versatile immigrant fungi. These two groups represent the main saprophytic
soil fungal decomposers traditionally identified in different soil niches [65]. Nevertheless,
from a functional perspective, the degradation of complex and recalcitrant organic matter,
such as lignocellulose, is generally considered to be limited to Basidiomycota [66,67]. In
addition to their decomposer role, Ascomycota also encompasses both plant and animal
pathogens, as well as species that offer notable benefits such as sources of medicine or hold
significant economic importance, including yeasts. Both Ascomycota and Basidiomycota
can colonize different substrates, resulting in a cosmopolitan distribution that extends to
include aquatic environments. This broad distribution may help explain the co-occurrence
of these fungi in all locations within the lagoon. The residential area and estuarine mouth
exhibited the highest number of unique OTUs. When we observed these unique OTUs,
although they comprised fungi from the phyla Ascomycota and Basidiomycota, they also
represented a substantial proportion of unidentified fungi and fungi from the phylum
Chytridiomycota (Table S3). The residential area and estuarine mouth were in locations that
formed ecotones, which were characterized by the coexistence and interaction of multiple
communities [21]. Consequently, a diverse range of environmental conditions emerges,
capable of supporting species absent in neighboring habitats. Nonetheless, although
the marine and anthropogenic inputs in these lacustrine environments can lead to the
introduction of numerous species, many of these species may lack the necessary adaptations
to survive in such an environment. Consequently, while they may contribute to the local
species diversity when analyzed using DNA techniques, it is crucial to acknowledge that
a significant number of them will not possess the adaptations required for their survival.
Thus, it is worth noting that metabarcoding analyses cannot differentiate between living
and deceased organisms, which is an important limitation that needs to be considered
when employing environmental DNA techniques.

Our study was conducted during a low tide period, when the Tramandaí Lagoon was
experiencing the ebbing tide. The lagoon is a highly dynamic environment that can be
influenced by tidal fluctuations, which result in the influx of seawater through the estuarine
channel [25], variations in river water levels, and the quantity of waste discharged into the
lagoon. Although this can influence water circulation patterns and, consequently, the fungal
community of the lagoon, we believe that the low tide conditions provide the opportunity
to create distinct environments that are more affected by the local surroundings and
nearby effluents. This can lead to the formation of suitable habitats for specific organisms.
This seemed to be corroborated by the fact that we observed some unique OTUs in only
certain locations. Thus, during low tide periods, water circulation within the lagoon may
not exert a significant influence on the community structure and composition. On the
other hand, during high tide, it is possible that increased water circulation leads to greater
homogenization of these distinct environments. This phenomenon arises from the amplified
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water mixing and increased fungal dispersal between environments. Consequently, fungi
across different locations may exhibit greater similarity, significantly impacting the overall
structure and composition of the fungal community. In addition, with the increased influx
of seawater into the lagoon, there is a rise in local salinity. This can also lead to species
homogenization, as not all organisms are capable of thriving in environments with elevated
salinity levels. However, it is important to highlight that the predominant liquid flow in the
lagoon is towards the sea, but, obviously, it is also possible to observe opposite flows [68].
Generally, the coastal area is characterized by small tidal effects [68]. In the future, it
would be interesting to test this hypothesis related to the tide level to provide insight into
how water circulation in a lagoon under various influences can affect the structure and
composition of the fungal community.

All of the environmental variables (pH, conductivity, dissolved oxygen, biological
oxygen demand), with the exception of water temperature, were associated with the
sampling units of the estuary, middle of the lagoon, and crop field area. Moreover, the
middle of the lagoon and crop field area were much more homogeneous regarding both
mycobiome diversity and physicochemical characteristics than the estuary, which, in turn,
exhibited a high diversity of unique taxa. Conversely, the residential area was associated
with water temperature and was highly divergent from the other areas, considering both
fungal diversity and physicochemical features. This difference may occur because this area
receives sewage from a residential region, which generates eutrophication that can lead to
an unbridled increase in fungal biomass, especially of species that feed on decomposing
organic matter. For instance, the decomposition of leaves was on average 2.3–2.7× faster in
eutrophicated streams than in non-eutrophicated streams due to the stimulation of fungal
activity by dissolved nutrients [9]. Furthermore, in this area, the water temperature was
sampled in a marginal zone, which was slightly shallower. Hence, this area was subjected to
higher radiation incidence compared to the other areas, which may have been influenced by
the higher temperature at this point. Nonetheless, the magnitude of the difference between
the points was very small, and it is unlikely that 1 or 2 degrees in temperature caused
divergence in terms of physicochemical characteristics (Table S4). Therefore, we believe
that this difference is due to the contribution from the margin combined with specific local
conditions (effluents from residential areas jointly with effluents from the Tramandaí River).
In addition, we observed that this point also displayed a lower BOD. BOD is a parameter
widely used to assess organic pollution in water systems and is inversely related to fungal
diversity [51,69]. It is important to highlight that the estuary area receives sewage from
the residential area, leading to the availability of large amounts of organic matter that can
favor the abundance of certain groups of fungi while inhibiting the presence of others.
Nevertheless, this area also benefits from the Tramandaí River, which seems to promote the
diversity of fungi in those locations. Thus, freshwater input from the Tramandaí River into
the lagoon likely influences the BOD and other physicochemical parameters of the water,
ultimately contributing to the higher fungal diversity observed at this specific point in
the lagoon.

5. Conclusions

To sum up, our study revealed that in the ecotonal areas in the Tramandaí Lagoon,
represented by estuary (lagoon/ocean) and residential (lagoon/river) zones, the fungal
communities were significantly more diverse than in the two non-ecotonal areas (middle of
the lagoon and crop field area) and both shared and unique fungal taxa that exhibited a high
proportion of eDNA from immigrant terrestrial fungi. However, the effects of river inflow
on the lagoon appeared to be greater than those of sewage. Further studies are needed to
understand the effects of these anthropogenic impacts on the fungal community. In addition
to Ascomycota and Basidiomycota, Chytridiomycota (s.l.) were dominant, and most of
the chytridiomycotan genera were largely unknown since they were mainly identified
only at higher level taxonomic categories. This scenario also extended to ascomycotan
and basidiomycotan fungal taxa. Therefore, our findings point out that, even using a
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metabarcoding approach, a considerable proportion of completely unknown fungal taxa
still exists. Additionally, further research is necessary to fully comprehend the role of
unidentified or partially identified fungi and their response to both environmental and
anthropogenic impacts.

Supplementary Materials: The following supporting information can be downloaded at: https://
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S1: Maximum likelihood phylogenetic tree using the 1930 OTUs identified in all sampling points,
generated with 1000 bootstrap replicates. Figure S2: Co-occurrence network of putative species
(OTUs) in the sampling areas (estuary, middle of the lagoon, residential area, and crop field area).
Figure S3: Canonical correspondence analysis demonstrating that the physicochemical variables
influence species composition. Table S2: Metadata of co-occurrence of putative species (OTUs) in the
Tramandaí Lagoon, Brazil. Table S3: Metadata of co-occurrence of the 10% most dominant OTUs.
Table S4: Physicochemical features of distinct sampling areas in Tramandaí Lagoon, Brazil.
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