MEMBRANAS POLIMÉRICAS POLIELETRÓLITO HÍBRIDAS DE NAFION E POLI(INDENO) SULFONADO PARA USO EM CÉLULA A COMBUSTÍVEL

Jeanne L. S. Marques*; Ana P. S. Zanatta; Maria. M. C. Forte

PPGE3M/LAPOL/Escola de Engenharia/Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, 91509-900 Porto Alegre, RS, Brasil (jeanne@anyquestion.com.br)

Resumo

Membranas polímero eletrólito termicamente estáveis têm sido desenvolvidas para uso em condições de baixa umidade em célula a combustível de membrana polímero eletrólito (PEMFC). Neste trabalho membranas polímero eletrólito foram preparadas com Nafion® e poli(indeno) sulfonado (SPInd) com o objetivo de avaliar a eficiência do polímero hidrocarbônico como modificador do desempenho da membrana Nafion. As membranas foram avaliadas quanto à capacidade de troca iônica (IEC), grau de inchamento em água, permeabilidade ao etanol, estabilidade térmica por termogravimetria (TGA) e condutividade iônica por espectroscopia de impedância eletroquímica (EIS). Resultados preliminares mostraram que as propriedades da membrana Nafion variam com o percentual de SPInd adicionado na mistura. Membranas com 25% de SPInd apresentaram capacidade de troca iônica em torno de 1,47 meq/g e inchamento médio de 44,1%, e houve redução da permeabilidade da membrana ao etanol. Não houve alteração no comportamento térmico das membranas híbridas Nafion/SPInd com a adição do polímero eletrólito hidrocarbônico. A condutividade iônica da membranas modificadas aumentou com o aumento da concentração de SPInd na mistura, o que mostra o potencial de uso do SPInd como polímero eletrólito e redutor da permeabilidade da membrana Nafion ao etanol.

Palavras-chave: membrana de troca protônica, polímero eletrólito, célula a combustível, poli(indeno) sulfonado

Introdução

No recente cenário mundial, células a combustível de membrana trocadora de prótons ou polímero eletrólito (PEMFC) para produção de energia limpa, tem como potencial vantagens alta eficiência e uso em aplicações portáteis. Este tipo de célula combustível (FC) é uma alternativa promissora no desenvolvimento de veículos movidos à eletricidade não poluentes. O componente chave numa PEMFC é a membrana de troca protônica, responsável pela migração de prótons, resultante da oxidação catalitica do hidrogênio, do ânodo para o cátodo, no qual os prótons reagem com oxigênio para produzir água e calor [1]. No entanto, o uso generalizado deste tipo de FC tem obstáculos no alto custo da membrana atualmente utilizada (Nafion®) e eletrodos a base de platina [2]. Outras limitações da membrana Nafion[®] diz respeito ao seu desempenho como permeabilidade ao combustível, temperatura de funcionamento limitada a 90°C, acima da qual apresenta perda brusca de condutividade iônica devido a desidratação da mesma [3]. A passagem de combustível na membrana reduz a eficiência da célula e desempenho da membrana devido ao envenenamento do catalisadores e um aumento de tensão no cátodo [4]. Membranas para PEMFC com elevada condutividade e baixa permeabilidade a combustível são altamente desejáveis, e estas aumentam ou diminuem simultaneamente com alterações no conteúdo de íons, teor de umidade, temperatura ou morfologia [5]. A sulfonação de polímeros hidrocarbônicos tem se mostrado uma opção eficiente e versátil para a obtenção de polímeros polieletrólitos equivalentes a membrana Nafion[®]. É possível se controlar o grau de sulfonação, ou número de grupos sulfônicos por mol de polímero sulfonado, de tal forma a maximizar a condutividade protônica das membranas e grau de hidratação [6]. Polímeros sulfonados como poli (éter-éter-cetona) sulfonado (SPEEK), tem sido amplamente utilizado na produção de membranas polímero eletrólito (PEM), e para ultrapassar problemas quanto a permeabilidade e propriedades mecânicas estes polímeros tem sido misturados com poliéterimida (PEI), polisulfona (PSU), etc. [7]. Neste trabalho, foi sintetizado poli(indeno) sulfonado (PIndS), com grau de sulfonação em torno de 30%, para uso como modificador da membrana Nafion[®] com o objetivo de avaliar o efeito deste na permeabilidade, grau de hidratação e condutividade de membranas Nafion/SPInd.

Parte Experimental

Materiais

Indeno (Sigma Aldrich, 95%), cloreto de alumínio (AlCl₃) (Sigma Aldrich), 1,2-dicloroetano (Synth, PA), etanol (Synth, PA), hidróxido de sódio (Synth, PA), ácido clorosulfônico (Sigma Aldrich, 99%), hexano (Synth, PA), dimetilacetamida (DMAc) (Synth, PA), peróxido de hidrogênio (H_2O_2) (Synth, PA) e ácido sulfúrico (H_2SO_4) (Synth, PA), utilizados como recebidos e solução de Nafion® 20% (Sigma Aldrich) e solução de Nafion® 15% (Ion Power), em uma mistura de água e álcoois.

12° Congresso Brasileiro de Polímeros (12°CBPol)

Síntese dos polímeros, sulfonação e preparação das membranas

O poli(indeno) (PInd) utilizado na obtenção de polímero eletrólito foi sintetizado em laboratório, via polimerização catiônica com AlCl₃ a -20°C, durante 5h sob atmosfera de nitrogênio. O polímero obtido apresentou massa molar média Mn de 34.500 g.mol⁻¹ e Mw de 87.500 g.mol⁻¹. Na sulfonação do PInd utilizou-se ácido clorosulfônico como agente sulfonante, segundo método já utilizado em trabalhos anteriores. Os produtos obtidos SPInds com grau de sulfonação de 27 e 36% foram secos à 60°C em estufa e moído para obtenção de um material mais homogêneo e finamente dividido.

As membranas foram preparadas de duas formas, sendo três diferentes concentrações cada: sem tratamento posterior de protonação - Nafion-ST, Nafion/SPInd-ST(95:5) e Nafion/SPInd-ST(90:10) e com tratamento posterior de protonação - Nafion-CT, Nafion/SPInd-CT(85:15) e Nafion/SPInd-CT(75:25)(% em peso). As soluções de Nafion® foram secas e redissolvidas em DMAc; as misturas dos componentes Nafion/SPInd foram feitas sob agitação por 2h, posteriormente foram sonicadas em banho à 50°C por 10min. O material foi então vertido em placas de petri de vidro (*casting*), seco sob baixo vácuo a 50°C (24 h) e sob circulação a 140°C (2 h). O tratamento posterior de protonação de três membranas foi baseado em lavagens com água deionizada, solução de H_2O_2 3%, e solução de H_2SO_4 0,5M a 80°C. Todas as membranas foram mantidas em água deionizada até o momento das caracterizações.

Caracterização das membranas

A determinação do grau de inchamento foi realizada pela imersão em água a frio após 24 h e a quente (90°C) após 1 h, de uma quantidade conhecida de amostra da membrana seca, sua massa é medida novamente a úmido e os valores são relacionados de acordo com a Eq. (1). Onde $m_{\text{úmida}}$ é a massa da amostra, em gramas, após a imersão em água e m_{seca} é a massa da amostra seca, em gramas, antes da imersão.

% inchamento =
$$\frac{m_{imida} - m_{sec a}}{m_{sec a}} x100$$
 (1)

A capacidade de troca iônica (IEC) foi determinada por titulação com NaOH 1M de uma solução de NaCl 1M após imersão nesta durante 24h de uma amostra de membrana previamente pesada. O cálculo para determinação da IEC das membranas foi feito a partir da Eq. (2) e o resultado foi expresso em miliequivalentes de H⁺ por grama de membrana seca. Onde M_{NaOH} é a concentração molar da solução de NaOH, V_{NaOH} é o volume de solução NaOH gasto para atingir o ponto de equivalência na titulação e m_{amostra} é a massa da amostra, em gramas.

$$IEC = \frac{M_{NaOH} \times V_{NaOH}}{m_{amostra}}$$
(2)

A permeabilidade (P) ao etanol foi determinada utilizando uma célula de vidro contendo as soluções A (etanol 2M) e B (água deionizada) em compartimentos idênticos separados pelas membranas do teste. A concentração de etanol na solução B foi estimada usando um refratômetro binocular Carl Zeiss Jena. A permeabilidade foi calculada a partir do declive do gráfico linear de concentração de etanol em função do tempo de permeação, de acordo com a Eq. (3). Onde m é a inclinação da curva linear de C_B versus t (dC_B/dt), C_B e C_A são as concentrações de etanol nos compartimentos B e A. V_B é o volume do compartimento B, L é a espessura da membrana e S é a área efetiva da membrana.

$$P = \frac{mV_BL}{SC_A} \tag{3}$$

A análise por espectroscopia de impedância eletroquímica (EIS) foi feita em um aparelho Autolab PGSTAT 30/FRA 2. A condutividade iônica dos filmes foi calculada conforme a Eq. (4), que relaciona a condutividade iônica (δ), a espessura do filme (1), a resistência do filme (R) e a área transversal (A) do material analisado.

$$\delta = \frac{1}{R} x \frac{l}{A} \tag{4}$$

A estabilidade térmica destas membranas foi analisada por termogravimetria em um equipamento TGA 2050 da TA Instruments, de 25 a 1000°C sob taxa de 10°C/min, em atmosfera de nitrogênio.

Resultados e Discussão

Estabilidade Térmica

As membranas de Nafion-CT e Nafion/SPInd-CT(75:25) foram avaliadas por TGA e os resultados das curvas termogravimétricas estão mostrados na Fig. 1. Pode-se observar que as membranas tratadas Nafion® pura e a híbrida apresentaram três eventos principais, sendo que o primeiro entre 40 e 270°C se refere aos solventes residuais da amostra, o segundo entre 270 e 400°C, pode ser atribuído a dessulfonação acompanhado da decomposição dos grupos éter das cadeias laterais e o terceiro 400 e 570°C, atribuídos à degradação das cadeias laterais e principais do polímero [5]. As curvas da derivada da perda de massa mostram que os picos característicos da dessulfonação aumentam e os picos característicos da matriz polimérica diminuem de intensidade com o acréscimo da resina. A Tabela 1 apresenta as temperaturas máximas (Td_{máx}) nos picos de derivada de perda de massa, as perdas de massa e o resíduo final para as membranas analisadas.

Figura 1: Curvas de perda de massa e derivada das membranas Nafion-CT(a) e Nafion/SPInd-CT(75:25)(b).

Tabela 1: Temperaturas nos picos da derivada da perda de massa	(Tdmáx), perdas de massa e resíduo das
membranas analisadas.	

Membrana	Temperatura (Tdmáx)(°C)	Perda de massa (%)	Resíduo (%)
	67	()	
Nafion-CT	170	0,2	
	347	7,6	1.0
	452	95.2	1,0
	515	83,2	
	68	57	
Nafion/SPind-CT(75:25)	169	5,7	5,8
	249	17.0	
	351	17,0	
	492	71,5	

Capacidade de Troca Iônica, de Absorção de Água e Permeabilidade ao Etanol

Os resultados mostram que os valores de IEC aumentam à medida que aumenta a concentração de SPInd na composição e as membranas híbridas quando comparados com suas respectivas membranas Nafion® puras preparadas nas mesmas condições tiveram também valores superiores. A Tabela 2 apresenta os valores de IEC (meq/g) a 25°C, inchamento a frio e a quente e permeabilidade ao etanol de todas as membranas.

12° Congresso Brasileiro de Polímeros (12°CBPol)

Internet when the					
Membrana	Conc. de SPInd (%)	IEC (meq/g)	Inchamento a frio (%)	Inchamento a quente (%)	Permeabilidade (cm ² s ¹)
Nafion-ST	-	1,03	17,6	31,2	$4,2x10^{-6}$
Nafion/SPInd-ST(95:5)	5	1,06	18,9	34,4	3,9x10 ⁻⁶
Nafion/SPInd-ST(90:10)	10	1,08	21,4	36,7	$3,7x10^{-6}$
Nafion-CT	-	1,35	19,3	31,2	4,5x10 ⁻⁶
Nafion/SPInd-CT(85:15)	15	1,45	31,7	57,9	4,1x10 ⁻⁶
Nafion/SPInd-CT(75:25)	25	1,47	44,1	73,6	3,9x10 ⁻⁶

Tabela 2: Resultados dos testes de capacidade de troca iônica, grau de inchamento em água e permeabilidade das membranas.

As membranas foram avaliadas com relação ao grau de inchamento a frio e a quente, onde se observa que à medida que aumenta a quantidade de resina sulfonada, aumenta o inchamento a frio e quente em ambas as formas de preparação. Observa-se também que as membranas que foram posteriormente tratadas tiveram inchamento a frio e quente maior que as membranas não tratadas posteriormente, além de que estas mesmas membranas também tiveram um maior incremento nos inchamentos à medida que a quantidade de SPInd foi aumentada quando comparadas com as membranas não tratadas. A permeabilidade em todas as amostras sofreu decréscimo quando a concentração da resina sulfonada foi aumentada, com isto pode-se considerar então a resina inserida na matriz polimérica esta desempenhando um papel de bloqueadora dos canais de transporte minimizando a passagem de combustível pela membrana.

Condutividade Iônica

Os resultados de resistência e condutividade das membranas são mostrados na Tabela 3. Pode-se observar que as membranas híbridas tiveram um incremento na condutividade iônica à medida que o percentual de SPInd foi aumentado. Sendo que quando se compara as membranas sem tratamento com as tratadas se verifica que as condutividades aumentam nas membranas tratadas, evidenciando que o tratamento de protonação se mostra como um processo importante na preparação das membranas.

Membrana	Conc. de SPInd (%)	Espessura (mm)	R (Ω)	δ(S cm ⁻¹)
Nafion-ST	-	0,16	3,48	3,10x10 ⁻³
Nafion/SPInd-ST(95:5)	5	0,18	2,18	5,50x10 ⁻³
Nafion/SPInd-ST(90:10)	10	0,17	1,85	6,13x10 ⁻³
Nafion-CT	-	0,17	1,11	$10,2x10^{-3}$
Nafion/SPInd-CT(85:15)	15	0,17	1,03	11,1x10 ⁻³
Nafion/SPInd-CT(75:25)	25	0,27	1,01	17,9x10 ⁻³

Tabela 3: Valores de condutividade e resistência das membranas obtidos através de ensaio de EIS.

Conclusão

Os valores de IEC e inchamento das membranas híbridas Nafion/SPInd foram superiores aos apresentados pela membrana Nafion[®] analisada sob mesmas condições. A permeabilidade ao etanol das membranas diminuiu com o aumento da concentração de SPInd na mistura. A condutividade iônica por IES das membranas híbridas Nafion/SPInd tratadas aumentou com a concentração de SPInd na mistura, o que mostra o potencial de uso destas membranas em célula a combustível tipo PEMFC.

Agradecimentos

Os autores agradecem ao CNPq e CAPES pelo apoio financeiro através de bolsas e projetos.

Referências

^{1.} S. Bose; T. Kuila; T. X. H. Nguyen; N. H. Kim; K. Lau; J. H. Lee Prog. Polym. Sci. 2011, 36, 813.

^{2.} I. Honma; M. Yamada Bull. Chem. Soc. Jap. 2007, 80, 2110.

^{3.} C. C. F. Iojoiu; M. Marechal; N. E. Kissi; J. Guindet; J. Y. Sanchez J. Power Sources 2006, 153, 198.

⁴ J-C. Tsai; H-P. Cheng; J-F Kuo; Y-H. Huang; C-Y. Chen J. Power Sources 2009, 189, 958.

⁵ N. W. DeLuca; Y. A. Elabd; J. Membr. Sci. 2006, 282, 217.

⁶ J. Jaafar, A.F. Ismail, A. Mustafa Mat. Sci. Eng. 2007, A 460-461:475.

⁷ A. S. Sultan; A. Al-ahmed; S. M. J. Zaidi Eur. Polym. J. 2011, 47, 2295.