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Abstract: Fire is a significant agent of landscape transformation on Earth, and a dynamic and
ephemeral process that is challenging to map. Difficulties include the seasonality of native vegetation
in areas affected by fire, the high levels of spectral heterogeneity due to the spatial and temporal
variability of the burned areas, distinct persistence of the fire signal, increase in cloud and smoke
cover surrounding burned areas, and difficulty in detecting understory fire signals. To produce a
large-scale time-series of burned area, a robust number of observations and a more efficient sampling
strategy is needed. In order to overcome these challenges, we used a novel strategy based on a
machine-learning algorithm to map monthly burned areas from 1985 to 2020 using Landsat-based
annual quality mosaics retrieved from minimum NBR values. The annual mosaics integrated year-
round observations of burned and unburned spectral data (i.e., RED, NIR, SWIR-1, and SWIR-2), and
used them to train a Deep Neural Network model, which resulted in annual maps of areas burned by
land use type for all six Brazilian biomes. The annual dataset was used to retrieve the frequency of
the burned area, while the date on which the minimum NBR was captured in a year, was used to
reconstruct 36 years of monthly burned area. Results of this effort indicated that 19.6% (1.6 million
km2) of the Brazilian territory was burned from 1985 to 2020, with 61% of this area burned at least
once. Most of the burning (83%) occurred between July and October. The Amazon and Cerrado,
together, accounted for 85% of the area burned at least once in Brazil. Native vegetation was the land
cover most affected by fire, representing 65% of the burned area, while the remaining 35% burned
in areas dominated by anthropogenic land uses, mainly pasture. This novel dataset is crucial for
understanding the spatial and long-term temporal dynamics of fire regimes that are fundamental for
designing appropriate public policies for reducing and controlling fires in Brazil.
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1. Introduction

Human and natural fires are important agents for landscape transformation world-
wide [1]. Depending on the level of human interference in natural fire regimes, fire can
be very harmful and have severe implications for the resilience of such ecosystems [2–4].
Brazilian natural fire regimes are diverse. The six Brazilian biomes present distinct forms
of dependency and sensitivity to fire [5]. The grasslands and open savannas that dominate
the majority of Cerrado, Pantanal, and Pampa biomes are fire-dependent, where levels
of ecological dependence and adaptation of native vegetation to fire help shape these
biomes landscapes [6–8]. Conversely, forests in the Amazon and Atlantic Forest biomes
are sensitive to fire, as these forests hold high levels of humidity natural forest fires are
rare, and most species do not evolve with fire in these biomes [9,10]. Lastly, the semi-arid
Caatinga biome is considered fire-independent due to its natural insufficient fuel to carry
fire as an ecological driver of ecosystem evolution [11].

The effects of changing Brazilian fire regimes, including dependency or sensitivity
to more or less frequent fire events, are numerous. Enhanced fire occurrence in forest
areas of the Amazon can increase their susceptibility to future fires [12], while if fires
are extinguished from grasslands and savannas in the Cerrado, it can represent higher
risks for future mega wildfires [13] or changes in vegetation structure [14]. These sce-
narios of disturbed fire regimes impact biodiversity [15,16], harm human health with the
increase in smoke-induced respiratory diseases [17,18], cause economic losses [19], and
boost greenhouse gas emissions that affect climate change [20–24].

Although fire has long been an intrinsic component of Brazilian biomes, affecting
political, economic, social, and even cultural forms of human and nature interactions,
its long-term historical dynamics are still poorly understood. Due to the ephemeral and
diverse characteristics of Brazilian fires, it has been difficult to address their real extent, as
well as identify their historical paths and trends [25]. Remote sensing observations have
provided important products, but several challenges remain for capturing the long-term
multidecadal history of burned areas on a large scale and over such diverse ecosystems.
These challenges encompass the high levels of spectral heterogeneity of the burned areas
in response to seasonality and land use change [26]. The natural seasonality of native
vegetation confounds the signals of unburned and burned areas, increasing their spectral
similarity, and land cover and land use conversions sometimes also present signatures simi-
lar to those of burned areas (e.g., burned pasture fields with humid natural grasslands) [27].

Fire mapping also poses difficulties regarding the distinct persistence of the fire signal.
Depending on the size of the area affected by fire, and the land use type burned, the fire
scars left by the consumption of the fuel material and captured by the satellite imagery
disappears fairly quickly [28]. In land cover and land use types dominated by grasslands
(i.e., natural and planted), the fire signal is easy to detect, but can disappear in a few
weeks [29]. Conversely, understory fires slowly burning fuel material on the forest floor,
remain visible for longer periods but are also difficult to identify depending on the spatial
and temporal resolution of the remote sensing product [30,31]. Additionally, mapping
burned areas requires both a high temporal and spatial resolution imagery, so as to reduce
the impact of smoke, cloud, and shadow cover on the probability of observing the burned
scars before they disappear.

There are few global products that map large-scale burned areas at higher temporal
resolution (e.g., twice a day), such as the Modis based product MCD64A1 Collection 6, at
500 m pixel resolution [32], and ESA FIRECCI51 with 250 m resolution [33]. However, they
miss small-scale fires and understory fires, such as those in forests [34]. More recently, with
the advances of cloud storage and computing, other initiatives to map large-scale burned
areas at country level have begun to appear, such as GABAM product which mapped
global burned area at 30 m resolution but only for the years of 2000, 2005, 2010, 2015, and
2018 [35]. These datasets also only go back two decades, and neither of them considered
the long-term history of fire scars. There are few burned area products at higher temporal
and spatial resolutions at country scale, but for other countries than Brazil [36,37]. These
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long-term annual time series are vital for identifying the main impacts of human-induced
changes in fire regimes and address their synergies with climate change.

To produce a large-scale time-series of burned area, a robust number of observations,
a more efficient sampling strategy and a robust processing power are needed. To overcome
these challenges, we used a novel strategy based on a deep-learning algorithm to map
monthly burned areas from 1985 to 2020 using Landsat-based annual minimum NBR
(Normalized Burn Ratio) quality mosaics. This strategy was possible with the use of
Google Earth Engine platform (GEE; https://earthengine.google.com, accessed on 4 April
2022), which is a free cloud based computational platform handling a vast catalog of
satellite imagery using Google’s cloud and JavaScript-based language to access and process
large global geospatial datasets [38]. GEE is a multi-disciplinary widely used tool for
geospatial analyses, habit mapping, land use and land cover mapping [39,40], including
for fire detection [41], generating new datasets from a combination of remote sensing data,
including the imagery quality mosaics.

The annual minimum NBR quality mosaic, created from the GEE image collection
function, was a product of a composition method that selected the lowest NBR value pixels
in a year to compose a new annual mosaic (i.e., quality mosaic) based on the spectral
information of the selected pixel and highlighting all the observed burned areas in one year.
By using this strategy, we gained efficiency in identifying the burned areas and training the
classification algorithm, reducing the sampling efforts of burned and unburned areas, at the
same time safeguarding more frequent observation using all available pixel observations in
the time-series. The result of this effort became MapBiomas Fire Collection 1, a publicly
available dataset of burned areas for Brazil (1985–2020) (https://mapbiomas.org/, accessed
on 27 August 2021). MapBiomas Fire is part of the MapBiomas initiative, which is a network
of country based Academic, technology startups and private research institutions that use
GEE to produce land use and land cover datasets at 30 m resolution and with local expertise
for Countries in South America and Indonesia. The burned area maps from MapBiomas
Fire are available in distinct temporal domains (annual, monthly, and accumulated periods)
in addition to fire frequency, and are combined with annual land use and cover maps to
indicate the areas most affected by fire over the last 36 years.

2. Materials and Methods
2.1. Study Area

Brazil is the largest country in South America, with a vast and megadiverse terri-
tory, ecologically divided into six biomes: Amazon, Cerrado, Caatinga, Pampa, Pantanal,
and Atlantic Forest [42] (Figure 1). These biomes have distinct characteristics in terms of
vegetation types, biodiversity, soil, climate conditions, and land use practices [43]. These
characteristics result in distinct relationships between nature and human fire regimes af-
fecting the Brazilian biomes [5]. The Cerrado, Pantanal, and Pampa biomes, are considered
fire-dependent ecosystems because of their dominance by grasslands and savannas, and
their plants and animals adapted to fire [5,44]. The opposite happens in the biomes with
dominance of tropical forests, such as the Amazon and Atlantic Forest, where natural
fire regimes have intervals of hundreds of years in response to their humid microclimatic
conditions [45]. Fire in these forests can cause severe negative effects on their non-fire-
adapted biodiversity [46,47], leading them to require longer intervals for recovery, and thus
being considered fire-sensitive [3]. Following the same classification, the Caatinga biome is
considered fire-independent, since natural fires in this region are rare [5,11] due to the low
incidence of lightning events [48], and to the predominant vegetation type in the biome
(xerophilic), which does not provide continuous and easily flammable fuel [49].
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Figure 1. Study area with the six Brazilian biomes, and its corresponding land use and land cover
classes according to the MapBiomas Collection 6 [50].

The natural fire regimes of the Brazilian biome’s interact with land use and land cover
change practices, where fire is a central element due to its broad use as an agriculture
and land management tool [51,52]. The main types of agriculture related to fires in Brazil
include: those that are used to burn the felled trees of recently clear-cut forests or woodland-
dominated vegetation (i.e., deforestation), converting them to ashes and soil nutrients;
and the ones that are used to manage and invigorate pastures by clearing unwanted
weeds [53–55]. These two types of fires are considered planned or intentional, and they
are the major causes of uncontrolled and unplanned fires, such as wildfires [5]. These
unexpected fires together with natural fires (i.e., caused by lightning) amplified by extreme
climatic conditions, can cause damage to private properties and natural resources, and can
develop into a mega wildfire that affects large extensions of land [17,21,56,57]. Distinct
from the previously described fires are the prescribed fires, which are part of the integrated
fire management strategies [4,13]. These fires are used to reduce the chances of mega
fires in the biomes and vegetation types that are adapted to fire [58]. The integrated fire
management (IFM) involves planning and managing prescribed fires to minimize fire
damage and maximize benefits to the natural environment and local communities. In
this study, we do not provide differences related to the use of fire (i.e., management or
accidental); we only provide the area burned by land use and cover change.
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2.2. Burned Area Classification Approach

We used all available Landsat imagery (Landsat 5, 7, and 8) and Deep Neural Network
(DNN) model to detect and map burned areas within the Brazilian biomes between January
1985 to December 2020. The DNN models use artificial intelligence and machine learning
algorithms to perform deep learning classifications of complex phenomena generating
higher performance results, including for fire mapping [59].

The images were treated in Google Earth Engine (GEE) to create annual Landsat
quality mosaics, used to collect burned and unburned spectral signatures, to serve as
training samples for the classification model. The training samples and the annual quality
mosaics were exported to a Google Cloud Storage Bucket to be used as input in virtual
machines to train the DNN models, process the burn scar mapping and produce a dataset
of 36 years of monthly burned area for all of Brazil from 1985 to 2020.

The image processing and classification routines used to map the monthly burned
areas in the Brazilian territory followed six steps including: (1) definition of the classification
regions per biome, (2) construction of annual Landsat quality mosaics, (3) collection of
training samples containing spectral signatures of burned and unburned areas on the
annual quality mosaics, (4) training and development of the DNN prediction model, (5) use
of post-classification routines with masks and spatial filters, and (6) accuracy assessment
(validation). Figure 2 presents our methodological approach for detecting and mapping
burned areas in the Brazilian biomes.
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2.2.1. Definition of Classification Regions

Considering that the fire regimes and burned area spectral signatures are influenced
by climatic conditions and the burned land cover and land use type, we combined edapho-
climatic and morphoclimatic data with annual maps of land cover and land use from Map-
Biomas Collection 6.0 [50], to segment each biome into classification regions (Figure S1).
This process resulted in 21 classification regions, addressing regional patterns and confer-
ring a more accurate classification of burned areas.

2.2.2. Annual Quality Mosaic

The classification was performed using surface reflectance (SR) Landsat mosaics
(30 m × 30 m) constructed for each year from 1985 to 2020. We assessed all the available
Landsat 5 (from 1985 to 1998, and from 2003 to 2011), Landsat 7 (1999 to 2002, and 2012),
and Landsat 8 scenes (2013 to 2020), with a 16-day return interval. All together, we used
154,261 (or ~108 TB) of Landsat scenes distributed over 389 different WRS-2 path/row tiles
that overlap the Brazilian territory (on average 4285 scenes per year).

Currently, Landsat Surface Reflectance is accompanied by a Bitwise Quality Assess-
ment (BQA) band that indicates the pixels with radiometric and instrument related prob-
lems, including the ones with high levels of cloud contamination [60]. We used the Quality
Assessment Band to avoid these pixels by selecting and masking the pixels with high
confidence levels (67–100%) of ‘cloud’, ‘shadow’, and ‘radiometric saturation’ in order to
compose the annual quality mosaic. We used a per year statistical approach to summarize
this amount of data and optimize the classification without discarding spectral information
on a pixel basis. This approach allowed us to create yearly mosaics by performing the
composition of all the 16-day images into a single quality mosaic (QM), using the minimum
NBR (Normalized Burn Ratio) spectral index [61] as a per-pixel ordering function, where
the pixel with the lowest value of NBR was selected and all the spectral reflectance charac-
teristics (Equation (1), Table S1), including the scene metadata with the date of that selected
pixel, were used to create the annual quality mosaic (Figures 3 and S2) . The NBR index
has been broadly used in several regions of the planet to detect fire activity and severity by
integrating two spectral bands that respond most, but in opposite ways to burning [61,62].

λQM = [Blue, Green, Red, NIR, SWIR1, SWIR2] =
date in which min

(
λNIR − λSWIR1
λNIR + λSWIR1

)
,
[
xi...j

]
(1)

where λ represents the reflectance values of the quality bands that compose the quality
mosaic (QM), retrieved from the date in which each pixel reached their minimum (min)
NBR value in a given year (x), considering the set of all available scenes, from first (i) to last
(j); the λNIR is the Near-Infrared surface reflectance and λSWIR1 is the Short-Wave Infrared
surface reflectance used to calculate the NBR spectral index. In other words, we computed
the NBR for each one of pixels with valid observation within a specific year and stacked
them into a multi-band image. The pixels with lowest NBR within the multi-band image
were selected and their spectral information were used to compose the annual quality
mosaic (QM). In addition to the spectral information, we retained the scene metadata
information including the date in which each pixel showed its lowest NBR value. The NBR
quality mosaic created with the spectral information from the minimum NBR performed
well in differentiating burned and unburned land use and cover in the Brazilian biomes
(Figure S3).
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Figure 3. The 2020 quality mosaic (QM) for Brazil (RGB SWIR-1, NIR, RED), created from spectral
information retrieved from the minimum NBR pixels in a year, showing examples of the diversity of
burn scars by biome: (A) Amazon, (B) Cerrado, (C) Caatinga, (D) Atlantic Forest, (E) Pantanal, and
(F) Pampa.

2.2.3. Sampling Strategy

Global burned area products from the Moderate Resolution Imaging Spectroradiome-
ter (MODIS) sensor aboard the Terra and Aqua satellites, and provided by the National
Aeronautics and Space Administration (NASA), have been globally used as a reliable source
for area affected by fire. One of these products is called MCD64A1, has a coarse spatial
resolution (500 m), and is available worldwide for download every 15 days as an integrated
product [32]. To guide our sampling strategy, we used the MCD64A1 Burned Area Product
as a reference data for burned areas from 2000 to 2020 (Figure S4). Additionally, we used
the active fire products developed by the National Institute for Space Research (INPE) in
Brazil. The INPE active fire product is based on an automatic mapping approach using
1 km × 1 km pixel size and thermal bands of nine satellites, and the AQUA_M-T (Sensor
MODIS) as a reference satellite, providing daily data of fire activities for the same period
(Figure S4), available at http://www.inpe.br/queimadas/bdqueimadas, accessed on 4
April 2022. For the years prior to 2000, we did not use any fire reference data due to the
lack of spatial confidence with the available data existing at that time (e.g., NOAA and
GOES with active fire registries since 1992 [63–65].

Using MCD64A1 and the INPE hotspots, we selected Landsat scenes quality mosaics
containing more burned area and active fires, to focus on collecting the training samples
spectral characteristics of burned and unburned areas. This effort resulted in a spectral
library with 280,456,236 sampled pixels, collected manually as small polygons, of burned
(89,845,700 sampled pixels; 32%) and unburned areas (190,610,536 sampled pixels; 68%)
to be used as training samples. These samples, collected in different years (Figure S5A,B)
and for each biome, were stratified by Landsat sensor, creating a group of training samples
with spectral characteristics specific for Landsat 5, 7, and 8 images (Figure 4). Finally, we
divided our spectral library into 21 stacks (one for each classification region), and used it as
input for the classification.
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2.2.4. Deep Learning Model

The classification model used was the Deep Neural Network (DNN), which consists
of computational models based on mathematical calculations capable of performing deep
learning and visual pattern recognition. The structure we used was the Multi-Layer Percep-
tron Network (MLPN), that incorporates several layers of interconnected computational
units, where each node (neuron) in one layer is connected to a node in the next layer [66,67].
The layers are divided into: input, hidden, and output layers (Figure S6) [67]. For this
DNN model the input layers were the spectral bands RED, NIR, SWIR1 and SWIR2, and
the output layers were the classes burned and unburned (the scripts used to run the DNN
model is available at Table S2).

The burned area mapping algorithm consisted of two steps: training and prediction.
In the training phase, the following parameters were defined, based on prior tests: learning
rate (0.001), batch size (1000), number of interactions (7000), and inputs for classification [68].
The classification inputs used in this model were the SR spectral data retrieved from the
annual quality mosaics using the training samples of burned and unburned areas.
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Based on the spectral library from the burned and unburned training samples, the
following spectral bands were used as inputs for the burned area classification model: red
(RED—0.65 µm), near infrared (NIR—0.86 µm), and short-wave infrared (SWIR 1–1.6 µm
and SWIR 2–2.2 µm). These spectral Landsat bands were chosen based on their sensitivity
to fire events among distinct land use and covers (Figure 5).
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Figure 5. Variation between burned and unburned areas by reflectance bands per land use and cover
type. Red boxes (burned) represent the immediately post-fire reflectance values, and green boxes
(unburned) represent the reflectance value in a specific year.

The training data input was divided into two datasets: 70% of the samples were used
for training and 30% for testing, in order to estimate the ability of the DNN algorithm to
map burned areas [68]. The classification was performed using the annual Landsat quality
mosaics, for each one of the 21 regions, and for each sensor (Landsat 5, Landsat 7, and
Landsat 8), resulting in 36 maps of burned and unburned areas for all of Brazil (Figure 6).
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Because deep learning methods require powerful computational processing, we con-
ducted our analysis using graphics processing units (GPUs) and specialized hardware
components for running parallel arithmetic operations [69]. The computation infras-
tructure used was core 8vCPU, 32GB RAM with an additional 200 GB disk. Access to
GPUs in a virtual machine environment was implemented on the Google Cloud Platform
(https://console.cloud.google.com, accessed on 4 April 2022), a suite of cloud comput-
ing services provided by Google. The links for all the scripts used for sampling and
classification are available in Table S2.

2.3. Post-Classification

A spatial filter was applied to remove noise and fill small empty gaps, where burned
areas smaller than or equal to 1.4 ha (16 pixels) were removed, and empty gaps (inside and
rounded by burned area) smaller than or equal to 5.8 ha (64 pixels) were filled as burned.

After evaluating the classification results, post-classification masks were also applied
to reduce the commission from the land use, and cover with spectral signatures that are
similar to those of recently burned areas, such as water, urban areas, and some crop types.
We defined rules per biome to remove pixels that were classified as burned in the distinct
land cover and land use classes of the MapBiomas Collection 6.0 (Table S3). The post
classification reduced the original burned area by 1.72%.

2.4. Data Outputs
2.4.1. Monthly and Annual Fire Scar Maps

To obtain the information of the month in which the fire scar was first mapped, post-
classification processing was performed to retrieve the date information of the pixel that
was burned, from the date of the pixel in which the annual quality mosaic was built from
the minimum NBR. The annual fire scar maps are the composition of all the burned areas
of each month, in the respective year.

2.4.2. Cumulative Burned Area

The accumulated burned area data were built from the increment of the burned area of
each year; meaning that the same pixel is only counted as fire once, regardless of whether
there was more than one fire occurrence.

The accumulated burned area data by land cover and land use type were obtained
by crossing the occurrence of fire with the land cover and land classes of MapBiomas
Collection 6, considering the last year of the period.

2.4.3. Fire Frequency

The burning frequency or fire recurrence data were produced by grouping the annual
burned area, integrating them on a single map with 36 classes, for the entire period
(1985–2020), where class 1 represents the pixels that were burned once, class 2 the pixels
that were burned twice, and so on.

The fire frequency data by land cover and land use type were retrieved by crossing
the fire data with the MapBiomas Collection 6 land use and cover map of 2020, the last year
of the data series.

2.5. Validation

Validation of the burned area was performed per biome, considering the years 2007,
2011, and 2019, selected to represent years with a larger and smaller extent of burned area
and distinct sensors. Each of the biomes was divided into 2 km × 2 km grid cells, which
were spatially integrated with the burned area maps from the Fire Information for Resource
Management System (FIRMS) [70], for the same years. The grid cells were divided into
four groups considering the proportion of the area burned within each cell: (1) without
fire occurrence, (2) with up to 32% of fire occurrence (low fire occurrence), (3) with fire
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occurrence between 32% and 70% (medium fire occurrence), and (4) with fire occurrence
above 70% (high occurrence).

The definition of the sample size for each group was based on Equation (2) and applied
for each of the biomes and for the years 2007, 2011, and 2019, resulting in between 2196
and 2183 cells randomly selected for each year of the analysis (Table S4).

n =
N × Z2 × p × (1 − p)

(N − 1)× e2 + Z2 × p × (1 − p)
(2)

where: n is the sample size, N is the population size, Z is the standardized normal distri-
bution score corresponding to the adjusted confidence level 1 − α = 0.95 (95%), e is the
maximum margin of error expected (4.18%), and p (0.70) is the proportion for estimating
eq = 1 − p.

Subsequently, the maps of sampling grid cells were inserted into the Google Earth
Engine platform, so that the compositions of minimum NBR for each year were extracted
for each cell. The images of the sampling cells were downloaded from Google Earth Engine,
and segmented using QGIS software. The segments were stored as vectors and visually
interpreted as with or without fire occurrence (Figure S7).

After the interpretation of all segments, the centroids with the respective attributes
of the segments were extracted. These centroids were then spatially integrated with the
burned area mappings, making it possible to count the locations mapped and interpreted
as burned (Figure S7). Due to the significant difference between the number of centroids
in areas mapped as burned and unburned, it was necessary to adopt weightings in the
accuracy evaluations. With that, it was possible to assess the amount of commission and
omission error, as well as the global accuracy, for each biome, as well as for Brazil, for the
years 2007, 2011, and 2019.

In addition to the accuracy assessment, a comparison analysis between the burned
area time series (named MapBiomas Fire Collection 1) with other existent burned area
products MCD64A1 [32], and GABAM [35] was performed. Although MCD64A1 has a
higher temporal resolution (daily observations) but lower spatial resolutions (500 m), the
second is a Landsat based product with lower temporal resolution (16 days) and higher
spatial resolution (30 m). The comparison was made from 10,000 randomly selected points
used to extract information on the burned and unburned areas of three existing burned area
products for the years 2005, 2010, and 2018. These years were chosen because they were the
only ones that had data from burned area for all three products. From there, three confusion
matrices were produced comparing the burned and unburned area data for MapBiomas
Fire, MCD64A1 and GABAM. The comparison analysis consisted of identifying the average
convergence and divergence proportions between the three products and for the three
years of analysis.

An analysis to evaluate the difference between mapping burned area using the annual
quality mosaic and the individual images within a year was also performed for 15 Landsat
scenes of the Amazon and Cerrado bordering area. The classification of the individual
monthly scenes was combined with the results of the annual quality mosaic classification
by computing the burned areas of convergence. This analysis helped to evaluate the burned
area possible omissions when using the integrated annual quality mosaic.

3. Results
3.1. Annual Variability of Burned Area

A 36-year Landsat-based burned area dataset resulting from the DNN classification
was created for the six Brazilian biomes (burned area dataset available at Table S2). The
burned area maps revealed that 1,672,142 km2 or 19.6% of the Brazilian territory was
burned at least once from 1985 to 2020 (Figure 7A,B; Table 1). The temporal variability of
the area burned indicated an average area of 148,177 km2/years, or 2% of Brazil affected
by fire every year. The annual burned area varied over time with the minimum annual
area detected in 2013 (72,712 km2) and the maximum area mapped in 2007 (235,005 km2)
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(Figure 7C). Other years where fire occurrence peaked included 1998, 2007, and 2010, while
years with less burned area include 1989, 2009, 2011, and 2013. Most of these years suffered
from climate anomalies, which promoted extreme droughts (i.e., El Niño) or an increase in
rainfall (i.e., La Niña) [21,57,71].
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Table 1. Cumulative burned area, mean annual burned area, proportion of the total burned area,
proportion of the biome burned at least once, and proportion of the biome burned annually for the
period of 1985 to 2020.

Biomes Biome Area
(km2)

Cumulative
Burned Area

(km2)

Mean Annual
Burned Area

(km2)

Proportion of the
Total Brazil’s
Burned Area

Proportion of the
Biome Burned at

Least Once

Proportion of the
Biome Burned

Annually

Cerrado 1,983,017 733,878 67,068 43.9% 37.0% 3.4%
Amazon 4,212,743 690,025 65,780 41.3% 16.4% 1.6%
Caatinga 862,818 88,549 3828 5.3% 10.3% 0.4%
Pantanal 150,900 86,425 8337 5.2% 57.3% 5.5%

Atlantic Forest 1,107,419 71,587 3122 4.3% 6.5% 0.3%
Pampa 193,831 1930 202 0.1% 1.0% 0.1%

Brazil 8,514,877 1,672,394 148,336 100% 19.6% 1.7%

The annual burned area maps demonstrated an average overall accuracy of 89.35%
(Tables S5–S7) with the highest overall accuracy in 2019 (92.25%) (Table S7). The vali-
dation analysis showed higher average user accuracy (93.2%) than producer accuracy
(>85.13%), especially for the burned areas, for all the three years analyzed (2007, 2011, 2019)
(Tables S5–S7). The producer accuracy for the 2007, 2011, and 2019 burned area was 81.93%,
84.14% and 89.31%, respectively, indicating that the maps in general were conservative
for mapping burned areas, and presented more omission (14.87%) than commission er-
rors (6.80%). These results suggest a high reliability of the burned area maps produced
with Landsat 5, Landsat 7, and Landsat 8 quality mosaic classification (accuracy results in
Tables S5–S7).

A comparison between the burned area mapped using the annual quality mosaic and
individual scenes in a year demonstrated a small difference (1,2%) with a slightly more
area mapped when completed individually, gained with the increase chance of observing
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burned areas in very dense cloudy conditions (Table S8). Comparisons between burned and
unburned areas from MapBiomas Fire Collection 1, MCD64A1 and GABAM, revealed that
about half of the burned area was coincidently mapped in the three products (Figure S8).
On average, 23% of the burned area was only mapped by MapBiomas Fire product, while
26% was mapped only by MCD64A1 product (Figure S8A). The comparison between
MapBiomas Fire and GABAM showed that 48% of the burned area was mapped exclusively
by MapBiomas Fire, and 3% mapped only by GABAM (Figure S8C).

3.2. Burned Area by Brazilian Biome

The spatial distribution of the total area burned from 1985 to 2020 highlights the
importance of the Cerrado and the Amazon as the Brazilian biomes most affected by fire.
These two biomes, which together occupy three quarters of the country, concentrated 85%
(1,432,879 km2) of the total area burned at least once (cumulative area burned) during
the 36-yr period (Table 1). Even though the Cerrado is at least two times smaller than
the Amazon, 44% of the entire Brazilian cumulative area burned was observed in the
Cerrado, while the Amazon accounted for 41% of the area affected by fire at least once
in the country during the same period (Table 1). These two biomes were followed by the
Caatinga, Pantanal, Atlantic Forest, and Pampa, accounting for 5.3%, 5.2%, 4.3%, and 0.1%,
respectively, of the cumulative area burned in Brazil (Table 1).

In terms of the proportion of the area burned per biome, the Pantanal, a wetland
dominated by grasses, was the most affected biome in relative terms. From 1985 to 2020,
more than half (57.3%) of the biome was mapped as having been burnt at least once
in 36 years. The second biome most affected by fire was the Cerrado, with 37% of its
territory burned in the period of analysis (Table 1; Figure S9). These two biomes, which
are ecologically fire dependent [5], are followed by the fire sensitive biomes Amazon
and Atlantic Forest with 16.4% and 6.5% of these biomes burnt, and the Caatinga, with
10.3% of the biome burnt. The Pampa is the second smallest biome, and even though fire
dependent, it is the biome that registered the least amount of area burned and with the
smallest proportion of burned area (Table 1). These results indicate, if the mean annual
burned areas are used, shorter fire rotation for Pantanal (18 years), Cerrado (30 years),
and Amazon (64 years), while the other three biomes presented longer fire rotation of
221 years, 356 years, and 874 years for Caatinga, Atlantic Forest, and Pampa, respectively.
Fire rotation represents the period of time in which an area is expected to burn based on
the mean burned area in the period [72].

The extent of burned area in the Brazilian biomes responded to climate, type of
vegetation structure, pace of deforestation, and regional policies. The combination of these
elements resulted in a distinct distribution of the annual burned area over time for these
biomes (Table S9; Figure 8). Even though the area burned in the Amazon presented peaks
related to years with climate anomalies, the temporal distribution of the area burned in
the Amazon followed overall deforestation trends (Figure S10), with higher rates during
the 1990s and the first five years of the 2000s [9,21]. In the Cerrado, the same trend was
broken by the peaks caused by extremely dry years (e.g., 1987, 1998, 2007, 2010, 2015,
2016, 2017), most of them related to the El Niño Southern Oscillation [73]. Pantanal was
the biome where the burned area best responded to drier climate conditions, where the
extent of fire was associated with years of severe droughts, 1999 and 2020 being record
years in burned area [57]. The annual distribution of the area burned in the Atlantic Forest,
showed a decrease from 2003 onwards, possibly associated with the regulation of sugarcane
burning for ethanol in the state of São Paulo (Law n◦11.241/2002), which advocates for the
gradual elimination of this practice in the plantation areas [74]. In the Caatinga and Pampa,
the annual extent of fire responded to climate but also to the local context of fire use by
small farmers.
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Figure 8. Temporal distribution of annual burned area by Brazilian biome between 1985 and 2020.

3.3. Monthly Burned Area

The extent of the area burned per month was retrieved from the date of the pixel
used to compose the annual quality mosaic from which the minimum value of NBR was
extracted. This dataset highlighted the months where the greatest part of the burned
area was detected, helping determine the boundaries of the burning season in Brazil. The
monthly burned area data revealed that 83% of the burns were detected from July to
October, with the maximum extent of burns over the past 36 years of analysis occurring
in September (Figure 9). That pattern is representative of most of the biomes, except the
Amazon and the Atlantic Forest, where large areas were also burned in November, and the
Caatinga, where the burning season extends to the months of November and December
(Figure S11).
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3.4. Fire Frequency

The annual burned area maps showed overlapping, revealing the areas in the Brazilian
territory that suffered multiple burns, which would indicate higher occurrence or frequency
of fire. The range in fire frequency varied from 1 to more than 15 times, in which fire was
recorded in the same place over the years (Figure 10). The 36 years of fire frequency data
showed that the majority (1,022,774 km2 or 61%) of the area burned in Brazil was affected
by fire two or more times from 1985 to 2020 (Table 2). Almost half (42%) of the area burned
over three times, suggesting fire return intervals of up to 12 years in this portion of the
country. A small portion (1.4%) of the Brazilian territory presented a fire return interval
shorter than 2.4 years, where the fire frequency was higher than 15 times (Table 2).
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Table 2. Burned area (in square kilometers) in each frequency class, for each biome and for Brazil.

Burned Area(km2)

Frequency
Class Cerrado Amazon Pantanal Caatinga Atlantic

Forest Pampa Brazil

1 291,988 216,883 28,490 59,028 51,564 1666 649,620
2 137,435 141,737 17,161 16,775 11,392 190 324,690
3 81,640 101,094 11,644 6267 4094 44 204,783
4 54,514 70,380 7934 2972 1865 15 137,680
5 38,912 47,843 5574 1562 968 6 94,867
6 29,082 32,358 4039 823 539 3 66,844
7 22,188 21,926 2947 448 314 2 47,824
8 17,154 15,034 2292 253 201 1 34,935
9 13,349 10,484 1805 154 136 1 25,928
10 10,464 7449 1396 93 99 1 19,501
11 8243 5385 1074 58 74 0 14,834
12 6516 3978 772 37 56 0 11,361
13 5169 3008 519 24 45 0 8765
14 4116 2318 322 16 37 0 6810

>15 13,106 10,148 455 39 204 2 23,953

Total area
burned
(km2)

733,877 690,024 86,425 88,549 71,587 1930 1,672,394
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The areas where fire was observed at higher frequencies are located specially in the
Cerrado and Pantanal, in some areas dominated by natural savannas and grasslands in the
northern portion of the Amazon, and in areas along the arc of deforestation in the Amazon
(Figure 10). The distribution of the relative fire frequencies of these biomes highlights a
similarity between the Cerrado, Pantanal, and Amazon biomes in terms of the number
of times which an area was burned (Figure S12). Of these three biomes, the Cerrado
was the one presenting the largest area that burned only once (291,988 km2 or 40%) from
1985 to 2020, demonstrating a similar relative burn frequency distribution with Brazil as
a whole. The Pantanal and Amazon biomes showed that 33% and 31% of their burned
area, respectively, were affected by fire once in the period of analysis, implying that 67%
and 69%, respectively, of the burned area was affected by fire more than two times in 36
years. The Atlantic Forest, Caatinga, and Pampa presented a different pattern in their fire
frequency curve where most of the area (>than 67%) burned only once, and Pampa was the
biome where the largest portion of the area burned (84%) by just one fire event. From all
the biomes, the Amazon was the one that presented a return interval more than two times
over 36 years for most of the area burned, suggesting an altered fire regime in the biome,
which is dominated by forest and has an expected average natural fire return interval of
from 200 to 1000 years [45].

3.5. Burned Area by Land Cover and Land Use Type

The annual burned area maps were overlapped with land use and land cover maps
provided by MapBiomas (Collection 6), for their respective years, resulting in the annual
burned area for each land use and land cover class (Figure 11). Results demonstrate that
the majority (65%) of the fires taking place in Brazil from 1985 to 2020 affected native
vegetation classes (Forests, Savannas, and Grasslands). Out of these three native vegetation
classes, the fires were detected mainly in Savannas (29%) and Grasslands (28%). Forests
comprised 8% of all the area burned from 1985 to 2020 (Figure 11B). The remaining fires
(35%) were registered on anthropogenic land use classes (i.e., pasture, croplands, mosaic
of agriculture and pasture, and others). Considering anthropogenic land use, most of the
burned areas occurred over planted pasture fields (30%), followed by croplands (2.6%),
and mosaic of agriculture and pasture with 2%. Other land uses, such as forest plantations,
urban areas, among others comprised only 0.4% of the total area burned over time. By 2020,
11% (181,301 km2) of the standing forests in Brazil were burned at least once, as well as
23% (388,201 km2) of savannas, and 16% (274,617 km2) of grasslands.

The distribution of the total area burned varied among biomes. Although most of
the burned area took place in native vegetation in the Cerrado, Pantanal, Caatinga, and
Pampa, the Amazon, and Atlantic Forest, which are forest-dominated biomes, had most
of their total burned area detected in anthropogenic land use classes (Figure 11C). In the
Cerrado and Caatinga, the savanna, which is the dominant vegetation type, was the class
most frequently burned, with half of the fires happening in this vegetation type in the
Cerrado biome, and 77% in Caatinga. The same pattern was observed in the Pantanal
and Pampa, which are dominated by grasslands, and this was the land cover class most
frequently burned over time, with 67% and 57%, respectively. Pastures burned more often
in the Amazon and Atlantic Forest, representing 58% and 32% of the total area burned over
36 years in these biomes, respectively. Out of all biomes, the ones that showed the largest
portions of their standing native vegetation affected by fire by 2020 were the Pantanal,
Cerrado, and Caatinga. In the Cerrado, 44% (474,229 km2) of the standing native vegetation
in 2020 burned at some point in the 36 years of analysis. In the Pantanal this estimate was
61% (73,331 km2), in Caatinga it was 12% (64,083 km2), 6% in the Amazon (211,070 km2),
6% in the Atlantic Forest (19,924 km2), and 2% in the Pampa (1482 km2).
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The annual pattern of burned area by land use and cover type varied over time in
Brazil. The classes in which the burned area varied the most over the period of analysis
were savanna, pasture fields, and grasslands, followed by forest (Figure 12 and Figure S13).
During the period of analysis, the mean area burned on a yearly basis for savanna was
42,952 km2 (±16,186 km2), for pasture it was 38,159 km2 (±13,824 km2), for grasslands it
was 41,707 km2 (±10,762 km2), and for forest was 18,443 km2 (±8412 km2) (Table 3). In
general, the native vegetation classes were the ones that faced a greater increase in area
burned in peak years (e.g., 1987, 1998, 2007, 2010, 2012, 2017) (Figure 12).

Remote Sens. 2022, 14, x 18 of 30 
 

 

41,707 km2 (±10,762 km2), and for forest was 18,443 km2 (±8412 km2) (Table 3). In general, 

the native vegetation classes were the ones that faced a greater increase in area burned in 

peak years (e.g., 1987, 1998, 2007, 2010, 2012, 2017) (Figure 12).  

The variability of fire among distinct land uses and cover classes over time followed 

a different pattern. In the Amazon, the burned area was relatively stable in the native 

vegetation classes, but highly variable in the pasture class (Figures S14 and S15). In the 

Cerrado, the highest variability in burned area was found in the savanna and grasslands 

native vegetation classes. Grassland was also the class with highest variation in the Pan-

tanal and Pampa biomes, while savanna showed greater variation in Caatinga. Out of all 

the biomes, the Atlantic Forest was the one that presented the highest variability in annual 

burned area among almost all native vegetation and anthropogenic classes, with an em-

phasis on pasture (Figures S14 and S15). 

 

Figure 12. Annual distribution of the burned area by land use and land cover type in Brazil from 

1985 to 2020. 

Table 3. Mean burned area and standard deviation in the main land use and cover classes in Brazil 

and the Brazilian biomes. 

 Mean Burned Area and Standard Deviation (km2) 

Land Use and 

Cover 
Brazil Amazon Cerrado Pantanal Caatinga Atlantic forest Pampa 

Forest 18,443  (±8412) 8237 (±4553) 2748 (±1423) 658 (±742) 275 (±160) 382 (±332) 7 (±4) 

Savanna 42,952  (±16,186) 3941 (±1444) 33,971 (±14,356) 1486 (±1196) 3103 (±1175) 122 (±130) 0 (±) 

Grassland 41,707  (±10,762) 13,160  (±3481) 22,314 (±7745) 5392 (±3644) 229 (±107) 731 (±371) 53 (±31) 

Pasture 38,159  (±13,824) 37,727 (±14,974) 4530 (±1877) 513 (±354) 206 (±172) 1018 (±719) 0 (±1) 

Cropland 3562 (±1989) 1713 (±1576) 1903 (±719) 2 (±2) 8 (±11) 256 (±102) 0 (±) 

Agric. Mosaic 2798 (±1918) 86 (±45) 2151 (±1564) 2 (±2) 207 (±147) 534 (±294) 30 (±20) 

Other 485 (±274) 89 (±29) 217 (±53) 1 (±1) 22 (±9) 152 (±51) 3 (±2) 

Total 148,106 (±42,325) 64,952 (±21,769) 67,833 (±25,295) 8053 (±5551) 4051 (±1479) 3195  (±1601) 92 (±50) 

4. Discussion 

4.1. Novel Strategy for Mapping Temporal Dynamics of Burned Area in the Brazilian Biomes 

Mapping the long-term temporal dynamics of burned areas is challenging, especially 

when performed on a semi-continental scale and considering ecosystems with different 

fire regimes and a diversity of land uses and landscape characteristics that are either more 

prone or sensitive to fire. The ephemeral characteristics of the fire scars left on satellite 

imagery are a complicator for burned area detection. Depending on the frequency of the 

observation, it is possible to miss the fire spectral signature on the landscape [25]. Exam-

ples include fire in pasture fields and grasslands whose burned area spectral signature 

disappear within a few weeks [75]. Additionally, seasonality plays an important role in 

Figure 12. Annual distribution of the burned area by land use and land cover type in Brazil from
1985 to 2020.



Remote Sens. 2022, 14, 2510 18 of 29

Table 3. Mean burned area and standard deviation in the main land use and cover classes in Brazil
and the Brazilian biomes.

Mean Burned Area and Standard Deviation (km2)

Land Use
and Cover Brazil Amazon Cerrado Pantanal Caatinga Atlantic

forest Pampa

Forest 18,443 (±8412) 8237 (±4553) 2748 (±1423) 658 (±742) 275 (±160) 382 (±332) 7 (±4)
Savanna 42,952 (±16,186) 3941 (±1444) 33,971 (±14,356) 1486 (±1196) 3103 (±1175) 122 (±130) 0 (±)

Grassland 41,707 (±10,762) 13,160 (±3481) 22,314 (±7745) 5392 (±3644) 229 (±107) 731 (±371) 53 (±31)
Pasture 38,159 (±13,824) 37,727 (±14,974) 4530 (±1877) 513 (±354) 206 (±172) 1018 (±719) 0 (±1)

Cropland 3562 (±1989) 1713 (±1576) 1903 (±719) 2 (±2) 8 (±11) 256 (±102) 0 (±)
Agric.

Mosaic 2798 (±1918) 86 (±45) 2151 (±1564) 2 (±2) 207 (±147) 534 (±294) 30 (±20)
Other 485 (±274) 89 (±29) 217 (±53) 1 (±1) 22 (±9) 152 (±51) 3 (±2)

Total 148,106 (±42,325) 64,952 (±21,769) 67,833 (±25,295) 8053 (±5551) 4051 (±1479) 3195 (±1601) 92 (±50)

The variability of fire among distinct land uses and cover classes over time followed
a different pattern. In the Amazon, the burned area was relatively stable in the native
vegetation classes, but highly variable in the pasture class (Figures S14 and S15). In the
Cerrado, the highest variability in burned area was found in the savanna and grasslands
native vegetation classes. Grassland was also the class with highest variation in the
Pantanal and Pampa biomes, while savanna showed greater variation in Caatinga. Out
of all the biomes, the Atlantic Forest was the one that presented the highest variability in
annual burned area among almost all native vegetation and anthropogenic classes, with an
emphasis on pasture (Figures S14 and S15).

4. Discussion
4.1. Novel Strategy for Mapping Temporal Dynamics of Burned Area in the Brazilian Biomes

Mapping the long-term temporal dynamics of burned areas is challenging, especially
when performed on a semi-continental scale and considering ecosystems with different
fire regimes and a diversity of land uses and landscape characteristics that are either more
prone or sensitive to fire. The ephemeral characteristics of the fire scars left on satellite
imagery are a complicator for burned area detection. Depending on the frequency of the
observation, it is possible to miss the fire spectral signature on the landscape [25]. Examples
include fire in pasture fields and grasslands whose burned area spectral signature disappear
within a few weeks [75]. Additionally, seasonality plays an important role in temporally
changing the spectral information of a burned scar, creating artificial signals that confound
the dry signals of SWIR 1 and SWIR 2 channels in the arid areas during the dry season, with
the spectral responses from ashes that also present lower reflectance signals in the water
sensitive channels [76]. Seasonality also implies restrictions for mapping fire scars when
dealing with intra-annual detection [27]. Thus, parameters for the classification detection
models need to be readjusted for each region and over time, increasing the time effort
dedicated for collecting training samples for the classification.

The strategy for creating an annual quality mosaic based on the spectral information
retrieved from the pixels with minimum NBR extracted from all the available pixel obser-
vation in a year, helped to reduce the amount of data and time of processing, the cost of
storage in the google cloud bucket, and the efforts of collecting training samples in several
images for all the years. Moreover, since the date of each pixel with minimum NBR was
registered in the quality mosaic, using that information to retrieve the monthly burned
area dataset after the classification was found to be a more efficient strategy for generating
intra-annual burned area data than classifying every single available image over the year.
Finally, the creation of a reduced but robust spectral dataset capable of encompassing
important spectral information to distinguish burned from unburned areas in contrasting
vegetation covers and land uses was the asset needed for easy handling with artificial
intelligence and a deep learning strategy. This facilitated the training and recognition of
burned area patterns with less effort. In addition, the burn pattern easily identified in the
false color composites annual quality mosaics, helped in the evaluation and validation of
the burned area final maps. Although there is a small gain in mapping fire scars using
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single images (1,2%), it is less cost effective than mapping burned areas using the annual
quality mosaic for longer time series and larger areas. These advantages suggest that using
reduced temporal spectral data to generate annual quality mosaics represents a novel and
useful strategy for mapping ephemeral and complex phenomena, such as burned area in
distinct biomes with complex land use landscapes and overtime.

4.2. Classification Challenges and Comparisons with Other Burned Areas Products

The average overall accuracy of burned areas revealed satisfactory (89.35%) burned
area maps, with more omission than commission errors, indicating a conservative extent
of the area burned over time for this collection dataset. Part of the omission errors were
associated with the difficulty in mapping lower intensity of understory fires, mainly in
the Amazon biome, and the ability to close patches mapped as unburned within complex
shape fire scars in these areas and in areas with more apparent exposed soils (e.g., grassland
vegetation with exposed soils or rocky outcrop, mining). Most of the commission errors
were associated with annual crop fields (e.g., soy, cotton, sugarcane) covered with the
remaining dry material from the harvest, and the signal from wetlands and humid areas
(e.g., dry lagoons). Strategies to improve the overall accuracy and reduce both omission and
commission errors include, for example: increasing the number of classification subregions,
mostly for the Amazon, to reduce the variability of the burned vs. unburned spectral
sampling information to smaller areas that are more coincident on vegetation types, land
use dynamics, and environmental characteristics. Additionally, distinct classifications
and sampling collections for forest and non-forest areas, are also in the list of follow-up
improvements for Collection 2 of this dataset.

Even though this method (named here as MapBiomas Fire Collection 1) presented
an advance in burn scar mapping, there were limitations associated with the temporal
availability of Landsat observations also causing omissions in mapping burn scars. A
comparison with other burned area products, such as GABAM [35] and Modis MCD64A1
Collection 6 [32], revealed the limitations associated with the low availability of the Landsat
data per month to map fire scars (i.e., offering new observations in a minimum of every 16
days). From all the products, GABAM was the one with less burned area mapped, followed
by Modis MCD64A1, and the results from this work (MapBiomas Fire Collection 1). The
MCD64A1 product had lower correspondence with MapBiomas Fire Collection 1 due to
its higher frequency of observation (i.e., observations twice a day), in comparison with
Landsat observation at least once or twice a month. The Modis product also captured
extensive burned areas mainly in forests and pasture fields [77], while MapBiomas Fire
Collection 1 performed better in mapping small burns in forest and pasture fields. In
general, a portion of the omission identified in MapBiomas Fire Collection 1, was associated
with the lack of spectral signal from the burned area in the Landsat images due to fewer
observations. The comparison with GABAM, which has the same spatial and temporal
resolution, revealed a much higher correspondence with MapBiomas Fire. GABAM omitted
more area burned in comparison with MapBiomas Fire Collection 1, although there were
some areas identified as burned in GABAM that did not appear in the MapBiomas Fire
annual quality mosaic. This is possibly associated with GABAM using more than one
Landsat sensor observation in a year (Landsat 5 and 7), while we used just one satellite at a
time. All these comparisons indicate that even with fewer observations we mapped more
fires than a similar product, and mapped fires that were omitted from products with higher
temporal frequency of observation.

4.3. Dynamics of Fire in the Brazilian Biomes

The expansion of human activities has greatly impacted fire regimes in Brazilian
biomes [5]. The spatial and temporal distribution of burned areas is directly associated
with land use change dynamics and with anthropogenic climate change, both playing
important synergic roles in altering fire regimes [78]. If, on one hand, fire is used as the
human source of ignition for deforestation and for management (i.e., removing weeds and
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renewing forage) of planted or native grazing lands [1,8,54,55,79], on the other, fire also
responds to climate extremes and vegetation flammability including its natural level of
adaptation and sensitiveness to burn [21,30,57,80]. The interrelationship between land
use change, fire ignition, and climate boosts the spread of fires to areas not intended to
burn [47,81–83]. Examples include escaped fires from recently deforested area or managed
pasture to bordering native vegetation, causing wildfires, with the extent and frequency
of these fires being directly related with climatic conditions and the type of vegetation
affected (e.g., forest, savanna or grassland) [55,84]. Although forests in Brazil are sensitive
to fire, the extent and direction of fire spreading inside the forest depends on the level
of degradation, frequency, and interval of previous disturbances [9,85]. In ecosystems
dominated by savanna and grasslands fires can spread fairly quickly because they are more
responsive to the type of available fuel material and climate conditions [80,86,87].

The extent of the area burned is a direct response to political and economic incentives
to ignition from land use change (e.g., deforestation), and fire use (e.g., pasture manage-
ment) and their interaction with favorable climatic conditions and the vegetation structure
affecting the Brazilian biomes. Accelerated rates of land use change in the past four decades
(36 years) have been responsible for the conversion of 0.82 million km2 of Brazilian native
vegetation [50], which represent about half of the cumulative area burned in Brazil in
the same period (1.67 million km2). Out of all land uses, pasture fields are dominant in
Brazil [43,88], and an important source of ignition [75,79], constituting nearly one-third
(30%) of the burned area. Another relevant proportion (57%) of the burned area affected
fire-dependent native vegetations (savannas and grasslands), whose source of ignition was
their natural responses to climate and the increase in escaped human ignition from land
uses. The expansion of deforestation, pasture fields, and increased fire activities are largely
concentrated in the Cerrado and the Amazon biomes [43,77,89], which, together, accounted
for 85% of the area burned over 36 years. These and other biomes respond differently to
increases in human ignition sources from deforestation and management, depending on
their natural ability to cope with fire activity and respond to altered fire regimes.

The Cerrado is the biome with the largest extent of area burned in Brazil. Burning an
area of 67,833 km2/year, which is nine times larger than the mean annual deforestation in
the last decade, the biome faces altered fire regimes [86]. With the rapid replacement of
natural vegetation and pasture fields by intensive and mechanized agriculture [89], the
natural fire regime in the Cerrado has been changed to more frequent intervals (from 1
to 4 years). The size of fire scars is increasing over many regions of the biome [90]. The
synergistic effects of fire with the hotter and drier climate already affecting the Cerrado [91],
can increase the chances of more frequent catastrophic fire events. The altered fire regime
results in consequences for the natural vegetation, such as high mortality rates of woody
species, reduction in the number of seedlings under development and increase in herba-
ceous vegetation, which can also alter the functioning of the ecosystem, the flow of water
and carbon [80]. Fire frequency affects the fuel content and promotes change in fire behavior
in the biome [92]. High frequencies of fires also lead to impoverishment of the ecosystem,
exclusion of sensitive species, reduction in the stock of nutrients and biomass in the tree
and shrub layer [93]. Lower to zero-fire frequencies bring negative impacts to Cerrado fire
adapted vegetation [14]. A balance between fire practices with Integrated Fire Management
strategies in Cerrado is crucial for improving conservation of the biome and reducing the
late dry season wildfires [58].

Of all the Brazilian biomes, the Amazon has had its fire regime altered the most. The
Amazon rainforest has a rare natural fire return interval [45]. The humid microclimate
and thinner tree barks are some of the characteristics that make the Amazon forest more
sensitive to fire [46]. However, 41.3% of Brazilian fires burned in the Amazon over the past
36 years, affecting an area up to five times larger than deforestation each year. The fire
frequency curve indicates return intervals in the region similar to those of biomes that are
ecologically adapted to fire, such as Cerrado and Pantanal. Fire is also burning more, in
larger patches and at high intensities [9]. This change in fire regime is a consequence of the
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higher rates of deforestation, forest fragmentation, and instances of fire being used mainly
for pasture management [85]. The Brazilian Amazon holds the largest area (37%) of pasture
fields in Brazil [50], a land use that has also been used in recent years as a land speculation
strategy [94]. Results of increasing human ignition in the Amazon from deforestation and
land management point to even more altered fire regimes in the region given that the
probability of escaped fires from agriculture fields has also increased impacting the forest
and leaving it more prone to recurrent fires [12]. An altered fire regime due to land-use
and climate interactions in the Amazon impacts biodiversity [16], forest structure and
carbon pools [23,95,96]. It also generates economic losses due to impacts on environmental
services, agriculture and forestry production, and human health [19,97,98]. In extreme dry
years, such as El Nino, wildfires burn a large area in the Amazon forests and become major
sources of carbon emissions [20,99,100]. Climate change has already potentialized extreme
droughts, where the Amazon is already facing longer, warmer, and dryer fire seasons [101],
creating the perfect conditions for fire to be perpetuated in a landscape that is becoming
more fire sensitive [12,102].

The Pantanal was the biome most affected by fire proportionally in the past 36 years.
The biome has a history of fire associated with the flood pulses and the management of
natural fields [7]. The increase in periods of drought and the decrease in water levels make
the Pantanal more susceptible to fire occurrence [103]. Wet periods and high flooding favor
the development of herbaceous, shrub, aquatic, and semi-aquatic plants that accumulate
biomass [104]. When the dry period arrives, this dry vegetation becomes fuel for the fire.
The combination of anthropogenic use of fire in a dry environment with the occurrence
of strong winds, can enable any fire source to spread uncontrollably in large and intense
human-caused fires [105]. The year 1999 had the largest burned area recorded, followed
by 2020, when the last extensive burned area was mapped in the biome. The 2020 fires
burned large forest areas that had not burned since the beginning of the time series. It
is necessary to assess the conditions under which areas with a high incidence of fire are
found, especially in relation to the conservation and preservation of the biodiversity of
fauna and flora species [106]. The recurrence of fires in the Pantanal is a worrying factor
even for a fire dependent ecosystem, since the drought periods have become longer and the
flood cycles shorter [56]. Climate change, with extreme climate events between flood and
drought, can potentially increase these catastrophic fires in Pantanal leading to an altered
and more frequent fire regime [57].

The level of land use consolidation is also important for understanding how fires
interact with the landscape. The Atlantic Forest was highly deforested and fragmented [10].
It is the biome with the smallest proportion of standing native vegetation and an old and
consolidated agriculture frontier compared to other biomes [107]. It is a fire sensitive biome
with dominant very low frequencies of fire affecting the same place, with fires covering
small patches and burning more anthropogenic land uses, mostly in areas covered by
pasture (58.4% of the fire scars burned non-native vegetation, of which 31.9% was pasture
fields). Analyzing the history of these 36 years, a considerable decrease was observed in the
total area burned for the Atlantic Forest from 2003 onwards. This reduction may be partly
associated with regulations for burning of sugarcane in the state of SP (law n◦11.241/2002),
which advocates the gradual elimination of this practice in the plantation areas [74].

The Caatinga biome is dominated by arid climatic conditions where fires should
be naturally rare [3]. However, the increasing use of fire by the local population has
contributed to the degradation of Caatinga ecosystems, sometimes enhancing processes,
such as desertification [11,108]. Fire is a technology used by small farmers, who follow
traditional methods, where people depend on biomass as a primary source of energy [5].
Simulation studies estimate that natural regeneration after anthropogenic fires requires a
time gap of at least 50 years in order to regenerate the Caatinga biomass stock to a level
closer to that prior to cutting or fire disturbance [11]. Catastrophic fires can also affect
forests in the Caatinga, with vegetation affected by a severe fire taking longer to regenerate
and can transform the biome into a fire-sensitive system [5,49].



Remote Sens. 2022, 14, 2510 22 of 29

The occurrence or fire scars in the Pampa biome is a phenomenon of minor dimension
when compared to other Brazilian biomes. In general, fires have a very small extension,
which often makes their detection difficult, and their rate of recurrence at the same site
is very low [8]. Several factors seem to contribute to this pattern, especially the fact
that the climate in the biome is subtropical and lacks a dry season, which maintains the
vegetation and soil moist most of the year. Additionally, the remaining grassland vegetation
predominates in sites with shallow soils, under constant cattle use, which contributes to
the lower accumulation of flammable biomass [109]. Burning is still used as a management
practice in agriculture but on a small scale, either to stimulate the renewal of the aerial
biomass of natural pastures at the end of winter, or as a method of preparing areas for
agricultural crops [110]. In rainfed crops, burning no longer takes place since the cultivation
system changed from the conventional system to a direct planting system, in which the
dry biomass is incorporated into the soil. In paddy rice cultivation, because it takes place
predominantly in humid floodplains, the risk of fire is accidental and active burning of crop
residual matter is practically nonexistent. Although the use of fire to exclude shrub species
to manage grassland vegetation is still used in the countryside, this is a less common
practice nowadays, and has been progressively replaced by mechanical clearing, as current
legislation limits the use of fire for this purpose. Small patches of forest, especially on the
edges, are occasionally burned for small-scale farming.

Even though the extent of the burned area responds positively to the level of adap-
tation of a biome to fire and its interaction to extreme drought events caused by the
climatic phenomena (e.g., El Nino, AMO, NAO) [21,57,111], the general trends of the area
burned also responded to the political context, creating a stimulus for humans to start the
fire [47,55,56,81]. Considering the negative effects of modified fire regimes over native
vegetation and the increase in human ignition activities, policies that either controls fire use
or regulates fire management activities are fundamental [58,112]. The law for Protection
of Native Vegetation (Article 38 of Law 12,561) prohibits the use of fire applied to vege-
tation, except for fires conducted for research purposes and in the context of agriculture
and silviculture management. Although the fire exclusion policy aims to protect the fire
sensitive ecosystems, such as forest formations, this policy has been shown to be unsuitable
for fire-dependent ecosystems, such as savanna and grassland formations [4,13,86,113].
Over the past decades, several modifications have been reported in the fire regimes of the
Cerrado, including higher fuel-loads and wildfires due to midterm fire absence and woody
encroachment in areas with long-term fire absence [114]. The Integrated Fire Management
Law (Law 11,276/18), currently under discussion in the Brazilian Congress, aims to solve
the problem of banning fire in biomes that need fire management. Even with these laws,
policies to reduce deforestation and support better practices in agriculture are crucial for re-
ducing fire ignition over the landscape. Without this reduction it will be difficult to control
the ongoing changes in fire regimes of Brazilian biomes, which can be even exacerbated in
the context of climate emergency.

5. Conclusions

This study is the first of its kind in combining remote sensing based annual quality
mosaics and deep learning algorithm to create a long time series of annual and monthly
burned areas for Brazilian biomes. To handle the large dataset of 36 years of Landsat
observations we used Google Earth Engine Platform and Deep Neural Network algorithms
to differentiate spectral signatures of burned and unburned areas and capture the ephemeral
dynamics of fire scars in diversity landscapes. We used a novel approach to reduce annual
spectral Landsat data into a single annual mosaic selecting spectral information of the
pixels that presented minimum NBR within all available observation in a year. This strategy
made the training and classification processes less costly in terms of processing time and
storage, adequately capturing the extent of the area burned in Brazil, and even confronting
all the challenges related to seasonality, confusion with spectrally similar targets (e.g.,
humid soils, wetlands, post-harvest crop areas, mining) and the size of the dataset. We
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acquired a conservative estimate of burned area but one with high overall accuracy, which
was compatible with the type and frequency of the data available (e.g., higher spatial and
lower temporal resolutions compared with the large-scale burned area datasets available).
Other improvements for the upcoming MapBiomas Fire Collection 2.0 include increasing
the number of classification regions, increasing the number of bands and spectral indices in
the DNN model, and separating models to classify burned areas on native vegetation from
burned areas on pasture and crop fields. These improvements are likely to reduce errors of
omission from understory forest fires and commission errors from some of the crop fields
and wetlands.

The burned area dataset created from this effort revealed that at least 19.6% of the
Brazilian territory was burned at least once from 1985 to 2020. The majority of these areas
(61%), burned more than two times in the period of analysis. Most fires in Brazil (83%)
are active in the Cerrado and Amazon, but other biomes had important contribution and
increases in fire activities and extent of burned area in the past decades. For some of
the biomes the higher fire frequencies point to altered fire regimes that are a response
to increase in human ignition and climate change. The Amazon is the most alarming of
these biomes with a fire frequency distribution similar to that of biomes that are adapted
to fire, such as Cerrado and Pantanal. The Cerrado is the biome with large area burned
and is facing increasing in anthropogenic fires. The Pantanal is the biome with higher
proportion of burned area, while the Caatinga is facing more fires than usual in relation to
its semi-arid natural system and the Pampa has faced land use fire exclusion practices in
natural grassland systems, which may impact the occurrence of future catastrophic fires.

Beyond indicating changes in fire regimes, the long timeseries of burned areas for
Brazil can be useful for estimating the level of native vegetation degradation and its asso-
ciated carbon emissions, for quantifying the extent of social and environmental impacts,
including biodiversity, agriculture, human health, and ecosystem functions, and for indicat-
ing areas with a higher risk of being burned in the future. All these uses are fundamental
for informing public policies and indicating the priority areas for fire management and
planning fire control activities.
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the minimum NBR pixels in a year used to perform the burned area classification. Note that this
image addresses all the burned areas detected in the monthly mosaics from (B) January to (M)
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post-fire reflectance values, and unburned (green boxes) represents the reflectance value in a specific
year; Figure S4. (A) Concentration of burned scar from the MCD64A1 Burned Area from 2000 to
2020 by Landsat path and row; and (B) concentration of active fire pixels from the AQUA_M-T
(Sensor MODIS) from 2000 to 2020 by Landsat path and row; Figure S5. (A) Proportion of burned
and unburned training pixels sampled by year; and (B) Number of burned and unburned training
pixels sampled by year; Figure S6. Architecture of the Multi-Layer Perceptron Network, where the
input layers are the spectral bands (RED, NIR, SWIR1 and SWIR2) and the output layers are the
classes burn and unburn; Table S2. List of Google Earth Engine scripts used for the construction of
annual quality mosaics, the collection of training samples, the classification of burned area, and the
MapBiomas Collection 1 burned area dataset; Table S3. Classes of land use and cover used to mask
and remove the committed errors of burned area mapping from the classification results by biome;
Table S4. Total sampling units (grid cells of 2 km × 2 km) by biome and year used for validation;
Figure S7. Strategy used to create the validation sampling dataset. (A) in a grid of 2 × 2 km we run
a segmentation routine, (B) the burned segments were selected manually and classified as burned
(yellow polygon) and unburned; and (C) a centroid of each polygon was created and used to generate
the final validation dataset; Table S5. Confusion for the classification of burned area in Brazil for
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the year 2007 with user’s accuracy, producer’s accuracy, commission and omission errors; Table S6.
Confusion for the classification of burned area in Brazil for the year 2011 with user’s accuracy,
producer’s accuracy, commission and omission errors; Table S7. Confusion for the classification of
burned area in Brazil for the year 2019 with user’s accuracy, producer’s accuracy, commission and
omission errors; Table S8. Comparisons between mapping burned areas in individual scenes and
the annual quality mosaic for 15 Landsat Path/Row sorted in the Amazon and border of Cerrado
for the year 2015; Figure S8. Mean proportion of area burned retrieved from the spatial comparison
between Modis MCD64A1 burned area product [32], MapBiomas Fire Collection 1 burned area (this
dataset), and GABAM burned area [35] for the year 2005, 2010, 2018. (A) mean burned area mapped
only in MCD64A, mean burned area coincident in both MCD64A1 and MapBiomas Fire, and mean
burned area mapped only in MapBiomas Fire; (B) mean burned area mapped only with MCD64A1,
mean burned area coincident in both MCD64A1 and GABAM, and mean burned area mapped only
in GABAM; (C) mean burned area mapped only in GABAM, mean burned area coincident in both
GABAM and MapBiomas Fire, and mean burned area mapped only in MapBiomas Fire; Table S9
Annual burned area (km2) by biome from 1985 to 2020; Figure S9. Cumulative burned area by biome
from 1985 to 2020; Figure S10. Distribution of annual burned area from MapBiomas Fire Collection 1
and annual deforestation rate from Prodes-INPE [115] for the Amazon biome; Figure S11. Seasonal
patterns of fire events occurred within Brazil’s biomes, considering variation in burned area per
month, in the period (1985–2020). In red the fire season months from July to October; Figure S12.
Frequency pattern of the burned area between the years 1985 to 2020 by Brazilian biome, and their
respective proportion of burned area; Figure S13. Variance on burned area by land cover and use for
Brazil between 1985 and 2020; Figure S14. Annual distribution of burned area by land use and land
cover by biome from 1985 to 2020; Figure S15. Variance of annual burned area by land use and cover
classes from 1985 to 2020 for the Brazilian biomes. References [32,35,50,66,67,107,115–118] are cited
in the supplementary materials.
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