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RESUMO

Este trabalho apresenta contribuições no contexto do método de controle médio para o
controle de atitude ativa de nanossatélites através do uso de magnetorquers. Os principais
conceitos, restrições e limitações devido ao uso desses atuadores são apresentados. Em
seguida, com base em um trabalho anterior empregando um ganho adaptativo, uma lei de
controle nova, não adaptativa é proposta para diminuir o consumo de energia do sistema
como um todo sem perda de estabilidade. Garantias teóricas referentes às fronteiras das
trajetórias do sistema de malha fechada são apresentadas por meio do método de con-
trole médio - aplicado a regiões pré-estabelecidas - e teoria de estabilidade de Lyapunov.
Diferentes resultados de simulação ilustram a eficácia da abordagem proposta para alcan-
çar a atitude desejada para diferentes configurações de satélite. Uma comparação entre a
nova abordagem com a estratégia adaptativa anterior disponível na literatura indica que
uma economia considerável de energia pode ser alcançada, com valores chegando a 70 %
para alguns casos. A saturação do sinal de controle é considerada em alguns dos cenários
simulados, mas não mitigada.

Palavras-chave: Controle de atitude, Representação por quaternion, Teoria média,
Não-linear.



ABSTRACT

This work presents contributions with the average control method for the active at-
titude control of nano-satellites through the use of magnetorquers. Key concepts, con-
straints, and limitations due to the use of these actuators are presented. Then, based on
a previous work employing an adaptive gain, a novel non-adaptive control law is pro-
posed in order to decrease the energy consumption of the overall system without loss of
stability. Theoretical guarantees regarding the ultimate bound of closed loop system tra-
jectories are presented through the average method - applied on pre-established regions -
and Lyapunov stability theory. Different simulation results illustrate the effectiveness of
the proposed approach to achieve the desired attitude for different satellite configurations.
A comparison between the new approach to the previous adaptive strategy available in
the literature indicates that a considerable energy economy could be reached, with val-
ues reaching 70% for some cases. Control signal saturation is considered in some of the
simulated scenarios but not mitigated.

Keywords: Attitude Control, Quaternion representation, Average Theory, Non-linear.
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1 INTRODUCTION

Space has caught humans’ imagination and curiosity for centuries but the shift from
observation to exploration only started about 70 years ago, with the Soviet satellite Sput-
nik. Since the beginning of space exploration, the task to send objects to orbit has always
been constrained by weight: the bigger (and heavier) the object, the more expensive it
is to take it off Earth. For many years, only a few powerful nations had the resources
to design, build, launch, and operate spacecraft, the most significant examples being the
United States and the former Soviet Union. Considering this restriction, mini, micro,
and nanosatellites have become useful platforms for low-orbit scientific research (NASA,
2023), in particular with the very popular CubeSat platform (BOMANI, 2021). Due to
their reduced size, these satellites have restrictions regarding batteries, sensors, and ac-
tuators. All these limitations can reflect directly on their mission lifetime and successful
rate, with a great number of projects lasting only a few months (PANG et al., 2016; MUR-
CIA PIñEROS; DOS SANTOS; PRADO, 2020).

The original idea for CubeSats came in 1999, with professors Jordi Puig-Suari, from
California State Polytechnic University and Bob Twiggs, from Stanford University, and
aimed to facilitate the design, construction, testing, and operation of satellites with capa-
bilities similar to the pioneer Sputnik by university students (BOMANI, 2021).

The first CubeSat measured 10 cm × 10 cm × 10 cm (JOHNSTONE, 2022) and
weighed about 1 kg. These measurements are considered the standard reference for later
projects, characterizing a CubeSat basic unit (1U). Projects with different dimensions
such as 2U (10 cm x 10 cm x 20 cm), 3U (10 cm x 10 cm x 30 cm) and even 0.5U (10
cm x 10 cm x 2.8 cm) have been successfully developed already. These measurements
put CubeSats among Pico (between 0.01 and 1 kilogram) and Nano (between 1 and 10
kilograms) satellite classes, deployed between 500 km and 1,500 km, at Low Earth Orbit
(LEO).

The total number of CubeSat-like projects that have been started so far has surpassed
2,000, including Brazilian models such as the NANOSATC-BR (SCHUCH et al., 2019),
the AlfaCrux (BORGES et al., 2022) and the FloripaSat-I satellite (MARCELINO et al.,
2020). Due to their small dimensions, CubeSats have limited sensor and actuator capa-
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bilities, so their attitude control needs to be optimized. Some models choose for pas-
sive controls, involving magnets or gravitational gradients to achieve the desired attitude.
FloripaSat-I is an example of a standard 1U dimension CubeSat nanosatellite designed
with passive attitude control. Passive attitude systems can achieve good results but they
are unable to act in any unforeseen attitude correction. On these occasions, only active
attitude control can act.

Despite the dimension and sensor restrictions, active attitude control of nanosatellites
can be implemented. Among the possible actuator types that can be used, one should men-
tion plasma jet thrusters (RAYBURN et al., 2000; LING et al., 2020; YANG et al., 2023),
reaction wheels (SINCLAIR; GRANT; ZEE, 2007; KASIRI; SABERI, 2019; HELMY;
HAFEZ; ASHRY, 2022), radiometric actuators (NALLAPU; TALLAPRAGADA; THAN-
GAVELAUTHAM, 2017), magnetorquers (TORCZYNSKI; AMINI; MASSIONI, 2010;
JOVANOVIC et al., 2021), and even solar sails (RUKHAIYAR et al., 2021). Among
these, magnetorquers are a common choice for LEO applications due to their fixed, com-
pact structures and the stronger influence of Earth’s magnetic field. They are powered by
batteries (that can be recharged in flight, through solar panels), allowing their activation
several times (if necessary). However, the same power source is shared between the actu-
ators and other equipment in the satellite, making energy usage distribution an important
aspect of the mission.

Furthermore, magnetorquers also depend on Earth’s magnetic field acting on the satel-
lite, which becomes a challenge on its own. Earth’s magnetic field varies according to sev-
eral factors such as the orbit’s altitude, path, and time of the year (ALKEN; THéBAULT;
BEGGAN, 2021). Studies about the magnetic field and its characteristics have been con-
ducted for several years, even before the beginning of space exploration. Despite its
complexity, there exists a variety of models for Earth’s magnetic field which can be used
to simulate and assess different systems and models (National Centers for Environmen-
tal Information (NCEI), 2023). These magnetic field models are more accurate and are
updated frequently, making them very useful to estimate the magnetic influence in LEO
spacecraft.

This work seeks to design an active attitude control for a CubeSat-type nanosatellite
by means of magnetorquers. The control law proposed uses values of the magnetic field
at the expected orbit to establish a fixed gain. This fixed approach aims to reduce onboard
calculations and reduce energy consumption when compared to the adaptive approach
proposed by (LOVERA; ASTOLFI, 2006) while maintaining the stability of the system.

This work evaluates the satellite model and attitude control developed through simula-
tions in the software MATLAB. Even though the space environment where nanosatellites
operate has plenty of disturbances, none was considered for this work. These disturbances
should be considered in the development of a real attitude control system. Restrictions
on control input (specifically saturation of the magnetorquer action) were considered for
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some, but not all, simulations. The satellite dimensions used in this work were taken
from the literature to better compare the results and assess the viability of the proposed
approach. No practical model has been developed.

After this introduction, the dissertation presents the following structure. Chapter 2
presents the necessary concepts used to determine the attitude of a nanosatellite with
regard to an inertial frame fixed on Earth. It also presents the basic operation of magne-
torquers and their physical restrictions while operating in orbit. Two models for Earth’s
magnetic field are described, along with their characteristics. The chapter ends with the
concepts of stability of average systems.

Chapter 3 defines the attitude control problem and introduces the different active at-
titude control approaches. The first approach was presented in (LOVERA; ASTOLFI,
2006) and its operations are shown here. The second approach is an original contribution,
aimed toward a reduction of energy consumption and complexity of the active system,
without the loss of stability and viable to work in LEO assuming that all the parameters
of the reference trajectory are known a priori.

After that, chapter 4 brings the results obtained through simulation. Initially, the dif-
ferent controllers are evaluated for the same satellite model, in two different attitude initial
conditions. Even though this first model is larger than a CubeSat satellite, it was chosen
in order to better compare the results of the proposed controller against the adaptive gain
controller. For each initial condition, two Earth’s magnetic field models were used: a
simpler model to verify the controller approach and a more complex one to assess the
controller performance. After that, the fixed gain controller is tested using CubeSat di-
mensions models and actuators, in these same attitude initial conditions. Comparison,
analysis, and discussions of all the results are done here.

Chapter 5 concludes this work with a summary of the results and an assessment of
what was accomplished. Ideas for future perspectives are suggested. The codes used for
the simulations, as well as the bases for a novel (switched-based) attitude control law with
some preliminary results, are presented in the appendices.
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2 INSTRUMENTAL TOOLS

Prior to developing any attitude control for satellites, it is necessary to establish some
concepts regarding attitude representation; satellite configuration and dynamics; actuator
configuration and dynamics; magnetic field models; and average theory. In this section,
the main concepts related to designing and simulating attitude control approaches are
presented.

2.1 Coordinates

In order to better describe the positioning and orientation of an orbiting satellite with
respect to the Earth, it is necessary to establish some coordinate systems. For this work, 3
coordinate systems were determined: one fixed at the center of the Earth, one positioned
in orbit and set as the desired orientation (reference), and one fixed in the satellite‘s center
of mass. Figure 1 illustrates all three coordinate frames being used.

2.1.1 Earth-Centered Inertial Frame (Fi)

The first coordinate system to be determined consists of a cartesian coordinate system
whose origin coincides with the center of the Earth. The Xi axis is tangent to the Earth’s
orbit around the Sun, in the same direction as the translation. The Zi axis points to the
geographic north pole and the Yi axis is positioned on the ecliptic plane, pointing towards
the Sun at the vernal equinox, so that the axes form an orthogonal coordinate system
by the right-hand rule. The vernal equinox is the moment when Earth’s rotation axis is
directly perpendicular to the Sun-Earth line, tilting neither toward nor away from the Sun.

2.1.2 Reference Frame (Fr)

The second coordinate system is placed at the satellite’s center of mass, with its axes
positioned according to a desired orientation, and following the right-hand rule. Gen-
erally, the Local Vertical/Local Horizontal configuration is used. For this configuration
the Xr axis is chosen as being tangent to the satellite’s orbit around the Earth, with the
same translational direction. The Zr axis points to the center of the Earth, in a direction
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Figure 1 – Illustration of the frames.

Source: The author.

called nadir, and the Yr axis completes the coordinate system by the right-hand rule. The
Reference frame establishes the ideal position and orientation (reference) for the satellite,
so it is often determined according to the Satellite Body Frame (Fb) and the mission’s
objectives. The quaternion qr will describe this orientation with respect to Fi.

2.1.3 Satellite Body Frame (Fb)

The third coordinate system is positioned at the satellite’s center of mass and chosen
according to the satellite geometry. It is positioned on the satellite structure so that the
satellite faces are in the desired position when the coordinate axes coincide with the co-
ordinate axes of the Reference Frame (Fr). A common choice during the project phase is
to choose the Satellite Body Frame(Fb) as the principal axes.

2.2 Earth magnetic field

The magnetic field of Earth B varies according to some parameters including the al-
titude, latitude, longitude, and even the day on which it is measured. When considering
an XYZ frame, oriented like the Earth-Centered Inertial Frame (Fi), the magnetic field
B can be described by a three-dimensional vector field, with its value decomposed into
components on each axis. There are several models to estimate its value, varying its
complexity and accuracy.

When considering a satellite describing a Polar orbit starting at the Equator, a useful
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simplification of Earth’s magnetic field can be given by:

B(t) =
µ

Ro
3

2sin(ωot)sin(im)

cos(ωot)sin(im)

cos(im)

 (1)

where µ is the strength of the magnetic dipole and is set as 7.9 × 1015Wbm, Ro is the
average radius of the orbit (given in meters), ωo is the orbital velocity of the satellite and
im is the inclination of the orbit with respect to the geomagnetic equator. It is important
to note that (1) considers a circular orbit, at a fixed altitude as well as a fixed frame
orientation.

This model has been adopted by several works (LOVERA; ASTOLFI, 2006; KA-
PLAN, 2006; STRAY, 2010; SUTHERLAND; KOLMANOVSKY; GIRARD, 2019) with
little modifications in its form and order of components, depending on the orientation of
the frames adopted by the authors. It is commonly known as Dipole model in the litera-
ture and this nomenclature will be adopted in this work. Figure 2 illustrates the results of
model (1) for a three axes frame, following the same orientation of Fi, with no rotation,
positioned at a circular orbit path with 450 km of altitude, for a period of 5 orbits. The
inclination im was set as 87o and ωo was set as 0.0011 rad/s (relative to 15 translations/-
day). The values of BX , BY , and BZ represent the intensity of the magnetic field in each
of the three axes of the chosen frame. This model does not approximate correctly for low
inclinations and can even be deficient for some inclinations close to Polar.

Figure 2 – Earth’s magnetic field for a circular Polar orbit at 450 km according with (1).
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A more complex and accurate model can be found in the International Geomagnetic
Reference Field (IGRF) model. The IGRF model is developed and updated by the Inter-
national Association of Geomagnetism and Aeronomy (IAGA) since 1965. It is a model
currently in its 13th version (ALKEN et al., 2021) and is constantly used in the literature
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(KAPLAN, 2006; STRAY, 2010; VÁZQUEZ, 2013; VAN DE HENGEL, 2018) to simu-
late the behavior of the magnetic field on orbit. The IGRF model describes the magnetic
field B as the gradient of the scalar potential function:

V (R, θR, λR) = Re

k∑
n=1

(
Re

R

)n+1 n∑
m=0

(gmn cos(mλR) + hmn sin(mλR)P
m
n (cos(θR)) (2)

where Re is the equatorial radius of the Earth (in meters), gmn and hmn are Gaussian coef-
ficients and R, θR and λR are the geocentric distance, the co-elevation and East longitude
from Greenwich which define any point on and above Earth’s surface.

The term Pm
n is the Schmidt Normalized Associated Legendre Polynomials defined in

(ALKEN; THéBAULT; BEGGAN, 2021) and can be calculated by:

Pm
n =

(1− x2)m/2

2nn!

δn+m

δxn+m

(
x2 − 1

)n (3)

The magnetic field is given by
B = −∇V (4)

In order to obtain (4), first we make the partial derivatives of V , which might not be
trivial. (YANG ZHONG YAN-WU GUAN, 2020) demonstrates the necessary steps to
obtain the elements of B which are summarized below:

UR = −∂V
∂R

=
k∑

n=1

(n+ 1)

(
Re

R

)n+1 n∑
m=0

(gmn cos(mλR) + hmn sin(mλR))P
m
n (cos(θR)

(5)

Uθ = − ∂V

∂θR
= −Re

k∑
n=1

(
Re

R

)n+1 n∑
m=0

(gmn cos(mλR) + hmn sin(mλR))
∂Pm

n (cos(θR)

∂θR
(6)

Uλ = −∂V
∂λ

= −Re

k∑
n=1

(
Re

R

)n+1 n∑
m=0

(−gmn sin(mλR) + hmn cos(mλR))P
m
n (cos(θR)

(7)

The magnetic field components can be determined by:

Bx = − 1

R
Uθ

By =
1

Rsin(θR)
Uλ

Bz = Ur

(8)
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Although the IGRF model demands more calculations than the Dipole model shown
before, it has a broad acceptance in the scientific community. It is not difficult to find com-
puter routines that calculate their values for the user. Also, the Dipole model loses quality
for orbits with low elevation, making the choice for the IGRF model more attractive to a
range of different simulations.

Considering the same circular Polar orbit with an inclination of 87o, starting at the
Equator, with an altitude of 450 km, and considering a translation period of 15 orbits per
day, the magnetic field B generated by the IGRF model over a three axes frame, following
the same orientation of Fi, with no rotation and positioned on the orbit path can be seen
in Figure 3. Note that, similarly to Figure 2, this result shows that the values of the
magnetic field at each axis are periodic even though their overall shape does not look like
a sine as the previous model. The most notable difference is the value of BZ , which can
vary between positive and negative values instead of a fixed, negative value on the Dipole
model.

Figure 3 – Earth’s magnetic field for a circular Polar orbit at 450 km according with (4).
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Regardless of the model being used, another important aspect to consider is the ne-
cessity to rotate Earth’s magnetic field B(t) according to the satellite’s attitude in order to
determine its correct sensor readings and magnetorquer interactions. In other words, it is
necessary to rotate the magnetic field to assess its influence on the Satellite Body frame.
The magnetic field seen by the satellite B(t) can be obtained by doing:

B(t) = R(qb)B(t) (9)

whereR(qb) is the attitude matrix related to the quaternion qb which describes the satellite
attitude and will be explained in Section 2.3. For now, suffice to state that a rotation is
necessary before using the magnetic field B(t) generated by any model.
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2.3 Quaternions

When dealing with rotational movements in three-dimensional spaces, it is common to
use quaternions to describe the orientation of the body with respect to a reference frame.
Quaternions are a useful 4-dimension numeric system that can be described as (SALTON
et al., 2017):

q =

[
cos

(
γ
2

)
#»r sen

(
γ
2

)] =

[
η

ϵ

]
=

[
η ϵ1 ϵ2 ϵ3

]T

(10)

where η ∈ R, #»r , ϵ ∈ R3. The vector #»r describes the direction in which the rotation with
the γ is performed. When used to describe rotations, a quaternion must have a unitary
norm, therefore an attitude parametrization requires that the quaternion values η and ϵ
must satisfy the following condition:

∥q∥ =
√
η2 + ϵ12 + ϵ22 + ϵ32 = 1 (11)

Figure 4 – Representation of the axis-angle rotation.
Zb

Yb

Xb

r⃗

γ

Source: The author.

Once an XYZ coordinate system has been established for the satellite (its body frame
Fb withXb, Yb, and Zb, for example), it is possible to describe any possible orientation for
it by establishing the Euler angles ϕ, θ, and ψ corresponding to the rotations performed
by the body with respect to the XYZ axes of reference (a fixed reference frame Fi, for
instance) and converting these angles to a quaternion qb. These angles are commonly



21

associated with Roll, Pitch, and Yaw movements of space and aircraft, and this sequence
of rotation follows the Tait-Bryan definition.

The final orientation depends on the sequence of rotation thus, the conversion from
Euler angles to quaternion is not always the same. For instance, a possible conversion of
Euler angles following a 1-2-3 sequence to a quaternion can be obtained by:

qb =


cos(ϕ)cos(θ)cos(ψ) + sen(ϕ)sen(θ)sen(ψ)

sen(ϕ)cos(θ)cos(ψ)− cos(ϕ)sen(θ)sen(ψ)

cos(ϕ)sen(θ)cos(ψ) + sen(ϕ)cos(θ)sen(ψ)

cos(ϕ)cos(θ)sen(ψ)− sen(ϕ)sen(θ)cos(ψ)

 (12)

When no rotation occurs (i.e. ϕ, θ, ψ = 0), it is evident from (12) that the resulting
quaternion is given by:

qb =
[
1 0 0 0

]T

(13)

which is often referred to as the identity quaternion.

In order to obtain the values of the Euler angles ϕ, θ, and ψ from a given quaternion
qb, it is only necessary to do:

ϕ = arctan2

(
2(ηbϵb1 + ϵb2ϵb3)

1− 2(ϵb12 + ϵb22)

)
θ = arcsen (2(ηbϵb2 − ϵb3ϵb1))

ψ = arctan2

(
2(ηbϵb3 + ϵb1ϵb2)

1− 2(ϵb22 + ϵb32)

) (14)

Unlike the arctan(·) function, the arctan2(·) function returns only one possible result
as it calculates the value of the corresponding angle taking into account the sign of the
terms. Thus, the conversion presented in (14) will be complete.

For a given reference orientation described by the quaternion qr, it is possible to de-
termine the attitude matrix R(qr) necessary to rotate any other vector to the orientation
given by qr. The quaternion representation of the attitude matrix R(qr) is given by:

R(qr) = (ηr
2 − ϵr

Tϵr)I3 + 2ϵrϵr
T − 2ηrS(ϵr) (15)

where I3 is the 3 × 3 identity matrix and S(ϵr) ∈ R3×3 is the skew-symmetric matrix
associated with ϵr and given by:

S(ϵr) =

 0 −ϵr3 ϵr2

ϵr3 0 −ϵr1
−ϵr2 ϵr1 0

 (16)

It is also possible to determine an attitude matrix R for the difference between two
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attitudes. This matrix can be described in terms of Rb and Rr as follows:

R = RbRr
T. (17)

Based on the description on (15), it is possible to deduce that an error quaternion can
be defined through

R = (η2 − ϵTϵ)I3 + 2ϵϵT − 2ηS(ϵ). (18)

From (17) and (18), this error quaternion q can be described in terms of qb and qr as:

η = ηbηr + ϵb
Tϵr,

ϵ = ηrϵb − ηbϵr + S(ϵb)ϵr.
(19)

This error quaternion q follows the same restriction given by (11) and considering the
results stated in (13) and (17), when no rotation between qb and qr is needed, the attitude
matrix R(q) and error quaternion q become:

q =
[
1 0 0 0

]T

,

R = I.
(20)

2.4 Inertia Matrix

Every physical body that can be rotated has an inertia matrix (also referred to as mo-
ment of inertia, inertia tensor, or rotational inertia). This value can be determined by its
mass distribution with respect to a chosen point of rotation on a given reference frame,
which will describe how the body is rotating. A common choice for a point of rotation
when working with satellites and aircrafts is the body center of mass.

When a body is free to rotate in a 3-dimensional space (such is the case of an orbiting
satellite), the inertia matrix can be described as a matrix J ∈ R3×3 given by:

J =

Jxx Jxy Jxz

Jyx Jyy Jyz

Jzx Jzy Jzz

 (21)

where the elements of the main diagonal respect the triangular inequality property.

For a rigid body, with a continuously distributed mass, i.e. with an homogeneous
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mass density, the matrix J is symmetric and its terms can be calculated as

Jxx = w

∫ ∫ ∫
(y2 + z2)dxdydz

Jyy = w

∫ ∫ ∫
(x2 + z2)dxdydz

Jzz = w

∫ ∫ ∫
(x2 + y2)dxdydz

(22)

Jxy = Jyx = −w
∫ ∫ ∫

(xy)dxdydz

Jxz = Jzx = −w
∫ ∫ ∫

(xz)dxdydz

Jyz = Jzy = −w
∫ ∫ ∫

(yz)dxdydz

(23)

where the term w is a constant and represents the mass density of the body.

A cubic object with edge a and uniformly distributed mass W has a coincident center
of mass and geometric center. Thus, the inertia matrix components of the object given by
(22) and (23) can be simplified to:

Jxx = Jyy = Jzz =
Wa2

6

Jxy = Jxz = Jyz = 0

(24)

Whenever the body frame axes and the rotation axes coincide, the elements of J dif-
ferent from the main diagonal will be null. Rigid bodies that have an inertia matrix in the
form

J = κI3 (25)

where κ > 0, are called spherical top bodies (CLINE, 2021, Section 10.10). This name
comes from the fact these bodies have the same symmetry as the inertia tensor about the
center of a uniform sphere. An uniform cube has a spherical top body configuration. A
less obvious consequence of spherical symmetry is that any orientation of three mutually
perpendicular axes about the center of mass of a uniform cube is an equally good principal
axis system.

However, if the rigid body has a constant mass density but a cuboid shape different
from a cube, the inertia matrix J will be given by:

J =

Jxx 0 0

0 Jyy 0

0 0 Jzz

 ,
Jxx ̸= Jyy ̸= Jzz ≥ 0,

(26)
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and will be called asymmetric top.

2.5 Magnetorquers dynamics

Magnetorquer, or magnetic torquer, is an electromagnet actuator that produces a torque
based on the interaction of a magnetic dipole created by its coils and a given magnetic
field. When orbiting Earth, the magnetic field used by the magnetorquer is Earth’s mag-
netic field B itself. The current that flows through its windings produces a magnetic
moment mcoil(t) according to the following equation (STRAY, 2010):

mcoil(t) = nAicoil(t) (27)

where n is the number of turns of the coils, A is the surface area of the coil, and icoil(t)
is the control current used. By alternating the direction and amplitude of the current icoil,
it is possible to reverse the direction and change the intensity of the magnetic moment
generated by the magnetorquer, making it a very useful actuator.

Since the magnetic moment mcoil(t) generated by the windings is perpendicular to
the surface area A, the positioning of the magnetorquers in a satellite is made such that a
magnetic moment component coinciding with one of the axes of the Satellite Body frame

(Fb) can be generated by activating one or more magnetorquers. A common approach is
to position each magnetorquer coinciding with one of the axes of the Satellite Body frame

(Fb). This way, the orientation given by the quaternion qb can be used to describe the
magnetic moment m(t) generated by the control system.

m(t) =

mcoilx(t)

mcoily(t)

mcoilz(t)

 = nA

icoilx(t)icoily(t)

icoilz(t)

 . (28)

As the orientation of the satellite relative to the inertial frame changes, the orientation
of the magnetic moment m(t) changes in the same way. The torque τ(t) produced by
the magnetorquers results from the cross-product of the magnetic moment m(t) and the
Earth’s magnetic field seen by the body B(t) as follows:

τ(t) = m(t)×B(t) = S(B(t))m(t). (29)

One property of the cross product operation is that, by breaking up the vector m(t)

into two components: m||(t) parallel to the vector B(t) and m⊥(t) perpendicular to the
vector B(t) such that

m(t) = m||(t) +m⊥(t) (30)
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Figure 5 – Representation of cross product between magnetic field B(t) and magnetic
moment m(t).

τ(t) = m⊥(t) × B(t)

B(t)

m⊥(t)

plane p

Source: The author.

and the result of (29) will always be the same as

τ(t) = m(t)×B(t) = m⊥(t)×B(t) (31)

thus, any energy used to create m||(t) will be useless in generating torque and should be
avoided.

It is also valid to notice that, due to the cross product, the magnetic torque τ(t) is
always perpendicular to the plane p created by the magnetic field on the satellite B(t)

and the perpendicular component of the magnetic moment created by the magnetorquers
m⊥(t). This creates an important limitation to the direction in which the actuator can
effectively apply control in an active system because if the magnetic moment m(t) only
has a parallel component to B(t), the value of τ(t) is null, making it impossible to control
in that direction. Figure 5 illustrates the cross product between m⊥(t) and B(t).

2.6 Saturation

Different from simulations and theoretical models, real-life systems and components
usually have nonlinear behaviors, with saturation being among the most common of these.
Saturation can be understood as physical limitations that confine a signal to a certain
range. It is classified as a memoryless, zero memory, or static nonlinearity because it
does not depend on previous behaviors (KHALIL, 2002, Section 1.2.7). This limitation
in the range can occur due to the component’s characteristics – material, dimensions,
design specifications (to protect other components) – or due to indirect reasons – power
source limitations, for instance.
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A generic function y(t) saturating at 1 can be defined as

sat(y) =


y(t), if |y(t)| ≤ 1

−1, if y(t) < −1

1, if y(t) > 1

(32)

Figure 6 – Illustration of a function saturation at 1.
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Source: The author.

In the case of magnetorquers, saturation might occur when the magnetic moment re-
quired by the control input is the same or above its nominal value. In this case, the control
input m(t) required is larger than the actuator’s capacity to generate and it cannot achieve
the desirable magnetic moment.

2.7 Attitude dynamics

The behavior of satellites and spacecraft orbiting Earth can be described as rigid bod-
ies and their attitude dynamics can be summarized by (F. LANDIS MARKLEY, 2014):

ω̇b(t) = J−1
(
− S(ωb(t))Jωb(t) + τ(t)

)
(33)

where the matrix J ∈ R3×3 is the inertia matrix of the satellite, ω̇b(t) ∈ R3 is the angular
acceleration of the satellite, ωb(t) ∈ R3 is the angular velocity of the satellite, τ(t) ∈ R3

is the resultant torque applied to the body and S(ωb(t)) ∈ R3×3 is the skew-symmetric
matrix associated with ωb(t).

The resulting torque applied in an orbiting satellite can be expressed as the sum of all
the active torques being applied along with all the disturbance torques. It might include
the aerodynamic torque (τaero), solar radiation torque (τrad), gravitational torque (τgrav),
residual dipole torque (τdip) and torque generated by magnetorquers (τmag) (STRAY,
2010) as defined bellow:

τ = τaero + τrad + τgrav + τdip + τmag. (34)
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When the center of gravity coincides with the center of mass and the body is symmet-
rical about this center (as is the case in a theoretical 1U CubeSat), the torques τaero, τrad
and τgrav are null. This type of precision in construction is very difficult to achieve but
can be mitigated in the design phase. The residual dipole torque τdip is generated by any
magnetic field created by the satellite’s electronic components and ferromagnetic materi-
als, therefore, unavoidable. For this work, all disturbance torques were disregarded then
(34) can be simplified to

τ(t) = τmag(t). (35)

By determining the satellite’s orientation with quaternion

qb =
[
ηb ϵb

]T

, (36)

the dynamics of the body can be described by:

η̇b(t) = −1

2
ϵb(t)

Tωb(t),

ϵ̇b(t) =
1

2

(
ηb(t)I3 + S(ϵb(t))

)
ωb(t),

ω̇b(t) = J−1
(
− S(ωb(t))Jωb(t) + τ(t)

)
.

(37)

2.8 Reference dynamics

Similar to how it was done for the satellite, the desired orientation can be described
by a quaternion qr.

qr =
[
ηr ϵr

]T

(38)

The reference dynamics considered in this work is as follows

η̇r(t) = −1

2
ϵr(t)

Tωr(t),

ϵ̇r(t) =
1

2

(
ηr(t)I3 + S(ϵr(t))

)
ωr,

ω̇r(t) = 0,

(39)

where ωr ∈ R3 is the desired angular velocity of the reference. This value is constant
and determined according to a circular orbit chosen for the satellite such that the desired
face of the satellite always points towards Earth’s surface and no unnecessary rotation
affects the reference. The reference angular velocity has the same module of the orbital
angular velocity and does not suffer any influence from any torque, being determined by
the mission and constant for all purposes.
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2.9 Error dynamics

The error dynamics can be determined based on the attitude and the reference dy-
namics. First, consider the error quaternion q determined by (19). The satellite’s angular
velocity and the desired angular velocity can be used to determine the angular velocity
error ω(t) by:

ω(t) = ωb(t)−R(q)ωr(t). (40)

Taking the time derivative of (40), specially the derivative of the term R(q)ωr(t) (see,
e.g., (ZHAO, 2016)), we obtain:

ω̇ = ω̇b − Ṙ(q)ωr,

ω̇ = ω̇b − S(ω)R(q)ωr.
(41)

From the result above and taking ω̇b from (37), the error dynamics is determined by:

η̇ = −1

2
ϵTω,

ϵ̇ =
1

2
(ηI3 + S(ϵ))ω,

ω̇ = J−1
(
S(ωb)Jωb + τ − JS(ω)R(q)ωr

)
.

(42)

Note that the error dynamics depends on both the satellite’s angular velocity ωb(t) and
the reference angular velocity ωr.

2.10 Average system

The use of magnetorquers and the periodicity of the magnetic field for an orbiting
satellite enable the application of the averaging method to design an active control system.
This method asserts that it is possible to determine the stability of a system based on the
stability of its average system if a few assumptions are respected. Averaging method is
explained in detail in (KHALIL, 2002, Section 10.4) but is summarized here to make it
easier for the reader to understand the approaches presented.

Consider a system in the form

ẋ = εf(t, x, ε) (43)

where ε is a positive small scalar and the function f(t, x, ε) is T-periodic in t, i.e., for a
period T > 0, then

f(t+ T, x, ε) = f(t, x, ε), ∀(t, x, ε) ∈ [0,∞)×D × [0, ε0] (44)

with a domain D ⊂ Rn and ε0 > 0.
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Consider now an autonomous average system

ẋ = εfav(x) (45)

where the average value is obtained by

fav(x) =
1

T

∫ T

0

f(σ, x, 0)dσ. (46)

The system (43) can be represented as a perturbation of the autonomous system (45),
around the equilibrium point.

Theorem 1. Let f(t, x, ε) be continuous and bounded and assume it has continuous,

bounded partial derivatives up to the second order with respect to (x, ε) for (t, x, ε) ∈
[0,∞)×D0×[0, ε0], for every compact setDo ⊂ D, whereD ⊂ Rn is a domain. Suppose

ε > 0 and f is periodic in t for some T > 0. Let x(t, ε) and xav(εt) denote solutions for

(43) and (45), respectively.

• If the origin x = 0 ∈ D is an exponentially stable equilibrium point of the average

system (45), then there exist positive constant ε∗ and κ such that, for all 0 < ε < ε∗,

(43) has a unique, exponentially stable, T-periodic solution x̄(t, ε) with the property

||x̄(t, ε)|| ≤ κε.

Thus, the averaging method assures that if f(t, 0, ϵ) = 0 and the origin of the average
system (45) is exponentially stable, then there exists a ε∗ > 0 such that for all 0 < ε < ε∗,
the origin of the original system (43) will be exponentially stable as well.
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3 SYSTEM CONTROL

After presenting the necessary elements to describe the satellite dynamics in orbit, we
now present two different active attitude control approaches using only magnetorquers
as actuators. The first one represents the state of the art as proposed by (LOVERA; AS-
TOLFI, 2006) which considers an average model of Earth’s magnetic field and an adaptive
control law to achieve the control objective. This controller will be used as the benchmark
to which the results will be compared.

Then, an alternative modification is proposed to the adaptive control law described
previously. This alternative uses a fixed gain instead of an adaptive gain, without loss
of stability to the system. The actuators keep generating only perpendicular magnetic
moment m(t) relative to the magnetic field B(t) as the first control law. This assures that
the system avoids any waste of energy in unnecessary command inputs.

3.1 Problem definition

The purpose of an active attitude control system that uses magnetorquers is to use
Earth’s magnetic field seen at the satellite B(t) and the magnetic moments m(t) created
by the actuators to create a magnetic torque τ(t) to position the satellite according to a
desired attitude reference or simply to null the satellite’s angular momentum.

A simple attitude reference choice is to keep one of the satellite’s sides always facing
the surface of the Earth and one side always perpendicular to the trajectory orbit. In
this way, a satellite can maintain an observation instrument always pointed to Earth’s
surface, without any undesired lateral rotation. The control input also needs to consider
the satellite restrictions and mission purposes. Therefore, it should be as efficient as
possible regarding battery use otherwise it might achieve the desired attitude but might
not be able to perform its mission.

By establishing the orbital trajectory of the satellite (its altitude, inclination, and or-
bital velocity), it is possible to determine Earth’s magnetic field B using any given model,
such as presented in Section 2.2. For illustration purposes, consider a circular Polar or-
bital trajectory (i.e. inclination of 87o with respect to the equatorial plane) beginning at
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the Equator, with a constant altitude of 450 km, and that completes 15 orbits in one day.
The magnetic field values for the Dipole model and for the IGRF model are shown in
Figure 2 and 3, respectively.

Considering the attitude of the satellite given by qb and the desired attitude given by
qr, it is possible to determine the attitude error q using Equation (19) as seen bellow:

η(t) = ηb(t)ηr(t) + ϵb(t)
Tϵr(t),

ϵ(t) = ηr(t)ϵb(t)− ηb(t)ϵr(t) + S(ϵb(t))ϵr(t).
(47)

Another important variable for the problem is the angular velocity error between the
satellite’s attitude and the reference given by:

ω(t) = ωb(t)−R(q)ωr(t). (48)

The main objective of the active control system is to set the satellite’s attitude equal
to the reference’s attitude. In other words, it is to obtain

lim
t→∞

∥ϵ(t)∥ = 0,

lim
t→∞

∥ω(t)∥ = 0,
(49)

regardless of the orbital trajectory and attitude reference.

In order to achieve that, a control law might be written in the form

τ(t) = −Kpϵ(t)−Kvω(t) (50)

where Kp, Kv ∈ R are positive control gains. Taking the torque equation given in (29), a
straightforward idea would be to define the magnetic moment input as

m(t) = −S(B(t))−1
(
Kpϵ(t) +Kvω(t)

)
(51)

such that

τ(t) = S(B(t))m(t)

τ(t) = −S(B)S(B)−1
(
Kpϵ(t) +Kvω(t)

)
τ(t) = −Kpϵ(t)−Kvω(t)

(52)

Unfortunately, the matrix S(B(t)) does not have full rank, making it impossible to
find its inverse as suggested by (52). It is necessary to use some other technique to bypass
this problem and create a control input m(t) that achieves the control objectives.
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Consider the orbital path previously described and a desired reference configured as:

qr =
[
1 0 0 0

]T

,

ωr =
[
0 0.0011 0

]T

,
(53)

at the beginning of the suggested orbit. The magnetic field Br(t) can be calculated by:

Br(t) = R(qr)B(t) (54)

Figure 7 shows the magnetic field Br(t) calculated by (54) and seen by the reference
using the Dipole model of the magnetic field B(t).

Figure 7 – Magnetic field Br(t) seen at the reference using the Dipole model.
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Source: The author.

The equivalent result for the IGRF model is presented in Figure 8. In both cases, it
can be seen that the magnetic field Br(t) calculated by (54) is periodic for this reference.
This indicates that averaging theory can be an alternative to the lack of invertibility of the
matrix S(B(t)), when dealing with the magnetic field seen by the body. Note that the
periodicity of B(t) would come after the body starts following the reference.

3.2 Adaptive Control Law

Considering the problem that the matrix S(B(t)), with the magnetic field seen by the
body, does not have full rank and considering the control objectives given in Equation
(49), it is possible to consider a magnetic moment ma(t) in the form

ma(t) =
S(B(t))T

||B(t)||2 u(t) (55)
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Figure 8 – Magnetic field Br(t) seen at the reference using the IGRF model.
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where u(t) is a control signal input. For this case, the magnetic torque τ(t) becomes

τ(t) = S(B(t))
S(B(t))T

||B(t)||2 u(t) (56)

The motive to generate a magnetic moment ma(t) with the term ST (B(t))u(t) might
not be clear at first sight. The explanation is that this product makes all components of
ma(t) perpendicular to the magnetic field B(t), thus avoiding any waste of energy while
using the magnetorquers. Consider then a matrix Γ(t) in the form:

Γ(t) =
S(B(t))S(B(t))t

||B(t)||2 (57)

Similar to the matrix S(B(t)), the matrix Γ(t) given in (57) cannot be inverted. How-
ever, due to the periodic nature of Earth’s magnetic field B(t) and the values for a high
elevation orbit, it is possible to create an average value matrix Γav(t) that has full rank,
thus, is invertible. For orbits with low elevation, might reach singularity. The authors
suggested to calculate Γav(t) through the following differential equation system: :

Γ̇av(t) =
1

t
Γ(t)− 1

t
Γav(t)

Γav(0) = Γ(0)
(58)

Next, the authors define a control input in the form:

u(t) = −Kvω(t), t ≤ t̄

u(t) = −Γ−1
av (t)

(
Kpϵ(t) +Kvω(t)

)
, t > t̄

(59)
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where t̄ is an arbitrary moment in time. At first, the control law acts as a classic B-dot

control algorithm (LOVERA, 2015) to minimize the angular velocity error. The second
part introduces an attitude correction part, along with the matrix Γav(t).

Over time, after t > t̄, by applying (59) into (56), the following result is obtained:

lim
t→∞

τ(t) = −
(
Kpϵ(t) +Kvω(t)

)
(60)

This result is obtained through the application of the averaging method presented in
Section 2.10. At the equilibrium point, the error system becomes

lim
T→∞

1

T

∫ T

t

Γ(t)Γav(t)
−1dt = I (61)

It is possible to verify matrix Γav(t) invertibility by looking at its eigenvalues. Fig-
ure 9 shows the eigenvalues of Γav(t) for a satellite following a reference when analyzing
the magnetic field B(t) given by the Dipole model and the same orbit configuration as
determined for Figure 7. As can be seen, the values vary significantly at the first few
orbits but decrease their variation considerably at later orbits. Therefore, the value of the
adaptive gain Γav(t) tends towards a single value.

Figure 9 – Eigenvalues of Γav(t) for satellite at the reference and using Dipole model.
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The authors of (LOVERA; ASTOLFI, 2006) did not explain how to determine the
transition moment t̄ that should be used to switch the dynamic of u(t) but the variation of
the eigenvalues might be used as a criterion. For example, the control input switch might
happen when the values of the eigenvalues vary less than a certain amount, indicating
that the matrix is going through smaller changes and can be better used to determine the
control input.
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3.3 Proposed Control Law

Considering the adaptive gain controller presented previously, an alternative is pro-
posed. Consider a satellite orbiting a fixed path, with the torque τ(t) being applied in (37)
entirely from the magnetorquers through (29). As mentioned before, the cross-product in
(29) limits the control torques to be perpendicular to both the magnetic field seen at the
body B(t) and the magnetic moment generated by the magnetorquers m(t), effectively
canceling any other control signal.

In other words, any control effort component of m(t) that is parallel to the magnetic
field seen at the body will consume energy but will not generate torque. Thus, the best
alternative is to limit the control inputs to be always perpendicular to B(t). Therefore,
consider a magnetic moment mf (t) defined in the same way as ma(t) in (55)

mf (t) =
S(B(t))T

||B(t)||2 u(t), (62)

where u(t) is the new control signal determined by the proposed controller. Then the
control torque becomes,

τ(t) = S(B(t))mf (t) = Γ(t)u(t), (63)

with Γ(t) determined as in (57). As stated before, the product Γ(t)u(t) will be a vector
perpendicular to B(t) and all energy used by the magnetorquers will be converted into
torque by the actuators. Consider the following assumption:

Assumption 1. The satellite’s trajectory in orbit, as well as the magnetic field B(t), are

known and periodic at the reference.

Given assumption 1, an average value of Γ(t) can be computed around the reference
trajectory

Γ̄ =
1

T

∫ T

0

Γ(t)dt (64)

where T corresponds to the period of one orbit of the satellite around Earth.
Notice, in view of (57), that the matrix Γ̄ is positive definite for a high elevation orbit.

Consider now a control input u(t) in the form

u(t) = −ε2kpy(t)− εkvω(t), (65)

where ε is a parameter related to the average model of (42) with (65) and

y(t) = Γ̄−1ϵ(t). (66)

Since the value of Earth’s magnetic field on the satelliteB(t) along the satellite’s orbit
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and for a reference that always keeps one of its surfaces towards the surface constitutes a
periodic system as indicated by (1) and illustrated in Figure 7, it is possible to apply the
averaging method to obtain a controllable model of the system. To do so, let us introduce
the following variable transformations,

z =
ω

ε
, zb =

ωb

ε
, zr =

ωr

ε
, (67)

with ε being a sufficiently small positive scalar. Then, the average closed-loop error
system can be defined as follows,

η̇ = − 1

2
εϵTz,

ϵ̇ =
1

2
ε
(
ηI3 + S(ϵ)

)
z,

ż = J−1

(
εS(zb)Jzb +

Γ̄

ε
u− εJS(z)R(q)zr

)
.

(68)

From (KHALIL, 2002, Section 10.4), there exists ε∗ > 0 such that for any ε ∈ (0, ε∗)

the stability of (68) implies the stability of the original closed-loop system as defined in
(42). The following result shows that the trajectories of system (68) are globally ultimate
bounded in closed-loop.

Proposition 1. For any ε > 0, kp > 0 and kv > 0, the trajectories of system (68) with

u(t) as given in (65) satisfy the following as t→ ∞

• ∥z(t)∥ → 0;

• ∥ϵ(t)∥ ≤ c; and

•
√
1− c2 ≤ |η(t)| ≤ 1.

where

c =
1

kp
sup ∥S(R(q)zr)JR(q)zr∥. (69)

Moreover, when the satellite has a spherical top configuration (i.e. J = hI3, h > 0), then

∥η(t)∥ → 1 and ∥ϵ(t)∥ → 0 as t→ ∞.

Proof. Consider the following Lyapunov function candidate:

V =
1

2

(
zTJz + zT

r

(
J −R(q)TJR(q)

)
zr + 4kp(1− η)

)
(70)

with kp being sufficiently large such that V > 0 for all z ̸= 0 and η ̸= 1. In addition,
notice that V → 0 as z → 0 and η → 1, since R(q) → I3.

In order to evaluate the stability of the satellite’s equilibrium point, it is necessary
to consider the time-derivative of V . The terms zT

rJzr and 4kp are constants and the
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derivative of η can be taken from (68). By applying the derivative to the other terms, the
derivative of (70) along the trajectories of the closed loop system (68) is given by:

V̇ = zTJż − zT
rR(q)

TJṘ(q)zr + εkpϵ
Tz. (71)

Now, from the expression of ż in (68) along with (41) and (67), we obtain

ż = J−1
(
εS(zb)Jzb +

Γ̄u
ε
− εJS(z)R(q)zr

)
= εJ−1S(zb)Jzb +

J−1Γ̄u
ε

− εS(z)R(q)zr.
(72)

Taking angular velocity error stated in (40) and applying the variable transformation
(67), we obtain that

zb = z +R(q)zr. (73)

Applying this value of zb into (72), it becomes

ż = εJ−1S(z +R(q)zr)J(z +R(q)zr)

+J−1Γ̄u
ε

− εS(z)R(q)zr

= εJ−1S(z)Jz + εJ−1S(z)J(R(q)zr)

+εJ−1S(R(q)zr)Jz

+εJ−1S(R(q)zr)JR(q)zr

+J−1Γ̄
ε
u− εS(z)R(q)zr.

(74)

By replacing the input u from (65) into (74), the time derivative of V can be cast as

V̇ =εzTS(z)Jz + εzTS(z)JR(q)zr

+ εzTS(R(q)zr)Jz + εzTS(R(q)zr)JR(q)zr

− εkpz
TΓ̄y − εkvz

TΓ̄z − εzTJS(z)R(q)zr

− εzT
rR(q)

TJS(z)R(q)zr + εkpz
TΓ̄y.

(75)

Since knowing that zTS(z) = 0, rearranging the terms of (75) gives

V̇ = εzTS(R(q)zr)Jz − εzTJS(z)R(q)zr

+ εzTS(R(q)zr)JR(q)zr

− εzT
rR(q)

TJS(z)R(q)zr

− εkvz
TΓ̄z.

(76)

Given two arbitrary vectors a and b, it is possible to verify that S(a)Tb = S(b)a. Since
the inertia matrix J is symmetric, i.e., J = J T, the first two terms of (76) are equivalent
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as shown below
εzTS(R(q)zr)Jz = εzTJS(z)R(q)zr

zTS(R(q)zr)Jz = zTJS(z)R(q)zr

(zTS(R(q)zr)Jz)
T = zTJS(z)R(q)zr

zTJ TS(R(q)zr)
Tz = zTJS(z)R(q)zr

zTJS(z)R(q)zr = zTJS(z)R(q)zr

(77)

In a similar way, the third and fourth terms of (76) are also equivalent

εzTS(R(q)zr)JR(q)zr = εzT
rR(q)

TJS(z)R(q)zr

zTS(R(q)zr)JR(q)zr = zT
rR(q)

TJS(z)R(q)zr

(zTS(R(q)zr)JR(q)zr)
T = zT

rR(q)
TJS(z)R(q)zr

zT
rR(q)

TJ TS(R(q)zr)
Tz = zT

rR(q)
TJS(z)R(q)zr

zT
rR(q)

TJS(z)R(q)zr = zT
rR(q)

TJS(z)R(q)zr

(78)

By canceling the analogous terms, the time derivative of V becomes

V̇ = −εkvzTΓ̄z < 0, ∀z ̸= 0 (79)

which implies that z(t) → 0 as t→ ∞ (since by assumption Γ̄ ≻ 0, ε > 0 and kv > 0).

Next, it is shown that ϵ(t) and η(t) are ultimately bounded. To this end, for a suffi-
ciently large t, assume that ż = z = 0, that is, zb = zr. Then, from (72) with the proposed
control law (65), the following is obtained:

ϵ =
1

kp
S(R(q)zr)JR(q)zr. (80)

Taking into account that, by definition, qTq = 1 and the fact that zr is a constant vector,
there exists a c as defined in (69) such that ∥ϵ∥ ≤ c. The fact that

√
1− c2 ≤ |η| ≤ 1,

with 0 ≤ c ≤ 1, follows from the definition presented in Section 2.3.

Finally, when the satellite has a spherical top configuration, with J = hI3, the equa-
tion stated in (80) becomes

ϵ =
h

kp
S(zb)zb = 0,

since z → 0, zb = R(q)zr and S(zb)zb = 0. Then, η = 1 follows from η2 = 1− ϵTϵ which
completes the proof.

Remark 1. Notice in view of (80) that ∥ϵ∥ can be made arbitrarily small for a sufficiently

large kp, at the cost of large control signals. The resulting magnetic moment m(t) might

be limited by saturation and not be achievable.
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Remark 2. Differently from the adaptive gain suggested by (LOVERA; ASTOLFI, 2006),

we assumed that Γ̄ is computed a priori from the knowledge of the satellite’s reference or-

bit. As a result, we do not need to implement either a detumbling phase – because a factor

for the angular velocity error is always present in the control input – or to continuously

calculate the gain Γav(t) which led to smaller energy consumption as shown in Chapter 4.

When the control gain Γ̄ has to be computed online, we can apply the control law defined

in (65) by redefining y = Γ̄ı(t)ϵ(t), for t ∈ [0, T ), where Γ̄ı stands for the pseudo inverse

of Γ̄, which could be used on the initial moments.

Thus, by knowing the satellite orbit and with the aid of a magnetic field model, a fixed
controller gain Γ̄ can be established for the system, without the need to continuously
update its value.
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4 NUMERICAL RESULTS

Once the necessary parameters that govern the satellite dynamics in orbit were estab-
lished and the proposed controller was validated, it is possible to simulate and assess its
efficiency when dealing with different initial conditions and different types of satellites.
In order to evaluate how the proposed fixed controller performs compared to the adap-
tive controller, a satellite with an asymmetrical top configuration, similar to the one used
by (LOVERA; ASTOLFI, 2006) was chosen. Although it does not consist of a CubeSat
specification, this type of satellite is not uncommon in the literature, e.g. (WISNIEWSKI,
1997).

Using this configuration, two initial attitude conditions were tested and, for both con-
ditions, two different magnetic field models were used. After these four comparisons,
the fixed controller was evaluated with two CubeSat configurations based on parameters
found in the literature and with magnetorquer parameters found in commercial, out-of-
the-shelf products. Even though both the adaptive and the fixed controller proposed uti-
lize the average model given in (68) to formulate their parameters, the numerical results
presented were obtained using the satellite model given in (37) and the error dynamics
given in (42). All satellites configurations simulated belong to a fixed, circular orbit set
in a polar orbit configuration, with an 87o inclination with respect to the equatorial plane,
beginning at the Equator, at an altitude of 450 km from Earth’s surface, and completing
15 orbits in one day.

4.1 Controllers comparison

Along with the orbital parameters given previously, it is necessary to determine the
satellite parameters in order to perform a simulation. Following the hypothetical satellite
presented by (LOVERA; ASTOLFI, 2006), the inertia matrix chosen was given by (81).
Note that the second element of the inertia matrix is much smaller than the other two.
That configuration aims to represent a satellite with a long gravity gradient boom along
the y axis, similar to projects like the Ørsted satellite (WISNIEWSKI, 1997). However,
this configuration cannot be physically achieved since the elements of the diagonal do not
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respect the triangular inequality.

J =

60 0 0

0 5 0

0 0 70

 kgm2. (81)

For this satellite model, two initial conditions were tested: the first consists of the
satellite oriented “upside down" from its desired orientation and with a small angular ve-
locity; the second situation consists of the satellite with a random orientation and a higher
angular velocity than before. The aim of these scenarios is to investigate the efficiency
of the control laws in: (a) targeting the desired attitude; (b) addressing the detumbling
phase; (c) achieving tracking in the presence of large initial velocities; and (d) saving
energy consumption.

In order to make it easier for the reader, the initial attitudes are determined with roll,
pitch, and yaw angles, which were converted to quaternion using a 1-2-3 sequence of
rotation. Both conditions are shown in Tables 1 and 2, respectively. To simplify these
initial conditions will be referred to as Upside Down and Random, respectively.

Table 1 – Satellite’s initial conditions - Upside Down initial condition.
Axis Reference Reference initial Satellite Satellite initial

(local frame) initial Attitude Angular Velocity initial Attitude Angular Velocity
ωr (rad/s) ωb (rad/s)

X 0 0 0 0.0011
Y 0 0.0011 π 0.0011
Z π/2 0 π/2 0.0011

Table 2 – Satellite’s initial conditions - Random initial condition.
Axis Reference Reference initial Satellite Satellite initial

(local frame) initial Attitude Angular Velocity initial Attitude Angular Velocity
ωr (rad/s) ωb (rad/s)

X 0 0 −π/4 -0.01
Y 0 0.0011 π/8 0.01
Z π/2 0 −π/16 0.005

For both conditions, the objective is to make the error quaternion becomes q =[
1 0 0 0

]T

while the angular velocity error ω =
[
0 0 0

]T

. The controller parame-
ters chosen were ϵ = 0.0001, Kp = 500, and Kv = 200, in order to use the same gain
values as (LOVERA; ASTOLFI, 2006). The fixed gain matrix Γ̄ depends only on the
magnetic field Br(t) seen at the desired reference frame. For the Dipole model, its value
was determined as:

Γ̄ =

 1.4996 0 −0.0470

0 1.2860 0

−0.0470 0 1.8033

 , (82)



42

For the IGRF model, Γ̄ was determined as:

Γ̄ =

1.4393 0.0997 0.0681

0.0997 1.2874 0.0794

0.0681 0.0794 1.9383

 . (83)

4.1.1 Upside Down Initial Condition

Among all possible initial attitudes on a satellite, the worst case would be for it to be
“upside down" from its desired orientation. In this case, the attitude system has to rotate
the satellite half turn around one of its axes to get the correct orientation. Along with that,
the angular velocity might not be the same as the reference, requiring the satellite to slow
down (or speed up), accordingly. Table 1 set what will be called Upside Down initial
condition for the experiments. In order to emphasize the rotation effort demanded to
the controller, the initial angular velocity ωb(t) chosen was similar to the desired angular
velocity of the reference ωr.

4.1.1.1 Dipole Model

For the first simulation of the Upside Down initial condition, the Dipole model for the
magnetic field was used. Both controllers were simulated for a total of six orbits and the
Fixed controller used (82). Figures 10 and 11 show the results obtained for this case.

Figure 10 – Error Quaternion - Upside Down initial condition with Dipole model: Adaptive
controller (red dashed line) and Fixed controller (blue solid line).
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The error quaternion and the angular velocity error graphics indicate that both con-
trollers achieved the targeted objective, although the Adaptive controller seems to reach
it much closer to the end of the six orbits while the Fixed controller achieves that in about
two orbits. In order to better compare the results, the amount of energy used by the con-
trollers was recorded and normalized, using the Adaptive controller result as the base.
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Figure 11 – Angular Velocity error - Upside Down initial condition with Dipole model: Adaptive
controller (red dashed line) and Fixed controller (blue solid line).
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The result for the energy used is summarized in Table 3. A graphic visualization of the
energy used throughout the simulation can be seen in Figure 12. Both the table and the
graphic shows that the Fixed controller proposed had a better result.

Figure 12 – Energy used by controllers normalized - Upside Down initial condition with Dipole
model: Adaptive controller (red dashed line) and Fixed controller (blue solid line).
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Table 3 – Energy used by controllers normalized - Upside Down initial condition with Dipole
model.

Controller Energy (normalized)
Adaptive 1

Fixed 0.292564

The individual use of each magnetorquer is illustrated in Figures 13 and 14. For these
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initial simulations, no saturation was considered. It can be seen that the magnetorquer
use by the Fixed gain controller basically stops after the second orbit as indicated by the
Energy used graphic as well.

Figure 13 – Magnetoquer use for Adaptive gain - Upside Down initial condition with Dipole
model.
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Figure 14 – Magnetoquer use for Fixed gain - Upside Down initial condition with Dipole model.
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4.1.1.2 IGRF Model

For the second simulation of the Upside Down initial condition, the IGRF model for
the magnetic field was used. Both controllers were simulated for a total of six orbits
and the Fixed controller used (83). Figures 15 and 16 show the results obtained for the
simulation.
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Figure 15 – Error Quaternion - Upside Down initial condition with IGRF model: Adaptive con-
troller (red dashed line) and Fixed controller (blue solid line).
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Figure 16 – Angular Velocity error - Upside Down initial condition with IGRF model: Adaptive
controller (red dashed line) and Fixed controller (blue solid line).
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After the change in the magnetic field model, the error quaternion and angular velocity
error graphics indicate that both controllers achieved the objective in about two orbits.
These results indicate that both controllers have similar effectiveness in achieving the
objective. The analysis of the amount of energy used by the controllers can be used as
a tiebreaker. Once again, the energy was recorded and normalized, using the Adaptive
controller result as the base. The result for the energy used can be seen in Table 4.



46

Table 4 – Energy used by controllers normalized - Upside Down initial condition with
IGRF model.

Controller Energy (normalized)
Adaptive 1

Fixed 0.766543

Once again, the Fixed controller utilized less energy to achieve the objective, indicat-
ing that it is a better alternative. A graphic visualization of the energy used throughout
the simulation can be seen in Figure 17. The graphic indicates that the Fixed controller
required more energy on the first orbit but that effort was reduced afterward, opposite to
the Adaptive controller which uses a greater amount of energy on the second orbit.

Figure 17 – Energy used by controllers normalized - Upside Down initial condition with IGRF
model: Adaptive controller (red dashed line) and Fixed controller (blue solid line).
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The individual use of each magnetorquer is illustrated in Figures 18 and 19. Similar
to the previous simulation, no saturation was considered on these actuators. It can be seen
from the graphics that the magnetorquers stop after the second orbit on both controllers.
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Figure 18 – Magnetoquer use for Adaptive gain - Upside Down initial condition with IGRF
model.
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Figure 19 – Magnetoquer use for Fixed gain - Upside Down initial condition with IGRF model.
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4.1.2 Random Initial Condition

After the satellite leaves the delivery platform, it ideally would have the correct orien-
tation and angular velocity or at least some attitude closer to it. However, initial conditions
in orbit depend on the satellite deployer configuration and settings and any sort of unpre-
dictable event might happen. Consequently, the satellite might start with a very different
attitude than planned. In this case, the attitude system has to identify its current attitude
and rotate the satellite to achieve the correct orientation. It might be required to slow
down (or speed up) the angular velocity to keep the satellite at the desired reference as
well. Right after deployment, it is common for satellites to have high angular velocities.
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Table 2 set what will be called the Random initial condition for the experiments. Note
that the initial angular velocities set were higher than the Upside Down initial condition.
This was chosen so a greater effort is put to correct the angular velocity.

4.1.2.1 Dipole Model

For the first simulation of the Random initial condition, the Dipole model for the
magnetic field was used. Both controllers were simulated for a total of six orbits and the
Fixed controller used (82). Figures 20 and 21 show the results obtained for this simulation.

Figure 20 – Error Quaternion - Random initial condition with Dipole model: Adaptive controller
(red dashed line) and Fixed controller (blue solid line).
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Figure 21 – Angular Velocity error - Random initial condition with Dipole model: Adaptive
controller (red dashed line) and Fixed controller (blue solid line).
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The error quaternion and angular velocity error graphics indicate that both controllers
achieved the objective of aligning the satellite to the reference. The Adaptive controller
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reaches the objective in about three orbits while the Fixed controller appears to require
four orbits to completely position the satellite to the reference, as the values of error
quaternion indicate. In order to complement these results and better compare the effi-
ciency of the controllers, the amount of energy used by each controller was recorded and
normalized, using the Adaptive controller result as the base. The result for the energy
used can be seen in Table 5.

Table 5 – Energy used by controllers normalized - Random initial condition with Dipole model.
Controller Energy (normalized)
Adaptive 1

Fixed 0.861840

A graphic visualization of the energy used throughout the simulation can be seen in
Figure 22. The graphic shows clearly that the Fixed controller only completes its effort
around the fourth orbit while the Adaptive controller reaches the objective at the third
orbit. However, once again, the Fixed controller required less energy to complete the
task.

Figure 22 – Energy used by controllers normalized - Random initial condition with Dipole model:
Adaptive controller (red dashed line) and Fixed controller (blue solid line).
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Figures 23 and 24 show how the magnetorquers were activated on each simulation.
Since no saturation was considered, there is a great effort at the beginning to correct the
angular velocity followed by some attitude corrections, specially before the second orbit
is completed.
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Figure 23 – Magnetoquer use for Adaptive gain - Random initial condition with Dipole model.
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Figure 24 – Magnetoquer use for Fixed gain - Random initial condition with Dipole model.
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4.1.2.2 IGRF Model

For the second simulation of the Random initial condition, the IGRF model for the
magnetic field was used. Both controllers were simulated for a total of six orbits and the
Fixed controller used (83). Figures 25 and 26 show the results obtained for the simulation.
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Figure 25 – Error Quaternion - Random initial condition with IGRF model: Adaptive controller
(red dashed line) and Fixed controller (blue solid line).
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Figure 26 – Angular Velocity error - Random initial condition with IGRF model: Adaptive con-
troller (red dashed line) and Fixed controller (blue solid line).
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The error quaternion and angular velocity error graphics indicate that both controllers
achieved the objective in about two orbits. For this scenario, it is even harder to determine
any difference between performances since both controllers reach the objective around the
same moment (despite their different ways).

The amount of energy used by the controllers can be used to determine which con-
troller is more efficient. The recorded energy used was normalized, using the Adaptive
controller result as the base, and presented in Table 6. A graphic visualization of the
energy used throughout the simulation can be seen in Figure 27. Considering that both
controllers achieved the objective at the same time, the table and the graphic shows that
the fixed controller had better efficiency in doing so.
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Table 6 – Energy used by controllers normalized - Random initial condition with IGRF model.
Controller Energy (normalized)
Adaptive 1

Fixed 0.833924

Figure 27 – Energy used by controllers normalized - Random initial condition with IGRF model:
Adaptive controller (red dashed line) and Fixed controller (blue solid line).
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The individual use of each magnetorquer is illustrated in Figures 28 and 29. As was
expected, the magnetorquers are practically not use after the second orbit, on both con-
trollers.

Figure 28 – Magnetoquer use for Adaptive gain - Random initial condition with IGRF model.
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Figure 29 – Magnetoquer use for Fixed gain - Random initial condition with IGRF model.
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4.2 Fixed controller performance on CubeSats

After comparing the results obtained by the Adaptive and Fixed controllers assessing
the same theoretical satellite, the Fixed controller was simulated with two different satel-
lite models, with two inertia matrices based on different CubeSat sizes obtained from the
literature. The first inertia matrix is taken from a 2U CubeSat project given in (BAUER,
2021). The second inertia matrix is based on a 1U CubeSat described in (LI; POST; LEE,
2013). The same orbital parameters and the same initial conditions were tested as before.

The only magnetic model used for these simulations was the IGRF model, due to its
greater accuracy when compared to the Dipole model. Therefore, the only value used
for the gain matrix Γ̄ was (83). Also, for these satellite models, it was considered that
the magnetorquers had a capacity of 0.019 Am2. Thus, for any magnetic moment m(t)

stronger than that, the actuator would saturate. This value was chosen based on an off-the-

shelf magnetorquers available for purchase (MT01: COMPACT MAGNETORQUER,
2023) and estimated values found in the literature (LI; POST; LEE, 2013). The situations
which the models went through tried to induce and assess this saturation.

4.2.1 2U CubeSat

A 2U Cubesat basically consists of two 1U CubeSat piled together. The value for the
inertia matrix J for the 2U CubeSat model was obtained from (BAUER, 2021) and is
given by

J =

0.0359 0.0014 0.0031

0.0014 0.0398 0.0024

0.0031 0.0024 0.0483

 kgm2. (84)
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The abovementioned paper used an attitude control system with reaction wheels in-
stead of magnetorquers but the influence of the reaction wheels was disregarded while
determining the inertia matrix. Note that this inertia matrix is similar to the previous
model in the point of JXX ̸= JY Y ̸= JZZ but its components are a lot smaller, demanding
that the gains Kp and Kv to be reduced as well.

For this model, two different pairs of gains were tested: one pair with smaller values
for Kp and Kv; another pair with bigger values for Kp and Kv. The values for the gains
were chosen empirically, based on values used in Section 4.1 and the reduction of scale
of J . In order to make it easier to read the results, the first pair will be called Weak gain,
and the second pair will be called Strong gain and their values are summarized in table 7.

Table 7 – [Controller parameters - 2U CubeSat]Controller parameters - 2U CubeSat.
Gain Value
Kp 0.1

Weak
Kv 0.04
Kp 0.25

Strong
Kv 0.1

4.2.1.1 Upside Down Initial Condition

For the first simulation of the 2U CubeSat model, the Upside Down initial condition
given by Table 1 was used. The model was simulated for a total of eight orbits for each
pair of gains. Figures 30 and 31 show the results obtained for the simulation.

Figure 30 – Error Quaternion - Upside Down initial condition - 2U CubeSat: Strong gain (red
dashed line) and Weak gain (blue solid line).
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The error quaternion and angular velocity error graphics indicate that both controllers
still generate some attitude adjustments, albeit small, after eight orbits. The graphic vi-
sualization and the normalized energy used of these two gain configurations are shown
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Figure 31 – Angular velocity error - Upside Down initial condition - 2U CubeSat: Strong gain
(red dashed line) and Weak gain (blue solid line).
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in Table 8 and Figure 32, respectively. The table indicates that the Weak gain pair con-
sumed less energy at the task while the graphic confirms that the objective was achieved
by neither pair since the energy used continues to increase on both lines.

Table 8 – Energy used on 2U CubeSat - Upside Down initial condition.
Controller Energy (normalized)

Strong gain 1
Weak gain 0.494992

Figure 32 – Energy used - Upside Down initial condition - 2U CubeSat: Strong gain (red dashed
line) and Weak gain (blue solid line).
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The individual use of each magnetorquer for each pair of gains is illustrated in Fig-
ures 33 and 34. Looking at these graphics, it is possible to notice a relevant difference
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between the gain pairs, namely, the Strong gain has saturation on all three magnetorquers
at the beginning. These saturations coincide with the steep inclination of the energy used
graphic around the first orbit.

Figure 33 – Magnetoquer use for Weak gain - Upside Down initial condition - 2U CubeSat.
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Figure 34 – Magnetoquer use for Strong gain - Upside Down initial condition - 2U CubeSat.
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4.2.1.2 Random Initial Condition

For the second simulation of the 2U CubeSat model, the Random initial condition
given by Table 2 was used. The model was also simulated for a total of eight orbits for
each pair of gains. Figures 35 and 36 show the results obtained for this initial condition.

The angular velocity error graphic indicates that both pairs of gains achieved the ob-
jective however the error quaternion graphic indicates that both controller configurations
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Figure 35 – Error Quaternion - Random initial condition - 2U CubeSat: Strong gain (red dashed
line) and Weak gain (blue solid line).
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still generate some attitude adjustments after eight orbits. It is interesting to notice that
both configurations presented a very similar result for the first orbit but differ on the
following orbits. This is easily explained by observing the magnetorquers use graphics
shown in Figure 38 and 39.

Figure 36 – Angular velocity error - Random initial condition - 2U CubeSat: Strong gain (red
dashed line) and Weak gain (blue solid line).
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The graphic visualization and the normalized energy used of these two gain configu-
rations are shown in Table 9 and Figure 37, respectively. Once again, the table indicates
that the Weak gain pair consumed a lot less energy at the task while the graphic confirms
that the objective was achieved by neither pair since the energy used continues to increase,
albeit smoothly, on both lines.
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Figure 37 – Energy used - Random initial condition - 2U CubeSat: Strong gain (red dashed line)
and Weak gain (blue solid line).
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Table 9 – Energy used on 2U CubeSat - Random initial condition.
Controller Energy (normalized)

Strong gain 1
Weak gain 0.345661

The individual use of each magnetorquer for each pair of gains is illustrated in Figures
38 and 39. Looking at these graphics, it is possible to notice a relevant difference from the
results obtained for the Upside Down initial condition, namely, both configurations have
saturation on the first orbits. This is easily explained by the fact that the Random initial
condition demands a bigger effort to slow down the satellite.

Figure 38 – Magnetoquer use for Weak gain - Random initial condition - 2U CubeSat.
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The resemblance of the error quaternion and angular velocity error presented previ-
ously are also explained here. Both configurations presented similar magnetorquer use
on the first orbit, resulting in a similar dynamic. The higher presence of saturation on the
Strong gain pair after the first orbit explains the higher use of energy. Also, the predom-
inance of saturations on the first orbits coincides with the steep inclination of the energy
used graphic, although this is not so evident on the Weak gain curve.

Figure 39 – Magnetoquer use for Strong gain - Random initial condition - 2U CubeSat.
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4.2.2 1U CubeSat

A 1U Cubesat is the standard size used as the reference for all the CubeSat-like
projects. The value for the inertia matrix J for this satellite model was obtained from
(LI; POST; LEE, 2013) and is presented in (85). A similar, although more accurate value,
can be obtained from the UWE-3 project described in (BANGERT, 2019), for example.

J =

0.002 0 0

0 0.002 0

0 0 0.002

 kgm2. (85)

A valid observation is that this inertia matrix is a spherical top, which means that the
Coriolis effect on the satellite becomes null since the product S(ωb)Jωb = 0. Therefore,
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the angular velocity error will change from (42) and become just

ω̇ = J−1
(
τ − JS(ω)R(q)ωr

)
. (86)

Note that the angular velocity error given in (42) will vary only due to the applied
torque and the term due to the reference. When the system reaches ω = 0, there will
not be necessary to apply torque to correct the system’s angular velocity. This allows the
Fixed controller to make the system asymptotically stable, both for the attitude as well
as for the angular velocity since the torque τ is defined by the control system and (86)
becomes

ω̇ = J−1τ. (87)

Similar to the 2U CubeSat model, the 1U CubeSat demands that the gains Kp and
Kv have to be adjusted. Thus, for this model, two different pairs of gains were tested,
following the same idea as before: one pair with smaller values for Kp and Kv; and
another pair with bigger values for Kp and Kv. Once again, in order to make it easier to
read and differentiate the results, the first pair will be called Weak gain, the second pair
will be called Strong gain and their values are summarized in Table 10.

Table 10 – Controller parameters - 1U CubeSat.
Controller Gain Value

Kp 0.0005
Weak

Kv 0.0002
Kp 0.005

Strong
Kv 0.002

4.2.2.1 Upside Down Initial Condition

For the first simulation of the 1U CubeSat, the Upside Down initial condition given
by Table 1 was used. The model was simulated for a total of 24 orbits for each pair of
gains determined in Table 10. Figures 40 and 41 show the error quaternion and angular
velocity error results obtained for this scenario.
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Figure 40 – Error Quaternion - Upside Down initial condition - 1U CubeSat: Weak gain (blue
solid line) and Strong gain (red dashed line).
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Figure 41 – Angular velocity error - Upside Down initial condition - 1U CubeSat: Weak gain
(blue solid line) and Strong gain (red dashed line).
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The error quaternion and angular velocity error graphics indicate that the Strong gain
seems to have achieved the objective after eight orbits while the Weak gain takes more
orbits to reach it. An oscillatory behavior, both in the attitude and the angular velocity,
can be observed in the simulation with the Weak gain. Despite that, the results of the
Weak gain setup indicate that it converges to equilibrium.

The normalized energy used for these gain configurations is shown in Table 11 and
Figure 42. Both the graphic and the table indicate that the Strong gain used considerably
more energy. However, since the Weak gain did not actually achieve the objective in 24
orbits, the actual energy difference wwould require more orbits..
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Figure 42 – Energy used - Upside Down initial condition - 1U CubeSat: Weak gain (blue solid
line) and Strong gain (red dashed line).
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Table 11 – Energy used on 1U CubeSat - Upside Down initial condition.
Controller Energy (normalized)

Strong gain 1
Weak gain 0.541403

The individual use of each magnetorquer for each pair of gains is illustrated in Figures
43 and 49. For these initial conditions, none of the gains created a moment of saturation.
This might indicate that the magnetorquer model chosen could be adequate for this model
of Cubesat. Also, since the faster result came from the Strong gain, a control gain that
reaches the desired attitude within a period of 24 orbits and lower energy consumption
should be found closer to that value.

Figure 43 – Magnetoquer use for Weak gain - Upside Down initial condition - 1U CubeSat.
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Figure 44 – Magnetoquer use for Strong gain - Upside Down initial condition - 1U CubeSat.
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4.2.2.2 Random Initial Condition

For the second simulation of the 1U CubeSat model, the Random initial condition
given by Table 2 was used. The model was also simulated for a total of eight orbits for
each pair of gains state in Table 10. Figures 45 and 46 show the results obtained for this
initial condition.

Figure 45 – Error Quaternion - Random initial condition - 1U CubeSat: Weak gain (blue solid
line) and Strong gain (red dashed line).
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Once again, the Strong gain seems to achieve the objective in about eight orbits while
the Weak gain does not seem to be able to do it in the whole 24 orbits. The higher ini-
tial angular velocity in the Random initial condition demands more from the controller.
For this reason, the Weak gain configuration is not capable of reducing the satellite an-
gular velocity as fast as the Strong gain. This reflects directly on the attitude variations.
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Figure 46 – Angular velocity error - Random initial condition - 1U CubeSat: Weak gain (blue
solid line) and Strong gain (red dashed line).
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Considerable attitude oscillations can still be seen in the Weak gain results till the eighth
orbits.

Table 12 and Figure 47 present the energy used results. The Strong gain used more
energy again but but the difference has considerably decreased. When the objective is
taken into account, this greater use of energy might not be a problem. Since the Weak gain
did not end its effort, the energy required to get to the objective will increase, reducing
the usage difference between them and might even surpassing the Strong gain use.

Figure 47 – Energy used - Random initial condition - 1U CubeSat: Weak gain (blue solid line)
and Strong gain (red dashed line).
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Table 12 – Energy used on 1U CubeSat - Random initial condition.
Controller Energy (normalized)

Strong gain 1
Weak gain 0.778782

The individual use of each magnetorquer for each pair of gains is illustrated in Fig-
ures 48 and 49. Despite demanding more effort from the controller, the Random initial
condition did not produce saturation for these controller gains. This reinforces that the
magnetorquer model chosen would satisfy any controller input demand if it was used.
Again, since the objective was achieved by the Strong gain configuration, the optimized
control gain should be found closer to this value.

Figure 48 – Magnetoquer use for Weak gain - Random initial condition - 1U CubeSat.
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Figure 49 – Magnetoquer use for Strong gain - Random initial condition - 1U CubeSat.
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5 CONCLUSIONS

This Master’s dissertation presented a new effective approach to an active attitude
control strategy using magnetorquers as actuators for nanosatellites. The proposed control
law makes use of Earth’s magnetic field interaction with the orbiting satellite to determine
a fixed gain Γ̄ to the system, counterpointing an adaptive control gain Γav(t) describe pre-
viously in the literature. The control system not only keeps the stability of the system but
is also able to bring the satellite to its correct attitude despite the magnetorquer dynamic of
producing only torques orthogonal to the magnetic field. The periodicity of the magnetic
field allows the use of average theory to deal with the problem that its skew-symmetric
matrix cannot be inverted.

Simulation results showed that this fixed gain approach reduces energy use by the
attitude control system, reaching 70% economy in some cases. This, in turn, allows the
spacecraft to utilize this power for other mission purposes. Moreover, by fixing the gain,
this approach also removes the computational effort needed by an adaptive gain.

Among the key takeaways obtained from the simulation results, it can be mentioned
that spherical top bodies with small inertia matrices - a common configuration among
1U CubeSats - might require further attention in the control design since the magnetic
torque does not have to deal with all the terms of the dynamic since the inertia matrix
configuration removes one of the terms. Also, the controller gains Kp and Kv could be
chosen through an optimized method in order to improve the performance and energy
economy even more.

CubeSat satellite missions started as university hands-on projects but have since ex-
panded, with components being commercially manufactured nowadays. Nevertheless,
the missions continue to have restricted capacities due to their size and overall project
budgets. By reducing energy consumption as well as processing demands, the fixed gain
brings important benefits for spacecraft planning and operation. Beyond that, the fixed
controller was able to be used with different satellite inertia matrices.

The fixed gain Γ̄ was determined based on the orbital path, which is determined in the
mission objectives, in the planning phase. Since the targeted orbit and reference attitude
are necessary aspects of the mission, accurate magnetic field models can be used to accu-
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rately estimate the magnetic field that will interact with the satellite at the chosen orbit,
and consequently, the fixed gain. This gain is independent of the satellite characteristics
such as size, inertia matrix, and shape. Throughout this dissertation, the environmental
aspect of the magnetic field was modeled through two different methods present in the
literature: a simpler model to verify the controller approach and a more complex one to
assess the controller performance. The proposed fixed controller produced a reduction in
energy consumption when both models were used to determine and assess the fixed gain.

Further aspects, both internal and external to the satellite, should be added in future
analysis for a more complete assessment of a proposed satellite. Among these aspects, it
can be mentioned the reduction of actuator saturation, the inclusion of battery use restric-
tions, a more accurately determined inertia matrix, the inclusion of disturbance torques
(aerodynamic drag, solar pressure, gravity gradient, dipole), and a more accurate orbit
path for the satellite. Even though saturation did not pose a problem for the simulated
scenarios because it was considered only the magnetorquer nominal operation value, it
might occur due to other restrictions, such as battery capacity or mission tasks prioritiza-
tion, and should be taken into account while planning an active system.

Finally, other alternative approaches to the problem of invertibility of the skew sym-
metric matrix for the magnetic field S(B(t)) could be explored. For instance, the strongest
component of the magnetic field could be a factor used to define the controller gains. As
the magnetic field on the satellite varies, the component determining the gains is switched
in a way that the strongest component always contributes the most. Preliminary results
for situations similar to the ones presented in Chapter 4 are encouraging but further de-
velopment is still needed. This idea and its first results are shown in the appendix C.
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APPENDIX A VECTOR MANIPULATION

Cross product
Take two generic 3-dimensional vectors a and b given by

a =

a1a2
a3

 , b =

b1b2
b3


The cross product between a and b can be described as:

a× b =

a2b3 − a3b2

a3b1 − a1b3

a1b2 − a2b1

 =

c1c2
c3

 (88)

The resultant vector c will be perpendicular to both a and b. If vectors A and B are
parallel, i.e., if a = kb, k ∈ R, then

a× b = 0 (89)

It is possible to arrive at this result using the skew-symmetric matrix.

a× b = S(a)b =

 0 −a3 a2

a3 0 −a1
−a2 a1 0


b1b2
b3

 =

a2b3 − a3b2

a3b1 − a1b3

a1b2 − a2b1

 =

c1c2
c3

 , (90)

Scalar product
Take the same generic 3-dimensional vectors a and b as described before. The scalar

product (sometimes called dot product) of a and b can be calculated by

a · b = aT b = a1b1 + a2b2 + a3b3 = d (91)
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Vector decomposition
Consider the two generic 3-dimensional vectors a and b as described before. It is

possible to break up vector b into two vectors: a parallel to vector a called b||; and a
perpendicular to vector a called b⊥.

The parallel vector can be obtained by:

b|| =
(b · a)
||a||2 a (92)

where · is the dot product between vectors.
Once calculated the parallel vector, the perpendicular vector can be calculated using

the difference

b⊥ = b− b|| (93)

Skew Symmetric product
Consider a generic angular velocity vector W given by

W =
[
W1 W2 W3

]T
and a spherical top inertia matrix given by

J =

κ 0 0

0 κ 0

0 0 κ

 (94)

where κ > 0. For any value of W and κ, the product S(W )JW = 0.

S(W )JW =

 0 −W3 W2

W3 0 −W1

−W2 W1 0


κ 0 0

0 κ 0

0 0 κ


W1

W2

W3



S(W )JW = κ

 0 −W3 W2

W3 0 −W1

−W2 W1 0


W1

W2

W3

 = κ

−W3W2 +W2W3

W3W1 −W1W3

−W2W1 +W1W2



S(W )JW = κ

00
0

 =

00
0



(95)

This result is also valid if W has only one of its elements different from zero.
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Attitude Matrix properties
For a given quaternion q =

[
η ϵ1 ϵ2 ϵ3

]T

, its attitude matrix is defined by:

R(q) = (η2 − ϵT ϵ)I3 + 2ϵϵT − 2ηS(ϵ)

R(q) =

η
2 − ϵT ϵ 0 0

0 η2 − ϵT ϵ 0

0 0 η2 − ϵT ϵ

+ 2

 ϵ21 ϵ1ϵ2 ϵ1ϵ3

ϵ1ϵ2 ϵ22 ϵ2ϵ3

ϵ1ϵ3 ϵ2ϵ3 ϵ23

− 2η

 0 −ϵ3 ϵ2

ϵ3 0 −ϵ1
−ϵ2 ϵ1 0



R(q) =

η
2 + ϵ21 − ϵ22 − ϵ23 2ϵ1ϵ2 + 2ηϵ3 2ϵ1ϵ3 − 2ηϵ2

2ϵ1ϵ2 − 2ηϵ3 η2 − ϵ21 + ϵ22 − ϵ23 2ϵ2ϵ3 + 2ηϵ1

2ϵ1ϵ3 + 2ηϵ2 2ϵ2ϵ3 − 2ηϵ1 η2 − ϵ21 − ϵ22 + ϵ23

 .
(96)

Thus, when taking into account the property

η2 + ϵ21 + ϵ22 + ϵ23 = 1 (97)

it follows that
R(q)R(q)T = I. (98)

Therefore,
R(q)−1 = R(q)T (99)

and that
det

(
R(q)

)
= 1. (100)

It can be seen from (96) that R(q) = I when q =
[
1 0 0 0

]T

. Thus, when the
quaternion q describes no rotations, then its attitude matrix R(q) will be I . Also, as
presented by (ZHAO, 2016), the time derivative of the attitude matrix R(q) is given by:

Ṙ(q) = S(ω)R(q), (101)

where ω is the angular velocity within which the quaternion is rotating.
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APPENDIX B MATLAB CODES

The following diagram illustrates how the MATLAB codes were organized in order
to create the simulations for this dissertation. The codes for each function are presented
after the diagram.

Figure 50 – MATLAB codes Diagram.

Source: The author.

Run simulation

%% 04/2023 Initial dynamic environment for orbit control

clc

clear all

close all

%% Constants

J = 0.002*eye(3) % kg m^2 - 1U

%% Earth

r_earth = 6.37; % Thousand of km

%% Reference satellite

orbit_angle = 0; % initial position in the orbit

%% Dynamics
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% Simulation parameters

global T T_orbit

T_orbit = 5760; % Seconds per orbit

T = 1/5; % Seconds sim step

N_orbit = 8; % Number of orbits

steps = T_orbit*N_orbit/T; % Number of simulation steps

tspan = [0 T]; % for ode23 simulation

k = 1; % Counter

options = odeset('RelTol',1e-3,'MaxStep',T);

%% Satellite and Reference attitude parameters

% Euler Angles Initial values

o_sat = [0; pi; pi/2]; % Upside down initial condition

o_ref = [0; 0; pi/2];

% Quaternion Initial values

q_sat = ea2q(o_sat); % Euler Angle to quaternion

q_ref = ea2q(o_ref); % Euler Angle to quaternion

q_er = zeros(4,steps);

q_er(:,1) = ErrorQuaternion(q_sat, q_ref);

n = q_er(1,1);

e = q_er(2:4,1);

% Angular velocity Initial values - rad/second

w_ref = 2*pi/T_orbit;

w_sat = zeros(3,steps);

w_sat(:,1) = [1 1 1]'*w_ref; % Upside down

% Angular velocity error

w_er_recording = zeros(3,steps);

w_er = w_sat(:,1) - ( (n^2 - e'*e)*eye(3) + 2*e*e' - 2*n*SS

(e) )*[0; w_ref; 0; ];

w_er_recording(:,1) = w_er;

% Satellite state vector

IC = [ q_sat(:,1) ; w_sat(:,1)];

xsat = zeros(7,steps);
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xsat(:,1:2) = [IC IC];

% Reference state vector

IR = q_ref;

REFq = zeros(4,steps);

REFq(:,1:2) = [IR IR];

% Control signal initial value

m = zeros(3,steps);

m1 = zeros(3,steps);

% Gamma Average initial value

Gama_av = zeros(3,3,steps);

Gama_av(:,:,1) = Gama(0, q_sat);

Eigen = zeros(3,steps);

Eigen(:,1) = eig(Gama_av(:,:,1));

% Magnetic Field

B_recording = zeros(3, steps);

B_on_sat_recording = zeros(3, steps);

% Energy

energy = 0;

Energy_used = zeros(1,steps);

% Ploting Error Quaternion

figure(1)

PlotDATA1 = plot(subplot(4,1,1), nan,nan);

set(PlotDATA1,'YData',q_er(1,1:100:end),'XData',(1:100:

steps)*T/T_orbit)

PlotDATA2 = plot(subplot(4,1,2), nan,nan);

set(PlotDATA2,'YData',q_er(2,1:100:end),'XData',(1:100:

steps)*T/T_orbit)

PlotDATA3 = plot(subplot(4,1,3), nan,nan);

set(PlotDATA3,'YData',q_er(3,1:100:end),'XData',(1:100:

steps)*T/T_orbit)
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PlotDATA4 = plot(subplot(4,1,4), nan,nan);

set(PlotDATA4,'YData',q_er(4,1:100:end),'XData',(1:100:

steps)*T/T_orbit)

%% Simulation loop

N = 1;

N2= 1; % extra counter

for k=1:steps

% Control Law

% [m1(:,k), Gama_av(:,:,k+1), Btil_0, Btil] =

Control_law_Adaptive(k, q_er(:,k), w_er, Gama_av(:,:,k))

;

[m1(:,k), Btil_0, Btil] = Control_law_Fixed(k, q_er(:,k)

, w_er);

% Energy used

energy = energy + sqrt(m1(:,k)'*m1(:,k));

Energy_used(k) = energy;

m(:,k) = m1(:,k);

% Saturation - Normalized % MT01 AECE

if m1(1,k) > 0.0019

m(1,k) = 0.0019;

else

if m1(1,k) < -0.0019

m(1,k) = -0.0019;

else

m(1,k) = m1(1,k);

end

end

if m1(2,k) > 0.0019

m(2,k) = 0.0019;

else

if m1(2,k) < -0.0019

m(2,k) = -0.0019;

else

m(2,k) = m1(2,k);

end
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end

if m1(3,k) > 0.0019

m(3,k) = 0.0019;

else

if m1(3,k) < -0.0019

m(3,k) = -0.0019;

else

m(3,k) = m1(3,k);

end

end

% Eigen value for Gama

Eigen(:,k) = eig(Gama_av(:,:,k));

% Update Reference state

[t,x_ref] = ode45(@dyn_rigid_body_ref, tspan, REFq(:,k)

, options, [0; w_ref; 0; ]);

REFq(:,k+1) = x_ref(end,:)';

q_ref = REFq(1:4,k+1);

% Update Satellite state

[t,xq] = ode45(@dyn_cube_sat, tspan, xsat(:,k), options

, J, m(:,k), Btil);

xsat(:,k+1) = xq(end,:)';

q_sat = xsat(1:4,k+1);

w_sat(:,k+1) = xsat(5:7, k+1);

% Update Quaternion error

q_er(:,k) = ErrorQuaternion(q_sat, q_ref);

n = q_er(1,k);

e = q_er(2:4,k);

% Update Angular Velocity error

w_er = w_sat(:,k+1) - ( (n^2 - e'*e)*eye(3) + 2*e*e' -

2*n*SS(e) )*[0; w_ref; 0; ];

w_er_recording(:,k) = w_er;

% Record magnetic field

B_on_sat_recording(:, k) = Btil;
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B_recording(:, k) = Btil_0;

% Loop progress checkpoint

if(k==T_orbit*N/T/100)

clc;

disp(N)

if(k==T_orbit*N2/T/10)

set(PlotDATA1,'YData',q_er(1,1:100:end),'XData'

,(1:100:steps)*T/T_orbit)

set(PlotDATA2,'YData',q_er(2,1:100:end),'XData'

,(1:100:steps)*T/T_orbit)

set(PlotDATA3,'YData',q_er(3,1:100:end),'XData'

,(1:100:steps)*T/T_orbit)

set(PlotDATA4,'YData',q_er(4,1:100:end),'XData'

,(1:100:steps)*T/T_orbit)

drawnow

N2 = N2+1;

end

N = N + 1;

end

% Update Orbit Angular Position

orbit_angle = orbit_angle + w_ref*T;

end

Euler angles to quaternion

function [ q ] = ea2q( ea )

% Convert Euler angles to quaternion

cang = cos( ea/2 );

sang = sin( ea/2 );

q = [-sang(1,:).*sang(2,:).*sang(3,:) + cang(1,:).*cang

(2,:).*cang(3,:);

sang(1,:).*cang(2,:).*cang(3,:) + sang(2,:).*sang(3,:)

.*cang(1,:);

-sang(1,:).*sang(3,:).*cang(2,:) + sang(2,:).*cang(1,:)
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.*cang(3,:);

sang(1,:).*sang(2,:).*cang(3,:) + sang(3,:).*cang(1,:)

.*cang(2,:);];

end

Error quaternion

function q_error = ErrorQuaternion(q_sat, q_ref)

% Calculates error quaternion

q0 = q_sat(1);

q0d = q_ref(1);

qv = [q_sat(2) q_sat(3) q_sat(4)]';

qvd = [q_ref(2) q_ref(3) q_ref(4)]';

q0_error = q0*q0d + qv'*qvd;

qv_error = q0d*qv - q0*qvd + SS(qv)*qvd;

q_error = [q0_error; qv_error];

end

Skew Symmetric

function [ S ] = SS( x )

% Skew-symmetric matrix

S = [ 0, -x(3), x(2);

x(3), 0, -x(1);

-x(2), x(1), 0;];

end

Control law Fixed

function [m, Btil_0, Btil] = Control_law_Fixed(k, q_ref,

q_sat, w_er)

% Fixed Control Law function for run_sim
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global T_orbit T;

% Gains - 1 U CubeSat

varepsilon = 0.001;

Kp = 500*0.00001;

Kv = 200*0.00001;

% Error Quaternion

q_er = ErrorQuaternion(q_sat, q_ref);

mu_f = 7.9*10^15; % Wb*m

i_m = 87*pi/180; % Inclination (rad)

a = 6820000; % Semi-major axis (m)

we = 2*pi/T_orbit; % Angular velocity

Btil_0 = mu_f/a^3*[2*sin(we*k*T)*sin(i_m);

cos(we*k*T)*sin(i_m);

cos(i_m);];

% Fixed Gain

inv_K = [ 1.4393, 0.0997, 0.0681;

0.0997, 1.2874, 0.0794;

0.0681, 0.0794, 1.9383;];

% Magnetic Field on satellite

Btil = q2R(q_sat)*Btil_0;

B = 1/norm(Btil)*Btil;

MagField = Btil_0;

G = - varepsilon^2 * Kp * inv_K * q_er(2:4) -

varepsilon * Kv * w_er;

% Magnetic Moment

m = -vpa(cross(Btil/norm(Btil), G/norm(Btil)));

end

Control law Adaptive
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function [m, Gama_av, Btil_0, Btil] = Control_law_Adaptive(

k, q_ref, q_sat, w_r, Gama_av)

% Adaptive Control law function for run_sim

% update Gamma_av

[temp, Btil_0, Btil] = Gama(k, q_sat);

if k<2

Gama_av = temp;

else

Gama_av = 1/k*temp + (1-1/k)*Gama_av;

end

% Error Quaternion

q_er = ErrorQuaternion(q_sat, q_ref);

% Eigenvalue criteria

if (rank(Gama_av)<3 || min(eig(Gama_av))< 0.1)

u = -0.2 * w_r ;

else

u = -inv(Gama_av)*(0.0005 * q_er(2:4) + 0.2 * w_r);

end

% Magnetic moment

m = 1/norm(Btil)^2*SS(Btil)'*u;

end

Gama

function [Gama, Btil_0, Btil] = Gama(k, q_sat)

% Calculates Gamma for Simple Model

global T T_orbit

mu_f = 7.9*10^15; % Wb*m

i_m = 87*pi/180; % Inclination (rad)

a = 6820000; % Semi-major axis (m)

we = 2*pi/T_orbit; % Angular velocity
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Btil_0 = mu_f/a^3*[2*sin(we*k*T)*sin(i_m);

cos(we*k*T)*sin(i_m);

cos(i_m);];

Btil = q2R(q_sat)*Btil_0;

B = 1/norm(Btil)*Btil;

Gama = SS(B)*SS(B)';

end

Attitude matrix - quaternion

function [ R ] = q2R( q )

% Create attitude matrix for quaternion q

q1 = q(1);

q2 = q(2);

q3 = q(3);

q4 = q(4);

R = [ q1^2+q2^2-q3^2-q4^2, 2*(q2*q3-q1*q4), 2*(q2

*q4+q1*q3);

2*(q2*q3+q1*q4), q1^2-q2^2+q3^2-q4^2, 2*(q3

*q4-q1*q2);

2*(q2*q4-q1*q3), 2*(q3*q4+q1*q2), q1^2-

q2^2-q3^2+q4^2;];

end

Dynamics Reference

function dx = dyn_rigid_body_ref(t, x, w_ref)

%DYNAMIC EQUATIONS of the reference, x \in R^7

n = x(1);

e = x(2:4);

dx = zeros(4,1);

dn = -0.5*(e'*w_ref);
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de = 0.5*(n*eye(3) + SS(e))*w_ref;

dx(1) = dn;

dx(2) = de(1);

dx(3) = de(2);

dx(4) = de(3);

end

Dynamics CubeSat

function dx = dyn_cube_sat(t, x, J, m, Btil)

%DYNAMIC EQUATIONS OF A rigid body, x \in R^7

n = x(1);

e = x(2:4);

w = x(5:7);

q_sat = [x(1); x(2); x(3); x(4)];

dn = -0.5*(e'*w);

de = 0.5*(n*eye(3) + SS(e))*w;

dw = J\(SS(w)*J*w + SS(Btil)*m);

dx = zeros(7,1);

dx(1) = dn;

dx(2) = de(1);

dx(3) = de(2);

dx(4) = de(3);

dx(5) = dw(1);

dx(6) = dw(2);

dx(7) = dw(3);

end
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APPENDIX C FUTURE PERSPECTIVES

Considering that the main aspects of an active attitude control system that uses mag-
netorquers are the variation of the magnetic field seen on the satellite B(t) and the torque
created through the cross product betweenB(t) and the magnetic momentm(t) generated
by the magnetorquers, a possible control approach is to determine the strongest magnetic
field component acting over the satellite and switches the control signal applied over the
magnetorquers based on that factor. The rationale behind this idea is to avoid unnecessary
control efforts while keeping the system controllable.

The cross-product used to calculate the magnetic torque makes it possible to control
two axes in the satellite’s frame at a time while nullifying one direction. Due to this
restriction, a control strategy could be set to identify and focus the control efforts on the
axes that can be controlled. By measuring the axis with the most prominent value from
the magnetic field B(t), three possible auxiliary vectors B̂i can be written, each created
with one of the three components of B(t):

B̂1 =
[
−1/BX(t) 0 0

]
B̂2 =

[
0 −1/BY (t) 0

]
B̂3 =

[
0 0 −1/BZ(t)

] (102)

These three vectors can be converted into matrices by applying the skew-symmetric
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matrix to them. The results are the matrices S(B̂i):

S(B̂1) =

0 0 0

0 0 1/BX

0 −1/BX 0

 ,

S(B̂2) =

 0 0 −1/BY

0 0 0

1/BY 0 0

 ,

S(B̂3) =

 0 1/BZ 0

−1/BZ 0 0

0 0 0

 .

(103)

The purpose of these auxiliary matrices is to generate a magnetic moment ms(t) in
the form

ms(t) = −S(B̂i(t))Γ̄
(
Kpϵ(t) +Kvω(t)

)
(104)

such that, for a full orbit, the control input obtains

lim
t→∞

S(B̃(t))S(B̂i(t)) = I (105)

The product S(B(t))S(B̂i(t)) results in three possible matrices:

S(B(t))S(B̂1(t)) =

0 −BY (t)
BX(t)

−BZ(t)
BX(t)

0 1 0

0 0 1

 ,

S(B(t))S(B̂2(t)) =

 1 0 0

−BX(t)
BY (t)

0 −BZ(t)
BY (t)

0 0 1

 ,

S(B(t))S(B̂3(t)) =

 1 0 0

0 1 0

−BX(t)
BZ(t)

−BY (t)
BZ(t)

0

 .

(106)

The resulting matrices are not an identity matrix as desired but by analyzing the varia-
tion of the chosen Bi(t) parameter through a satellite following the reference in the same
polar orbit described in this dissertation, using the Simple model for the magnetic field, it
is possible to see that there is a periodic alternation between chosen parameters B̂i. Figure
51 illustrates this variation for five orbits.

Considering the same inertia matrix J = diag(
[
50 5 60

]
) used before (even though

the elements of the diagonal do not respect the triangular inequality), and the same random
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Figure 51 – Chosen parameter B̂i.
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initial condition, the results obtained by this switching strategy are quite promising. This
control approach needed a similar time to achieve the attitude objective but required less
energy than both the adaptive and the fixed controllers, as illustrated in Figures 52 and 53.

Figure 52 – Comparison of Error Quaternion for different controllers - Random Initial condition.
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The downside of this approach is that it wastes some energy by producing a mag-
netic moment ms(t) that is not completely perpendicular to the magnetic field B(t). The
amount of energy wasted is considerable, as shown in Figure 53. Despite this consider-
able waste of the effort, the switched approach obtained the lowest energy use among the
three controllers compared. Table 13 summarizes these results.



89

Figure 53 – Comparison of Energy used by controllers - Random initial condition.
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Table 13 – Energy used by controllers - Random initial condition.
Controller Energy (normalized)
Adaptive 1

Fixed 0.8618
Switched 0.8250

Switched (waste) 0.3215

Despite the promising result, further development should be made into this switching
strategy to extend this result to other initial conditions and to improve its energy effi-
ciency.


