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Abstract

This work is a follow-up of the article [Proc. London Math. Soc. 119(2):358–378, 2019], where the
authors solved the problem of counting labelled 4-regular planar graphs. In this paper, we obtain a precise
asymptotic estimate for the number gn of labelled 4-regular planar graphs on n vertices. Our estimate is
of the form gn ∼ g · n−7/2ρ−nn!, where g > 0 is a constant and ρ ≈ 0.24377 is the radius of convergence
of the generating function

∑
n≥0 gnx

n/n!, and conforms to the universal pattern obtained previously
in the enumeration of several classes of planar graphs. In addition to analytic methods, our solution
needs intensive use of computer algebra in order to deal with large systems of multivariate polynomial
equations. We also obtain asymptotic estimates for the number of 2- and 3-connected 4-regular planar
graphs, and for the number of 4-regular simple maps, both connected and 2-connected.

1 Introduction and statement of results

This paper is a follow-up of [14], where the authors solved the problem of counting labelled 4-regular
planar graphs. The solution was based on decomposing a 4-regular planar graph along its 3-connected
components and finding equations relating the generating functions associated to several classes of planar
graphs and maps. Our main contribution here is a precise asymptotic estimate for the number of 4-regular
planar graphs.

Starting from the systems of equations in [14], we determine the dominant singularities of the gener-
ating functions and compute the corresponding singular expansions. Since the functions involved are in
all cases algebraic, this can be done through the computation of discriminants (selecting the right factor)
and Puiseux expansions (selecting the right branch). Then, using singularity analysis [8] we show that
the number of labelled 4-regular planar graphs on n vertices is asymptotically (understood throughout
the paper as n → ∞) equal to

gn ∼ g · n−7/2γnn!, (1)

where g > 0 is a constant, γ = ρ−1 ≈ 4.10228 and ρ is the radius of convergence of
∑

n≥0 gnx
n/n!.

Analogous results hold for the number of 2- and 3-connected 4-regular planar graphs, and also for simple
4-regular maps. The estimates conform in all cases to the universal pattern obtained previously in the
enumeration of planar graphs and maps [3, 1, 10, 15].

The asymptotic enumeration of labelled planar graphs and related classes of graphs is currently an
active area of research. A relevant starting point was the enumeration of 2-connected planar graphs [1],
which opened the way to the full enumeration of all planar graphs [10], and to the enumeration of graphs
on surfaces [4] and of several minor-closed classes of graphs [9, 11].

Cubic (that is, 3-regular) planar graphs were counted in [3] and analyzed further in [15]. In all these
cases the solution is obtained through generating functions. Let A be a class of labelled graphs closed
under isomorphism and let A(x) =

∑
anx

n/n! be the associated generating function, where an is the
number of graphs in A with n vertices. The first task is to locate the radius of convergence ρ of A(x)
which in most cases is the unique singularity of smallest modulus (an exception are cubic graphs since
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they have necessarily an even number of vertices, so that A(x) is even and both ±ρ are singularities).
This gives the exponential growth ρ−nn! for an.

The next task is to obtain the subexponential term, which for all the classes described, including 4-
regular planar graphs in this paper, is of the form c ·n−7/2 for some c > 0. The rationale for this pattern
comes from the enumeration of planar maps (see Section 2). For all ‘natural’ classes of planar maps,
the subexponential term is n−5/2. This phenomenon has been explained in a number of ways. Probably
the most combinatorial explanation is that maps are in bijection with ‘enriched’ trees up to the choice
of the root vertex in the tree (see [16, Chapter 5]), but it can also be explained analytically [7]. Since
the subexponential term for trees is systematically n−3/2, the one for maps becomes n−3/2/n = n−5/2.
In the enumeration of planar graphs up to date, the starting point has been the subclass of 3-connected
graphs in A. But since by Whitney’s theorem [18] a 3-connected planar graph admits a unique embedding
in the sphere up to the choice of the orientation, counting 3-connected planar graphs is equivalent to
counting 3-connected planar maps. Typically the generating function of maps are algebraic, leading
to singularities of square-root type, hence to subexponential terms of the form n−α, where α is a half
integer. Maps are rooted at an edge, hence the subexponential term in classes of unrooted maps is
typically n−5/2/n = n−7/2. The same is true for planar graphs: graphs rooted at a vertex or at an edge
give rise to an n−5/2 term, while for unrooted graphs it is n−7/2, as in our main result (1). However,
this is not true for series-parallel or outerplanar graphs [2] and more generally for ‘subcritical’ classes
of graphs [6]. The reason is that graphs in these classes are made of a linear number of small blocks
and behave like trees, so that the subexponential term for unlabelled graphs is n−5/2 instead of n−7/2

(see [11] for a general discussion).
Several open problems remain in the enumeration of planar graphs, most notable the enumeration

of unlabelled planar graphs. Not even the growth constant γu is known. It is however possible to show
that γu > γ ≈ 27.23, where γ is the constant for labelled planar graphs, and also the upper bound
γu < 30.06 (see the discussion in [10]). Other natural open problems in the enumeration of planar graphs
are: bipartite, triangle-free (more generally, H-free for fixed graph H), 4-connected and 5-regular.

A technical obstacle in our analysis is the size of the multivariate polynomials equations involved, in
terms of the degree and the size of the coefficients, when one performs elimination. To overcome this
situation, we use the classical technique of evaluation and polynomial interpolation for elimination [17].
This results in quite large equations (two of them would need about 30 pages each to be printed), but
remains within the capabilities of the Maple computer algebra system using a powerful computer.

We first find the equations for 3-connected 4-regular planar maps counted according to simple and
double edges. In order to guarantee correctness of our results, we need an upper bound on the degree
of the resultant. In our case the best upper bound we obtain is 160, hence we have to interpolate at
161 points to guarantee the correctness of the result. In this way, we obtain the minimal polynomials
satisfied by the generating functions T1(u, v) and T2(u, v) counting 3-connected 4-regular planar maps,
as given in Appendix B.

Once the equations for the Ti(u, v) are obtained explicitly, further elimination yields the minimal
polynomial P (x, y) satisfied by the generating function C•(x) = xC′(x) of vertex-rooted connected 4-
regular planar graphs. Since the polynomial P is too large to be displayed in print, we provide a link
to fully annotated Maple files1, where all our computations can be reproduced. In the sequel we refer to
these files as “the Maple sessions”. From P we compute the dominant singularity of C(x), which turns out
to be an algebraic number of degree 14, as shown in Theorem 1. Then we perform similar computations
for 2-connected and 3-connected 4-regular planar maps, as well as for 4-regular simple maps (in this last
case the minimal polynomials are small enough to be reproduced in Appendix D). These results together
with the corresponding asymptotic estimates are the content of the following three theorems.

1https://requile.github.io/4-regular_planar_maple.zip
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Our main result is an estimate for the number of connected and arbitrary 4-regular planar graphs.

Theorem 1. (a) The number cn of connected 4-regular labelled planar graphs is asymptotically

cn ∼ c · n−7/2 · γn · n!, with c ≈ 0.0013911 and γ = ρ−1 ≈ 4.10228,

where ρ ≈ 0.24377 is the smallest positive root of

12397455648000x14 + 99179645184000x13 − 263210377713408x11

+ 4123379191922784x10 − 1230249287613888x9

− 18655766288483533x8 + 51831438989552290x7

+ 97598878903661028x6 + 620596059256280x5

+ 15894289357702528x4 − 63729042783408384x3

− 66418928650596352x2 + 64476004593270784x

− 109267739753840648 = 0.

(2)

(b) The number gn of 4-regular labelled planar graphs with n vertices is asymptotically

gn ∼ g · n−7/2 · γn · n!,

where g > 0 is a constant and where γ is as in (a).

Although we cannot determine the constant g in the previous statement analytically, its existence can
be shown as follows. Since the class of 4-regular planar graphs is closed under disjoint unions, it follows
from a standard argument that the number of connected components in the class is asymptotically
distributed like 1 + X, where X is a Poisson random variable with parameter λ = C(ρ). Hence the
probability that a random graph is connected tends to p = e−λ as n → ∞. We cannot compute C(ρ)
since we only have access to the derivative C′(x), which is an algebraic function of degree 29 as explained
in Section 6. If the algebraic curve defined from the minimal polynomial satisfied by C′(x) were rational
(i.e. of genus 0), one could find a rational parametrization and integrate it. But it actually has genus
30, which prevents us from integrating it in that way.

Instead, to estimate p we use cn/gn for n fixed and as large as we can. For instance, we obtain
the value c50/g50 ≈ 0.999987. We only know that the rate of convergence of cn/gn is of order O(1/n),
because of general principles of analytic combinatorics, and thus we are unable to establish a confidence
interval. This value for p close to 1 makes sense since the smallest connected component is the graph
of the octahedron, which is relatively large. By contrast, the probability that a random planar graph is
connected tends to 0.96325 (see [10]), while for a random cubic planar graph it is 0.999397 (see [15]).

Our next result are estimates for the number of 3- and 2-connected 4-regular planar graphs.

Theorem 2. (a) The number tn of 3-connected 4-regular labelled planar graphs with n vertices is asymp-
totically

tn ∼ t · n−7/2 · (γ3)n · n!,with t ≈ 0.0012070 and γ3 = τ−1 ≈ 4.08978,

where τ = 88−12
√

21
135

≈ 0.24451.

(b) The number bn of 2-connected 4-regular labelled planar graphs with n vertices is asymptotically

bn ∼ b · n−7/2 · (γ2)n · n!,with b ≈ 0.0000575832 and γ2 = β−1 ≈ 4.10175,

where β ≈ 0.2437981094 is the smallest positive root of

12397455648000x11 + 24794911296000x10 − 148769467776000x9

+ 1125304654862592x8 − 451035134375328x7

− 7923244598779392x6 + 38505114557935859x5

− 67113688868067728x4 + 70322996382137760x3

− 43445179814077952x2 + 12857755940483072x

− 1365846746923008 = 0.

(3)
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The last result deals with the number of simple 4-regular maps. The enumeration of (non-necessarily
simple) 4-regular maps is rather direct, since they are in bijection with arbitrary maps [16, Chapter 5].
But forbidding loops and multiple edges makes the problem much more challenging.

Theorem 3. (a) The number un of 4-regular simple maps with n vertices is asymptotically

un ∼ s · n−5/2 · σ−n,with s ≈ 0.016360 and σ−1 ≈ 4.13146,

where σ ≈ 0.24204 is the smallest positive root of

432x8 + 448x7 − 852x6 + 588x5 − 72x4 − 504x3 + 135x2 + 108x− 27 = 0. (4)

(b) The number hn of 2-connected 4-regular simple maps is asymptotically

hn ∼ h · n−5/2 · η−n,with h ≈ 0.014477 and η−1 ≈ 4.122915,

where η ≈ 0.24255 is the smallest positive root of

108x6 + 4x5 − 136x4 + 344x3 − 425x2 + 196x− 27 = 0. (5)

Remark. The constants involved in the previous theorems are polynomial functions in the dominant
singularity of their respective generating function with coefficients in Q[π] (this is due to the Γ function,
see Lemma 4 in Section 6). From those polynomials, and using the polynomial equations satisfied by
the dominant singularities, one can also write the constants implicitely as solutions of minimal polyno-
mials in Z[π]. At the exception of constant g, the minimal polynomial of each constant is given in the
corresponding file in the Maple sessions, or in separate files for b and c. In addition, all the polynomials
shown are irreducible and their integer coefficients have no common factor.

The rest of the paper is organised as follows. In Section 2 we recall the basic definitions on planar
graphs and maps, then on algebraic generating functions. In Sections 3 and 4 we recall first the various
combinatorial objects introduced in [14] and then the equations satisfied by the associated generated
functions. Then by elimination we find the minimal polynomials of quadrangulations and 3-connected
4-regular maps. In Section 5 we use the results of the previous section to compute minimal polynomials
for 4-regular planar graphs and maps. Finally in Section 6, after providing an analytic lemma, we obtain
the asymptotic estimates for all the graphs and maps of interest.

2 Preliminaries

2.1 Planar graphs and maps

Throughout the paper, graphs are labelled and maps are unlabelled. A graph is planar if it admits an
embedding on the plane without edge-crossings. A planar map is an embedding of a planar multigraph
up to orientation preserving homeomorphisms of the sphere. It is simple if the underlying graph is simple.
A planar map M is always considered rooted: an edge ab of M is distinguished and given a direction
from a to b. The vertex a is the root vertex and the face on the right of ab as the root face. Any other
face is called an inner face of M . Vertices incident with the root face are called external vertices.

A map in which every vertex (resp. face) has degree four is said to be 4-regular (resp. a quadrangula-
tion). By duality, quadrangulations are in bijection with 4-regular maps. Notice that quadrangulations
can have “degenerate” faces consisting of a double edge with an isthmus inside. A quadrangulation with
at least eight vertices is irreducible if every 4-cycle forms the boundary of a face. Irreducible quadrangu-
lations are known to be in bijection with 3-connected maps (see [1]).

The following concepts are taken from [14] (see also [13]). A diagonal in a quadrangulation is a path
of length two whose endpoints are external and the central point is internal. If uv is the root edge, then
there are two kinds of diagonals, those incident with u and those incident with v. By planarity both
cannot be present at the same time. A vertex of degree two in a quadrangulation is called isolated if it is
not adjacent to another vertex of degree two. An isolated vertex of degree two will be called a 2-vertex.
By duality, a 2-vertex becomes (in the corresponding 4-regular map) a face of degree two not incident
with another face of degree two. We call it a 2-face. Furthermore, we say that an edge is in a 2-face if
it is on its boundary, and ordinary otherwise. Note that since the number of edges of a 4-regular map is
even, so is the number of ordinary edges.
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2.2 Algebraic generating functions

A power series f(x) is algebraic if it satisfies a polynomial equation of the form

P (f(x), x) = pk(x)f(x)
k + pk−1(x)f(x)

k−1 + · · ·+ p1(x)f(x) + p0(x) = 0,

where the pi’s are polynomials in x. If the polynomial P (y, x) is irreducible then it is unique and is
called the minimal polynomial of f(x). An algebraic power series f(x) with non-negative coefficients is
represented as a branch of its minimal polynomial P (y, x) in the positive quadrant passing through the
origin. This last condition represents the fact that there is no graph with an empty vertex set. We call
this branch the combinatorial branch. It defines an analytic function in a disk centered at the origin with
positive radius of convergence ρ. Since the coefficients of f(x) are non-negative, it holds by Pringsheim’s
theorem [8, Theorem IV.6] that ρ is a singularity of f(x), called the dominant singularity. In this paper
ρ will always be a branch-point (f(ρ), ρ) of P (y, x), that is, one of the common roots of

∂P

∂y
(y, x) = 0, P (y, x) = 0,

It is a positive root of a factor of the discriminant of P (y, x) with respect to y (see [8, Section VII.7]).
All the algebraic power series f(x) in this paper admit a Puiseux expansion as x → ρ− (i.e. |x| < ρ and
x → ρ) of the form

f(x) = f0 − f2

(
1− x

ρ

)
+ f3

(
1− x

ρ

)3/2

+O

((
1− x

ρ

)2
)
,

which is the local expansion of f(x) near ρ− corresponding to the combinatorial branch of P (y, x). Note
that f0, f2 and f3 are algebraic functions in ρ and are thus algebraic constants as ρ also is. Furthermore,
we always have f0, f2, f3 > 0.

Using the Newton polygon algorithm (see [12, Section 6.3]), one can compute any coefficent of this
expansion exactly, i.e. in closed form or as root of a given polynomial, in time polynomial in the degree
of f(x). This algorithm has been implemented as the function puiseux in the Maple package algcurves

and this is what we use in Section 6.

3 Equations for quadrangulations

We follow the combinatorial scheme introduced in [14, Section 2], which we summarize here. Following
Mullin and Schellenberg in [13], we partition simple quadrangulations into three families:

(S1) The quadrangulation consisting of a single quadrangle.

(S2) Quadrangulations containing a diagonal incident with the root vertex. By symmetry, they are in
bijection with quadrangulations containing a diagonal not incident with the root vertex. Each of
those two classes can be partitioned into three sub-classes Ni for i = 0, 1, 2, according to the number
i of external 2-vertices.

(S3) Quadrangulations obtained from an irreducible quadrangulation by possibly replacing each internal
face with a simple quadrangulation. We denote this family by R.

We use simple quadrangulations to obtain generating functions for general quadrangulations encoding
2-vertices [14, Section 2.2]. This is done in two steps. First, we obtain equations for quadrangulations of
the 2-cycle (see [14, Lemma 2.3]). We denote by A = A0 ∪ A1 the quadrangulations of a 2-cycle, where
A1 are those whose root vertex is a 2-vertex (by symmetry, they are in bijection with those in which the
other external vertex is a 2-vertex), and A0 are those without external 2-vertices.

Finally we obtain equations for arbitrary quadrangulations B. We decompose B = B0∪B∗
0∪B1, where

B1 are those in which the root edge is incident with exactly one 2-vertex, and B0 ∪B∗
0 are those in which

the root edge is not incident with a 2-vertex. Furthermore, B∗
0 are the quadrangulations obtained by

replacing one of the two edges incident with the root edge in the single quadrangle with a quadrangulation
of the 2-cycle.
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Irreducible quadrangulations. We use [1, Equation (9)]. Let sn be the number of irreducible
quadrangulations with n inner faces. Then the associated generating function S(y) =

∑
n≥0 sny

n satisfies
the following implicit system of rational equations

S(y) =
2y

1 + y
− y − U(y)2

y(1 + 2U(y))3
, U(y) = y(1 + U(y))2.

Eliminating U(y) from the above system and factorising gives us a polynomial satisfied by S(y). Then
by expanding the roots of each factor in series of y near zero, one can check that the minimal polynomial
of R(y) is given by

PS(S(y), y) = (y5 + 8y4 + 25y3 + 38y2 + 28y + 8)S(y)2

+ (2y6 + 12y5 + 20y4 + 10y3 − 5y2 − 4y + 1)S(y)

+ (y7 + 4y6 − y5) = 0.

(6)

From irreducible quadrangulations to simple quadrangulations. We use variables s and
t to mark inner faces and 2-vertices, respectively. We write Ni = Ni(s, t) (i = 0, 1, 2) for the generating
function of the subclass Ni counting both the number of inner faces and 2-vertices. We denote by
R = R(s, t) the generating function associated to R. By rewriting the system (1) in [14] using these
variables we get:

y = s+ 2Ñ + S(y),

t2Ñ = t2N0 + tN1 +N2,

tN0 = (Ñ +R)
(
t(Ñ +R+N0) +

N1
2

)
,

N1 = 2st
(
Ñ +R+N0 +

N1
2

)
,

N2 = s2t3 + st
(
N1
2

+N2

)
,

(7)

where y is a function of s and t.

From simple quadrangulations to general quadrangulations. We use z and w to mark inner
faces and 2-vertices, respectively. In the following system of equations, variables s and t are considered
as functions of z and w. As in (7), we write Ni = Ni(s, t) (i = 0, 1, 2). We denote by Aj = Aj(s, t) the
generating function of the family Aj (j = 0, 1).

The equations in this context are as follows; see the details in [14]. In particular, the topmost equation
in page 365, together with Equation (2) and the equations in Lemmas 2.3 and 2.4:

s = z(1 + Ã)2,

t(1 + Ã)2 = w + 2Ã+ Ã2,

Q0 = s(2N0 +N1 + S(y)) + (2Ã+ Ã2)Q1,
tQ1 = N1 + 2N2,

E = z(1 + Ã)4 − 4zÃ2 + 4zwÃ2,

wÃ = wA0 + 2A1,

wÂ = wA0 + (1 + w)A1,

A0 = 2zÃ(1 + Â)

+z(Q0 +Q1 + E + 2z(w − 1)Ã+ 2z(1− w)Ã2),

A1 = zw(1 + Â).

(8)

Then (see Lemma 2.5. in [14]) we have that

B0 = 2z(1 + Â)(1 + Â−A1) + z(Q0 + E − 2zwÃ2 − 2zÃ), (9)

B1 = 2z(1 + Â)A1 + zw(Q1 + 2zÃ2), (10)

B∗
0 = 2z2Ã. (11)

We define next three systems of algebraic equations:

S0 = (7) ∪ (8) ∪ (9), S1 = (7) ∪ (8) ∪ (10), S∗
0 = (7) ∪ (8) ∪ (11).
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Each of these systems is composed of sixteen equations, eighteen variables, and is strongly connected. By
algebraic elimination (using the Maple function Groebner), one can obtain a unique polynomial equation
in any three chosen variables. We obtain the following three polynomials which are respectively of degree
2 in B0, B1 and B∗

0

PB0(B0, z, w) = p0,0(z, w) + p1,0(z, w)B0 + p2,0(z, w)B2
0 , (12)

PB1(B1, z, w) = p0,1(z, w) + p1,1(z, w)B1 + p2,1(z, w)B2
1 , (13)

PB∗
0
(B∗

0 , z, w) = p0,2(z, w) + p1,2(z, w)B∗
0 + p2,2(z, w)(B∗

0 )
2, (14)

where each coefficient pi,j(z, w), p∗i,j(z, w) is a bivariate polynomial given in Appendix A. These polyno-
mials are obtained after the elimination process by factoring the resulting polynomials and choosing the
right factor in each case (in all cases we get only one candidate with non-negative integer coefficients).

4 Equations for 3-connected 4-regular maps

We shortly describe how to obtain a combinatorial decomposition scheme in order to deduce equations
for 3-connected 4-regular maps. More details are given in [14, Section 3].

The class M of 4-regular maps can be decomposed into M0∪M∗
0∪M1, where M0∪M∗

0 are 4-regular
maps in which the root edge is not incident with a 2-face, M1 are those for which the root edge is incident
with exactly one 2-face, and M∗

0 are maps in which the root is one of the outer edges of a triple edge.
These classes are in bijection with the classes B0, B∗

0 and B1 from the previous section, as the dual of a
quadrangulation with ℓ 2-vertices is a 4-regular map with ℓ 2-faces.

We denote by M0(q, w) = M0, M1(q, w) = M1 and M∗
1 (q, w) = M∗

0 the associated generating
functions, where variables w and q mark 2-faces and ordinary edges, respectively. Observe that when
setting w = q, one recovers the enumeration of 4-regular maps according to half the number of edges.
Due to the bijection with quadrangulations it follows that

M0(q, w) = B0(q, w/q), M1(q, w) = B1(q, w/q), M∗
0 (q, w) = B∗

0 (q, w/q). (15)

The next step is to decompose the previous classes. Given a map M , let M− be the map obtained
by removing the root edge st, whose endpoints s, t are called the poles of M . As shown in [14, Lemma
3.1] we have

M0 = L ∪ S0 ∪ P0 ∪H, M1 = S1 ∪ P1 ∪ F ∪ F ,

where

• L are maps in which the root-edge is a loop.

• S = S0∪S1 are series maps: M− is connected and there is an edge in M− that separates the poles.
The index i = 0, 1 refers to the number of 2-faces incident with the root edge.

• P = P0 ∪P1 are parallel maps: M− is connected, there is no edge in M− separating the poles, and
either st is an edge of M− or M − {s, t} is disconnected. The index i = 0, 1 has the same meaning
as in the previous class.

• H are polyhedral maps: they are obtained by considering a 3-connected 4-regular map C (called the
core) rooted at a simple edge and possibly replacing every non-root edge of C with a map in M.

• F (resp. F) are maps M such that the face to the right (resp. to the left) of the root-edge is a
2-face, and such that M − {s, t} is connected.

Let L, S0, S1, P0, P1, F and F be the generating functions of the corresponding families each in
terms of the variables q and w. In the case of S1 and P1, we count the number of 2-faces minus one
(instead of the total number of 2-faces) and the number of ordinary edges plus two. In both F and F we
count the number of 2-faces minus one and the number of ordinary edges (and in particular F = F by
symmetry).

Finally, T1 and T2 are the classes of 3-connected 4-regular maps rooted at a simple and at a double
edge, respectively. We denote by T1(u, v) and T2(u, v) the corresponding generating functions, where u
and v respectively mark ordinary edges and 2-faces. The main purpose of this section is to obtain the
minimal polynomials for both T1 and T2.
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The system for T1(u, v). The following is the system (5) from [14, Lemma 3.2]. We include Equa-
tions (12)-(14) which define implicitly M0, M1 and M∗

0 in terms of q and w.

(1 +D)H = T1(u, v),
u = q(1 +D)2,
v = w + q(2D +D2 + F ),

M0 = S0 + P0 + L+H,
qM1 = w(S1 + P1 + 2qF ),
M∗

0 = 2q2D,
L = 2q(1 +D − L) + L(w + q)L,
S0 = D(D − S0 − S1)− L2/2,
S1 = L2/2,
P0 = q2(1 +D +D2 +D3) + 2qDF,
P1 = 2q2D2,
0 = PB0(M0, q, w/q),
0 = PB1(M1, q, w/q),
0 = PB∗

0
(M∗

0 , q, w/q).

(16)

Observe that all the generating functions (including u and v) are functions of q and w.

The system for T2(u, v). For maps in H the root of the core is a simple edge, hence we need to
modify slightly the system of equations (16) in order to get an equation for T2(u, v). We adapt [14,
Lemma 4.1] to the map setting and obtain

F = S2 ∪H2,

where S2 are networks in F such that after removing the two poles there is a cut vertex, while H2 are
networks in F whose root edge is incident to a 2-face. We denote by S2 and H2 the corresponding
generating functions.

Equations for F , S2 and H2 are deduced in [14, Equation (7)]. Combining them with the decom-
position explained for T1 we get the following system of equations. We observe that here the minimal
polynomial of B0 it is not needed. Similarly to (16), all the generating functions involved in (17) depend
on q and w but we omit to write the arguments.

vH2 = T2(u, v),
u = q(1 +D)2,
v = w + q(2D +D2) + F,

qM1 = w(S1 + P1 + 2qF ),
M∗

0 = 2q2D,
L = 2q(1 +D − L) + (w + q)L,
S0 = D(D − S0 − S1)− L2/2,
S1 = L2/2,
P0 = q2(1 +D +D2 +D3) + 2qDF,
P1 = 2q2D2,
F = S2 +H2,
S2 = (w + q(2D +D2) + F )(w + q(2D +D2) + F − S2),
0 = PB1(M1, q, w/q),
0 = PB∗

0
(M∗

0 , q, w/q).

(17)

4.1 The minimal polynomials of T1 and T2

The next step is to compute the minimal polynomials PT1(T1, u, v) and PT2(T2, u, v) defining implicitly
T1 and T2 as functions of u and v. In what follows, we present the method used to obtain PT1 , which is
based on evaluation and interpolation. The same method is then used to compute PT2 .

Evaluation and interpolation for PT1 . First, from (16) one can eliminate variables M0, M1, M
∗
0 ,

S0, S1, P0, P1, D, H and F and obtain irreducible polynomial equations in the corresponding variables:

QT1(T1, q, w) = 0, Qu(u, q, w) = 0, Qv(v, q, w) = 0.
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Notice that these equations define implicitly T1, u and v as functions of q and w.
From there we compute the resultant of Qu and Qv with respect to w and find its unique combinatorial

factor Q1(u, v, q), that is, the one whose Taylor expansion at q = 0 has non-negative integer coefficients.
The polynomial Q1 has degree 10 in both u and v, and 16 in q. We compute similarly Q2(u, T1, q), the
unique combinatorial factor of the resultant of QT1 and Qv with respect to w. It has degree 10 in u, 20
in T1, and 16 in q. This gives the system:

Q1(u, v, q) = 0, Q2(T1, u, q) = 0. (18)

If we could now compute directly the resultant of Q1 and Q2 with respect to q, this would lead to a
polynomial equation R(T1, u, v) = 0 having PT1 as one of its factors, and we would be done. However,
this seems to require too much computing time, even for a relatively powerful computer2. Both Q1 and
Q2 are dense and their coefficients in q are bivariate polynomials in Z[u, v] and Z[u, T1], respectively, of
high total degree. Instead we proceed indirectly using evaluation and polynomial interpolation.

Let d be the degree of v in PT1 . We will evaluate the system (18) at d + 1 different values v =
k0, k1, . . . , kd and compute the resultant with respect to q of each evaluation. For any fixed and sufficiently
small integer k > 0, we can compute effectively the resultant of Q1(u, k, q) and Q2(T1, u, q) with respect
to q. Notice that if the leading coefficient of Q1(u, v, q) is not divisible by (v − k), then this resultant is
precisely R(T1, u, k). Expanding each factor of R(T1, u, k) at u = 0 allows us to find the combinatorial
one3, denoted by Fk(T1, u). Following this process we obtain d+ 1 polynomials Fk0 , . . . , Fkd in Z[T1, u].
Finally interpolating those d+1 points yields a unique polynomial in Z[T1, u][v] ≃ Z[T1, u, v] of degree d
in v. This polynomial is exactly PT1(T1, u, v), because for each k = k0, . . . , kd the coefficients of Fk(T1, u)
are integers with no common divisor.

We now derive an effective upper bound for d. The resultant R(T1, u, v) can be seen as the determinant
of the Sylvester matrix associated with the system (18). This matrix has size 32, the sum of the degrees
of q in Q1 and Q2. By construction, the coefficients in the first 16 columns are polynomials in Z[u, v],
each of degree at most 10 in v, while in the rest of the columns they are polynomials in Z[T1, u]. Each
monomial of R is hence a product of 32 bivariate polynomials, exactly 16 of which contain a term in v
and of degree at most 10. Thus as a factor of R, PT1 has degree at most 160 in v.

After proceeding by evaluation and interpolation for v = 1, 2, . . . , 161, checking at every step that the
leading coefficient in q of Q1(u, v, q) is not divisible by v − k, we obtain PT1 . It is monic and has degree
8 in T1, 16 in u and 8 in v, as follows:

PT1(T1(u, v), u, v) =

8∑
i=0

ti,1(u, v) · T1(u, v)
i, (19)

where the ti,1(u, v) are polynomials in u and v given in Appendix B.

Evaluation and interpolation for PT2
. As argued in [14, Section 4], the generating function

T2(u, v) is algebraic and satisfies a minimal polynomial equation denoted by PT2(T2, u, v) = 0. We will
now show that PT2 has in fact degree at most 8 in T2. Recall first that (∂/∂u)T2(u, v) = (∂/∂v)T1(u, v).
Second, because PT1 is monic and of degree 8 in T1 then PT1,v the derivative of PT1 with respect to v
has degree 7 in T1 and is linear in (∂/∂v)T1. The minimal polynomial of (∂/∂v)T1 is then a factor of the
resultant of PT1 and PT1,v with respect to T1, whose degree in (∂/∂v)T1 is at most seven4. This means
that (∂/∂u)T2 is algebraic of degree at most 7, and hence PT2(T2, u, v) has degree most 8 in T2.

We now proceed similarly to T1 in order to compute PT2 . First, we eliminate from (17) to obtain an
equation QT2(T2, q, w) = 0 that defines T2 as a function of q and w. Notice that the equations for u and
for v are exactly the same in both systems (16) and (17), so that the two equations Qu = 0 and Qv = 0
computed for T1 are the same, as well as the combinatorial factor Q1 of their resultant with respect to
w. Then we compute Q3, the combinatorial factor of the resultant of QT2 and Qv with respect to w. It
has degree 10 in T2, 27 in v and 16 in q.

2The Maple computation ran for about a week on a machine Intel(R) Xeon(R) CPU E5-2687W v4 @ 3.30GHz×48.
3In this case, the coefficients of T1(u) count 3-connected 4-regular planar graphs rooted at a simple edge and whose double

edges are weighted by k. The reason why we chose to evaluate at v instead of u, or why we do not proceed by nested evaluation
and interpolation, e.g. at v then at u, is to guarantee the existence of such a combinatorial factor at each evaluation, which has
in practice much smaller degrees than the resultant.

4This can be seen by considering the resultant as the determinant of the Sylvester matrix associated to the system.
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Notice that the required number of evaluations v = 1, 2, . . . of the system {Q1, Q3} is at most 433,
while for the evaluations u = 1, 2, . . . we would need at most 161. We thus opt for the evaluations u = k,
with k = 1, 2, . . . , 161, as follows. We first verify that the leading coefficient of q in Q1(u, v, q) is not
divisible by u− k, and then compute Rk(T2, v) the resultant of the evaluation of {Q1, Q3} at u = k. It
has five different factors. Three of which cannot equal to zero. And among the remaining two, one has
degree 144 in T2, and one has degree 8. But because PT2(T2, u, v) has degree at most 8 in T2, so does
any of its evaluation at u = 1, . . . , 161. Thus Fk(T2, v), the combinatorial factor of Rk(T2, v) is the one
of degree 8 in T2. PT2 is finally given as the interpolation of the Fk(T2, v)’s, for k = 1, . . . , 161. It has
degree 8 in T2, 8 in u and 13 in v, as follows:

PT2(T2(u, v), u, v) =

8∑
i=0

ti,2(u, v) · T2(u, v)
i, (20)

where the ti,2(u, v)’s are given in Appendix B.5

5 Counting 4-regular planar graphs and simple maps

The final step is to adapt the equations introduced in the previous section for graphs instead of maps.
We follow the definitions and notation of [14, Section 4].

A network is a connected 4-regular multigraph G with an ordered pair of adjacent vertices (s, t) such
that the graph obtained by removing the edge st is simple. Vertices s and t are called the poles of the
network. We define several classes of networks, similar to the classes of maps introduced in the previous
section. We use the same letters, but they now represent classes of labelled graphs instead of maps. No
confusion should arise since in this section we deal only with graphs.

• D is the class of all networks.

• L,S,P correspond as before to loop, series and parallel networks. We do not need to distinguish
between S0 and S1 and between P0 and P1.

• F is the class of networks in which the root edge has multiplicity exactly two and removing the
poles does not disconnect the graph.

• S2 are networks in F such that after removing the two poles there is a cut vertex.

• H = H1 ∪H2 are h-networks: in H1 the root edge is simple and in H2 it is double.

The generating functions of networks are of the exponential type in the variable x marking vertices. We
use letters D, L, S, P , F , H1 and H2 to denote the EGFs associated to the corresponding network class.

We next define the generating functions T (i)(x, u, v) of 3-connected 4-regular planar multigraphs
rooted at a directed edge, where i = 1, 2 indicates the multiplicity of the root, x marks vertices and u, v
mark, respectively, half the number of simple edges and double edges. They are easily obtained from the
generating functions of 3-connected 4-regular maps computed in the previous section, as follows:

T (i)(x, u, v) =
1

2
Ti(u

2x, vx), i ∈ {1, 2}. (21)

where the division by two encodes the choice of the root face.

5The two evaluation-interpolations for T1 and T2 took in total around 22 hours and 50 minutes to run on Maple 2021 with a
personal computer (8Go DDR3 RAM, Intel(R) Core(TM) i5-3550 CPU @ 3.30GHz×4), by using the libary CurveFitting and the
function PolynomialInterpolation. Both are included in the accompanying Maple sessions. In order to avoid any uncertainty
due to the use randomness in Maple, all computations were done setting the environmental variable EnvProbabilistic to zero
at the begining of each of the Maple sessions (this does not, it seems, have a significant impact on the execution time).
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5.1 Connected 4-regular planar graphs

The following equations are from [14, Lemma 4.2]. We denote by C•(x) = xC′(x) the exponential
generating function of connected 4-regular planar graphs rooted at a vertex.

4C• = D − L− L2 − F − x2D2/2,
D = L+ S + P +H1 + F,
L = x

2
(D − L),

S = (D − S)D,
P = x2

(
D2/2 +D3/6

)
+ FD,

F = S2 +H2,
xS2 = x2v(x2v − S2),

uH1 = T (1),

vH2 = T (2),
u = 1 +D,

2x2v = x2(2D +D2) + 2F,

0 = PT1

(
1
2
T (1), u2x, vx

)
,

0 = PT2

(
1
2
T (2), u2x, vx

)
.

(22)

5.2 2-connected 4-regular planar graphs

Equations for 2-connected 4-regular planar graphs are very similar, they only differ in the fact that
networks rooted at a loop will not appear in the recursive decomposition of a graph. Hence, we just need
to remove networks in L from the equations. Let B•(x) = xB′(x) be the EGF of 2-connected 4-regular
planar graphs rooted at a vertex, where again variable x marks vertices. The system of equations defining
B•(x) is given by

4B• = (D − F )− x2D(x)2/2,
D = S + P +H1 + F,
S = (D − S)D,
P = x2

(
D2/2 +D3/6

)
+ FD,

F = S2 +H2,
xS2 = x2v(x2v − S2),

uH1 = T (1),

vH2 = T (2),
u = 1 +D,

2x2v = x2(2D +D2) + 2F,

0 = PT1

(
1
2
T (1), u2x, vx

)
,

0 = PT2

(
1
2
T (2), u2x, vx

)
.

(23)

5.3 Simple 4-regular planar maps

Let M(x) be the (ordinary) generating function of 4-regular simple maps, where the variable x marks
vertices (vertices in maps are unlabelled). As shown in [14, Lemma 5.1], M(x) satisfies the following
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system of equations:

M = D − L− L2 − 3x2D2 − 2F,
D = L+ S + P +H1 + 2F,
L = 2x(D − L),
S = D(D − S),
P = x2(3D2 +D3) + 2FD,
F = S2 +H2/2,

xS2 =
(
x2(2D +D2) + F

)
(x2(2D +D2) + F − S2),

uH1 = T1,
vH2 = T2,

u = 1 +D,
x2v = x2(2D +D2) + F,

0 = PT1

(
T (1), u2x, vx

)
,

0 = PT2

(
T (2), u2x, vx

)
.

(24)

5.4 2-connected simple 4-regular planar maps

Let N(x) be the generating function counting 2-connected 4-regular simple maps. This case was not
considered in [14], however it follows easily by removing loop networks in the previous system and we
obtain

N = D − 3x2D2 − 2F,
D = S + P +H1 + 2F,
S = D(D − S),
P = x2(3D2 +D3) + 2FD,
F = S2 +H2/2,

xS2 =
(
x2(2D +D2) + F

)
(x2(2D +D2) + F − S2),

uH1 = T1,
vH2 = T2,

u = 1 +D,
x2v = x2(2D +D2) + F,

0 = PT1

(
T (1), u2x, vx

)
,

0 = PT2

(
T (2), u2x, vx

)
.

(25)

6 Asymptotic enumeration

In this last section, we prove Theorems 1, 2 and 3. For the sake of clarity, we omit certain computational
details in the proof of Theorem 3, which can be found in the accompanying Maple sessions. We first need
the following analytic lemma.

Lemma 4. Let f(x) be an algebraic generating function with non-negative coefficients such that f(0) = 0.
Further assume that f(x) admits a unique dominant singularity ρ in the circle boarding the disk of
convergence, and a Puiseux expansion as x → ρ− of the form:

f(x) = f0 − f2

(
1− x

ρ

)
+ f3

(
1− x

ρ

)3/2

+O

((
1− x

ρ

)2
)
, (26)

with f0, f2, f3 > 0. Then the coefficients of f(x) verify the asymptotic estimate

[xn]f(x) ∼ 3f3
4
√
π
· n−5/2 · ρ−n, as n → ∞.

Proof. Since f(x) is algebraic and ρ is the unique singularity in the circle boarding the disk of convergence,
one can show by a classical compactness argument (see for instance the proof of [5, Theorem 2.19]) that
f(x) is analytic in a ∆-domain at ρ. We can then apply the transfer theorem [8, Corollary VI.1] to the
local representation (26), and deduce the estimate as claimed, using the relation Γ(−3/2) = 4

√
π/3.
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Proof of Theorem 1. The system of equations (22) shows that C• = C•(x) is an analytic function of
D = D(x). This implies in particular that they both have the same singular behaviour. We first compute
the equation satisfied by D from (22) minus the first equation. After eliminating all the other variables,
we obtain a polynomial in D and x with six factors. The following three factors: 281474976710656,
(1 + D)48 and (x + 2)18 cannot be equal to zero. We can also discard two other factors, one since its
expansion at x = 0 has constant term −1/2, different from zero, while the other admits an expansion of
the form 1

2
x6 + 1

4
x7 + O(x8), which does not agree with the actual exponential generating function of

networks starting with 1
2
x6 + 3

4
x7. Hence the minimal polynomial of D must be the remaining factor of

degree 29

PD(D(x), x) =

29∑
i=0

di(x) ·D(x)i. (27)

The discriminant pD(x) of PD(D,x) with respect to D has several irreducible factors and we have to
locate the one having the dominant singularity as its root, which must be positive and less than 1. Once
we discard factors that do not have positive real roots less than 1, we have

pD(x) = f(x)g(x)2h(x)3,

where f, g have respective degrees 155 and 78, and h is the polynomial of degree 14 in the statement
of Theorem 1. In order to rule out g and f , let us first recall that the dominant singularity of all
labelled planar graphs is ρ1 ≈ 0.0367 [10]. The only candidate root for g is 0.00021, which can then be
discarded because it is less than ρ1. The polynomial f has two candidate solutions: one is 0.026 and it
is discarded for the same reason as before; the other one is 0.86 and is discarded because it is larger than
the singularity τ ≈ 0.24451 of 3-connected 4-regular graphs. Hence the dominant singularity ρ of D(x)
(and of C(x) as argued above) is ρ ≈ 0.24377 the smallest positive root of h.

To compute the minimal polynomial of C•, we eliminate all the other variables from (22) and obtain
a polynomial equation in D, C• and x. We compute its resultant with PD with respect to D to obtain a
polynomial in C• and x only. It has also six factors. We can discard four of them as they trivially cannot
be equal to zero, as before. Another factor admits an expansion with constant term 7/8, different from
zero, and can be discarded too. Finally the minimal polynomial of C• is given by the remaining factor
of degree 29

PC•(C•(x), x) =

29∑
i=0

ci(x) · C•(x)i. (28)

As a sanity check, one can expand the first terms and verify that they indeed count connected 4-regular
planar graphs rooted at a vertex (see the corresponding Maple session and compare with Table 1 at the
end of [14], remembering that there are n ways to root a graph with n vertices).

From PC•(C•, x) we compute the Puiseux expansion of C•(x) at x = ρ associated to the combinatorial
branch, which turns out to be 6

C•(x) = C•
0 + C•

2X
2 + C•

3X
3 +O(X4), (29)

where X =
√

1− x/ρ, C0 ≈ 0.000057592, C2 ≈ −0.00098931 and C3 ≈ 0.0032877.
To obtain the estimate for the coefficients of C(x), we apply Lemma 4 to (29) and divide the resulting

estimate of the coefficients of C•(x) by n since there are n different ways to root a graph of size n at
a vertex. By integrating (29) we obtain the Puiseux expansion C(x) = C0 + C2X

2 + C3X
3 + O(X4).

However, the constant C0 is undetermined after integration. The estimate for the coefficients of G(x)
follows from G(x) = exp(C(x)) and the corresponding Puiseux expansion

G(x) = G0 +G2X
2 +G3X

3 +O(X4).

Since G3 = eC0C3, this coefficient cannot be determined either. As mentioned after the statement of
Theorem 1, we have estimated the constant g = G3/Γ(−3/2) from the first values of the coefficients
gn. A similar situation occurs in [15]. There, we circumvented it by using the so-called “dissymmetry

6Note that this computation is done without using any numerical approximation (in particular that of ρ) and is thus exact
(albeit hard to check by hand, i.e. without a computer algebra system, due to the size of the coefficients). In particular, the fact
that C•

1 = 0 holds algebraically. On the other hand, the approximations can be computed using ρ ≈ 0.24377, as the coefficients
are algebraic functions of ρ, or from the minimal polynomials satisfied by the coefficients.
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theorem”. For this, one needs in particular the generating function of unrooted 3-connected 4-regular
planar graphs, which means integrating T1(u, v) with respect to u. We are not able to compute this
integral; besides the fact that the size of the equation defining T1(u, v) is rather large, it defines a curves
of genus 1, hence it does not admit a rational parametrization.

Remark. Given the minimal polynomial of xC′(x), it is possible in principle to find linear differential
operators for C(x) and for G(x) and consequently linear recursions with polynomial coefficients for the
sequences of interest providing an effective formulation of Corollary 1.2 in [14] (we are indebted to an
anonymous referee for this remark). However the polynomial in Equation (29) is of degree 29 in C• and
135 in x with several integer coefficients having more than 40 digits, thus we have not tried to obtain
explicit recurrences.

Proof of Theorem 2. We will now compute an estimate for the number of 3-connected 4-regular
planar graphs. By first plugging Equation (21) into the minimal polynomial of T1, we obtain the minimal
polynomial of T (1)(x, u, v). Setting then v = 0 and u = 1, and taking the root edge into account, it
is a simple matter to check that we obtain a polynomial satisfied by the generating function T •(x) of
3-connected 4-regular planar graphs rooted at a vertex, namely

4T •(x) = T (1)(x, 1, 0).

This polynomial is of the form

PT•(T •(x), x) =

8∑
i=0

ti(x) · T •(x)i,

where each ti(x) (i = 0, . . . , 8) is explicitly given in Appendix C.
Next, we compute the discriminant of PT• with respect to T •(x). It has five factors and we can discard

two of them for trivial reasons. Another factor admits 0.0014891 as positive root, which is smaller than
ρ1 ≈ 0.0367 and can be discarded. While another one has the positive root 0.53898, larger than 1/4
the dominant singularity of the generating function of irreducible quadrangulations. It can then be
discarded since the class of irreducible quadrangulations is contained in the class of simple 3-connected
quadrangulations, which is in bijection with the class of 3-connected 4-regular planar graphs. So the
dominant singularity must be the smallest positive root τ ≈ 0.24451 of the remaining factor, namely

3645x2 − 4752x+ 944 = 0,

as claimed. The Puiseux expansion of T •(x) near τ is of the form

T •(x) = T •
0 + T •

2 X
2 + T •

3 X
3 +O(X4), (30)

where X =
√

1− x/τ , T •
0 ≈ 0.000057426, T •

2 ≈ −0.00092862 and T •
3 ≈ 0.0028525. We conclude by

applying Lemma 4 to (30) and dividing the resulting estimate by n.
To prove the estimate on the number of 2-connected 4-regular planar graphs, we proceed in the same

way and thus omit certain details that can be found in the Maple sessions. Consider the system of
equations (23) and eliminate all the other variables to obtain a single irreducible bivariate polynomial
equations in x and B•(x), as follows:

PB•(B•(x), x) =

29∑
i=0

bi(x) ·B•(x)i.

The discriminant of PB• with respect to B•(x) has seven factors. Only two of them have positive roots
strictly smaller than one. The smallest such root of one of the factors is 0.013756, again smaller than ρ1.
Thus, the dominant singularity β of B•(x) has to be the smallest positive root of the remaining factor,
which is the one claimed. The Puiseux expansion of B•(x) near β is of the form

B•(x) = B0 +B2X
2 +B3X

3 +O(X4), (31)

where X =
√

1− x/β, B0 ≈ 0.000057583, B2 ≈ −0.00098647 and B3 ≈ 0.0032669. We conclude again
by applying Lemma 4 to (31) and dividing the resulting estimate by n.
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Proof of Theorem 3. The proof goes along the same lines as the two proofs above and we only
briefly sketch it here. We refer the reader to the accompanying Maple sessions. First eliminate from (24)
and (25) to obtain the minimal polynomials PM and PN satisfied by M(x) and N(x), respectively. We
compute the discriminants of PM with respect to M(x) and of PN with respect to N(x), and find in each
case the unique factor with a positive root. Then the smallest such root is the dominant singularity. We
conclude by applying Lemma 4 to the local expansions of M(x) and N(x) near their respective dominant
singularities.
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[9] S. Gerke, O. Giménez, M. Noy, and A. Weißl. The number of graphs not containing K3,3 as a minor.
Electronic Journal of Combinatorics, 15(1):114, 2008.
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A Minimal polynomials for quadrangulations

Coeffients of PB0(B0(z, w), z, w) =
∑2

i=0 pi,0(z, w)B0(z, w)i:

• p2,0(z, w) = 27z2(wz − z − 1)2(wz − z + 1)3.

• p1,0(z, w) = −(wz − z − 1)(16w8z12 − 144w7z12 − 32w7z11 + 560w6z12 + 16w7z10 + 224w6z11 −
1232w5z12 − 136w6z10 − 672w5z11 + 1680w4z12 + 40w6z9 + 544w5z10 + 1120w4z11 − 1456w3z12 −
296w5z9 − 1240w4z10 − 1120w3z11 + 784w2z12 + 204w5z8 + 816w4z9 + 1680w3z10 + 672w2z11 −
240wz12 − 1052w4z8 − 1104w3z9 − 1336w2z10 − 224wz11 +32z12 − 4w5z6 +368w4z7 +2184w3z8 +
776w2z9+576wz10+32z11−36w4z6−1440w3z7−2280w2z8−264wz9−104z10−10w4z5+444w3z6+
2112w2z7 + 1196wz8 + 32z9 −w4z4 − 80w3z5 − 908w2z6 − 1376wz7 − 252z8 + 4w3z4 + 156w2z5 +
648wz6 +336z7 +2w3z3 − 10w2z4 − 104wz5 − 144z6 +20w2z3 − 156wz4 +38z5 +42wz3 +163z4 +
8wz2 − 208z3 − 2wz + 84z2 − 18z + 1).

• p0,0(z, w) = z(64w10z14 − 704w9z14 − 160w9z13 +3456w8z14 +32w9z12 +1472w8z13 − 9984w7z14 −
272w8z12−6016w7z13+18816w6z14+224w8z11+1264w7z12+14336w6z13−24192w5z14−16w8z10−
2048w7z11−3920w6z12−21952w5z13+21504w4z14+408w7z10+7696w6z11+8176w5z12+22400w4z13−
13056w3z14−88w7z9−2536w6z10−15712w5z11−11312w4z12−15232w3z13+5184w2z14−8w7z8+
928w6z9 +7800w5z10 +19120w4z11 +10192w3z12 +6656w2z13 − 1216wz14 − 60w6z8 − 3304w5z9 −
14120w4z10 − 14144w3z11 − 5744w2z12 − 1696wz13 + 128z14 + 8w6z7 + 664w5z8 + 5520w4z9 +
15816w3z10 + 6128w2z11 + 1840wz12 + 192z13 − 168w5z7 − 1676w4z8 − 4520w3z9 − 10808w2z10 −
1376wz11 − 256z12 − 3w5z6 − 168w4z7 + 1624w3z8 + 1408w2z9 + 4136wz10 + 112z11 + 51w4z6 +
1712w3z7−388w2z8+232wz9−680z10+33w4z5−514w3z6−2584w2z7−296wz8−176z9+2w4z4+
244w3z5+1458w2z6+1496wz7+140z8+2w3z4−774w2z5−1563wz6−296z7−4w3z3+170w2z4+
492wz5 + 571z6 − 54w2z3 − 98wz4 + 5z5 − 56wz3 − 12z4 − 7wz2 + 162z3 + 4wz − 77z2 + 29z − 2).

Coeffients of PB1(B1(z, w), z, w) =
∑2

i=0 pi,1(z, w)B1(z, w)i:

• p2,1(z, w) = 27z(wz − z − 1)2(wz − z + 1)3.

• p1,1(z, w) = −2w(wz − z − 1)(16w7z11 − 112w6z11 − 16w6z10 + 336w5z11 + 24w6z9 + 96w5z10 −
560w4z11−176w5z9−240w4z10+560w3z11+56w5z8+520w4z9+320w3z10−336w2z11−42w5z7−
232w4z8 − 800w3z9 − 240w2z10 + 112wz11 + 272w4z7 + 368w3z8 + 680w2z9 + 96wz10 − 16z11 −
126w4z6 − 684w3z7 − 272w2z8 − 304wz9 − 16z10 + 2w4z5 + 548w3z6 + 840w2z7 + 88wz8 + 56z9 −
146w3z5 − 888w2z6 − 506wz7 − 8z8 + 4w3z4 + 330w2z5 + 636wz6 + 120z7 − 36w2z4 − 230wz5 −
170z6 + 2w2z3 + 24wz4 + 44z5 + w2z2 + 20wz3 + 8z4 + 10wz2 − 76z3 − 2wz + 79z2 − 18z + 1).

• p0,1(z, w) = −4w2z2(16w9z12−160w8z12−16w8z11+704w7z12+24w8z10+160w7z11−1792w6z12−
232w7z10−672w6z11+2912w5z12+56w7z9+968w6z10+1568w5z11−3136w4z12−15w7z8−408w6z9−
2280w5z10−2240w4z11+2240w3z12+171w6z8+1192w5z9+3320w4z10+2016w3z11−1024w2z12−
45w6z7−722w5z8−1800w4z9−3064w3z10−1120w2z11+272wz12+2w6z6+330w5z7+1634w4z8+
1480w3z9 +1752w2z10 +352wz11 − 32z12 − 67w5z6 − 850w4z7 − 2211w3z8 − 616w2z9 − 568wz10 −
48z11 + 4w5z5 + 173w4z6 + 984w3z7 + 1799w2z8 + 88wz9 + 80z10 − 19w4z5 − 40w3z6 − 477w2z7 −
812wz8+8z9+2w4z4−94w3z5−278w2z6+22wz7+156z8+w4z3+18w3z4+258w2z5+307wz6+
36z7 + 9w3z3 − 106w2z4 − 178wz5 − 97z6 − 2w3z2 + 55w2z3 + 195wz4 + 29z5 − 17w2z2 − 71wz3 −
109z4 + w2z + wz2 − 21z3 − wz + 44z2 − 15z + 1).
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Coeffients of PB∗
0
(B∗

0 (z, w), z, w) =
∑2

i=0 pi,2(z, w)B∗
0 (z, w)i:

• p2,2(z, w) = 27(wz − z + 1)2.

• p1,2(z, w) = 16w5z8 − 80w4z8 − 32w4z7 + 160w3z8 + 24w4z6 + 128w3z7 − 160w2z8 − 80w3z6 −
192w2z7+80wz8+24w3z5+96w2z6+128wz7−16z8+12w3z4−72w2z5−48wz6−32z7+96w2z4+
72wz5+8z6+12w2z3−228wz4−24z5+2w2z2+120wz3+120z4+8wz2−132z3−4wz+98z2−32z+2.

• p0,2(z, w) = 4z3(8w5z7−40w4z7−16w4z6+80w3z7+8w4z5+64w3z6−80w2z7−24w3z5−96w2z6+
40wz7 + 20w3z4 + 24w2z5 + 64wz6 − 8z7 + 2w3z3 − 60w2z4 − 8wz5 − 16z6 + 29w2z3 + 60wz4 −
2w2z2 − 64wz3 − 20z4 + 22wz2 + 33z3 + 2wz − 20z2 + 25z − 2).

B Minimal polynomials for 3-connected planar maps and
graphs

Coeffients of PT1(T1(u, v), u, v) =
∑8

i=0 ti,1(u, v)T1(u, v)
i:

• t8,1(u, v) = 1.

• t7,1(u, v) = −8u2 + 16uv + 2u+ 10.

• t6,1(u, v) = 28u4 − 112u3v + 112u2v2 − 14u3 + 28u2v − 69u2 + 152uv + 68u+ 42.

• t5,1(u, v) = −56u6 + 336u5v − 672u4v2 + 448u3v3 + 42u5 − 168u4v + 168u3v2 + 204u4 − 900u3v +
984u2v2 − 408u3 + 840u2v − 92u2 + 520uv + 352u+ 96.

• t4,1(u, v) = 70u8−560u7v+1680u6v2−2240u5v3+1120u4v4−70u7+420u6v−840u5v2+560u4v3−
335u6+2220u5v−4860u4v2+3520u3v3+1020u5−4200u4v+4320u3v2−170u4−988u3v+2728u2v2−
1604u3 + 3280u2v + 394u2 + 776uv + 692u+ 129.

• t3,1(u, v) = −56u10 + 560u9v − 2240u8v2 + 4480u7v3 − 4480u6v4 + 1792u5v5 + 70u9 − 560u8v +
1680u7v2−2240u6v3+1120u5v4+330u8−2920u7v+9600u6v2−13920u5v3+7520u4v4−1360u7+
8400u6v−17280u5v2+11840u4v3+760u6−1248u5v−4416u4v2+7744u3v3+2896u5−11872u4v+
12256u3v2 − 2482u4 + 2756u3v + 2736u2v2 − 1562u3 + 4224u2v + 1250u2 + 424uv + 550u+ 102.

• t2,1(u, v) = 28u12 − 336u11v + 1680u10v2 − 4480u9v3 + 6720u8v4 − 5376u7v5 + 1792u6v6 − 42u11 +
420u10v−1680u9v2+3360u8v3−3360u7v4+1344u6v5−195u10+2160u9v−9480u8v2+20640u7v3−
22320u6v4+9600u5v5+1020u9−8400u8v+25920u7v2−35520u6v3+18240u5v4−970u8+4472u7v−
3120u6v2 − 10144u5v3 + 12512u4v4 − 2584u7 + 15936u6v − 33024u5v2 + 22976u4v3 + 4122u6 −
12600u5v + 6024u4v2 + 5536u3v3 + 534u5 − 6960u4v + 9744u3v2 − 2829u4 + 5636u3v + 392u2v2 +
722u3 + 1444u2v + 991u2 − 64uv + 104u+ 44.

• t1,1(u, v) = −8u14+112u13v−672u12v2+2240u11v3−4480u10v4+5376u9v5−3584u8v6+1024u7v7+
14u13 − 168u12v + 840u11v2 − 2240u10v3 + 3360u9v4 − 2688u8v5 + 896u7v6 + 64u12 − 852u11v +
4680u10v2 − 13600u9v3 + 22080u8v4 − 19008u7v5 + 6784u6v6 − 408u11 + 4200u10v − 17280u9v2 +
35520u8v3 − 36480u7v4 + 14976u6v5 + 548u10 − 3848u9v + 8576u8v2 − 2944u7v3 − 11840u6v4 +
10880u5v5 + 1136u9 − 9376u8v + 29280u7v2 − 40960u6v3 + 21632u5v4 − 2854u8 + 13828u7v −
19608u6v2+3504u5v3+6464u4v4+850u7+1248u6v−11112u5v2+10560u4v3+1392u6−6412u5v+
6344u4v2+736u3v3−1312u5+2216u4v+1160u3v2−356u4+2104u3v−504u2v2+626u3−312u2v−
90u2 − 96uv − 40u+ 8.

• t0,1(u, v) = u2(u14−16u13v+112u12v2−448u11v3+1120u10v4−1792u9v5+1792u8v6−1024u7v7+
256u6v8 − 2u13 + 28u12v − 168u11v2 + 560u10v3 − 1120u9v4 + 1344u8v5 − 896u7v6 + 256u6v7 −
9u12 + 140u11v − 924u10v2 + 3360u9v3 − 7280u8v4 + 9408u7v5 − 6720u6v6 + 2048u5v7 + 68u11 −
840u10v+4320u9v2−11840u8v3+18240u7v4−14976u6v5+5120u5v6−118u10+1092u9v−3768u8v2+
5344u7v3−672u6v4−5568u5v5+3968u4v6−196u9+2032u8v−8512u7v2+17984u6v3−19136u5v4+
8192u4v5 + 724u8 − 4760u7v+ 10848u6v2 − 8608u5v3 − 1344u4v4 + 3328u3v5 − 514u7 + 1488u6v+
1368u5v2−7008u4v3+4864u3v4+58u6+352u5v−1252u4v2+80u3v3+1232u2v4+40u5−96u4v−
392u3v2 + 1072u2v3 − 8u4 + 292u2v2 + 128uv3 + 32uv2 − 16v2).
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Coeffients of PT2(T2(u, v), u, v) =
∑8

i=0 ti,2(u, v)T2(u, v)
i:

• t8,2(u, v) = (v + 1)5.

• t7,2(u, v) = 2v(v + 1)4(8uv + 8u− 4v + 1).

• t6,2(u, v) = 8v2(v + 1)3(14u2v2 + 28u2v − 14uv2 + 14u2 − 9uv + 2v2 + 5u− 5v − 2).

• t5,2(u, v) = 8v3(v + 1)2(56u3v3 + 168u3v2 − 84u2v3 + 168u3v − 129u2v2 + 24uv3 + 56u3 − 6u2v −
48uv2 + 39u2 − 96uv + 16v2 − 24u− 6).

• t4,2(u, v) = 16v4(v+1)(70u4v4+280u4v3−140u3v4+420u4v2−340u3v3+60u2v4+280u4v−180u3v2−
90u2v3+70u4+100u3v−417u2v2+92uv3+80u3−324u2v+94uv2−57u2−20uv+25v2−22u+22v+2).

• t3,2(u, v) = 32v5(56u5v5 +280u5v4 − 140u4v5 +560u5v3 − 465u4v4 +80u3v5 +560u5v2 − 460u4v3 −
80u3v4 + 280u5v + 10u4v2 − 788u3v3 + 208u2v4 + 56u5 + 240u4v − 1084u3v2 + 412u2v3 + 95u4 −
524u3v + 169u2v2 + 96uv3 − 68u3 − 66u2v + 182uv2 − 31u2 + 108uv + 19v2 + 22u+ 26v + 8).

• t2,2(u, v) = 64v6(28u6v5 +140u6v4 − 84u5v5 +280u6v3 − 270u5v4 +60u4v5 +280u6v2 − 240u5v3 −
90u4v4+140u6v+60u5v2−672u4v3+232u3v4+28u6+180u5v−876u4v2+440u3v3+66u5−396u4v+
164u3v2+150u2v3−42u4−64u3v+265u2v2−20u3+155u2v+12uv2+40u2+18uv+12u+7v+5).

• t1,2(u, v) = 128v7(8u7v5+40u7v4−28u6v5+80u7v3−87u6v4+24u5v5+80u7v2−68u6v3−48u5v4+
40u7v+38u6v2−300u5v3+128u4v4+8u7+72u6v−372u5v2+228u4v3+25u6−156u5v+67u4v2+
112u3v3 − 12u5 − 38u4v + 168u3v2 − 5u4 + 76u3v + u2v2 + 20u3 − 8u2v + 3u2 − 16uv − 6u+ 1).

• t0,2(u, v) = 256u2v8(u6v5 +5u6v4 − 4u5v5 +10u6v3 − 12u5v4 +4u4v5 +10u6v2 − 8u5v3 − 10u4v4 +
5u6v+8u5v2 − 55u4v3 +28u3v4 + u6 +12u5v− 65u4v2 +46u3v3 +4u5 − 25u4v+8u3v2 +33u2v3 −
u4 − 10u3v + 38u2v2 + 5u2v + 12uv2 + 4uv − v).

C Minimal polynomials for 3-connected planar graphs

Coeffients of PT•(T •(x), x) =
∑8

i=0 ti(x)T
•(x)i:

• t8(x) = 16777216.

• t7(x) = 4194304(x+ 1)(5− 4x).

• t6(x) = 7340032x4 − 3670016x3 − 18087936x2 + 17825792x+ 11010048.

• t5(x) = −1835008x6 + 1376256x5 + 6684672x4 − 13369344x3 − 3014656x2 + 11534336x+ 3145728.

• t4(x) = 286720x8 − 286720x7 − 1372160x6 + 4177920x5 − 696320x4 − 6569984x3 + 1613824x2 +
2834432x+ 528384.

• t3(x) = −28672x10 + 35840x9 + 168960x8 − 696320x7 + 389120x6 + 1482752x5 − 1270784x4 −
799744x3 + 640000x2 + 281600x+ 52224.

• t2(x) = 1792x12 − 2688x11 − 12480x10 + 65280x9 − 62080x8 − 165376x7 + 263808x6 + 34176x5 −
181056x4 + 46208x3 + 63424x2 + 6656x+ 2816.

• t1(x) = −64x14 + 112x13 + 512x12 − 3264x11 + 4384x10 + 9088x9 − 22832x8 + 6800x7 + 11136x6 −
10496x5 − 2848x4 + 5008x3 − 720x2 − 320x+ 64.

• t0(x) = x6(x2 + 4x− 1)(x8 − 6x7 + 16x6 − 2x5 − 94x4 + 178x3 − 82x2 − 8x+ 8).

D Minimal polynomials for simple maps

Coeffients of PM (M(x), x) =
∑4

i=0 mi(x)M(x)i:

• m4(x) = (2x2 + 3x+ 3)6(x+ 1)4(2x+ 1)2(x− 1)2x6.

• m3(x) = −2x4(x−1)(64x14+480x13+1440x12+2496x11+276x10−11546x9−26420x8−19509x7+
6393x6 + 19014x5 + 12975x4 + 4608x3 + 702x2 − 135x− 54)(x+ 1)3(2x2 + 3x+ 3)3.

• m2(x) = −x2(4608x26+39936x25+178688x24+520704x23+1094336x22+1543680x21+245408x20−
8566240x19−32715326x18−59854300x17−53501976x16−7389020x15+36335841x14+52316608x13+
51994151x12+41986758x11+22019337x10+1419738x9−10788681x8−14542164x7−13339809x6−
9695160x5 − 5505759x4 − 2350134x3 − 725355x2 − 148230x− 14823)(x+ 1)2.
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• m1(x) = (x+1)(27648x31 +322560x30 +1847808x29 +6918144x28 +18257536x27 +34084608x26 +
43349120x25+40257248x24+50673996x23+88945348x22+99083870x21+51494754x20+9311464x19−
4802994x18−30341844x17−55300330x16−51227730x15−36294430x14−27913810x13−19958630x12−
10165107x11 − 3664163x10 − 1317483x9 − 472215x8 +95764x7 +263384x6 +140418x5 +22266x4 −
10179x3 − 6345x2 − 783x+ 459).

• m0(x) = −x6(x2 + 4x − 1)(34560x26 + 331776x25 + 1792512x24 + 6458368x23 + 16625952x22 +
29597056x21+34923536x20+27157632x19+14306863x18+2833960x17−8516393x16−17003008x15−
18205069x14 − 14628522x13 − 10556741x12 − 6840238x11 − 3542614x10 − 1345848x9 − 348274x8 −
14552x7 + 80947x6 + 78354x5 + 38619x4 + 8694x3 − 1215x2 − 1512x− 459).

Coeffients of PN (N(x), x) =
∑4

i=0 ni(x)N(x)i:

• n4(x) = (x2 + x+ 2)6(x+ 1)4(x− 1)2x3.

• n3(x) = −2x2(x− 1)(2x11 +10x10 +21x9 +39x8 − 70x7 − 282x6 − 329x5 +112x4 +271x3 +67x2 +
25x+ 6)(x+ 1)3(x2 + x+ 2)3.

• n2(x) = −x(18x22+84x21+344x20+832x19+1881x18+2362x17−213x16−22272x15−59887x14−
60780x13 − 48821x12 + 2482x11 + 70283x10 + 76870x9 + 64053x8 + 35032x7 − 9763x6 − 33312x5 −
24499x4 − 8394x3 − 2308x2 − 328x− 48)(x+ 1)2.

• n1(x) = (x+1)(108x26+828x25+3798x24+12498x23+27832x22+44416x21+45122x20+52780x19+
83480x18+38444x17+52052x16+63060x15−24937x14+18259x13−10897x12−78617x11−16174x10−
16450x9 − 26700x8 − 984x7 + 3531x6 + 3159x5 + 361x4 − 641x3 + 144x2 − 48x+ 8).

• n0(x) = −x6(x2+4x−1)(135x21+756x20+3843x19+10936x18+25151x17+30928x16+31103x15+
27536x14+3310x13−7148x12−10618x11−21620x10−13409x9−5500x8−4305x7−60x6+965x5+
604x4 + 201x3 − 104x2 + 8x− 8).
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