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ABSTRACT
We study potential biases of popular network clustering quality metrics, such as
those based on the dichotomy between internal and external connectivity. We
propose a method that uses both stochastic and preferential attachment block models
construction to generate networks with preset community structures, and Poisson or
scale-free degree distribution, to which quality metrics will be applied. These models
also allow us to generate multi-level structures of varying strength, which will show if
metrics favour partitions into a larger or smaller number of clusters. Additionally, we
propose another quality metric, the density ratio. We observed that most of the
studied metrics tend to favour partitions into a smaller number of big clusters, even
when their relative internal and external connectivity are the same. The metrics
found to be less biased are modularity and density ratio.

Subjects Algorithms and Analysis of Algorithms, Data Mining and Machine Learning, Network
Science and Online Social Networks
Keywords Cluster assessment, Stochastic block model, Preferential attachment, Networks
communities

INTRODUCTION
Clustering of networks is a very active research field, and a wide variety of clustering
algorithms have been proposed over the years (e.g., a good survey is found in Fortunato &
Hric, 2016). However, determining how meaningful the resulting clusters are can often be
difficult, as well as choosing which clustering algorithm better suits a particular network. In
many cases, various clustering algorithms can give substantially different results when
applied to the same network. This is not only due to the limitations or particularities of the
algorithms, but also to some networks possibly having multiple coexisting community
structures.

Our goal is to study how existing cluster or community quality metrics behave when
comparing several partitions of the same network, and determine whether they properly
show which of them better match the properties of a good clustering, or if they are biased
in favour of either finer or coarser partitions. Knowing this is essential, for there could be
cases in which a cluster quality metric simply scores better than another because it tends to
find smaller or larger clusters, with less regard for other properties, and not because it is
better at revealing the structure of the network.

We selected a few popular cluster quality metrics, both local, which assign a score to
evaluate each individual cluster (e.g., conductance, expansion, cut ratio, and others), and
global, which evaluate the partition as a whole (e.g., modularity). We also propose a new
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metric, the density ratio, which combines some of the ideas behind other metrics, in an
attempt to improve over some of their limitations, and more particularly, to avoid bias
caused by the number of clusters of the partitions.

Our analysis is split in two parts. In the first part, we use the stochastic block models
(Holland, Laskey & Leinhardt, 1983; Wang & Wong, 1987) to generate networks of
predetermined community structures, and we then compute the correlation of each metric
to the size and number of communities. On the second part, we define networks with a two
level hierarchical community structure (with the lower partition being a refinement of the
upper partition), where one additional parameter controls the strength of one level respect
to the other. Then, by varying this parameter and evaluating the quality metrics on both
levels, we can see if certain metrics are biased towards finer or coarser partitions. These
networks with multi-level community structure are implemented on two different models
that include communities: a stochastic block model and a preferential attachment model
which results in networks with a scale-free degree distribution.

Related work
We briefly survey some of the studies in cluster quality metrics and analyses of their
performance which are relevant to this work. A milestone is the work by Yang & Leskovec
(2015), where they analysed and classified many popular cluster scoring functions based on
combinations of the notions of internal and external connectivity. More recently, Emmons
et al. (2016) study the performance of three quality metrics (modularity, conductance and
coverage), as well as that of various clustering algorithms by applying them to several well
known benchmark graphs. For the case of modularity, it was already shown in Fortunato
& Barthélemy (2007) to have a resolution limit below which small and strong communities
are merged together, even when that goes against the intuition of what a proper clustering
should be. This limit depends on the total amount of edges in the network, in such a way
that it is more pronounced the larger the network and the smaller the community. Almeida
et al. (2011) do a descriptive comparison of the behaviour of five cluster quality metrics
(modularity, silhouette, conductance, coverage, and performance) for four different
clustering algorithms applied over different real networks, to conclude that none of those
quality metrics represents the characteristics of a well-formed cluster with a good degree of
precision. Chakraborty et al. (2017) survey several popular metrics, comparing their
application to networks with ground truth communities to the results of a selection of
clustering algorithms, though the potential of bias relative to cluster size is not addressed.

Hierarchical or multilevel stochastic block models have been mostly used for
community detection by trying to fit them to any given graph. A good example of this
technique is Peixoto (2014); further applications of multilevel SBM and variants for the
problem of community detection are surveyed in Lee & Wilkinson (2019), Paul & Chen
(2016), Funke & Becker (2019), and more recently the works (Peel & Schaub, 2020;
Mangold & Roth, 2023) study the limitations of multilevel SBM for detecting a planted
hierarchy of partitions in a network. Here we use the SBM and multilevel SBM for the
purpose of generating networks with predetermined community structure. Of utmost
importance is the Barabasi-Albert preferential attachment model with community
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structure construction ofHajek & Sankagiri (2019), which motivates our own construction
of a multilevel block model with preferential attachment to produce networks with
community structure and degree distribution ruled by a power law. The proof of this latter
fact is a novel contribution of this article.

There is scarce literature in the use of SBM andmultilevel SBM, let alone the preferential
attachment model for constructing synthetic ground truth communities in networks as
benchmarks for testing clustering algorithms. A notable exception is Peel, Larremore &
Clauset (2017), that uses SBM in this sense to explore how metadata relate to the structure
of the network when the metadata only correlate weakly with the identified communities.
This article contributes to the literature of clustering assessment through probabilistic
generative models of communities in networks.

METHODS
In this section we detail our methodology. Portions of this text were previously published
as part of a preprint (Renedo-Mirambell & Arratia, 2021).

Cluster quality metrics
For the definitions of quality metrics we will use the following notation. Given a graph
G ¼ ðV ;EÞ, n will denote its order (number of vertices) and m its size (number of edges).
Following common practice we may identify the set of vertices V with the initial segment
of positive integers ½n�. Similarly, nS andmS will be the order and size of a subgraph S of G,
and cS will be the number of edges of G connecting S to GnS. Here, in the context of
community detection, we will only work with subgraphs induced by sets of nodes (i.e.,
communities).

Given P a partition ofG and u; v 2 V , dPðu; vÞ will take value 1 if u and v are in the same
part of P and 0 otherwise. kv will denote the degree of a vertex v 2 V , and kmed the median
degree.

We study two different kinds of quality metrics: cluster-wise (or local), which evaluate
each cluster separately, and global, which give a score to the entire network. Additionally,
for each local metric, we also consider the global metric obtained by computing its
weighted mean, with weights being the corresponding sizes of the clusters.

We consider a collection of local metrics (or community scoring functions) introduced
in Yang & Leskovec (2015) which combine the notions of strong internal and weak external
connectivity that are expected of good clusters. Definitions of these local clustering quality
metrics are summarised in Table 1. While many of them are too focused on a single
property to be able to give a general overview on their own (like internal density, average
degree, cut ratio, etc.), they all capture properties that are considered desirable in a proper
clustering (which essentially come down to a combination of strong internal and weak
external connectivity). The ones that actually combine both internal and external
connectivity are the conductance and normalized cut (which happen to be highly
correlated, as seen in Yang & Leskovec, 2015), so we will mostly focus our analysis on those.

As for global metrics, we consider modularity (Newman, 2006) and coverage (Emmons
et al., 2016). Additionally, we propose another metric, which we named density ratio, and
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is defined as 1� external density
internal density. It is based on some of the metrics in Table 1, but defined

globally over the whole partition (see Table 2). It takes values on ð�1; 1�, with 1
representing the strongest partition, with only internal connectivity, while poor clusterings
with similar internal and external connectivity have values around 0. Only clusterings with
higher external than internal connectivity (so worse on average than clustering randomly)
will have negative values, and if we keep decreasing the internal connectivity, the density
ratio will tend to �1 as the internal density approaches 0. The density ratio can be
computed on linear time over the number of edges. A local version of this metric is defined
in Table 1.

Stochastic block model (SBM)
A potential benchmark for clustering algorithm evaluation is the family of graphs with a
pre-determined community structure generated by the l-partitionmodel (Condon & Karp,
2001; Girvan & Newman, 2002; Fortunato, 2010). It is essentially a block-based extension
of the well known Erdös-Renyi model, with l blocks of g vertices, and with probabilities pin
and pout of having edges within the same block and between different blocks respectively.

The generalization of this idea is the stochastic block model, which allows blocks to have
different sizes, as well as setting distinct edge probabilities for edges between each pair of

Table 1 Local scoring functions of a community S of the graph G ¼ ðV ;EÞ.
" Internal density

mS
nSðnS�1Þ=2

" Edges inside mS

" Fraction over median degree jfu:u2S;jfðu;vÞv2Sgj. kmedgj
nS

" Triangle participation ratio jfu:u2S;fðv;wÞ:v;w2S;ðu;vÞ2E;ðu;wÞ2E;ðv;wÞ2Eg6¼[gj
nS

" Average degree 2mS
nS

# Expansion
cs
ns

# Cut ratio
cs

nsðn�nsÞ

# Conductance
cs

2msþcs

# Normalized cut
cs

2msþcs
þ cs

2ðm�msÞþcs

# Maximum ODF maxu2S
jfðu;vÞ2E:v 62Sgj

ku

# Average ODF 1
ns

P
u2S

jfðu;vÞ2E:v 62Sgj
ku

" Local density ratio 1� cs=ðnSðn�nSÞÞ
mS=ðnSðnS�1ÞÞ

Note:
Arrows indicate whether the score takes higher values when the cluster is stronger and lower values when it is weaker ("),
or vice versa (#).

Table 2 Global scoring functions of a partition P of the graph G ¼ ðV ;EÞ.
" Modularity 1

2m

P
u;v ðAuv � kukv

2m ÞdPðu; vÞ
" Coverage

P
u;v

AuvdPðu;vÞP
u;v

Auv

" Global density ratio 1� jfðu;vÞ2E:dPðu;vÞ¼0gj=jfu;v2V:dPðu;vÞ¼0gj
jfðu;vÞ2E:dPðu;vÞ¼1gj=jfu;v2V:dPðu;vÞ¼1gj
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blocks, and for internal edges within each block (Holland, Laskey & Leinhardt, 1983;Wang
& Wong, 1987). These probabilities are commonly expressed in matrix form, with
probability matrix P where Pij is the probability of having an edge between each pair of
vertices from blocks i and j. Note that this matrix is symmetric for undirected graphs.
Then, graphs generated by probability matrices where the values in the diagonal are larger
than the rest, will have very strong and significant clusters, while more uniform matrices
will produce similarly uniform (and therefore poorly clustered) graphs.

Multi-level stochastic block model
To generate networks with multi-level community structures, we propose a variation of the
stochastic block model, defined as follows:

� C1,…, Cn are the first level of communities.

� Each community is split into Ci1 ;…;Cimi
sub-communities.

� d1 is the edge probability within sub-communities.

� d2 is the edge probability within communities (but with different sub-communities).

� d3 is the edge probability outside communities.

Consequently, the model takes as parameters the upper and lower level block size lists,
as well as the edge probabilities d1, d2, d3. Note that the lower level partition Pl ¼ fCijg is a
refinement of the upper level partition Pu ¼ fCig. A representation of this multi-level
stochastic block model is shown in Fig. 1, where the upper level is the light coloured region
whilst the lower level is the darker region, and the edge probabilities are clearly identified.

The resulting model can itself be expressed as a standard (single-level) stochastic block
model, using the lower-level communities as blocks, and with probability matrix as seen in
Fig. 2, which means it is actually a particular case of the standard stochastic block model.
This idea can be extended to define stochastic block models with a hierarchical or multi-

Figure 1 Multi-level stochastic block model. Full-size DOI: 10.7717/peerj-cs.1523/fig-1
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level structure of any number of levels, but in our experiments we have used 2 levels for the
sake of simplicity.

By varying the relation between d1 and d2, we can give different strength to the multi-
level community structure. If d2 is close to or equal to d1, the lower level of communities
will not be distinguishable and will merge into the upper level. If d1 is instead much larger,
then the smaller communities will become more visible. Similarly, if d2 is not significantly
larger than d3, the upper level structure will be weak.

We would not consider cases where d1 , d2 and d2 , d3, as the resulting structure
would be closer to a k-partite graph (with k being the number of blocks on the
corresponding level) than to a community structure (i.e., blocks would be more connected
to each other than to themselves).

Preferential attachment model
An alternative way to generate benchmark graphs that resemble real networks is the
Barabási-Albert preferential attachment model (Barabási & Albert, 1999). In this model,
new vertices are added successively, and at each addition, a fixed number m of new edges
are added connecting the new vertex to the rest of the network, with probabilities of linking
to each of the existing vertices proportional to their current degree.

According to the historical account given by Barabási (2012), “preferential attachment
made its first appearance in 1923 in the celebrated urn model of the Hungarian
mathematician György Pólya”. The idea (with different naming) reappeared repeatedly
over the past century, particularly in the social sciences. A landmark is the cumulative
advantage distribution of Price (1976) that models the citation frequencies of scientific
articles, i.e., what we know today as the directed network of citations.

Figure 2 Probability matrix of the multi-level stochastic block model.
Full-size DOI: 10.7717/peerj-cs.1523/fig-2

Renedo-Mirambell and Arratia (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1523 6/18

http://dx.doi.org/10.7717/peerj-cs.1523/fig-2
http://dx.doi.org/10.7717/peerj-cs.1523
https://peerj.com/computer-science/


An extension to the preferential attachment model to include communities has been
explored in Hajek & Sankagiri (2019) and Jordan (2013), which consists on basing the
preferential attachment not only on the degree of the vertices, but also on a fitness matrix
that depends on their labels (i.e., which block each of the vertices belongs to). This
construction can be seen as a weighted preferential attachment, with weights being the
affinities between vertex labels. We propose a variation of this preferential attachment
block model where new half edges are first randomly assigned a community (with
probabilities given by the affinity matrix), from which we then sample the vertex with
standard preferential attachment.

The model consist of a sequence of graphs fGt ¼ ðVt; EtÞ : t � t0g, where Vt ¼ ½t�
(hence there are t vertices) and jEtj ¼ mt, no self-loops, with the possibility of having
parallel edges, and communities C ¼ ðC1;…;CrÞ, with distribution determined by the
following parameters:

� m � 1: fixed number of edges added connecting each new vertex to the graph.

� r � 1: fixed number of communities.

� b: r � r fitness matrix that determines the probability of edges connecting each pair of
communities.

� p ¼ ðpc1 ; pc2 ;…; pcrÞ: vertex community membership probability distribution.

� t0 � 1: initial time (which is also the order of the G0 graph).

� Gt0 : initial graph

Given graph Gt and community memberships c ¼ ðc1;…; ctÞ, the graph Gtþ1 is
generated as follows: A new vertex t þ 1 is added with community membership sampled
from the probability vector p, and with m half-edges attached. To obtain the other ends of
these half edges,m communities are sampled with replacement with probabilities weighted
by bct ;1;…; bct ;r , and for each of them, a vertex is sampled within the community with
preferential attachment (that is, with probabilities proportional to the degree of each
vertex). The initial graph Gt0 has to be chosen carefully as we will explain below, and
further we will show that the resulting network has a scale-free degree distribution.

Generating the initial graph
The initial graph Gt0 is crucial for computing Gt in discrete time, because early vertices
have a higher probability to end up with a high degree than later ones due to the nature of
the preferential attachment model. To avoid bias with respect to any of the communities,
we assign the initial vertices with the same vector of probabilities p ¼ ðpc1 ;…; pcjPj Þ used
later when adding new vertices. Then, we sample t0 �m edges between them with
probabilities proportional to the fitness matrix. In order for Gt0 to be able to have enough
edges without parallel or self edges, we need t0 � 1. 2m (if we have the equality, Gt0 will
be an t0-clique). It is suggested to use t0 ¼ 5m to produce a graph that is not too close to a
clique, because Gt0 is generated with community structure according to a fitness matrix,
but the closer it is to a clique, the less this structure matters (at least if we sample without
replacement to avoid parallel edges).
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Degree distribution
In this section we will analytically obtain the expected degree distribution of the model.
Recall that for the original Barabási-Albert model it is done as follows (shown in Albert &
Barabási, 2002). Let ki be the expectation of the degree of node i. Then,

dki
dt

¼ m
kiPN�1
j¼1 kj

(1)

The sum in the denominator is known, since the total amount of edges at a certain point
is fixed by the model, so

PN�1
j¼1 kj ¼ 2mt �m, and thus dki

dt ¼ ki
2t � 1. For large t the�1 term

can be neglected, and hence we get dki
ki
¼ dt

2t. Integrating and taking exponents we get

Cki ¼ t
1
2, for some constant C. By definition, kiðtiÞ ¼ m, and hence C ¼ t

1
2
i
m. Substituting this

value into the last equation, we obtain the desired power law:

kiðtÞ ¼ m
t
ti

� �1
2

(2)

For our block model the argument goes as follows. We will assume ki belongs to the first
community to simplify the notation (by symmetry the same principles work on all
communities). The rate at which the degree grows is given by

dki
dt

¼
Xr
j¼1

pjbj1

 !
kiP
j2C1

kj
m; (3)

where the denominator is the expected sum of degrees in community 1:

E
X
j2C1

kj

" #
t

¼ tm p1 þ
Xr
j¼1

pjbj1

 !
: (4)

Then, Eq. (3) becomes

dki
dt

¼
Xr
j¼1

pjbj1

 !
ki

t p1 þ
Pr

j¼1 pjbj1
� � ¼ A

ki
t
; (5)

where A ¼ ðPr
j¼1 pjbj1Þ=ðp1 þ

Pr
j¼1 pjbj1Þ is a constant that depends only on the

parameters of the model (p1,…, pr and b). Then, we integrate the equation:Z
dki
ki

¼
Z

A
dt
t

(6)

to obtain that ki ¼ CtA, for some constant C. Now, using the fact that kiðtiÞ ¼ m, we obtain
the value of the constant as C ¼ m

tAi
, which results in ki being given by

ki ¼ m
t
ti

� �A

: (7)
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By an argument similar to one in Albert & Barabási (2002, Sec. VII.B) we use Eq. (7) to
write the probability that a node has degree kiðtÞ smaller than k as

PðkiðtÞ, kÞ ¼ P ti .
tm1=A

k1=A

� �
¼ 1� tm1=A

ðt þm0Þk1=A : (8)

The last equality obtained from assuming that nodes are added to the network at equal
time intervals, and in consequence PðtiÞ ¼ 1=ðt þm0Þ. Using Eq. (8) one can readily
conclude that the degree distribution of the community PðkÞ ¼ @PðkiðtÞ, kÞ=@k is
asymptotically given by: PðkÞ � 2m1=Ak�c, where c ¼ 1=Aþ 1.

Software
All results in this article have been produced with the clustAnalytics R package (Renedo-
Mirambell, 2022) which contains the needed functionalities for the analysis of clustering
algorithms on weighted or unweighted networks, particularly the implementations of the
scoring functions, as well as the preferential attachment models with communities. The
scripts and data used to perform the experiments are available in Zenodo repository
(Renedo-Mirambell & Arratia, 2023).

CLUSTER METRICS ANALYSIS
Standard SBM network
Using stochastic block models—particularly the l-partition model, given the use of the
same fixed probabilities for all blocks (cf. “Stochastic Block Model”)—we generate a
collection of networks with predetermined clusters of varying sizes. The networks are
generated as follows: The number of vertices n is fixed, and then, each vertex is assigned to
a community with probability pc1 ; pc2 ;…; pcjPj (such that

P
Pi ¼ 1). Then, this set of

probabilities is what will determine the expected sizes of the clusters. Finally, once each
vertex is assigned to a community, the edges are generated using the stochastic block
model with probabilities pin ¼ 0:1 and pout ¼ 0:001 (which control the probability of intra
and inter community edges, respectively).

To generate pc1 ; pc2 ;…; pcjPj we sample x1,…, xP from a power law distribution with
b ¼ 1:5, and then use the probabilities pi ¼ xiP

j
xj
. For this experiment, we have used

networks of 300 nodes, with a number of clusters ranging from 5 to 25. For each number of
clusters, 1,000 samples have been generated.

Since both the internal and external densities remain constant across all clusters, a
strong correlation of a quality metric with cluster size could suggest that it is biased. We
can then study the correlation between each quality metric like cluster size (for cluster-wise
scores), mean cluster size, and number of clusters relative to graph size (for global scores).
Results are shown in Table 3.

Note that by the properties of our model, some of the correlations are to be expected and
are a direct consequence of their definitions. This is the case of the cut ratio, internal
density or density ratio, which remain nearly constant because they are determined by the
values of pin and pout , which are constant across all networks. We must remark the very
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high correlations of both conductance and normalized cut with the number of clusters. For
these two metrics, lower scores indicate better clusterings, so they overwhelmingly favour
coarse partitions into few large clusters. We also observe a similarly strong correlation in
the case of the coverage metric, but in this case it is a trivial consequence of its definition
(coarser partitions will always have equal or better coverage, with the degenerate partition
into a single cluster achieving full coverage). In contrast, the modularity only shows very
weak correlations to either the number of clusters or their average size.

In the case of the density ratio, we observe that the global version has no correlation to
mean size or number of clusters, and that the local version has no correlation with
individual cluster size. There is a weak correlation of the weighted mean of the local density
ratio with the global properties of the network, which we attribute to the higher likelihood
of outliers whenever there is a high number of clusters. Since the score has no lower bound
and an upper bound of 1, outliers can have a very small values of the local density ratios,
with a great effect on the mean. That is why we suggest using the global density ratio and
not the weighted mean of local density ratios when evaluating a network clustering as a
whole, and only using the local version when studying and comparing individual clusters.

Multi-level SBM
We use the multi-level stochastic block model to identify whether a certain metric favours
either finer or coarser partitions. Given values of d1 and d3, we can define a parameter
0 � k � 1 that will set the strength of the lower level of clustering (if k ¼ 1 the upper level
dominates, if k ¼ 0, the lower level dominates), and then set d2 ¼ d3 þ kðd1 � d3Þ. Upper

Table 3 Pearson correlation table for both global and local scores with respect to size on the SBM.
For the local scores, the first two rows are weighted means, giving a score for the whole network. Note
that the last three rows correspond to global scores, so there is no value given for the correlation with
local cluster size.

Global Local size

#Clusters Size (Mean)

Internal density 0.0830 −0.0610 −0.0606

Edges inside −0.6587 0.7620 0.9027

FOMD −0.6308 0.5951 0.8126

Expansion 0.6855 −0.7388 −0.3388

Cut ratio 0.0095 −0.0113 0.0010

Conductance 0.9718 −0.9432 −0.8164

Norm cut 0.9682 −0.9369 −0.7674

Max ODF 0.9154 −0.9320 −0.8005

Average ODF 0.9671 −0.9390 −0.8016

Density ratio −0.3079 0.2648 0.0913

Modularity −0.3169 0.2096 –

Coverage −0.9234 0.8778 –

Global density ratio −0.0035 0.0069 –
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level representing coarser partitions than those in lower level, being the latter a refinement
of the former.

To evaluate each metric on different configurations of the multi-level community
structure, we set a benchmark graph with four communities of 50 vertices on the upper
level, each of which splits into two 25 vertex communities on the lower level. We then
generate samples across the whole range ½0; 1� of values of k, with d1 ¼ 0:2 and d3 ¼ 0:01.
In general, it is sufficient to choose d1 and d3 different enough so that there is a strong
community structure on the upper level, and to have a good range of d2 values that lets us
explore their effect on the relation between the two levels of communities.

Figure 3 shows that all scores fail to capture the multi-level nature of the clustering
except for modularity and density ratio. The point at which the scores of the lower and
upper levels cross on the plot gives us the value of k for which both clusterings are
considered equally good by the metric. Then, for values of k smaller than the one attained
at the crossing point, the lower level structure is considered preferable, while for larger
values, it’s the upper level. Then, the value of k at which we find this tipping point
characterises the propensity of a metric to favor finer or coarser partitions. In this case,
since this occurs for a smaller value of k on the modularity (about 0:15) than the density
ratio (a bit over 0:20), we can conclude that the former favors coarser partitions than the
later.

As for the rest of the metrics, they always prioritize one level of clustering over the other
across all the range of k (that is, the score lines don’t cross). Even the conductance and
normalized cut, which take into account both internal and external connectivity, fail to
give a better score to the lower level when k is zero. Note that when k ¼ 0, our model on
the upper level is equivalent to an l-partition model of 8 blocks which have been clustered
arbitrarily joined in pairs, and that still gets a similar or better score than the correct finer
partition into the 8 ground truth clusters.

Multi-level preferential attachment
Here we describe how to set the parameters of the preferential attachment block model
defined in “Preferential Attachment Model” to obtain graphs with a multi-level or
hierarchical community structure. This is given by the selection of the vector p and the
matrix b. Let pl1 ¼ ðp1;…; prÞ be the vector of probabilities for the upper level, where pi is
the probability of membership to community Ci (see Fig. 4). Then, similarly to “Multi-level
SBM”, we want to define a lower level structure that can vary according to a parameter k,
which will determine which level dominates. We will define Ci;1;…;Ci;si as the lower level
sub-communities of the higher level community Ci. Then, to sample the membership of
vertices when generating a multi-level preferential attachment graph, we need a vector of
probabilities pl2 ¼ ðp1;1;…; p1;s1 ;…; pr;1;…; pr;srÞ, where pi;j is the probability of
membership to Ci;j, and such that

Psi
j¼1 pi;j ¼ pi for all i 2 f1;…; rg, andPr

i¼1 pi ¼ 1.
Then, to sample the membership of each vertex on both levels, we simply need to

sample its lower level membership according to the probability weights in pl2 , which will
also induce its upper level membership. As for the affinity matrix (see Fig. 5), it will have
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Figure 3 Values of the quality metrics on each level of clustering on the Multilevel SBM. k controls
the strength of the multi-level community structure. The y axis has been inverted for the scores where
lower values are better (conductance, normalized cut and expansion).

Full-size DOI: 10.7717/peerj-cs.1523/fig-3
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the same block structure as the probability matrix of the multi-level stochastic block model
in “Multi-level SBM”.

Again, we use the parameter 0 � k � 1, which controls the values of d2 as follows:

d2 ¼ d3 þ kðd1 � d3Þ; (9)

and then, following the preferential attachment model we sample edges attached to a new
vertex i with probability distribution ðdegð1Þd1;i;…; degði� 1Þdði�1Þ;iÞ. For our
experiments, we set d1 ¼ 0:2, d3 ¼ 0:01, and generate samples of k across the whole ½0; 1�
interval, just as with the multi-level SBM in “Multi-level SBM”. m has been set at 4. The
results for a network of 300 nodes are shown in Fig. 6.

The results are consistent with those of the multi-level SBM, and again only the
modularity and density ratio prioritize either partition depending on the strength of the
parameters (the rest always favour the same level of partition). This is seen when the plot
lines for the lower and upper level partitions cross, and the value of k at which the lines
cross tells us at which degree of relative strength both levels of clustering receive the same

Figure 4 Diagram of the multi-level preferential attachment graph with community structure
following the previously defined notation. Full-size DOI: 10.7717/peerj-cs.1523/fig-4

Figure 5 Affinity matrix of the multi-level block model with preferential attachment.
Full-size DOI: 10.7717/peerj-cs.1523/fig-5
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Figure 6 Values of the quality metrics on each level of clustering for the multi-level preferential
attachment model with 300 nodes. k controls the relative strength of the multi-level community
structure. The y axis has been inverted for the scores where lower values are better (conductance, nor-
malized cut and expansion). Full-size DOI: 10.7717/peerj-cs.1523/fig-6
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Figure 7 Values of the quality metrics on each level of clustering for the multi-level preferential
attachment model with 10,000 nodes. k controls the relative strength of the multi-level community
structure. The y axis has been inverted for the scores where lower values are better (conductance, nor-
malized cut and expansion). Full-size DOI: 10.7717/peerj-cs.1523/fig-7
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score. Ultimately, this value of k characterizes to what extent any given score favours fine
or coarse partitions.

The same experiment has been repeated on a larger node of 10,000 nodes (see Fig. 7). In
this case, there are 8 upper level communities, of which four contain two sub-communities,
and two containing both four and eight each. The values of the rest of the parameters have
not been changed. As expected, the results are again very similar to both the small
preferential attachment and the SBM networks. In this case, the data points deviate less
from the fitted curve because on a larger network the empirical scores will be closer to the
expected values determined by the parameters of the model.

CONCLUSIONS
We have observed that most of the considered community metrics are heavily biased with
respect to cluster size. While this does not mean that they are useless for cluster quality
evaluation, it makes them inadequate for a simplistic approach based on either of them
individually. They do however characterize properties that are expected of good clusters,
and can complement other methods on a more qualitative analysis. Considering that there
isn’t a single universal definition of what constitutes a good clustering, being able to
evaluate each of these properties separately can be valuable. Also note that these metrics
can be particularly useful when comparing partitions of the same number of elements,
because in that case the potential of bias related to cluster size is not a concern.

The results of the tests performed on both multi-level models are similar and show that
both the modularity and our newly introduced density ratio are capable of evaluating
multi-level community structures successfully. When compared among them, though, the
modularity favors slightly coarser partitions. Therefore, there are grounds for further
analysis of the density ratio metric in future work, such as evaluating it both on well known
benchmark graphs and real world networks. It would also be particularly interesting to see
how it fares in circumstances were the modularity has limitations, such as when there are
strong clusters below its resolution limit.

Additionally, the methods we propose for studying network metrics using multi-level
models gave valuable insight and can be of use in to study any new metrics that might be
introduced in the future. We strongly suggest the use of metrics that can appropriately
detect clusters at different scales when comparing the results of clustering algorithms,
because as we have shown, otherwise cluster size has too much influence on the result.
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