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Abstract
Recent years have seen an unprecedented uptake in electric vehicles, driven by the

global push to reduce carbon emissions. At the same time, intermittent renewables

are being deployed increasingly. These developments are putting flexibility measures

such as dynamic load management in the spotlight of the energy transition. Flexibility

measuresmust consider EV charging, as it has the ability to introduce grid constraints:

In Germany, the cumulative power of all EV onboard chargers amounts to ca. 120

GW, while the German peak load only amounts to 80 GW. Commercial operations

have strong incentives to optimize charging and flatten peak loads in real-time, given

that the highest quarter-hour can determine the power-related energy bill, and that a

blown fuse due to overloading can halt operations. Increasing research efforts have

therefore gone into real-time-capable optimization methods. Reinforcement Learning

(RL) has particularly gained attention due to its versatility, performance and real-

time capabilities. This thesis implements such an approach and introduces FleetRL

as a realistic RL environment for EV charging, with a focus on commercial vehicle

fleets. Through its implementation, it was found that RL saved up to 83% compared to

static benchmarks, and that grid overloading was entirely avoided in some scenarios

by sacrificing small portions of SOC, or by delaying the charging process. Linear

optimization with one year of perfect knowledge outperformed RL, but reached its

practical limits in one use-case, where a feasible solution could not be found by the

solver. Overall, this thesis makes a strong case for RL-based EV charging. It further

provides a foundation which can be built upon: a modular, open-source software

framework that integrates anMDPmodel, schedule generation, and non-linear battery

degradation.

Keywords

Deep Reinforcement Learning, EV charging optimization, Artificial Intelligence,

Commercial vehicle fleets, Electric vehicles
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Sammanfattning

Elektrifieringen av transportsektorn är en nödvändig men utmanande uppgift. I

kombination med ökande solcellsproduktion och förnybara energikällor skapar det

ett dilemma för elnätet som kräver omfattande flexibilitetsåtgärder. Dessa åtgärder

måste inkludera laddning av elbilar, ett fenomen som har lett till aldrig tidigare

skådade belastningstoppar. Ur ett kommersiellt perspektiv är incitamentet att

optimera laddningsprocessen och säkerställa drifttid. Forskningen har fokuserat

på realtidsoptimeringsmetoder som Deep Reinforcement Learning (DRL). Denna

avhandling introducerar FleetRL somennyRL-miljö för EV-laddning av kommersiella

flottor. Genom att tillämpa ramverket visade det sig att RL sparade upp till 83%

jämfört med statiska riktmärken, och att överbelastning av nätet helt kunde undvikas

i de flesta scenarier. Linjär optimering överträffade RL men nådde sina gränser i

snävt begränsade användningsfall. Efter att ha funnit ett positivt business case för

varje kommersiellt användningsområde, ger denna avhandling ett starkt argument för

RL-baserad laddning och en grund för framtida arbete via praktiska insikter och ett

modulärt mjukvaruramverk med öppen källkod.

Nyckelord

Deep Reinforcement Learning, optimering av elbilsladdning, artificiell intelligens,

kommersiella fordonsflottor, Elektriska fordon
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Chapter 1

Introduction

Road transportmakes up 17.8%of global emissions - its electrification is thus one of the

most impactful measures to achieve greenhouse gas and pollution reduction in urban

areas [1–4]. Electric vehicles (EVs) are being widely adopted in households, public

transport, and companies. Besides their merits, however, EVs introduce challenges

to the energy system as it is known today. EV charging introduces unpredictable

load peaks; in combination with the rapidly growing EV adoption rate, this places

an increasing strain on the electricity grid. This problem is also experienced on an

end-user level: if not managed properly, the simultaneous charging of an electric

vehicle and use of multiple household appliances can trip the house’s breaker box.

For commercial fleets it is even more important to manage the charging process, since

parallel charging, vehicle down-time, and operational costs must be dealt with. These

various challenges necessitate an optimization of the charging process for electric

vehicles, especially in the commercial space.

EV charging optimization has been abundantly studied in scientific literature.

Generally speaking, the objective is to charge the vehicles in the most cost-

or operationally-effective manner whilst satisfying the constraints of the specific

use-case. These constraints can for example include the grid connection, the

driving schedules, and the vehicle range. Solving a constrained optimization is

commonly addressed with linear programming techniques, such as mixed integer

linear programming [5–7]. The problem of EV charging, however, can become

complex: driving behaviour can be random, market prices change over time and

non-linearities can be introduced to the scope of the optimization. Where linear
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CHAPTER 1. INTRODUCTION

methods fall short, deterministic, non-linear mathematical models can describe

complex relationships. However, they have drawbacks when it comes to real-time

applications due to computing time. Given that the EV charging problem features

random, instantly occurring elements such as random behaviour or line overloading,

real-time capable algorithms hold considerable value. This led to research in the field

of reinforcement learning (RL) which has been shown to be more suitable for real-

time use [8]. Current contemporary research in this area has largely remained in the

theoretical domain and a transition towards real-world applications is yet to be made.

The potential benefits of RL and the lack of real-world applicationsmotivate this thesis

to propose a novel framework that incorporates RL and an economic analysis of the

required charging, metering, and communication infrastructure [9].

A thorough literature review forms the basis of this study, focusing on commercial

fleets, charging management systems and applications of RL in EV charging

optimization in Chapter 2. From the identified research gaps, scope and objectives

are formulated; this is done in Chapter 3. Subsequently, the most important theory

of Reinforcement Learning (RL) is explained in Chapter 4, covering the fundamentals

and the models used in this study. Chapter 5 covers the methodology: designing the

use-cases, implementing RL-based optimization, and conducting an economic impact

assessment. Chapter 6 presents and discuss the results, followed by a final conclusion

in Chapter 7. Figure 1.0.1 summarizes the thesis structure graphically.

2. Literature review
- Background
- Related work
- Research gap

3. Scope and objectives

4. Theory of RL

5. Methodology
- Use- case design
- RL optimization
- Economic impact

6. Results

7. Conclusion

Figure 1.0.1: Thesis structure
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Chapter 2

Literature review

2.1 Background

In this section, a background is provided on the German Electric Vehicle (EV)

landscape with its trends, regulations, and subsidy schemes. Subsequently, the most

common optimization approaches for EV charging management are presented.

2.1.1 The German EV landscape

Germany has seen a significant increase in its EV stock since 2018, as can be seen in

Figure 2.1.1.

Figure 2.1.1: EVs in Germany [10]

As of July 2023, ca. 1.1 million EVs and 876 thousand Plug-in Hybrid Electric Vehicles
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CHAPTER 2. LITERATURE REVIEW

(PHEVs) are in circulation, corresponding to ca. 80 GWh of battery capacity [10, 11].

The cumulative onboard charger power sums up to ca. 114 GW of DC charging power,

and ca. 14 GW of AC charging power [10]. To put this into perspective, the German

peak load only amounts to ca. 80 GW [12].

Alongside EVs, charging stations have been steadily deployed as well: As of May 2023,

36800 public charging stations have been registered by the Federal Grid Agency - an

increase from 25900 by the end of 2021 [13, 14]. An official estimate of the total

number of chargers in Germany revolves around 65000 [15]. A detailed account of

public chargers, their usage, and profitability can be found in [14]. When it comes

to commercial applications of EVs, a similar trend can be observed [11]. EVs in

commercial applications are further elaborated upon in Section 5.1.

2.1.2 Regulatory measures

On an EU-level, the Alternative Fuels Infrastructure Directive mandates its member

countries to make electric mobility possible for passenger, light-commercial, and

heavy-duty vehicles. A focus is set on interoperability to allow for seamless operation

between member countries - this is enacted by the German regulation on charging

infrastructure, which defines the technological standard for charging stations in

Germany [16]. Further, economic incentives are put in place to accelerate the

transition: when buying an EV, up to €6750 can be deducted from the purchase price

via subsidies [15, 17].

Additionally, tax incentives are put in place: no tax is to be paidwhen charging anEV at

the employer [18]. For companies, a support scheme existed until 2022 that alleviated

70% of capex for investments in charging infrastructure, up to €45000 [19]. Note that

apart from the national level, each state has the possibility to enact its own subsidy

schemes to support electric mobility, e.g. [20].

Regulatory measures also exist to advance in the digital transformation of the energy

sector: in May 2023, a law was passed on Smart Meters, mandating their installation

for households with an energy consumption above 6000 kWh or PV above 7 kWp [21].

Germany currently lags behind by a considerablemargin when it comes to smartmeter

installations. The passing of this law therefore, sets the necessary foundation for load

management business models that rely on detailed information and communication

regarding energy demand.

4



CHAPTER 2. LITERATURE REVIEW

2.1.3 EV charging management

Although the infrastructure for EV charging management is still under development

in Germany, multiple business models are emerging, ranging from dynamic electricity

tariffs to dynamic load management.

On the supply side, novel business models can be found regarding time-of-use tariffs

and dynamic electricity pricing. These companies usually enable their customers to

leverage intraday price differences on the EPEX spot market. The value proposition is

accompanied by empowering the end-user to make better decisions on consumption

timing via informative dashboards and data integration. Two commercially available

examples can be found in [22, 23].

On the demand side, dynamic load management solutions are experiencing a boom.

The core value proposition usually consists of the ability to optimize the EV chargers or

other assets (e.g. heat pumps, PV, appliances), achieving a cost reduction compared to

the status quo. Additional value propositions include consulting services (e.g. charging

infrastructure design), or the seamless integration of software and hardware. Players

with a high number of compatible chargers and communication protocols thereby set

each other apart from the competition. Dynamic load management is offered by start-

ups, EV supply equipment (EVSE) manufacturers, utilities, and other players in the

domain of digital energy solutions - the level of competition is therefore rather high.

Commercial examples can be found in [24–27].

2.1.4 Hardware and software requirements

Implementing dynamic load management in the real world requires metering,

communication, and control. On the most fundamental level, metering could consist

of gathering information on the power demand of the EV chargers, thereby ignoring

building and other appliances. In this case, a static limit would be set that the chargers

must not exceed. The second option is a smart meter that provides information on

the building load, PV, or other individually connected appliances with the required

communication channels (e.g., heat pump, smart fridge, etc.). A smart meter provides

the advantage that the controller can dynamically adjust according to the current

load of the building, allowing for more optimization potential. The second technical

prerequisite is communication. Signals must be sent and received by the load

5



CHAPTER 2. LITERATURE REVIEW

controller in real time in order to take the right actions at the right time. The most

commonly used protocols are the Open Charge Point Protocoll (OCPP), ISO 15118,

ModBus TCP, EEBus, and MQTT [28–31]. Taking the example of OCPP, information

on the State of Charge (SOC), time of arrival, type of vehicle, and other parameters

are exchanged. Finally, a load controller is required to perform computation and

to send the scheduling signals to the EV charger. Depending on the scope of the

optimization, the computational complexity can vary considerably. When researching

hardware components for this study, it was found that several controllers were based

on a Raspberry Pi platform, or similar architectures [24, 32, 33].

2.1.5 EV charging optimization methods

With increasing electrification of transport in domestic, as well as commercial sectors,

uncoordinated charging is starting to pose a challenge: it can increase peak loads, cause

grid congestions, or affect power quality due to voltage deviations [34, 35]. Regulators

and utilities are therefore actively shaping the EV charging landscape to accommodate

for this transition. For example, electricity tariffs are being put in place that incentivize

postponing the charging process until the night hours [36]. With dynamic electricity

tariffs, an economic incentive has emerged to optimize the charging process. The

problem of minimizing charging cost while respecting the mobility constraints has

therefore been addressed with a multitude of approaches. This section gives a brief

overview of the most prominent methodologies.

Linear Programming (LP) and Mixed Integer Linear Programming (MILP) are among

the most commonly used techniques, offering a structured approach to optimizing

the charging schedule based on a set of linear constraints and objectives [5–7].

Quadratic and Non-linear programming methods extend these techniques to handle

more complex, non-linear relationships, such as battery degradation [34, 37]. With

their mathematical frameworks, LP-techniques provide a deterministic approach, and

find the optimal solutionwithin the given problem formulation. However, LP-methods

do not perform well on problems with uncertainty, as well as dynamic environments

[8, 38].

Genetic algorithms, particle-swarm optimization, and other meta-heuristic methods

have also been applied to EV charging optimization, offering a more exploratory

approach that can potentially uncover novel solutions [39–42]. Thesemethods operate

6
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by iteratively generating and refining potential candidates based on a fitness function,

which could represent the charging cost in the context of EV charging. While meta-

heuristic methods can perform well in non-linear, or uncertain environments, they

often require significant computational resources and may not always converge to the

optimal solution [42].

Due to the relevance of EV chargingmanagement and the shortcomings of the different

optimization approaches, new methods have been developed and tested continuously.

One of these methods is RL, which models the EV charging problem as a sequential

decision-making process with penalties and rewards after each decision. RL has

emerged in the EV charging space due to its suitability in uncertain and dynamic

environments, as well as its low computational intensity after the training phase

[38]. RL-based EV charging can therefore fulfil the high requirements for real-time

optimization that emerge when instantaneous reactions are required in dynamic,

uncertain, or non-linear optimization problems. Attention particularly surged in

recent years, after RL achieved breakthroughs in various fields.

2.1.6 Breakthroughs of RL

Reinforcement learning first attracted significant attention in 1994, when an agent

called TD-Gammon was successfully trained to compete with world-class players in

backgammon, a game with ca. 1020 possible states [43]. A model-free approach was

chosen, meaning that the understanding of the game’s rules and an optimal strategy

were developed through experiencing possible outcomes of the game, and without

prior knowledge. TD-Gammon consisted of a neural network with MLP architecture

and one hidden layer [43]. The neural network was used to approximate the value

function. Based on the value function, a policy was chosen that could always reach the

state with the highest value. At that time, neural networks were already identified as

powerful tools, able to approximate any non-linear function given a sufficient number

of hidden units. Soon after the initial encouraging results, however, research suggested

that problems of divergence can occur for a general set of problems [44, 45]. Instability

was particularly observed for frameworks that featured the so-called ”deadly triad”:

function approximation, bootstrapping and off-policy learning [46]. This resulted in a

period of caution regarding research in the field of RL with function approximation

and Deep Reinforcement Learning (DRL) [47]. In the 2000s, a combination of

7
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computational performance increases and new algorithm designs partially alleviated

the problems of the deadly triad [47].

Interest and attention were re-ignited, when DeepMind combined the emerging field

of deep neural networks with function approximation-based reinforcement learning:

an agent was presented that, by learning a general policy, outperformed previous

algorithms and even humans on a variety of Atari games [48, 49]. The proposed

approach, deep Q-learning / DQN, processed raw pixels as input and returned a set

of discrete actions (up to 14) that represent the controls of the Atari joystick. Two

years later, the game of Go was mastered by a DeepMind RL algorithm [50]. In an

award-winning documentary about the algorithm, the DeepMind developers can be

seen rooting for the human world champion Lee Sedol to at least win one game - and

thus prove that humanity still stands a chance against artificial intelligence. He ended

up losing 4-1.

Today, RL is used in different areas in the real world, such as traffic control,

autonomous driving, finance, healthcare, gaming, and robotics [51]. Research

efforts are being dedicated to making these applications safe and robust, because

the aforementioned fields involve interactions with other agents, as well as human

beings.

2.2 Related work

Applications of RL in the domain of EV charging have grown exponentially over the

past ten years [52]. This can be attributed to the promising results that were already

achieved during the early stages of research, combined with the relevance of EV

charging management in the energy transition. Progress in the fields of RL has led

to the deployment of increasingly sophisticated algorithms and models that aim to

recreate real-world scenarios.

In 2013, a tabular representation of a domestic, unidirectional EV charging problem

was proposed [53, 54]. Statistical data was used to create realistic mobility schedules,

and real-world data was used for household consumption. The goal of the agent was

to maximize the total welfare of the household, which comprised household energy

consumption and the charging amount of the EV. A Q-Learning agent was chosen

which maximized the state-action value Q(s, a) for every time step. Constraints were

8



CHAPTER 2. LITERATURE REVIEW

applied to ensure a minimum level of mobility, and to cap the maximum charging

power according to grid limitations. The results showed a maximum cost reduction

of 30% and a maximum peak reduction of 25%. The exploration of V2G and social

welfare were identified as future improvements. The work of [53, 54] showed that

promising results can be achieved with a discrete Q-learning approach - a relatively

basic architecture compared to the current state of the art.

Although the results in [53, 54] were promising, they also featured onemain drawback:

the observations and actions were discrete in order to solve the problem in a tabular

representation. Tabular approaches can theoretically find the global optimum of a

decision problem due to the finite nature of the problem [47]. However, tables can

becomeprohibitively large and complex, up to the pointwhere a tabular representation

is no longer feasible [8]. Regarding EV charging, this can arise when multiple

vehicles are considered, alongside other parameters such as price, load, PV, etc. This

problem is known as the curse of dimensionality: problems with small dimensions are

often too simple, whereas realistic approaches feature prohibitively large dimensions

with infeasible computational complexity [46]. Solutions to this problem come

in the form of state space reduction and function approximation of the tabular

representation.

Both approaches were combined in [55]: a novel approach for EV charging was

proposed, that does not scale with the number of charging points. This was achieved

by grouping EVs with the same properties regarding required charging time and

remaining time until departure. The resulting state space representation only scaled

with the maximum charging duration and the granularity of the time steps. In the

model, the objective was to flatten the load of EV charging. A Q-Learning algorithm

was chosen that approximated the Q-function via a Deep Neural Network (DNN).

Additionally, datawas fed into theRL agent in batches of randomly generated episodes.

This approach is known as batch RLwith fitted Q-iteration. Since a DNN is used in this

case to approximate the Q-function, the approach falls under DRL. The framework

proved to be a feasible representation that can be applied to different fleet sizes without

differences in performance. However, a low granularity of 2 hours was chosen to

reduce the state space and the episodes were terminated at midnight. Real-time

control and charging in the early morning hours to satisfy the demand of the previous

day were therefore not possible. Compared to business as usual, a load flattening

of 37% could be achieved. The identified next steps included exploring the trade-off

9
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between granularity and model complexity and validating the framework in a real-

world scenario.

A thorough literature review of RL applications in EV charging optimization was

performed in [8]. More than 50 papers were reviewed that applied RL to optimize

the charging process, with publications dates ranging from 2011 to 2021. According to

Abdullah et al., the predominant optimization objectives were cost minimization and

profit maximization, depending on the perspective of the study. In almost all studies

reviewed, the state space contained at least the following two points of information:

charging demand, and time left at the charger. Additional state variables consisted

of charging costs, weather data, renewable generation and electricity loads. The most

used state representation was the combination of SOC, electricity price and time left

at the charger. It was also found that the implementation of constraints can be useful

and even necessary in some cases because constraining the agent’s actions can be an

effective way to include knowledge of the real system in the RL environment. The

most frequently implemented constraint was the charging network limit, i.e. power

capacity or transformer loading limits, which helped to prevent the agent from learning

unrealistic scenarios. As for the implemented methods of RL, a transition from Q-

Learning to DRL was observed. In Figure 2.2.1, the transition is illustrated. Years

2011 and 2021 only make up three data points and were thus omitted.

Figure 2.2.1: RL methods used from 2013 to 2020 according to [8]

10
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From2018 onwards, DRLmethods such as Batch-RLwith fittedQ-iteration (BRL FQI)

with DNN-based approximation, Deep Q-learning (DQL), and Twin Delayed Deep

Deterministic Policy Gradient (TD3) made up a significant portion of scientific

contributions.

The main takeaways from the paper are [8]:

1. The studied RL methods outperformed their benchmarks, such as uncontrolled

charging or other rule-based approaches.

2. SOC and time left at the charger are essential for the state representation.

3. Constraints on the charging infrastructure can be useful for realistic behaviour.

4. DRL methods allow for a more realistic and efficient optimization and have

established as the state-of-the-art for RL-based EV charging optimization.

Abdullah et al. also discussed current research limitations. Although less

computationally intensive than conventional optimization techniques, RL still requires

considerable computational resources, which must be taken into account when

designing real-world applications. Fog computing, a combination of cloud and

edge computing, was proposed as a promising architecture for RL-based charging

management systems [8]. Additionally, some models still rely on perfect knowledge

of the vehicles’ schedules, or take other simplifying assumptions. The authors thus

highlighted the research gap in modelling more realistic scenarios and applying RL

frameworks in the real world.

Similarly, a critical reviewofRL applications in theEV charging domainwas performed

in [38]. The authors analysed 54 articles and sorted them by use-case: G2V

(unidirectional charging), V2H, V2G (arbitrage), and V2G (FCR). Similar to [8],

the chosen representations for state, action, and reward, as well as the chosen RL

algorithm were analysed. The chosen RL algorithms are shown below, sorted by

use-case. The publications range from 2015 to 2022, with the large majority being

published between 2019 and 2022.

11
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Figure 2.2.2: Chosen RL methods by use-case according to [38]

As can be seen, DRL methods (the first five in the graph) are predominantly used

among all use-cases, indicating that the complex EV environment requires DRL

methods. The authors highlighted that real-time communication is paramount for

V2H and V2G and that delays or data loss could severely affect the functionality

of the service. It has not been studied how real-world communication affects

the RL environment [38]. Another research gap was identified for RL-based V2G

implementations, where only a few publications exist. For data privacy reasons, Multi-

Agent Reinforcement Learning (MARL) was proposed instead of centralized, single

agent RL architectures.

2.3 Summary and research gap

A review of the German EV landscape revealed that the boom of EVs in Germany is

posing challenges that the grid was not designed for. Peak and uncontrollable loads

are increasingly introducing strains, as well as voltage and frequency fluctuations.

Flexibility measures on both the supply and demand side are therefore moving into

the spotlight of the energy transition, and the need for managing the EV charging

process is becoming paramount. Additionally, there is an equally high demand for EV

charging optimization from the commercial perspective, due to economic and up-time

12
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incentives: Overall charging costs are to be minimized, and real-time peak shaving is

required to keep the kWpeak quarter of the year at its lowest possible value. Real-time

capable algorithms are therefore gaining in importance.

Linear Programming, a commonly used technique to solve optimization problems,

performs well if the problem is linear, all constraints are known, and perfect

information is available. These requirements are often not fulfilled in the real-

world, where probabilistic, non-linear, and uncertain events occur on a regular

basis [8]. Further, the LP model needs to be rebuilt every time a change occurs

in the real-world representation of the problem. Where linear models fall short,

non-linear, meta-heuristic or model-predictive control methods can alleviate some

limitations. However, computational intensity limits the real-world applicability

of these methods. In literature, a recognized need for RL-based optimization has

therefore been established in domains such as EV charging, because RL is capable

of dealing with non-linear, probabilistic, and uncertain problems in real-time. The

performance of RL-based methods drastically increased in recent years, and RL

algorithms now outperform previous methods, as well as human beings in a variety of

domains. It thus becomes evident that there is a need for optimization of EV charging

processes with RL.

Reviewing literature on RL-based EV charging yielded the following research

gaps:

1. EV charging environments for RL exist, but are not realistic enough. Episodes

are either terminated in between days, or other simplifications are taken (hard-

coded price curves, no battery degradation, low time resolution), which reduce

the real-life applicability. No framework was found for commercial use-cases.

2. When RL is used to optimize EV charging, the focus is often purely technical and

focused on the reward signal: economic calculations do exist, but rarely extend

beyond percentage savings. Investment calculations that take into account capex

(e.g., load controller) and third party fees regarding dynamic load management

were not found during this literature review.

The needs and research gaps helped to focus the efforts of this study: modelling three

realistic commercial use-cases as a Markov Decision Process (MDP), and optimizing

them using RL. A novel framework for RL-based EV charging is implemented

in Python that is tailored to commercial applications, and that avoids simplifying
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CHAPTER 2. LITERATURE REVIEW

assumptions that were found in literature. Apart from benchmarking the agents

with rule-based strategies, a linear optimization is built to compare the agent with a

deterministic optimization that possesses perfect knowledge. The scope and objectives

will be more closely explained in the next chapter. Figure 2.3.1 summarizes the

identified needs and research gaps.

Need for EV- charging management
Grid stability
Economics
Up- time

Need for RL- based optimization
Real- time
Non- linear
Uncertainty

Realistic RL environment
Customizable
Grid limits
State of Health

Economic impact assessment
Savings, NPV
3rd party fees
Hardware

Figure 2.3.1: Identified needs and research gaps
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Chapter 3

Scope and objectives

The literature review revealed a need for EV charging optimization with RL due to the

non-linear and probabilistic nature of the problem, as well as real-time requirements

that emerge in real-world applications. Further, a research gap was identified

for a realistic study on commercial use-cases that avoids simplifying modelling

assumptions, and takes into account the required investments and expenses to set up

a smart-charging business model. This study addresses the aforementioned research

gap and adds to the research space of EV charging with a generalizable approach of

solving realistic EV charging use-cases with RL.

This studywill optimize theEV charging schedules of three commercial use-cases using

Reinforcement Learning (RL). The performance of RL will be analysed quantitatively:

first, by benchmarking the results with commonly implemented charging strategies,

and second, by comparing the results of the three use-cases, revealing whether

smart-charging suitability differs across commercial domains. A net-present value

analysis supports the comparison by considering investment in load controlling and

communication infrastructure, as well as third-party fees for providing the load

management service.

Two overarching research questions motivate the study and tie in the research

efforts:

1. What is the potential of RL-based EV charging in terms of cost savings and real-

world applicabilitywhen compared to themost commonEV charging strategies

(e.g. uncontrolled charging and optimization-based smart charging)?
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2. How do the three investigated commercial use-cases differ regarding their cost

savings and potential to leverage RL-based charging optimization?

The geographical scope of this study is Germany. As for the commercial use-cases, the

following will be analysed:

• A utility that operates a fleet of service vehicles to conduct maintenance on their

infrastructure or at the customer, e.g. Vattenfall, E.ON.

• A last-mile delivery company delivering parcels or goods from the distribution

centre to the customer, e.g. DHL, ICA.

• A caretaker company that operates a fleet of vehicles to service their patients, e.g.

Malteser.

Two modes of operation will be analysed for the RL agent and its benchmarks. First,

an arbitrage scenario is designed in which the agent is able to trade energy on the spot

market, allowing complete exploitation of intraday price differences, bidirectionally.

Second, a realistic scenario is designed: electricity tax, grid fees and surcharges are

added to the electricity price. For discharging, the agent does not receive the spot

price, but the current German PV feed-in tariff minus third-party fees. Vehicle-to-grid

in form of frequency regulation is not implemented in this study.

Efforts were made to develop a generalizable framework that can be applied to other

use-cases, both geographically, and commercially. Choices regarding the Python

implementation and data sourcing were made with these efforts in mind.
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Chapter 4

Theory of Reinforcement Learning

This chapter covers the theoretical prerequisites to understand the applications of

RL in EV charging. First, the big picture of RL will be introduced, followed by

the theoretical foundations of RL. Finally, the chosen Deep Reinforcement Learning

algorithms Twin Delayed Deep Deterministic Policy Gradient (TD3) and Proximal

Policy Optimization (PPO) will be explained in detail.

4.1 The big picture of RL

RL methods can be divided into two main categories: model-based RL and model-

free RL. Model-based RL frameworks are based on a model of the world that is either

provided or learnt during the training process. The understanding of the world is then

used to infer the best possible action. Model-free RL, on the other hand, relies on no

such information. Instead, the RL agent learns through training how good a certain

state is (value-based), or how good a certain policy is (policy-based). No knowledge

of the world’s dynamics is required in this approach. Nevertheless, the agent must

make sufficient observations of the world during the training process to make rational

decisions.

Further, RL frameworks can use Deep Neural Networks to approximate the value

function or policy, in which case the method falls under the category of Deep

Reinforcement Learning. If multiple agents are used, the method is referred to as

Multi-Agent Reinforcement Learning (MARL). An overview is provided in Figure 4.1.1.

Note that the methods shown can both apply to RL and MARL. Detailed explanations
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CHAPTER 4. THEORY OF REINFORCEMENT LEARNING

of the mentioned algorithms can be found in [38, 46].

Model- free RL

Value- based Policy- based

Tabular Q- 
Learning

SARSA

Actor- critic

PPO

DDPG, TD3

SAC, A2C

Fitted Q- 
iteration

DQL DRL

With DNN?

Model- based RL

PILCO, 
Monte Carlo, 
Tree search, 
Iteration, e.g.

AlphaZero

With DNN?

DRL

Figure 4.1.1: Overview of RL methods [38] 1

Each algorithm has its own use-case. The main distinguishing property is the ability

to process discrete or continuous information. To be able to apply RL effectively in

real-world problems, it is crucial to understand both the problems’ environment and

action space, as well as the capability of the algorithm to deal with the respective data.

Both the observation (the input into the RL agent) and the action (the agent’s output)

can be either continuous or discrete. Additionally, the value function can either be

represented by a table or by an approximation function, such as a linear approximation

or a DNN. Table 4.1.2 summarizes these key characteristics of the most important

RL algorithms. Casting thereby refers to the fact that a discrete action space can be

obtained by casting continuous variables to discrete values. One example for this could

be rounding to the nearest integer or decimal point.

1The purple rectangles serve as an aid to distinguish between tabular RL and deep RL methods.
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Algorithm

Tabular Q- 
Learning

SARSA

W

Fitted Q- 
Iteration

DQL

SAC

DDPG

TD3

PPO

A2C

Discrete 
State 
Space

Continuous 
State
Space

Value
Function
Representation

Discrete 
Action 
Space

Continuous 
Action
Space

Tabular

Tabular

Tabular

Linear or DNN
approximation

DNN

DNN

DNN

DNN

DNN

DNN

DNN 
needed

Casting

Casting

Casting

Casting

Casting

Figure 4.1.2: RL algorithms and their characteristics [56]

4.2 RL fundamentals

RL is a computational approach to learning via interaction with an environment. It

is a field of machine learning that can tackle complex problems by modelling them as

decision-making processes. In RL, an agent interacts with an environment and seeks

to achieve the optimal outcome by taking the right actions at the right time. Just like in

the real world, there can be uncertainty or delayed consequences that require strategic

behaviour. Trade-offs might have to be made between an immediate reward and a

potential reward in the future. When an agent is first introduced to its environment, it

does not possess the knowledge to evaluate its actions. It must therefore explore and

learn through trial and error, as well as understand that some actions might only be

beneficial at a later point in time [46].

4.2.1 Markov decision process

RL is considered as a third Machine Learning (ML) paradigm, next to supervised and

unsupervised ML. While supervised ML revolves around predictions from labelled

training data, and unsupervised ML aims to find patterns in unlabelled data, RL aims

to maximize the reward signal in a sequential decision-making process [8, 46]. The
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sequential decision-making process used in RL is known as aMarkov Decision Process

(MDP), which consists of an agent and an environment that interact with each other

via states, actions, and rewards, as shown below [57].

Agent

Environment

Reward
Rₜ

State
Sₜ

Action
Aₜ

Rₜ₊₁
Sₜ₊₁

Figure 4.2.1: Markov decision process [46]

The MDP is a closed loop system with discrete time steps. At any time step,

the agent receives a representation of the environment St ∈ S, and selects an

action At ∈ A. In the following time step, the agent receives a rewarding or

penalizing signal Rt+1 ∈ R from the environment. Over time, a trajectory forms:

S0, A0, R1, S1, A1, R2, S2, A2, R3, ... This trajectory can be either finite or infinite. Most

mathematical frameworks revolve around the finite MDP, but the key ideas are also

applicable in a continuous context [46].

In the finite MDP, the state and reward at time step t, St and Rt, can be described via

probability distributions. In an MDP, the values of the next state and reward s′ ∈ S

and r ∈ R only depend on the preceding state and action, as shown below:

p(s′, r|s, a) = P (St = s′, Rt = r|St−1 = s, At−1 = a) (4.1)

The assumption, that s′ and r only depend on the preceding s and a is known as

the Markov assumption. A problem is Markov, when the entire information of the

environment is encoded in the previous state and action. If the assumption is violated,

it is not possible to properlymatch the right action to the right state, because two states

can appear similar even though they are entirely different.
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4.2.2 Returns and discounting

In RL, an agent’s goal is to maximize the expected cumulative reward. This can be

explained intuitively: For example, in chess the objective is to win the game instead of

making one or several goodmoves. At any given point in time t, the reward sum can be

written as the returnGt = Rt+1+Rt+2+Rt+3+ ...+RT , with T being the final time step.

A final time step exists in problems that either have a termination condition or can be

broken down into different episodes. This is the case for most computer games, and

many real-world problems. Continuous control problems, however, do not necessarily

terminate and have an indefinite time horizon. A sum of rewards would go towards

infinity, which is why a discounting factor γ is introduced to the equation. An agent

with a discounting factor of zero would only value immediate return, whereas an agent

with a discounting factor of one would have no time preference [46].

Gt = Rt+1 + γ ·Rt+2 + γ2 ·Rt+3 + ... =
∞∑
k=0

γk ·Rt+k+1 (4.2)

For an infinite time horizon, γ is defined within the half-open interval between zero

and one: γ : [0, 1). This way, the sum of discount factors converges as shown in Eq.

4.3.

∞∑
k=0

γk =
1

1− γ
(4.3)

4.2.3 Policies and values

The agent maximizes the expected return by deciding which action to take for a given

state. This decision takes place in the so-called policy function. The policy function is

a mapping from states to actions:

π : s → a = π(a|s) = P (A = a|S = s) (4.4)

where π is the conditional probability distribution of a ∈ A given s ∈ S.

Policies are evaluated by calculating the expected returnwhen π(s|a) is followed. There
are two ways to calculate the expected return: via the state-value function and via the
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action-value function.

The state-value function vπ(s) is the expected return under policy π, when starting in

state s:

vπ(s) = Eπ[Gt|St = s] = Eπ

[
∞∑
k=0

γkRt+k+1|St = s

]
,∀s ∈ S (4.5)

The action-value function qπ(s, a), on the other hand, is the expected return under

policy π, when starting with the state-action pair (s, a):

qπ(s, a) = Eπ[Gt|St = s, At = a] = Eπ

[
∞∑
k=0

γkRt+k+1|St = s, At = a

]
,∀s ∈ S, a ∈ A

(4.6)

Computing average returns for each state would eventually converge to the state-value

function vπ(s), whereas computing average returns for each separate state-action pair

would eventually yield the action-value function qπ(s, a). The functions vπ(s) and

qπ(s, a) are related to each other: summing qπ(s, a) over all actions for a certain state

yields vπ(s), as shown in 4.7.

vπ(s) =
∑
a

π(a|s)qπ(s, a) (4.7)

Additionally, both vπ and qπ are related to their successor states as shown in Eq. 4.8

and 4.9. These fundamental relationships are known as the Bellman backups for vπ

and qπ [58].

vπ(s) = Eπ [Gt|St = s] = Eπ [Rt+1 + γvπ(St+1)|St = s]

=
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a) [r + γvπ(s
′)] ,∀s ∈ S (4.8)

qπ(s, a) = Eπ [Gt|St = s, At = a] = Eπ [Rt+1 + γqπ(St+1, a
′)|St = s, At = a]

=
∑
s′,r

p(s′, r|s, a)

(∑
a′

π(a′|s′) [r + γqπ(s
′, a′)]

)
, ∀s ∈ S, a ∈ A (4.9)
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where s′ is the next state, and a′ the next action.

4.2.4 Dynamic Programming and optimal policies

To achieve maximum returns, the agent must find an optimal policy π∗ that maximizes

the value function. This can be done with Dynamic Programming: a set of algorithms

designed for this purpose. To highlight one method, value iteration, will be explained

[46].

Value Iteration

1. Policy evaluation: Starting with an arbitrary policy π, its state-value function is

determined for all states according to Eq. 4.8.

2. Policy improvement: For each state, the policy is updated to π′, taking the action

that yields the highest value: vπ′(s) = maxa
∑

s′,r p(s
′, r|s, a) [r + γvπ′(s′)]

3. This process is then repeated until π ≈ π∗ such that:

π∗ = argmax
a

Eπ [Rt+1 + γvπ(St+1)|St = s] = argmax
a

∑
s′,r

p(s′, r|s, a)[r + γV (s′)]

This is shown in the example below. Figure 4.2.2 shows a grid world, where four

directions of movement are possible, except for the borders. When moving into a

grey field, the position remains unchanged. Some fields return a positive or negative

reward. In the beginning, an arbitrary policy is initialized, where the agent remains

on its field or moves along the edges. This policy is evaluated in the first figure. In a

subsequent step, the policy is improved, which can be seen by the change of arrows. In

Sub-figure (c), the updated policy is evaluated once more. Taking the example of the

lower green square with the red border, the following calculation takes place. Gamma,

the discounting factor, is chosen to be 0.9 [59].

vπ(s) = E [Rt + γvπ(St+1)] = 0 + 0.9 · 1.0 = 0.9 (4.10)

Sub-figure (f) shows the converged value function, as well as the optimal policy: for

each field, it is shown which direction yields the highest value. After a sufficient

number of iterations, the information of the green field (reward = 1) has propagated

back to the very edges of the board, and the best action is known for each square.
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(a) First policy evaluation (b) First policy improvement

(c) Second policy evaluation (d) Second policy improvement

(e) Third policy evaluation (f) Optimal policy

Figure 4.2.2: Value iteration in a grid world environment [59] 24
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4.2.5 Exploitation and exploration

In the example above, the policy was chosen to always maximize value; this is

known as a greedy policy. If an RL agent always chooses the action it believes to

be the best, unknown or unforeseen circumstances might not be taken into account

because they are never experienced. A trade-off therefore exists between exploiting the

current knowledge and exploring new states. The trade-off between exploration and

exploitation is a fundamental feature (and problem) in RL. One way to incorporate

exploration is to take a random action with probability ε. This is called an ε-greedy

policy.

π(s) =

argmaxa qπ(s, a) , 1− ε

rand(a) , ε
(4.11)

By adding an element of randomness to the agent’s actions, the agent experiences

a wider variety of states. This can be particularly useful if environments change

over time. In such a case, an ε-greedy policy would rediscover a changing optimum

eventually, whereas the same would not be guaranteed without exploration.

4.2.6 Monte Carlo and Temporal-Difference Learning

Dynamic programming, as shown in Section 4.2.4, is a feasible approach, when a

perfect model of the environment is embedded in the RL agent (model-based RL).

In this case, the knowledge of which state to go to next suffices, because the agent

knows which action to take to transition to the next state (i.e. in the example above).

In many cases, however, the agent does not possess a deterministic model of the

world (model-free RL), and requires information on which action is best in a certain

state. Transitions of the MDP must then be sampled to build an understanding of

the underlying problem, which can be accomplished by Monte Carlo and Temporal-

Difference Learning, for example.

Monte Carlo

Monte Carlo methods gain an understanding of the problem by sampling complete

episodes and averaging returns for each state. The premise of MC methods is that

by averaging the returns for each state over many episodes, the law of large numbers
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guarantees that the estimates will converge to their expected values. IfG1
t is the return

following the first occurrence of state s in an episode, the value V (s) is estimated as the

average return from state s after many episodes and visits to that state:

V (s) =
1

N(s)

N(s)∑
n=1

Gi
t (4.12)

where N(s) is the number of times state s is visited and G
(i)
t is the return following

the i-th visit to state s. MC methods require samples of complete episodes and cannot

be computed while the episode is still ongoing. While the approach is intuitive and

conceptually simple, it can require a large number of episodes to converge, particularly

in complex environments with large state and action spaces [49]. Nonetheless, MC

methods provide a powerful and flexible tool for model-free RL when the task is

episodic and the environment’s dynamics are unknown or too complex to model

accurately.

Temporal Difference learning

Temporal Difference (TD)-Learning is a central method in the realm of model-free

RL as it combines ideas from both dynamic programming and Monte Carlo methods.

Similar to Dynamic Programming (DP), TD uses estimates of successor states. Similar

to Monte Carlo (MC), TD samples from the environment while experiencing it. TD-

Learning estimates the value function through iterative updates within an episode, and

does not require an episode to be completed. After each time step, the agent updates

the estimated value function ofSt based on the reward received and the estimated value

of the current state. V (St) thereby is the old estimate, and Rt+1 + γV (St+1) is the so-

called target. This is expressed in the update rule:

V (St) = V (St) + α[Rt+1 + γV (St+1)− V (St)] (4.13)

where α is the so-called learning rate, which specifies the rate at which information

is transferred to the value function estimate [46]. The difference between target and

estimate [Rt+1+γV (St+1)−V (St)] is referred to as the TD-error. The key feature of TD-

Learning is that it updates estimates based on other estimates (bootstrapping), thus

allowing learning before the final outcome is known, contrary toMonte Carlomethods.

This leads to faster convergence, making TD-Learning an attractivemethod for solving
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RL problems where complete knowledge of the environment is not available, or where

the concept of finite episodes does not apply. What is more, TD-Learning constitutes a

fundamental theoretical advancement which significantly facilitated the development

of DRL methods.

Q-Learning

Before going into DRL, one last idea will be explained due to its fundamental

importance inRL: Q-Learning. Q-Learning attempts to learn the action-value function

Q(s, a) from experience collected during training without requiring a complete policy

iteration at each step of the algorithm [60]. In contrast to Value Iteration, which

requires full knowledge of the environment dynamics, Q-Learning works by updating

the action-value function (Q-value) based on the experience the agent collects. Q-

Learning doesn’t require model dynamics because it does not only consider the

state, but also the action taken to reach a given state. Over time, this leads to an

understanding of which action to take in each state. Q-Learning therefore is another

early yet important implementation of model-free RL.

The Q-values are updated iteratively via the Bellman equation, which incorporates the

maximum expected future rewards for the next state, as shown below:

Q(s, a) = Q(s, a) + α[r + γmax
a′

Q(s′, a′)−Q(s, a)] (4.14)

whereα is the learning rate, s′ is the new state after taking action a, and γ is the discount

factor. The new Q-value Q(s, a) is made up of the previous estimate of Q(s, a) and the

approximation error compared to the target - this error is also referred to as TD-error

due to its resemblance with TD-Learning.

4.3 Deep Reinforcement Learning

Deep Reinforcement Learning (DRL) leverages technological advancements in the

field of deep learning to approximate value functions and policies with deep neural

networks [46]. As shown in Chapter 2, DRL led to algorithms with unparalleled

performance, even when compared with the human benchmark. This section will dive

into neural networks, the theory of DRL, and explain the state-of-the-art algorithms

TD3 and PPO, which are predominantly used in this study. For further readings on

27



CHAPTER 4. THEORY OF REINFORCEMENT LEARNING

other modern DRL algorithms, consider [46, 56, 61–63].

4.3.1 Deep Neural Networks

As the name suggests, DRL involves the use of Deep Neural Networks (DNNs). Neural

networks are computational models inspired by biological neural networks, and are

made up of artificial neurons or nodes. Each node performs simple computations:

it aggregates inputs ai that are scaled with weights wi, and a bias term b, and then

passes this sum z through an activation function g(z), as illustrated in Figure 4.3.1.

Activation functions can be linear, piecewise linear (e.g., ReLU), or non-linear (e.g.,

tanh or sigmoid) [64]. Nodes are organized into layers, where each layer can have a

different number of nodes. The layers between the input and output layers are referred

to as hidden layers. A neural network is considered ”deep” if it contains two or more

hidden layers.

... ...

...

...
z

b

+
+
+

+

Inputs Bias Node

g

Output

...

Summation Activation Input layer Hidden layers Output layer

Artificial Neuron Deep Neural Network

Weights

Figure 4.3.1: Artificial Neuron and DNN

Figure 4.3.1 depicts the structure of a Multi Layer Perceptron (MLP), a type of

neural network where all nodes in each layer are fully connected to the nodes in the

neighbouring layers. Initially, all weights and biases are initialized with small random

values. The network then updates its weights and biases, trying to minimize a loss

function that calculates the error between prediction and ground truth [65]. In an

MLP, the different layers do not perform explicitly different computational tasks - the

network as a whole solves the given problem without having to specify how it goes
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about solving it. This makes the MLP a versatile architecture suitable for a wide range

of numerical problems [64].

A Convolutional Neural Network (CNN), on the other hand, also performswell on grid-

like data such as images. CNNs excel in pattern recognition and image classification

tasks due to their unique layer architectures. In a CNN, the recognition layers, called

convolutional layers, typically handle specific aspects of a larger problem-solving task.

For example, earlier layersmight detect edges and simple features, whereas later layers

recognize more complex features within an image [66]. The convolutional layers are

usually followed by one or more fully-connected layers with MLP architecture, that

perform the final classification or regression task. CNNs are not used in this study

due to the numeric nature of the EV charging problem, but can find applications in

image-based RL problems [49].

4.3.2 Deep Q-Learning

Deep Q-Learning encompasses all methods in which the action-value function Q(s, a)

is approximated via a DNN. Arguably, the most significant contribution in the field

was made by DeepMind with their CNN-based algorithm Deep Q-Network (DQN), in

which a DRL agent was trained to play Atari 2600 games at unprecedented skill levels

[49]. Deep Q-Learning and DQN are often used interchangeably because DeepMind’s

implementation set a new state-of-the-art regarding the implementation ofQ-Learning

with DNNs.

Deep Q-Learning compares the current estimation of Q(s, a) with a target and tries to

minimize the difference. The target thereby is the Bellman backup for the action-value

function: R(s, a)+ γ · Q̂(s′, a′), where Q̂(s, a) is the target Q-value. The DNN forms the

heart of the algorithm, as it is responsible for predicting the best action at every time

step. In fact, twoDNNs are used: one to compute the Q-valueQ(s, a) at every iteration,

and one to compute the Q-value target Q̂(s, a) every C iterations [49]. The weights of

the Q-network θi are updated each step, and the weights of the target Q-network θ
−
i are

updated every C steps. The decoupling of Q and target Q-value estimation increases

stability and avoids oscillations or divergence by a great extent [49].

What further distinguishes DQN from Q-Learning is its biologically inspired use of

memory. Using thememory - also referred to as experience replay - the agent can store

past actions and replay them, allowing for a more efficient training process. Learning
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from past transitions occurs in batches that are sampled from the experience replay.

Algorithms such as DQN that learn from stored historical data are known as off-policy

algorithms. Their counterparts, on-policy algorithms, on the other hand, only learn

from live updates directly collected from the environment and discard this experience

afterwards, making on-policy algorithms generally less sample efficient. Besides the

use of Neural Networks and experience replay, the algorithm is very similar to tabular

Q-Learning. Figure 4.3.2 visualizes the entire learning process, and each step is further

explained after the figure.

for Action N in State s

for Action 1 in State s
i1

i2

iN
... ...

Q1

QN...

...

Input layer Hidden layers Output layer

0
1

Q- Value prediction1 2

3

4
...

+

M B⊂ M

5

... ...

...

...

6 Batch prediction

7 Batch target8 Backpropagation

Action selection

Experience collection

Transition memorization Batch sampling

Target Q- Network

Q- Network

9 Target update

Figure 4.3.2: Schematic overview of the learning process in a DQN

1. Q-value prediction: Given the current state s, the Q-valueQ(s, a) is predicted for

each possible action using the Q-network.

2. Action selection: Following an ε-greedy policy, the agent either chooses

the action yielding the highest Q-value, or a random action to explore the

environment.

3. Experience collection: The chosen action is experienced in the environment,

yielding a reward signal and the next state, making up the loop of the MDP.
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4. Transition memorization: The transition St, at, Rt+1, St+1 is appended to M.

5. Batch sampling: A subset B ⊂ M is randomly sampled from M.

6. Batch prediction: The target Q-values Q̂(s, a) are predicted for the entire batch

using the target Q-network.

7. Batch experience: Given the experienced reward frommemory and the next best

Q̂-value, the target is calculated: R(s, a) + γ ·max Q̂(s′, a′).

8. Backpropagation: The Mean Squared Error (MSE) loss function L is computed

for the difference between prediction and target. Note that the loss function

is a function with many variables and parameters: the weights θi in the neural

network (variables) and the weights of an earlier iteration θ−i from the target Q-

network (parameters):

Li(θi) =
1

2

∑[
R(s, a) + γ ·max Q̂(s′, a′; θ−i )−Q(s, a; θi)

]2
(4.15)

Li(θi) is differentiated with respect to θi (chain rule), yielding the gradient∇θi:

∇θi =
(
R(s, a) + γ ·maxQ(s′, a′; θ−i )−Q(s, a; θi)

)
∇Q(s, a; θi) (4.16)

Theweights in the neural network are then adjusted slightly towards the direction

that minimizes the loss function - this is known as gradient descent.

9. Target update: Every C steps, reset the target Q-network: Q̂ = Q

4.3.3 Actor-Critic Algorithms

While Deep Q-Learning already achieves considerable improvements compared to

its tabular counterpart, it still has practical limitations because it can only deal with

discrete action spaces. This is because of the way the action is chosen: the argmax

function can be trivially computed for the discrete case, but becomes challenging to

evaluate in the continuous space. Therefore, to transition to the continuous case, a

second neural network is added that learns which actions to take based on the given

state, replacing step 2 in Figure 4.3.2. This so-called policy-network, also known as

an actor, aims to maximize the reward received. During training, gradient ascent is

conducted: the weights of the network φ are updated such that the return function J(φ)

increases in value. The updates are conducted according to the Deep Deterministic
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Policy Gradient (DDPG) algorithm [67, 68].

∇φJ(φ) =
1

N

[
N∑
i

∇φπφ(s)∇aQ
π(s, a)|s=si,a=π(si)

]
(4.17)

As might have been anticipated from Eq. 4.17, the gradient depends on the slope

of the policy function, as well as the slope of the Q-value function. If said value

function originates from a neural network that outputs Q-values (the so-called critic

network), an actor-critic architecture is formed. This is shown in Figure 4.3.3. Popular

implementations of this architecture are DDPG, Soft Actor Critic (SAC), TD3, and PPO

[61–63, 68].

... ...

...

...

... ...

...

...
States

Actions

States

Actions Q- Value

CriticActor

Figure 4.3.3: Actor-Critic Architecture

Since the critic network is a neural network with weights θi, the update rule for the

actor network’s weights φi is as follows according to Eq. 4.17:

∇φJ(φ) =
1

N

[
N∑
i

∇aQ(s, a; θ)|s=si,a=π(si;φ)∇φπ(s;φ)|s=si

]
(4.18)

4.3.4 Twin Delayed Deep Deterministic Policy Gradient

Twin Delayed Deep Deterministic Policy Gradient (TD3) implements an actor-critic

infrastructure and addresses issues such as instability and overestimation bias, making

it one of the state-of-the-art DRL algorithms [68]. The algorithm consists of a total of

six DNNs: one actor, one actor-target, two critic, and two critic-target networks. The

two critic-target networks both estimate the Q-value target Q̂, but only the smaller

value is used to backpropagate error into the Q-network to avoid overestimation.

Additionally, a delay is added when backpropagating into the actor network to
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minimize the risk of instability or oscillations [68]. Figure 4.3.4 summarizes the entire

learning process, with further explanations on each step after the figure.
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Figure 4.3.4: Schematic overview of the learning process in TD3

1. Action Selection: An action is selected from the actor network φ. Gaussian noise

is added to the action to ensure sufficient exploration by the agent and to avoid

getting stuck in local minima.

2. Experience collection: The action is sent to the environment, yielding the next

state and the reward. This makes up the MDP loop. The tuple (St, at, Rt+1, St+1)

is stored in M.

3. Batch sampling: A subset B ⊂ M is randomly sampled from M.

4. Next action a′ fromactor-target: The actor-target takes in the next statesSt+1 = s′

from the batch and predicts the next corresponding actions At+1 = a′.

5. Q̂ from critic-targets: The critic-targets predict the target Q-value Q̂(s′, a′).
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6. Target computation: The target T is computed using the reward from the batch

and the minimum target Q-value to avoid overestimation bias.

7. Critic backpropagation: The loss function consists of the sumof bothMSEvalues.

Similar to Eq. 4.16, the weights are updated via gradient descent, such that

θi = argminθi L(θi), where θi are the weights of networks i = 1 or i = 2.

8. Delayed actor backpropagation and network updates: Every d steps, the actor is

updated via the DDPG algorithm, similar to Eq. 4.18. On this iteration, the target

networks are updated as well. τ thereby represents the rate at which information

from the networks is transferred to their respective target counterparts.

4.3.5 Proximal Policy Optimization

PPO aims to address the complexity, sensitivity, and brittleness of tuning that can

occur with other policy gradient methods [61]. Unlike DQN and TD3, PPO is an on-

policy algorithm: it only learns from batches of immediate experience collected and

discards each batch after the learning update. Since PPO does not have a replay buffer

to look back to, it is vulnerable to large policy updates that send the agent into the

wrong direction, potentially causing convergence in undesirable local minima [61]. To

prevent this, PPO limits the update size by clipping its loss function, therefore creating

a region of trust in which an update can be safely performed. Due to its performance,

ease of use, and ease of implementation, PPO is recognized as a state-of-the art DRL

algorithm, and research efforts are being put into further improving the framework

[61, 69].

PPO is an actor-critic implementation with one actor and one critic network. However,

the structure differs slightly from the actor-critic implementations shown above, where

the actor network takes in states and outputs corresponding actions. In PPO, the actor

outputs the policy distribution instead: for each action ai, the network outputs a mean

value µai and a standard deviation σai . To actually select an action, one has to sample

from this distribution. During training, the shape of this distribution is changed such

that the loss function is minimized. Additionally, the critic network in PPO estimates

state-values V (s) instead of state-action values Q(s, a). Note how both actor and critic

now take in states in the input layer and only differ in the output layer. Due to their

similarity, the two networks can share weights and biases, which reduces complexity

and increases computational speed. In practice, however, it has been found that a
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shared architecture performs worse due to the conflicting goals of predicting actions

and values with the same parameters, which is why separate actor and critic networks

are more commonly implemented [69]. The entire learning process of PPO is shown

in Figure 4.3.5. Further explanations on each step are provided after the figure.
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Figure 4.3.5: Schematic overview of the learning process in PPO

The learning process in PPO is divided into two phases: roll-out and training. During

the roll-out phase, the current policy is deployed in the environment. For T time

steps, actions are sampled from the distribution, yielding a1, ..., aT . The transitions

St, At, Rt+1, St+1 are thereby stored in the so-called Rollout Batch of size T . Once the

roll-out phase is completed, the learning phase starts. In a first pass, for each time step

t in the rollout batch, the state-value and TD-error of the taken action at are computed.

Naturally, the TD-error can be used for the critic loss function, such that the critic

network learns to reduce the MSE between value prediction and value target.

LV(θV ) =
1

2

∑
[Rt+1 + γ · V (st+1; θV )− V (st; θV )]

2 (4.19)
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However, the TD-error is also used to compute the advantage function Â once all TD-

errors until t = T have been evaluated. The advantage function Ât is defined as the

discounted sum of TD-errors δt for t = t, t+ 1, ..., T :

Ât =
T∑
l=0

(γλ)lδl+t (4.20)

where λ is used to strike a balance between bias and variance during estimation

[70]. Note the recursive nature of the function: ÂT−1 = γλÂT , etc. The advantage

function Ât uses the TD-errors δi to compare the most recent value to the previous

value estimation. A positive advantage function therefore represents an improvement,

indicating that a better action was taken for state st than the previous estimate, and

vice versa. This metric guides the agent in the right direction, as it always incentivizes

beating the previous estimate. The advantage function is calculated for each timestep

in the rollout batch before any network is updated. This ensures that the advantage

function represents the performance of the policy that was used during the rollout

phase.

Once this first pass is completed and the advantage function has been evaluated for

all entries in the rollout batch, network updates can be conducted. Updates occur in

epochs - a machine learning term that indicates an iteration over the entire dataset.

In this case, one epoch corresponds to an iteration over the rollout batch. In each

epoch, the rollout batch is split intoD randomly sampledminibatches of sizeB. In this

process, the temporal coherency of the trajectory is lost to avoid correlation between

consecutive states. Eachminibatch is then processed separately, and a network update

is performedonce perminibatch. After allminibatches have beenprocessed, one epoch

is completed.

To conduct an update, the prerequisites of the loss function have to be calculated; both

for the critic and actor network. As mentioned above, the TD-error is used for the loss

function of the critic network, as shown in 4.19. Note that the state-values V (s; θV ) are

now changing with each update of θV - the TD-error can therefore change slightly after

each minibatch.

The critic loss function is made up of two main prerequisites: the advantage function

and the policy change. The policy change involves the probability of action at. It is

used to compare the ratio of probabilities r(θ) which provides a metric on how much
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the policy changed since the last actor update. This ratio is later clipped in the loss

function to avoid instability due to excessively large policy updates. The old policy πold

thereby is a snapshot of the old actor network.

r(θ) =
πθ(at|st)
πθold(at|st)

(4.21)

With the prerequisites fulfilled, the actor loss function can be calculated. The actor

loss function in PPO is also known as a surrogate objective function. Its main part

consists of the expression rt(θ)Ât. This expression is positive if the last action beat

the previous value estimation (positive advantage function), and it is negative, if the

last action performed worse than the previous value estimation (negative advantage

function). The magnitude of the expression is scaled by the probability ratio r(θ) to

incorporate the information by how much the policy changed since the last update.

Significant stability increases are further achieved by clipping rt(θ) between 1− ε and

1 + ε to limit the maximum policy change [61].

LCLIP (θ) = Êt

[
min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât)

]
(4.22)

Finally, an entropy term is added to the clipped surrogate objective to introduce

exploration noise [61].

S[πθ](st) = Êt [π(at|st; θ) · logπ(at|st; θ)] (4.23)

According to [61], the total PPO loss function is thus expressed as follows:

LCLIP+V+S
t (θ, θV ) = Êt

[
LCLIP
t (θ)− c1L

V
t (θV ) + c2S[πθ](st)

]
(4.24)

where c1 and c2 are scaling parameters. Slight changes have beenmade to the notation

to account for the fact that actor parameters θ and critic parameters θV can be different.

The loss function is computed for each entry in theminibatch. Before backpropagation,

an average is computed over all entries. When backpropagating the loss function with

respect to θ, the following update is obtained:
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θ = θ − αθ∇θ

[
LCLIP (θ) + c2S[πθ](st)

]
(4.25)

where αθ is the learning rate of the actor network. When backpropagating with respect

to θV , on the other hand, following update is obtained:

θV = θV − αθV ∇θV

[
−c1L

V (θV )
]

(4.26)

After each epoch, the snapshot of the old actor network θold is set to the state of the

actor network θ.

Finally, the entire training process in PPO is explained step by step below.

Rollout phase: for t = 1, ..., T under policy πθ

1. Action selection: An action is sampled from the policy distribution πθ of the actor

network.

2. Experience collection: the action is sent to the environment, yielding the next

state and the reward. This makes up the MDP loop. The trajectory is stored in

the rollout batch R.

Training phase

3. Advantage function calculation

(a) Value estimation: The state s and next state s′ in the trajectory are sent

through the critic network, yielding V (s) and V (s′). This is repeated for the

entire rollout batch.

(b) TD-error calculation: The trajectory’s reward, V (s′) and V (s) are used to

calculate the TD-error δt ∀t.

(c) Advantage function calculation: After all δt have been calculated, Ât can

be computed ∀t. Note that the advantage function is held constant for all
epochs of the current training phase.

4. Minibatch sampling: For each epoch, random minibatches Mi ∈ R with

minibatch size B are sampled. The total number of minibatches thereby is the

ratio of step size and minibatch size: D = T
B
.

38



CHAPTER 4. THEORY OF REINFORCEMENT LEARNING

5. Loss function prerequisites:

(a) Value estimation: Oncemore, the value function is estimated for s and s′ for

each transition in the minibatch.

(b) TD-error calculation: The TD-error is calculated once again. This time,

however, it is used for the critic network’s loss function.

(c) Probability ratio calculation: Via the actor network θ and its predecessor

θold, the probabilities π(a|s) are calculated for each state. The fraction r(θ)

is computed for each state in the minibatch.

(d) Entropy bonus: The entropy bonus is added for each state in the minibatch

to introduce exploratory action noise.

6. PPO loss function calculation: With all prerequisites calculated, the PPO loss

function can be computed. It consists of the clipped surrogate loss, an entropy

bonus, and the value loss function. The loss function is computed for all entries

of the minibatch. Then, either an average or a sum is used for backpropagation.

7. Backpropagation:

(a) Actor backpropagation: The PPO loss function is differentiated with respect

to θ, yielding the update shown in Eq. 4.25. This is done once perminibatch.

(b) Critic backpropagation: The PPO loss function is differentiated with respect

to θV , yielding the update shown in Eq. 4.26. This is done once per

minibatch.

8. Old actor network update: After an epoch has been completed, θold is set to θ.

Having covered the theoretical fundamentals, as well as the advanced DRL algorithms

that are used in this study, the next chapter will explain how the EV charging problem

was modelled, and how the algorithms are used to optimize EV charging.
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Methodology

This chapter explains the methodological approach of this study. Three sections

split the chapter in its sub-components: Use-case design, quantitative analysis, and

economic impact assessment, as shown below. In each section, a detailed account will

be given on the reasoning and approach, as well as the contribution towards answering

the research questions.

Use- case design

Last- mile delivery

Caretaker

Building load & PV

EV schedules

Sizing

Utility companies

Literature review
Real use- cases

Emobpy
Literature review

NREL, TMY3
PV- Simulation

RL- based optimization

RL- Environment

Own development
Based on OpenAI Gym

RL- Agent

Stable- Baselines3
Chosen agent: TD3

Benchmarking

Rule- based control
Linear optimization

Analysis

SoH model: Xu et al.
Economic savings

Economic impact

Break- even point

Total savings

Implementation

Figure 5.0.1: Methodology overview

5.1 Use-case design

Commercial use-cases are chosen over residential applications for three reasons. First,

a research gap has been identified, when it comes to optimizing commercial fleet

charging with reinforcement learning, as shown in Chapter 2. Second, the demand
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for an optimized EV charging process is higher in commercial applications due to high

sensitivities for down-times and operational costs. Finally, the optimization of a fleet

can potentially have a higher impact in terms of economics and sustainability, because

the number of vehicles optimized per customer is significantly higher in commercial

applications than in residential use-cases. With registration numbers for commercial

light- and heavy-duty-vehicles growing steadily, as shown in Figure 5.1.1, the analysis

of commercial fleets becomes even more relevant.

Different commercial applications can vary significantly in terms of fleet size, vehicle

type, building load and grid connection capacity. Therefore, the suitability for RL-

based charging optimization might vary with different applications. To take this

into account, three commercial use-cases are modelled to allow for sensitivity in

certain input parameters. The use-cases are meant to be representative for the three

different commercial activities, so that general learnings can be drawn from this study.

Wherever possible, assumptions are backed up by evidence or scientific literature; in

some cases, conservative assumptions are considered. The inputs are integrated into

the model in such a way that they are easily interchangeable, thus making the model

applicable to a wide range of use-cases.

In this study, the use-cases of last-mile delivery, caretakers, and utility maintenance

vehicles were considered. These three cases were chosen because they differ

considerably in their schedules, vehicle types, and challenges regarding electrification.

When considering German mobility statistics, the differences become evident, as

shown in Figure 5.1.1 [11].

(a) Registered LDVs and HDVs in Germany (b) Electrification by commercial sector

Figure 5.1.1: EV uptake in duty vehicles and electrification by commercial sector [11]

This section will first describe the general methodology of compiling the use-cases,

including schedule and load profile generation, company sizing, and data sources.
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Then, the use-cases will be explained, highlighting their distinctive characteristics

and input parameters, as well as challenges that the sectors face in terms of fleet

electrification.

5.1.1 Design approach

Vehicle schedules

Since EV schedules are essential when it comes to EV charging optimization,

their generation is well-discussed and documented in scientific literature. Several

frameworks exist to accomplish this; emopby is amongst the most sophisticated

and well-accepted [71]. Emobpy does not only generate vehicle schedules based on

mobility statistics, but also performs detailed calculations on driving consumption.

The framework has been applied to Germany via openly available mobility statistics

and the dataset is made public [72]. The dataset depicts the mobility patterns of the

general German population with 119 representative vehicles over a time horizon of one

year and a resolution of 15 minutes. It includes the data, arrival and departure times,

distance travelled and consumption in kWh, and other parameters, as shown in Table

5.1.1.

Date ID Location Distance_km Consumption_kWh ChargingStation PowerRating_kW

03/01/2020 17:30 0 shopping 0 0 none 0
03/01/2020 17:45 0 shopping 0 0 none 0
03/01/2020 18:00 0 shopping 0 0 none 0
03/01/2020 18:15 0 driving 3.667 0.634 none 0
03/01/2020 18:30 0 driving 3.667 0.634 none 0
03/01/2020 18:45 0 driving 3.667 0.634 none 0
03/01/2020 19:00 0 home 0 0 home 3.7
03/01/2020 19:15 0 home 0 0 home 3.7
03/01/2020 19:30 0 home 0 0 home 3.7

Table 5.1.1: Emobpy data set for the German case [72]

With its thorough documentation, online community and already existing application

to the German case, emobpy seemed like a suitable framework for the schedule

generation for the commercial use-cases. However, emobpy’s logic is designed around

the modelling of residential schedules, e.g. commuting to work, or to shopping, as

shown in Table 5.1.1. The attempt to use it for the generation of commercial schedules

proved to be complex, because the trip characteristics of commercial vehicles vary

significantly from residential vehicles. While a delivery vehicle would depart the depot

and return 150 km and 10 hours later, a personal vehicle would make several stops to

shopping, leisure, or work and return home, only travelling a small distance between
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each stop and remaining at each stop for some time. In order to model a delivery

schedule in emobpy, one would have to know the distance and idle time of delivery

for every single parcel, thus making it impractical to use.

Therefore, a dedicated schedule generation algorithm was developed in Python

that incorporates the use-case’s mobility characteristics and statistics on vehicle

consumption, and outputs a one-year vehicle schedule. Every trip, a random sample is

drawn from a uniform distribution that follows the mobility and vehicle consumption

statistics. Regarding mobility, the mean arrival and departure time, as well as the

mean distance are required, along with their standard deviations. These parameters

were set according to the literature review and conservative assumptions. Regarding

vehicle consumption, the mean value was set to the consumption of the chosen vehicle

model stated by the manufacturer. The standard deviation, minimum and maximum

value, however, were set according to the emobpy dataset for Germany to incorporate

representative fluctuations due to temperature, wind speed, and other factors.

Sizing of fleet and building

The fleet size, surface area of the building and PV panels, and the grid connection

capacity were mostly taken from real-world companies that are electrifying their

fleet, and from conservative assumptions in some cases. When real-world companies

were considered, further research was done to ensure that they are representative

for the industry. The information platform electrive.net was used to gather the

relevant information [73]. The platform aggregates press releases of companies across

Germany, making it easy to look up information on recent commercial cases of fleet

electrification. Via information on Electrive, and further research on the respective

companies, it was possible to find information on the sizing of the fleet, building,

and PV panels. Regarding the grid connection, it was not possible to find accurate

information. The grid connection was therefore assumed such that the simultaneous

charging ofmore than 50% of the electric vehicles would result in an overloading.

Building load

Thebuilding load and its time serieswere sourced from theOpenEnergyData Initiative

of the National Renewable Energy Laboratory [74]. The data is available either in

form of end-use load profiles of individual buildings, or in form of aggregated profiles.

For commercial buildings, the aggregated profiles are compiled to represent reference
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buildings with a certain size, such as a warehouse or a small office [75]. The data

is available by state, and the state of Washington was chosen due to its resemblance

with the German climate [76]. Depending on the use-case’s building and its size, the

corresponding reference profile was chosen and scaled linearly with surface area.

PV generation profile

The capacity factors of PV in Germany were sourced from the MERRA-2 dataset

[77]. The used dataset consists of hourly capacity factors for Germany in 2019. The

capacity factors were then multiplied with the install capacity at the use-case site to

yield generation profiles. The profiles of each company therefore have the same shape

and different magnitudes. If available, more granular data could be used to model the

generation at a specific company’s location.

5.1.2 Use-cases

Last-mile delivery

Last-mile delivery is the transportation of goods from the distribution centre to the end

customer. It involves comparatively short distances and time frames - e.g. same-day

delivery. Last-mile delivery usually finds itself at the last step of the logistics chain

of e-commerce business models, but can also be applied to other use-cases, such as

delivering food or ingredients to supermarkets or restaurants. Example companies

could be conventional parcel companies such as DHL, or sustainably orientated

companies such as Fairsenden, which already advertise with low-CO2 and electrified

delivery services [78].

Trips in last-mile delivery are typically characterized by frequent journeys with short

distances, of around 80-165 km [79]. The vehicles operate during usual business hours

and return to centralized depots at the end of the shift, where they remain until their

next deployment. Usually, operations also take place on Saturdays, however with

reduced activity. Table 5.1.2 shows the parameters for the last-mile delivery vehicle

schedules.
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Parameter Mean Standard deviation

Distance Weekday 150 km 25 km
Distance Saturday 75 km 25 km
Departure Weekday 07:00 1.0 h
Arrival Weekday 19:00 1.0 h
Departure Saturday 09:00 1.5 h
Arrival Saturday 17:00 1.5 h

Table 5.1.2: Last-mile delivery schedule parameters

Large light-duty vehicles are required for the transport of goods and parcels to ensure

enough storage room and battery capacity. In this case, the Mercedes Benz e-Vito

Tourer was chosen for the case-study [80]. Its specifications are shown in Table 5.1.3.

The consumption mean is taken from the manufacturer, and the standard deviation,

minimum, andmaximumvalues are computed from the emobpy dataset, asmentioned

above [72, 80].

e-Vito Value Unit

Range 314 km
Battery capacity 60 kWh
Engine power 85 kW
Charging power 11/22 kW AC
Consumption mean 0.213 kWh/km
Consumption std. deviation 0.155 kWh/km
Consumption min 0.193 kWh/km
Consumption max 0.453 kWh/km

Table 5.1.3: Last-mile delivery vehicle specifications

The warehouse was chosen as the commercial reference building [75]. Its size was

scaled to 10000m2 or 1ha, which is within the usual range for amedium logistics centre

[81]. Its minimum, maximum, and average building load amount to 14, 190, and 63

kW, respectively. Similarly, a fleet size of 50 vehicles was chosen to form a medium-

sized vehicle fleet [73, 79]. To charge the vehicles, charging points of 11 kW were

chosen. PVwas assumed to cover 5% of the rooftop area with a power density of 175 W
m2 ,

equalling an install capacity of 87.5 kW . The maximum and average power output

are 63.4 kW, and 11.1 kW, respectively. Given the fleet size, building load and PV, a

load of around 500 kW would occur if half the vehicles were to charge simultaneously

during a lack of PV generation. The grid connection capacity was thus set at 500 kW.

Using the TMY-3 andMERRA-2 datasets, the profiles were created, as shown in Figure

5.1.2.
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(a) Building load (b) PV power output

Figure 5.1.2: Building load and PV output for last-mile delivery

Last-mile delivery companies face different challenges regarding electrification,

depending on the company size. Large players see fleet electrification as a mean

to gain competitive advantage through marketing campaigns and sustainable value

propositions. As long as their operation reliability is not impacted, they are willing

to commit to high capital expenditures and the associated economic risk [79, 82].

Medium-sized companiesmight have themeans necessary to purchase an electric fleet,

but they are more risk-averse and need to ensure profitability. A possible measure

therefore consists of subcontracting the fleet operation to a third-party company

specialized in vehicle handling; a practice also commonly seen in the segment of small

delivery companies [82–84]. With decreasing company size, vehicles are also used

more versatilely, making fossil-fuelled alternatives more attractive. Generally, tax

incentives or other benefitsmight be required to ensure economic feasibility [79].

Caretaker

Caretakers provide healthcare services at the patient’s home, typically serving a

certain municipal district or the local rural communities. Thus, their schedules are

characterized by frequent and short-distance journeys that do not stray far from

the depot location [85]. Due to the constant demand for nursing, caretakers also

operate during the weekend. Unscheduled trips are possible due to urgent calls

and emergencies, which is why a 2% probability was incorporated that a trip occurs

during the night. In the caretaker business, it is common that vehicles return to

their depot during the day, for example due to break times or for refuelling purposes.

This characteristic was adopted from the SMobilityCOM project, which analysed the

feasibility of EV fleets in the caretaker industry via real use-cases in Germany [85].

According to the project, a break during the day might even be necessary to refuel the

short-ranged vehicles for the afternoon shift. Table 5.1.4 shows the parameters for the
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caretaker vehicle schedules.

Parameter Mean Standard deviation

Distance Weekday 30 km 10 km
Distance Weekend 15 km 15 km
Departure Weekday 06:00 1.0 h
Pause begin 12:00 0.25 h
Pause end 13:30 0.25 h
Arrival Weekday 19:00 1.0 h
Departure Weekend 07:00 1.5 h
Pause begin 12:00 0.25 h
Pause end 13:00 0.25 h
Arrival Weekend 15:00 1.5 h
Probability of emergency 2% -

Table 5.1.4: Caretaker schedule parameters

Since caretaker companies do not transport cargo or patients, their fleet can be made

up of relatively small vehicles. Considering recent cases of fleet electrification in the

caretaker sector, themodelsVWe-UP! andSmart EQ fortwo seemparticularly popular

[86]. For this case study, the electric Smart was chosen [87]. Its specifications are

shown in Table 5.1.5.

Smart EQ fortwo Value Unit

Range 90 km
Battery capacity 16.7 kWh
Engine power 60 kW
Charging power 4.6 kW AC
Consumption mean 0.17 kWh/km
Consumption std. deviation 0.155 kWh/km
Consumption min 0.193 kWh/km
Consumption max 0.453 kWh/km

Table 5.1.5: Caretaker vehicle specifications

For the caretaker company site, the small office was chosen as the commercial

reference building. Taking the caretaker company from [86] as an example, the surface

area was scaled to 500m2. The building’s minimum, maximum, and average load are

2.7 kW, 25 kW, and 10.8 kW, respectively. 30 vehicles were chosen as fleet size in

accordance with the example in [86]. To charge the vehicles, 30 charging points of

4.6 kW were selected. PV was assumed to cover 10% of the rooftop area with a power

density of 175 W
m2 , equalling an install capacity of 8.75 kW . The maximum and average

power output are 7.3 kW and 1.1 kW, respectively. Since a load of around 80 kWwould

occur in the case of charging half of the fleet at max capacity during peak building load,
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80 kW was chosen for the grid connection capacity. Figure 5.1.3 shows the building’s

load profile and PV output.

(a) Building load (b) PV power output

Figure 5.1.3: Building load and PV output for caretakers

Apart from their limited ability to invest, caretakers view range anxiety as one of

their main concerns. This, however, can be mitigated by feasibility studies such as

SMobilityCOM, which have yielded promising results for the sector [85]. Further

constraintsmight be posed by limited grid connection capacities, as caretaker company

sites were not designed for high electrical loads.

Utility companies

Utility companies own fleets of service vehicles to conduct installations or

maintenance, either at the customer or in the field to service equipment [88]. Looking

at medium-sized utility companies, a geographical focus exists, and it is common that

the customer base of a city is distributed among several utilities. These companies

therefore cover short to medium distances on a regular basis and are well-suited for

fleet electrification, according to the Head of Real Estate and Facility Management at

Vattenfall Berlin [89]. Weekend operation was assumed possible and the standard

deviation of distance was assumed relatively high due to unplanned maintenance

works. Table 5.1.6 shows the parameters for utility vehicle schedules.

Parameter Mean Standard deviation

Distance Weekday 120 km 30 km
Distance Weekend 80 km 25 km
Departure Weekday 07:00 1.0 h
Arrival Weekday 19:00 1.0 h
Departure Weekend 09:00 2.0 h
Arrival Weekend 16:00 2.0 h

Table 5.1.6: Utility schedule parameters

48



CHAPTER 5. METHODOLOGY

The vehicles typically contain tools and equipment to perform the day-to-day activities.

They require some cargo space, although not as extensive as was the case for last-mile

delivery. Therefore, the Citroen e-Berlingo, a small- tomedium-sized light duty vehicle

was chosen [90]. Its parameters can be found in Table 5.1.7.

Citroen e-Berlingo Value Unit

Range 250 km
Battery capacity 50 kWh
Engine power 100 kW
Charging power 7.4/43 kW AC
Consumption mean 0.23 kWh/km
Consumption std. deviation 0.155 kWh/km
Consumption min 0.193 kWh/km
Consumption max 0.453 kWh/km

Table 5.1.7: Utility vehicle specifications

The utility company both requires storage space to store meters and other spare

parts, as well as office space to house employees working in customer service and

management, which is why two reference buildings were combined: the warehouse

and the small office. The warehouse was scaled to 2500 m2 and the office to 500 m2.

The minimum, maximum, and average load are 5.4 kW, 65.5 kW, and 23.6 kW,

respectively. 25 vehicles were chosen, making up amedium-sized fleet. The utility was

assumed to have access to charging at 22 kW AC. PV was assumed on 20% of rooftop

area, making up 100 m2 and 17.5kW. The maximum and average power output are

12 kW and 2.2 kW, respectively. A grid connection of 1000 kW was assumed for the

utility, because of its likely proximity to high-capacity grid connections. Figure 5.1.4

shows the annual average for building load and PV.

(a) Building load (b) PV power output

Figure 5.1.4: Building load and PV output for the utility use-case

With their relatively short trip distances, high grid connection capacities and sufficient

49



CHAPTER 5. METHODOLOGY

funding capabilities, utilities are well-suited for EV fleet electrification [89]. This also

reflects in the sector’s electrification rate, as shown in Figure 5.1.1.

Comparative analysis

Figure 5.1.5 compares the three use-cases by their SOC upon arrival after a trip. All

of them show skewed distributions with means between 20% and 40% SOC. Given

a target SOC of 85%, this corresponds to a charging demand of ca. 45% to 65% per

trip.
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Figure 5.1.5: SOC upon arrival per use-case

Figure 5.1.6 compares the use-cases and scenarios by charging energy demand and

annual charging cost. Due to the different number of cars, battery sizes and schedules,

the charging energy demand and annual charging cost vary significantly across the

use-cases. Charging cost was computed by taking the average of 2021 prices - either

without or with markups.
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Figure 5.1.6: Comparison of charging energy and cost across use-cases and scenarios

Figure 5.1.7 visualizes the arrival and departure distributions per use-case. While

utility and last mile delivery have similar shapes, the caretaker distinguishes itself with

the arrivals during the day due to the lunch break.

50



CHAPTER 5. METHODOLOGY

0 10 20
Hour of Day

0.00

0.02

0.04

0.06

0.08

0.10

Re
la

tiv
e 

Fr
eq

ue
nc

y
Caretaker

Departures
Arrivals

0 10 20
Hour of Day

0.00

0.05

0.10

0.15

Re
la

tiv
e 

Fr
eq

ue
nc

y

Utility

0 10 20
Hour of Day

0.00

0.05

0.10

0.15

Re
la

tiv
e 

Fr
eq

ue
nc

y

Last Mile Delivery

Figure 5.1.7: Departure and arrival distribution per use-case

5.2 RL-based optimization

In order to optimize EV charging scheduleswithRL, the problemmust be implemented

as an MDP. First, available implementations are reviewed, alongside with presenting

an own implementation to tackle the charging problem. Second, the physical system

is explained: the charging model, electricity prices, and battery degradation. Third,

the MDP model is presented with its action and observation space, as well as reward

function. The agent training process is explained in the fourth subsection. Finally, the

method for evaluating the agents is explained.

5.2.65.2.55.2.35.2.1 & 5.2.2

Agent

Environment

5.2.4

Figure 5.2.1: Structure of the optimization approach

5.2.1 Existing RL-based optimization frameworks

In a first step, a review was conducted of already existing implementations of the EV

charging problem. Although the application of RL in EV charging optimization has

gained significant scientific attention in recent years, there is a lack of publicly available
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implementations. Nevertheless, three published frameworks have been found: ACN-

Sim, Chargym, and MAS [91–93]. A brief review of the three frameworks is given

below.

ACN-Sim stands for adaptive charging network and models the electrical network of

real-world sites in theUS, enabling simulations regarding the impact of EV charging on

the grid. The implementation of RL-based optimizationwas thereby only implemented

as an add-on to the framework, and the main focus was set on grid simulations. While

the framework provides an impressive scope of features, it heavily revolves around

the geographical focus of the US and the scope of the use-case it was implemented in.

Vehicle schedule datasets, aswell as the layout of the charging sites, were designed for a

specific use-case, thusmaking it difficult to apply the framework to other use-cases and

data sources. Further, the degree of documentation andmaintenance since the release

in 2021 was rather limited and the framework now relies on outdated implementations

of TensorFlow [94]. The frameworkwas therefore not implemented in this study.

Chargym is one of the first publicly-available frameworks that focuses on the MDP-

formulation of the EV charging problem, as well as the evaluation of different RL

algorithms. Its objective is to minimize charging expenses. Featuring the control of

multiple vehicles, PV, time-of-use-tariffs, and bidirectional charging, the framework

already constitutes a strong foundation for development efforts in RL-based EV

charging. However, it also comes with limiting assumptions that make it difficult to

design realistic commercial use-cases. First, the framework’s episodes are fixed in

length, from 00:00 to 23:59, with an hourly resolution. Because the environment is

reset after each episode, overnight charging is rendered impossible. Second, Chargym

implements price and PV data via hard-coded curves instead of integrating recent

market price or weather data. Since the assumptions and simplifications of the

framework were engrained in the code’s logic and difficult to change, Chargym was

also not used in this study. It was, however, an extremely helpful framework for this

study, as it provided a well-developed example of how a RL-based implementation for

EV charging could look like.

MAS stands for multi-agent system and features a DQN-based implementation of the

EV charging problem with integrated load forecasting via Long Short-Term Memory

(LSTM). The framework originates from the E-Balance Plus project - a Horizon 2020

funded research project [93, 95]. MAS was developed with a close link to real-world
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applications, and bidirectional chargers are currently being installed at the research

site to test the software in the field. The framework’s objective is to steer the charging

process in such a way, that it follows a pre-defined load curve set by the Distribution

ServiceOperator (DSO). Because the framework is based onDQN, it features a discrete

action space that is specific to the designed use-case. Because this thesis is considering

continuous actions, MAS was not chosen in this study. Nevertheless, the framework

and the correspondence with the authors provided insights that were invaluable to this

study.

5.2.2 Own implementation

Due to limitations and a lack of applicability to commercial fleet use-cases in existing

frameworks found in literature, a novel framework was developed within the scope of

this study: FleetRL.

- Time left at charger
- SoC %

EV

- Building load kW
- TMY3 data

Building

- Feed- in in kW
- ENTSO- E, Merra-2 PV dataset

PV

- Loading % and max. capacity
- Use- case dependent

Transformer

- Day- ahead, EUR/kWh
- ENTSO- E

Electricity market

- Transformer loading
- Battery degradation

Electrical calculations

- Charging rate [-1,1]

Action

Environment: OpenAI Gym: init(), reset(), step()
class FleetRL(Gym.Env):

Action:
[c1, c2, c3, ..., cN]

Value range: [-1, 1]

- EUR: Charging rate kW
       * timestep h
       * price EUR/kWh

Charging cost EUR

SoC += charging_rate*timestep

- if maximum loading exceeded
- if car leaves with low SoC
- if invalid action

Constraint / Penalty

Reward: r_t

State / Observation: 
[SoC, duration, PV,

prices, building_load, ...]

Agent: stable- baselines3, TD3, PPO

Figure 5.2.2: Basic conceptual overview of FleetRL

FleetRL was developed using a modular, object-orientated approach to allow for a

high degree of customizability. This way, the same framework can easily be applied
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to other use-cases, and integrate different methodologies and data sources. To model

the EV charging problemwithin an RL environment framework, different classes were

created that handle different aspects of the problem, e.g., communication with the RL

agent, loading andprocessing of input data, calculatingEV charging cost, or calculating

battery degradation. Figure 5.2.2 provides an illustration of the framework’s structure.

Its flow of information is identical with the schematic of the MDP shown in Figure

4.2.1. The most important classes and aspects of the framework are described in the

appendix, and the entire codebase is available under [9].

5.2.3 Modelling scope

The first step consists of defining the physical scope and boundaries of the real-world

problem, so that it can be broken down into its sub-components and fundamental

data structures. In this study, the goal is to optimize EV charging schedules by cost,

while considering vehicle schedules, building load, PV generation, grid constraints,

and electricity prices. This is illustrated in Figure 5.2.3 for the use-case of last-mile

delivery.
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Figure 5.2.3: Scope of the EV charging problem
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Some assumptions are taken to limit the degree of complexity of the optimization

problem:

1. All connections are three-phase, and load imbalance is not considered.

2. Only active power is considered when calculating transformer loading.

Capacitive and inductive properties of electrical equipment are not considered.

3. Although bidirectional charging is enabled, it only allows for energy arbitrage.

Frequency regulation is not implemented in this study.

4. The companies aremodelled as price takers and are assumed not to influence the

electricity price with their demand.

5. Battery degradation is modelled non-linearly, taking into account rainflow cycle-

counting and SEI-film formation according to [96].

Charging model

Bidirectional charging is enabled to explore potential effects on economics and battery

degradation. The following function is implemented:

SOCt+1 =

SOCt +
Echarging ·ηcharging

Cbattery
, action ≥ 0

SOCt − Edischarging

Cbattery
, action < 0

(5.1)

When discharging, the efficiency is not considered in the decrease of the SOC. Instead,

it is consideredwhen calculating the usable output of the battery that is sold on the spot

market. Charging or discharging energy are calculated based on the agent’s action, the

available charging power and the amount of energy left in the battery. Actions that

would yield an SOC> 1 or < 0 are clipped, and the agent is penalized by a small amount.

When available, PV reduces the total energy drawn from the grid (self-consumption).

Excess PV energy that is not used by the EVs contributes to covering the building

load.

Electricity consumption tariff

Dynamic electricity tariffs were implemented to study the agent’s ability to develop

an optimal charging strategy that leverages intraday price differences. Price data from

2020 is not themost recent andwas impacted by the pandemic. The year 2022 showed
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unprecedented price spikes due to the European energy crisis. For this reason, spot

prices for the market area of Germany / Luxemburg from 2021 were considered in

this study, as shown in Fig. 5.2.4 [12]. That being said, this study focuses on the

methodology of RL-based EV charging optimization and on investigating if an RL

agent can learn an optimal policy within a realistic environment. If a specific use-case

with different price assumptions is to be chosen, they can be incorporated by simply

changing the input file to the model.
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Figure 5.2.4: Day-ahead spot price DE-LU for 2021 [12]

According to Awattar and Tibber, two energy providers offering dynamic pricing in

Germany, fees make up ca. 50% of the electricity price [22, 23]. This is in line with

industrial electricity prices, where fees made up and 52% in 2021 [97]. Therefore, a

constant fee (e.g. grid or concession fees) and a variable fee (e.g. electricity tax) were

added to the spot price to simulate prices paid by commercial customers.

Ptotal,avg,2021 = (96.8 + 10) · 1.5 = 160.2€/MWh = 16.02ct/kWh

According to the German Association of Energy and Water Industries (BDEW), prices

paid by industrial customers amounted to 21.38c/kWh for 2021 [97]. This is higher
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than the modelled prices, because hourly time-of-use tariffs are not commonly found

for industrial consumers, where cost stability often outweighs the need to leverage

flexibility. Industrial customers are separately charged by their capacity and their

energy consumption in Germany. The highest quarter-hourly energy demand in kW

thereby determines the peak load. There is therefore a strong incentive to stay under

a certain kW rating - which is why grid capacity limits were included in this model.

Energy bills are issued regularly for the kWh consumed. Tariffs may vary per month,

but usually have fixed rates. Values for grid and concession fees may vary significantly

across different regions.

Electricity feed-in tariff

The agent can choose to discharge energy from the batteries to the grid. Since vehicle-

to-grid is still in its early stages in Germany, it was not possible to find commercial

tariff packages. In this study, two scenarios are assumed: energy arbitrage on the spot

market and a feed-in-tariff; frequency reserve was not considered.

In the arbitrage scenario, the company is assumed to be an independent power

producer that has access to the spot market. This scenario aims to maximize the

potential of the vehicles’ batteries within their mobility constraints. The company

can trade electricity bidirectionally, and receive the spot price both for charging

and discharging without markups or fees. Taxes are deducted in a post-processing

stage.

In the second-scenario, a feed-in tariff similar to PV feed-inwas chosen. As of 2023 and

according to the German renewable energy law (EEG §48 Abs. 6), PV panels receive

between 6.2ct/kWh and 8.6ct/kWh, with decreasing tariffs for higher kWp ratings [98].

For all commercial use-cases, the cumulative peak power from the chargers surpasses

100kWp, which is why 6.2ct/kWh were chosen as the feed-in tariff. From this, 25%

were deducted to account for third party fees (e.g. metering and handling fees).

Computing hourly averages over the entire year yields valuable insights into the

charging economics, as shown in Figure 5.2.5. Intraday fluctuations become evident,

with the common troughs at night and noon, as well as themorning and evening peaks.

Further, it can be seen that the PV-based feed-in tariff is insufficient to provide a

feasible business case for selling electricity. While the tariff is beneficial for PV owners

who generate electricity from solar energy, it will always yield losses when the energy
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is first purchased from the spot market with fees and markups. Note that charging

efficiencies further decrease the economics of arbitrage, since a part of the usable

energy is lost in the charging and discharging process. For the feed-in scenario, it

was therefore expected that the agent will choose not to discharge, but to postpone

the charging to the early morning hours when electricity prices are lower.

0 2 4 6 8 10 12 14 16 18 20 22
Hour

0

25

50

75

100

125

150

175

200

Pr
ice

 in
 E

UR
/M

W
h

Spot
Tariff
Feed-in

Figure 5.2.5: Annual average curve for 2021 electricity prices and feed-in tariff

Battery degradation

Two ways of calculating battery degradation were implemented: linear and non-linear

degradation. Battery degradation was implemented such that the model updates the

battery capacity on a daily basis while the model is running. The vehicles’ batteries

therefore degrade in real-time during the training process.

Linear degradation is implemented for the E63 Li-Ion battery cell manufactured by

LG Chem [99]. Using the graphs provided in the data sheet under section A1.2 and A2,

it was possible to determine the capacity fade in the battery per equivalent full cycle

and per unit time, as shown in Table 5.2.1.

Parameter Value

Cycle loss at 11 kW 0.0125% per EFC
Cycle loss at 22 kW 0.0125% per EFC
Cycle loss at 43 kW 0.0167% per EFC
Calendar ageing at 0% SoC 0.65% per a
Calendar ageing at 40% SoC 2.93% per a
Calendar ageing at 90% SoC 6.5% per a

Table 5.2.1: Linear degradation parameters
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Non-linear degradation was modelled according to [96]. Apart from non-linear

relationships, themodel incorporates the formation of the solid electrolyte interphase:

a thin layer that is formed during the first cycles of a battery [100–102]. Because

Lithium Ions are consumed to form this film, the degradation of a battery progresses

steeper during the period of SEI-film formation [96, 103, 104].

The governing equations of the model are shown below [96]. Stress factors determine

the stress of each cycle in terms of temperature T , mean SoC σ, time t, and DoD δ. Via

the stress factors, the degradation due to cycle and calendar ageing can be determined

and aggregated to f cyc
d . Summing over every cycle’s aggregated degradation yields the

total degradation fd, which is used to calculate the battery life L. The battery life L

thereby is the inverse of the state of health.

ST (T ) = ekT (T−Tref )·
Tref
T (5.2)

Sσ(σ) = ekσ(σ−σref ) (5.3)

St(t) = ktt (5.4)

Sδ(δ) = (kδ1δ
kδ2 + kδ3)

−1 (5.5)

fc(δ, σ, Tc) = Sδ(δ)Sσ(σ)ST (Tc) (5.6)

ft(t, σ, Tc) = St(t)Sσ(σ)ST (Tc) (5.7)

f cyc
d (δ, t, σ, Tc) = fc(δ, σ, Tc) + ft(t, σ, Tc) (5.8)

fd =
∑
cyc

f cyc
d (δ, t, σ, Tc) (5.9)

L = 1− αseie
−βseifd − (1− αsei)e

−fd (5.10)

SoH = 1− L (5.11)

In the study, the parameters were fitted to empirical tests of a Li-Ion battery cell. The

parameters were adopted and are listed below [96].
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Parameter Value Explanation

αsei 5.75% Charge consumed during SEI film formation
βsei 121 SEI model coefficient
kδ1 140000 DoD stress factor coefficient
kδ2 -0.501 DoD stress factor coefficient
kδ3 -123000 DoD stress factor coefficient
kσ 1.04 SoC strecc factor coefficient
σref 0.5 SoC reference point
kT 0.0693 Temperature stress factor coefficient
Tref 298.15 K Reference temperature
T 298.15 K Ambient temperature assumed in FleetRL
kt 4.14e-10 s−1 Calendar ageing stress factor coefficient

Table 5.2.2: Non-linear degradation model parameters

As for the inputs of time, DoD, and SoCper cycle, the rainflow cycle-counting algorithm

according to ASTM E1049-85 was used [105, 106]. The algorithm receives a signal as

input - in this case the historical values of SoC - and outputs a range,mean, count, start,

and end index. The range is equal to the DoD δ and the mean is equal to the average

SoC σ. The count is either 0.5 or 1 and acts as a measure of severity for the respective

cycle. The rainflow counting algorithm therefore takes into account that cycles differ

in severity depending on their profile. Via the start and end index, the duration of

the cycle can be calculated. These values are then fed into the non-linear degradation

model.

Figure 5.2.6 compares the twomethods of degradation calculation. Over a period of 10

years, the two methods reach approximately the same level of degradation, reaching

the end of their life at a remaining SoH of 80%. However, the linear model progresses

more steeply than the non-linear model after year 3 and surpasses it in year 8. If the

time horizon were to be increased further, the linear model would cross the x-axis

and reach negative SoH values. The assumption of linear degradation is therefore a

simplifying one, which is only valid in a certain range of data points. To model battery

degradation more accurately, the non-linear model is used in the rest of this study.

Note that bothmodels do not model the steep decrease of State of Health (SOH) which

occurs towards the end of life of a battery [96]. An implicit assumption is therefore

taken that the battery is operated within ranges of stable degradation, usually defined

at SOH values between 0.8 and 1.
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Figure 5.2.6: Linear vs. non-linear degradation over 10 years

5.2.4 Markov decision process

In order to be able to optimize EV charging with RL, the problem needs to be

formulated as an MDP. As shown in Figure 4.2.1, the MDP describes the flow of

information between the environment and the agent. The environment encodes the

entire information of the EV charging problem, processes the RL agent’s actions,

and returns the next observation and reward. The agent then takes the observation

as input and returns corresponding actions, which aim to maximize the cumulative

reward.

Actions, Observations and Rewards

With the physical scope of the problem defined, the next step is the design of the

observation and action space, as well as the reward function. The observation space

defines the set of parameters that are visible to the agent. The action space defines the

set of possible actions that are available to the agent. The reward function provides

feedback to the agent after each action taken. It is important to define these metrics

such that the Markov-assumption is met: the most recent observation must be a

complete representation of past states and actions. The following setup is chosen for

this study:
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Action space:

• Charging power: [CEV1 , CEV2 , ..., CEVN
] ∈ [−1, 1]

Observation space:

• State of Charge: [SOCEV1 , SOCEV2 , ..., SOCEVN
] ∈ [0, 1]

• Time left at the charger: [tEV1 , tEV2 , ..., tEVN
] ∈ [0, tmax]

• Spot price and tariff with 8 hours look-ahead: [Pt, Pt+1, ..., Pt+8] ∈ [Pmin, Pmax]

• Building load with 4 hours look-ahead: [Bt, Bt+1, ..., Bt+4] ∈ [Bmin, Bmax]

• PV with 4 hours look-ahead: [PVt, PVt+1, ..., PVt+4] ∈ [PVmin, PVmax]

Both observation and action space are continuous, making the problem complex due

to the necessity to perform function approximation, as discussed in Chapter 2. The

look-ahead of PV and building load is assumed to be known. In future work, the use of

future values could be replaced with deep-learning-based forecasting. As for the day-

ahead price, the next 8 hours are always known since the price of the next 24 hours is

published at noon [107].

Optional additions to the observation space

• Target SOC for each vehicle

• Remaining charging demand in %

• Time needed to fulfil charging demand

• Laxity factor:
tleft

tneeded
− 1

• Charger power in kW

• Grid connection in kW

• Available grid connection capacity

• Maximum recommended action per car:
Pgrid,avail

NEV,connected·Pcharger
∈ [0, 1]

• Month, weekday and hour

The option to include additional information into the observation space was added to

reduce the complexity of logical deduction needed by the agent. While current SOC and

time left are sufficient to physically describe the basic problem, it might be difficult for

the agent to infer the right charging strategy from these parameters. This is especially
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true for model-free agents that are used in this study, because no prior information is

given about the real-world problem. Therefore, seemingly redundant information can

increase the training performance in a neural network. To highlight this, the training

process for two last-mile delivery vehicles on the TD3 algorithm is shown in Figure

5.2.7; with and without auxiliary information.
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Figure 5.2.7: Impact of additional information on training

Reward function: The reward function is both made up of the charging cost and

penalties when constraints are violated, or when invalid actions are taken. Ci denote

scaling factors for further adjustment of the reward function.

• Charging cost: R1 = Echarging · Pt · CR1

• Penalty for not meeting target: P1 = CP1 · sigmoid(SOCtarget − SOCi)

• Penalty if grid overloaded: P2 = CP2 · sigmoid(Loadt − Loadmax)

• Penalty for taking an invalid action: P3 = CP3 · action2
EVi

• Penalty for overcharging the battery: P4 = CP4 · E2
overcharged

For the SOC and the grid violation, a sigmoid function is proposed, as shown in Figure

5.2.8
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Figure 5.2.8: Sigmoid-based penalty curves

A sigmoid function was chosen because of its close similarity to the actual

consequences in reality: Small SOC violations up to 5-10% do not significantly

endanger the operation. Similarly, transformer loadings of 110% can be endured

without risking damage to technical equipment [source]. With increasing violations,

the risk of endangering operations increases over-proportionally. At some point, a

level is reached beyond which the damage does not further increase, e.g. a blown fuse,

damaged equipment, or a failed trip due to lack of energy in the battery. Note that

the dip and its magnitude in the overloading curve can be set to custom values, e.g. a

kW rating that must not be exceeded at all costs. This could avoid blowing a fuse, or

exceeding a kW-peak rating for economic reasons.

Markov assumption

The representation meets the Markov criterion, because the agent’s past actions of

charging the vehicles are represented in the state of charge. Information regarding

price, PV and building load is incorporated in the reward function. Further, the state

representation and reward function are designed in coherence with the current state-

of-the-art which is presented in Chapter 2.

Normalization and reward shaping

All observations and rewards are normalized between 0 and 1 via a rolling average

according to Equation 5.12 to facilitate the training process.
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obsnormalized,i =
obsi − obsmin

obsmax − obsmin

(5.12)

The reward function can be fine-tuned during training by giving certain components

more weight than others via the scaling factors Ci. Apart from the economics, the

reward relationships are quadratic to penalize higher deviations more severely.

The scaling factors are chosen such that the reward function distinguishes primary,

secondary and tertiary objectives. The primary goal is to charge the vehicles in such

a way that the SOC and grid constraints are met. Once this is achieved, the focus

should be set on optimizing for cost. Finally, the tertiary objective of the agent is to

take actions that make sense. Therefore, a penalty is given when a charging command

is given for an empty charging spot. The three hierarchic levels are separated by an

order of magnitude: violating the SOC or grid constraints therefore yields a penalty

10 times higher than the cost of electricity for fully charging a vehicle. The economic

expense, on the other hand, is 10 times higher than the penalty for invalid actions or

giving commands that would overcharge the battery. Due to this hierarchy, a rolling

normalization is useful, because the numeric scale of the rewards does not change for

the agent. Without normalization, the second and third tier penalties would appear

insignificant, and would potentially be ignored.

Another important operation in the area of reward shaping was detrending the price

signal before using it as a reward. As seen in Figure 5.2.4, it is possible that the general

level of prices can change throughout the year. If rewards were to be directly computed

from such a signal, higher or lower average priceswould send a penalizing or rewarding

signal to the agent. This can be counterproductive when the real aim is to learn how to

exploit pricedifferences. Therefore, the price signalwas detrended by splitting the data

into monthly chunks and offsetting each chunk’s data, such that the chunk’s average

was equal to the annual average. This is illustrated in Fig 5.2.9 for the year 2021.

Note that while the approach was sufficient for this specific set of data, it could be

worth looking into time series decomposition or linear regression to remove trends

and periodic signals more robustly.
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Figure 5.2.9: Detrended spot price for 2021

Additional model parameters

Apart fromobservations, actions, and rewards, a number of parameters fundamentally

shape the model which are listed in Table 5.2.3. The episode length for training was

chosen to be 48 hours to guarantee the possibility of overnight charging, regardless

of the episode’s starting time. The initial state of health was assumed to be 100%,

therefore assuming a new fleet.

Parameter Value

Temporal resolution 15 min
Episode length 48 hours
Charging efficiency 91 %
Discharging efficiency 91 %
Target SoC 85%
Initial SoH 100%

Table 5.2.3: FleetRL environment parameters

5.2.5 RL agent training

This section walks through the training process, from pre-processing to deploying

agents in remote computing environments.
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Data preprocessing

The input data was split prior to training to avoid overfitting the models. The data

was split into training, validation, and test sets. During training, the agent was fed

with the training set. At regular intervals during training, a run was performed on

the validation set to assess the performance of the agent on unseen data of the same

year. After concluding the training process, the agents were tested on an entirely new

dataset to validate the results. Training and validation data were split into January -

October (83%) and November - December (17%), respectively. For testing, a new set

of schedules was generated.

Troubleshooting

At first, a large number of agents were deployed with different configurations to

find out what would break the learning process or introduce instabilities. This was

an iterative process and involved tuning the reward function and correcting logical

flaws in the code that were revealed during the testing stage. It was found that the

best configuration for the reward function was to split the objectives numerically

into the following dimensions: 102 − 103 (SOC and overloading the grid), 101 (fully

charging the battery at non-negative prices), and 10−1 (invalid action and overcharging

penalties).

Once a stable setup was reached, different agents were tested on the environment. The

stable-baselines3 library was used for deploying RL agents on the environment [56].

Initially, TD3, PPO, DDPG, and SACwere tested. PPO and TD3 performed particularly

well. While PPO was faster, it was less sample efficient and required a larger number

of steps to converge, as shown in Figure 5.2.10.
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Figure 5.2.10: Performance comparison of TD3 and PPO

67



CHAPTER 5. METHODOLOGY

Although TD3 only ran at half the speed, it reached similar rewards as PPO - even with

1.5M steps less of training. Since TD3 and PPO are state of the art model-free DRL

algorithms, and because training resources were limited, most runs were performed

on TD3 and PPO only.

Hyperparameter tuning

An extensive hyperparameter search was performed on TD3 and PPO via the open-

source frameworkOptuna. The search spaces are shown inTables 5.2.4 and5.2.5.

Parameter Possible values Best value

Gamma 0.9 - 0.99 0.99
Learning rate 1e-5 - 1e-1 0.0005
Batch size 32 - 512 128
# Epochs 1e4 - 1e6 8
GAE lambda 1e-4 - 1e-2 0.9
Clip range 5e3 - 5e4 0.2
Clip range VF None - 0.5 None
Normalize advantage Yes / No Yes
Entropy coefficient 0 - 1e-3 0.0008
VF coefficient 0.1 - 0.7 0.5
Max gradient norm 0.3 - 0.7 0.5
# Steps 128 - 8192 2048

Table 5.2.4: Hyperparameters PPO

Parameter Possible values Best value

Gamma 0.9 - 0.99 0.99
Learning rate 1e-5 - 1e-1 0.001
Batch size 32 - 512 100
Buffer size 1e4 - 1e6 1e6
Tau 1e-4 - 1e-2 0.01
Learning starts after 5e3 - 5e4 2e4
Training frequency 2 - 8 steps / episodic 4 steps / episodic

Table 5.2.5: Hyperparameters TD3

For further reference on the hyperparameters, the original publications should be

considered, as well as the Stable-Baselines3 (SB3) documentation [56, 61, 68]. For the

hyperparameter study, 100 runs were conducted on each algorithm, where each run

evaluated the agent’s performance after 50000 time steps. The results were critically

analysed to ensure that the values are still within range of the default values suggested
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by the authors. Note that for TD3, both a train frequency of 4 steps and 1 episode were

found to be suitable configurations.

Curriculum learning

Curriculum Learning, as proposed by [108], is a training strategy that structures the

learning process by progressively introducing more difficult tasks. In the context of

RL, the tasks usually refer to increasingly complex versions of the same environment

or problem [109]. Curriculum learning has been found to enhance learning efficiency

and robustness by allowing the agent to develop necessary skills on simpler tasks

before transitioning to more complex ones, ultimately aiding in the discovery of

efficient learning policies [110]. It was tested to conduct curriculum learning on the

environment, but during the brief trial period no significant performance increases

were observed. It seemed particularly challenging to make models of differently-

sized observation spaces (e.g., a different number of cars) compatible with each other.

Curriculum learning was therefore not used in the training process, but identified as a

future improvement step.

Training environment

The agents were trained on remote computing environments with graphical processing

units. The training process was monitored with TensorBoard [111]. Up to 32 cores, 1

GPU, and 32 GBs of RAM were used per machine, with multiple machines running in

parallel. Depending on the number of cars in the environment, training 1 million steps

took between 24 and 96 hours. The process was time- and resource intensive and thus

poses a potential bottleneck.

5.2.6 RL agent evaluation

With training completed, the agent performance was tested on the test set. Key

performance indicators were the reward, the money spent on charging, the number

of penalties triggered, and the level of battery degradation. Further, the actions were

closely monitored time step by time step to ensure that the agent was actually solving

the problem of EV charging without finding an unexpected loophole. The monitoring

was implemented through print functions that output important metrics at each time

step of an episode.
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Benchmarking

The trained RL agents were compared to deterministic charging strategies to validate

the results. Validation is particularly important for black-box optimization methods

such as DRL, where the decision-making process cannot easily be retraced, if at all.

Three static benchmarks are shown in Figure 5.2.11.
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00
:00

04
:00

08
:00

12
:00

16
:00

20
:00

5

0

5

10

Ch
ar

gi
ng

 p
ow

er
 in

 k
W

Dumb charging

00
:00

04
:00

08
:00

12
:00

16
:00

20
:00

5

0

5

10

Distributed charging

00
:00

04
:00

08
:00

12
:00

16
:00

20
:00

5

0

5

10

Night chargingUncontrolled charging Distributed charging Night charging

(b) Utility

00
:00

04
:00

08
:00

12
:00

16
:00

20
:00

5

0

5

10

15

20

25

Ch
ar

gi
ng

 p
ow

er
 in

 k
W

Dumb charging

00
:00

04
:00

08
:00

12
:00

16
:00

20
:00

5

0

5

10

15

20

25
Distributed charging

00
:00

04
:00

08
:00

12
:00

16
:00

20
:00

5

0

5

10

15

20

25
Night chargingUncontrolled charging Distributed charging Night charging

(c) Caretaker
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Figure 5.2.11: Static comparison benchmarks
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The three rule-based strategies represent cases, where the user programs a fixed

charging schedule into the EV. The methods were compared by key performance

indicators such as monetary expenses, battery degradation, reward, and number of

penalties triggered. The strategies are further explained below:

Uncontrolled / Dumb charging: The first comparison was made with the so-

called dumb charging strategy, where an EVwas immediately plugged in upon arrival,

drawing the maximum power available at the charger.

Distributed charging: The second comparison was made with distributed

charging, where the charging energy was spread out evenly during the charging

duration. The cars were therefore fully charged only just before departure.

Night charging: A third comparison was made with night charging, where the

vehicles only start charging at night. While leveraging lower prices, charging atwas still

started early enough to ensure that the battery was fully charged upon departure.

On top of the static benchmarks, a linear optimization was implemented to compare

RL to an optimal scenario with perfect knowledge.

Linear optimization: A final comparison was made with a linear optimization

model using Pyomo, in which the EVs optimize their charging schedules according to

price, building load and PV. Note that the linear optimization benchmark was given

perfect knowledge and was therefore expected to find the global optimum in terms of

cost savings.

The model was given the parameters of building load, PV power output, electricity

price, feed-in tariff, and EV availability. Similar to the RL agent, its decision variables

were the charging and discharging power ∈ [−1, 1]. This made it possible to run the

optimization result on the RL environment as if it were an agent, allowing for a more

detailed analysis of the specific actions, as well as battery degradation, economics, and

penalties. Pyomo and the Gurobi solver were used to run the optimization.

Parameters:

• Building load in kW Bt for t ∈ [0, 8760]

• PV output in kW PVt for t ∈ [0, 8760]

• EV availability EVt ∈ [0; 1] for t ∈ [0, 8760]

71



CHAPTER 5. METHODOLOGY

• Price and Tariff Pt, Tt for t ∈ [0, 8760]

• SOC on return SOCret,t for t ∈ [0, 8760]

• EVSE power in kW PEV SE

• Timesteps per hours dt

• Charging and discharging efficiency ηC , ηDC

• Transformer capacity in kW Ptrafo

• Battery capacity in kWh Cbatt

• Target SOC SOCtarget

• Initial SOC SOCinit

Decision variables:

• SOC ∈ [0, SOCtarget]

• Charging signal C ∈ [0, 1]

• Discharging signal DC ∈ [−1, 0]

• Used PV for EV charging PVused ≥ 0

• Binary Positive action A+ ∈ [0; 1]

Objective function:

C =
T∑
t=1

[(
Ct ∗ PEV SE − PVused,t ·

1

dt
· Pt

)
+

(
DCt ∗ PEV SE ∗ ηDC · 1

dt
· Tt

)]
(5.13)

Subject to:

• Max transformer loading: (Ct +DCt) · PEV SE +Bt − PVt ≤ Ptrafo

• Max charging: Ct, DCt ≤ PEV SE ∗ EVt

• Mutual exclusivity charging: Ct ≤ A+
t

• Mutual exclusivity discharging: DCt ≥ A+
t − 1

• PV use: PVused,t ≤ Ct · PEV SE

• PV availability: PVused,t ≤ PVt
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• No charge at empty spot: Ct, DCt = 0 if EVt = 0

• SOC last timestep: SOCt+1 = SOCt + (CtηC +DCt) · PEV SE · 1
dt·Cbatt

if t = T

• SOC new arrival: SOCt+1 = SOCret,t+1 if EVt = 0 and EVt+1 = 1

• SOC on departure: SOCt = SOCtarget if EVt = 1 and EVt+1 = 0

• Charging: SOCt+1 = SOCt + (CtηC +DCt) · PEV SE · 1
dt·Cbatt

if EVt = 1 and

EVt+1 = 1

• No next SOC when no car: SOCt+1 = 0 if EVt = 1 and EVt+1 = 0

• No SOC when no car: SOCt = 0 if EVt = 0

• First SOC: SOC0 = SOCinit

5.3 Economic impact assessment

A business case for RL-based EV charging is made based on the cost savings compared

to the benchmarks. Therefore, it is assumed that EV chargers and EVs have already

been procured; the economics of switching from internal combustion to electric

vehicles are not considered. The economic impact assessment therefore only includes

additional expenditures that would be necessary to implement RL-based charging,

such asmeters, communicationdevices, and third party fees. The cost data for ancillary

equipment and fees was taken from the German Automobile Club (ADAC), which

conducted a study on commercially available dynamic load management solutions

[112]. These solutions, therefore, provide an integration of the EV charger with PV

or the building load, enabling dynamic adjustments of the charging power whenever

there is a constraint or price signal. Apart from performance comparisons, the study

includes data on the installation and operational costs of dynamic load management

systems. First, the annual spending on electricity for charging is compared against

the benchmarks. Then, the profitability is assessed over a time horizon of ten years

by calculating the break-even point and net present value of the investment. The

assumptions for the economic calculations are listed in Table 5.3.1.
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Parameter Value Unit

Discount rate 0.075 -
Load controller 2 1266 €
EVSE upgrade 4.6kW 300 €
EVSE upgrade 11 or 22 kW 500 €
Battery replacement 16.7 kWh 7500 €
Battery replacement 50 kWh 12500 €
Battery replacement 60 kWh 15000 €
Integration fee per charger 99 €
Third party service fees 0.1 share of savings

Table 5.3.1: Assumptions for economic calculations

Note that investments for a smart meter were not included in the calculation because,

according to the German smart meter law, an installation is compulsory for buildings

with a load greater than 6000 kWh or solar of 7 kWp and therefore does not depend

on whether RL is used in smart charging or not.
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Results and discussion

This chapter presents and discusses the results. The first section focuses on general

findings on algorithm performance that were obtained during the training and

evaluation process. Then, detailed results are presented for each use-case: the

charging strategies and the corresponding outcomes are analysed, and an economic

case is presented for RL-based charging and its benchmarks.

RL-based EV charging performed well across all use-cases. This study therefore

supports literature findings which claim that RL agents are a viable option for EV

charging - even when using a realistic EV charging environment such as FleetRL that

avoids the common simplifications of other RL-based EV charging frameworks (cf.

Section 2).

6.1 Algorithm performance

Results were obtained for agents that simultaneously steered 1 EV and 5 EVs, after 5

million timesteps of training. All results are based on test sets: entirely new schedules

that were not shown to the agent prior to testing.

PPO performed considerably better on all use-cases, regardless of the number of

vehicles. On the same hardware, it was approximately twice as fast and managed to

reach an acceptable policy quicker than TD3. Upon further inspection, it was also

found that TD3 produced more SOC violations and yielded less economic savings in

most of the runs. It particularly stood out that TD3 failed to learn not to discharge

vehicles in the tariff scenario, while PPO gradually adapted its charging strategy
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accordingly. TD3 therefore incurred high losses because it discharged energy at the

low PV tariff, only to buy energy back more expensive later. Different hyperparameter

configurations were tested for TD3 to try to avoid the issue. The most important

hyperparameters were found to be the learning rate, the buffer size, and the training

frequency. Updating TD3 once per episode seemed to improve the behaviour at first,

but upon closer inspection it was found that sparse and instantaneous events, such as

SOC violations, were then ignored more often. Changing the learning rate and buffer

size often resulted in diverging or unstable agents. An optimal configuration was not

found and due to limited time and computational resources TD3 was not used in the

final set of runs that were evaluated in the coming sections.

Agents were trained for both 1 and 5 EVs. As shown in Figure 6.1.1, both agents

converged, suggesting that agents can learn an optimal policy for multiple EVs if

enough time and computational resources are allocated. Note that the curves were

smoothed for visibility. For 1 EV, the training process took approximately 10 hours,

while training with 5 vehicles at the same time took approximately 48 hours. Both runs

used remote machines with 28 CPUs and 1 GPU, corresponding to ca. 40 Teraflops.

Due to the computational intensity, it was not deemed feasible to train agents with

25-50 cars for this study. This might be attempted in future work, along with trying

different MDP representations that do not scale with the number of vehicles.
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Figure 6.1.1: Smoothed reward function progression during training

Transitioning from 1 to 5 vehicles introduced challenges to the RL agent. First,

the bigger observation and action space increased the complexity and made it more
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difficult to infer an optimal charging strategy. This is particularly true for model-

free agents such as TD3 and PPO: while adding more vehicles does not inherently

change the dynamics of the problem, it poses a challenge to model-free agents that

do not possess prior knowledge and thus do not know the dynamics of the problem.

Having to learn an optimal policy from scratch is therefore likely to make the problem

increasingly difficult with an increasing number of vehicles. Second, the problem

dynamics varied slightly because 5 EVs can potentially overload a grid connection

whereas 1 EV cannot. The agent therefore had to learn to stay within the limits of

the grid connection in addition to charging 5 cars simultaneously.

However, evaluating the agent with 5 EVs showed that the training process was

successful in that regard: overloadings either did not occur or remained at significantly

lower levels compared to the static charging strategies. Further, SOC violations stayed

within an acceptable range. This is illustrated in Figure 6.1.2.
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Figure 6.1.2: Overloading and SOC violations for 5 EVs over 1 year

A more detailed demonstration of the 5 EV agent is shown in Figure 6.1.3 for the

caretaker use-case - the most tightly constrained in terms of grid connection. The

RL agent is displayed for the arbitrage scenario, along with its static benchmarks:

uncontrolled charging, distributed charging, and night charging. Differences in the

charging strategies become apparent when inspecting the progression of charging

power and SOC. Note that the SOC is an average of the 5 vehicles. SOC violations and

grid overloadings are displayed. The caretaker’s grid connection was 36.9 kW.
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Figure 6.1.3: 5 EV agents and static benchmarks 1

1The battery symbol in Figure 6.1.3 signals how full the battery was upon departure - the percentage
signals howmuchSOCwasmissingwhen the vehicle departed. The prices in the subplot titles refer to the
total spending during the displayed timeframe. Wherever an SOC increase is observedwithout a positive
charging power, vehicles arrive in different time steps with different SOC levels, thereby increasing the
SOC curve. A vice versa effect can be seen when vehicles depart the station.
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The RL agent discharges the battery on arrival, exploiting the high spot market prices.

When prices are low, the energy is charged back just in time before the vehicles leave

for the next trip. This results in overall savings of around 50% compared to the shown

benchmarks.

A higher level of SOC violations can be observed for RL, although all strategies violate

the SOC requirement to some extent in the tightly constrained caretaker use-case.

Note however how no grid overloadings took place with the RL agent: A trade-off was

thereforemade between slightly higher SOC violations and avoiding grid overloadings.

This trade-off would probably be taken in the real-world as well, considering that the

consequences of a grid overloading could be a blown fuse and a halt of charging for all

vehicles.

The night charging strategy shows a severe SOC violation, because a vehicle left for

an emergency trip and only returned at 4:00 am. The charging strategy was thereby

not able to adjust to this, resulting in a large amount of missing energy. On Jun 13 at

16:00, the dumb charging strategy overloads the grid connection severely because all

5 cars start charging upon arrival while there is a lack in PV and the building load has

not decreased sufficiently. The RL agent and the other static benchmarks avoid this

violation. Combining the insights of Figure 6.1.3 with Figure 6.1.2, it can be seen that

RL-based charging is the most effective in avoiding overloading violations out of all

charging strategies.

While the 5 EV agent managed to learn an effective charging strategy, it was found

that the economic results did not scale linearly with the number of vehicles. Having

trained both agents for approximately the same number of time steps, it was found that

the economic performance of the 5 EV agent was worse due to the added complexity

of the problem. Figure 6.1.1 suggests that the training process was not concluded at

5.5M steps, because the training reward curves had not plateaued at the end of the

experiment. It is therefore likely that performance would have increased further with

a longer training time, although progressmight have been slow given the shallow slope

of the reward curve.

Further analyses are therefore conducted on the fully trained agent with 1 EV, because

it is the least likely agent to have been impacted by a constrained computational budget.

The next sections will thus closely analyse the charging strategy of the 1 EV agent. To

present a final business case for the originally sized delivery-, caretaker- and utility
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company, the economic results of the 1 EV agent are scaled up to match the number

of vehicles defined for each use-case (50, 30, and 25, respectively). This is done

by multiplying the expenses by the respective number of vehicles. Naturally, this

poses a potential limitation. It should be assessed in future work whether the same

economic performance can be reached when 50 vehicles are trained simultaneously,

and a sufficient amount of computational resources are used. The full results of the 5

EV agent are listed in Appendix B for reference.

6.2 Use-case analysis

This section has a closer look at the three commercial use-cases, their charging

strategies and their economic results. RL is compared to its benchmarks and important

differences in performance or applicability are highlighted. A final comparison

between the use-cases and the charging strategies is conducted in the following

section.

6.2.1 Last-mile delivery

The charging strategies of the arbitrage and tariff use-case are shown in Figure

6.2.1 for RL, Linear Programming (LP), and Uncontrolled Charging (UC). In the

arbitrage scenario, the charging strategy of RL alignedwell with the linear optimization

result. As originally assumed, the agent recognized the intraday price differences,

and discharged at peak times to buy back the energy later on at lower prices. In the

tariff scenario, a small portion of discharging remained in the tariff scenario. This

was either due to negative electricity prices at night, or due to sub-optimal decision-

making in some cases. Since the agent still received an immediate positive reward

for discharging (PV feed-in tariff), and only encountered the disadvantages in the

future (more expensive spot-price), a trade-off was likely made between immediate

and future rewards. This could potentially bemitigated by setting the discount factor to

γ = 1. The linear optimization rarely decided to discharge upon arrival. In these cases,

discharging was advantageous due to negative prices at night. LP therefore discharged

upon arrival to have more kWh to charge at negative prices. Overall, RL matches the

behaviour of LP well, even though it was only given real-time available information

instead of 1 year of data.
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Figure 6.2.1: Last-mile delivery - Charging strategy for RL, LP and dumb charging

Figure 6.2.2 visualizes the charging strategy from the action perspective. While the RL

agent smoothly distributed its actions across the available range, UC and LP stick to

the edge cases. As mentioned above, a small penalty was given to the agent if it sent

a charging signal to an empty spot. Judging from the distribution, the agent seems to

have learnt to avoid invalid actions.
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Figure 6.2.2: Last-mile delivery - Action distribution

Figure 6.2.3 shows the number and severity of SOC violations for one year of

operations. A violation occurs when a car departs with less than the target SOC.
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Figure 6.2.3: Last-mile delivery - SOC violations for RL-based charging

In the arbitrage and tariff scenario, 25 and 30 violations exceeded 10%, respectively.

These occur less than 1% of the year, but potentially represent unacceptable violations,

as operations might be endangered due to insufficient energy. In total, the 82 and 78

violations yield 7.5 and 7.3 missing batteries over the entire year. Dumb charging did

not violate the target SOC requirements. No grid connection overloading took place

when running the model with only 1 car at a time. The linear optimization did not

violate SOC constraints in any scenario.

Figure 6.2.4 compares battery degradation across the charging strategies. A difference

of ca. 1% can be observed. RL thereby managed to achieve the lowest degradation,

and the linear optimization strategy degraded the battery the most. This can be partly

attributed to the SOC violations of RL, which amounted to 7 batteries over the year.

However, since rainflow cycle counting was used, the severity and depth of the cycles

were taken into account. Note how in Figure 6.2.1 the linear optimization profile

shows pronounced spikes which cannot be observed in the other two strategies. These

spikes might have contributed to the increased battery degradation. In the tariff

scenario, the degradation difference was smaller, although RL still achieved the lowest

degradation.
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Figure 6.2.4: Last-mile delivery - SOH for RL, LP and dumb charging

Over the battery’s lifetime, the difference becomes apparent: with RL-based charging,

the battery would last ca. 1 year longer in the arbitrage scenario, as shown in Figure

6.2.5. Premature battery degradation will be further assessed economically by taking

into account an earlier investment in a new battery.
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Figure 6.2.5: Last-mile delivery - Degradation comparison over the battery lifetime

Having a closer look at the economic evaluation, it becomes evident that considerable

savings can be achieved across all static benchmarks with RL-based charging. Figure

6.2.6 shows the absolute spendings on electricity for each strategy, as well as the

relative savings compared to RL-based charging.
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Figure 6.2.6: Last-mile delivery - Spendings and relative savings

On the x-axis, the charging strategies are shown: Uncontrolled Charging (UC),

Distributed Charging (DC), Night Charging (NC), RL, and LP. Where necessary,

results have been corrected for missing energy with the average spot price of 2021. As

expected, linear programming with perfect knowledge outperformed RL, which only

possessed real-time information.

Figure 6.2.7 shows the discounted savings for the last-mile delivery use-case with 50

vehicles and a load controller of €1200. The values at year 10 thereby represent the

Net Present Value (NPV) of the investment decision (switching RL-based charging).

The point at which savings become positive is the break-even point of the investment

decision.

Apart from the controller, initial investments included anupgrade to a smart-charging-

enabled EV charger (4.6kW - 22kW: €300-€500). Further, 10 % were deducted from

the savings to take into account third party fees (e.g. balancing service provider or

spot market broker). A 7.5% discount rate was assumed for the calculations. Battery

replacement costs were assumed at €15000, €10000 and €7500 for 60 kWh, 50

kWh, and 16.7 kWh batteries, respectively. In the arbitrage use-case, an economically

feasible result is reached within two to three years for all use-cases and across all static

benchmarks. In the tariff scenario, a switch from distributed and night charging only

84



CHAPTER 6. RESULTS AND DISCUSSION

becomes economically feasible after 5 years.
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Figure 6.2.7: Last-mile delivery - Discounted savings 2

6.2.2 Caretaker

Figure 6.2.8 visualizes the charging strategies for the caretaker use-case. The caretaker

use-case featured possible emergency trips at night (2am-4am) with a 2% probability,

as well as short lunch breaks which were not always long enough to charge until the

target SOC. Under these conditions, LP did not find a feasible solution. The constraints

of the optimization had to be relaxed manually for the lunch break and between 2am

and 4am until a feasible solution was found. This was only possible after considerable

reductions of the target SOC. It was also tested to incorporate the constraints of target

SOC and grid overloading in the objective function instead of posing hard constraints

- this would have led the LP algorithm to optimize a reward function similar to RL.

However, this method did not lead to meaningful results within the allocated time

frame for implementing the LP model, and is therefore not discussed in this study. As

a result, the LP-based charging strategy shows insufficient charging during the lunch

breaks. RL, on the other hand, aligns well with uncontrolled charging during the lunch

breaks and leverages the intraday price differences throughout the night, similar to the

LP strategy.

2Note how the LP strategy does not have an initial investment. This is because LP would require the
same technical components - a switch from LP to RL would therefore not require initial investments.
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Figure 6.2.8: Caretaker - Charging strategy

Figure 6.2.9 illustrates the action distributions of the three strategies. Again, the

RL agent distributes its actions more evenly between -1 and 1, whereas dumb and

LP charging stick to zero and the edge cases. The peak at 1 for the RL agent is due

to the lunch break, where maximum power is often required to satisfy target SOC

constraints.
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Figure 6.2.9: Caretaker - Action distribution

Figure 6.2.10 illustrates the SOC violations. As mentioned, not all lunch breaks were

long enough to reach the target SOC. Therefore, SOC violations even occur with the
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dumb charging strategy: 20 violations with 2 missing batteries occur in total for both

the arbitrage and tariff scenario. For RL-based charging, 69 violations with 9 missing

batteries, and 41 violations with 4 missing batteries occur for the arbitrage and tariff

scenario, respectively.

Due to the manual constraint relaxation, LP-based charging violated the SOC

constraint every day during the lunch break, and sometimes at night due to an

emergency trip. For each use-case, 375 violations with 94 missing batteries were

found. It becomes evident that the chosen LP approach with relaxed constraints

yielded an impractical solution. While this presents a potential limitation for LP-based

approaches in tightly constrained mobility problems, it needs to be said that the full

spectrum of LP solutions was not exhausted. Future work could therefore include

Model-Predictive Control (MPC) implementations, a different objective function, or

a revision of the chosen approach, potentially achieving a better performing LP

model.
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Figure 6.2.10: Caretaker - SOC violations for RL and UC
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Figure 6.2.11 shows the progression of SOH for the caretaker use-case. Note that LP

shows lower degradation due to the numerous SOC violations.
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Figure 6.2.11: Caretaker - SOH for RL, LP and dumb charging

Over a time horizon of 10 years, the battery would have lasted 1 or 1.8 years longer,

for the arbitrage and tariff scenario, respectively. Naturally, these results do not hold

significant value, since the mobility constraints were violated to such an unacceptable

extent that operation would never be maintained at this level for 10 years.
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Figure 6.2.12: Caretaker - Degradation comparison over the battery lifetime

The economic results for the caretaker use-case are shown in Figure 6.2.13. Missing

energy is corrected for with the average spot prices of 2021. As can be seen, RL-based

charging outperforms every static charging strategy, both in the arbitrage and in the

tariff scenario.
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Figure 6.2.13: Caretaker - Spendings and relative savings

Note how the savings in the tariff scenario are considerably smaller due to the fact that

energy arbitrage is no longer an economically feasible option: There are fewer degrees

of freedom to generate savings in the tariff scenario. LP is not outperformed, even

when missing electricity is bought back at average spot prices, suggesting that perfect

knowledge for the entire year grants a significant advantage.

Figure 6.2.14 shows the discounted savings for the caretaker use-case with 30 vehicles.

In the arbitrage use-case, an economically advantageous outcome is reached for all

static benchmarks. Apart from dumb charging, the savings are not sufficiently large

to displace the investments within ten years in the tariff scenario. In this case, a

switch to RL-based charging would only make sense if the necessary chargers were

already installed. This result confirms observations from literature and recent market

developments: it might be necessary to tap into multiple revenue streams when

setting up a charging management business model. Such revenue streams could

include energy arbitrage, as shown here, vehicle-to-grid, vehicle-to-building, or other

balancing services.
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Figure 6.2.14: Caretaker - Discounted savings

6.2.3 Utility

Figure 6.2.15 shows the charging strategies of UC, LP, and RL charging. RL aligns

well with LP in both scenarios. Similar to last-mile delivery, some discharging can

be observed upon arrival in the tariff scenario; this could be potentially improved by

setting the discount factor to γ = 1.
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Figure 6.2.15: Utility - Charging strategy

Figure 6.2.16 shows the action distribution for the utility. Actions are evenly spread

out, and a distribution around zero can be observed. UC and LP stick to the edge

cases.
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Figure 6.2.16: Utility - Action distribution

In the utility use-case, the number of SOC violations was particularly low, as shown in

Figure 6.2.17. Over the entire year, 14 violations took place in the arbitrage scenario,

with an equivalent of 1.5 batteries. In the tariff scenario, 6 violations took place with

an equivalent of 1 battery. Note that one violation was ca. 58% and would have

represented an unacceptable violation, potentially rendering the car unusable for the

upcoming trip. The LP charging strategy did not show any violations.
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Figure 6.2.17: Utility - SOC violations for RL-based charging
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Figure 6.2.18 shows the battery degradation over 1 year of operations. In both

scenarios, a difference of less than 0.5% can be observed between the strategies.
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Figure 6.2.18: Utility - SOH for RL, LP and dumb charging

A similar result was observed over the course of 10 years. In the arbitrage scenario, a

new battery was due ca. 6 months earlier with the LP strategy than with the RL-based

strategy, and vice versa for the tariff scenario.
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Figure 6.2.19: Utility - Degradation comparison over the battery lifetime

Looking at the economic results, it was found that RL was not able to outperform the

distributed andnight charging strategy in the tariff scenario, as shown in Figure 6.2.20.

This suggests that the utility use-case features some additional difficulties that could
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arise from the intricate combinations of battery capacity, vehicle schedules, building

load, PV feed-in, and charger power.
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Figure 6.2.20: Utility - Spendings and relative savings

Figure 6.2.21 presents the discounted savings for the utility use-case with 25 vehicles.

In the arbitrage scenario, a positive result is reached for all strategies.
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Figure 6.2.21: Utility - Discounted savings
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In the tariff scenario, only the switch from uncontrolled charging yielded a break-

even after 10 years. Given the infrastructure and expertise, the utility company is the

most likely to enable additional revenue streams, such as arbitrage, vehicle-to-grid, or

other balancing approaches. An economically beneficial result is therefore likely for

the utility company.

6.3 Comparative analysis

Tables 6.3.1, 6.3.2, and 6.3.3 enable a final performance comparison between RL and

its benchmarks. The SOC fulfilment of RL stayed above 95% for all use-cases and

scenarios. For CT, manual adjustments had to be made to the LP problem, until a

feasible solution was found. At that point, the LP strategy resulted in an impractical

solution with ca. 68% fulfilment. Degradation stayed relatively similar throughout all

cases.

LMD arbitrage LMD tariff

RL LP UC DC NC RL LP UC DC NC

Cost in EUR/a 160.9 -247.9 968.6 744.9 702.9 1,086.1 490.9 1,594.8 1,254.7 1,200.8
kWh charged 8977.4 9427.4 9427.4 9427.4 9427.4 8,989.4 9,427.4 9,427.4 9,427.4 9,427.4
kWh violated 450 0 0 0 0 438.0 0.0 0 0 0
Avg ct/kWh 1.71 -2.63 10.27 7.90 7.46 11.52 5.21 16.92 13.31 12.74
SOC % fulfilled 95.23% 100.00% 100.00% 100.00% 100.00% 95.35% 100.00% 100.00% 100.00% 100.00%
Degradation 6.62% 7.15% 6.90% 6.81% 6.90% 6.62% 6.83% 6.90% 6.81% 6.90%

Table 6.3.1: Summary LMD

CT arbitrage CT tariff

RL LP UC DC NC RL LP UC DC NC

Cost in EUR/a 167.3 131.6 400.8 338.7 316.3 494.5 338.0 654.4 561.2 525.7
kWh charged 4,720.8 3,309.8 4,862.9 4,862.9 4,783.1 4,796.4 3,276.4 4,862.9 4,862.9 4,783.1
kWh violated 142.1 1,553.1 0 0 79.8 66.5 1,586.5 0 0 79.8
Avg ct/kWh 3.44 2.71 8.24 6.96 6.50 10.17 6.95 13.46 11.54 10.81
SOC % fulfilled 97.08% 68.06% 100.00% 100.00% 98.36% 98.63% 67.38% 100.00% 100.00% 98.36%
Degradation 7.45% 6.99% 7.26% 7.24% 7.23% 7.41% 6.68% 7.26% 7.25% 7.23%

Table 6.3.2: Summary CT

UT arbitrage UT tariff

RL LP UC DC NC RL LP UC DC NC

Cost in EUR/a 176.6 -89.7 890.0 635.2 607.5 1,245.5 592.6 1,458.5 1,069.4 1,036.2
kWh charged 7,994.8 8,061.3 8,061.3 8,061.3 8,061.3 8,006.5 8,061.3 8,061.3 8,061.3 8,061.3
kWh violated 66.5 0.0 0 0 0 54.8 0.0 0 0 0
Avg ct/kWh 2.19 -1.11 11.04 7.88 7.54 15.45 7.35 18.09 13.27 12.85
SOC % fulfilled 99.18% 100.00% 100.00% 100.00% 100.00% 99.32% 100.00% 100.00% 100.00% 100.00%
Degradation 7.11% 7.35% 6.90% 6.81% 6.91% 6.75% 6.84% 6.90% 6.81% 6.90%

Table 6.3.3: Summary UT
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Tying the results together, Figure 6.3.1 illustrates the different savings potentials that

RL could bring to the use-cases. LMD seems to yield the highest savings per car due

to the large battery of 60 kWh, and the regular vehicle schedules with long durations

of stay. Comparing RL with UC in the LMD use-case, a cost reduction of 83.4% can

be observed. This aligns well with savings reported in literature, which amount to

80% [8]. Comparing the savings of LP vs. UC and RL vs. UC, it can be seen that

the savings potential of RL is ca. 35% lower for the LMD use-case. This also aligns

well with findings in the literature, where the savings potential was found to be ca.

40% lower [113]. UT closely follows with its 50 kWh batteries, 22 kW chargers and

its similar schedules: up to 80% savings can be observed compared to UC. CT has the

lowest annual savings per car due to its smaller battery of 16.7 kWh. Its maximum

percentage savings amount to 58%.
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Figure 6.3.1: Savings comparison of RL vs. static benchmarks

However, if we look at the graph on the right, we can see that the savings potential

is very similar when adjusting for the different battery sizes: The RL agent secured

almost identical savings per kWh for all three use-cases. Since building load, PV,

or EV schedules did not have a negative impact on the specific savings, it can

be concluded that all three commercial use-cases are well-suited for RL-based EV

charging optimization.
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6.4 Implications on sustainability

The results of this study indicate that RL is well-able to learn how to solve

complex problems with uncertainty and real-time information. By optimizing energy

consumption patterns, including electric vehicle charging, heating, cooling, and other

essential services, RL can play a vital role in creating intelligent and responsive

urban ecosystems. This aligns with SDG 11 (Sustainable Cities and Communities),

promoting resilient and efficient urban environments that adapt to real-time demands.

Within the broader energy landscape, RL’s application extends to grid management,

renewable energy integration, and demand-side management, contributing to SDG 7

(Affordable and Clean Energy) and SDG 9 (Industry, Innovation, and Infrastructure).

Furthermore, by paving the way for increased renewable energy penetration, SDG

13 (Climate Action) is directly supported. From individual households to large-scale

industrial complexes, the implementation of RL-based energy management systems

can facilitate a more sustainable, and economically feasible energy future. Its role

in unlocking flexibility, reducing emissions, and enhancing grid stability positions

RL as a potential cornerstone technology of the energy transition. In considering

the core objectives of sustainable development, RL’s role in the energy landscape

resonates with both environmental integrity and equity across generations. By

optimizing energy consumption and enhancing renewable energy integration, RL

sustains natural resources, promoting an equilibrium between the environment and

human needs.

It is important tomention here the trade-off betweenAI-capabilities and deterministic,

explainable solutions. Critical areas such as the transmission grid still rely on simple,

deterministic models for forecasting, because they are bound by regulation to be

explainable. Research and testing are needed to explorewhere AI-based solutions such

as Deep Reinforcement Learning can be leveraged in a safe, and reliable manner. Only

once this is clear can a broad positive impact be made on the energy transition.

6.5 Discussion

RLmanaged to learn an effective charging strategy, both for 1 EV and 5 EVs. Trying to

mimic real-world conditions, the agent only received real-time information and did not

possess information about upcoming arrivals. Overall, SOC violations stayedwithin an
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acceptable range and grid violations were avoided effectively. Three static benchmarks

and a linear optimization were introduced to compare RL to commonly implemented

methods. RL outperformed the static benchmarks. Linear optimization with perfect

knowledge provided an indication of what a potential best-case scenario could look

like. However, LP-based charging also showed practical limitations: it is unrealistic

to know one year of data ahead of time. Further, LP did not find a feasible solution

in the tightly constrained caretaker use-case. A feasible solution was only found

after significant constraint relaxation, leading to a practically unacceptable solution.

From the rule-based methods, distributed charging seemed to perform particularly

well, finding a trade-off between leveraging night prices and not overloading the grid

with a sudden increase in charging power. However, one would have to re-program

the vehicle schedule every day, based on the most recent arrival and departure time.

Further, distributed charging requires a flexible adjustment of charging power based

on the duration of stay - a feature that is not commonly implemented in vehicles, and

especially rare in non-smart-charging EV chargers. Regarding battery degradation, it

was found that RL did not put large additional strains on the battery. On the contrary,

RL was found to be the most preserving charging strategy in some cases - even when

engaging in arbitrage.

A positive business case could always be made for switching to RL-based charging

with arbitrage. Without arbitrage, the switch to RL in the utility use-case was

only feasible when switching from uncontrolled charging. However, it is a realistic

assumption that utilities are early adopters in terms of additional revenues streams

due to arbitrage, V2H, V2G or other balancing features. This led to the conclusion

that an economically feasible business case can be found for all three commercial

use-cases. Looking at sustainability and implications for the energy transition, RL-

based energy management systems show promising potential to be able to adapt to

the rapidly changing energy landscape. The results of this study indicate that the

versatility and performance of RL seem a goodmatch for unlocking flexibility potential

in different commercial use-cases. Going hand in hand with transmission operators,

energy management solutions such as this one could enable an increasing penetration

of renewables in the grid.

Nevertheless, limitations can be found within the methodology and implementation.

First, training RL agents has proven to be a computationally intensive, and time-

consuming task. While the training of the final set of agents ”only” took around
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48 hours on 1 Nvidia GTX 3090 GPU and 28 Intel i9 CPUs (ca. 40 Teraflops),

countless attempts and computations went into getting there. Adding up extensive

hyperparameter studies, testing, trial and error, and iteratively improving the software

implementation, yields computational times in the order of weeks, with workloads

distributed across multiple remote workers. Naturally, this could have been sped up

by making High-Performance Computing (HPC) resources available. This, however,

is always a trade-off between resource requirements and potential research outcomes.

Having successfully demonstrated a proof-of-concept, the next step would certainly

be making use of HPC in order to speed up research progress. The problem of

computational intensity can also be viewed through the lens of implementation: it

might be worthwhile to test MDPmodels that do not scale with the number of vehicles,

as seen in [55]. Going a step further, Python is not the best programming language in

terms of speed, although its accessibility must not be neglected. Major data handling

operationswithin the code of FleetRLwere already optimized for computational speed,

but further improvements could be made by wrapping the code in C or C++, for

example via Cython [114]. Finally, modelling a realistic EV charging problem as an

MDPwas a challenging task. A learning from this project was therefore to alwaysweigh

RL against other approaches that might be sufficient to solve the problem at hand. In

this case, given the results and that the boundaries of linear optimization were reached

within this study, it was considered an effort worth undertaking.

Diving into the learning process of the RL agent, it was found that not all intricacies

of the problem were perfectly recognized and solved. On one hand, this was due

to the difficulty of the problem: the reward function was sparse, meaning that the

reward signals were rare but important. Multiple decisions lead up to the moment of

vehicle departure, where a penalty was either given or not. Additionally, intraday price

differences had to be recognized that were hours apart. Properly adjusting the policy

according to these signals was therefore inherently difficult, and partially explains the

high computational intensity. However, there are a few improvements to be made.

One potential improvement is the introduction of expert demonstrations, or imitation

learning, which was applied in the EV charging context by [115]. Previously compiled

”good” decisions were shown to the agent, acting as a guidance during the exploration

phase. This potentially avoids the scenario that a beneficial strategy is never discovered

due to chance. Another potential improvement could be testing different model-free

RL agents on the environment. In this study, SAC, TD3, DDPG, and PPO were tested;
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only PPO was found to develop an optimal strategy. New models continue to emerge,

and their architectures might be better suited for the problem, potentially bringing

improvements.

It also needs to be said that the use of model-free RL methods might pose a potential

limitation to certain applications. This is because model-free methods remain entirely

black-box - and are therefore not explainable. Model-free RL methods come with

flexibility and are able to discover new optima (c.f. DeepMind and AlphaGo [50]),

but can also introduce an unacceptable degree of uncertainty. Taking the example

of transmission system operators, simple, explainable models are often preferred for

forecasting, even though they could easily be outperformed by deep learning models.

This is because some applications are simply too sensitive to be steered by a black-box

algorithm. Potential remedies exist: [116] introduces a safety layer that is wrapped

around the actions of the model-free agent, ensuring that vehicles are always fully

charged upon departure. Finally, the transition from model-free to model-based RL-

methods could yield a degree of explainability thatmight be required in some contexts.

Promising methods thereby include approaches that learn the problem dynamics

through experience [117–120], or receive the physics representation prior to training

[121, 122].

Finally, several implementation aspects were identified as potential limitations and

could be improved upon in future work. The LP model was relatively simple, and did

notmaximize the potential of linear optimization. Although in this study it did not yield

practical results to optimize a reward function instead of fulfilling constraints, this

approach can be viable and should be further investigated. Further, Model-Predictive

Control (MPC) could make a linear optimization more realistic, as a rolling forecast

window is used to compute optimizations instead of a year of perfect knowledge. This

however introduces new challenges such as computational intensity and forecasting

accuracy. In the end, building the simple LP model provided useful insights into

applying linear optimization in tariff scenarios: the caretaker use-case could not be

solved feasibly, and the model had to be reworked before a solution could be found. In

realistic and dynamic environments, LPmodels can therefore fall short because of their

perfect knowledge requirement and the inability to deal with uncertainty or changing

circumstances.

As for the business case analysis, scaling up the results of the 1 EV agent to match the
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number of vehicles for the three use-cases poses a potential limitation. It is not certain

that the same economic performancewill be reachedwhendozens of cars are optimized

at the same time. This has therefore been identified as a point for future work.

Additionally, vehicle-to-grid, and other flexibility options could be integrated into

FleetRL, making it more applicable to a wider range of use-cases. Adding additional

appliances such as heat pumps and stationary battery storage systems would further

increase the agent’s potential to leverage flexibility and increase savings.

Overall, the results of this study confirm the literature claims that RL is a viable

solution in the domain of EV charging. This confirmation is given after testing RL on

three commercial use-cases, taking into account investments and third parties that are

required to make smart charging possible. FleetRL, the RL environment developed

in this study, thereby includes non-linear battery degradation, schedule generation,

spot market prices, PV and building load data, as well as numerous features to avoid

simplifications found in other openly-available EV charging environments [91–94].

To date, FleetRL is thus the most elaborate open-source RL environment framework

available. During development, a modular approach was taken, allowing for easy

customizability, addition of new use-cases, and improvement of the framework. Going

forward, FleetRL can hopefully be used by RL-researchers to benchmark RL agents for

EV charging, making it possible to not only assess a reward signal, but the economic

feasibility in the real world.
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Conclusion

This study applied Deep Reinforcement Learning to optimize EV charging for

commercial vehicle fleets and reported encouraging findings regarding real-world

applicability and economic feasibility. Two main research questions motivated the

study and its efforts:

1. What is the potential of RL-based EV charging in terms of cost savings and real-

world applicabilitywhen compared to themost commonEV charging strategies

(e.g. uncontrolled charging and optimization-based smart charging)?

2. How do the three investigated commercial use-cases differ regarding their cost

savings and potential to leverage RL-based charging optimization?

The research questions were tackled with a methodological approach to design

commercial use-cases and a corresponding Markov Decision Process model to solve

the problem with RL. The software framework that was developed, FleetRL, will be

published open-source together with this study. It currently is the most realistic open-

source RL environment for commercial vehicle fleets, with features such as non-linear

battery degradation and probabilistic vehicle schedule generation. The framework was

used to obtain the results of this study.

Compared to commonly used charging strategies, such as uncontrolled charging, night

charging, or distributed charging, RL performed remarkably well: savings of up to 85%

were achieved, and grid connection overloadingswere almost entirely avoided. A linear

optimization with one year of perfect knowledge served as an additional benchmark

to indicate what a best-case scenario could look like. While this arguably unfair
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comparison outperformedRL inmost disciplines, it revealed practical limitations of LP

in realistic problems with uncertainty and tight constraints that did not occur with RL

- a method that only used real-time information. With a time resolution of 15 minutes

and without perfect knowledge, RL effectively avoided grid overloadings and reduced

charging costs. Charging costs were thereby reduced by such an extent that it was

economically feasible to upgrade charging infrastructure and pay third party service

providers for the load management service. The economic analysis further revealed

that all three commercial use-cases achieved positive net-present values within 10

years. The first research question can therefore be answered with a strong affirmation:

When compared to the most common charging strategies, RL showed savings of up to

85%, and proved its real-time applicability in a complex, real-time environment.

Comparing the different use-cases, it was observed that use-cases with larger battery

sizes yielded larger savings. However, when investigating the energy-specific savings

in €/kWh, it was found that all three use-cases achieved essentially the same

specific savings. This indicates that the load profiles, schedules, or vehicle types

did not lead to an inherent difficulty to generate savings for one specific use-case.

Therefore, the second research question can be answered with a promising affirmation

that there is a potential for RL-based charging optimization for last-mile delivery,

utility, and caretaker use-cases alike. The considerably different electrification rates

likely originate from different technology adoption rates, regulatory incentives and

technological expertise: A utility company is at the forefront of developments of the

electricity network and therefore likely to be an early adopter. Similarly, a last-mile

delivery company has vehicles at the heart of its business model and is therefore

more sensitive to technological changes than a caretaker company. The answer to the

second research question is promising, because it implies that all three company types

can potentially engage in load balancing activities with their fleets and generate an

economically beneficial result compared to the status quo.

Besides the promising results, practical limitations of RL were discovered. First, the

training process was computationally expensive. It poses a potential bottleneck for

anyone looking to apply RL in complex environments and needs to be taken into

account in the resource planning stage. Second, model-free RL might introduce

unacceptable uncertainties to critical domainswhere explainability is required. Model-

based RL with an embedded physics representation is a potential solution to this

issue.
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Further, the methodological approach with its scope and assumptions leaves room for

future additions. Non-scaling MDP representations could be investigated to increase

computational efficiency for multiple vehicles. Additionally, vehicle-to grid was only

considered in the formof energy arbitrage. Balancing services could be implemented to

extend the possible revenue streams of the fleet. Adding additional flexible appliances

such as heat pumps or stationary battery storage systems could further increase the

flexibility and economic potential. Furthermore, load management solutions do not

only aim to save money, but also try to integrate as many EVs and renewable energy

sources into the grid as possible. This environmental impact could be investigated by

analysing the effect of the RL charging strategy on the distribution grid.

Given the milestones achieved in recent years, it is likely that Reinforcement Learning

will play an increasingly important role in the energy transition, as well as human

interactions with intelligent systems in general. It is therefore of paramount

importance that an understanding and a consensus are built regarding where these

systems can be safely deployed - and where they cannot. Wherever real-world

experiments are too costly or dangerous, realistic simulations gain importance.

This thesis and its emerging framework FleetRL aim to contribute to this research

domain by providing a platform to perform realistic studies on RL applications in EV

charging.
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Appendix A

FleetRL code structure

Environment class

The environment class forms the foundation of the framework, as it acts as the

communication interface between the EV charging problem and the RL agent. The

environment class of FleetRL is based on OpenAI’s gym.Env class - the industry

standard when it comes to implementing RL environments. When inheriting from

gym.Env, three main functions must be implemented: init, reset and step.

In the init function, initial values, databases, and settings are loaded that are required

when constructing a gym.Env instance. Most importantly, the init function defines

the problem’s observation and action space, which dictate whether the problem is

continuous or discrete, and how many variables it includes.

Figure A.0.1: Init function

The reset function resets the environment at the beginning of a new episode and

returns the initial observation, and a dictionary with additional information.
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APPENDIX A. FLEETRL CODE STRUCTURE

Figure A.0.2: Reset function

The step function requires the agent’s actions as input, computes them and returns

the new observation, the reward, two booleans and a dictionary with additional

information. The two booleans indicate, whether an episode is done due to reaching a

terminal state or a time limit, respectively.

Figure A.0.3: Step function
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Appendix B

5 EV Agent results
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Figure B.0.1: LMD charging strategy
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Figure B.0.2: CT charging strategy
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Figure B.0.3: UT charging strategy
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Figure B.0.4: Action distribution LMD
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Figure B.0.5: Action distribution CT
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Figure B.0.6: Action distribution UT
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Figure B.0.7: LMD - SOC violations for RL-based charging
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Figure B.0.8: CT - SOC violations for RL and dumb charging
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Figure B.0.9: Utility - SOC violations for RL-based charging

Jan Mar May Jul Sep Nov
Time

0.94

0.96

0.98

1.00

St
at

e 
of

 H
ea

lth

Arbitrage
RL
UC
LP

Jan Mar May Jul Sep Nov
Time

0.94

0.96

0.98

1.00

St
at

e 
of

 H
ea

lth

Tariff

Figure B.0.10: Last-mile delivery - SOH for RL, LP and dumb charging
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Figure B.0.11: Caretaker - SOH for RL, LP and dumb charging
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Figure B.0.12: Utility - SOH for RL, LP and dumb charging
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Figure B.0.13: LMD savings
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Figure B.0.14: CT savings
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Figure B.0.15: UT savings
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