
STALLINGS AUTOMATA AND APPLICATIONS
BGSMATH GRADUATE COURSE

Jordi Delgado & Enric Ventura (Universitat Politècnica de Catalunya)
with the collaboration of Pascal Weil (LABRI & Université Bordeaux I)

Centre de Recerca Matemàtica
January - February 2023

v1.0

TABLE OF CONTENTS

Free groups

Digraphs and automata

Stallings bijection

First applications

Cosets and index

Intersections

Quotients of automata

Asymptotic behavior

Enriched Stallings automata

Intersections in Fn × Zm

Multiple intersections in Fn × Zm

FREE GROUPS

UNIVERSAL PROPERTY

Definition
Let F be a group and A ⊆ F. Then,
F is free over A ⊆ F (or A is a free basis for F)⇔
∀ G group and ∀φ ∈ Map(A,G) ∃! φ̃ ∈ Hom(F,G) such that ιφ̃ = φ.

A G

F

←
↩→ι

←→φ

← →
∃!φ̃ morphism

Example
• (Z, +) is free over A = {1} (i.e., {1} is a free basis for (Z, +));
• (Z, +) is not free over A = {2} (i.e., {2} is not a free basis for
(Z, +));

• (Z/nZ,+) is not free (i.e., it has no free basis);
• (Z2,+) is not free (i.e., it has no free basis).

Question
Which groups are free? Does there exist a free group over any set A?

UNIVERSAL PROPERTY

Definition
Let F be a group and A ⊆ F. Then,
F is free over A ⊆ F (or A is a free basis for F)⇔
∀ G group and ∀φ ∈ Map(A,G) ∃! φ̃ ∈ Hom(F,G) such that ιφ̃ = φ.

A G

F

←
↩→ι

←→φ

← →
∃!φ̃ morphism

Example
• (Z, +) is free over A = {1} (i.e., {1} is a free basis for (Z, +));
• (Z, +) is not free over A = {2} (i.e., {2} is not a free basis for
(Z, +));

• (Z/nZ,+) is not free (i.e., it has no free basis);
• (Z2,+) is not free (i.e., it has no free basis).

Question
Which groups are free? Does there exist a free group over any set A?

UNIVERSAL PROPERTY

Definition
Let F be a group and A ⊆ F. Then,
F is free over A ⊆ F (or A is a free basis for F)⇔
∀ G group and ∀φ ∈ Map(A,G) ∃! φ̃ ∈ Hom(F,G) such that ιφ̃ = φ.

A G

F

←
↩→ι

←→φ

← →
∃!φ̃ morphism

Example
• (Z, +) is free over A = {1} (i.e., {1} is a free basis for (Z, +));

• (Z, +) is not free over A = {2} (i.e., {2} is not a free basis for
(Z, +));

• (Z/nZ,+) is not free (i.e., it has no free basis);
• (Z2,+) is not free (i.e., it has no free basis).

Question
Which groups are free? Does there exist a free group over any set A?

UNIVERSAL PROPERTY

Definition
Let F be a group and A ⊆ F. Then,
F is free over A ⊆ F (or A is a free basis for F)⇔
∀ G group and ∀φ ∈ Map(A,G) ∃! φ̃ ∈ Hom(F,G) such that ιφ̃ = φ.

A G

F

←
↩→ι

←→φ

← →
∃!φ̃ morphism

Example
• (Z, +) is free over A = {1} (i.e., {1} is a free basis for (Z, +));
• (Z, +) is not free over A = {2} (i.e., {2} is not a free basis for
(Z, +));

• (Z/nZ,+) is not free (i.e., it has no free basis);
• (Z2,+) is not free (i.e., it has no free basis).

Question
Which groups are free? Does there exist a free group over any set A?

UNIVERSAL PROPERTY

Definition
Let F be a group and A ⊆ F. Then,
F is free over A ⊆ F (or A is a free basis for F)⇔
∀ G group and ∀φ ∈ Map(A,G) ∃! φ̃ ∈ Hom(F,G) such that ιφ̃ = φ.

A G

F

←
↩→ι

←→φ

← →
∃!φ̃ morphism

Example
• (Z, +) is free over A = {1} (i.e., {1} is a free basis for (Z, +));
• (Z, +) is not free over A = {2} (i.e., {2} is not a free basis for
(Z, +));

• (Z/nZ,+) is not free (i.e., it has no free basis);

• (Z2,+) is not free (i.e., it has no free basis).

Question
Which groups are free? Does there exist a free group over any set A?

UNIVERSAL PROPERTY

Definition
Let F be a group and A ⊆ F. Then,
F is free over A ⊆ F (or A is a free basis for F)⇔
∀ G group and ∀φ ∈ Map(A,G) ∃! φ̃ ∈ Hom(F,G) such that ιφ̃ = φ.

A G

F

←
↩→ι

←→φ

← →
∃!φ̃ morphism

Example
• (Z, +) is free over A = {1} (i.e., {1} is a free basis for (Z, +));
• (Z, +) is not free over A = {2} (i.e., {2} is not a free basis for
(Z, +));

• (Z/nZ,+) is not free (i.e., it has no free basis);
• (Z2,+) is not free (i.e., it has no free basis).

Question
Which groups are free? Does there exist a free group over any set A?

UNIVERSAL PROPERTY

Definition
Let F be a group and A ⊆ F. Then,
F is free over A ⊆ F (or A is a free basis for F)⇔
∀ G group and ∀φ ∈ Map(A,G) ∃! φ̃ ∈ Hom(F,G) such that ιφ̃ = φ.

A G

F

←
↩→ι

←→φ

← →
∃!φ̃ morphism

Example
• (Z, +) is free over A = {1} (i.e., {1} is a free basis for (Z, +));
• (Z, +) is not free over A = {2} (i.e., {2} is not a free basis for
(Z, +));

• (Z/nZ,+) is not free (i.e., it has no free basis);
• (Z2,+) is not free (i.e., it has no free basis).

Question
Which groups are free?

Does there exist a free group over any set A?

UNIVERSAL PROPERTY

Definition
Let F be a group and A ⊆ F. Then,
F is free over A ⊆ F (or A is a free basis for F)⇔
∀ G group and ∀φ ∈ Map(A,G) ∃! φ̃ ∈ Hom(F,G) such that ιφ̃ = φ.

A G

F

←
↩→ι

←→φ

← →
∃!φ̃ morphism

Example
• (Z, +) is free over A = {1} (i.e., {1} is a free basis for (Z, +));
• (Z, +) is not free over A = {2} (i.e., {2} is not a free basis for
(Z, +));

• (Z/nZ,+) is not free (i.e., it has no free basis);
• (Z2,+) is not free (i.e., it has no free basis).

Question
Which groups are free? Does there exist a free group over any set A?

THE RANK OF A FREE GROUP

Proposition
Let FA be free over A and FB be free over B. Then,

FA ' FB ⇔ #A = #B

Definition
The rank of a free group FA is the cardinal of a (any) free basis of FA,
i.e., rk(FA) = #A. If #A = r we write Fr ' FA.

Remark
It is clear that F1 ' Z, but we still do not know whether free groups of
higher ranks

F2, F3, . . . , Fℵ0 , Fℵ1 , . . .

do exist. Let us construct them combinatorially . . .

THE RANK OF A FREE GROUP

Proposition
Let FA be free over A and FB be free over B. Then,

FA ' FB ⇔ #A = #B

Definition
The rank of a free group FA is the cardinal of a (any) free basis of FA,
i.e., rk(FA) = #A. If #A = r we write Fr ' FA.

Remark
It is clear that F1 ' Z, but we still do not know whether free groups of
higher ranks

F2, F3, . . . , Fℵ0 , Fℵ1 , . . .

do exist. Let us construct them combinatorially . . .

THE RANK OF A FREE GROUP

Proposition
Let FA be free over A and FB be free over B. Then,

FA ' FB ⇔ #A = #B

Definition
The rank of a free group FA is the cardinal of a (any) free basis of FA,
i.e., rk(FA) = #A. If #A = r we write Fr ' FA.

Remark
It is clear that F1 ' Z, but we still do not know whether free groups of
higher ranks

F2, F3, . . . , Fℵ0 , Fℵ1 , . . .

do exist. Let us construct them combinatorially . . .

THE RANK OF A FREE GROUP

Proposition
Let FA be free over A and FB be free over B. Then,

FA ' FB ⇔ #A = #B

Definition
The rank of a free group FA is the cardinal of a (any) free basis of FA,
i.e., rk(FA) = #A. If #A = r we write Fr ' FA.

Remark
It is clear that F1 ' Z, but we still do not know whether free groups of
higher ranks

F2, F3, . . . , Fℵ0 , Fℵ1 , . . .

do exist. Let us construct them combinatorially . . .

CONSTRUCTION OF FREE GROUPS (I)

Let A = {a1, . . . , ar} be a (possibly infinite) set called alphabet.
Then, Ã = {a1, . . . , ar, a−1

1 , . . . , a−1
r } is an involutive alphabet

(#Ã = 2#A). Convention: (a−1
i)−1 = ai.

A word on A is a finite sequence of letters from A, w = ai1ai2 · · · ain ,
n ⩾ 0. For n = 0 we have the empty word, denoted by 1.
The length of w is |w| = n. Note that |1| = 0 and |uv| = |u|+ |v|.

Observation
The set A∗ = {ai1ai2 · · · ain | n ⩾ 0} with the operation of concatena-
tion, u · v = uv, is a monoid. Any subset L ⊆ A∗ is called a language.

Definition
Elementary reductions/insertions: uaa−1v ∼ uv, for u, v ∈ Ã∗, a ∈ Ã.

Free equivalence: For u, v ∈ Ã∗, define u ∼∗ v⇔ ∃ a finite chain of
elementary reductions/insertions u = u1 ∼ u2 ∼ · · · ∼ un = v.

CONSTRUCTION OF FREE GROUPS (I)

Let A = {a1, . . . , ar} be a (possibly infinite) set called alphabet.
Then, Ã = {a1, . . . , ar, a−1

1 , . . . , a−1
r } is an involutive alphabet

(#Ã = 2#A). Convention: (a−1
i)−1 = ai.

A word on A is a finite sequence of letters from A, w = ai1ai2 · · · ain ,
n ⩾ 0. For n = 0 we have the empty word, denoted by 1.
The length of w is |w| = n. Note that |1| = 0 and |uv| = |u|+ |v|.

Observation
The set A∗ = {ai1ai2 · · · ain | n ⩾ 0} with the operation of concatena-
tion, u · v = uv, is a monoid. Any subset L ⊆ A∗ is called a language.

Definition
Elementary reductions/insertions: uaa−1v ∼ uv, for u, v ∈ Ã∗, a ∈ Ã.

Free equivalence: For u, v ∈ Ã∗, define u ∼∗ v⇔ ∃ a finite chain of
elementary reductions/insertions u = u1 ∼ u2 ∼ · · · ∼ un = v.

CONSTRUCTION OF FREE GROUPS (I)

Let A = {a1, . . . , ar} be a (possibly infinite) set called alphabet.
Then, Ã = {a1, . . . , ar, a−1

1 , . . . , a−1
r } is an involutive alphabet

(#Ã = 2#A). Convention: (a−1
i)−1 = ai.

A word on A is a finite sequence of letters from A, w = ai1ai2 · · · ain ,
n ⩾ 0. For n = 0 we have the empty word, denoted by 1.
The length of w is |w| = n. Note that |1| = 0 and |uv| = |u|+ |v|.

Observation
The set A∗ = {ai1ai2 · · · ain | n ⩾ 0} with the operation of concatena-
tion, u · v = uv, is a monoid. Any subset L ⊆ A∗ is called a language.

Definition
Elementary reductions/insertions: uaa−1v ∼ uv, for u, v ∈ Ã∗, a ∈ Ã.

Free equivalence: For u, v ∈ Ã∗, define u ∼∗ v⇔ ∃ a finite chain of
elementary reductions/insertions u = u1 ∼ u2 ∼ · · · ∼ un = v.

CONSTRUCTION OF FREE GROUPS (I)

Let A = {a1, . . . , ar} be a (possibly infinite) set called alphabet.
Then, Ã = {a1, . . . , ar, a−1

1 , . . . , a−1
r } is an involutive alphabet

(#Ã = 2#A). Convention: (a−1
i)−1 = ai.

A word on A is a finite sequence of letters from A, w = ai1ai2 · · · ain ,
n ⩾ 0. For n = 0 we have the empty word, denoted by 1.
The length of w is |w| = n. Note that |1| = 0 and |uv| = |u|+ |v|.

Observation
The set A∗ = {ai1ai2 · · · ain | n ⩾ 0} with the operation of concatena-
tion, u · v = uv, is a monoid. Any subset L ⊆ A∗ is called a language.

Definition
Elementary reductions/insertions: uaa−1v ∼ uv, for u, v ∈ Ã∗, a ∈ Ã.

Free equivalence: For u, v ∈ Ã∗, define u ∼∗ v⇔ ∃ a finite chain of
elementary reductions/insertions u = u1 ∼ u2 ∼ · · · ∼ un = v.

CONSTRUCTION OF FREE GROUPS (I)

Let A = {a1, . . . , ar} be a (possibly infinite) set called alphabet.
Then, Ã = {a1, . . . , ar, a−1

1 , . . . , a−1
r } is an involutive alphabet

(#Ã = 2#A). Convention: (a−1
i)−1 = ai.

A word on A is a finite sequence of letters from A, w = ai1ai2 · · · ain ,
n ⩾ 0. For n = 0 we have the empty word, denoted by 1.
The length of w is |w| = n. Note that |1| = 0 and |uv| = |u|+ |v|.

Observation
The set A∗ = {ai1ai2 · · · ain | n ⩾ 0} with the operation of concatena-
tion, u · v = uv, is a monoid. Any subset L ⊆ A∗ is called a language.

Definition
Elementary reductions/insertions: uaa−1v ∼ uv, for u, v ∈ Ã∗, a ∈ Ã.

Free equivalence: For u, v ∈ Ã∗, define u ∼∗ v⇔ ∃ a finite chain of
elementary reductions/insertions u = u1 ∼ u2 ∼ · · · ∼ un = v.

CONSTRUCTION OF FREE GROUPS (II)

Observation
The relation ∼∗ (or simply ∼) is an equivalence in Ã∗. We denote the
quotient by FA = Ã∗/ ∼ = {[u] | u ∈ Ã∗} and Ã∗ FA, u 7→ [u].

Proposition
FA is a group with the operation [u][v] = [uv]. The trivial element
is [1], and [aϵ1

i1 · · · a
ϵn
in]

−1 = [a−ϵn
in · · · a−ϵ1

i1].

Definition
A word w ∈ Ã∗ is reduced if it contains no consecutive letters inverse
of each other. We denote by R(A) ⊆ Ã∗ the set of reduced words.

Lemma
Every class [u] ∈ FA contains a unique reduced word, u ∈ R(A).

So, we can think FA as R(A) with the operation u · v = uv, u, v ∈ R(A).

CONSTRUCTION OF FREE GROUPS (II)

Observation
The relation ∼∗ (or simply ∼) is an equivalence in Ã∗. We denote the
quotient by FA = Ã∗/ ∼ = {[u] | u ∈ Ã∗} and Ã∗ FA, u 7→ [u].

Proposition
FA is a group with the operation [u][v] = [uv]. The trivial element
is [1], and [aϵ1

i1 · · · a
ϵn
in]

−1 = [a−ϵn
in · · · a−ϵ1

i1].

Definition
A word w ∈ Ã∗ is reduced if it contains no consecutive letters inverse
of each other. We denote by R(A) ⊆ Ã∗ the set of reduced words.

Lemma
Every class [u] ∈ FA contains a unique reduced word, u ∈ R(A).

So, we can think FA as R(A) with the operation u · v = uv, u, v ∈ R(A).

CONSTRUCTION OF FREE GROUPS (II)

Observation
The relation ∼∗ (or simply ∼) is an equivalence in Ã∗. We denote the
quotient by FA = Ã∗/ ∼ = {[u] | u ∈ Ã∗} and Ã∗ FA, u 7→ [u].

Proposition
FA is a group with the operation [u][v] = [uv]. The trivial element
is [1], and [aϵ1

i1 · · · a
ϵn
in]

−1 = [a−ϵn
in · · · a−ϵ1

i1].

Definition
A word w ∈ Ã∗ is reduced if it contains no consecutive letters inverse
of each other. We denote by R(A) ⊆ Ã∗ the set of reduced words.

Lemma
Every class [u] ∈ FA contains a unique reduced word, u ∈ R(A).

So, we can think FA as R(A) with the operation u · v = uv, u, v ∈ R(A).

CONSTRUCTION OF FREE GROUPS (II)

Observation
The relation ∼∗ (or simply ∼) is an equivalence in Ã∗. We denote the
quotient by FA = Ã∗/ ∼ = {[u] | u ∈ Ã∗} and Ã∗ FA, u 7→ [u].

Proposition
FA is a group with the operation [u][v] = [uv]. The trivial element
is [1], and [aϵ1

i1 · · · a
ϵn
in]

−1 = [a−ϵn
in · · · a−ϵ1

i1].

Definition
A word w ∈ Ã∗ is reduced if it contains no consecutive letters inverse
of each other. We denote by R(A) ⊆ Ã∗ the set of reduced words.

Lemma
Every class [u] ∈ FA contains a unique reduced word, u ∈ R(A).

So, we can think FA as R(A) with the operation u · v = uv, u, v ∈ R(A).

CONSTRUCTION OF FREE GROUPS (II)

Observation
The relation ∼∗ (or simply ∼) is an equivalence in Ã∗. We denote the
quotient by FA = Ã∗/ ∼ = {[u] | u ∈ Ã∗} and Ã∗ FA, u 7→ [u].

Proposition
FA is a group with the operation [u][v] = [uv]. The trivial element
is [1], and [aϵ1

i1 · · · a
ϵn
in]

−1 = [a−ϵn
in · · · a−ϵ1

i1].

Definition
A word w ∈ Ã∗ is reduced if it contains no consecutive letters inverse
of each other. We denote by R(A) ⊆ Ã∗ the set of reduced words.

Lemma
Every class [u] ∈ FA contains a unique reduced word, u ∈ R(A).

So, we can think FA as R(A) with the operation u · v = uv, u, v ∈ R(A).

CONSTRUCTION OF FREE GROUPS (AND III)

Corollary
The map A ↪→ FA, a 7→ [a] is injective.

Proposition
FA is free over A.

Theorem
Every group G is a quotient of a free group. In particular, every
finitely generated group G is a quotient of Fr for some r ∈ N.

Definition
Given S ⊆ G with 〈S〉 = G, let πS : F(S) G be the natural projection.
Then,

• S is a generating set of G ⇔ πS is surjective,
• S is a free family in G ⇔ πS is injective,
• S is a (free) basis of G ⇔ πS is bijective.

CONSTRUCTION OF FREE GROUPS (AND III)

Corollary
The map A ↪→ FA, a 7→ [a] is injective.

Proposition
FA is free over A.

Theorem
Every group G is a quotient of a free group. In particular, every
finitely generated group G is a quotient of Fr for some r ∈ N.

Definition
Given S ⊆ G with 〈S〉 = G, let πS : F(S) G be the natural projection.
Then,

• S is a generating set of G ⇔ πS is surjective,
• S is a free family in G ⇔ πS is injective,
• S is a (free) basis of G ⇔ πS is bijective.

CONSTRUCTION OF FREE GROUPS (AND III)

Corollary
The map A ↪→ FA, a 7→ [a] is injective.

Proposition
FA is free over A.

Theorem
Every group G is a quotient of a free group. In particular, every
finitely generated group G is a quotient of Fr for some r ∈ N.

Definition
Given S ⊆ G with 〈S〉 = G, let πS : F(S) G be the natural projection.
Then,

• S is a generating set of G ⇔ πS is surjective,
• S is a free family in G ⇔ πS is injective,
• S is a (free) basis of G ⇔ πS is bijective.

CONSTRUCTION OF FREE GROUPS (AND III)

Corollary
The map A ↪→ FA, a 7→ [a] is injective.

Proposition
FA is free over A.

Theorem
Every group G is a quotient of a free group. In particular, every
finitely generated group G is a quotient of Fr for some r ∈ N.

Definition
Given S ⊆ G with 〈S〉 = G, let πS : F(S) G be the natural projection.
Then,

• S is a generating set of G ⇔ πS is surjective,
• S is a free family in G ⇔ πS is injective,
• S is a (free) basis of G ⇔ πS is bijective.

CONSTRUCTION OF FREE GROUPS (AND III)

Corollary
The map A ↪→ FA, a 7→ [a] is injective.

Proposition
FA is free over A.

Theorem
Every group G is a quotient of a free group. In particular, every
finitely generated group G is a quotient of Fr for some r ∈ N.

Definition
Given S ⊆ G with 〈S〉 = G, let πS : F(S) G be the natural projection.
Then,

• S is a generating set of G ⇔ πS is surjective,

• S is a free family in G ⇔ πS is injective,
• S is a (free) basis of G ⇔ πS is bijective.

CONSTRUCTION OF FREE GROUPS (AND III)

Corollary
The map A ↪→ FA, a 7→ [a] is injective.

Proposition
FA is free over A.

Theorem
Every group G is a quotient of a free group. In particular, every
finitely generated group G is a quotient of Fr for some r ∈ N.

Definition
Given S ⊆ G with 〈S〉 = G, let πS : F(S) G be the natural projection.
Then,

• S is a generating set of G ⇔ πS is surjective,
• S is a free family in G ⇔ πS is injective,

• S is a (free) basis of G ⇔ πS is bijective.

CONSTRUCTION OF FREE GROUPS (AND III)

Corollary
The map A ↪→ FA, a 7→ [a] is injective.

Proposition
FA is free over A.

Theorem
Every group G is a quotient of a free group. In particular, every
finitely generated group G is a quotient of Fr for some r ∈ N.

Definition
Given S ⊆ G with 〈S〉 = G, let πS : F(S) G be the natural projection.
Then,

• S is a generating set of G ⇔ πS is surjective,
• S is a free family in G ⇔ πS is injective,
• S is a (free) basis of G ⇔ πS is bijective.

THE MEMBERSHIP PROBLEM

(Subgroup) Membership Problem, MP(FA)

Given u, v1, . . . , vn ∈ FA, decide whether u ∈ H = 〈v1, . . . , vn〉;
if yes, express u as a word in v1, . . . , vn.

Example
Consider FF2 = 〈a,b〉 and the subgroup H = 〈v1, v2, v3〉 ⩽ FF2,
where v1 = baba−1, v2 = aba−1, and v3 = aba2.
Is it true that a ∈ H?
is it true that u = b2aba−1b7a−2b−1a2 ∈ H?
If yes, express them as a (unique?) word on {v±1

1 , v±1
2 , v±1

3 }.

|v1|a = |baba−1|a = 0
|v2|a = |aba−1|a = 0
|v3|a = |aba2|a = 3

 ⇒ a 6∈ H.

But |u|a = |b2aba−1b7a−2b−1a2|a = 1− 1− 2+ 2 = 0; so, u ∈ H?

THE MEMBERSHIP PROBLEM

(Subgroup) Membership Problem, MP(FA)

Given u, v1, . . . , vn ∈ FA, decide whether u ∈ H = 〈v1, . . . , vn〉;
if yes, express u as a word in v1, . . . , vn.

Example
Consider FF2 = 〈a,b〉 and the subgroup H = 〈v1, v2, v3〉 ⩽ FF2,
where v1 = baba−1, v2 = aba−1, and v3 = aba2.
Is it true that a ∈ H?
is it true that u = b2aba−1b7a−2b−1a2 ∈ H?
If yes, express them as a (unique?) word on {v±1

1 , v±1
2 , v±1

3 }.

|v1|a = |baba−1|a = 0
|v2|a = |aba−1|a = 0
|v3|a = |aba2|a = 3

 ⇒ a 6∈ H.

But |u|a = |b2aba−1b7a−2b−1a2|a = 1− 1− 2+ 2 = 0; so, u ∈ H?

THE MEMBERSHIP PROBLEM

(Subgroup) Membership Problem, MP(FA)

Given u, v1, . . . , vn ∈ FA, decide whether u ∈ H = 〈v1, . . . , vn〉;
if yes, express u as a word in v1, . . . , vn.

Example
Consider FF2 = 〈a,b〉 and the subgroup H = 〈v1, v2, v3〉 ⩽ FF2,
where v1 = baba−1, v2 = aba−1, and v3 = aba2.
Is it true that a ∈ H?
is it true that u = b2aba−1b7a−2b−1a2 ∈ H?
If yes, express them as a (unique?) word on {v±1

1 , v±1
2 , v±1

3 }.

|v1|a = |baba−1|a = 0
|v2|a = |aba−1|a = 0
|v3|a = |aba2|a = 3

 ⇒ a 6∈ H.

But |u|a = |b2aba−1b7a−2b−1a2|a = 1− 1− 2+ 2 = 0; so, u ∈ H?

THE MEMBERSHIP PROBLEM

(Subgroup) Membership Problem, MP(FA)

Given u, v1, . . . , vn ∈ FA, decide whether u ∈ H = 〈v1, . . . , vn〉;
if yes, express u as a word in v1, . . . , vn.

Example
Consider FF2 = 〈a,b〉 and the subgroup H = 〈v1, v2, v3〉 ⩽ FF2,
where v1 = baba−1, v2 = aba−1, and v3 = aba2.
Is it true that a ∈ H?
is it true that u = b2aba−1b7a−2b−1a2 ∈ H?
If yes, express them as a (unique?) word on {v±1

1 , v±1
2 , v±1

3 }.

|v1|a = |baba−1|a = 0
|v2|a = |aba−1|a = 0
|v3|a = |aba2|a = 3

 ⇒ a 6∈ H.

But |u|a = |b2aba−1b7a−2b−1a2|a = 1− 1− 2+ 2 = 0; so, u ∈ H?

THE MEMBERSHIP PROBLEM

After some calculations . . .

v1v−1
2 v1(v1v−1

2)7v−1
3 v−1

2 v3 =

= baba−1(aba−1)−1baba−1((baba−1)(ab−1a−1)
)7
(aba2)−1(aba−1)−1aba2

= baba−1 · ab−1a−1 · baba−1 · b7 · a−2b−1a−1 · ab−1a−1 · aba2

= bbaba−1b7a−2b−1a2 = b2aba−1b7a−2b−1a2 = u .

So, YES, u ∈ H !!!

Question
Is this expression unique? How to find it/them systematically?

THE MEMBERSHIP PROBLEM

After some calculations . . .

v1v−1
2 v1(v1v−1

2)7v−1
3 v−1

2 v3 =

= baba−1(aba−1)−1baba−1((baba−1)(ab−1a−1)
)7
(aba2)−1(aba−1)−1aba2

= baba−1 · ab−1a−1 · baba−1 · b7 · a−2b−1a−1 · ab−1a−1 · aba2

= bbaba−1b7a−2b−1a2 = b2aba−1b7a−2b−1a2 = u .

So, YES, u ∈ H !!!

Question
Is this expression unique? How to find it/them systematically?

THE MEMBERSHIP PROBLEM

After some calculations . . .

v1v−1
2 v1(v1v−1

2)7v−1
3 v−1

2 v3 =

= baba−1(aba−1)−1baba−1((baba−1)(ab−1a−1)
)7
(aba2)−1(aba−1)−1aba2

= baba−1 · ab−1a−1 · baba−1 · b7 · a−2b−1a−1 · ab−1a−1 · aba2

= bbaba−1b7a−2b−1a2 = b2aba−1b7a−2b−1a2 = u .

So, YES, u ∈ H !!!

Question
Is this expression unique? How to find it/them systematically?

THE MEMBERSHIP PROBLEM

After some calculations . . .

v1v−1
2 v1(v1v−1

2)7v−1
3 v−1

2 v3 =

= baba−1(aba−1)−1baba−1((baba−1)(ab−1a−1)
)7
(aba2)−1(aba−1)−1aba2

= baba−1 · ab−1a−1 · baba−1 · b7 · a−2b−1a−1 · ab−1a−1 · aba2

= bbaba−1b7a−2b−1a2 = b2aba−1b7a−2b−1a2 = u .

So, YES, u ∈ H !!!

Question
Is this expression unique? How to find it/them systematically?

THE MEMBERSHIP PROBLEM

After some calculations . . .

v1v−1
2 v1(v1v−1

2)7v−1
3 v−1

2 v3 =

= baba−1(aba−1)−1baba−1((baba−1)(ab−1a−1)
)7
(aba2)−1(aba−1)−1aba2

= baba−1 · ab−1a−1 · baba−1 · b7 · a−2b−1a−1 · ab−1a−1 · aba2

= bbaba−1b7a−2b−1a2 = b2aba−1b7a−2b−1a2 = u .

So, YES, u ∈ H !!!

Question
Is this expression unique? How to find it/them systematically?

THE MEMBERSHIP PROBLEM

After some calculations . . .

v1v−1
2 v1(v1v−1

2)7v−1
3 v−1

2 v3 =

= baba−1(aba−1)−1baba−1((baba−1)(ab−1a−1)
)7
(aba2)−1(aba−1)−1aba2

= baba−1 · ab−1a−1 · baba−1 · b7 · a−2b−1a−1 · ab−1a−1 · aba2

= bbaba−1b7a−2b−1a2 = b2aba−1b7a−2b−1a2 = u .

So, YES, u ∈ H !!!

Question
Is this expression unique? How to find it/them systematically?

THE MEMBERSHIP PROBLEM

After some calculations . . .

v1v−1
2 v1(v1v−1

2)7v−1
3 v−1

2 v3 =

= baba−1(aba−1)−1baba−1((baba−1)(ab−1a−1)
)7
(aba2)−1(aba−1)−1aba2

= baba−1 · ab−1a−1 · baba−1 · b7 · a−2b−1a−1 · ab−1a−1 · aba2

= bbaba−1b7a−2b−1a2 = b2aba−1b7a−2b−1a2 = u .

So, YES, u ∈ H !!!

Question
Is this expression unique?

How to find it/them systematically?

THE MEMBERSHIP PROBLEM

After some calculations . . .

v1v−1
2 v1(v1v−1

2)7v−1
3 v−1

2 v3 =

= baba−1(aba−1)−1baba−1((baba−1)(ab−1a−1)
)7
(aba2)−1(aba−1)−1aba2

= baba−1 · ab−1a−1 · baba−1 · b7 · a−2b−1a−1 · ab−1a−1 · aba2

= bbaba−1b7a−2b−1a2 = b2aba−1b7a−2b−1a2 = u .

So, YES, u ∈ H !!!

Question
Is this expression unique? How to find it/them systematically?

THE INTERSECTION PROBLEM

Subgroup Intersection Problem, SIP(FA)

Given u1, . . . ,un; v1, . . . , vm ∈ FA, decide whether the intersection of
H = 〈u1, . . . ,un〉 and K = 〈v1, . . . , vm〉 is finitely generated; if yes,
compute generators for H ∩ K.

Example
Consider F2 = 〈a,b〉 and the subgroups

H = 〈u1,u2,u3〉 ⩽ F2, and K = 〈v1, v2, v3〉 ⩽ F2

u1 = b, v1 = ab,
u2 = a3, v2 = a3,

u3 = a−1bab−1a; v3 = a−1ba.

How to find generators (or just elements!) for H ∩ K?

Clearly, H 3 u2 = a3 = v2 ∈ K. What else?

THE INTERSECTION PROBLEM

Subgroup Intersection Problem, SIP(FA)

Given u1, . . . ,un; v1, . . . , vm ∈ FA, decide whether the intersection of
H = 〈u1, . . . ,un〉 and K = 〈v1, . . . , vm〉 is finitely generated; if yes,
compute generators for H ∩ K.

Example
Consider F2 = 〈a,b〉 and the subgroups

H = 〈u1,u2,u3〉 ⩽ F2, and K = 〈v1, v2, v3〉 ⩽ F2

u1 = b, v1 = ab,
u2 = a3, v2 = a3,

u3 = a−1bab−1a; v3 = a−1ba.

How to find generators (or just elements!) for H ∩ K?

Clearly, H 3 u2 = a3 = v2 ∈ K. What else?

THE INTERSECTION PROBLEM

Subgroup Intersection Problem, SIP(FA)

Given u1, . . . ,un; v1, . . . , vm ∈ FA, decide whether the intersection of
H = 〈u1, . . . ,un〉 and K = 〈v1, . . . , vm〉 is finitely generated; if yes,
compute generators for H ∩ K.

Example
Consider F2 = 〈a,b〉 and the subgroups

H = 〈u1,u2,u3〉 ⩽ F2, and K = 〈v1, v2, v3〉 ⩽ F2

u1 = b, v1 = ab,
u2 = a3, v2 = a3,

u3 = a−1bab−1a; v3 = a−1ba.

How to find generators (or just elements!) for H ∩ K?

Clearly, H 3 u2 = a3 = v2 ∈ K. What else?

THE INTERSECTION PROBLEM

H = 〈u1,u2,u3〉 ⩽ F2, K = 〈v1, v2, v3〉 ⩽ F2

u1 = b, v1 = ab,
u2 = a3, v2 = a3,

u3 = a−1bab−1a; v3 = a−1ba.

H 3 u2 = a3 = v2 ∈ K,
H 3 u−1

1 u2u1 = b−1a3b = v−1
1 v2v1 ∈ K,

H 3 u3
3 = a−1ba3b−1a = v3v2v−1

3 ∈ K,

Anything else?

Is H = 〈a3, b−1a3b, a−1ba3b−1a〉? Do we need more generators?

THE INTERSECTION PROBLEM

H = 〈u1,u2,u3〉 ⩽ F2, K = 〈v1, v2, v3〉 ⩽ F2

u1 = b, v1 = ab,
u2 = a3, v2 = a3,

u3 = a−1bab−1a; v3 = a−1ba.

H 3 u2 = a3 = v2 ∈ K,

H 3 u−1
1 u2u1 = b−1a3b = v−1

1 v2v1 ∈ K,
H 3 u3

3 = a−1ba3b−1a = v3v2v−1
3 ∈ K,

Anything else?

Is H = 〈a3, b−1a3b, a−1ba3b−1a〉? Do we need more generators?

THE INTERSECTION PROBLEM

H = 〈u1,u2,u3〉 ⩽ F2, K = 〈v1, v2, v3〉 ⩽ F2

u1 = b, v1 = ab,
u2 = a3, v2 = a3,

u3 = a−1bab−1a; v3 = a−1ba.

H 3 u2 = a3 = v2 ∈ K,
H 3 u−1

1 u2u1 = b−1a3b = v−1
1 v2v1 ∈ K,

H 3 u3
3 = a−1ba3b−1a = v3v2v−1

3 ∈ K,

Anything else?

Is H = 〈a3, b−1a3b, a−1ba3b−1a〉? Do we need more generators?

THE INTERSECTION PROBLEM

H = 〈u1,u2,u3〉 ⩽ F2, K = 〈v1, v2, v3〉 ⩽ F2

u1 = b, v1 = ab,
u2 = a3, v2 = a3,

u3 = a−1bab−1a; v3 = a−1ba.

H 3 u2 = a3 = v2 ∈ K,
H 3 u−1

1 u2u1 = b−1a3b = v−1
1 v2v1 ∈ K,

H 3 u3
3 = a−1ba3b−1a = v3v2v−1

3 ∈ K,

Anything else?

Is H = 〈a3, b−1a3b, a−1ba3b−1a〉? Do we need more generators?

THE INTERSECTION PROBLEM

H = 〈u1,u2,u3〉 ⩽ F2, K = 〈v1, v2, v3〉 ⩽ F2

u1 = b, v1 = ab,
u2 = a3, v2 = a3,

u3 = a−1bab−1a; v3 = a−1ba.

H 3 u2 = a3 = v2 ∈ K,
H 3 u−1

1 u2u1 = b−1a3b = v−1
1 v2v1 ∈ K,

H 3 u3
3 = a−1ba3b−1a = v3v2v−1

3 ∈ K,

Anything else?

Is H = 〈a3, b−1a3b, a−1ba3b−1a〉? Do we need more generators?

THE INTERSECTION PROBLEM

H = 〈u1,u2,u3〉 ⩽ F2, K = 〈v1, v2, v3〉 ⩽ F2

u1 = b, v1 = ab,
u2 = a3, v2 = a3,

u3 = a−1bab−1a; v3 = a−1ba.

H 3 u2 = a3 = v2 ∈ K,
H 3 u−1

1 u2u1 = b−1a3b = v−1
1 v2v1 ∈ K,

H 3 u3
3 = a−1ba3b−1a = v3v2v−1

3 ∈ K,

Anything else?

Is H = 〈a3, b−1a3b, a−1ba3b−1a〉?

Do we need more generators?

THE INTERSECTION PROBLEM

H = 〈u1,u2,u3〉 ⩽ F2, K = 〈v1, v2, v3〉 ⩽ F2

u1 = b, v1 = ab,
u2 = a3, v2 = a3,

u3 = a−1bab−1a; v3 = a−1ba.

H 3 u2 = a3 = v2 ∈ K,
H 3 u−1

1 u2u1 = b−1a3b = v−1
1 v2v1 ∈ K,

H 3 u3
3 = a−1ba3b−1a = v3v2v−1

3 ∈ K,

Anything else?

Is H = 〈a3, b−1a3b, a−1ba3b−1a〉? Do we need more generators?

DIGRAPHS AND AUTOMATA

GOAL AND SEMINAL EXAMPLE

Let A = {a1, . . . , an} and let Fn ' FA = 〈A | −〉

Goal
A bijection: { ‘nice’ drawings} ↔ {subgroups of FA } .

Example: Let H = 〈a−1bab−1︸ ︷︷ ︸
u1

, a3︸︷︷︸
u2

, abab−1︸ ︷︷ ︸
u3

〉 ⩽ F{a,b}.

Consider the petal automata associated to the given generators,

and
identify the basepoints to obtain the flower automaton Fl(u1,u2,u3)

:

u±1
1

u±1
2

u±1
3 b

a

Fact:
H is described by the (reduced) labels of walks in Fl(u1,u2,u3).

Flower automata are natural ‘drawings’ associated to every subgroup
of FA, are they ‘nice’?

GOAL AND SEMINAL EXAMPLE

Let A = {a1, . . . , an} and let Fn ' FA = 〈A | −〉

Goal
A bijection: { ‘nice’ drawings} ↔ {subgroups of FA } .

Example: Let H = 〈a−1bab−1︸ ︷︷ ︸
u1

, a3︸︷︷︸
u2

, abab−1︸ ︷︷ ︸
u3

〉 ⩽ F{a,b}.

Consider the petal automata associated to the given generators,

and
identify the basepoints to obtain the flower automaton Fl(u1,u2,u3)

:

u±1
1

u±1
2

u±1
3 b

a

Fact:
H is described by the (reduced) labels of walks in Fl(u1,u2,u3).

Flower automata are natural ‘drawings’ associated to every subgroup
of FA, are they ‘nice’?

GOAL AND SEMINAL EXAMPLE

Let A = {a1, . . . , an} and let Fn ' FA = 〈A | −〉

Goal
A bijection: { ‘nice’ drawings} ↔ {subgroups of FA } .

Example: Let H = 〈a−1bab−1︸ ︷︷ ︸
u1

, a3︸︷︷︸
u2

, abab−1︸ ︷︷ ︸
u3

〉 ⩽ F{a,b}.

Consider the petal automata associated to the given generators,

and
identify the basepoints to obtain the flower automaton Fl(u1,u2,u3)

:

u±1
1

u±1
2

u±1
3 b

a

Fact:
H is described by the (reduced) labels of walks in Fl(u1,u2,u3).

Flower automata are natural ‘drawings’ associated to every subgroup
of FA, are they ‘nice’?

GOAL AND SEMINAL EXAMPLE

Let A = {a1, . . . , an} and let Fn ' FA = 〈A | −〉

Goal
A bijection: { ‘nice’ drawings} ↔ {subgroups of FA } .

Example: Let H = 〈a−1bab−1︸ ︷︷ ︸
u1

, a3︸︷︷︸
u2

, abab−1︸ ︷︷ ︸
u3

〉 ⩽ F{a,b}.

Consider the petal automata associated to the given generators,

and
identify the basepoints to obtain the flower automaton Fl(u1,u2,u3)

:

u±1
1

u±1
2

u±1
3 b

a

Fact:
H is described by the (reduced) labels of walks in Fl(u1,u2,u3).

Flower automata are natural ‘drawings’ associated to every subgroup
of FA, are they ‘nice’?

GOAL AND SEMINAL EXAMPLE

Let A = {a1, . . . , an} and let Fn ' FA = 〈A | −〉

Goal
A bijection: { ‘nice’ drawings} ↔ {subgroups of FA } .

Example: Let H = 〈a−1bab−1︸ ︷︷ ︸
u1

, a3︸︷︷︸
u2

, abab−1︸ ︷︷ ︸
u3

〉 ⩽ F{a,b}.

Consider the petal automata associated to the given generators,

and
identify the basepoints to obtain the flower automaton Fl(u1,u2,u3)

:

u±1
1

u±1
2

u±1
3

b

a

Fact:
H is described by the (reduced) labels of walks in Fl(u1,u2,u3).

Flower automata are natural ‘drawings’ associated to every subgroup
of FA, are they ‘nice’?

GOAL AND SEMINAL EXAMPLE

Let A = {a1, . . . , an} and let Fn ' FA = 〈A | −〉

Goal
A bijection: { ‘nice’ drawings} ↔ {subgroups of FA } .

Example: Let H = 〈a−1bab−1︸ ︷︷ ︸
u1

, a3︸︷︷︸
u2

, abab−1︸ ︷︷ ︸
u3

〉 ⩽ F{a,b}.

Consider the petal automata associated to the given generators,

and
identify the basepoints to obtain the flower automaton Fl(u1,u2,u3)

:

u±1
1

u±1
2

u±1
3

b

a

Fact:
H is described by the (reduced) labels of walks in Fl(u1,u2,u3).

Flower automata are natural ‘drawings’ associated to every subgroup
of FA, are they ‘nice’?

GOAL AND SEMINAL EXAMPLE

Let A = {a1, . . . , an} and let Fn ' FA = 〈A | −〉

Goal
A bijection: { ‘nice’ drawings} ↔ {subgroups of FA } .

Example: Let H = 〈a−1bab−1︸ ︷︷ ︸
u1

, a3︸︷︷︸
u2

, abab−1︸ ︷︷ ︸
u3

〉 ⩽ F{a,b}.

Consider the petal automata associated to the given generators,

and
identify the basepoints to obtain the flower automaton Fl(u1,u2,u3)

:

u±1
1

u±1
2

u±1
3 b

a

Fact:
H is described by the (reduced) labels of walks in Fl(u1,u2,u3).

Flower automata are natural ‘drawings’ associated to every subgroup
of FA, are they ‘nice’?

GOAL AND SEMINAL EXAMPLE

Let A = {a1, . . . , an} and let Fn ' FA = 〈A | −〉

Goal
A bijection: { ‘nice’ drawings} ↔ {subgroups of FA } .

Example: Let H = 〈a−1bab−1︸ ︷︷ ︸
u1

, a3︸︷︷︸
u2

, abab−1︸ ︷︷ ︸
u3

〉 ⩽ F{a,b}.

Consider the petal automata associated to the given generators,

and
identify the basepoints to obtain the flower automaton Fl(u1,u2,u3)

:

u±1
1

u±1
2

u±1
3 b

a

Fact:
H is described by the (reduced) labels of walks in Fl(u1,u2,u3).

Flower automata are natural ‘drawings’ associated to every subgroup
of FA, are they ‘nice’?

GOAL AND SEMINAL EXAMPLE

Let A = {a1, . . . , an} and let Fn ' FA = 〈A | −〉

Goal
A bijection: { ‘nice’ drawings} ↔ {subgroups of FA } .

Example: Let H = 〈a−1bab−1︸ ︷︷ ︸
u1

, a3︸︷︷︸
u2

, abab−1︸ ︷︷ ︸
u3

〉 ⩽ F{a,b}.

Consider the petal automata associated to the given generators, and
identify the basepoints to obtain the flower automaton Fl(u1,u2,u3):

u±1
1

u±1
2

u±1
3 b

a

Fact:
H is described by the (reduced) labels of walks in Fl(u1,u2,u3).

Flower automata are natural ‘drawings’ associated to every subgroup
of FA, are they ‘nice’?

GOAL AND SEMINAL EXAMPLE

Let A = {a1, . . . , an} and let Fn ' FA = 〈A | −〉

Goal
A bijection: { ‘nice’ drawings} ↔ {subgroups of FA } .

Example: Let H = 〈a−1bab−1︸ ︷︷ ︸
u1

, a3︸︷︷︸
u2

, abab−1︸ ︷︷ ︸
u3

〉 ⩽ F{a,b}.

Consider the petal automata associated to the given generators, and
identify the basepoints to obtain the flower automaton Fl(u1,u2,u3):

u±1
1

u±1
2

u±1
3

b

a

Fact:
H is described by the (reduced) labels of walks in Fl(u1,u2,u3).

Flower automata are natural ‘drawings’ associated to every subgroup
of FA, are they ‘nice’?

GOAL AND SEMINAL EXAMPLE

Let A = {a1, . . . , an} and let Fn ' FA = 〈A | −〉

Goal
A bijection: { ‘nice’ drawings} ↔ {subgroups of FA } .

Example: Let H = 〈a−1bab−1︸ ︷︷ ︸
u1

, a3︸︷︷︸
u2

, abab−1︸ ︷︷ ︸
u3

〉 ⩽ F{a,b}.

Consider the petal automata associated to the given generators, and
identify the basepoints to obtain the flower automaton Fl(u1,u2,u3):

u±1
1

u±1
2

u±1
3

b

a

Fact:
H is described by the (reduced) labels of walks in Fl(u1,u2,u3).

Flower automata are natural ‘drawings’ associated to every subgroup
of FA,

are they ‘nice’?

GOAL AND SEMINAL EXAMPLE

Let A = {a1, . . . , an} and let Fn ' FA = 〈A | −〉

Goal
A bijection: { ‘nice’ drawings} ↔ {subgroups of FA } .

Example: Let H = 〈a−1bab−1︸ ︷︷ ︸
u1

, a3︸︷︷︸
u2

, abab−1︸ ︷︷ ︸
u3

〉 ⩽ F{a,b}.

Consider the petal automata associated to the given generators, and
identify the basepoints to obtain the flower automaton Fl(u1,u2,u3):

u±1
1

u±1
2

u±1
3

b

a

Fact:
H is described by the (reduced) labels of walks in Fl(u1,u2,u3).

Flower automata are natural ‘drawings’ associated to every subgroup
of FA, are they ‘nice’?

DIRECTED GRAPHS AND WALKS

A directed graph (digraph) is a tuple ∆ = (V, E, ι, τ), where:
• V and E are disjoint sets (of vertices and arcs, respectively)
• ι, τ : E→ V are maps (sending each arc to its origin and end)

We write V = V∆ and E = E∆.

Remark: Loops and parallel arcs are allowed.

A walk in a digraph ∆ is a finite sequence γ = p0e1p1 · · · elpl where
pi ∈ V∆, ei ∈ E∆, ιei = pi−1 and τei = pi for i = 1, . . . , l.

Then,
• p0 = ι(γ) and pl = τ(γ) are the origin and end of γ, respectively

• γ is a walk from p0 to pl (γ ≡ p0 pl)
• p0 pl ⇔ ∃γ ≡ p0 pl
• γ is closed if p0 = pl (γ is a p0-walk)
• The length of γ is the number of arcs in γ (|γ| = l)

We denote by W∆ the set of walks in ∆.

DIRECTED GRAPHS AND WALKS

A directed graph (digraph) is a tuple ∆ = (V, E, ι, τ), where:
• V and E are disjoint sets (of vertices and arcs, respectively)
• ι, τ : E→ V are maps (sending each arc to its origin and end)

We write V = V∆ and E = E∆.

Remark: Loops and parallel arcs are allowed.

A walk in a digraph ∆ is a finite sequence γ = p0e1p1 · · · elpl where
pi ∈ V∆, ei ∈ E∆, ιei = pi−1 and τei = pi for i = 1, . . . , l.

Then,
• p0 = ι(γ) and pl = τ(γ) are the origin and end of γ, respectively

• γ is a walk from p0 to pl (γ ≡ p0 pl)
• p0 pl ⇔ ∃γ ≡ p0 pl
• γ is closed if p0 = pl (γ is a p0-walk)
• The length of γ is the number of arcs in γ (|γ| = l)

We denote by W∆ the set of walks in ∆.

DIRECTED GRAPHS AND WALKS

A directed graph (digraph) is a tuple ∆ = (V, E, ι, τ), where:
• V and E are disjoint sets (of vertices and arcs, respectively)
• ι, τ : E→ V are maps (sending each arc to its origin and end)

We write V = V∆ and E = E∆.

Remark: Loops and parallel arcs are allowed.

A walk in a digraph ∆ is a finite sequence γ = p0e1p1 · · · elpl where
pi ∈ V∆, ei ∈ E∆, ιei = pi−1 and τei = pi for i = 1, . . . , l.

Then,
• p0 = ι(γ) and pl = τ(γ) are the origin and end of γ, respectively

• γ is a walk from p0 to pl (γ ≡ p0 pl)
• p0 pl ⇔ ∃γ ≡ p0 pl
• γ is closed if p0 = pl (γ is a p0-walk)
• The length of γ is the number of arcs in γ (|γ| = l)

We denote by W∆ the set of walks in ∆.

DIRECTED GRAPHS AND WALKS

A directed graph (digraph) is a tuple ∆ = (V, E, ι, τ), where:
• V and E are disjoint sets (of vertices and arcs, respectively)
• ι, τ : E→ V are maps (sending each arc to its origin and end)

We write V = V∆ and E = E∆.

Remark: Loops and parallel arcs are allowed.

A walk in a digraph ∆ is a finite sequence γ = p0e1p1 · · · elpl where
pi ∈ V∆, ei ∈ E∆, ιei = pi−1 and τei = pi for i = 1, . . . , l.

Then,
• p0 = ι(γ) and pl = τ(γ) are the origin and end of γ, respectively

• γ is a walk from p0 to pl (γ ≡ p0 pl)
• p0 pl ⇔ ∃γ ≡ p0 pl
• γ is closed if p0 = pl (γ is a p0-walk)
• The length of γ is the number of arcs in γ (|γ| = l)

We denote by W∆ the set of walks in ∆.

DIRECTED GRAPHS AND WALKS

A directed graph (digraph) is a tuple ∆ = (V, E, ι, τ), where:
• V and E are disjoint sets (of vertices and arcs, respectively)
• ι, τ : E→ V are maps (sending each arc to its origin and end)

We write V = V∆ and E = E∆.

Remark: Loops and parallel arcs are allowed.

A walk in a digraph ∆ is a finite sequence γ = p0e1p1 · · · elpl where
pi ∈ V∆, ei ∈ E∆, ιei = pi−1 and τei = pi for i = 1, . . . , l.

Then,
• p0 = ι(γ) and pl = τ(γ) are the origin and end of γ, respectively

• γ is a walk from p0 to pl (γ ≡ p0 pl)
• p0 pl ⇔ ∃γ ≡ p0 pl
• γ is closed if p0 = pl (γ is a p0-walk)
• The length of γ is the number of arcs in γ (|γ| = l)

We denote by W∆ the set of walks in ∆.

DIRECTED GRAPHS AND WALKS

A directed graph (digraph) is a tuple ∆ = (V, E, ι, τ), where:
• V and E are disjoint sets (of vertices and arcs, respectively)
• ι, τ : E→ V are maps (sending each arc to its origin and end)

We write V = V∆ and E = E∆.

Remark: Loops and parallel arcs are allowed.

A walk in a digraph ∆ is a finite sequence γ = p0e1p1 · · · elpl where
pi ∈ V∆, ei ∈ E∆, ιei = pi−1 and τei = pi for i = 1, . . . , l.

Then,
• p0 = ι(γ) and pl = τ(γ) are the origin and end of γ, respectively

• γ is a walk from p0 to pl (γ ≡ p0 pl)
• p0 pl ⇔ ∃γ ≡ p0 pl
• γ is closed if p0 = pl (γ is a p0-walk)
• The length of γ is the number of arcs in γ (|γ| = l)

We denote by W∆ the set of walks in ∆.

DIRECTED GRAPHS AND WALKS

A directed graph (digraph) is a tuple ∆ = (V, E, ι, τ), where:
• V and E are disjoint sets (of vertices and arcs, respectively)
• ι, τ : E→ V are maps (sending each arc to its origin and end)

We write V = V∆ and E = E∆.

Remark: Loops and parallel arcs are allowed.

A walk in a digraph ∆ is a finite sequence γ = p0e1p1 · · · elpl where
pi ∈ V∆, ei ∈ E∆, ιei = pi−1 and τei = pi for i = 1, . . . , l.

Then,
• p0 = ι(γ) and pl = τ(γ) are the origin and end of γ, respectively
• γ is a walk from p0 to pl (γ ≡ p0 pl)

• p0 pl ⇔ ∃γ ≡ p0 pl
• γ is closed if p0 = pl (γ is a p0-walk)
• The length of γ is the number of arcs in γ (|γ| = l)

We denote by W∆ the set of walks in ∆.

DIRECTED GRAPHS AND WALKS

A directed graph (digraph) is a tuple ∆ = (V, E, ι, τ), where:
• V and E are disjoint sets (of vertices and arcs, respectively)
• ι, τ : E→ V are maps (sending each arc to its origin and end)

We write V = V∆ and E = E∆.

Remark: Loops and parallel arcs are allowed.

A walk in a digraph ∆ is a finite sequence γ = p0e1p1 · · · elpl where
pi ∈ V∆, ei ∈ E∆, ιei = pi−1 and τei = pi for i = 1, . . . , l.

Then,
• p0 = ι(γ) and pl = τ(γ) are the origin and end of γ, respectively
• γ is a walk from p0 to pl (γ ≡ p0 pl)
• p0 pl ⇔ ∃γ ≡ p0 pl

• γ is closed if p0 = pl (γ is a p0-walk)
• The length of γ is the number of arcs in γ (|γ| = l)

We denote by W∆ the set of walks in ∆.

DIRECTED GRAPHS AND WALKS

A directed graph (digraph) is a tuple ∆ = (V, E, ι, τ), where:
• V and E are disjoint sets (of vertices and arcs, respectively)
• ι, τ : E→ V are maps (sending each arc to its origin and end)

We write V = V∆ and E = E∆.

Remark: Loops and parallel arcs are allowed.

A walk in a digraph ∆ is a finite sequence γ = p0e1p1 · · · elpl where
pi ∈ V∆, ei ∈ E∆, ιei = pi−1 and τei = pi for i = 1, . . . , l.

Then,
• p0 = ι(γ) and pl = τ(γ) are the origin and end of γ, respectively
• γ is a walk from p0 to pl (γ ≡ p0 pl)
• p0 pl ⇔ ∃γ ≡ p0 pl
• γ is closed if p0 = pl (γ is a p0-walk)

• The length of γ is the number of arcs in γ (|γ| = l)

We denote by W∆ the set of walks in ∆.

DIRECTED GRAPHS AND WALKS

A directed graph (digraph) is a tuple ∆ = (V, E, ι, τ), where:
• V and E are disjoint sets (of vertices and arcs, respectively)
• ι, τ : E→ V are maps (sending each arc to its origin and end)

We write V = V∆ and E = E∆.

Remark: Loops and parallel arcs are allowed.

A walk in a digraph ∆ is a finite sequence γ = p0e1p1 · · · elpl where
pi ∈ V∆, ei ∈ E∆, ιei = pi−1 and τei = pi for i = 1, . . . , l.

Then,
• p0 = ι(γ) and pl = τ(γ) are the origin and end of γ, respectively
• γ is a walk from p0 to pl (γ ≡ p0 pl)
• p0 pl ⇔ ∃γ ≡ p0 pl
• γ is closed if p0 = pl (γ is a p0-walk)
• The length of γ is the number of arcs in γ (|γ| = l)

We denote by W∆ the set of walks in ∆.

DIRECTED GRAPHS AND WALKS

A directed graph (digraph) is a tuple ∆ = (V, E, ι, τ), where:
• V and E are disjoint sets (of vertices and arcs, respectively)
• ι, τ : E→ V are maps (sending each arc to its origin and end)

We write V = V∆ and E = E∆.

Remark: Loops and parallel arcs are allowed.

A walk in a digraph ∆ is a finite sequence γ = p0e1p1 · · · elpl where
pi ∈ V∆, ei ∈ E∆, ιei = pi−1 and τei = pi for i = 1, . . . , l.

Then,
• p0 = ι(γ) and pl = τ(γ) are the origin and end of γ, respectively
• γ is a walk from p0 to pl (γ ≡ p0 pl)
• p0 pl ⇔ ∃γ ≡ p0 pl
• γ is closed if p0 = pl (γ is a p0-walk)
• The length of γ is the number of arcs in γ (|γ| = l)

We denote by W∆ the set of walks in ∆.

LABELLED DIGRAPHS AND LANGUAGES

Definition
Let A be an alphabet. An A-digraph is a pair Γ = (∆, ℓ), where ∆ is a
digraph, and ℓ : E∆→ A is the labelling of Γ .

If e ≡ p q and ℓ(e) = a, we write p a q. (e is an a-arc).

We extend ℓ to ℓ∗ : WΓ → A∗ in the natural way. (we write ℓ∗ = ℓ)

If ∃γ ≡ p q such that ℓ∗(γ) = w, we write p w q.

Definition
Let Γ be an A-digraph and let P,Q ∈ VΓ . Then,

LP,Q(Γ) =
{
w ∈ A∗ : ∃p ∈ P, ∃q ∈ Q, p w q

}
is the language from P to Q (in Γ).

If p,q ∈ VΓ , then L{p},{q}(Γ) = Lp,q(Γ) and L{p},{p}(Γ) = Lp(Γ).

LABELLED DIGRAPHS AND LANGUAGES

Definition
Let A be an alphabet. An A-digraph is a pair Γ = (∆, ℓ), where ∆ is a
digraph, and ℓ : E∆→ A is the labelling of Γ .

If e ≡ p q and ℓ(e) = a, we write p a q. (e is an a-arc).

We extend ℓ to ℓ∗ : WΓ → A∗ in the natural way. (we write ℓ∗ = ℓ)

If ∃γ ≡ p q such that ℓ∗(γ) = w, we write p w q.

Definition
Let Γ be an A-digraph and let P,Q ∈ VΓ . Then,

LP,Q(Γ) =
{
w ∈ A∗ : ∃p ∈ P, ∃q ∈ Q, p w q

}
is the language from P to Q (in Γ).

If p,q ∈ VΓ , then L{p},{q}(Γ) = Lp,q(Γ) and L{p},{p}(Γ) = Lp(Γ).

LABELLED DIGRAPHS AND LANGUAGES

Definition
Let A be an alphabet. An A-digraph is a pair Γ = (∆, ℓ), where ∆ is a
digraph, and ℓ : E∆→ A is the labelling of Γ .

If e ≡ p q and ℓ(e) = a, we write p a q. (e is an a-arc).

We extend ℓ to ℓ∗ : WΓ → A∗ in the natural way. (we write ℓ∗ = ℓ)

If ∃γ ≡ p q such that ℓ∗(γ) = w, we write p w q.

Definition
Let Γ be an A-digraph and let P,Q ∈ VΓ . Then,

LP,Q(Γ) =
{
w ∈ A∗ : ∃p ∈ P, ∃q ∈ Q, p w q

}
is the language from P to Q (in Γ).

If p,q ∈ VΓ , then L{p},{q}(Γ) = Lp,q(Γ) and L{p},{p}(Γ) = Lp(Γ).

LABELLED DIGRAPHS AND LANGUAGES

Definition
Let A be an alphabet. An A-digraph is a pair Γ = (∆, ℓ), where ∆ is a
digraph, and ℓ : E∆→ A is the labelling of Γ .

If e ≡ p q and ℓ(e) = a, we write p a q. (e is an a-arc).

We extend ℓ to ℓ∗ : WΓ → A∗ in the natural way. (we write ℓ∗ = ℓ)

If ∃γ ≡ p q such that ℓ∗(γ) = w, we write p w q.

Definition
Let Γ be an A-digraph and let P,Q ∈ VΓ . Then,

LP,Q(Γ) =
{
w ∈ A∗ : ∃p ∈ P, ∃q ∈ Q, p w q

}
is the language from P to Q (in Γ).

If p,q ∈ VΓ , then L{p},{q}(Γ) = Lp,q(Γ) and L{p},{p}(Γ) = Lp(Γ).

LABELLED DIGRAPHS AND LANGUAGES

Definition
Let A be an alphabet. An A-digraph is a pair Γ = (∆, ℓ), where ∆ is a
digraph, and ℓ : E∆→ A is the labelling of Γ .

If e ≡ p q and ℓ(e) = a, we write p a q. (e is an a-arc).

We extend ℓ to ℓ∗ : WΓ → A∗ in the natural way. (we write ℓ∗ = ℓ)

If ∃γ ≡ p q such that ℓ∗(γ) = w, we write p w q.

Definition
Let Γ be an A-digraph and let P,Q ∈ VΓ . Then,

LP,Q(Γ) =
{
w ∈ A∗ : ∃p ∈ P, ∃q ∈ Q, p w q

}
is the language from P to Q (in Γ).

If p,q ∈ VΓ , then L{p},{q}(Γ) = Lp,q(Γ) and L{p},{p}(Γ) = Lp(Γ).

LABELLED DIGRAPHS AND LANGUAGES

Definition
Let A be an alphabet. An A-digraph is a pair Γ = (∆, ℓ), where ∆ is a
digraph, and ℓ : E∆→ A is the labelling of Γ .

If e ≡ p q and ℓ(e) = a, we write p a q. (e is an a-arc).

We extend ℓ to ℓ∗ : WΓ → A∗ in the natural way. (we write ℓ∗ = ℓ)

If ∃γ ≡ p q such that ℓ∗(γ) = w, we write p w q.

Definition
Let Γ be an A-digraph and let P,Q ∈ VΓ . Then,

LP,Q(Γ) =
{
w ∈ A∗ : ∃p ∈ P, ∃q ∈ Q, p w q

}
is the language from P to Q (in Γ).

If p,q ∈ VΓ , then L{p},{q}(Γ) = Lp,q(Γ) and L{p},{p}(Γ) = Lp(Γ).

LABELLED DIGRAPHS AND LANGUAGES

Definition
Let A be an alphabet. An A-digraph is a pair Γ = (∆, ℓ), where ∆ is a
digraph, and ℓ : E∆→ A is the labelling of Γ .

If e ≡ p q and ℓ(e) = a, we write p a q. (e is an a-arc).

We extend ℓ to ℓ∗ : WΓ → A∗ in the natural way. (we write ℓ∗ = ℓ)

If ∃γ ≡ p q such that ℓ∗(γ) = w, we write p w q.

Definition
Let Γ be an A-digraph and let P,Q ∈ VΓ . Then,

LP,Q(Γ) =
{
w ∈ A∗ : ∃p ∈ P, ∃q ∈ Q, p w q

}
is the language from P to Q (in Γ).

If p,q ∈ VΓ , then L{p},{q}(Γ) = Lp,q(Γ) and L{p},{p}(Γ) = Lp(Γ).

AUTOMATA

Definition
Let A be an alphabet. An A-automaton is an A-digraph with two
distinguished sets of vertices; formally, a triple Γ = (∆,P,Q) where ∆

is an A-digraph, and P,Q ⊆ V∆.

In this context:

• vertices are called the states of Γ .
• arcs are called the transitions of Γ .
• P is the set of initial states of Γ .
• Q is the set of terminal (or accepting) states of Γ .

Since P and Q are assumed, we write L(Γ) = LP,Q(Γ).

Definition
An automaton Γ = (∆,P,Q) is pointed if it has a unique common
initial and terminal state (i.e., if P = Q = { }).

AUTOMATA

Definition
Let A be an alphabet. An A-automaton is an A-digraph with two
distinguished sets of vertices; formally, a triple Γ = (∆,P,Q) where ∆

is an A-digraph, and P,Q ⊆ V∆.

In this context:

• vertices are called the states of Γ .
• arcs are called the transitions of Γ .
• P is the set of initial states of Γ .
• Q is the set of terminal (or accepting) states of Γ .

Since P and Q are assumed, we write L(Γ) = LP,Q(Γ).

Definition
An automaton Γ = (∆,P,Q) is pointed if it has a unique common
initial and terminal state (i.e., if P = Q = { }).

AUTOMATA

Definition
Let A be an alphabet. An A-automaton is an A-digraph with two
distinguished sets of vertices; formally, a triple Γ = (∆,P,Q) where ∆

is an A-digraph, and P,Q ⊆ V∆.

In this context:
• vertices are called the states of Γ .

• arcs are called the transitions of Γ .
• P is the set of initial states of Γ .
• Q is the set of terminal (or accepting) states of Γ .

Since P and Q are assumed, we write L(Γ) = LP,Q(Γ).

Definition
An automaton Γ = (∆,P,Q) is pointed if it has a unique common
initial and terminal state (i.e., if P = Q = { }).

AUTOMATA

Definition
Let A be an alphabet. An A-automaton is an A-digraph with two
distinguished sets of vertices; formally, a triple Γ = (∆,P,Q) where ∆

is an A-digraph, and P,Q ⊆ V∆.

In this context:
• vertices are called the states of Γ .
• arcs are called the transitions of Γ .

• P is the set of initial states of Γ .
• Q is the set of terminal (or accepting) states of Γ .

Since P and Q are assumed, we write L(Γ) = LP,Q(Γ).

Definition
An automaton Γ = (∆,P,Q) is pointed if it has a unique common
initial and terminal state (i.e., if P = Q = { }).

AUTOMATA

Definition
Let A be an alphabet. An A-automaton is an A-digraph with two
distinguished sets of vertices; formally, a triple Γ = (∆,P,Q) where ∆

is an A-digraph, and P,Q ⊆ V∆.

In this context:
• vertices are called the states of Γ .
• arcs are called the transitions of Γ .
• P is the set of initial states of Γ .

• Q is the set of terminal (or accepting) states of Γ .

Since P and Q are assumed, we write L(Γ) = LP,Q(Γ).

Definition
An automaton Γ = (∆,P,Q) is pointed if it has a unique common
initial and terminal state (i.e., if P = Q = { }).

AUTOMATA

Definition
Let A be an alphabet. An A-automaton is an A-digraph with two
distinguished sets of vertices; formally, a triple Γ = (∆,P,Q) where ∆

is an A-digraph, and P,Q ⊆ V∆.

In this context:
• vertices are called the states of Γ .
• arcs are called the transitions of Γ .
• P is the set of initial states of Γ .
• Q is the set of terminal (or accepting) states of Γ .

Since P and Q are assumed, we write L(Γ) = LP,Q(Γ).

Definition
An automaton Γ = (∆,P,Q) is pointed if it has a unique common
initial and terminal state (i.e., if P = Q = { }).

AUTOMATA

Definition
Let A be an alphabet. An A-automaton is an A-digraph with two
distinguished sets of vertices; formally, a triple Γ = (∆,P,Q) where ∆

is an A-digraph, and P,Q ⊆ V∆.

In this context:
• vertices are called the states of Γ .
• arcs are called the transitions of Γ .
• P is the set of initial states of Γ .
• Q is the set of terminal (or accepting) states of Γ .

Since P and Q are assumed, we write L(Γ) = LP,Q(Γ).

Definition
An automaton Γ = (∆,P,Q) is pointed if it has a unique common
initial and terminal state (i.e., if P = Q = { }).

AUTOMATA

Definition
Let A be an alphabet. An A-automaton is an A-digraph with two
distinguished sets of vertices; formally, a triple Γ = (∆,P,Q) where ∆

is an A-digraph, and P,Q ⊆ V∆.

In this context:
• vertices are called the states of Γ .
• arcs are called the transitions of Γ .
• P is the set of initial states of Γ .
• Q is the set of terminal (or accepting) states of Γ .

Since P and Q are assumed, we write L(Γ) = LP,Q(Γ).

Definition
An automaton Γ = (∆,P,Q) is pointed if it has a unique common
initial and terminal state (i.e., if P = Q = { }).

INVOLUTIVE AUTOMATA

Definition
An A-involutive automaton is an A±-automaton with a labelled
involution on its arcs; i.e., to every arc e ≡ p a q we associate a
unique arc e−1 ≡ p a-1 q (the inverse of e) such that e ′ 6= e and
(e−1)−1 = e.

That is, labelled arcs appear by (mutually inverse) pairs.
a

a−1

E+(Γ) = {e ∈ EΓ : ℓ(e) ∈ A} is the set of positive arcs of Γ .
E−(Γ) = {e ∈ EΓ : ℓ(e) ∈ A−1} is the set of negative arcs of Γ .

The positive part of an involutive automaton Γ is the automaton Γ+

obtained after removing all the negative arcs from Γ .

Convention: we represent involutive automata Γ through Γ+

(an arc p a q reads the inverse label a−1 when crossed backwards).

From now on, automata = pointed involutive automata.

INVOLUTIVE AUTOMATA

Definition
An A-involutive automaton is an A±-automaton with a labelled
involution on its arcs; i.e., to every arc e ≡ p a q we associate a
unique arc e−1 ≡ p a-1 q (the inverse of e) such that e ′ 6= e and
(e−1)−1 = e.

That is, labelled arcs appear by (mutually inverse) pairs.
a

a−1

E+(Γ) = {e ∈ EΓ : ℓ(e) ∈ A} is the set of positive arcs of Γ .
E−(Γ) = {e ∈ EΓ : ℓ(e) ∈ A−1} is the set of negative arcs of Γ .

The positive part of an involutive automaton Γ is the automaton Γ+

obtained after removing all the negative arcs from Γ .

Convention: we represent involutive automata Γ through Γ+

(an arc p a q reads the inverse label a−1 when crossed backwards).

From now on, automata = pointed involutive automata.

INVOLUTIVE AUTOMATA

Definition
An A-involutive automaton is an A±-automaton with a labelled
involution on its arcs; i.e., to every arc e ≡ p a q we associate a
unique arc e−1 ≡ p a-1 q (the inverse of e) such that e ′ 6= e and
(e−1)−1 = e.

That is, labelled arcs appear by (mutually inverse) pairs.
a

a−1

E+(Γ) = {e ∈ EΓ : ℓ(e) ∈ A} is the set of positive arcs of Γ .
E−(Γ) = {e ∈ EΓ : ℓ(e) ∈ A−1} is the set of negative arcs of Γ .

The positive part of an involutive automaton Γ is the automaton Γ+

obtained after removing all the negative arcs from Γ .

Convention: we represent involutive automata Γ through Γ+

(an arc p a q reads the inverse label a−1 when crossed backwards).

From now on, automata = pointed involutive automata.

INVOLUTIVE AUTOMATA

Definition
An A-involutive automaton is an A±-automaton with a labelled
involution on its arcs; i.e., to every arc e ≡ p a q we associate a
unique arc e−1 ≡ p a-1 q (the inverse of e) such that e ′ 6= e and
(e−1)−1 = e.

That is, labelled arcs appear by (mutually inverse) pairs.
a

a−1

E+(Γ) = {e ∈ EΓ : ℓ(e) ∈ A} is the set of positive arcs of Γ .

E−(Γ) = {e ∈ EΓ : ℓ(e) ∈ A−1} is the set of negative arcs of Γ .

The positive part of an involutive automaton Γ is the automaton Γ+

obtained after removing all the negative arcs from Γ .

Convention: we represent involutive automata Γ through Γ+

(an arc p a q reads the inverse label a−1 when crossed backwards).

From now on, automata = pointed involutive automata.

INVOLUTIVE AUTOMATA

Definition
An A-involutive automaton is an A±-automaton with a labelled
involution on its arcs; i.e., to every arc e ≡ p a q we associate a
unique arc e−1 ≡ p a-1 q (the inverse of e) such that e ′ 6= e and
(e−1)−1 = e.

That is, labelled arcs appear by (mutually inverse) pairs.
a

a−1

E+(Γ) = {e ∈ EΓ : ℓ(e) ∈ A} is the set of positive arcs of Γ .
E−(Γ) = {e ∈ EΓ : ℓ(e) ∈ A−1} is the set of negative arcs of Γ .

The positive part of an involutive automaton Γ is the automaton Γ+

obtained after removing all the negative arcs from Γ .

Convention: we represent involutive automata Γ through Γ+

(an arc p a q reads the inverse label a−1 when crossed backwards).

From now on, automata = pointed involutive automata.

INVOLUTIVE AUTOMATA

Definition
An A-involutive automaton is an A±-automaton with a labelled
involution on its arcs; i.e., to every arc e ≡ p a q we associate a
unique arc e−1 ≡ p a-1 q (the inverse of e) such that e ′ 6= e and
(e−1)−1 = e.

That is, labelled arcs appear by (mutually inverse) pairs.
a

a−1

E+(Γ) = {e ∈ EΓ : ℓ(e) ∈ A} is the set of positive arcs of Γ .
E−(Γ) = {e ∈ EΓ : ℓ(e) ∈ A−1} is the set of negative arcs of Γ .

The positive part of an involutive automaton Γ is the automaton Γ+

obtained after removing all the negative arcs from Γ .

Convention: we represent involutive automata Γ through Γ+

(an arc p a q reads the inverse label a−1 when crossed backwards).

From now on, automata = pointed involutive automata.

INVOLUTIVE AUTOMATA

Definition
An A-involutive automaton is an A±-automaton with a labelled
involution on its arcs; i.e., to every arc e ≡ p a q we associate a
unique arc e−1 ≡ p a-1 q (the inverse of e) such that e ′ 6= e and
(e−1)−1 = e.

That is, labelled arcs appear by (mutually inverse) pairs.
a

a−1

E+(Γ) = {e ∈ EΓ : ℓ(e) ∈ A} is the set of positive arcs of Γ .
E−(Γ) = {e ∈ EΓ : ℓ(e) ∈ A−1} is the set of negative arcs of Γ .

The positive part of an involutive automaton Γ is the automaton Γ+

obtained after removing all the negative arcs from Γ .

Convention: we represent involutive automata Γ through Γ+

(an arc p a q reads the inverse label a−1 when crossed backwards).

From now on, automata = pointed involutive automata.

INVOLUTIVE AUTOMATA

Definition
An A-involutive automaton is an A±-automaton with a labelled
involution on its arcs; i.e., to every arc e ≡ p a q we associate a
unique arc e−1 ≡ p a-1 q (the inverse of e) such that e ′ 6= e and
(e−1)−1 = e.

That is, labelled arcs appear by (mutually inverse) pairs.
a

a−1

E+(Γ) = {e ∈ EΓ : ℓ(e) ∈ A} is the set of positive arcs of Γ .
E−(Γ) = {e ∈ EΓ : ℓ(e) ∈ A−1} is the set of negative arcs of Γ .

The positive part of an involutive automaton Γ is the automaton Γ+

obtained after removing all the negative arcs from Γ .

Convention: we represent involutive automata Γ through Γ+

(an arc p a q reads the inverse label a−1 when crossed backwards).

From now on, automata = pointed involutive automata.

UNDERLYING GRAPH AND RANK

Let Γ be and involutive automaton.

The underlying graph of Γ (Γ̃) is the undirected graph obtained if we
ignore the labelling and identify all the mutually inverse pairs in Γ .

Remark: Every undirected graph can be obtained in this way.

Definition
The rank of a finite undirected graph Λ, rk(Λ), is the number of arcs
outside a spanning forest.

Lemma
If Λ is finite, then rk(Λ) = #E(Λ) − #V(Λ) + #CC(Λ).

We extend graph-theoretical notions to involutive automata:
• Γ is a tree (cycle, path, …) ⇔ Γ̃ is a tree (cycle, path, …)

• Γ is connected ⇔ Γ̃ is connected
• Γ is vertex-transitive ⇔ Γ̃ is vertex-transitive
• the rank of Γ is rk(Γ) = rk(Γ̃)

UNDERLYING GRAPH AND RANK

Let Γ be and involutive automaton.

The underlying graph of Γ (Γ̃) is the undirected graph obtained if we
ignore the labelling and identify all the mutually inverse pairs in Γ .

Remark: Every undirected graph can be obtained in this way.

Definition
The rank of a finite undirected graph Λ, rk(Λ), is the number of arcs
outside a spanning forest.

Lemma
If Λ is finite, then rk(Λ) = #E(Λ) − #V(Λ) + #CC(Λ).

We extend graph-theoretical notions to involutive automata:
• Γ is a tree (cycle, path, …) ⇔ Γ̃ is a tree (cycle, path, …)

• Γ is connected ⇔ Γ̃ is connected
• Γ is vertex-transitive ⇔ Γ̃ is vertex-transitive
• the rank of Γ is rk(Γ) = rk(Γ̃)

UNDERLYING GRAPH AND RANK

Let Γ be and involutive automaton.

The underlying graph of Γ (Γ̃) is the undirected graph obtained if we
ignore the labelling and identify all the mutually inverse pairs in Γ .

Remark: Every undirected graph can be obtained in this way.

Definition
The rank of a finite undirected graph Λ, rk(Λ), is the number of arcs
outside a spanning forest.

Lemma
If Λ is finite, then rk(Λ) = #E(Λ) − #V(Λ) + #CC(Λ).

We extend graph-theoretical notions to involutive automata:
• Γ is a tree (cycle, path, …) ⇔ Γ̃ is a tree (cycle, path, …)

• Γ is connected ⇔ Γ̃ is connected
• Γ is vertex-transitive ⇔ Γ̃ is vertex-transitive
• the rank of Γ is rk(Γ) = rk(Γ̃)

UNDERLYING GRAPH AND RANK

Let Γ be and involutive automaton.

The underlying graph of Γ (Γ̃) is the undirected graph obtained if we
ignore the labelling and identify all the mutually inverse pairs in Γ .

Remark: Every undirected graph can be obtained in this way.

Definition
The rank of a finite undirected graph Λ, rk(Λ), is the number of arcs
outside a spanning forest.

Lemma
If Λ is finite, then rk(Λ) = #E(Λ) − #V(Λ) + #CC(Λ).

We extend graph-theoretical notions to involutive automata:
• Γ is a tree (cycle, path, …) ⇔ Γ̃ is a tree (cycle, path, …)

• Γ is connected ⇔ Γ̃ is connected
• Γ is vertex-transitive ⇔ Γ̃ is vertex-transitive
• the rank of Γ is rk(Γ) = rk(Γ̃)

UNDERLYING GRAPH AND RANK

Let Γ be and involutive automaton.

The underlying graph of Γ (Γ̃) is the undirected graph obtained if we
ignore the labelling and identify all the mutually inverse pairs in Γ .

Remark: Every undirected graph can be obtained in this way.

Definition
The rank of a finite undirected graph Λ, rk(Λ), is the number of arcs
outside a spanning forest.

Lemma
If Λ is finite, then rk(Λ) = #E(Λ) − #V(Λ) + #CC(Λ).

We extend graph-theoretical notions to involutive automata:
• Γ is a tree (cycle, path, …) ⇔ Γ̃ is a tree (cycle, path, …)

• Γ is connected ⇔ Γ̃ is connected
• Γ is vertex-transitive ⇔ Γ̃ is vertex-transitive
• the rank of Γ is rk(Γ) = rk(Γ̃)

UNDERLYING GRAPH AND RANK

Let Γ be and involutive automaton.

The underlying graph of Γ (Γ̃) is the undirected graph obtained if we
ignore the labelling and identify all the mutually inverse pairs in Γ .

Remark: Every undirected graph can be obtained in this way.

Definition
The rank of a finite undirected graph Λ, rk(Λ), is the number of arcs
outside a spanning forest.

Lemma
If Λ is finite, then rk(Λ) = #E(Λ) − #V(Λ) + #CC(Λ).

We extend graph-theoretical notions to involutive automata:
• Γ is a tree (cycle, path, …) ⇔ Γ̃ is a tree (cycle, path, …)

• Γ is connected ⇔ Γ̃ is connected
• Γ is vertex-transitive ⇔ Γ̃ is vertex-transitive
• the rank of Γ is rk(Γ) = rk(Γ̃)

UNDERLYING GRAPH AND RANK

Let Γ be and involutive automaton.

The underlying graph of Γ (Γ̃) is the undirected graph obtained if we
ignore the labelling and identify all the mutually inverse pairs in Γ .

Remark: Every undirected graph can be obtained in this way.

Definition
The rank of a finite undirected graph Λ, rk(Λ), is the number of arcs
outside a spanning forest.

Lemma
If Λ is finite, then rk(Λ) = #E(Λ) − #V(Λ) + #CC(Λ).

We extend graph-theoretical notions to involutive automata:
• Γ is a tree (cycle, path, …) ⇔ Γ̃ is a tree (cycle, path, …)

• Γ is connected ⇔ Γ̃ is connected
• Γ is vertex-transitive ⇔ Γ̃ is vertex-transitive
• the rank of Γ is rk(Γ) = rk(Γ̃)

UNDERLYING GRAPH AND RANK

Let Γ be and involutive automaton.

The underlying graph of Γ (Γ̃) is the undirected graph obtained if we
ignore the labelling and identify all the mutually inverse pairs in Γ .

Remark: Every undirected graph can be obtained in this way.

Definition
The rank of a finite undirected graph Λ, rk(Λ), is the number of arcs
outside a spanning forest.

Lemma
If Λ is finite, then rk(Λ) = #E(Λ) − #V(Λ) + #CC(Λ).

We extend graph-theoretical notions to involutive automata:
• Γ is a tree (cycle, path, …) ⇔ Γ̃ is a tree (cycle, path, …)
• Γ is connected ⇔ Γ̃ is connected

• Γ is vertex-transitive ⇔ Γ̃ is vertex-transitive
• the rank of Γ is rk(Γ) = rk(Γ̃)

UNDERLYING GRAPH AND RANK

Let Γ be and involutive automaton.

The underlying graph of Γ (Γ̃) is the undirected graph obtained if we
ignore the labelling and identify all the mutually inverse pairs in Γ .

Remark: Every undirected graph can be obtained in this way.

Definition
The rank of a finite undirected graph Λ, rk(Λ), is the number of arcs
outside a spanning forest.

Lemma
If Λ is finite, then rk(Λ) = #E(Λ) − #V(Λ) + #CC(Λ).

We extend graph-theoretical notions to involutive automata:
• Γ is a tree (cycle, path, …) ⇔ Γ̃ is a tree (cycle, path, …)
• Γ is connected ⇔ Γ̃ is connected
• Γ is vertex-transitive ⇔ Γ̃ is vertex-transitive

• the rank of Γ is rk(Γ) = rk(Γ̃)

UNDERLYING GRAPH AND RANK

Let Γ be and involutive automaton.

The underlying graph of Γ (Γ̃) is the undirected graph obtained if we
ignore the labelling and identify all the mutually inverse pairs in Γ .

Remark: Every undirected graph can be obtained in this way.

Definition
The rank of a finite undirected graph Λ, rk(Λ), is the number of arcs
outside a spanning forest.

Lemma
If Λ is finite, then rk(Λ) = #E(Λ) − #V(Λ) + #CC(Λ).

We extend graph-theoretical notions to involutive automata:
• Γ is a tree (cycle, path, …) ⇔ Γ̃ is a tree (cycle, path, …)
• Γ is connected ⇔ Γ̃ is connected
• Γ is vertex-transitive ⇔ Γ̃ is vertex-transitive
• the rank of Γ is rk(Γ) = rk(Γ̃)

WALKS IN INVOLUTIVE AUTOMATA AND RECOGNIZED SUBGROUP

Let Γ be an A-involutive automaton, and let γ = p0e1p1 · · · elpl be a
walk in Γ . Then,

• the inverse walk of γ is γ−1 = ple−1
l pl−1 · · · e−1

1 p0

(note that ℓ(γ−1) = ℓ(γ)−1),
• γ presents backtracking if it has two successive arcs inverse of
each other,

• γ is reduced if it presents no backtracking,
• the reduced label of γ is ℓ(γ) = ℓ(γ).

Remark: ℓ(γ) is reduced ⇒ γ is reduced. (is the converse true?)

Lemma

Let Γ be A-involutive and let p,q ∈ VΓ such that p q. Then,
i) Lp(Γ) = {w ∈ FA : p w p } is a subgroup of FA,
ii) Lp,q(Γ) = {w ∈ FA : p w q } is a coset of Lp(Γ) in FA.

If Γ is pointed then we say that L (Γ) is the subgroup recognized by Γ ,
and we write L (Γ) = 〈Γ〉.

WALKS IN INVOLUTIVE AUTOMATA AND RECOGNIZED SUBGROUP

Let Γ be an A-involutive automaton, and let γ = p0e1p1 · · · elpl be a
walk in Γ . Then,

• the inverse walk of γ is γ−1 = ple−1
l pl−1 · · · e−1

1 p0

(note that ℓ(γ−1) = ℓ(γ)−1),
• γ presents backtracking if it has two successive arcs inverse of
each other,

• γ is reduced if it presents no backtracking,
• the reduced label of γ is ℓ(γ) = ℓ(γ).

Remark: ℓ(γ) is reduced ⇒ γ is reduced. (is the converse true?)

Lemma

Let Γ be A-involutive and let p,q ∈ VΓ such that p q. Then,
i) Lp(Γ) = {w ∈ FA : p w p } is a subgroup of FA,
ii) Lp,q(Γ) = {w ∈ FA : p w q } is a coset of Lp(Γ) in FA.

If Γ is pointed then we say that L (Γ) is the subgroup recognized by Γ ,
and we write L (Γ) = 〈Γ〉.

WALKS IN INVOLUTIVE AUTOMATA AND RECOGNIZED SUBGROUP

Let Γ be an A-involutive automaton, and let γ = p0e1p1 · · · elpl be a
walk in Γ . Then,

• the inverse walk of γ is γ−1 = ple−1
l pl−1 · · · e−1

1 p0

(note that ℓ(γ−1) = ℓ(γ)−1),

• γ presents backtracking if it has two successive arcs inverse of
each other,

• γ is reduced if it presents no backtracking,
• the reduced label of γ is ℓ(γ) = ℓ(γ).

Remark: ℓ(γ) is reduced ⇒ γ is reduced. (is the converse true?)

Lemma

Let Γ be A-involutive and let p,q ∈ VΓ such that p q. Then,
i) Lp(Γ) = {w ∈ FA : p w p } is a subgroup of FA,
ii) Lp,q(Γ) = {w ∈ FA : p w q } is a coset of Lp(Γ) in FA.

If Γ is pointed then we say that L (Γ) is the subgroup recognized by Γ ,
and we write L (Γ) = 〈Γ〉.

WALKS IN INVOLUTIVE AUTOMATA AND RECOGNIZED SUBGROUP

Let Γ be an A-involutive automaton, and let γ = p0e1p1 · · · elpl be a
walk in Γ . Then,

• the inverse walk of γ is γ−1 = ple−1
l pl−1 · · · e−1

1 p0

(note that ℓ(γ−1) = ℓ(γ)−1),
• γ presents backtracking if it has two successive arcs inverse of
each other,

• γ is reduced if it presents no backtracking,
• the reduced label of γ is ℓ(γ) = ℓ(γ).

Remark: ℓ(γ) is reduced ⇒ γ is reduced. (is the converse true?)

Lemma

Let Γ be A-involutive and let p,q ∈ VΓ such that p q. Then,
i) Lp(Γ) = {w ∈ FA : p w p } is a subgroup of FA,
ii) Lp,q(Γ) = {w ∈ FA : p w q } is a coset of Lp(Γ) in FA.

If Γ is pointed then we say that L (Γ) is the subgroup recognized by Γ ,
and we write L (Γ) = 〈Γ〉.

WALKS IN INVOLUTIVE AUTOMATA AND RECOGNIZED SUBGROUP

Let Γ be an A-involutive automaton, and let γ = p0e1p1 · · · elpl be a
walk in Γ . Then,

• the inverse walk of γ is γ−1 = ple−1
l pl−1 · · · e−1

1 p0

(note that ℓ(γ−1) = ℓ(γ)−1),
• γ presents backtracking if it has two successive arcs inverse of
each other,

• γ is reduced if it presents no backtracking,

• the reduced label of γ is ℓ(γ) = ℓ(γ).

Remark: ℓ(γ) is reduced ⇒ γ is reduced. (is the converse true?)

Lemma

Let Γ be A-involutive and let p,q ∈ VΓ such that p q. Then,
i) Lp(Γ) = {w ∈ FA : p w p } is a subgroup of FA,
ii) Lp,q(Γ) = {w ∈ FA : p w q } is a coset of Lp(Γ) in FA.

If Γ is pointed then we say that L (Γ) is the subgroup recognized by Γ ,
and we write L (Γ) = 〈Γ〉.

WALKS IN INVOLUTIVE AUTOMATA AND RECOGNIZED SUBGROUP

Let Γ be an A-involutive automaton, and let γ = p0e1p1 · · · elpl be a
walk in Γ . Then,

• the inverse walk of γ is γ−1 = ple−1
l pl−1 · · · e−1

1 p0

(note that ℓ(γ−1) = ℓ(γ)−1),
• γ presents backtracking if it has two successive arcs inverse of
each other,

• γ is reduced if it presents no backtracking,
• the reduced label of γ is ℓ(γ) = ℓ(γ).

Remark: ℓ(γ) is reduced ⇒ γ is reduced. (is the converse true?)

Lemma

Let Γ be A-involutive and let p,q ∈ VΓ such that p q. Then,
i) Lp(Γ) = {w ∈ FA : p w p } is a subgroup of FA,
ii) Lp,q(Γ) = {w ∈ FA : p w q } is a coset of Lp(Γ) in FA.

If Γ is pointed then we say that L (Γ) is the subgroup recognized by Γ ,
and we write L (Γ) = 〈Γ〉.

WALKS IN INVOLUTIVE AUTOMATA AND RECOGNIZED SUBGROUP

Let Γ be an A-involutive automaton, and let γ = p0e1p1 · · · elpl be a
walk in Γ . Then,

• the inverse walk of γ is γ−1 = ple−1
l pl−1 · · · e−1

1 p0

(note that ℓ(γ−1) = ℓ(γ)−1),
• γ presents backtracking if it has two successive arcs inverse of
each other,

• γ is reduced if it presents no backtracking,
• the reduced label of γ is ℓ(γ) = ℓ(γ).

Remark: ℓ(γ) is reduced ⇒ γ is reduced. (is the converse true?)

Lemma

Let Γ be A-involutive and let p,q ∈ VΓ such that p q. Then,
i) Lp(Γ) = {w ∈ FA : p w p } is a subgroup of FA,
ii) Lp,q(Γ) = {w ∈ FA : p w q } is a coset of Lp(Γ) in FA.

If Γ is pointed then we say that L (Γ) is the subgroup recognized by Γ ,
and we write L (Γ) = 〈Γ〉.

WALKS IN INVOLUTIVE AUTOMATA AND RECOGNIZED SUBGROUP

Let Γ be an A-involutive automaton, and let γ = p0e1p1 · · · elpl be a
walk in Γ . Then,

• the inverse walk of γ is γ−1 = ple−1
l pl−1 · · · e−1

1 p0

(note that ℓ(γ−1) = ℓ(γ)−1),
• γ presents backtracking if it has two successive arcs inverse of
each other,

• γ is reduced if it presents no backtracking,
• the reduced label of γ is ℓ(γ) = ℓ(γ).

Remark: ℓ(γ) is reduced ⇒ γ is reduced. (is the converse true?)

Lemma

Let Γ be A-involutive and let p,q ∈ VΓ such that p q. Then,
i) Lp(Γ) = {w ∈ FA : p w p } is a subgroup of FA,
ii) Lp,q(Γ) = {w ∈ FA : p w q } is a coset of Lp(Γ) in FA.

If Γ is pointed then we say that L (Γ) is the subgroup recognized by Γ ,
and we write L (Γ) = 〈Γ〉.

WALKS IN INVOLUTIVE AUTOMATA AND RECOGNIZED SUBGROUP

Let Γ be an A-involutive automaton, and let γ = p0e1p1 · · · elpl be a
walk in Γ . Then,

• the inverse walk of γ is γ−1 = ple−1
l pl−1 · · · e−1

1 p0

(note that ℓ(γ−1) = ℓ(γ)−1),
• γ presents backtracking if it has two successive arcs inverse of
each other,

• γ is reduced if it presents no backtracking,
• the reduced label of γ is ℓ(γ) = ℓ(γ).

Remark: ℓ(γ) is reduced ⇒ γ is reduced. (is the converse true?)

Lemma

Let Γ be A-involutive and let p,q ∈ VΓ such that p q. Then,
i) Lp(Γ) = {w ∈ FA : p w p } is a subgroup of FA,
ii) Lp,q(Γ) = {w ∈ FA : p w q } is a coset of Lp(Γ) in FA.

If Γ is pointed then we say that L (Γ) is the subgroup recognized by Γ ,
and we write L (Γ) = 〈Γ〉.

SOURCES OF REDUNDANCY

Remark
Since for every (pointed & involutive) A-automaton Γ we have that
〈Γ〉 is a subgroup of FA, this is a reasonable candidate family of
drawings representing subgroups of FA.

Then,

{pointed & involutive A-automata } → { subgroups of FA }

Γ 7→ 〈Γ〉

• is well defined,
• is surjective, (why?)
• is not injective. (why?)

Sources of redundancy:

i) Γ can be disconnected,
ii) ‘hanging trees’ not containing the basepoint,
iii) non-determinism.

SOURCES OF REDUNDANCY

Remark
Since for every (pointed & involutive) A-automaton Γ we have that
〈Γ〉 is a subgroup of FA, this is a reasonable candidate family of
drawings representing subgroups of FA.

Then,

{pointed & involutive A-automata } → { subgroups of FA }

Γ 7→ 〈Γ〉

• is well defined,
• is surjective, (why?)
• is not injective. (why?)

Sources of redundancy:

i) Γ can be disconnected,
ii) ‘hanging trees’ not containing the basepoint,
iii) non-determinism.

SOURCES OF REDUNDANCY

Remark
Since for every (pointed & involutive) A-automaton Γ we have that
〈Γ〉 is a subgroup of FA, this is a reasonable candidate family of
drawings representing subgroups of FA. Then,

{pointed & involutive A-automata } → { subgroups of FA }

Γ 7→ 〈Γ〉

• is well defined,
• is surjective, (why?)
• is not injective. (why?)

Sources of redundancy:

i) Γ can be disconnected,
ii) ‘hanging trees’ not containing the basepoint,
iii) non-determinism.

SOURCES OF REDUNDANCY

Remark
Since for every (pointed & involutive) A-automaton Γ we have that
〈Γ〉 is a subgroup of FA, this is a reasonable candidate family of
drawings representing subgroups of FA. Then,

{pointed & involutive A-automata } → { subgroups of FA }

Γ 7→ 〈Γ〉

• is well defined,

• is surjective, (why?)
• is not injective. (why?)

Sources of redundancy:

i) Γ can be disconnected,
ii) ‘hanging trees’ not containing the basepoint,
iii) non-determinism.

SOURCES OF REDUNDANCY

Remark
Since for every (pointed & involutive) A-automaton Γ we have that
〈Γ〉 is a subgroup of FA, this is a reasonable candidate family of
drawings representing subgroups of FA. Then,

{pointed & involutive A-automata } → { subgroups of FA }

Γ 7→ 〈Γ〉

• is well defined,
• is surjective, (why?)

• is not injective. (why?)

Sources of redundancy:

i) Γ can be disconnected,
ii) ‘hanging trees’ not containing the basepoint,
iii) non-determinism.

SOURCES OF REDUNDANCY

Remark
Since for every (pointed & involutive) A-automaton Γ we have that
〈Γ〉 is a subgroup of FA, this is a reasonable candidate family of
drawings representing subgroups of FA. Then,

{pointed & involutive A-automata } → { subgroups of FA }

Γ 7→ 〈Γ〉

• is well defined,
• is surjective, (why?)
• is not injective. (why?)

Sources of redundancy:

i) Γ can be disconnected,
ii) ‘hanging trees’ not containing the basepoint,
iii) non-determinism.

SOURCES OF REDUNDANCY

Remark
Since for every (pointed & involutive) A-automaton Γ we have that
〈Γ〉 is a subgroup of FA, this is a reasonable candidate family of
drawings representing subgroups of FA. Then,

{pointed & involutive A-automata } → { subgroups of FA }

Γ 7→ 〈Γ〉

• is well defined,
• is surjective, (why?)
• is not injective. (why?)

Sources of redundancy:

i) Γ can be disconnected,
ii) ‘hanging trees’ not containing the basepoint,
iii) non-determinism.

SOURCES OF REDUNDANCY

Remark
Since for every (pointed & involutive) A-automaton Γ we have that
〈Γ〉 is a subgroup of FA, this is a reasonable candidate family of
drawings representing subgroups of FA. Then,

{pointed & involutive A-automata } → { subgroups of FA }

Γ 7→ 〈Γ〉

• is well defined,
• is surjective, (why?)
• is not injective. (why?)

Sources of redundancy:
i) Γ can be disconnected,

ii) ‘hanging trees’ not containing the basepoint,
iii) non-determinism.

SOURCES OF REDUNDANCY

Remark
Since for every (pointed & involutive) A-automaton Γ we have that
〈Γ〉 is a subgroup of FA, this is a reasonable candidate family of
drawings representing subgroups of FA. Then,

{pointed & involutive A-automata } → { subgroups of FA }

Γ 7→ 〈Γ〉

• is well defined,
• is surjective, (why?)
• is not injective. (why?)

Sources of redundancy:
i) Γ can be disconnected,
ii) ‘hanging trees’ not containing the basepoint,

iii) non-determinism.

SOURCES OF REDUNDANCY

Remark
Since for every (pointed & involutive) A-automaton Γ we have that
〈Γ〉 is a subgroup of FA, this is a reasonable candidate family of
drawings representing subgroups of FA. Then,

{pointed & involutive A-automata } → { subgroups of FA }

Γ 7→ 〈Γ〉

• is well defined,
• is surjective, (why?)
• is not injective. (why?)

Sources of redundancy:
i) Γ can be disconnected,
ii) ‘hanging trees’ not containing the basepoint,
iii) non-determinism.

DETERMINISM

An A-automaton Γ is deterministic at p ∈ VΓ if no two arcs with the
same label depart from p. (ι(e) = ι(e ′) and ℓ(e) = ℓ(e ′) ⇒ e = e ′)

Definition
An A-automaton Γ is deterministic if it is deterministic at every
vertex.

Then, ∀γ1,γ2 walks in Γ ,

ι(γ1) = ι(γ2) and ℓ(γ1) = ℓ(γ2) ⇒ γ1 = γ2

Remark: An involutive A-automaton is non-deterministic if for some
a ∈ A there are two a-arcs leaving or arriving to some vertex.

Lemma
If Γ is involutive and deterministic and γ is a walk in Γ , then:

γ is reduced ⇔ ℓ(γ) is reduced
and

〈Γ〉 = {ℓ(γ) : γ ≡ reduced}

DETERMINISM

An A-automaton Γ is deterministic at p ∈ VΓ if no two arcs with the
same label depart from p.

(ι(e) = ι(e ′) and ℓ(e) = ℓ(e ′) ⇒ e = e ′)

Definition
An A-automaton Γ is deterministic if it is deterministic at every
vertex.

Then, ∀γ1,γ2 walks in Γ ,

ι(γ1) = ι(γ2) and ℓ(γ1) = ℓ(γ2) ⇒ γ1 = γ2

Remark: An involutive A-automaton is non-deterministic if for some
a ∈ A there are two a-arcs leaving or arriving to some vertex.

Lemma
If Γ is involutive and deterministic and γ is a walk in Γ , then:

γ is reduced ⇔ ℓ(γ) is reduced
and

〈Γ〉 = {ℓ(γ) : γ ≡ reduced}

DETERMINISM

An A-automaton Γ is deterministic at p ∈ VΓ if no two arcs with the
same label depart from p. (ι(e) = ι(e ′) and ℓ(e) = ℓ(e ′) ⇒ e = e ′)

Definition
An A-automaton Γ is deterministic if it is deterministic at every
vertex.

Then, ∀γ1,γ2 walks in Γ ,

ι(γ1) = ι(γ2) and ℓ(γ1) = ℓ(γ2) ⇒ γ1 = γ2

Remark: An involutive A-automaton is non-deterministic if for some
a ∈ A there are two a-arcs leaving or arriving to some vertex.

Lemma
If Γ is involutive and deterministic and γ is a walk in Γ , then:

γ is reduced ⇔ ℓ(γ) is reduced
and

〈Γ〉 = {ℓ(γ) : γ ≡ reduced}

DETERMINISM

An A-automaton Γ is deterministic at p ∈ VΓ if no two arcs with the
same label depart from p. (ι(e) = ι(e ′) and ℓ(e) = ℓ(e ′) ⇒ e = e ′)

Definition
An A-automaton Γ is deterministic if it is deterministic at every
vertex.

Then, ∀γ1,γ2 walks in Γ ,

ι(γ1) = ι(γ2) and ℓ(γ1) = ℓ(γ2) ⇒ γ1 = γ2

Remark: An involutive A-automaton is non-deterministic if for some
a ∈ A there are two a-arcs leaving or arriving to some vertex.

Lemma
If Γ is involutive and deterministic and γ is a walk in Γ , then:

γ is reduced ⇔ ℓ(γ) is reduced
and

〈Γ〉 = {ℓ(γ) : γ ≡ reduced}

DETERMINISM

An A-automaton Γ is deterministic at p ∈ VΓ if no two arcs with the
same label depart from p. (ι(e) = ι(e ′) and ℓ(e) = ℓ(e ′) ⇒ e = e ′)

Definition
An A-automaton Γ is deterministic if it is deterministic at every
vertex.

Then, ∀γ1,γ2 walks in Γ ,

ι(γ1) = ι(γ2) and ℓ(γ1) = ℓ(γ2) ⇒ γ1 = γ2

Remark: An involutive A-automaton is non-deterministic if for some
a ∈ A there are two a-arcs leaving or arriving to some vertex.

Lemma
If Γ is involutive and deterministic and γ is a walk in Γ , then:

γ is reduced ⇔ ℓ(γ) is reduced
and

〈Γ〉 = {ℓ(γ) : γ ≡ reduced}

DETERMINISM

An A-automaton Γ is deterministic at p ∈ VΓ if no two arcs with the
same label depart from p. (ι(e) = ι(e ′) and ℓ(e) = ℓ(e ′) ⇒ e = e ′)

Definition
An A-automaton Γ is deterministic if it is deterministic at every
vertex.

Then, ∀γ1,γ2 walks in Γ ,

ι(γ1) = ι(γ2) and ℓ(γ1) = ℓ(γ2) ⇒ γ1 = γ2

Remark: An involutive A-automaton is non-deterministic if for some
a ∈ A there are two a-arcs leaving or arriving to some vertex.

Lemma
If Γ is involutive and deterministic and γ is a walk in Γ , then:

γ is reduced ⇔ ℓ(γ) is reduced
and

〈Γ〉 = {ℓ(γ) : γ ≡ reduced}

DETERMINISM

An A-automaton Γ is deterministic at p ∈ VΓ if no two arcs with the
same label depart from p. (ι(e) = ι(e ′) and ℓ(e) = ℓ(e ′) ⇒ e = e ′)

Definition
An A-automaton Γ is deterministic if it is deterministic at every
vertex.

Then, ∀γ1,γ2 walks in Γ ,

ι(γ1) = ι(γ2) and ℓ(γ1) = ℓ(γ2) ⇒ γ1 = γ2

Remark: An involutive A-automaton is non-deterministic if for some
a ∈ A there are two a-arcs leaving or arriving to some vertex.

Lemma
If Γ is involutive and deterministic and γ is a walk in Γ , then:

γ is reduced ⇔ ℓ(γ) is reduced
and

〈Γ〉 = {ℓ(γ) : γ ≡ reduced}

CORE AND REDUCED AUTOMATA

A vertex (resp., arc) in Γ is alive if it belongs to some reduced -walk,
otherwise it is dead.
Definition
Γ is core if it has no dead vertices (equivalently, no dead arcs).

The core of Γ , core(Γ), is the maximal core subautomaton of Γ
(containing the basepoint).

Remarks:

• core(Γ) is what remains after taking the CC of Γ containing
and removing from it all the ‘hanging trees’ not containing ,

• core(Γ) is connected,
• 〈core(Γ)〉 = 〈Γ〉,
• if Γ is finite, then Γ is core⇔ Γ has no non- vertices of degree 1.

Definition
An automaton Γ is reduced if it is deterministic and core.

CORE AND REDUCED AUTOMATA

A vertex (resp., arc) in Γ is alive if it belongs to some reduced -walk,
otherwise it is dead.

Definition
Γ is core if it has no dead vertices (equivalently, no dead arcs).

The core of Γ , core(Γ), is the maximal core subautomaton of Γ
(containing the basepoint).

Remarks:

• core(Γ) is what remains after taking the CC of Γ containing
and removing from it all the ‘hanging trees’ not containing ,

• core(Γ) is connected,
• 〈core(Γ)〉 = 〈Γ〉,
• if Γ is finite, then Γ is core⇔ Γ has no non- vertices of degree 1.

Definition
An automaton Γ is reduced if it is deterministic and core.

CORE AND REDUCED AUTOMATA

A vertex (resp., arc) in Γ is alive if it belongs to some reduced -walk,
otherwise it is dead.
Definition
Γ is core if it has no dead vertices (equivalently, no dead arcs).

The core of Γ , core(Γ), is the maximal core subautomaton of Γ
(containing the basepoint).

Remarks:

• core(Γ) is what remains after taking the CC of Γ containing
and removing from it all the ‘hanging trees’ not containing ,

• core(Γ) is connected,
• 〈core(Γ)〉 = 〈Γ〉,
• if Γ is finite, then Γ is core⇔ Γ has no non- vertices of degree 1.

Definition
An automaton Γ is reduced if it is deterministic and core.

CORE AND REDUCED AUTOMATA

A vertex (resp., arc) in Γ is alive if it belongs to some reduced -walk,
otherwise it is dead.
Definition
Γ is core if it has no dead vertices (equivalently, no dead arcs).
The core of Γ , core(Γ), is the maximal core subautomaton of Γ
(containing the basepoint).

Remarks:

• core(Γ) is what remains after taking the CC of Γ containing
and removing from it all the ‘hanging trees’ not containing ,

• core(Γ) is connected,
• 〈core(Γ)〉 = 〈Γ〉,
• if Γ is finite, then Γ is core⇔ Γ has no non- vertices of degree 1.

Definition
An automaton Γ is reduced if it is deterministic and core.

CORE AND REDUCED AUTOMATA

A vertex (resp., arc) in Γ is alive if it belongs to some reduced -walk,
otherwise it is dead.
Definition
Γ is core if it has no dead vertices (equivalently, no dead arcs).
The core of Γ , core(Γ), is the maximal core subautomaton of Γ
(containing the basepoint).

Remarks:
• core(Γ) is what remains after taking the CC of Γ containing
and removing from it all the ‘hanging trees’ not containing ,

• core(Γ) is connected,
• 〈core(Γ)〉 = 〈Γ〉,
• if Γ is finite, then Γ is core⇔ Γ has no non- vertices of degree 1.

Definition
An automaton Γ is reduced if it is deterministic and core.

CORE AND REDUCED AUTOMATA

A vertex (resp., arc) in Γ is alive if it belongs to some reduced -walk,
otherwise it is dead.
Definition
Γ is core if it has no dead vertices (equivalently, no dead arcs).
The core of Γ , core(Γ), is the maximal core subautomaton of Γ
(containing the basepoint).

Remarks:
• core(Γ) is what remains after taking the CC of Γ containing
and removing from it all the ‘hanging trees’ not containing ,

• core(Γ) is connected,

• 〈core(Γ)〉 = 〈Γ〉,
• if Γ is finite, then Γ is core⇔ Γ has no non- vertices of degree 1.

Definition
An automaton Γ is reduced if it is deterministic and core.

CORE AND REDUCED AUTOMATA

A vertex (resp., arc) in Γ is alive if it belongs to some reduced -walk,
otherwise it is dead.
Definition
Γ is core if it has no dead vertices (equivalently, no dead arcs).
The core of Γ , core(Γ), is the maximal core subautomaton of Γ
(containing the basepoint).

Remarks:
• core(Γ) is what remains after taking the CC of Γ containing
and removing from it all the ‘hanging trees’ not containing ,

• core(Γ) is connected,
• 〈core(Γ)〉 = 〈Γ〉,

• if Γ is finite, then Γ is core⇔ Γ has no non- vertices of degree 1.

Definition
An automaton Γ is reduced if it is deterministic and core.

CORE AND REDUCED AUTOMATA

A vertex (resp., arc) in Γ is alive if it belongs to some reduced -walk,
otherwise it is dead.
Definition
Γ is core if it has no dead vertices (equivalently, no dead arcs).
The core of Γ , core(Γ), is the maximal core subautomaton of Γ
(containing the basepoint).

Remarks:
• core(Γ) is what remains after taking the CC of Γ containing
and removing from it all the ‘hanging trees’ not containing ,

• core(Γ) is connected,
• 〈core(Γ)〉 = 〈Γ〉,
• if Γ is finite, then Γ is core⇔ Γ has no non- vertices of degree 1.

Definition
An automaton Γ is reduced if it is deterministic and core.

CORE AND REDUCED AUTOMATA

A vertex (resp., arc) in Γ is alive if it belongs to some reduced -walk,
otherwise it is dead.
Definition
Γ is core if it has no dead vertices (equivalently, no dead arcs).
The core of Γ , core(Γ), is the maximal core subautomaton of Γ
(containing the basepoint).

Remarks:
• core(Γ) is what remains after taking the CC of Γ containing
and removing from it all the ‘hanging trees’ not containing ,

• core(Γ) is connected,
• 〈core(Γ)〉 = 〈Γ〉,
• if Γ is finite, then Γ is core⇔ Γ has no non- vertices of degree 1.

Definition
An automaton Γ is reduced if it is deterministic and core.

SCHREIER AUTOMATON

Let G = 〈S〉 be a group and let H be a subgroup of G.

Definition
The (right) Schreier automaton of H w.r.t. S, denoted by Sch(H, S), is
the (involutive and pointed) S-automata with:

• set of vertices H\G (right cosets of H in G),
• an arc Hg s Hgs, ∀Hg ∈ H\G, ∀s ∈ S±,
• H as basepoint.

Proposition
Let H be a subgroup of FA. Then, Sch(H,A) is deterministic,
saturated, connected, and 〈Sch(H,A)〉 = H.

Remark: The Schreier automaton depends on the chosen generating
set for G.

SCHREIER AUTOMATON

Let G = 〈S〉 be a group and let H be a subgroup of G.

Definition
The (right) Schreier automaton of H w.r.t. S, denoted by Sch(H, S), is
the (involutive and pointed) S-automata with:

• set of vertices H\G (right cosets of H in G),
• an arc Hg s Hgs, ∀Hg ∈ H\G, ∀s ∈ S±,
• H as basepoint.

Proposition
Let H be a subgroup of FA. Then, Sch(H,A) is deterministic,
saturated, connected, and 〈Sch(H,A)〉 = H.

Remark: The Schreier automaton depends on the chosen generating
set for G.

SCHREIER AUTOMATON

Let G = 〈S〉 be a group and let H be a subgroup of G.

Definition
The (right) Schreier automaton of H w.r.t. S, denoted by Sch(H, S), is
the (involutive and pointed) S-automata with:
• set of vertices H\G (right cosets of H in G),

• an arc Hg s Hgs, ∀Hg ∈ H\G, ∀s ∈ S±,
• H as basepoint.

Proposition
Let H be a subgroup of FA. Then, Sch(H,A) is deterministic,
saturated, connected, and 〈Sch(H,A)〉 = H.

Remark: The Schreier automaton depends on the chosen generating
set for G.

SCHREIER AUTOMATON

Let G = 〈S〉 be a group and let H be a subgroup of G.

Definition
The (right) Schreier automaton of H w.r.t. S, denoted by Sch(H, S), is
the (involutive and pointed) S-automata with:
• set of vertices H\G (right cosets of H in G),
• an arc Hg s Hgs, ∀Hg ∈ H\G, ∀s ∈ S±,

• H as basepoint.

Proposition
Let H be a subgroup of FA. Then, Sch(H,A) is deterministic,
saturated, connected, and 〈Sch(H,A)〉 = H.

Remark: The Schreier automaton depends on the chosen generating
set for G.

SCHREIER AUTOMATON

Let G = 〈S〉 be a group and let H be a subgroup of G.

Definition
The (right) Schreier automaton of H w.r.t. S, denoted by Sch(H, S), is
the (involutive and pointed) S-automata with:
• set of vertices H\G (right cosets of H in G),
• an arc Hg s Hgs, ∀Hg ∈ H\G, ∀s ∈ S±,
• H as basepoint.

Proposition
Let H be a subgroup of FA. Then, Sch(H,A) is deterministic,
saturated, connected, and 〈Sch(H,A)〉 = H.

Remark: The Schreier automaton depends on the chosen generating
set for G.

SCHREIER AUTOMATON

Let G = 〈S〉 be a group and let H be a subgroup of G.

Definition
The (right) Schreier automaton of H w.r.t. S, denoted by Sch(H, S), is
the (involutive and pointed) S-automata with:
• set of vertices H\G (right cosets of H in G),
• an arc Hg s Hgs, ∀Hg ∈ H\G, ∀s ∈ S±,
• H as basepoint.

Proposition
Let H be a subgroup of FA. Then, Sch(H,A) is deterministic,
saturated, connected, and 〈Sch(H,A)〉 = H.

Remark: The Schreier automaton depends on the chosen generating
set for G.

SCHREIER AUTOMATON

Let G = 〈S〉 be a group and let H be a subgroup of G.

Definition
The (right) Schreier automaton of H w.r.t. S, denoted by Sch(H, S), is
the (involutive and pointed) S-automata with:
• set of vertices H\G (right cosets of H in G),
• an arc Hg s Hgs, ∀Hg ∈ H\G, ∀s ∈ S±,
• H as basepoint.

Proposition
Let H be a subgroup of FA. Then, Sch(H,A) is deterministic,
saturated, connected, and 〈Sch(H,A)〉 = H.

Remark: The Schreier automaton depends on the chosen generating
set for G.

SCHREIER AUTOMATON

Let G = 〈S〉 be a group and let H be a subgroup of G.

Definition
The (right) Schreier automaton of H w.r.t. S, denoted by Sch(H, S), is
the (involutive and pointed) S-automata with:
• set of vertices H\G (right cosets of H in G),
• an arc Hg s Hgs, ∀Hg ∈ H\G, ∀s ∈ S±,
• H as basepoint.

Proposition
Let H be a subgroup of FA. Then, Sch(H,A) is deterministic,
saturated, connected, and 〈Sch(H,A)〉 = H.

Remark: The Schreier automaton depends on the chosen generating
set for G.

CAYLEY AUTOMATON OF F2

The Cayley automaton Cay(F{a,b}, {a,b})
(consisting in four Cayley branches adjacent to the basepoint).

a

b

STALLINGS AUTOMATON

Let H be a subgroup of FA.

Definition
The Stallings automaton of H w.r.t. A is St(H,A) = core(Sch(H,A)).

Remark. The following statements are equivalent:
• Sch(H,A) is core,
• St(H,A) is saturated,
• Sch(H,A) = St(H,A).

Proposition
The Stallings automaton St(H,A) is reduced and 〈St(H,A)〉 = H.

Remark: The Stallings automaton St(H,A) depends on the chosen
basis A for the ambient free group.

STALLINGS AUTOMATON

Let H be a subgroup of FA.

Definition
The Stallings automaton of H w.r.t. A is St(H,A) = core(Sch(H,A)).

Remark. The following statements are equivalent:
• Sch(H,A) is core,
• St(H,A) is saturated,
• Sch(H,A) = St(H,A).

Proposition
The Stallings automaton St(H,A) is reduced and 〈St(H,A)〉 = H.

Remark: The Stallings automaton St(H,A) depends on the chosen
basis A for the ambient free group.

STALLINGS AUTOMATON

Let H be a subgroup of FA.

Definition
The Stallings automaton of H w.r.t. A is St(H,A) = core(Sch(H,A)).

Remark. The following statements are equivalent:
• Sch(H,A) is core,
• St(H,A) is saturated,
• Sch(H,A) = St(H,A).

Proposition
The Stallings automaton St(H,A) is reduced and 〈St(H,A)〉 = H.

Remark: The Stallings automaton St(H,A) depends on the chosen
basis A for the ambient free group.

STALLINGS AUTOMATON

Let H be a subgroup of FA.

Definition
The Stallings automaton of H w.r.t. A is St(H,A) = core(Sch(H,A)).

Remark. The following statements are equivalent:
• Sch(H,A) is core,
• St(H,A) is saturated,
• Sch(H,A) = St(H,A).

Proposition
The Stallings automaton St(H,A) is reduced and 〈St(H,A)〉 = H.

Remark: The Stallings automaton St(H,A) depends on the chosen
basis A for the ambient free group.

STALLINGS AUTOMATON

Let H be a subgroup of FA.

Definition
The Stallings automaton of H w.r.t. A is St(H,A) = core(Sch(H,A)).

Remark. The following statements are equivalent:
• Sch(H,A) is core,
• St(H,A) is saturated,
• Sch(H,A) = St(H,A).

Proposition
The Stallings automaton St(H,A) is reduced and 〈St(H,A)〉 = H.

Remark: The Stallings automaton St(H,A) depends on the chosen
basis A for the ambient free group.

HOMOMORPHISMS OF AUTOMATA

Let Γ and Γ ′ be pointed A-automata.

Definition
A homomorphism (of automata) between Γ and Γ ′ is a function
ϕ : VΓ → VΓ ′ such that:
i) ϕ() = ′,
ii) ∀p,q ∈ VΓ , ∀a ∈ A, if p a q then ϕ(p) a ϕ(q).

Lemma
If ϕ : Γ → Γ ′ is a homomorphism of automata, then

∀p,q ∈ VΓ , ∀w ∈ A∗, p w q ⇒ ϕ(p) w
ϕ(q) .

Corollary
If ϕ : Γ → Γ ′ is a homomorphism of automata, then L(Γ) ⊆ L(Γ ′).

HOMOMORPHISMS OF AUTOMATA

Let Γ and Γ ′ be pointed A-automata.

Definition
A homomorphism (of automata) between Γ and Γ ′ is a function
ϕ : VΓ → VΓ ′ such that:
i) ϕ() = ′,
ii) ∀p,q ∈ VΓ , ∀a ∈ A, if p a q then ϕ(p) a ϕ(q).

Lemma
If ϕ : Γ → Γ ′ is a homomorphism of automata, then

∀p,q ∈ VΓ , ∀w ∈ A∗, p w q ⇒ ϕ(p) w
ϕ(q) .

Corollary
If ϕ : Γ → Γ ′ is a homomorphism of automata, then L(Γ) ⊆ L(Γ ′).

HOMOMORPHISMS OF AUTOMATA

Let Γ and Γ ′ be pointed A-automata.

Definition
A homomorphism (of automata) between Γ and Γ ′ is a function
ϕ : VΓ → VΓ ′ such that:
i) ϕ() = ′,
ii) ∀p,q ∈ VΓ , ∀a ∈ A, if p a q then ϕ(p) a ϕ(q).

Lemma
If ϕ : Γ → Γ ′ is a homomorphism of automata, then

∀p,q ∈ VΓ , ∀w ∈ A∗, p w q ⇒ ϕ(p) w
ϕ(q) .

Corollary
If ϕ : Γ → Γ ′ is a homomorphism of automata, then L(Γ) ⊆ L(Γ ′).

HOMOMORPHISMS OF AUTOMATA

Let Γ and Γ ′ be pointed A-automata.

Definition
A homomorphism (of automata) between Γ and Γ ′ is a function
ϕ : VΓ → VΓ ′ such that:
i) ϕ() = ′,
ii) ∀p,q ∈ VΓ , ∀a ∈ A, if p a q then ϕ(p) a ϕ(q).

Lemma
If ϕ : Γ → Γ ′ is a homomorphism of automata, then

∀p,q ∈ VΓ , ∀w ∈ A∗, p w q ⇒ ϕ(p) w
ϕ(q) .

Corollary
If ϕ : Γ → Γ ′ is a homomorphism of automata, then L(Γ) ⊆ L(Γ ′).

STALLINGS BIJECTION

A CRUCIAL RESULT

Theorem
Let Γ , Γ ′ be reduced (pointed and involutive) A-automata. Then,

〈Γ〉 ⩽ 〈Γ ′〉 ⇔ ∃ϕ : Γ → Γ ′ homomorphism

and, if so, the homomorphism is unique.

Sketch of proof. [Unicity] Follows from the determinism of Γ ′.

[⇐] ∃ϕ : Γ → Γ ′ homomorphism ⇒ L(Γ) ⩽ L(Γ) ⇒ 〈Γ〉 ⩽ 〈Γ〉.

[⇒] Take ϕ() = ′, and for 6= p ∈ V(Γ) let u p v be reduced.
Then uv is reduced (no cancellation) and uv ∈ 〈Γ〉 ⇒ uv ∈ 〈Γ ′〉.
Let ′ u p ′ v ′ be reduced. We define ϕ(p) = p ′.
(i) ϕ : Γ → Γ ′ is well defined by the determinism of Γ ′ (why?).
(ii) ϕ : Γ → Γ ′ is a homomorphism: given e ≡ p a q, let

u p a q v be reduced,
hence uav ∈ 〈Γ〉 ⩽ 〈Γ ′〉 (no cancellation), and therefore
there exists ′ u

ϕ(p) a ϕ(q) v ′ reduced. So ϕ(p) a ϕ(q).

A CRUCIAL RESULT

Theorem
Let Γ , Γ ′ be reduced (pointed and involutive) A-automata. Then,

〈Γ〉 ⩽ 〈Γ ′〉 ⇔ ∃ϕ : Γ → Γ ′ homomorphism

and, if so, the homomorphism is unique.

Sketch of proof. [Unicity] Follows from the determinism of Γ ′.

[⇐] ∃ϕ : Γ → Γ ′ homomorphism ⇒ L(Γ) ⩽ L(Γ) ⇒ 〈Γ〉 ⩽ 〈Γ〉.

[⇒] Take ϕ() = ′, and for 6= p ∈ V(Γ) let u p v be reduced.
Then uv is reduced (no cancellation) and uv ∈ 〈Γ〉 ⇒ uv ∈ 〈Γ ′〉.
Let ′ u p ′ v ′ be reduced. We define ϕ(p) = p ′.
(i) ϕ : Γ → Γ ′ is well defined by the determinism of Γ ′ (why?).
(ii) ϕ : Γ → Γ ′ is a homomorphism: given e ≡ p a q, let

u p a q v be reduced,
hence uav ∈ 〈Γ〉 ⩽ 〈Γ ′〉 (no cancellation), and therefore
there exists ′ u

ϕ(p) a ϕ(q) v ′ reduced. So ϕ(p) a ϕ(q).

A CRUCIAL RESULT

Theorem
Let Γ , Γ ′ be reduced (pointed and involutive) A-automata. Then,

〈Γ〉 ⩽ 〈Γ ′〉 ⇔ ∃ϕ : Γ → Γ ′ homomorphism

and, if so, the homomorphism is unique.

Sketch of proof.

[Unicity] Follows from the determinism of Γ ′.

[⇐] ∃ϕ : Γ → Γ ′ homomorphism ⇒ L(Γ) ⩽ L(Γ) ⇒ 〈Γ〉 ⩽ 〈Γ〉.

[⇒] Take ϕ() = ′, and for 6= p ∈ V(Γ) let u p v be reduced.
Then uv is reduced (no cancellation) and uv ∈ 〈Γ〉 ⇒ uv ∈ 〈Γ ′〉.
Let ′ u p ′ v ′ be reduced. We define ϕ(p) = p ′.
(i) ϕ : Γ → Γ ′ is well defined by the determinism of Γ ′ (why?).
(ii) ϕ : Γ → Γ ′ is a homomorphism: given e ≡ p a q, let

u p a q v be reduced,
hence uav ∈ 〈Γ〉 ⩽ 〈Γ ′〉 (no cancellation), and therefore
there exists ′ u

ϕ(p) a ϕ(q) v ′ reduced. So ϕ(p) a ϕ(q).

A CRUCIAL RESULT

Theorem
Let Γ , Γ ′ be reduced (pointed and involutive) A-automata. Then,

〈Γ〉 ⩽ 〈Γ ′〉 ⇔ ∃ϕ : Γ → Γ ′ homomorphism

and, if so, the homomorphism is unique.

Sketch of proof. [Unicity] Follows from the determinism of Γ ′.

[⇐]

∃ϕ : Γ → Γ ′ homomorphism ⇒ L(Γ) ⩽ L(Γ) ⇒ 〈Γ〉 ⩽ 〈Γ〉.

[⇒] Take ϕ() = ′, and for 6= p ∈ V(Γ) let u p v be reduced.
Then uv is reduced (no cancellation) and uv ∈ 〈Γ〉 ⇒ uv ∈ 〈Γ ′〉.
Let ′ u p ′ v ′ be reduced. We define ϕ(p) = p ′.
(i) ϕ : Γ → Γ ′ is well defined by the determinism of Γ ′ (why?).
(ii) ϕ : Γ → Γ ′ is a homomorphism: given e ≡ p a q, let

u p a q v be reduced,
hence uav ∈ 〈Γ〉 ⩽ 〈Γ ′〉 (no cancellation), and therefore
there exists ′ u

ϕ(p) a ϕ(q) v ′ reduced. So ϕ(p) a ϕ(q).

A CRUCIAL RESULT

Theorem
Let Γ , Γ ′ be reduced (pointed and involutive) A-automata. Then,

〈Γ〉 ⩽ 〈Γ ′〉 ⇔ ∃ϕ : Γ → Γ ′ homomorphism

and, if so, the homomorphism is unique.

Sketch of proof. [Unicity] Follows from the determinism of Γ ′.

[⇐] ∃ϕ : Γ → Γ ′ homomorphism ⇒ L(Γ) ⩽ L(Γ)

⇒ 〈Γ〉 ⩽ 〈Γ〉.

[⇒] Take ϕ() = ′, and for 6= p ∈ V(Γ) let u p v be reduced.
Then uv is reduced (no cancellation) and uv ∈ 〈Γ〉 ⇒ uv ∈ 〈Γ ′〉.
Let ′ u p ′ v ′ be reduced. We define ϕ(p) = p ′.
(i) ϕ : Γ → Γ ′ is well defined by the determinism of Γ ′ (why?).
(ii) ϕ : Γ → Γ ′ is a homomorphism: given e ≡ p a q, let

u p a q v be reduced,
hence uav ∈ 〈Γ〉 ⩽ 〈Γ ′〉 (no cancellation), and therefore
there exists ′ u

ϕ(p) a ϕ(q) v ′ reduced. So ϕ(p) a ϕ(q).

A CRUCIAL RESULT

Theorem
Let Γ , Γ ′ be reduced (pointed and involutive) A-automata. Then,

〈Γ〉 ⩽ 〈Γ ′〉 ⇔ ∃ϕ : Γ → Γ ′ homomorphism

and, if so, the homomorphism is unique.

Sketch of proof. [Unicity] Follows from the determinism of Γ ′.

[⇐] ∃ϕ : Γ → Γ ′ homomorphism ⇒ L(Γ) ⩽ L(Γ) ⇒ 〈Γ〉 ⩽ 〈Γ〉.

[⇒] Take ϕ() = ′, and for 6= p ∈ V(Γ) let u p v be reduced.
Then uv is reduced (no cancellation) and uv ∈ 〈Γ〉 ⇒ uv ∈ 〈Γ ′〉.
Let ′ u p ′ v ′ be reduced. We define ϕ(p) = p ′.
(i) ϕ : Γ → Γ ′ is well defined by the determinism of Γ ′ (why?).
(ii) ϕ : Γ → Γ ′ is a homomorphism: given e ≡ p a q, let

u p a q v be reduced,
hence uav ∈ 〈Γ〉 ⩽ 〈Γ ′〉 (no cancellation), and therefore
there exists ′ u

ϕ(p) a ϕ(q) v ′ reduced. So ϕ(p) a ϕ(q).

A CRUCIAL RESULT

Theorem
Let Γ , Γ ′ be reduced (pointed and involutive) A-automata. Then,

〈Γ〉 ⩽ 〈Γ ′〉 ⇔ ∃ϕ : Γ → Γ ′ homomorphism

and, if so, the homomorphism is unique.

Sketch of proof. [Unicity] Follows from the determinism of Γ ′.

[⇐] ∃ϕ : Γ → Γ ′ homomorphism ⇒ L(Γ) ⩽ L(Γ) ⇒ 〈Γ〉 ⩽ 〈Γ〉.

[⇒]

Take ϕ() = ′, and for 6= p ∈ V(Γ) let u p v be reduced.
Then uv is reduced (no cancellation) and uv ∈ 〈Γ〉 ⇒ uv ∈ 〈Γ ′〉.
Let ′ u p ′ v ′ be reduced. We define ϕ(p) = p ′.
(i) ϕ : Γ → Γ ′ is well defined by the determinism of Γ ′ (why?).
(ii) ϕ : Γ → Γ ′ is a homomorphism: given e ≡ p a q, let

u p a q v be reduced,
hence uav ∈ 〈Γ〉 ⩽ 〈Γ ′〉 (no cancellation), and therefore
there exists ′ u

ϕ(p) a ϕ(q) v ′ reduced. So ϕ(p) a ϕ(q).

A CRUCIAL RESULT

Theorem
Let Γ , Γ ′ be reduced (pointed and involutive) A-automata. Then,

〈Γ〉 ⩽ 〈Γ ′〉 ⇔ ∃ϕ : Γ → Γ ′ homomorphism

and, if so, the homomorphism is unique.

Sketch of proof. [Unicity] Follows from the determinism of Γ ′.

[⇐] ∃ϕ : Γ → Γ ′ homomorphism ⇒ L(Γ) ⩽ L(Γ) ⇒ 〈Γ〉 ⩽ 〈Γ〉.

[⇒] Take ϕ() = ′,

and for 6= p ∈ V(Γ) let u p v be reduced.
Then uv is reduced (no cancellation) and uv ∈ 〈Γ〉 ⇒ uv ∈ 〈Γ ′〉.
Let ′ u p ′ v ′ be reduced. We define ϕ(p) = p ′.
(i) ϕ : Γ → Γ ′ is well defined by the determinism of Γ ′ (why?).
(ii) ϕ : Γ → Γ ′ is a homomorphism: given e ≡ p a q, let

u p a q v be reduced,
hence uav ∈ 〈Γ〉 ⩽ 〈Γ ′〉 (no cancellation), and therefore
there exists ′ u

ϕ(p) a ϕ(q) v ′ reduced. So ϕ(p) a ϕ(q).

A CRUCIAL RESULT

Theorem
Let Γ , Γ ′ be reduced (pointed and involutive) A-automata. Then,

〈Γ〉 ⩽ 〈Γ ′〉 ⇔ ∃ϕ : Γ → Γ ′ homomorphism

and, if so, the homomorphism is unique.

Sketch of proof. [Unicity] Follows from the determinism of Γ ′.

[⇐] ∃ϕ : Γ → Γ ′ homomorphism ⇒ L(Γ) ⩽ L(Γ) ⇒ 〈Γ〉 ⩽ 〈Γ〉.

[⇒] Take ϕ() = ′, and for 6= p ∈ V(Γ) let u p v be reduced.

Then uv is reduced (no cancellation) and uv ∈ 〈Γ〉 ⇒ uv ∈ 〈Γ ′〉.
Let ′ u p ′ v ′ be reduced. We define ϕ(p) = p ′.
(i) ϕ : Γ → Γ ′ is well defined by the determinism of Γ ′ (why?).
(ii) ϕ : Γ → Γ ′ is a homomorphism: given e ≡ p a q, let

u p a q v be reduced,
hence uav ∈ 〈Γ〉 ⩽ 〈Γ ′〉 (no cancellation), and therefore
there exists ′ u

ϕ(p) a ϕ(q) v ′ reduced. So ϕ(p) a ϕ(q).

A CRUCIAL RESULT

Theorem
Let Γ , Γ ′ be reduced (pointed and involutive) A-automata. Then,

〈Γ〉 ⩽ 〈Γ ′〉 ⇔ ∃ϕ : Γ → Γ ′ homomorphism

and, if so, the homomorphism is unique.

Sketch of proof. [Unicity] Follows from the determinism of Γ ′.

[⇐] ∃ϕ : Γ → Γ ′ homomorphism ⇒ L(Γ) ⩽ L(Γ) ⇒ 〈Γ〉 ⩽ 〈Γ〉.

[⇒] Take ϕ() = ′, and for 6= p ∈ V(Γ) let u p v be reduced.
Then uv is reduced (no cancellation) and uv ∈ 〈Γ〉 ⇒ uv ∈ 〈Γ ′〉.

Let ′ u p ′ v ′ be reduced. We define ϕ(p) = p ′.
(i) ϕ : Γ → Γ ′ is well defined by the determinism of Γ ′ (why?).
(ii) ϕ : Γ → Γ ′ is a homomorphism: given e ≡ p a q, let

u p a q v be reduced,
hence uav ∈ 〈Γ〉 ⩽ 〈Γ ′〉 (no cancellation), and therefore
there exists ′ u

ϕ(p) a ϕ(q) v ′ reduced. So ϕ(p) a ϕ(q).

A CRUCIAL RESULT

Theorem
Let Γ , Γ ′ be reduced (pointed and involutive) A-automata. Then,

〈Γ〉 ⩽ 〈Γ ′〉 ⇔ ∃ϕ : Γ → Γ ′ homomorphism

and, if so, the homomorphism is unique.

Sketch of proof. [Unicity] Follows from the determinism of Γ ′.

[⇐] ∃ϕ : Γ → Γ ′ homomorphism ⇒ L(Γ) ⩽ L(Γ) ⇒ 〈Γ〉 ⩽ 〈Γ〉.

[⇒] Take ϕ() = ′, and for 6= p ∈ V(Γ) let u p v be reduced.
Then uv is reduced (no cancellation) and uv ∈ 〈Γ〉 ⇒ uv ∈ 〈Γ ′〉.
Let ′ u p ′ v ′ be reduced.

We define ϕ(p) = p ′.
(i) ϕ : Γ → Γ ′ is well defined by the determinism of Γ ′ (why?).
(ii) ϕ : Γ → Γ ′ is a homomorphism: given e ≡ p a q, let

u p a q v be reduced,
hence uav ∈ 〈Γ〉 ⩽ 〈Γ ′〉 (no cancellation), and therefore
there exists ′ u

ϕ(p) a ϕ(q) v ′ reduced. So ϕ(p) a ϕ(q).

A CRUCIAL RESULT

Theorem
Let Γ , Γ ′ be reduced (pointed and involutive) A-automata. Then,

〈Γ〉 ⩽ 〈Γ ′〉 ⇔ ∃ϕ : Γ → Γ ′ homomorphism

and, if so, the homomorphism is unique.

Sketch of proof. [Unicity] Follows from the determinism of Γ ′.

[⇐] ∃ϕ : Γ → Γ ′ homomorphism ⇒ L(Γ) ⩽ L(Γ) ⇒ 〈Γ〉 ⩽ 〈Γ〉.

[⇒] Take ϕ() = ′, and for 6= p ∈ V(Γ) let u p v be reduced.
Then uv is reduced (no cancellation) and uv ∈ 〈Γ〉 ⇒ uv ∈ 〈Γ ′〉.
Let ′ u p ′ v ′ be reduced. We define ϕ(p) = p ′.

(i) ϕ : Γ → Γ ′ is well defined by the determinism of Γ ′ (why?).
(ii) ϕ : Γ → Γ ′ is a homomorphism: given e ≡ p a q, let

u p a q v be reduced,
hence uav ∈ 〈Γ〉 ⩽ 〈Γ ′〉 (no cancellation), and therefore
there exists ′ u

ϕ(p) a ϕ(q) v ′ reduced. So ϕ(p) a ϕ(q).

A CRUCIAL RESULT

Theorem
Let Γ , Γ ′ be reduced (pointed and involutive) A-automata. Then,

〈Γ〉 ⩽ 〈Γ ′〉 ⇔ ∃ϕ : Γ → Γ ′ homomorphism

and, if so, the homomorphism is unique.

Sketch of proof. [Unicity] Follows from the determinism of Γ ′.

[⇐] ∃ϕ : Γ → Γ ′ homomorphism ⇒ L(Γ) ⩽ L(Γ) ⇒ 〈Γ〉 ⩽ 〈Γ〉.

[⇒] Take ϕ() = ′, and for 6= p ∈ V(Γ) let u p v be reduced.
Then uv is reduced (no cancellation) and uv ∈ 〈Γ〉 ⇒ uv ∈ 〈Γ ′〉.
Let ′ u p ′ v ′ be reduced. We define ϕ(p) = p ′.
(i) ϕ : Γ → Γ ′ is well defined by the determinism of Γ ′ (why?).

(ii) ϕ : Γ → Γ ′ is a homomorphism: given e ≡ p a q, let
u p a q v be reduced,

hence uav ∈ 〈Γ〉 ⩽ 〈Γ ′〉 (no cancellation), and therefore
there exists ′ u

ϕ(p) a ϕ(q) v ′ reduced. So ϕ(p) a ϕ(q).

A CRUCIAL RESULT

Theorem
Let Γ , Γ ′ be reduced (pointed and involutive) A-automata. Then,

〈Γ〉 ⩽ 〈Γ ′〉 ⇔ ∃ϕ : Γ → Γ ′ homomorphism

and, if so, the homomorphism is unique.

Sketch of proof. [Unicity] Follows from the determinism of Γ ′.

[⇐] ∃ϕ : Γ → Γ ′ homomorphism ⇒ L(Γ) ⩽ L(Γ) ⇒ 〈Γ〉 ⩽ 〈Γ〉.

[⇒] Take ϕ() = ′, and for 6= p ∈ V(Γ) let u p v be reduced.
Then uv is reduced (no cancellation) and uv ∈ 〈Γ〉 ⇒ uv ∈ 〈Γ ′〉.
Let ′ u p ′ v ′ be reduced. We define ϕ(p) = p ′.
(i) ϕ : Γ → Γ ′ is well defined by the determinism of Γ ′ (why?).
(ii) ϕ : Γ → Γ ′ is a homomorphism:

given e ≡ p a q, let
u p a q v be reduced,

hence uav ∈ 〈Γ〉 ⩽ 〈Γ ′〉 (no cancellation), and therefore
there exists ′ u

ϕ(p) a ϕ(q) v ′ reduced. So ϕ(p) a ϕ(q).

A CRUCIAL RESULT

Theorem
Let Γ , Γ ′ be reduced (pointed and involutive) A-automata. Then,

〈Γ〉 ⩽ 〈Γ ′〉 ⇔ ∃ϕ : Γ → Γ ′ homomorphism

and, if so, the homomorphism is unique.

Sketch of proof. [Unicity] Follows from the determinism of Γ ′.

[⇐] ∃ϕ : Γ → Γ ′ homomorphism ⇒ L(Γ) ⩽ L(Γ) ⇒ 〈Γ〉 ⩽ 〈Γ〉.

[⇒] Take ϕ() = ′, and for 6= p ∈ V(Γ) let u p v be reduced.
Then uv is reduced (no cancellation) and uv ∈ 〈Γ〉 ⇒ uv ∈ 〈Γ ′〉.
Let ′ u p ′ v ′ be reduced. We define ϕ(p) = p ′.
(i) ϕ : Γ → Γ ′ is well defined by the determinism of Γ ′ (why?).
(ii) ϕ : Γ → Γ ′ is a homomorphism: given e ≡ p a q, let

u p a q v be reduced,

hence uav ∈ 〈Γ〉 ⩽ 〈Γ ′〉 (no cancellation), and therefore
there exists ′ u

ϕ(p) a ϕ(q) v ′ reduced. So ϕ(p) a ϕ(q).

A CRUCIAL RESULT

Theorem
Let Γ , Γ ′ be reduced (pointed and involutive) A-automata. Then,

〈Γ〉 ⩽ 〈Γ ′〉 ⇔ ∃ϕ : Γ → Γ ′ homomorphism

and, if so, the homomorphism is unique.

Sketch of proof. [Unicity] Follows from the determinism of Γ ′.

[⇐] ∃ϕ : Γ → Γ ′ homomorphism ⇒ L(Γ) ⩽ L(Γ) ⇒ 〈Γ〉 ⩽ 〈Γ〉.

[⇒] Take ϕ() = ′, and for 6= p ∈ V(Γ) let u p v be reduced.
Then uv is reduced (no cancellation) and uv ∈ 〈Γ〉 ⇒ uv ∈ 〈Γ ′〉.
Let ′ u p ′ v ′ be reduced. We define ϕ(p) = p ′.
(i) ϕ : Γ → Γ ′ is well defined by the determinism of Γ ′ (why?).
(ii) ϕ : Γ → Γ ′ is a homomorphism: given e ≡ p a q, let

u p a q v be reduced,
hence uav ∈ 〈Γ〉 ⩽ 〈Γ ′〉 (no cancellation),

and therefore
there exists ′ u

ϕ(p) a ϕ(q) v ′ reduced. So ϕ(p) a ϕ(q).

A CRUCIAL RESULT

Theorem
Let Γ , Γ ′ be reduced (pointed and involutive) A-automata. Then,

〈Γ〉 ⩽ 〈Γ ′〉 ⇔ ∃ϕ : Γ → Γ ′ homomorphism

and, if so, the homomorphism is unique.

Sketch of proof. [Unicity] Follows from the determinism of Γ ′.

[⇐] ∃ϕ : Γ → Γ ′ homomorphism ⇒ L(Γ) ⩽ L(Γ) ⇒ 〈Γ〉 ⩽ 〈Γ〉.

[⇒] Take ϕ() = ′, and for 6= p ∈ V(Γ) let u p v be reduced.
Then uv is reduced (no cancellation) and uv ∈ 〈Γ〉 ⇒ uv ∈ 〈Γ ′〉.
Let ′ u p ′ v ′ be reduced. We define ϕ(p) = p ′.
(i) ϕ : Γ → Γ ′ is well defined by the determinism of Γ ′ (why?).
(ii) ϕ : Γ → Γ ′ is a homomorphism: given e ≡ p a q, let

u p a q v be reduced,
hence uav ∈ 〈Γ〉 ⩽ 〈Γ ′〉 (no cancellation), and therefore
there exists ′ u

ϕ(p) a ϕ(q) v ′ reduced.

So ϕ(p) a ϕ(q).

A CRUCIAL RESULT

Theorem
Let Γ , Γ ′ be reduced (pointed and involutive) A-automata. Then,

〈Γ〉 ⩽ 〈Γ ′〉 ⇔ ∃ϕ : Γ → Γ ′ homomorphism

and, if so, the homomorphism is unique.

Sketch of proof. [Unicity] Follows from the determinism of Γ ′.

[⇐] ∃ϕ : Γ → Γ ′ homomorphism ⇒ L(Γ) ⩽ L(Γ) ⇒ 〈Γ〉 ⩽ 〈Γ〉.

[⇒] Take ϕ() = ′, and for 6= p ∈ V(Γ) let u p v be reduced.
Then uv is reduced (no cancellation) and uv ∈ 〈Γ〉 ⇒ uv ∈ 〈Γ ′〉.
Let ′ u p ′ v ′ be reduced. We define ϕ(p) = p ′.
(i) ϕ : Γ → Γ ′ is well defined by the determinism of Γ ′ (why?).
(ii) ϕ : Γ → Γ ′ is a homomorphism: given e ≡ p a q, let

u p a q v be reduced,
hence uav ∈ 〈Γ〉 ⩽ 〈Γ ′〉 (no cancellation), and therefore
there exists ′ u

ϕ(p) a ϕ(q) v ′ reduced. So ϕ(p) a ϕ(q).

STALLINGS BIJECTION

Corollary
If Γ is a reduced A-automata, then the only homomorphism Γ → Γ is
the identity.

Corollary
If Γ , Γ ′ are reduced A-automata, then

〈Γ〉 = 〈Γ ′〉 ⇔ Γ ' Γ ′

Theorem (Stallings, 1983)
Let FA be a free group with basis A. Then,

{ subgroups of FA } ↔ { (isom. classes of) reduced A-automata}
H 7→ St(H,A)
〈Γ〉 ← [Γ

is a bijection.

STALLINGS BIJECTION

Corollary
If Γ is a reduced A-automata, then the only homomorphism Γ → Γ is
the identity.

Corollary
If Γ , Γ ′ are reduced A-automata, then

〈Γ〉 = 〈Γ ′〉 ⇔ Γ ' Γ ′

Theorem (Stallings, 1983)
Let FA be a free group with basis A. Then,

{ subgroups of FA } ↔ { (isom. classes of) reduced A-automata}
H 7→ St(H,A)
〈Γ〉 ← [Γ

is a bijection.

STALLINGS BIJECTION

Corollary
If Γ is a reduced A-automata, then the only homomorphism Γ → Γ is
the identity.

Corollary
If Γ , Γ ′ are reduced A-automata, then

〈Γ〉 = 〈Γ ′〉 ⇔ Γ ' Γ ′

Theorem (Stallings, 1983)
Let FA be a free group with basis A. Then,

{ subgroups of FA } ↔ { (isom. classes of) reduced A-automata}
H 7→ St(H,A)
〈Γ〉 ← [Γ

is a bijection.

STALLINGS BIJECTION

Corollary
If Γ is a reduced A-automata, then the only homomorphism Γ → Γ is
the identity.

Corollary
If Γ , Γ ′ are reduced A-automata, then

〈Γ〉 = 〈Γ ′〉 ⇔ Γ ' Γ ′

Theorem (Stallings, 1983)
Let FA be a free group with basis A. Then,

{ subgroups of FA } ↔ { (isom. classes of) reduced A-automata}
H 7→ St(H,A)
〈Γ〉 ← [Γ

is a bijection.

STALLINGS FOLDING PROCESS

Given a finite generating set S = {w1, . . . ,wk} of H ⩽ FA = F{a1,...,an},

1. Represent every wi = ai1ai2ai3 · · · aip as a petal automaton

ai1
ai2

ai3

aip−2
aip−1

aip

2. Identify the basepoints to obtain the flower automaton F(S).

w1

w2

wk

3. Identify (fold) incident arcs with the same labels:

ai

ai

Stallings
folding

ai

4. Keep folding until (necessarily) reaching St(H). (why?)

STALLINGS FOLDING PROCESS

Given a finite generating set S = {w1, . . . ,wk} of H ⩽ FA = F{a1,...,an},

1. Represent every wi = ai1ai2ai3 · · · aip as a petal automaton

ai1
ai2

ai3

aip−2
aip−1

aip

2. Identify the basepoints to obtain the flower automaton F(S).

w1

w2

wk

3. Identify (fold) incident arcs with the same labels:

ai

ai

Stallings
folding

ai

4. Keep folding until (necessarily) reaching St(H). (why?)

STALLINGS FOLDING PROCESS

Given a finite generating set S = {w1, . . . ,wk} of H ⩽ FA = F{a1,...,an},

1. Represent every wi = ai1ai2ai3 · · · aip as a petal automaton

ai1
ai2

ai3

aip−2
aip−1

aip

2. Identify the basepoints to obtain the flower automaton F(S).

w1

w2

wk

3. Identify (fold) incident arcs with the same labels:

ai

ai

Stallings
folding

ai

4. Keep folding until (necessarily) reaching St(H). (why?)

STALLINGS FOLDING PROCESS

Given a finite generating set S = {w1, . . . ,wk} of H ⩽ FA = F{a1,...,an},

1. Represent every wi = ai1ai2ai3 · · · aip as a petal automaton

ai1
ai2

ai3

aip−2
aip−1

aip

2. Identify the basepoints to obtain the flower automaton F(S).

w1

w2

wk

3. Identify (fold) incident arcs with the same labels:

ai

ai

Stallings
folding

ai

4. Keep folding until (necessarily) reaching St(H). (why?)

STALLINGS FOLDING PROCESS

Given a finite generating set S = {w1, . . . ,wk} of H ⩽ FA = F{a1,...,an},

1. Represent every wi = ai1ai2ai3 · · · aip as a petal automaton

ai1
ai2

ai3

aip−2
aip−1

aip

2. Identify the basepoints to obtain the flower automaton F(S).

w1

w2

wk

3. Identify (fold) incident arcs with the same labels:

ai

ai

Stallings
folding

ai

4. Keep folding until (necessarily) reaching St(H). (why?)

STALLINGS FOLDING PROCESS

Given a finite generating set S = {w1, . . . ,wk} of H ⩽ FA = F{a1,...,an},

1. Represent every wi = ai1ai2ai3 · · · aip as a petal automaton

ai1
ai2

ai3

aip−2
aip−1

aip

2. Identify the basepoints to obtain the flower automaton F(S).

w1

w2

wk

3. Identify (fold) incident arcs with the same labels:

ai

ai

Stallings
folding

ai

4. Keep folding until (necessarily) reaching St(H). (why?)

STALLINGS FOLDING PROCESS

Given a finite generating set S = {w1, . . . ,wk} of H ⩽ FA = F{a1,...,an},

1. Represent every wi = ai1ai2ai3 · · · aip as a petal automaton

ai1
ai2

ai3

aip−2
aip−1

aip

2. Identify the basepoints to obtain the flower automaton F(S).

w1

w2

wk

3. Identify (fold) incident arcs with the same labels:

ai

ai

Stallings
folding

ai

4. Keep folding until (necessarily) reaching St(H). (why?)

STALLINGS FOLDING PROCESS

Given a finite generating set S = {w1, . . . ,wk} of H ⩽ FA = F{a1,...,an},

1. Represent every wi = ai1ai2ai3 · · · aip as a petal automaton

ai1
ai2

ai3

aip−2
aip−1

aip

2. Identify the basepoints to obtain the flower automaton F(S).

w1

w2

wk

3. Identify (fold) incident arcs with the same labels:

ai

ai

Stallings
folding

ai

4. Keep folding until (necessarily) reaching St(H). (why?)

STALLINGS FOLDING PROCESS

Given a finite generating set S = {w1, . . . ,wk} of H ⩽ FA = F{a1,...,an},

1. Represent every wi = ai1ai2ai3 · · · aip as a petal automaton

ai1
ai2

ai3

aip−2
aip−1

aip

2. Identify the basepoints to obtain the flower automaton F(S).

w1

w2

wk

3. Identify (fold) incident arcs with the same labels:

ai

ai

Stallings
folding

ai

4. Keep folding until (necessarily) reaching St(H). (why?)

COMPUTABILITY OF THE STALLINGS AUTOMATON (7→)

Let S = {w1, . . . ,wk} be a generating set of H ⩽ FA

Remark: The folding sequence on Fl(S) is not necessarily unique.

Proposition
If S is finite then any folding sequence on Fl(S) ends at St(H).

Proof. Recall:

• Fl(S) recognizes H and is core,
• foldings do not break coreness*,
• foldings do not change the recognized subgroup,
• every folding reduces the number of arcs by one.

If Fl(S) is finite, after a finite number of foldings, no more foldings are
available: the resulting object is deterministic & core (i.e., reduced)
and recognizes H. Since such an object is unique, it must be St(H).

Remark: the result of the folding process depends neither on the
folding sequence nor on the starting (finite) generating set for H.

COMPUTABILITY OF THE STALLINGS AUTOMATON (7→)

Let S = {w1, . . . ,wk} be a generating set of H ⩽ FA

Remark: The folding sequence on Fl(S) is not necessarily unique.

Proposition
If S is finite then any folding sequence on Fl(S) ends at St(H).

Proof. Recall:

• Fl(S) recognizes H and is core,
• foldings do not break coreness*,
• foldings do not change the recognized subgroup,
• every folding reduces the number of arcs by one.

If Fl(S) is finite, after a finite number of foldings, no more foldings are
available: the resulting object is deterministic & core (i.e., reduced)
and recognizes H. Since such an object is unique, it must be St(H).

Remark: the result of the folding process depends neither on the
folding sequence nor on the starting (finite) generating set for H.

COMPUTABILITY OF THE STALLINGS AUTOMATON (7→)

Let S = {w1, . . . ,wk} be a generating set of H ⩽ FA

Remark: The folding sequence on Fl(S) is not necessarily unique.

Proposition
If S is finite then any folding sequence on Fl(S) ends at St(H).

Proof. Recall:

• Fl(S) recognizes H and is core,
• foldings do not break coreness*,
• foldings do not change the recognized subgroup,
• every folding reduces the number of arcs by one.

If Fl(S) is finite, after a finite number of foldings, no more foldings are
available: the resulting object is deterministic & core (i.e., reduced)
and recognizes H. Since such an object is unique, it must be St(H).

Remark: the result of the folding process depends neither on the
folding sequence nor on the starting (finite) generating set for H.

COMPUTABILITY OF THE STALLINGS AUTOMATON (7→)

Let S = {w1, . . . ,wk} be a generating set of H ⩽ FA

Remark: The folding sequence on Fl(S) is not necessarily unique.

Proposition
If S is finite then any folding sequence on Fl(S) ends at St(H).

Proof. Recall:

• Fl(S) recognizes H and is core,
• foldings do not break coreness*,
• foldings do not change the recognized subgroup,
• every folding reduces the number of arcs by one.

If Fl(S) is finite, after a finite number of foldings, no more foldings are
available: the resulting object is deterministic & core (i.e., reduced)
and recognizes H. Since such an object is unique, it must be St(H).

Remark: the result of the folding process depends neither on the
folding sequence nor on the starting (finite) generating set for H.

COMPUTABILITY OF THE STALLINGS AUTOMATON (7→)

Let S = {w1, . . . ,wk} be a generating set of H ⩽ FA

Remark: The folding sequence on Fl(S) is not necessarily unique.

Proposition
If S is finite then any folding sequence on Fl(S) ends at St(H).

Proof. Recall:

• Fl(S) recognizes H and is core,
• foldings do not break coreness*,
• foldings do not change the recognized subgroup,
• every folding reduces the number of arcs by one.

If Fl(S) is finite, after a finite number of foldings, no more foldings are
available: the resulting object is deterministic & core (i.e., reduced)
and recognizes H. Since such an object is unique, it must be St(H).

Remark: the result of the folding process depends neither on the
folding sequence nor on the starting (finite) generating set for H.

COMPUTABILITY OF THE STALLINGS AUTOMATON (7→)

Let S = {w1, . . . ,wk} be a generating set of H ⩽ FA

Remark: The folding sequence on Fl(S) is not necessarily unique.

Proposition
If S is finite then any folding sequence on Fl(S) ends at St(H).

Proof. Recall:
• Fl(S) recognizes H and is core,

• foldings do not break coreness*,
• foldings do not change the recognized subgroup,
• every folding reduces the number of arcs by one.

If Fl(S) is finite, after a finite number of foldings, no more foldings are
available: the resulting object is deterministic & core (i.e., reduced)
and recognizes H. Since such an object is unique, it must be St(H).

Remark: the result of the folding process depends neither on the
folding sequence nor on the starting (finite) generating set for H.

COMPUTABILITY OF THE STALLINGS AUTOMATON (7→)

Let S = {w1, . . . ,wk} be a generating set of H ⩽ FA

Remark: The folding sequence on Fl(S) is not necessarily unique.

Proposition
If S is finite then any folding sequence on Fl(S) ends at St(H).

Proof. Recall:
• Fl(S) recognizes H and is core,
• foldings do not break coreness*,

• foldings do not change the recognized subgroup,
• every folding reduces the number of arcs by one.

If Fl(S) is finite, after a finite number of foldings, no more foldings are
available: the resulting object is deterministic & core (i.e., reduced)
and recognizes H. Since such an object is unique, it must be St(H).

Remark: the result of the folding process depends neither on the
folding sequence nor on the starting (finite) generating set for H.

COMPUTABILITY OF THE STALLINGS AUTOMATON (7→)

Let S = {w1, . . . ,wk} be a generating set of H ⩽ FA

Remark: The folding sequence on Fl(S) is not necessarily unique.

Proposition
If S is finite then any folding sequence on Fl(S) ends at St(H).

Proof. Recall:
• Fl(S) recognizes H and is core,
• foldings do not break coreness*,
• foldings do not change the recognized subgroup,

• every folding reduces the number of arcs by one.

If Fl(S) is finite, after a finite number of foldings, no more foldings are
available: the resulting object is deterministic & core (i.e., reduced)
and recognizes H. Since such an object is unique, it must be St(H).

Remark: the result of the folding process depends neither on the
folding sequence nor on the starting (finite) generating set for H.

COMPUTABILITY OF THE STALLINGS AUTOMATON (7→)

Let S = {w1, . . . ,wk} be a generating set of H ⩽ FA

Remark: The folding sequence on Fl(S) is not necessarily unique.

Proposition
If S is finite then any folding sequence on Fl(S) ends at St(H).

Proof. Recall:
• Fl(S) recognizes H and is core,
• foldings do not break coreness*,
• foldings do not change the recognized subgroup,
• every folding reduces the number of arcs by one.

If Fl(S) is finite, after a finite number of foldings, no more foldings are
available: the resulting object is deterministic & core (i.e., reduced)
and recognizes H. Since such an object is unique, it must be St(H).

Remark: the result of the folding process depends neither on the
folding sequence nor on the starting (finite) generating set for H.

COMPUTABILITY OF THE STALLINGS AUTOMATON (7→)

Let S = {w1, . . . ,wk} be a generating set of H ⩽ FA

Remark: The folding sequence on Fl(S) is not necessarily unique.

Proposition
If S is finite then any folding sequence on Fl(S) ends at St(H).

Proof. Recall:
• Fl(S) recognizes H and is core,
• foldings do not break coreness*,
• foldings do not change the recognized subgroup,
• every folding reduces the number of arcs by one.

If Fl(S) is finite, after a finite number of foldings, no more foldings are
available: the resulting object is deterministic & core (i.e., reduced)
and recognizes H. Since such an object is unique, it must be St(H).

Remark: the result of the folding process depends neither on the
folding sequence nor on the starting (finite) generating set for H.

COMPUTABILITY OF THE STALLINGS AUTOMATON (7→)

Let S = {w1, . . . ,wk} be a generating set of H ⩽ FA

Remark: The folding sequence on Fl(S) is not necessarily unique.

Proposition
If S is finite then any folding sequence on Fl(S) ends at St(H).

Proof. Recall:
• Fl(S) recognizes H and is core,
• foldings do not break coreness*,
• foldings do not change the recognized subgroup,
• every folding reduces the number of arcs by one.

If Fl(S) is finite, after a finite number of foldings, no more foldings are
available: the resulting object is deterministic & core (i.e., reduced)
and recognizes H. Since such an object is unique, it must be St(H).

Remark: the result of the folding process depends neither on the
folding sequence nor on the starting (finite) generating set for H.

EXAMPLE

Let H = 〈a−1bab−1︸ ︷︷ ︸
u1

, a3︸︷︷︸
u2

, abab−1︸ ︷︷ ︸
u3

〉 ⩽ F{a,b}.

Then, we start by drawing the flower automaton Fl(u1,u2,u3):

Γ0=Fl(S)

a
b

Γ1 Γ2

Γ3Γ4Γ5

Γ6=St(H)

a b

EXAMPLE

Let H = 〈a−1bab−1︸ ︷︷ ︸
u1

, a3︸︷︷︸
u2

, abab−1︸ ︷︷ ︸
u3

〉 ⩽ F{a,b}.

Then, we start by drawing the flower automaton Fl(u1,u2,u3):

Γ0=Fl(S)

a
b

Γ1 Γ2

Γ3Γ4Γ5

Γ6=St(H)

a b

EXAMPLE

Let H = 〈a−1bab−1︸ ︷︷ ︸
u1

, a3︸︷︷︸
u2

, abab−1︸ ︷︷ ︸
u3

〉 ⩽ F{a,b}.

Then, we start by drawing the flower automaton Fl(u1,u2,u3):

Γ0=Fl(S)

a
b

Γ1 Γ2

Γ3Γ4Γ5

Γ6=St(H)

a b

EXAMPLE

Let H = 〈a−1bab−1︸ ︷︷ ︸
u1

, a3︸︷︷︸
u2

, abab−1︸ ︷︷ ︸
u3

〉 ⩽ F{a,b}.

Then, we start by drawing the flower automaton Fl(u1,u2,u3):

Γ0=Fl(S)

a
b

Γ1 Γ2

Γ3Γ4Γ5

Γ6=St(H)

a b

EXAMPLE

Let H = 〈a−1bab−1︸ ︷︷ ︸
u1

, a3︸︷︷︸
u2

, abab−1︸ ︷︷ ︸
u3

〉 ⩽ F{a,b}.

Then, we start by drawing the flower automaton Fl(u1,u2,u3):

Γ0=Fl(S)

a
b

Γ1

Γ2

Γ3Γ4Γ5

Γ6=St(H)

a b

EXAMPLE

Let H = 〈a−1bab−1︸ ︷︷ ︸
u1

, a3︸︷︷︸
u2

, abab−1︸ ︷︷ ︸
u3

〉 ⩽ F{a,b}.

Then, we start by drawing the flower automaton Fl(u1,u2,u3):

Γ0=Fl(S)

a
b

Γ1 Γ2

Γ3Γ4Γ5

Γ6=St(H)

a b

EXAMPLE

Let H = 〈a−1bab−1︸ ︷︷ ︸
u1

, a3︸︷︷︸
u2

, abab−1︸ ︷︷ ︸
u3

〉 ⩽ F{a,b}.

Then, we start by drawing the flower automaton Fl(u1,u2,u3):

Γ0=Fl(S)

a
b

Γ1 Γ2

Γ3

Γ4Γ5

Γ6=St(H)

a b

EXAMPLE

Let H = 〈a−1bab−1︸ ︷︷ ︸
u1

, a3︸︷︷︸
u2

, abab−1︸ ︷︷ ︸
u3

〉 ⩽ F{a,b}.

Then, we start by drawing the flower automaton Fl(u1,u2,u3):

Γ0=Fl(S)

a
b

Γ1 Γ2

Γ3Γ4

Γ5

Γ6=St(H)

a b

EXAMPLE

Let H = 〈a−1bab−1︸ ︷︷ ︸
u1

, a3︸︷︷︸
u2

, abab−1︸ ︷︷ ︸
u3

〉 ⩽ F{a,b}.

Then, we start by drawing the flower automaton Fl(u1,u2,u3):

Γ0=Fl(S)

a
b

Γ1 Γ2

Γ3Γ4Γ5

Γ6=St(H)

a b

EXAMPLE

Let H = 〈a−1bab−1︸ ︷︷ ︸
u1

, a3︸︷︷︸
u2

, abab−1︸ ︷︷ ︸
u3

〉 ⩽ F{a,b}.

Then, we start by drawing the flower automaton Fl(u1,u2,u3):

Γ0=Fl(S)

a
b

Γ1 Γ2

Γ3Γ4Γ5

Γ6=St(H)

a b

COMPUTABILITY OF GENERATORS (←[). FREENESS

Theorem

Let Γ be a connected A-automaton, let T be an spanning tree of Γ ,
and let

ST = { ℓ(
T • e • T

) : e ∈ E+Γ ∖ ET }
Then,

i) ST is a generating set for 〈Γ〉,
ii) if Γ is deterministic, then 〈Γ〉 is free with basis ST, (rk〈Γ〉 = rk Γ)

iii) if Γ is reduced, then 〈Γ〉 is f.g. if and only if Γ is finite, and then

rk〈Γ〉 = 1− #VΓ + #E+Γ

COMPUTABILITY OF GENERATORS (←[). FREENESS
Theorem

Let Γ be a connected A-automaton, let T be an spanning tree of Γ ,
and let

ST = { ℓ(
T • e • T

) : e ∈ E+Γ ∖ ET }
Then,

i) ST is a generating set for 〈Γ〉,
ii) if Γ is deterministic, then 〈Γ〉 is free with basis ST, (rk〈Γ〉 = rk Γ)

iii) if Γ is reduced, then 〈Γ〉 is f.g. if and only if Γ is finite, and then

rk〈Γ〉 = 1− #VΓ + #E+Γ

COMPUTABILITY OF GENERATORS (←[). FREENESS
Theorem

Let Γ be a connected A-automaton, let T be an spanning tree of Γ ,
and let

ST = { ℓ(
T • e • T

) : e ∈ E+Γ ∖ ET }
Then,
i) ST is a generating set for 〈Γ〉,

ii) if Γ is deterministic, then 〈Γ〉 is free with basis ST, (rk〈Γ〉 = rk Γ)

iii) if Γ is reduced, then 〈Γ〉 is f.g. if and only if Γ is finite, and then

rk〈Γ〉 = 1− #VΓ + #E+Γ

COMPUTABILITY OF GENERATORS (←[). FREENESS
Theorem

Let Γ be a connected A-automaton, let T be an spanning tree of Γ ,
and let

ST = { ℓ(
T • e • T

) : e ∈ E+Γ ∖ ET }
Then,
i) ST is a generating set for 〈Γ〉,

ii) if Γ is deterministic, then 〈Γ〉 is free with basis ST, (rk〈Γ〉 = rk Γ)

iii) if Γ is reduced, then 〈Γ〉 is f.g. if and only if Γ is finite, and then

rk〈Γ〉 = 1− #VΓ + #E+Γ

Sketch of proof. i) Let w = ℓ(γ) ∈ 〈Γ〉, where γ is reduced. Write:

γ :
T •

eϵ1
1 • T •

eϵ2
2 • T • · · · • T •

eϵl
l • T

where e1, . . . , el ∈ E+Γ ∖ ET and ϵj = ±1.

COMPUTABILITY OF GENERATORS (←[). FREENESS
Theorem

Let Γ be a connected A-automaton, let T be an spanning tree of Γ ,
and let

ST = { ℓ(
T • e • T

) : e ∈ E+Γ ∖ ET }
Then,
i) ST is a generating set for 〈Γ〉,

ii) if Γ is deterministic, then 〈Γ〉 is free with basis ST, (rk〈Γ〉 = rk Γ)

iii) if Γ is reduced, then 〈Γ〉 is f.g. if and only if Γ is finite, and then

rk〈Γ〉 = 1− #VΓ + #E+Γ

Sketch of proof. i) Let w = ℓ(γ) ∈ 〈Γ〉, where γ is reduced. Write:

γ :
T •

eϵ1
1 • T •

eϵ2
2 • T • · · · • T •

eϵl
l • T

where e1, . . . , el ∈ E+Γ ∖ ET and ϵj = ±1. Now consider

γ ′ :
T •

eϵ1
1 • T T •

eϵ2
2 • T · · · T •

eϵl
l • T

It is clear that w = ℓ(γ) = ℓ(γ ′) = wϵ1
e1 w

ϵ2
e2 · · ·w

ϵl
el ∈ 〈ST〉.

COMPUTABILITY OF GENERATORS (←[). FREENESS
Theorem

Let Γ be a connected A-automaton, let T be an spanning tree of Γ ,
and let

ST = { ℓ(
T • e • T

) : e ∈ E+Γ ∖ ET }
Then,
i) ST is a generating set for 〈Γ〉,
ii) if Γ is deterministic, then 〈Γ〉 is free with basis ST, (rk〈Γ〉 = rk Γ)

iii) if Γ is reduced, then 〈Γ〉 is f.g. if and only if Γ is finite, and then

rk〈Γ〉 = 1− #VΓ + #E+Γ

Sketch of proof.

COMPUTABILITY OF GENERATORS (←[). FREENESS
Theorem

Let Γ be a connected A-automaton, let T be an spanning tree of Γ ,
and let

ST = { ℓ(
T • e • T

) : e ∈ E+Γ ∖ ET }
Then,
i) ST is a generating set for 〈Γ〉,
ii) if Γ is deterministic, then 〈Γ〉 is free with basis ST, (rk〈Γ〉 = rk Γ)

iii) if Γ is reduced, then 〈Γ〉 is f.g. if and only if Γ is finite, and then

rk〈Γ〉 = 1− #VΓ + #E+Γ

Sketch of proof. ii) Let 1 6= w = wϵ1
e1 w

ϵ2
e2 · · ·w

ϵl
el reduced in ST = {wei }i.

Then,
w = ℓ

(T •
eϵ1
1 • T T •

eϵ2
2 • T · · · T •

eϵl
l • T)

= ℓ
(T •

eϵ1
1 • T •

eϵ2
2 • T • · · · • T •

eϵl
l • T)

.

The last walk is nontrivial and reduced. Since Γ is deterministic, w 6= 1.

COMPUTABILITY OF GENERATORS (←[). FREENESS
Theorem

Let Γ be a connected A-automaton, let T be an spanning tree of Γ ,
and let

ST = { ℓ(
T • e • T

) : e ∈ E+Γ ∖ ET }
Then,
i) ST is a generating set for 〈Γ〉,
ii) if Γ is deterministic, then 〈Γ〉 is free with basis ST, (rk〈Γ〉 = rk Γ)

iii) if Γ is reduced, then 〈Γ〉 is f.g. if and only if Γ is finite, and then

rk〈Γ〉 = 1− #VΓ + #E+Γ

Sketch of proof. ii) Let 1 6= w = wϵ1
e1 w

ϵ2
e2 · · ·w

ϵl
el reduced in ST = {wei }i.

Then,
w = ℓ

(T •
eϵ1
1 • T T •

eϵ2
2 • T · · · T •

eϵl
l • T)

= ℓ
(T •

eϵ1
1 • T •

eϵ2
2 • T • · · · • T •

eϵl
l • T)

.

The last walk is nontrivial and reduced. Since Γ is deterministic, w 6= 1.

COMPUTABILITY OF GENERATORS (←[). FREENESS
Theorem

Let Γ be a connected A-automaton, let T be an spanning tree of Γ ,
and let

ST = { ℓ(
T • e • T

) : e ∈ E+Γ ∖ ET }
Then,
i) ST is a generating set for 〈Γ〉,
ii) if Γ is deterministic, then 〈Γ〉 is free with basis ST, (rk〈Γ〉 = rk Γ)

iii) if Γ is reduced, then 〈Γ〉 is f.g. if and only if Γ is finite, and then

rk〈Γ〉 = 1− #VΓ + #E+Γ

Sketch of proof.

COMPUTABILITY OF GENERATORS (←[). FREENESS
Theorem

Let Γ be a connected A-automaton, let T be an spanning tree of Γ ,
and let

ST = { ℓ(
T • e • T

) : e ∈ E+Γ ∖ ET }
Then,
i) ST is a generating set for 〈Γ〉,
ii) if Γ is deterministic, then 〈Γ〉 is free with basis ST, (rk〈Γ〉 = rk Γ)

iii) if Γ is reduced, then 〈Γ〉 is f.g. if and only if Γ is finite, and then

rk〈Γ〉 = 1− #VΓ + #E+Γ

Sketch of proof. iii) Assume that Γ is reduced.
If Γ is finite, then rk〈Γ〉 = #(E+ ∖ ET) < ∞.

If rk Γ = rk(core(Γ)) < ∞ then Γ is finite (why?).
Then, rk〈Γ〉 = rk Γ = #EΓ+ − #VΓ + 1.

EXAMPLE

Let H = 〈a−1bab−1︸ ︷︷ ︸
u1

, a3︸︷︷︸
u2

, abab−1︸ ︷︷ ︸
u3

〉 ⩽ F{a,b}.

Then, we start by drawing the flower automaton Fl(u1,u2,u3):

Γ0=Fl(S)

a
b

Γ1 Γ2

Γ3Γ4Γ5

Γ6=St(H)

a b

Hence, {a,bab−1} is a free basis of H,
which is free of rank 2.

EXAMPLE

Let H = 〈a−1bab−1︸ ︷︷ ︸
u1

, a3︸︷︷︸
u2

, abab−1︸ ︷︷ ︸
u3

〉 ⩽ F{a,b}.

Then, we start by drawing the flower automaton Fl(u1,u2,u3):

Γ0=Fl(S)

a
b

Γ1 Γ2

Γ3Γ4Γ5

Γ6=St(H)

a b

Hence, {a,bab−1} is a free basis of H,
which is free of rank 2.

EXAMPLE

Let H = 〈a−1bab−1︸ ︷︷ ︸
u1

, a3︸︷︷︸
u2

, abab−1︸ ︷︷ ︸
u3

〉 ⩽ F{a,b}.

Then, we start by drawing the flower automaton Fl(u1,u2,u3):

Γ0=Fl(S)

a
b

Γ1 Γ2

Γ3Γ4Γ5

Γ6=St(H)

a b
Hence, {a,bab−1} is a free basis of H,

which is free of rank 2.

EXAMPLE

Let H = 〈a−1bab−1︸ ︷︷ ︸
u1

, a3︸︷︷︸
u2

, abab−1︸ ︷︷ ︸
u3

〉 ⩽ F{a,b}.

Then, we start by drawing the flower automaton Fl(u1,u2,u3):

Γ0=Fl(S)

a
b

Γ1 Γ2

Γ3Γ4Γ5

Γ6=St(H)

a b
Hence, {a,bab−1} is a free basis of H,
which is free of rank 2.

STALLINGS BIJECTION (FULL RESULT)

Let FA be the free group with basis A.

Theorem
There exists a (computable) bijection:

{(f.g.) subgroups of FA} −→ S = {(finite) reduced A-automata}
H 7−→ St(H,A)

(Stallings automaton of H)

〈Γ〉 ← [Γ

Sketch of computability:
[7→] Let S = {w1, . . . ,wk} ⊆ FA such that 〈S〉 = H,

w1

w2

wk
= FS

φ1↷ Γ (1)
φ2↷ · · ·

φp↷ Γ (p) = St(H,A) .

[← [] Given Γ ∈ S, take T a spanning tree of Γ ,{
ℓ(

T • ei • T
) : ei ∈ E+Γ \ ET

}
is a basis for the subgroup H = 〈Γ〉.

STALLINGS BIJECTION (FULL RESULT)

Let FA be the free group with basis A.

Theorem
There exists a (computable) bijection:

{(f.g.) subgroups of FA} −→ S = {(finite) reduced A-automata}
H 7−→ St(H,A)

(Stallings automaton of H)

〈Γ〉 ← [Γ

Sketch of computability:
[7→] Let S = {w1, . . . ,wk} ⊆ FA such that 〈S〉 = H,

w1

w2

wk
= FS

φ1↷ Γ (1)
φ2↷ · · ·

φp↷ Γ (p) = St(H,A) .

[← [] Given Γ ∈ S, take T a spanning tree of Γ ,{
ℓ(

T • ei • T
) : ei ∈ E+Γ \ ET

}
is a basis for the subgroup H = 〈Γ〉.

STALLINGS BIJECTION (FULL RESULT)

Let FA be the free group with basis A.

Theorem
There exists a (computable) bijection:

{(f.g.) subgroups of FA} −→ S = {(finite) reduced A-automata}
H 7−→ St(H,A)

(Stallings automaton of H)

〈Γ〉 ← [Γ

Sketch of computability:
[7→] Let S = {w1, . . . ,wk} ⊆ FA such that 〈S〉 = H,

w1

w2

wk
= FS

φ1↷ Γ (1)
φ2↷ · · ·

φp↷ Γ (p) = St(H,A) .

[← [] Given Γ ∈ S, take T a spanning tree of Γ ,{
ℓ(

T • ei • T
) : ei ∈ E+Γ \ ET

}
is a basis for the subgroup H = 〈Γ〉.

STALLINGS BIJECTION (FULL RESULT)

Let FA be the free group with basis A.

Theorem
There exists a (computable) bijection:

{(f.g.) subgroups of FA} −→ S = {(finite) reduced A-automata}
H 7−→ St(H,A)

(Stallings automaton of H)

〈Γ〉 ← [Γ

Sketch of computability:
[7→] Let S = {w1, . . . ,wk} ⊆ FA such that 〈S〉 = H,

w1

w2

wk

= FS

φ1↷ Γ (1)
φ2↷ · · ·

φp↷ Γ (p) = St(H,A) .

[← [] Given Γ ∈ S, take T a spanning tree of Γ ,{
ℓ(

T • ei • T
) : ei ∈ E+Γ \ ET

}
is a basis for the subgroup H = 〈Γ〉.

STALLINGS BIJECTION (FULL RESULT)

Let FA be the free group with basis A.

Theorem
There exists a (computable) bijection:

{(f.g.) subgroups of FA} −→ S = {(finite) reduced A-automata}
H 7−→ St(H,A)

(Stallings automaton of H)

〈Γ〉 ← [Γ

Sketch of computability:
[7→] Let S = {w1, . . . ,wk} ⊆ FA such that 〈S〉 = H,

w1

w2

wk
= FS

φ1↷ Γ (1)
φ2↷ · · ·

φp↷ Γ (p) = St(H,A) .

[← [] Given Γ ∈ S, take T a spanning tree of Γ ,{
ℓ(

T • ei • T
) : ei ∈ E+Γ \ ET

}
is a basis for the subgroup H = 〈Γ〉.

STALLINGS BIJECTION (FULL RESULT)

Let FA be the free group with basis A.

Theorem
There exists a (computable) bijection:

{(f.g.) subgroups of FA} −→ S = {(finite) reduced A-automata}
H 7−→ St(H,A)

(Stallings automaton of H)

〈Γ〉 ← [Γ

Sketch of computability:
[7→] Let S = {w1, . . . ,wk} ⊆ FA such that 〈S〉 = H,

w1

w2

wk
= FS

φ1↷ Γ (1)

φ2↷ · · ·
φp↷ Γ (p) = St(H,A) .

[← [] Given Γ ∈ S, take T a spanning tree of Γ ,{
ℓ(

T • ei • T
) : ei ∈ E+Γ \ ET

}
is a basis for the subgroup H = 〈Γ〉.

STALLINGS BIJECTION (FULL RESULT)

Let FA be the free group with basis A.

Theorem
There exists a (computable) bijection:

{(f.g.) subgroups of FA} −→ S = {(finite) reduced A-automata}
H 7−→ St(H,A)

(Stallings automaton of H)

〈Γ〉 ← [Γ

Sketch of computability:
[7→] Let S = {w1, . . . ,wk} ⊆ FA such that 〈S〉 = H,

w1

w2

wk
= FS

φ1↷ Γ (1)
φ2↷ · · ·

φp↷ Γ (p)

= St(H,A) .

[← [] Given Γ ∈ S, take T a spanning tree of Γ ,{
ℓ(

T • ei • T
) : ei ∈ E+Γ \ ET

}
is a basis for the subgroup H = 〈Γ〉.

STALLINGS BIJECTION (FULL RESULT)

Let FA be the free group with basis A.

Theorem
There exists a (computable) bijection:

{(f.g.) subgroups of FA} −→ S = {(finite) reduced A-automata}
H 7−→ St(H,A)

(Stallings automaton of H)

〈Γ〉 ← [Γ

Sketch of computability:
[7→] Let S = {w1, . . . ,wk} ⊆ FA such that 〈S〉 = H,

w1

w2

wk
= FS

φ1↷ Γ (1)
φ2↷ · · ·

φp↷ Γ (p)

= St(H,A) .

[← [] Given Γ ∈ S, take T a spanning tree of Γ ,{
ℓ(

T • ei • T
) : ei ∈ E+Γ \ ET

}
is a basis for the subgroup H = 〈Γ〉.

STALLINGS BIJECTION (FULL RESULT)

Let FA be the free group with basis A.

Theorem
There exists a (computable) bijection:

{(f.g.) subgroups of FA} −→ S = {(finite) reduced A-automata}
H 7−→ St(H,A) (Stallings automaton of H)
〈Γ〉 ← [Γ

Sketch of computability:
[7→] Let S = {w1, . . . ,wk} ⊆ FA such that 〈S〉 = H,

w1

w2

wk
= FS

φ1↷ Γ (1)
φ2↷ · · ·

φp↷ Γ (p) = St(H,A) .

[← [] Given Γ ∈ S, take T a spanning tree of Γ ,{
ℓ(

T • ei • T
) : ei ∈ E+Γ \ ET

}
is a basis for the subgroup H = 〈Γ〉.

STALLINGS BIJECTION (FULL RESULT)

Let FA be the free group with basis A.

Theorem
There exists a (computable) bijection:

{(f.g.) subgroups of FA} −→ S = {(finite) reduced A-automata}
H 7−→ St(H,A) (Stallings automaton of H)
〈Γ〉 ← [Γ

Sketch of computability:
[7→] Let S = {w1, . . . ,wk} ⊆ FA such that 〈S〉 = H,

w1

w2

wk
= FS

φ1↷ Γ (1)
φ2↷ · · ·

φp↷ Γ (p) = St(H,A) .

[← []

Given Γ ∈ S, take T a spanning tree of Γ ,{
ℓ(

T • ei • T
) : ei ∈ E+Γ \ ET

}
is a basis for the subgroup H = 〈Γ〉.

STALLINGS BIJECTION (FULL RESULT)

Let FA be the free group with basis A.

Theorem
There exists a (computable) bijection:

{(f.g.) subgroups of FA} −→ S = {(finite) reduced A-automata}
H 7−→ St(H,A) (Stallings automaton of H)
〈Γ〉 ← [Γ

Sketch of computability:
[7→] Let S = {w1, . . . ,wk} ⊆ FA such that 〈S〉 = H,

w1

w2

wk
= FS

φ1↷ Γ (1)
φ2↷ · · ·

φp↷ Γ (p) = St(H,A) .

[← [] Given Γ ∈ S, take T a spanning tree of Γ ,

{
ℓ(

T • ei • T
) : ei ∈ E+Γ \ ET

}
is a basis for the subgroup H = 〈Γ〉.

STALLINGS BIJECTION (FULL RESULT)

Let FA be the free group with basis A.

Theorem
There exists a (computable) bijection:

{(f.g.) subgroups of FA} −→ S = {(finite) reduced A-automata}
H 7−→ St(H,A) (Stallings automaton of H)
〈Γ〉 ← [Γ

Sketch of computability:
[7→] Let S = {w1, . . . ,wk} ⊆ FA such that 〈S〉 = H,

w1

w2

wk
= FS

φ1↷ Γ (1)
φ2↷ · · ·

φp↷ Γ (p) = St(H,A) .

[← [] Given Γ ∈ S, take T a spanning tree of Γ ,{
ℓ(

T • ei • T
) : ei ∈ E+Γ \ ET

}
is a basis for the subgroup H = 〈Γ〉.

KINDS OF FOLDINGS

Let Γ be a pointed involutive A-automaton.

We distinguish two folding situations:
(1) Identify two nonparallel incident arcs with the same label:

a

a

(open folding)

a

(2) Identify two parallel arcs with the same label:

a

a

(closed folding)

a

Remark: If Γ is finite and Γ ↷ Γ ′ is a Stallings folding, then:

rk(Γ ′) =

{
rk(Γ) if Γ ↷ Γ ′ is open,
rk(Γ) − 1 if Γ ↷ Γ ′ is closed.

KINDS OF FOLDINGS

Let Γ be a pointed involutive A-automaton.

We distinguish two folding situations:

(1) Identify two nonparallel incident arcs with the same label:

a

a

(open folding)

a

(2) Identify two parallel arcs with the same label:

a

a

(closed folding)

a

Remark: If Γ is finite and Γ ↷ Γ ′ is a Stallings folding, then:

rk(Γ ′) =

{
rk(Γ) if Γ ↷ Γ ′ is open,
rk(Γ) − 1 if Γ ↷ Γ ′ is closed.

KINDS OF FOLDINGS

Let Γ be a pointed involutive A-automaton.

We distinguish two folding situations:
(1) Identify two nonparallel incident arcs with the same label:

a

a

(open folding)

a

(2) Identify two parallel arcs with the same label:

a

a

(closed folding)

a

Remark: If Γ is finite and Γ ↷ Γ ′ is a Stallings folding, then:

rk(Γ ′) =

{
rk(Γ) if Γ ↷ Γ ′ is open,
rk(Γ) − 1 if Γ ↷ Γ ′ is closed.

KINDS OF FOLDINGS

Let Γ be a pointed involutive A-automaton.

We distinguish two folding situations:
(1) Identify two nonparallel incident arcs with the same label:

a

a

(open folding)

a

(2) Identify two parallel arcs with the same label:

a

a

(closed folding)

a

Remark: If Γ is finite and Γ ↷ Γ ′ is a Stallings folding, then:

rk(Γ ′) =

{
rk(Γ) if Γ ↷ Γ ′ is open,
rk(Γ) − 1 if Γ ↷ Γ ′ is closed.

KINDS OF FOLDINGS

Let Γ be a pointed involutive A-automaton.

We distinguish two folding situations:
(1) Identify two nonparallel incident arcs with the same label:

a

a

(open folding)

a

(2) Identify two parallel arcs with the same label:

a

a

(closed folding)

a

Remark: If Γ is finite and Γ ↷ Γ ′ is a Stallings folding, then:

rk(Γ ′) =

{
rk(Γ) if Γ ↷ Γ ′ is open,
rk(Γ) − 1 if Γ ↷ Γ ′ is closed.

KINDS OF FOLDINGS

Let Γ be a pointed involutive A-automaton.

We distinguish two folding situations:
(1) Identify two nonparallel incident arcs with the same label:

a

a
(open folding)a

(2) Identify two parallel arcs with the same label:

a

a

(closed folding)

a

Remark: If Γ is finite and Γ ↷ Γ ′ is a Stallings folding, then:

rk(Γ ′) =

{
rk(Γ) if Γ ↷ Γ ′ is open,
rk(Γ) − 1 if Γ ↷ Γ ′ is closed.

KINDS OF FOLDINGS

Let Γ be a pointed involutive A-automaton.

We distinguish two folding situations:
(1) Identify two nonparallel incident arcs with the same label:

a

a
(open folding)a

(2) Identify two parallel arcs with the same label:

a

a

(closed folding)

a

Remark: If Γ is finite and Γ ↷ Γ ′ is a Stallings folding, then:

rk(Γ ′) =

{
rk(Γ) if Γ ↷ Γ ′ is open,
rk(Γ) − 1 if Γ ↷ Γ ′ is closed.

KINDS OF FOLDINGS

Let Γ be a pointed involutive A-automaton.

We distinguish two folding situations:
(1) Identify two nonparallel incident arcs with the same label:

a

a
(open folding)a

(2) Identify two parallel arcs with the same label:

a

a

(closed folding)

a

Remark: If Γ is finite and Γ ↷ Γ ′ is a Stallings folding, then:

rk(Γ ′) =

{
rk(Γ) if Γ ↷ Γ ′ is open,
rk(Γ) − 1 if Γ ↷ Γ ′ is closed.

KINDS OF FOLDINGS

Let Γ be a pointed involutive A-automaton.

We distinguish two folding situations:
(1) Identify two nonparallel incident arcs with the same label:

a

a
(open folding)a

(2) Identify two parallel arcs with the same label:

a

a

(closed folding)

a

Remark: If Γ is finite and Γ ↷ Γ ′ is a Stallings folding, then:

rk(Γ ′) =

{
rk(Γ) if Γ ↷ Γ ′ is open,
rk(Γ) − 1 if Γ ↷ Γ ′ is closed.

KINDS OF FOLDINGS

Let Γ be a pointed involutive A-automaton.

We distinguish two folding situations:
(1) Identify two nonparallel incident arcs with the same label:

a

a
(open folding)a

(2) Identify two parallel arcs with the same label:

a

a

(closed folding)a

Remark: If Γ is finite and Γ ↷ Γ ′ is a Stallings folding, then:

rk(Γ ′) =

{
rk(Γ) if Γ ↷ Γ ′ is open,
rk(Γ) − 1 if Γ ↷ Γ ′ is closed.

KINDS OF FOLDINGS

Let Γ be a pointed involutive A-automaton.

We distinguish two folding situations:
(1) Identify two nonparallel incident arcs with the same label:

a

a
(open folding)a

(2) Identify two parallel arcs with the same label:

a

a

(closed folding)a

Remark: If Γ is finite and Γ ↷ Γ ′ is a Stallings folding, then:

rk(Γ ′) =

{
rk(Γ) if Γ ↷ Γ ′ is open,
rk(Γ) − 1 if Γ ↷ Γ ′ is closed.

FUNDAMENTAL GROUP AND LOSS

Corollary
Let Γ be a connected A-automaton, let T be an spanning tree of Γ ,
and let ST be the set of T-petals of Γ . Then,

π (Γ̃) ' FST

and
µT : FST → 〈Γ〉
w(St) 7→ ℓ(w(ST))

is a surjective homomorphism of (free) groups.

Definition

If Γ is finite and Γ
ϕ1 Γ1

ϕ2 · · · ϕp
Γp = Γ is a folding sequence,

then the loss of Γ is:

loss(Γ) = rk(Γ) − rk〈Γ〉

= rk(Γ) − rk Γ

= # closed foldings in (ϕ1, . . . ,ϕp)

FUNDAMENTAL GROUP AND LOSS

Corollary
Let Γ be a connected A-automaton, let T be an spanning tree of Γ ,
and let ST be the set of T-petals of Γ . Then,

π (Γ̃) ' FST

and
µT : FST → 〈Γ〉
w(St) 7→ ℓ(w(ST))

is a surjective homomorphism of (free) groups.

Definition

If Γ is finite and Γ
ϕ1 Γ1

ϕ2 · · · ϕp
Γp = Γ is a folding sequence,

then the loss of Γ is:

loss(Γ) = rk(Γ) − rk〈Γ〉

= rk(Γ) − rk Γ

= # closed foldings in (ϕ1, . . . ,ϕp)

FUNDAMENTAL GROUP AND LOSS

Corollary
Let Γ be a connected A-automaton, let T be an spanning tree of Γ ,
and let ST be the set of T-petals of Γ . Then,

π (Γ̃) ' FST

and
µT : FST → 〈Γ〉
w(St) 7→ ℓ(w(ST))

is a surjective homomorphism of (free) groups.

Definition

If Γ is finite and Γ
ϕ1 Γ1

ϕ2 · · · ϕp
Γp = Γ is a folding sequence,

then the loss of Γ is:

loss(Γ) = rk(Γ) − rk〈Γ〉

= rk(Γ) − rk Γ

= # closed foldings in (ϕ1, . . . ,ϕp)

FUNDAMENTAL GROUP AND LOSS

Corollary
Let Γ be a connected A-automaton, let T be an spanning tree of Γ ,
and let ST be the set of T-petals of Γ . Then,

π (Γ̃) ' FST

and
µT : FST → 〈Γ〉
w(St) 7→ ℓ(w(ST))

is a surjective homomorphism of (free) groups.

Definition

If Γ is finite and Γ
ϕ1 Γ1

ϕ2 · · · ϕp
Γp = Γ is a folding sequence,

then the loss of Γ is:

loss(Γ) = rk(Γ) − rk〈Γ〉

= rk(Γ) − rk Γ

= # closed foldings in (ϕ1, . . . ,ϕp)

FUNDAMENTAL GROUP AND LOSS

Corollary
Let Γ be a connected A-automaton, let T be an spanning tree of Γ ,
and let ST be the set of T-petals of Γ . Then,

π (Γ̃) ' FST

and
µT : FST → 〈Γ〉
w(St) 7→ ℓ(w(ST))

is a surjective homomorphism of (free) groups.

Definition

If Γ is finite and Γ
ϕ1 Γ1

ϕ2 · · · ϕp
Γp = Γ is a folding sequence,

then the loss of Γ is:

loss(Γ) = rk(Γ) − rk〈Γ〉
= rk(Γ) − rk Γ

= # closed foldings in (ϕ1, . . . ,ϕp)

FUNDAMENTAL GROUP AND LOSS

Corollary
Let Γ be a connected A-automaton, let T be an spanning tree of Γ ,
and let ST be the set of T-petals of Γ . Then,

π (Γ̃) ' FST

and
µT : FST → 〈Γ〉
w(St) 7→ ℓ(w(ST))

is a surjective homomorphism of (free) groups.

Definition

If Γ is finite and Γ
ϕ1 Γ1

ϕ2 · · · ϕp
Γp = Γ is a folding sequence,

then the loss of Γ is:

loss(Γ) = rk(Γ) − rk〈Γ〉
= rk(Γ) − rk Γ

= # closed foldings in (ϕ1, . . . ,ϕp)

FIRST APPLICATIONS

FIRST APPLICATIONS

Theorem (Nielsen-Schreier)
Subgroups of free groups are again free.

Proposition
Given a finite subset S ⊆ Fn, a basis for (and hence the rank of) the
subgroup H = 〈S〉 ⩽ Fn is computable.

Proposition
For every κ ∈ [0,ℵ0] there exists H ⩽ F2 such that H ' Fκ (Fκ F2).

Proof: Draw it! For example take:

· · ·· · ·

…and remove all but a finite segment containing .

How many different subgroups of F2 are there?

FIRST APPLICATIONS

Theorem (Nielsen-Schreier)
Subgroups of free groups are again free.

Proposition
Given a finite subset S ⊆ Fn, a basis for (and hence the rank of) the
subgroup H = 〈S〉 ⩽ Fn is computable.

Proposition
For every κ ∈ [0,ℵ0] there exists H ⩽ F2 such that H ' Fκ (Fκ F2).

Proof: Draw it! For example take:

· · ·· · ·

…and remove all but a finite segment containing .

How many different subgroups of F2 are there?

FIRST APPLICATIONS

Theorem (Nielsen-Schreier)
Subgroups of free groups are again free.

Proposition
Given a finite subset S ⊆ Fn, a basis for (and hence the rank of) the
subgroup H = 〈S〉 ⩽ Fn is computable.

Proposition
For every κ ∈ [0,ℵ0] there exists H ⩽ F2 such that H ' Fκ (Fκ F2).

Proof: Draw it! For example take:

· · ·· · ·

…and remove all but a finite segment containing .

How many different subgroups of F2 are there?

FIRST APPLICATIONS

Theorem (Nielsen-Schreier)
Subgroups of free groups are again free.

Proposition
Given a finite subset S ⊆ Fn, a basis for (and hence the rank of) the
subgroup H = 〈S〉 ⩽ Fn is computable.

Proposition
For every κ ∈ [0,ℵ0] there exists H ⩽ F2 such that H ' Fκ (Fκ F2).

Proof: Draw it!

For example take:

· · ·· · ·

…and remove all but a finite segment containing .

How many different subgroups of F2 are there?

FIRST APPLICATIONS

Theorem (Nielsen-Schreier)
Subgroups of free groups are again free.

Proposition
Given a finite subset S ⊆ Fn, a basis for (and hence the rank of) the
subgroup H = 〈S〉 ⩽ Fn is computable.

Proposition
For every κ ∈ [0,ℵ0] there exists H ⩽ F2 such that H ' Fκ (Fκ F2).

Proof: Draw it! For example take:

· · ·· · ·

…and remove all but a finite segment containing .

How many different subgroups of F2 are there?

FIRST APPLICATIONS

Theorem (Nielsen-Schreier)
Subgroups of free groups are again free.

Proposition
Given a finite subset S ⊆ Fn, a basis for (and hence the rank of) the
subgroup H = 〈S〉 ⩽ Fn is computable.

Proposition
For every κ ∈ [0,ℵ0] there exists H ⩽ F2 such that H ' Fκ (Fκ F2).

Proof: Draw it! For example take:

· · ·· · ·

…and remove all but a finite segment containing .

How many different subgroups of F2 are there?

FIRST APPLICATIONS

Theorem (Nielsen-Schreier)
Subgroups of free groups are again free.

Proposition
Given a finite subset S ⊆ Fn, a basis for (and hence the rank of) the
subgroup H = 〈S〉 ⩽ Fn is computable.

Proposition
For every κ ∈ [0,ℵ0] there exists H ⩽ F2 such that H ' Fκ (Fκ F2).

Proof: Draw it! For example take:

· · ·· · ·

…and remove all but a finite segment containing .

How many different subgroups of F2 are there?

GENERATING SETS, BASES, AND HOPFIANITY

Remark
Let S ⊆ FA. Then,

i) 〈S〉 = FA ⇔ St(〈S〉) = Fl(A),

ii) S is free (in FA) ⇔ loss(Fl(S)) = 0.

Both conditions are algorithmically decidable if S is finite.

Theorem
FA ' FB ⇔ #A = #B.

Definition
A group is called Hopfian if every surjective endomorphism is
injective.

Theorem
Finitely generated free groups are Hopfian.

GENERATING SETS, BASES, AND HOPFIANITY

Remark
Let S ⊆ FA. Then,

i) 〈S〉 = FA ⇔ St(〈S〉) = Fl(A),

ii) S is free (in FA) ⇔ loss(Fl(S)) = 0.

Both conditions are algorithmically decidable if S is finite.

Theorem
FA ' FB ⇔ #A = #B.

Definition
A group is called Hopfian if every surjective endomorphism is
injective.

Theorem
Finitely generated free groups are Hopfian.

GENERATING SETS, BASES, AND HOPFIANITY

Remark
Let S ⊆ FA. Then,

i) 〈S〉 = FA ⇔ St(〈S〉) = Fl(A),

ii) S is free (in FA) ⇔ loss(Fl(S)) = 0.

Both conditions are algorithmically decidable if S is finite.

Theorem
FA ' FB ⇔ #A = #B.

Definition
A group is called Hopfian if every surjective endomorphism is
injective.

Theorem
Finitely generated free groups are Hopfian.

GENERATING SETS, BASES, AND HOPFIANITY

Remark
Let S ⊆ FA. Then,

i) 〈S〉 = FA ⇔ St(〈S〉) = Fl(A),

ii) S is free (in FA) ⇔ loss(Fl(S)) = 0.

Both conditions are algorithmically decidable if S is finite.

Theorem
FA ' FB ⇔ #A = #B.

Definition
A group is called Hopfian if every surjective endomorphism is
injective.

Theorem
Finitely generated free groups are Hopfian.

GENERATING SETS, BASES, AND HOPFIANITY

Remark
Let S ⊆ FA. Then,

i) 〈S〉 = FA ⇔ St(〈S〉) = Fl(A),

ii) S is free (in FA) ⇔ loss(Fl(S)) = 0.

Both conditions are algorithmically decidable if S is finite.

Theorem
FA ' FB ⇔ #A = #B.

Definition
A group is called Hopfian if every surjective endomorphism is
injective.

Theorem
Finitely generated free groups are Hopfian.

THE MEMBERSHIP PROBLEM

Theorem
The subgroup membership problem is solvable in FA = 〈A | −〉:
given v,u1, . . . ,un ∈ (Ã)∗, it is decidable whether v ∈ H = 〈u1, . . . ,un〉.
In this case, we can compute v as a word in {u1, . . . ,un}.

Proof of decidability
(1) reducing, we can assume U = {u1, . . . ,un} ⊆ R(A);
(2) draw the flower automaton Fl(U);
(3) apply an arbitrary sequence of foldings until getting a reduced

automaton Fl(U) · · · St (H);
(4) try to read v as (the label of) a walk in St (H), starting from ;
(5) if it not possible then v 6∈ H;
(6) if it is possible (in a unique way) but as an open walk then v 6∈ H;
(7) if it possible as a closed path (at), then v ∈ H.

When v ∈ H, how to express it as a word in {u1, . . . ,un}?

THE MEMBERSHIP PROBLEM

Theorem
The subgroup membership problem is solvable in FA = 〈A | −〉:
given v,u1, . . . ,un ∈ (Ã)∗, it is decidable whether v ∈ H = 〈u1, . . . ,un〉.
In this case, we can compute v as a word in {u1, . . . ,un}.

Proof of decidability
(1) reducing, we can assume U = {u1, . . . ,un} ⊆ R(A);

(2) draw the flower automaton Fl(U);
(3) apply an arbitrary sequence of foldings until getting a reduced

automaton Fl(U) · · · St (H);
(4) try to read v as (the label of) a walk in St (H), starting from ;
(5) if it not possible then v 6∈ H;
(6) if it is possible (in a unique way) but as an open walk then v 6∈ H;
(7) if it possible as a closed path (at), then v ∈ H.

When v ∈ H, how to express it as a word in {u1, . . . ,un}?

THE MEMBERSHIP PROBLEM

Theorem
The subgroup membership problem is solvable in FA = 〈A | −〉:
given v,u1, . . . ,un ∈ (Ã)∗, it is decidable whether v ∈ H = 〈u1, . . . ,un〉.
In this case, we can compute v as a word in {u1, . . . ,un}.

Proof of decidability
(1) reducing, we can assume U = {u1, . . . ,un} ⊆ R(A);
(2) draw the flower automaton Fl(U);

(3) apply an arbitrary sequence of foldings until getting a reduced
automaton Fl(U) · · · St (H);

(4) try to read v as (the label of) a walk in St (H), starting from ;
(5) if it not possible then v 6∈ H;
(6) if it is possible (in a unique way) but as an open walk then v 6∈ H;
(7) if it possible as a closed path (at), then v ∈ H.

When v ∈ H, how to express it as a word in {u1, . . . ,un}?

THE MEMBERSHIP PROBLEM

Theorem
The subgroup membership problem is solvable in FA = 〈A | −〉:
given v,u1, . . . ,un ∈ (Ã)∗, it is decidable whether v ∈ H = 〈u1, . . . ,un〉.
In this case, we can compute v as a word in {u1, . . . ,un}.

Proof of decidability
(1) reducing, we can assume U = {u1, . . . ,un} ⊆ R(A);
(2) draw the flower automaton Fl(U);
(3) apply an arbitrary sequence of foldings until getting a reduced

automaton Fl(U) · · · St (H);

(4) try to read v as (the label of) a walk in St (H), starting from ;
(5) if it not possible then v 6∈ H;
(6) if it is possible (in a unique way) but as an open walk then v 6∈ H;
(7) if it possible as a closed path (at), then v ∈ H.

When v ∈ H, how to express it as a word in {u1, . . . ,un}?

THE MEMBERSHIP PROBLEM

Theorem
The subgroup membership problem is solvable in FA = 〈A | −〉:
given v,u1, . . . ,un ∈ (Ã)∗, it is decidable whether v ∈ H = 〈u1, . . . ,un〉.
In this case, we can compute v as a word in {u1, . . . ,un}.

Proof of decidability
(1) reducing, we can assume U = {u1, . . . ,un} ⊆ R(A);
(2) draw the flower automaton Fl(U);
(3) apply an arbitrary sequence of foldings until getting a reduced

automaton Fl(U) · · · St (H);
(4) try to read v as (the label of) a walk in St (H), starting from ;

(5) if it not possible then v 6∈ H;
(6) if it is possible (in a unique way) but as an open walk then v 6∈ H;
(7) if it possible as a closed path (at), then v ∈ H.

When v ∈ H, how to express it as a word in {u1, . . . ,un}?

THE MEMBERSHIP PROBLEM

Theorem
The subgroup membership problem is solvable in FA = 〈A | −〉:
given v,u1, . . . ,un ∈ (Ã)∗, it is decidable whether v ∈ H = 〈u1, . . . ,un〉.
In this case, we can compute v as a word in {u1, . . . ,un}.

Proof of decidability
(1) reducing, we can assume U = {u1, . . . ,un} ⊆ R(A);
(2) draw the flower automaton Fl(U);
(3) apply an arbitrary sequence of foldings until getting a reduced

automaton Fl(U) · · · St (H);
(4) try to read v as (the label of) a walk in St (H), starting from ;
(5) if it not possible then v 6∈ H;

(6) if it is possible (in a unique way) but as an open walk then v 6∈ H;
(7) if it possible as a closed path (at), then v ∈ H.

When v ∈ H, how to express it as a word in {u1, . . . ,un}?

THE MEMBERSHIP PROBLEM

Theorem
The subgroup membership problem is solvable in FA = 〈A | −〉:
given v,u1, . . . ,un ∈ (Ã)∗, it is decidable whether v ∈ H = 〈u1, . . . ,un〉.
In this case, we can compute v as a word in {u1, . . . ,un}.

Proof of decidability
(1) reducing, we can assume U = {u1, . . . ,un} ⊆ R(A);
(2) draw the flower automaton Fl(U);
(3) apply an arbitrary sequence of foldings until getting a reduced

automaton Fl(U) · · · St (H);
(4) try to read v as (the label of) a walk in St (H), starting from ;
(5) if it not possible then v 6∈ H;
(6) if it is possible (in a unique way) but as an open walk then v 6∈ H;

(7) if it possible as a closed path (at), then v ∈ H.

When v ∈ H, how to express it as a word in {u1, . . . ,un}?

THE MEMBERSHIP PROBLEM

Theorem
The subgroup membership problem is solvable in FA = 〈A | −〉:
given v,u1, . . . ,un ∈ (Ã)∗, it is decidable whether v ∈ H = 〈u1, . . . ,un〉.
In this case, we can compute v as a word in {u1, . . . ,un}.

Proof of decidability
(1) reducing, we can assume U = {u1, . . . ,un} ⊆ R(A);
(2) draw the flower automaton Fl(U);
(3) apply an arbitrary sequence of foldings until getting a reduced

automaton Fl(U) · · · St (H);
(4) try to read v as (the label of) a walk in St (H), starting from ;
(5) if it not possible then v 6∈ H;
(6) if it is possible (in a unique way) but as an open walk then v 6∈ H;
(7) if it possible as a closed path (at), then v ∈ H.

When v ∈ H, how to express it as a word in {u1, . . . ,un}?

THE MEMBERSHIP PROBLEM

Theorem
The subgroup membership problem is solvable in FA = 〈A | −〉:
given v,u1, . . . ,un ∈ (Ã)∗, it is decidable whether v ∈ H = 〈u1, . . . ,un〉.
In this case, we can compute v as a word in {u1, . . . ,un}.

Proof of decidability
(1) reducing, we can assume U = {u1, . . . ,un} ⊆ R(A);
(2) draw the flower automaton Fl(U);
(3) apply an arbitrary sequence of foldings until getting a reduced

automaton Fl(U) · · · St (H);
(4) try to read v as (the label of) a walk in St (H), starting from ;
(5) if it not possible then v 6∈ H;
(6) if it is possible (in a unique way) but as an open walk then v 6∈ H;
(7) if it possible as a closed path (at), then v ∈ H.

When v ∈ H, how to express it as a word in {u1, . . . ,un}?

EXAMPLE

Consider F2 = 〈a,b〉 and the subgroup H = 〈u1,u2,u3〉 ⩽ F2, where

u1 = a−1bab−1, u2 = a3, u3 = abab−1.

Is it true that a ∈ H?

Is it true that aba2b−1a−50ba−30b−1 ∈ H?

Is it true that a2b ∈ H?

Is it true that ab20ab−20 ∈ H?

If yes, express them as a (unique?) word on {u1, u2, u3}.

Let us recover the construction of the Stallings automaton St(H)…

EXAMPLE

Consider F2 = 〈a,b〉 and the subgroup H = 〈u1,u2,u3〉 ⩽ F2, where

u1 = a−1bab−1, u2 = a3, u3 = abab−1.

Is it true that a ∈ H?

Is it true that aba2b−1a−50ba−30b−1 ∈ H?

Is it true that a2b ∈ H?

Is it true that ab20ab−20 ∈ H?

If yes, express them as a (unique?) word on {u1, u2, u3}.

Let us recover the construction of the Stallings automaton St(H)…

EXAMPLE

Consider F2 = 〈a,b〉 and the subgroup H = 〈u1,u2,u3〉 ⩽ F2, where

u1 = a−1bab−1, u2 = a3, u3 = abab−1.

Is it true that a ∈ H?

Is it true that aba2b−1a−50ba−30b−1 ∈ H?

Is it true that a2b ∈ H?

Is it true that ab20ab−20 ∈ H?

If yes, express them as a (unique?) word on {u1, u2, u3}.

Let us recover the construction of the Stallings automaton St(H)…

EXAMPLE

Consider F2 = 〈a,b〉 and the subgroup H = 〈u1,u2,u3〉 ⩽ F2, where

u1 = a−1bab−1, u2 = a3, u3 = abab−1.

Is it true that a ∈ H?

Is it true that aba2b−1a−50ba−30b−1 ∈ H?

Is it true that a2b ∈ H?

Is it true that ab20ab−20 ∈ H?

If yes, express them as a (unique?) word on {u1, u2, u3}.

Let us recover the construction of the Stallings automaton St(H)…

EXAMPLE

Consider F2 = 〈a,b〉 and the subgroup H = 〈u1,u2,u3〉 ⩽ F2, where

u1 = a−1bab−1, u2 = a3, u3 = abab−1.

Is it true that a ∈ H?

Is it true that aba2b−1a−50ba−30b−1 ∈ H?

Is it true that a2b ∈ H?

Is it true that ab20ab−20 ∈ H?

If yes, express them as a (unique?) word on {u1, u2, u3}.

Let us recover the construction of the Stallings automaton St(H)…

EXAMPLE

Consider F2 = 〈a,b〉 and the subgroup H = 〈u1,u2,u3〉 ⩽ F2, where

u1 = a−1bab−1, u2 = a3, u3 = abab−1.

Is it true that a ∈ H?

Is it true that aba2b−1a−50ba−30b−1 ∈ H?

Is it true that a2b ∈ H?

Is it true that ab20ab−20 ∈ H?

If yes, express them as a (unique?) word on {u1, u2, u3}.

Let us recover the construction of the Stallings automaton St(H)…

EXAMPLE

Consider F2 = 〈a,b〉 and the subgroup H = 〈u1,u2,u3〉 ⩽ F2, where

u1 = a−1bab−1, u2 = a3, u3 = abab−1.

Is it true that a ∈ H?

Is it true that aba2b−1a−50ba−30b−1 ∈ H?

Is it true that a2b ∈ H?

Is it true that ab20ab−20 ∈ H?

If yes, express them as a (unique?) word on {u1, u2, u3}.

Let us recover the construction of the Stallings automaton St(H)…

EXAMPLE

Let H = 〈a−1bab−1︸ ︷︷ ︸
u1

, a3︸︷︷︸
u2

, abab−1︸ ︷︷ ︸
u3

〉 ⩽ F{a,b}.

We start by drawing the flower automaton Fl({u1,u2,u3}):

Γ0=Fl(U)

a
b

Γ1 Γ2

Γ3Γ4Γ5

Γ6=St(H)

a b

EXAMPLE

Let H = 〈a−1bab−1︸ ︷︷ ︸
u1

, a3︸︷︷︸
u2

, abab−1︸ ︷︷ ︸
u3

〉 ⩽ F{a,b}.

We start by drawing the flower automaton Fl({u1,u2,u3}):

Γ0=Fl(U)

a
b

Γ1 Γ2

Γ3Γ4Γ5

Γ6=St(H)

a b

EXAMPLE

Let H = 〈a−1bab−1︸ ︷︷ ︸
u1

, a3︸︷︷︸
u2

, abab−1︸ ︷︷ ︸
u3

〉 ⩽ F{a,b}.

We start by drawing the flower automaton Fl({u1,u2,u3}):

Γ0=Fl(U)

a
b

Γ1 Γ2

Γ3Γ4Γ5

Γ6=St(H)

a b

EXAMPLE

Let H = 〈a−1bab−1︸ ︷︷ ︸
u1

, a3︸︷︷︸
u2

, abab−1︸ ︷︷ ︸
u3

〉 ⩽ F{a,b}.

We start by drawing the flower automaton Fl({u1,u2,u3}):

Γ0=Fl(U)

a
b

Γ1 Γ2

Γ3Γ4Γ5

Γ6=St(H)

a b

EXAMPLE

Let H = 〈a−1bab−1︸ ︷︷ ︸
u1

, a3︸︷︷︸
u2

, abab−1︸ ︷︷ ︸
u3

〉 ⩽ F{a,b}.

We start by drawing the flower automaton Fl({u1,u2,u3}):

Γ0=Fl(U)

a
b

Γ1

Γ2

Γ3Γ4Γ5

Γ6=St(H)

a b

EXAMPLE

Let H = 〈a−1bab−1︸ ︷︷ ︸
u1

, a3︸︷︷︸
u2

, abab−1︸ ︷︷ ︸
u3

〉 ⩽ F{a,b}.

We start by drawing the flower automaton Fl({u1,u2,u3}):

Γ0=Fl(U)

a
b

Γ1 Γ2

Γ3Γ4Γ5

Γ6=St(H)

a b

EXAMPLE

Let H = 〈a−1bab−1︸ ︷︷ ︸
u1

, a3︸︷︷︸
u2

, abab−1︸ ︷︷ ︸
u3

〉 ⩽ F{a,b}.

We start by drawing the flower automaton Fl({u1,u2,u3}):

Γ0=Fl(U)

a
b

Γ1 Γ2

Γ3

Γ4Γ5

Γ6=St(H)

a b

EXAMPLE

Let H = 〈a−1bab−1︸ ︷︷ ︸
u1

, a3︸︷︷︸
u2

, abab−1︸ ︷︷ ︸
u3

〉 ⩽ F{a,b}.

We start by drawing the flower automaton Fl({u1,u2,u3}):

Γ0=Fl(U)

a
b

Γ1 Γ2

Γ3Γ4

Γ5

Γ6=St(H)

a b

EXAMPLE

Let H = 〈a−1bab−1︸ ︷︷ ︸
u1

, a3︸︷︷︸
u2

, abab−1︸ ︷︷ ︸
u3

〉 ⩽ F{a,b}.

We start by drawing the flower automaton Fl({u1,u2,u3}):

Γ0=Fl(U)

a
b

Γ1 Γ2

Γ3Γ4Γ5

Γ6=St(H)

a b

EXAMPLE

Let H = 〈a−1bab−1︸ ︷︷ ︸
u1

, a3︸︷︷︸
u2

, abab−1︸ ︷︷ ︸
u3

〉 ⩽ F{a,b}.

We start by drawing the flower automaton Fl({u1,u2,u3}):

Γ0=Fl(U)

a
b

Γ1 Γ2

Γ3Γ4Γ5

Γ6=St(H)

a b

EXAMPLE

We choose a (the unique) spanning tree, and read a free basis for H:

H = 〈a,bab−1〉.

So, it is clear that both a and aba2b−1a−50ba−30b−1 belong to H
because they are labels of -paths at St (H).

…while ab20ab−20, a2b do not.

Let us now express a as a word on {u1, u2, u3} . . .

EXAMPLE

We choose a (the unique) spanning tree, and read a free basis for H:

H = 〈a,bab−1〉.

So, it is clear that both a and aba2b−1a−50ba−30b−1 belong to H
because they are labels of -paths at St (H).

…while ab20ab−20, a2b do not.

Let us now express a as a word on {u1, u2, u3} . . .

EXAMPLE

We choose a (the unique) spanning tree, and read a free basis for H:

H = 〈a,bab−1〉.

So, it is clear that both a and aba2b−1a−50ba−30b−1 belong to H
because they are labels of -paths at St (H).

…while ab20ab−20, a2b do not.

Let us now express a as a word on {u1, u2, u3} . . .

EXAMPLE

We choose a (the unique) spanning tree, and read a free basis for H:

H = 〈a,bab−1〉.

So, it is clear that both a and aba2b−1a−50ba−30b−1 belong to H
because they are labels of -paths at St (H).

…while ab20ab−20, a2b do not.

Let us now express a as a word on {u1, u2, u3} . . .

THE MEMBERSHIP (SEARCH) PROBLEM

When v ∈ H, how to express v as a word in {u1, . . . ,un}?

(8) Look at the computed tower of foldings

Fl(U) = Γ0 Γ1 · · · Γn = St (H) ;

(9) realize v as (the label of) a -path γ in St (H);
(10) lift γ up the tower of foldings (keeping the label) until Fl(U);
(11) a -path is Fl(U) spelling v “is” a word on {u1, . . . ,un} equaling v:

this is what we are looking for.

Lemma
Let A A ′ be an elementary Stallings folding and φ : A→ A ′ be
the natural morphism. Then,
(i) if γ is a reduced path in A, then γφ is reduced except for

consecutive visits to the folded edge;
(ii) for every reduced -path γ in A ′ there exists a reduced -path γ̃

in A satisfying ℓ(γ̃) = ℓ(γ) ∈ FA and γ̃φ = γ (called a lift of γ);

THE MEMBERSHIP (SEARCH) PROBLEM

When v ∈ H, how to express v as a word in {u1, . . . ,un}?

(8) Look at the computed tower of foldings

Fl(U) = Γ0 Γ1 · · · Γn = St (H) ;

(9) realize v as (the label of) a -path γ in St (H);

(10) lift γ up the tower of foldings (keeping the label) until Fl(U);
(11) a -path is Fl(U) spelling v “is” a word on {u1, . . . ,un} equaling v:

this is what we are looking for.

Lemma
Let A A ′ be an elementary Stallings folding and φ : A→ A ′ be
the natural morphism. Then,
(i) if γ is a reduced path in A, then γφ is reduced except for

consecutive visits to the folded edge;
(ii) for every reduced -path γ in A ′ there exists a reduced -path γ̃

in A satisfying ℓ(γ̃) = ℓ(γ) ∈ FA and γ̃φ = γ (called a lift of γ);

THE MEMBERSHIP (SEARCH) PROBLEM

When v ∈ H, how to express v as a word in {u1, . . . ,un}?

(8) Look at the computed tower of foldings

Fl(U) = Γ0 Γ1 · · · Γn = St (H) ;

(9) realize v as (the label of) a -path γ in St (H);
(10) lift γ up the tower of foldings (keeping the label) until Fl(U);

(11) a -path is Fl(U) spelling v “is” a word on {u1, . . . ,un} equaling v:
this is what we are looking for.

Lemma
Let A A ′ be an elementary Stallings folding and φ : A→ A ′ be
the natural morphism. Then,
(i) if γ is a reduced path in A, then γφ is reduced except for

consecutive visits to the folded edge;
(ii) for every reduced -path γ in A ′ there exists a reduced -path γ̃

in A satisfying ℓ(γ̃) = ℓ(γ) ∈ FA and γ̃φ = γ (called a lift of γ);

THE MEMBERSHIP (SEARCH) PROBLEM

When v ∈ H, how to express v as a word in {u1, . . . ,un}?

(8) Look at the computed tower of foldings

Fl(U) = Γ0 Γ1 · · · Γn = St (H) ;

(9) realize v as (the label of) a -path γ in St (H);
(10) lift γ up the tower of foldings (keeping the label) until Fl(U);
(11) a -path is Fl(U) spelling v “is” a word on {u1, . . . ,un} equaling v:

this is what we are looking for.

Lemma
Let A A ′ be an elementary Stallings folding and φ : A→ A ′ be
the natural morphism. Then,
(i) if γ is a reduced path in A, then γφ is reduced except for

consecutive visits to the folded edge;
(ii) for every reduced -path γ in A ′ there exists a reduced -path γ̃

in A satisfying ℓ(γ̃) = ℓ(γ) ∈ FA and γ̃φ = γ (called a lift of γ);

THE MEMBERSHIP (SEARCH) PROBLEM

When v ∈ H, how to express v as a word in {u1, . . . ,un}?

(8) Look at the computed tower of foldings

Fl(U) = Γ0 Γ1 · · · Γn = St (H) ;

(9) realize v as (the label of) a -path γ in St (H);
(10) lift γ up the tower of foldings (keeping the label) until Fl(U);
(11) a -path is Fl(U) spelling v “is” a word on {u1, . . . ,un} equaling v:

this is what we are looking for.

Lemma
Let A A ′ be an elementary Stallings folding and φ : A→ A ′ be
the natural morphism. Then,

(i) if γ is a reduced path in A, then γφ is reduced except for
consecutive visits to the folded edge;

(ii) for every reduced -path γ in A ′ there exists a reduced -path γ̃

in A satisfying ℓ(γ̃) = ℓ(γ) ∈ FA and γ̃φ = γ (called a lift of γ);

THE MEMBERSHIP (SEARCH) PROBLEM

When v ∈ H, how to express v as a word in {u1, . . . ,un}?

(8) Look at the computed tower of foldings

Fl(U) = Γ0 Γ1 · · · Γn = St (H) ;

(9) realize v as (the label of) a -path γ in St (H);
(10) lift γ up the tower of foldings (keeping the label) until Fl(U);
(11) a -path is Fl(U) spelling v “is” a word on {u1, . . . ,un} equaling v:

this is what we are looking for.

Lemma
Let A A ′ be an elementary Stallings folding and φ : A→ A ′ be
the natural morphism. Then,
(i) if γ is a reduced path in A, then γφ is reduced except for

consecutive visits to the folded edge;

(ii) for every reduced -path γ in A ′ there exists a reduced -path γ̃

in A satisfying ℓ(γ̃) = ℓ(γ) ∈ FA and γ̃φ = γ (called a lift of γ);

THE MEMBERSHIP (SEARCH) PROBLEM

When v ∈ H, how to express v as a word in {u1, . . . ,un}?

(8) Look at the computed tower of foldings

Fl(U) = Γ0 Γ1 · · · Γn = St (H) ;

(9) realize v as (the label of) a -path γ in St (H);
(10) lift γ up the tower of foldings (keeping the label) until Fl(U);
(11) a -path is Fl(U) spelling v “is” a word on {u1, . . . ,un} equaling v:

this is what we are looking for.

Lemma
Let A A ′ be an elementary Stallings folding and φ : A→ A ′ be
the natural morphism. Then,
(i) if γ is a reduced path in A, then γφ is reduced except for

consecutive visits to the folded edge;
(ii) for every reduced -path γ in A ′ there exists a reduced -path γ̃

in A satisfying ℓ(γ̃) = ℓ(γ) ∈ FA and γ̃φ = γ (called a lift of γ);

THE MEMBERSHIP PROBLEM

Lemma
(continuation)

(iii) if the folding A A ′ is open, then γ̃ is unique;
(iv) if the folding A A ′ is closed then γ̃ is not unique.

Back to the example …
Clearly, a ∈ H thanks to the walk γ6 = a1:

a1γ6

Lifting to Γ5 (no interaction with the folded arcs), we get γ5 = a1:

a1γ5

THE MEMBERSHIP PROBLEM

Lemma
(continuation)

(iii) if the folding A A ′ is open, then γ̃ is unique;
(iv) if the folding A A ′ is closed then γ̃ is not unique.

Back to the example …
Clearly, a ∈ H thanks to the walk γ6 = a1:

a1γ6

Lifting to Γ5 (no interaction with the folded arcs), we get γ5 = a1:

a1γ5

THE MEMBERSHIP PROBLEM

Lemma
(continuation)

(iii) if the folding A A ′ is open, then γ̃ is unique;
(iv) if the folding A A ′ is closed then γ̃ is not unique.

Back to the example …
Clearly, a ∈ H thanks to the walk γ6 = a1:

a1γ6

Lifting to Γ5 (no interaction with the folded arcs), we get γ5 = a1:

a1γ5

EXAMPLE

Lifting to Γ4, we have multiple choices (since Γ4 ⇝ Γ5 is a closed
folding); we get γ4 = a11:

.

γ4

a11

a12

Lifting up to Γ3, we get γ3 = a11a−1
122a121:

a11

γ3

a121
a122

EXAMPLE

Lifting to Γ4, we have multiple choices (since Γ4 ⇝ Γ5 is a closed
folding); we get γ4 = a11:

.

γ4

a11

a12

Lifting up to Γ3, we get γ3 = a11a−1
122a121:

a11

γ3

a121
a122

EXAMPLE

Lifting to Γ2, we get γ2 = a11a1211a−1
1212a−1

122a1211:

a11

a1211
a 122

a1212

γ2

Lifting up to Γ1, we get γ1 = a111a1211a−1
1212a−1

122a−1
112a111a1211:

a112

a 1
22

a1212

b1 a2 b2
a111

a1211

γ1

EXAMPLE

Lifting to Γ2, we get γ2 = a11a1211a−1
1212a−1

122a1211:

a11

a1211
a 122

a1212

γ2

Lifting up to Γ1, we get γ1 = a111a1211a−1
1212a−1

122a−1
112a111a1211:

a112

a 1
22

a1212

b1 a2 b2
a111

a1211

γ1

EXAMPLE

Finally, lifting to Γ0 = Fl(U), we get:

γ0 = a111b21a21b−1
11 b12a−1

22 b−1
22 a1211a−1

1212a−1
122a−1

112a111b21a21b−1
11 b12a−1

22 b−1
22 a1211

γ0

a 11
2

a122
a
1212

a111

b
21

a21

b1
1

b 12

a22

b 2
2

a1211

Factorizing through the visits to , we get the desired word:

a =
(
abab−1)(ba−1b−1a

)(
a−1a−1a−1)(abab−1)(ba−1b−1a

)
= u2u−1

3 u−1
1 u2u−1

3 .

EXAMPLE

Finally, lifting to Γ0 = Fl(U), we get:

γ0 = a111b21a21b−1
11 b12a−1

22 b−1
22 a1211a−1

1212a−1
122a−1

112a111b21a21b−1
11 b12a−1

22 b−1
22 a1211

γ0

a 11
2

a122
a
1212

a111

b
21

a21

b1
1

b 12

a22

b 2
2

a1211

Factorizing through the visits to , we get the desired word:

a =
(
abab−1)(ba−1b−1a

)(
a−1a−1a−1)(abab−1)(ba−1b−1a

)
= u2u−1

3 u−1
1 u2u−1

3 .

EXAMPLE

Taking γ4 = a12 (instead of γ4 = a11) at the closed folding, we get the
alternative expression:

a = (a−1bab−1)(ba−1b−1a−1)(aaa) = u3u−1
2 u1.

This non-uniqueness of the expression for a,

u2u−1
3 u−1

1 u2u−1
3 = a = u3u−1

2 u1

reveals a nontrivial relation between {u1,u2,u3}:

u2u−1
3 u−1

1 u2u−1
3 u−1

1 u2u−1
3 = 1.

The responsible for this is the closed folding …

EXAMPLE

Taking γ4 = a12 (instead of γ4 = a11) at the closed folding, we get the
alternative expression:

a = (a−1bab−1)(ba−1b−1a−1)(aaa) = u3u−1
2 u1.

This non-uniqueness of the expression for a,

u2u−1
3 u−1

1 u2u−1
3 = a = u3u−1

2 u1

reveals a nontrivial relation between {u1,u2,u3}:

u2u−1
3 u−1

1 u2u−1
3 u−1

1 u2u−1
3 = 1.

The responsible for this is the closed folding …

EXAMPLE

Taking γ4 = a12 (instead of γ4 = a11) at the closed folding, we get the
alternative expression:

a = (a−1bab−1)(ba−1b−1a−1)(aaa) = u3u−1
2 u1.

This non-uniqueness of the expression for a,

u2u−1
3 u−1

1 u2u−1
3 = a = u3u−1

2 u1

reveals a nontrivial relation between {u1,u2,u3}:

u2u−1
3 u−1

1 u2u−1
3 u−1

1 u2u−1
3 = 1.

The responsible for this is the closed folding …

A PRESENTATION FOR THE SUBGROUP

In general,
At every closed folding Γi Γi+1, take the reduced non-trivial walk

reading the trivial element, ℓ(γ) = 1, and lift it up to Fl(U) getting a
nontrivial relation wi(u1, . . . ,un) = 1.

Proposition
Let {u1, . . . ,un} be a set of generators for the (free) subgroup
H = 〈u1, . . . ,un〉 ⩽ FA. Then,

H =
〈
u1, . . . ,un | wi = 1 for each closed folding

〉
is a presentation for H with generators {u1, . . . ,un}.

A PRESENTATION FOR THE SUBGROUP

In general,
At every closed folding Γi Γi+1, take the reduced non-trivial walk

reading the trivial element, ℓ(γ) = 1, and lift it up to Fl(U) getting a
nontrivial relation wi(u1, . . . ,un) = 1.

Proposition
Let {u1, . . . ,un} be a set of generators for the (free) subgroup
H = 〈u1, . . . ,un〉 ⩽ FA. Then,

H =
〈
u1, . . . ,un | wi = 1 for each closed folding

〉
is a presentation for H with generators {u1, . . . ,un}.

EQUATIONS OVER SUBGROUPS

Definition
Let G be a group, H ⩽ G a subgroup. An equation over H is an
expression of the form w(X) = h0Xϵ1h1 · · · Xϵnhn ∈ H ∗ 〈X〉 = H ∗ Z,
where h0, . . . ,hn ∈ H, ϵ1, . . . ϵn = ±1, and hi = 1⇒ ϵi = ϵi+1, for
i = 1, . . . ,n− 1. The degree is n (for n = 0 it is a trivial equation).

We say that g ∈ G satisfies (or is a root of) w(X) if w(g) = 1 in G.

We also say that g is dependent on H if it satisfies some non-trivial
equation over H.

Question:
Given H ⩽f.g. FA and g ∈ FA,

• can we decide whether g is dependent on H?
• if yes, can we compute a nontrivial equation over H satisfied by g?
• can we compute them all?

EQUATIONS OVER SUBGROUPS

Definition
Let G be a group, H ⩽ G a subgroup. An equation over H is an
expression of the form w(X) = h0Xϵ1h1 · · · Xϵnhn ∈ H ∗ 〈X〉 = H ∗ Z,
where h0, . . . ,hn ∈ H, ϵ1, . . . ϵn = ±1, and hi = 1⇒ ϵi = ϵi+1, for
i = 1, . . . ,n− 1. The degree is n (for n = 0 it is a trivial equation).

We say that g ∈ G satisfies (or is a root of) w(X) if w(g) = 1 in G.

We also say that g is dependent on H if it satisfies some non-trivial
equation over H.

Question:
Given H ⩽f.g. FA and g ∈ FA,

• can we decide whether g is dependent on H?
• if yes, can we compute a nontrivial equation over H satisfied by g?
• can we compute them all?

EQUATIONS OVER SUBGROUPS

Definition
Let G be a group, H ⩽ G a subgroup. An equation over H is an
expression of the form w(X) = h0Xϵ1h1 · · · Xϵnhn ∈ H ∗ 〈X〉 = H ∗ Z,
where h0, . . . ,hn ∈ H, ϵ1, . . . ϵn = ±1, and hi = 1⇒ ϵi = ϵi+1, for
i = 1, . . . ,n− 1. The degree is n (for n = 0 it is a trivial equation).

We say that g ∈ G satisfies (or is a root of) w(X) if w(g) = 1 in G.

We also say that g is dependent on H if it satisfies some non-trivial
equation over H.

Question:
Given H ⩽f.g. FA and g ∈ FA,

• can we decide whether g is dependent on H?
• if yes, can we compute a nontrivial equation over H satisfied by g?
• can we compute them all?

EQUATIONS OVER SUBGROUPS

Definition
Let G be a group, H ⩽ G a subgroup. An equation over H is an
expression of the form w(X) = h0Xϵ1h1 · · · Xϵnhn ∈ H ∗ 〈X〉 = H ∗ Z,
where h0, . . . ,hn ∈ H, ϵ1, . . . ϵn = ±1, and hi = 1⇒ ϵi = ϵi+1, for
i = 1, . . . ,n− 1. The degree is n (for n = 0 it is a trivial equation).

We say that g ∈ G satisfies (or is a root of) w(X) if w(g) = 1 in G.

We also say that g is dependent on H if it satisfies some non-trivial
equation over H.

Question:
Given H ⩽f.g. FA and g ∈ FA,

• can we decide whether g is dependent on H?

• if yes, can we compute a nontrivial equation over H satisfied by g?
• can we compute them all?

EQUATIONS OVER SUBGROUPS

Definition
Let G be a group, H ⩽ G a subgroup. An equation over H is an
expression of the form w(X) = h0Xϵ1h1 · · · Xϵnhn ∈ H ∗ 〈X〉 = H ∗ Z,
where h0, . . . ,hn ∈ H, ϵ1, . . . ϵn = ±1, and hi = 1⇒ ϵi = ϵi+1, for
i = 1, . . . ,n− 1. The degree is n (for n = 0 it is a trivial equation).

We say that g ∈ G satisfies (or is a root of) w(X) if w(g) = 1 in G.

We also say that g is dependent on H if it satisfies some non-trivial
equation over H.

Question:
Given H ⩽f.g. FA and g ∈ FA,

• can we decide whether g is dependent on H?
• if yes, can we compute a nontrivial equation over H satisfied by g?

• can we compute them all?

EQUATIONS OVER SUBGROUPS

Definition
Let G be a group, H ⩽ G a subgroup. An equation over H is an
expression of the form w(X) = h0Xϵ1h1 · · · Xϵnhn ∈ H ∗ 〈X〉 = H ∗ Z,
where h0, . . . ,hn ∈ H, ϵ1, . . . ϵn = ±1, and hi = 1⇒ ϵi = ϵi+1, for
i = 1, . . . ,n− 1. The degree is n (for n = 0 it is a trivial equation).

We say that g ∈ G satisfies (or is a root of) w(X) if w(g) = 1 in G.

We also say that g is dependent on H if it satisfies some non-trivial
equation over H.

Question:
Given H ⩽f.g. FA and g ∈ FA,

• can we decide whether g is dependent on H?
• if yes, can we compute a nontrivial equation over H satisfied by g?
• can we compute them all?

EQUATIONS OVER SUBGROUPS

Observation
Let H ⩽f.g. FA and g ∈ FA. Then,
(i) rk(〈H,g〉) ⩽ rk(H) + 1;
(ii) with strict inequality if and only if g is dependent on H.

So, the decision is easy …
(i) Take a basis for H, say {h1, . . . ,hr};
(ii) construct the tower of foldings

Fl({h1, . . . ,hr}) = Γ0 Γ1 · · · Γn = St (H)

(observe all these foldings are open);
(iii) attach an extra petal reading g at everywhere in the tower;
(iv) continue folding down to St (〈H,g〉);
(v) g is dependent on H if and only if some folding is closed in this

second part.

EQUATIONS OVER SUBGROUPS

Observation
Let H ⩽f.g. FA and g ∈ FA. Then,
(i) rk(〈H,g〉) ⩽ rk(H) + 1;
(ii) with strict inequality if and only if g is dependent on H.

So, the decision is easy …

(i) Take a basis for H, say {h1, . . . ,hr};
(ii) construct the tower of foldings

Fl({h1, . . . ,hr}) = Γ0 Γ1 · · · Γn = St (H)

(observe all these foldings are open);
(iii) attach an extra petal reading g at everywhere in the tower;
(iv) continue folding down to St (〈H,g〉);
(v) g is dependent on H if and only if some folding is closed in this

second part.

EQUATIONS OVER SUBGROUPS

Observation
Let H ⩽f.g. FA and g ∈ FA. Then,
(i) rk(〈H,g〉) ⩽ rk(H) + 1;
(ii) with strict inequality if and only if g is dependent on H.

So, the decision is easy …
(i) Take a basis for H, say {h1, . . . ,hr};

(ii) construct the tower of foldings

Fl({h1, . . . ,hr}) = Γ0 Γ1 · · · Γn = St (H)

(observe all these foldings are open);
(iii) attach an extra petal reading g at everywhere in the tower;
(iv) continue folding down to St (〈H,g〉);
(v) g is dependent on H if and only if some folding is closed in this

second part.

EQUATIONS OVER SUBGROUPS

Observation
Let H ⩽f.g. FA and g ∈ FA. Then,
(i) rk(〈H,g〉) ⩽ rk(H) + 1;
(ii) with strict inequality if and only if g is dependent on H.

So, the decision is easy …
(i) Take a basis for H, say {h1, . . . ,hr};
(ii) construct the tower of foldings

Fl({h1, . . . ,hr}) = Γ0 Γ1 · · · Γn = St (H)

(observe all these foldings are open);

(iii) attach an extra petal reading g at everywhere in the tower;
(iv) continue folding down to St (〈H,g〉);
(v) g is dependent on H if and only if some folding is closed in this

second part.

EQUATIONS OVER SUBGROUPS

Observation
Let H ⩽f.g. FA and g ∈ FA. Then,
(i) rk(〈H,g〉) ⩽ rk(H) + 1;
(ii) with strict inequality if and only if g is dependent on H.

So, the decision is easy …
(i) Take a basis for H, say {h1, . . . ,hr};
(ii) construct the tower of foldings

Fl({h1, . . . ,hr}) = Γ0 Γ1 · · · Γn = St (H)

(observe all these foldings are open);
(iii) attach an extra petal reading g at everywhere in the tower;

(iv) continue folding down to St (〈H,g〉);
(v) g is dependent on H if and only if some folding is closed in this

second part.

EQUATIONS OVER SUBGROUPS

Observation
Let H ⩽f.g. FA and g ∈ FA. Then,
(i) rk(〈H,g〉) ⩽ rk(H) + 1;
(ii) with strict inequality if and only if g is dependent on H.

So, the decision is easy …
(i) Take a basis for H, say {h1, . . . ,hr};
(ii) construct the tower of foldings

Fl({h1, . . . ,hr}) = Γ0 Γ1 · · · Γn = St (H)

(observe all these foldings are open);
(iii) attach an extra petal reading g at everywhere in the tower;
(iv) continue folding down to St (〈H,g〉);

(v) g is dependent on H if and only if some folding is closed in this
second part.

EQUATIONS OVER SUBGROUPS

Observation
Let H ⩽f.g. FA and g ∈ FA. Then,
(i) rk(〈H,g〉) ⩽ rk(H) + 1;
(ii) with strict inequality if and only if g is dependent on H.

So, the decision is easy …
(i) Take a basis for H, say {h1, . . . ,hr};
(ii) construct the tower of foldings

Fl({h1, . . . ,hr}) = Γ0 Γ1 · · · Γn = St (H)

(observe all these foldings are open);
(iii) attach an extra petal reading g at everywhere in the tower;
(iv) continue folding down to St (〈H,g〉);
(v) g is dependent on H if and only if some folding is closed in this

second part.

EQUATIONS OVER SUBGROUPS

Observation
Let H ⩽f.g. FA and g ∈ FA. Then,
(i) rk(〈H,g〉) ⩽ rk(H) + 1;
(ii) with strict inequality if and only if g is dependent on H.

So, the decision is easy …
(i) Take a basis for H, say {h1, . . . ,hr};
(ii) construct the tower of foldings

Fl({h1, . . . ,hr}) = Γ0 Γ1 · · · Γn = St (H)

(observe all these foldings are open);
(iii) attach an extra petal reading g at everywhere in the tower;
(iv) continue folding down to St (〈H,g〉);
(v) g is dependent on H if and only if some folding is closed in this

second part.

EQUATIONS OVER SUBGROUPS

Constructing an explicit equation is easy as well …

(i) Assume there is some closed folding;
(ii) take a reduced non-trivial walk of the form

reading the trivial element, ℓ(γ) = 1, and lift it up to
Fl({h1, . . . ,hr,g}).

(iii) We obtain a non-trivial word w(h1, . . . ,hr,g) with trivial label,
w(h1, . . . ,hr,g) =FA 1 . . .

(iv) . . . which must mandatorily use g because {h1, . . . ,hr} were freely
independent.

(iv) This is already the equation w(X) we are looking for.

EQUATIONS OVER SUBGROUPS

Constructing an explicit equation is easy as well …
(i) Assume there is some closed folding;

(ii) take a reduced non-trivial walk of the form

reading the trivial element, ℓ(γ) = 1, and lift it up to
Fl({h1, . . . ,hr,g}).

(iii) We obtain a non-trivial word w(h1, . . . ,hr,g) with trivial label,
w(h1, . . . ,hr,g) =FA 1 . . .

(iv) . . . which must mandatorily use g because {h1, . . . ,hr} were freely
independent.

(iv) This is already the equation w(X) we are looking for.

EQUATIONS OVER SUBGROUPS

Constructing an explicit equation is easy as well …
(i) Assume there is some closed folding;
(ii) take a reduced non-trivial walk of the form

reading the trivial element, ℓ(γ) = 1, and lift it up to
Fl({h1, . . . ,hr,g}).

(iii) We obtain a non-trivial word w(h1, . . . ,hr,g) with trivial label,
w(h1, . . . ,hr,g) =FA 1 . . .

(iv) . . . which must mandatorily use g because {h1, . . . ,hr} were freely
independent.

(iv) This is already the equation w(X) we are looking for.

EQUATIONS OVER SUBGROUPS

Constructing an explicit equation is easy as well …
(i) Assume there is some closed folding;
(ii) take a reduced non-trivial walk of the form

reading the trivial element, ℓ(γ) = 1, and lift it up to
Fl({h1, . . . ,hr,g}).

(iii) We obtain a non-trivial word w(h1, . . . ,hr,g) with trivial label,
w(h1, . . . ,hr,g) =FA 1 . . .

(iv) . . . which must mandatorily use g because {h1, . . . ,hr} were freely
independent.

(iv) This is already the equation w(X) we are looking for.

EQUATIONS OVER SUBGROUPS

Constructing an explicit equation is easy as well …
(i) Assume there is some closed folding;
(ii) take a reduced non-trivial walk of the form

reading the trivial element, ℓ(γ) = 1, and lift it up to
Fl({h1, . . . ,hr,g}).

(iii) We obtain a non-trivial word w(h1, . . . ,hr,g) with trivial label,
w(h1, . . . ,hr,g) =FA 1 . . .

(iv) . . . which must mandatorily use g because {h1, . . . ,hr} were freely
independent.

(iv) This is already the equation w(X) we are looking for.

EQUATIONS OVER SUBGROUPS

Constructing an explicit equation is easy as well …
(i) Assume there is some closed folding;
(ii) take a reduced non-trivial walk of the form

reading the trivial element, ℓ(γ) = 1, and lift it up to
Fl({h1, . . . ,hr,g}).

(iii) We obtain a non-trivial word w(h1, . . . ,hr,g) with trivial label,
w(h1, . . . ,hr,g) =FA 1 . . .

(iv) . . . which must mandatorily use g because {h1, . . . ,hr} were freely
independent.

(iv) This is already the equation w(X) we are looking for.

EQUATIONS OVER SUBGROUPS

Constructing all such equations is also easy …

Definition
Let G be a group, H ⩽ G, and g ∈ G. The anihilator of g over H is

IH(g) = {w(X) ∈ H ∗ 〈X〉 | w(g) =G 1} P H ∗ 〈X〉.

Theorem
Let w1(X), . . . ,wk(X) ∈ H ∗ 〈X〉 be the equations computed from the
k ⩾ 0 closed foldings in the tower. Then,

IH(g) = 〈〈w1(X), . . . ,wk(X)〉〉 P H ∗ 〈X〉.

Rosenmann, V. Dependence and algebraicity over subgroups of free
groups, arXiv.2107.03154v1.

Ascari. Ideals of equations for elements in a free group and Stallings
folding, arXiv.2207.04759v1.

EQUATIONS OVER SUBGROUPS

Constructing all such equations is also easy …

Definition
Let G be a group, H ⩽ G, and g ∈ G. The anihilator of g over H is

IH(g) = {w(X) ∈ H ∗ 〈X〉 | w(g) =G 1} P H ∗ 〈X〉.

Theorem
Let w1(X), . . . ,wk(X) ∈ H ∗ 〈X〉 be the equations computed from the
k ⩾ 0 closed foldings in the tower. Then,

IH(g) = 〈〈w1(X), . . . ,wk(X)〉〉 P H ∗ 〈X〉.

Rosenmann, V. Dependence and algebraicity over subgroups of free
groups, arXiv.2107.03154v1.

Ascari. Ideals of equations for elements in a free group and Stallings
folding, arXiv.2207.04759v1.

EQUATIONS OVER SUBGROUPS

Constructing all such equations is also easy …

Definition
Let G be a group, H ⩽ G, and g ∈ G. The anihilator of g over H is

IH(g) = {w(X) ∈ H ∗ 〈X〉 | w(g) =G 1} P H ∗ 〈X〉.

Theorem
Let w1(X), . . . ,wk(X) ∈ H ∗ 〈X〉 be the equations computed from the
k ⩾ 0 closed foldings in the tower. Then,

IH(g) = 〈〈w1(X), . . . ,wk(X)〉〉 P H ∗ 〈X〉.

Rosenmann, V. Dependence and algebraicity over subgroups of free
groups, arXiv.2107.03154v1.

Ascari. Ideals of equations for elements in a free group and Stallings
folding, arXiv.2207.04759v1.

EQUATIONS OVER SUBGROUPS

Constructing all such equations is also easy …

Definition
Let G be a group, H ⩽ G, and g ∈ G. The anihilator of g over H is

IH(g) = {w(X) ∈ H ∗ 〈X〉 | w(g) =G 1} P H ∗ 〈X〉.

Theorem
Let w1(X), . . . ,wk(X) ∈ H ∗ 〈X〉 be the equations computed from the
k ⩾ 0 closed foldings in the tower. Then,

IH(g) = 〈〈w1(X), . . . ,wk(X)〉〉 P H ∗ 〈X〉.

Rosenmann, V. Dependence and algebraicity over subgroups of free
groups, arXiv.2107.03154v1.

Ascari. Ideals of equations for elements in a free group and Stallings
folding, arXiv.2207.04759v1.

COSETS AND INDEX

DEFICIENCY AND SATURATION

Let Γ be a (pointed and involutive) A-automaton, and let a ∈ A±.

Definition
A vertex p ∈ VΓ is saturated if ∀a ∈ A± there is at least one a-arc
leaving p.

Otherwise, we say that p is unsaturated (or a-deficient if
there is no a-arc leaving p).

The a-deficit of Γ , defa(Γ), is the number of a-deficient vertices in Γ .

Γ is saturated* if all its vertices are saturated.

Γ is unsaturated otherwise (Γ has at least one unsaturated vertex).

Remark: If Γ is deterministic, then:
Γ is saturated ⇔ ∀a ∈ A, ∀p ∈ VΓ , ∃! p a and ∃! p a

⇒ Γ is (2#A)-regular.

Remark: Sch(H) is a connected, deterministic, and saturated (but not
necessarily core) automaton recognizing H.

DEFICIENCY AND SATURATION

Let Γ be a (pointed and involutive) A-automaton, and let a ∈ A±.

Definition
A vertex p ∈ VΓ is saturated if ∀a ∈ A± there is at least one a-arc
leaving p.

Otherwise, we say that p is unsaturated (or a-deficient if
there is no a-arc leaving p).

The a-deficit of Γ , defa(Γ), is the number of a-deficient vertices in Γ .

Γ is saturated* if all its vertices are saturated.

Γ is unsaturated otherwise (Γ has at least one unsaturated vertex).

Remark: If Γ is deterministic, then:
Γ is saturated ⇔ ∀a ∈ A, ∀p ∈ VΓ , ∃! p a and ∃! p a

⇒ Γ is (2#A)-regular.

Remark: Sch(H) is a connected, deterministic, and saturated (but not
necessarily core) automaton recognizing H.

DEFICIENCY AND SATURATION

Let Γ be a (pointed and involutive) A-automaton, and let a ∈ A±.

Definition
A vertex p ∈ VΓ is saturated if ∀a ∈ A± there is at least one a-arc
leaving p. Otherwise, we say that p is unsaturated (or a-deficient if
there is no a-arc leaving p).

The a-deficit of Γ , defa(Γ), is the number of a-deficient vertices in Γ .

Γ is saturated* if all its vertices are saturated.

Γ is unsaturated otherwise (Γ has at least one unsaturated vertex).

Remark: If Γ is deterministic, then:
Γ is saturated ⇔ ∀a ∈ A, ∀p ∈ VΓ , ∃! p a and ∃! p a

⇒ Γ is (2#A)-regular.

Remark: Sch(H) is a connected, deterministic, and saturated (but not
necessarily core) automaton recognizing H.

DEFICIENCY AND SATURATION

Let Γ be a (pointed and involutive) A-automaton, and let a ∈ A±.

Definition
A vertex p ∈ VΓ is saturated if ∀a ∈ A± there is at least one a-arc
leaving p. Otherwise, we say that p is unsaturated (or a-deficient if
there is no a-arc leaving p).

The a-deficit of Γ , defa(Γ), is the number of a-deficient vertices in Γ .

Γ is saturated* if all its vertices are saturated.

Γ is unsaturated otherwise (Γ has at least one unsaturated vertex).

Remark: If Γ is deterministic, then:
Γ is saturated ⇔ ∀a ∈ A, ∀p ∈ VΓ , ∃! p a and ∃! p a

⇒ Γ is (2#A)-regular.

Remark: Sch(H) is a connected, deterministic, and saturated (but not
necessarily core) automaton recognizing H.

DEFICIENCY AND SATURATION

Let Γ be a (pointed and involutive) A-automaton, and let a ∈ A±.

Definition
A vertex p ∈ VΓ is saturated if ∀a ∈ A± there is at least one a-arc
leaving p. Otherwise, we say that p is unsaturated (or a-deficient if
there is no a-arc leaving p).

The a-deficit of Γ , defa(Γ), is the number of a-deficient vertices in Γ .

Γ is saturated* if all its vertices are saturated.

Γ is unsaturated otherwise (Γ has at least one unsaturated vertex).

Remark: If Γ is deterministic, then:
Γ is saturated ⇔ ∀a ∈ A, ∀p ∈ VΓ , ∃! p a and ∃! p a

⇒ Γ is (2#A)-regular.

Remark: Sch(H) is a connected, deterministic, and saturated (but not
necessarily core) automaton recognizing H.

DEFICIENCY AND SATURATION

Let Γ be a (pointed and involutive) A-automaton, and let a ∈ A±.

Definition
A vertex p ∈ VΓ is saturated if ∀a ∈ A± there is at least one a-arc
leaving p. Otherwise, we say that p is unsaturated (or a-deficient if
there is no a-arc leaving p).

The a-deficit of Γ , defa(Γ), is the number of a-deficient vertices in Γ .

Γ is saturated* if all its vertices are saturated.

Γ is unsaturated otherwise (Γ has at least one unsaturated vertex).

Remark: If Γ is deterministic, then:
Γ is saturated ⇔ ∀a ∈ A, ∀p ∈ VΓ , ∃! p a and ∃! p a

⇒ Γ is (2#A)-regular.

Remark: Sch(H) is a connected, deterministic, and saturated (but not
necessarily core) automaton recognizing H.

DEFICIENCY AND SATURATION

Let Γ be a (pointed and involutive) A-automaton, and let a ∈ A±.

Definition
A vertex p ∈ VΓ is saturated if ∀a ∈ A± there is at least one a-arc
leaving p. Otherwise, we say that p is unsaturated (or a-deficient if
there is no a-arc leaving p).

The a-deficit of Γ , defa(Γ), is the number of a-deficient vertices in Γ .

Γ is saturated* if all its vertices are saturated.

Γ is unsaturated otherwise (Γ has at least one unsaturated vertex).

Remark: If Γ is deterministic, then:
Γ is saturated ⇔ ∀a ∈ A, ∀p ∈ VΓ , ∃! p a and ∃! p a

⇒ Γ is (2#A)-regular.

Remark: Sch(H) is a connected, deterministic, and saturated (but not
necessarily core) automaton recognizing H.

DEFICIENCY AND SATURATION

Let Γ be a (pointed and involutive) A-automaton, and let a ∈ A±.

Definition
A vertex p ∈ VΓ is saturated if ∀a ∈ A± there is at least one a-arc
leaving p. Otherwise, we say that p is unsaturated (or a-deficient if
there is no a-arc leaving p).

The a-deficit of Γ , defa(Γ), is the number of a-deficient vertices in Γ .

Γ is saturated* if all its vertices are saturated.

Γ is unsaturated otherwise (Γ has at least one unsaturated vertex).

Remark: If Γ is deterministic, then:
Γ is saturated ⇔ ∀a ∈ A, ∀p ∈ VΓ , ∃! p a and ∃! p a

⇒ Γ is (2#A)-regular.

Remark: Sch(H) is a connected, deterministic, and saturated (but not
necessarily core) automaton recognizing H.

DEFICIENCY AND SATURATION

Let Γ be a (pointed and involutive) A-automaton, and let a ∈ A±.

Definition
A vertex p ∈ VΓ is saturated if ∀a ∈ A± there is at least one a-arc
leaving p. Otherwise, we say that p is unsaturated (or a-deficient if
there is no a-arc leaving p).

The a-deficit of Γ , defa(Γ), is the number of a-deficient vertices in Γ .

Γ is saturated* if all its vertices are saturated.

Γ is unsaturated otherwise (Γ has at least one unsaturated vertex).

Remark: If Γ is deterministic, then:
Γ is saturated ⇔ ∀a ∈ A, ∀p ∈ VΓ , ∃! p a and ∃! p a

⇒ Γ is (2#A)-regular.

Remark: Sch(H) is a connected, deterministic, and saturated (but not
necessarily core) automaton recognizing H.

SCHREIER AND STALLINGS AUTOMATA. CAYLEY BRANCHES

Recall: if H ⩽ FA, then St(H) = core(Sch(H)).
• St(H) is what you obtain after removing from Sch(H) eventual
‘hanging trees’ not containing .

• How to obtain Sch(H) from St(H)? what is Sch(H) \ St(H)?

Definition. A Cayley branch of FA is a connected component obtained
after removing from Cay (FA). The a-Cayley branch of F2 is:

a

Lemma
Sch(H) is the automaton obtained after adjoining an a-Cayley
branch to every a-deficient vertex in St(H).

SCHREIER AND STALLINGS AUTOMATA. CAYLEY BRANCHES

Recall: if H ⩽ FA, then St(H) = core(Sch(H)).

• St(H) is what you obtain after removing from Sch(H) eventual
‘hanging trees’ not containing .

• How to obtain Sch(H) from St(H)? what is Sch(H) \ St(H)?

Definition. A Cayley branch of FA is a connected component obtained
after removing from Cay (FA). The a-Cayley branch of F2 is:

a

Lemma
Sch(H) is the automaton obtained after adjoining an a-Cayley
branch to every a-deficient vertex in St(H).

SCHREIER AND STALLINGS AUTOMATA. CAYLEY BRANCHES

Recall: if H ⩽ FA, then St(H) = core(Sch(H)).
• St(H) is what you obtain after removing from Sch(H) eventual
‘hanging trees’ not containing .

• How to obtain Sch(H) from St(H)? what is Sch(H) \ St(H)?

Definition. A Cayley branch of FA is a connected component obtained
after removing from Cay (FA). The a-Cayley branch of F2 is:

a

Lemma
Sch(H) is the automaton obtained after adjoining an a-Cayley
branch to every a-deficient vertex in St(H).

SCHREIER AND STALLINGS AUTOMATA. CAYLEY BRANCHES

Recall: if H ⩽ FA, then St(H) = core(Sch(H)).
• St(H) is what you obtain after removing from Sch(H) eventual
‘hanging trees’ not containing .

• How to obtain Sch(H) from St(H)? what is Sch(H) \ St(H)?

Definition. A Cayley branch of FA is a connected component obtained
after removing from Cay (FA). The a-Cayley branch of F2 is:

a

Lemma
Sch(H) is the automaton obtained after adjoining an a-Cayley
branch to every a-deficient vertex in St(H).

SCHREIER AND STALLINGS AUTOMATA. CAYLEY BRANCHES

Recall: if H ⩽ FA, then St(H) = core(Sch(H)).
• St(H) is what you obtain after removing from Sch(H) eventual
‘hanging trees’ not containing .

• How to obtain Sch(H) from St(H)? what is Sch(H) \ St(H)?

Definition. A Cayley branch of FA is a connected component obtained
after removing from Cay (FA).

The a-Cayley branch of F2 is:

a

Lemma
Sch(H) is the automaton obtained after adjoining an a-Cayley
branch to every a-deficient vertex in St(H).

SCHREIER AND STALLINGS AUTOMATA. CAYLEY BRANCHES

Recall: if H ⩽ FA, then St(H) = core(Sch(H)).
• St(H) is what you obtain after removing from Sch(H) eventual
‘hanging trees’ not containing .

• How to obtain Sch(H) from St(H)? what is Sch(H) \ St(H)?

Definition. A Cayley branch of FA is a connected component obtained
after removing from Cay (FA). The a-Cayley branch of F2 is:

a

Lemma
Sch(H) is the automaton obtained after adjoining an a-Cayley
branch to every a-deficient vertex in St(H).

SCHREIER AND STALLINGS AUTOMATA. CAYLEY BRANCHES

Recall: if H ⩽ FA, then St(H) = core(Sch(H)).
• St(H) is what you obtain after removing from Sch(H) eventual
‘hanging trees’ not containing .

• How to obtain Sch(H) from St(H)? what is Sch(H) \ St(H)?

Definition. A Cayley branch of FA is a connected component obtained
after removing from Cay (FA). The a-Cayley branch of F2 is:

a

Lemma
Sch(H) is the automaton obtained after adjoining an a-Cayley
branch to every a-deficient vertex in St(H).

FINITE INDEX

Remark:
Sch(H,A) is core ⇔ Sch(H,A) = St(H,A)⇔ St(H,A) is saturated

Finite Index Problem for G = 〈A | R〉, FIP(G)
Decide, given words u1, . . . ,uk ∈ (A±)∗, whether 〈u1, . . . ,uk〉G has
finite index in G.

Proposition
Let H ⩽ FA. Then,

|FA : H| < ∞ ⇔ St(H) is saturated and #VSt(H) < ∞

in particular if H is finitely generated (i.e., St(H) is finite):

|FA : H| < ∞ ⇔ St(H) is saturated

Corollary
Given a finite S ⊆ FA, we can compute the index of 〈H〉 in FA.
In particular, FIP(FA) is decidable.

FINITE INDEX

Remark:
Sch(H,A) is core ⇔ Sch(H,A) = St(H,A)⇔ St(H,A) is saturated

Finite Index Problem for G = 〈A | R〉, FIP(G)
Decide, given words u1, . . . ,uk ∈ (A±)∗, whether 〈u1, . . . ,uk〉G has
finite index in G.

Proposition
Let H ⩽ FA. Then,

|FA : H| < ∞ ⇔ St(H) is saturated and #VSt(H) < ∞

in particular if H is finitely generated (i.e., St(H) is finite):

|FA : H| < ∞ ⇔ St(H) is saturated

Corollary
Given a finite S ⊆ FA, we can compute the index of 〈H〉 in FA.
In particular, FIP(FA) is decidable.

FINITE INDEX

Remark:
Sch(H,A) is core ⇔ Sch(H,A) = St(H,A)⇔ St(H,A) is saturated

Finite Index Problem for G = 〈A | R〉, FIP(G)
Decide, given words u1, . . . ,uk ∈ (A±)∗, whether 〈u1, . . . ,uk〉G has
finite index in G.

Proposition
Let H ⩽ FA. Then,

|FA : H| < ∞ ⇔ St(H) is saturated and #VSt(H) < ∞

in particular if H is finitely generated (i.e., St(H) is finite):

|FA : H| < ∞ ⇔ St(H) is saturated

Corollary
Given a finite S ⊆ FA, we can compute the index of 〈H〉 in FA.
In particular, FIP(FA) is decidable.

FINITE INDEX

Remark:
Sch(H,A) is core ⇔ Sch(H,A) = St(H,A)⇔ St(H,A) is saturated

Finite Index Problem for G = 〈A | R〉, FIP(G)
Decide, given words u1, . . . ,uk ∈ (A±)∗, whether 〈u1, . . . ,uk〉G has
finite index in G.

Proposition
Let H ⩽ FA. Then,

|FA : H| < ∞ ⇔ St(H) is saturated and #VSt(H) < ∞

in particular if H is finitely generated (i.e., St(H) is finite):

|FA : H| < ∞ ⇔ St(H) is saturated

Corollary
Given a finite S ⊆ FA, we can compute the index of 〈H〉 in FA.
In particular, FIP(FA) is decidable.

FINITE INDEX

Remark:
Sch(H,A) is core ⇔ Sch(H,A) = St(H,A)⇔ St(H,A) is saturated

Finite Index Problem for G = 〈A | R〉, FIP(G)
Decide, given words u1, . . . ,uk ∈ (A±)∗, whether 〈u1, . . . ,uk〉G has
finite index in G.

Proposition
Let H ⩽ FA. Then,

|FA : H| < ∞ ⇔ St(H) is saturated and #VSt(H) < ∞
in particular if H is finitely generated (i.e., St(H) is finite):

|FA : H| < ∞ ⇔ St(H) is saturated

Corollary
Given a finite S ⊆ FA, we can compute the index of 〈H〉 in FA.
In particular, FIP(FA) is decidable.

FINITE INDEX

Remark:
Sch(H,A) is core ⇔ Sch(H,A) = St(H,A)⇔ St(H,A) is saturated

Finite Index Problem for G = 〈A | R〉, FIP(G)
Decide, given words u1, . . . ,uk ∈ (A±)∗, whether 〈u1, . . . ,uk〉G has
finite index in G.

Proposition
Let H ⩽ FA. Then,

|FA : H| < ∞ ⇔ St(H) is saturated and #VSt(H) < ∞
in particular if H is finitely generated (i.e., St(H) is finite):

|FA : H| < ∞ ⇔ St(H) is saturated

Corollary
Given a finite S ⊆ FA, we can compute the index of 〈H〉 in FA.
In particular, FIP(FA) is decidable.

SCHREIER INDEX FORMULA

Fn denotes the free group of finite rank n.

Corollary
Fn has finitely many subgroups of index k ∈ N⩾1.

Exercise: Find all the subgroups of F2 of index 2.

Schreier index formula
If H is a subgroup of finite index in Fn, then

rk(H) − 1 = (n− 1) |Fn : H|

r̃k(H) = r̃k(Fn) |Fn : H|

Proof: Let T be a spanning tree of Γ = St(H) (saturated and finite).
Then,

rk(H) − 1 = rk(Γ) − 1

= #EΓ+ − #ET− 1
= #EΓ+ − #VT = n#VΓ+ − #VΓ+

= (n− 1) |Fn : H| .

SCHREIER INDEX FORMULA

Fn denotes the free group of finite rank n.

Corollary
Fn has finitely many subgroups of index k ∈ N⩾1.

Exercise: Find all the subgroups of F2 of index 2.

Schreier index formula
If H is a subgroup of finite index in Fn, then

rk(H) − 1 = (n− 1) |Fn : H|

r̃k(H) = r̃k(Fn) |Fn : H|

Proof: Let T be a spanning tree of Γ = St(H) (saturated and finite).
Then,

rk(H) − 1 = rk(Γ) − 1

= #EΓ+ − #ET− 1
= #EΓ+ − #VT = n#VΓ+ − #VΓ+

= (n− 1) |Fn : H| .

SCHREIER INDEX FORMULA

Fn denotes the free group of finite rank n.

Corollary
Fn has finitely many subgroups of index k ∈ N⩾1.

Exercise: Find all the subgroups of F2 of index 2.

Schreier index formula
If H is a subgroup of finite index in Fn, then

rk(H) − 1 = (n− 1) |Fn : H|

r̃k(H) = r̃k(Fn) |Fn : H|

Proof: Let T be a spanning tree of Γ = St(H) (saturated and finite).
Then,

rk(H) − 1 = rk(Γ) − 1

= #EΓ+ − #ET− 1
= #EΓ+ − #VT = n#VΓ+ − #VΓ+

= (n− 1) |Fn : H| .

SCHREIER INDEX FORMULA

Fn denotes the free group of finite rank n.

Corollary
Fn has finitely many subgroups of index k ∈ N⩾1.

Exercise: Find all the subgroups of F2 of index 2.

Schreier index formula
If H is a subgroup of finite index in Fn, then

rk(H) − 1 = (n− 1) |Fn : H|

r̃k(H) = r̃k(Fn) |Fn : H|

Proof: Let T be a spanning tree of Γ = St(H) (saturated and finite).
Then,

rk(H) − 1 = rk(Γ) − 1

= #EΓ+ − #ET− 1
= #EΓ+ − #VT = n#VΓ+ − #VΓ+

= (n− 1) |Fn : H| .

SCHREIER INDEX FORMULA

Fn denotes the free group of finite rank n.

Corollary
Fn has finitely many subgroups of index k ∈ N⩾1.

Exercise: Find all the subgroups of F2 of index 2.

Schreier index formula
If H is a subgroup of finite index in Fn, then

rk(H) − 1 = (n− 1) |Fn : H|

r̃k(H) = r̃k(Fn) |Fn : H|

Proof: Let T be a spanning tree of Γ = St(H) (saturated and finite).
Then,

rk(H) − 1 = rk(Γ) − 1

= #EΓ+ − #ET− 1
= #EΓ+ − #VT = n#VΓ+ − #VΓ+

= (n− 1) |Fn : H| .

SCHREIER INDEX FORMULA

Fn denotes the free group of finite rank n.

Corollary
Fn has finitely many subgroups of index k ∈ N⩾1.

Exercise: Find all the subgroups of F2 of index 2.

Schreier index formula
If H is a subgroup of finite index in Fn, then

rk(H) − 1 = (n− 1) |Fn : H|

r̃k(H) = r̃k(Fn) |Fn : H|

Proof: Let T be a spanning tree of Γ = St(H) (saturated and finite).

Then,
rk(H) − 1 = rk(Γ) − 1

= #EΓ+ − #ET− 1
= #EΓ+ − #VT = n#VΓ+ − #VΓ+

= (n− 1) |Fn : H| .

SCHREIER INDEX FORMULA

Fn denotes the free group of finite rank n.

Corollary
Fn has finitely many subgroups of index k ∈ N⩾1.

Exercise: Find all the subgroups of F2 of index 2.

Schreier index formula
If H is a subgroup of finite index in Fn, then

rk(H) − 1 = (n− 1) |Fn : H|

r̃k(H) = r̃k(Fn) |Fn : H|

Proof: Let T be a spanning tree of Γ = St(H) (saturated and finite).
Then,

rk(H) − 1 = rk(Γ) − 1

= #EΓ+ − #ET− 1
= #EΓ+ − #VT = n#VΓ+ − #VΓ+

= (n− 1) |Fn : H| .

SCHREIER INDEX FORMULA

Fn denotes the free group of finite rank n.

Corollary
Fn has finitely many subgroups of index k ∈ N⩾1.

Exercise: Find all the subgroups of F2 of index 2.

Schreier index formula
If H is a subgroup of finite index in Fn, then

rk(H) − 1 = (n− 1) |Fn : H|

r̃k(H) = r̃k(Fn) |Fn : H|

Proof: Let T be a spanning tree of Γ = St(H) (saturated and finite).
Then,

rk(H) − 1 = rk(Γ) − 1 = #EΓ+ − #ET− 1

= #EΓ+ − #VT = n#VΓ+ − #VΓ+

= (n− 1) |Fn : H| .

SCHREIER INDEX FORMULA

Fn denotes the free group of finite rank n.

Corollary
Fn has finitely many subgroups of index k ∈ N⩾1.

Exercise: Find all the subgroups of F2 of index 2.

Schreier index formula
If H is a subgroup of finite index in Fn, then

rk(H) − 1 = (n− 1) |Fn : H|

r̃k(H) = r̃k(Fn) |Fn : H|

Proof: Let T be a spanning tree of Γ = St(H) (saturated and finite).
Then,

rk(H) − 1 = rk(Γ) − 1 = #EΓ+ − #ET− 1
= #EΓ+ − #VT

= n#VΓ+ − #VΓ+

= (n− 1) |Fn : H| .

SCHREIER INDEX FORMULA

Fn denotes the free group of finite rank n.

Corollary
Fn has finitely many subgroups of index k ∈ N⩾1.

Exercise: Find all the subgroups of F2 of index 2.

Schreier index formula
If H is a subgroup of finite index in Fn, then

rk(H) − 1 = (n− 1) |Fn : H|

r̃k(H) = r̃k(Fn) |Fn : H|

Proof: Let T be a spanning tree of Γ = St(H) (saturated and finite).
Then,

rk(H) − 1 = rk(Γ) − 1 = #EΓ+ − #ET− 1
= #EΓ+ − #VT = n#VΓ+ − #VΓ+

= (n− 1) |Fn : H| .

SCHREIER INDEX FORMULA

Fn denotes the free group of finite rank n.

Corollary
Fn has finitely many subgroups of index k ∈ N⩾1.

Exercise: Find all the subgroups of F2 of index 2.

Schreier index formula
If H is a subgroup of finite index in Fn, then

rk(H) − 1 = (n− 1) |Fn : H|

r̃k(H) = r̃k(Fn) |Fn : H|

Proof: Let T be a spanning tree of Γ = St(H) (saturated and finite).
Then,

rk(H) − 1 = rk(Γ) − 1 = #EΓ+ − #ET− 1
= #EΓ+ − #VT = n#VΓ+ − #VΓ+

= (n− 1) |Fn : H| .

FREE FACTORS AND HANDSHAKING LEMMA

Proposition
Let Γ be a reduced A-automaton, and let ∆ be a connected
subautomaton of Γ . Then 〈∆〉 is a free factor of 〈Γ〉. (〈∆〉 ⩽∗ 〈Γ〉)

Proof: Every spanning tree of ∆ can be extended to an spanning tree
of Γ .

Remark: not every free factor of Γ appears in this way, why?

Lemma (Handshaking lemma)
If Γ is a finite reduced A-automaton. Then ∀a ∈ A, defa(Γ) = defa−1(Γ).

This property fails for infinite reduced automata:

· · ·

b

a

FREE FACTORS AND HANDSHAKING LEMMA

Proposition
Let Γ be a reduced A-automaton, and let ∆ be a connected
subautomaton of Γ . Then 〈∆〉 is a free factor of 〈Γ〉. (〈∆〉 ⩽∗ 〈Γ〉)

Proof: Every spanning tree of ∆ can be extended to an spanning tree
of Γ .

Remark: not every free factor of Γ appears in this way, why?

Lemma (Handshaking lemma)
If Γ is a finite reduced A-automaton. Then ∀a ∈ A, defa(Γ) = defa−1(Γ).

This property fails for infinite reduced automata:

· · ·

b

a

FREE FACTORS AND HANDSHAKING LEMMA

Proposition
Let Γ be a reduced A-automaton, and let ∆ be a connected
subautomaton of Γ . Then 〈∆〉 is a free factor of 〈Γ〉. (〈∆〉 ⩽∗ 〈Γ〉)

Proof: Every spanning tree of ∆ can be extended to an spanning tree
of Γ .

Remark: not every free factor of Γ appears in this way, why?

Lemma (Handshaking lemma)
If Γ is a finite reduced A-automaton. Then ∀a ∈ A, defa(Γ) = defa−1(Γ).

This property fails for infinite reduced automata:

· · ·

b

a

FREE FACTORS AND HANDSHAKING LEMMA

Proposition
Let Γ be a reduced A-automaton, and let ∆ be a connected
subautomaton of Γ . Then 〈∆〉 is a free factor of 〈Γ〉. (〈∆〉 ⩽∗ 〈Γ〉)

Proof: Every spanning tree of ∆ can be extended to an spanning tree
of Γ .

Remark: not every free factor of Γ appears in this way, why?

Lemma (Handshaking lemma)
If Γ is a finite reduced A-automaton. Then ∀a ∈ A, defa(Γ) = defa−1(Γ).

This property fails for infinite reduced automata:

· · ·

b

a

FREE FACTORS AND HANDSHAKING LEMMA

Proposition
Let Γ be a reduced A-automaton, and let ∆ be a connected
subautomaton of Γ . Then 〈∆〉 is a free factor of 〈Γ〉. (〈∆〉 ⩽∗ 〈Γ〉)

Proof: Every spanning tree of ∆ can be extended to an spanning tree
of Γ .

Remark: not every free factor of Γ appears in this way, why?

Lemma (Handshaking lemma)
If Γ is a finite reduced A-automaton. Then ∀a ∈ A, defa(Γ) = defa−1(Γ).

This property fails for infinite reduced automata:

· · ·

b

a

FREE FACTORS AND HANDSHAKING LEMMA

Proposition
Let Γ be a reduced A-automaton, and let ∆ be a connected
subautomaton of Γ . Then 〈∆〉 is a free factor of 〈Γ〉. (〈∆〉 ⩽∗ 〈Γ〉)

Proof: Every spanning tree of ∆ can be extended to an spanning tree
of Γ .

Remark: not every free factor of Γ appears in this way, why?

Lemma (Handshaking lemma)
If Γ is a finite reduced A-automaton. Then ∀a ∈ A, defa(Γ) = defa−1(Γ).

This property fails for infinite reduced automata:

· · ·

b

a

MARSHALL-HALL THEOREM AND RESIDUAL FINITENESS

Theorem (Marshall-Hall Jr.)
If H is a finitely generated subgroup of a free group F, then H is a
free factor of a finite-index subgroup of F; i.e.,

H ⩽fg F ⇒ ∃K : H ⩽ff K ⩽fi F.

Proof (by example): Consider the subgroup recognized by the
Stallings automaton:

Definition: G is residually finite if ∀g ∈ G \ {1}, ∃N Pf.i. G s.t. g /∈ N.

Theorem
Finitely generated free groups are residually finite.

Prove it using Stallings automata!

MARSHALL-HALL THEOREM AND RESIDUAL FINITENESS

Theorem (Marshall-Hall Jr.)
If H is a finitely generated subgroup of a free group F, then H is a
free factor of a finite-index subgroup of F; i.e.,

H ⩽fg F ⇒ ∃K : H ⩽ff K ⩽fi F.

Proof (by example): Consider the subgroup recognized by the
Stallings automaton:

Definition: G is residually finite if ∀g ∈ G \ {1}, ∃N Pf.i. G s.t. g /∈ N.

Theorem
Finitely generated free groups are residually finite.

Prove it using Stallings automata!

MARSHALL-HALL THEOREM AND RESIDUAL FINITENESS

Theorem (Marshall-Hall Jr.)
If H is a finitely generated subgroup of a free group F, then H is a
free factor of a finite-index subgroup of F; i.e.,

H ⩽fg F ⇒ ∃K : H ⩽ff K ⩽fi F.

Proof (by example): Consider the subgroup recognized by the
Stallings automaton:

Definition: G is residually finite if ∀g ∈ G \ {1}, ∃N Pf.i. G s.t. g /∈ N.

Theorem
Finitely generated free groups are residually finite.

Prove it using Stallings automata!

MARSHALL-HALL THEOREM AND RESIDUAL FINITENESS

Theorem (Marshall-Hall Jr.)
If H is a finitely generated subgroup of a free group F, then H is a
free factor of a finite-index subgroup of F; i.e.,

H ⩽fg F ⇒ ∃K : H ⩽ff K ⩽fi F.

Proof (by example): Consider the subgroup recognized by the
Stallings automaton:

Definition: G is residually finite if ∀g ∈ G \ {1}, ∃N Pf.i. G s.t. g /∈ N.

Theorem
Finitely generated free groups are residually finite.

Prove it using Stallings automata!

MARSHALL-HALL THEOREM AND RESIDUAL FINITENESS

Theorem (Marshall-Hall Jr.)
If H is a finitely generated subgroup of a free group F, then H is a
free factor of a finite-index subgroup of F; i.e.,

H ⩽fg F ⇒ ∃K : H ⩽ff K ⩽fi F.

Proof (by example): Consider the subgroup recognized by the
Stallings automaton:

Definition: G is residually finite if ∀g ∈ G \ {1}, ∃N Pf.i. G s.t. g /∈ N.

Theorem
Finitely generated free groups are residually finite.

Prove it using Stallings automata!

MARSHALL-HALL THEOREM AND RESIDUAL FINITENESS

Theorem (Marshall-Hall Jr.)
If H is a finitely generated subgroup of a free group F, then H is a
free factor of a finite-index subgroup of F; i.e.,

H ⩽fg F ⇒ ∃K : H ⩽ff K ⩽fi F.

Proof (by example): Consider the subgroup recognized by the
Stallings automaton:

Definition: G is residually finite if ∀g ∈ G \ {1}, ∃N Pf.i. G s.t. g /∈ N.

Theorem
Finitely generated free groups are residually finite.

Prove it using Stallings automata!

MARSHALL-HALL THEOREM AND RESIDUAL FINITENESS

Theorem (Marshall-Hall Jr.)
If H is a finitely generated subgroup of a free group F, then H is a
free factor of a finite-index subgroup of F; i.e.,

H ⩽fg F ⇒ ∃K : H ⩽ff K ⩽fi F.

Proof (by example): Consider the subgroup recognized by the
Stallings automaton:

Definition: G is residually finite if ∀g ∈ G \ {1}, ∃N Pf.i. G s.t. g /∈ N.

Theorem
Finitely generated free groups are residually finite.

Prove it using Stallings automata!

MARSHALL-HALL THEOREM AND RESIDUAL FINITENESS

Theorem (Marshall-Hall Jr.)
If H is a finitely generated subgroup of a free group F, then H is a
free factor of a finite-index subgroup of F; i.e.,

H ⩽fg F ⇒ ∃K : H ⩽ff K ⩽fi F.

Proof (by example): Consider the subgroup recognized by the
Stallings automaton:

Definition: G is residually finite if ∀g ∈ G \ {1}, ∃N Pf.i. G s.t. g /∈ N.

Theorem
Finitely generated free groups are residually finite.

Prove it using Stallings automata!

MARSHALL-HALL THEOREM AND RESIDUAL FINITENESS

Theorem (Marshall-Hall Jr.)
If H is a finitely generated subgroup of a free group F, then H is a
free factor of a finite-index subgroup of F; i.e.,

H ⩽fg F ⇒ ∃K : H ⩽ff K ⩽fi F.

Proof (by example): Consider the subgroup recognized by the
Stallings automaton:

Definition: G is residually finite if ∀g ∈ G \ {1}, ∃N Pf.i. G s.t. g /∈ N.

Theorem
Finitely generated free groups are residually finite.

Prove it using Stallings automata!

CONJUGACY AND NORMALITY

Lemma
Let H ⩽ FA and let w ∈ FA. Then, St(Hw) = core(SchHw(H)).

Definition
Γ is vertex-transitive if ∀p,q ∈ Γ , ∃φ : Γ → Γ automorphism of
A-digraphs, such that φ(p) = q.

Proposition
Let H 6= {1} be a subgroup of FA. Then:

H is normal in FA ⇔ St(H) is saturated and vertex-transitive

Corollary: The normality problem is decidable for free groups.

Corollary
Let {1} 6= H P Fn, Then,

H is finitely generated ⇔ H ⩽fi Fn

CONJUGACY AND NORMALITY

Lemma
Let H ⩽ FA and let w ∈ FA. Then, St(Hw) = core(SchHw(H)).

Definition
Γ is vertex-transitive if ∀p,q ∈ Γ , ∃φ : Γ → Γ automorphism of
A-digraphs, such that φ(p) = q.

Proposition
Let H 6= {1} be a subgroup of FA. Then:

H is normal in FA ⇔ St(H) is saturated and vertex-transitive

Corollary: The normality problem is decidable for free groups.

Corollary
Let {1} 6= H P Fn, Then,

H is finitely generated ⇔ H ⩽fi Fn

CONJUGACY AND NORMALITY

Lemma
Let H ⩽ FA and let w ∈ FA. Then, St(Hw) = core(SchHw(H)).

Definition
Γ is vertex-transitive if ∀p,q ∈ Γ , ∃φ : Γ → Γ automorphism of
A-digraphs, such that φ(p) = q.

Proposition
Let H 6= {1} be a subgroup of FA. Then:

H is normal in FA ⇔ St(H) is saturated and vertex-transitive

Corollary: The normality problem is decidable for free groups.

Corollary
Let {1} 6= H P Fn, Then,

H is finitely generated ⇔ H ⩽fi Fn

CONJUGACY AND NORMALITY

Lemma
Let H ⩽ FA and let w ∈ FA. Then, St(Hw) = core(SchHw(H)).

Definition
Γ is vertex-transitive if ∀p,q ∈ Γ , ∃φ : Γ → Γ automorphism of
A-digraphs, such that φ(p) = q.

Proposition
Let H 6= {1} be a subgroup of FA. Then:

H is normal in FA ⇔ St(H) is saturated and vertex-transitive

Corollary: The normality problem is decidable for free groups.

Corollary
Let {1} 6= H P Fn, Then,

H is finitely generated ⇔ H ⩽fi Fn

CONJUGACY AND NORMALITY

Lemma
Let H ⩽ FA and let w ∈ FA. Then, St(Hw) = core(SchHw(H)).

Definition
Γ is vertex-transitive if ∀p,q ∈ Γ , ∃φ : Γ → Γ automorphism of
A-digraphs, such that φ(p) = q.

Proposition
Let H 6= {1} be a subgroup of FA. Then:

H is normal in FA ⇔ St(H) is saturated and vertex-transitive

Corollary: The normality problem is decidable for free groups.

Corollary
Let {1} 6= H P Fn, Then,

H is finitely generated ⇔ H ⩽fi Fn

SUBGROUP CONJUGACY

Let Γ be a (pointed and involutive) A-automaton.

Lemma
Let H ⩽ FA and let w ∈ FA. Then, St(Hw) = core(SchHw(H)).

Definition
The restricted core of Γ , denoted by core∗(Γ), is the labelled digraph
obtained after successively removing from core(Γ) all the (eventual)
vertices of degree one and ignoring the basepoint.

We write St∗(H) = core∗(St(H)). (restricted Stallings digraph)

Proposition
Two subgroups H, K ⩽ FA are conjugate ⇔ St∗(H) = St∗(K).

Theorem
The subgroup conjugacy problem SCP(Fn) is decidable.

SCP(G) ≡ H ∼ K ?H,K⩽fg G

SUBGROUP CONJUGACY

Let Γ be a (pointed and involutive) A-automaton.

Lemma
Let H ⩽ FA and let w ∈ FA. Then, St(Hw) = core(SchHw(H)).

Definition
The restricted core of Γ , denoted by core∗(Γ), is the labelled digraph
obtained after successively removing from core(Γ) all the (eventual)
vertices of degree one and ignoring the basepoint.

We write St∗(H) = core∗(St(H)). (restricted Stallings digraph)

Proposition
Two subgroups H, K ⩽ FA are conjugate ⇔ St∗(H) = St∗(K).

Theorem
The subgroup conjugacy problem SCP(Fn) is decidable.

SCP(G) ≡ H ∼ K ?H,K⩽fg G

SUBGROUP CONJUGACY

Let Γ be a (pointed and involutive) A-automaton.

Lemma
Let H ⩽ FA and let w ∈ FA. Then, St(Hw) = core(SchHw(H)).

Definition
The restricted core of Γ , denoted by core∗(Γ), is the labelled digraph
obtained after successively removing from core(Γ) all the (eventual)
vertices of degree one and ignoring the basepoint.

We write St∗(H) = core∗(St(H)). (restricted Stallings digraph)

Proposition
Two subgroups H, K ⩽ FA are conjugate ⇔ St∗(H) = St∗(K).

Theorem
The subgroup conjugacy problem SCP(Fn) is decidable.

SCP(G) ≡ H ∼ K ?H,K⩽fg G

SUBGROUP CONJUGACY

Let Γ be a (pointed and involutive) A-automaton.

Lemma
Let H ⩽ FA and let w ∈ FA. Then, St(Hw) = core(SchHw(H)).

Definition
The restricted core of Γ , denoted by core∗(Γ), is the labelled digraph
obtained after successively removing from core(Γ) all the (eventual)
vertices of degree one and ignoring the basepoint.

We write St∗(H) = core∗(St(H)). (restricted Stallings digraph)

Proposition
Two subgroups H, K ⩽ FA are conjugate ⇔ St∗(H) = St∗(K).

Theorem
The subgroup conjugacy problem SCP(Fn) is decidable.

SCP(G) ≡ H ∼ K ?H,K⩽fg G

SUBGROUP CONJUGACY

Let Γ be a (pointed and involutive) A-automaton.

Lemma
Let H ⩽ FA and let w ∈ FA. Then, St(Hw) = core(SchHw(H)).

Definition
The restricted core of Γ , denoted by core∗(Γ), is the labelled digraph
obtained after successively removing from core(Γ) all the (eventual)
vertices of degree one and ignoring the basepoint.

We write St∗(H) = core∗(St(H)). (restricted Stallings digraph)

Proposition
Two subgroups H, K ⩽ FA are conjugate ⇔ St∗(H) = St∗(K).

Theorem
The subgroup conjugacy problem SCP(Fn) is decidable.

SCP(G) ≡ H ∼ K ?H,K⩽fg G

INTERSECTIONS

THE SUBGROUP INTERSECTION PROBLEM

Subgroup Intersection Problem
Given u1, . . . ,uk; v1, . . . , vl ∈ FA, decide whether the intersection of
H = 〈u1, . . . ,uk〉 and K = 〈v1, . . . , vl〉 is finitely generated; when this is
the case, compute generators for H ∩ K.

Example
Consider F2 = 〈a,b〉 and the subgroups

H = 〈u1,u2,u3〉 ⩽ F2 and K = 〈v1, v2, v3〉 ⩽ F2

u1 = b, v1 = ab,
u2 = a3, v2 = a3,
u3 = a−1bab−1a; v3 = a−1ba.

How to find generators for H ∩ K?

Just playing, we realized that a3, b−1a3b, a−1ba3b−1a ∈ H ∩ K. What
else?

THE SUBGROUP INTERSECTION PROBLEM

Subgroup Intersection Problem
Given u1, . . . ,uk; v1, . . . , vl ∈ FA, decide whether the intersection of
H = 〈u1, . . . ,uk〉 and K = 〈v1, . . . , vl〉 is finitely generated; when this is
the case, compute generators for H ∩ K.

Example
Consider F2 = 〈a,b〉 and the subgroups

H = 〈u1,u2,u3〉 ⩽ F2 and K = 〈v1, v2, v3〉 ⩽ F2

u1 = b, v1 = ab,
u2 = a3, v2 = a3,
u3 = a−1bab−1a; v3 = a−1ba.

How to find generators for H ∩ K?

Just playing, we realized that a3, b−1a3b, a−1ba3b−1a ∈ H ∩ K. What
else?

THE SUBGROUP INTERSECTION PROBLEM

Subgroup Intersection Problem
Given u1, . . . ,uk; v1, . . . , vl ∈ FA, decide whether the intersection of
H = 〈u1, . . . ,uk〉 and K = 〈v1, . . . , vl〉 is finitely generated; when this is
the case, compute generators for H ∩ K.

Example
Consider F2 = 〈a,b〉 and the subgroups

H = 〈u1,u2,u3〉 ⩽ F2 and K = 〈v1, v2, v3〉 ⩽ F2

u1 = b, v1 = ab,
u2 = a3, v2 = a3,
u3 = a−1bab−1a; v3 = a−1ba.

How to find generators for H ∩ K?

Just playing, we realized that a3, b−1a3b, a−1ba3b−1a ∈ H ∩ K. What
else?

PRODUCT OF AUTOMATA

Definition
Let Γ1 and Γ2 be two A-automata. Their product (or pull-back) is the
A-automaton Γ1 × Γ2 defined as:
• vertices: V(Γ1 × Γ2) = V(Γ1)× V(Γ2);

• arcs: (p1,p2)
a (q1,q2) for every pair of arcs p1

a q1 in Γ1, and
p2

a q2 in Γ2, a ∈ A;
• basepoint: = (1, 2).

1

2

Γ1

Γ2

Γ1×Γ2

a

a a

PRODUCT OF AUTOMATA

Definition
Let Γ1 and Γ2 be two A-automata. Their product (or pull-back) is the
A-automaton Γ1 × Γ2 defined as:
• vertices: V(Γ1 × Γ2) = V(Γ1)× V(Γ2);
• arcs: (p1,p2)

a (q1,q2) for every pair of arcs p1
a q1 in Γ1, and

p2
a q2 in Γ2, a ∈ A;

• basepoint: = (1, 2).

1

2

Γ1

Γ2

Γ1×Γ2

a

a a

PRODUCT OF AUTOMATA

Definition
Let Γ1 and Γ2 be two A-automata. Their product (or pull-back) is the
A-automaton Γ1 × Γ2 defined as:
• vertices: V(Γ1 × Γ2) = V(Γ1)× V(Γ2);
• arcs: (p1,p2)

a (q1,q2) for every pair of arcs p1
a q1 in Γ1, and

p2
a q2 in Γ2, a ∈ A;

• basepoint: = (1, 2).

1

2

Γ1

Γ2

Γ1×Γ2

a

a a

PRODUCT OF AUTOMATA

Definition
Let Γ1 and Γ2 be two A-automata. Their product (or pull-back) is the
A-automaton Γ1 × Γ2 defined as:
• vertices: V(Γ1 × Γ2) = V(Γ1)× V(Γ2);
• arcs: (p1,p2)

a (q1,q2) for every pair of arcs p1
a q1 in Γ1, and

p2
a q2 in Γ2, a ∈ A;

• basepoint: = (1, 2).

1

2

Γ1

Γ2

Γ1×Γ2

a

a a

EXAMPLE OF PRODUCT OF AUTOMATA

Example
Consider H = 〈b,a3,a−1bab−1a〉, K = 〈ab,a3,a−1ba〉 ⩽ FA, A = {a,b}.
The A-automata St(H), St(K), and St(H)× St(K) are:

b
a

EXAMPLE OF PRODUCT OF AUTOMATA

Example
Consider H = 〈b,a3,a−1bab−1a〉, K = 〈ab,a3,a−1ba〉 ⩽ FA, A = {a,b}.
The A-automata St(H), St(K), and St(H)× St(K) are:

b
a

EXAMPLE OF PRODUCT OF AUTOMATA

Example
Consider H = 〈b,a3,a−1bab−1a〉, K = 〈ab,a3,a−1ba〉 ⩽ FA, A = {a,b}.
The A-automata St(H), St(K), and St(H)× St(K) are:

b
a

EXAMPLE OF PRODUCT OF AUTOMATA

Example
Consider H = 〈b,a3,a−1bab−1a〉, K = 〈ab,a3,a−1ba〉 ⩽ FA, A = {a,b}.
The A-automata St(H), St(K), and St(H)× St(K) are:

b
a

EXAMPLE OF PRODUCT OF AUTOMATA

Example
Consider H = 〈b,a3,a−1bab−1a〉, K = 〈ab,a3,a−1ba〉 ⩽ FA, A = {a,b}.
The A-automata St(H), St(K), and St(H)× St(K) are:

b
a

EXAMPLE OF PRODUCT OF AUTOMATA

Example
Consider H = 〈b,a3,a−1bab−1a〉, K = 〈ab,a3,a−1ba〉 ⩽ FA, A = {a,b}.
The A-automata St(H), St(K), and St(H)× St(K) are:

b
a

EXAMPLE OF PRODUCT OF AUTOMATA

Example
Consider H = 〈b,a3,a−1bab−1a〉, K = 〈ab,a3,a−1ba〉 ⩽ FA, A = {a,b}.
The A-automata St(H), St(K), and St(H)× St(K) are:

b
a

PROPERTIES OF THE PRODUCT OF AUTOMATA

Proposition
Consider the product Γ1 × Γ2 of two A-automata Γ1 and Γ2. Then,

(i) if Γ1 and Γ2 are deterministic then so is Γ1 × Γ2;
(ii) 〈Γ1 × Γ2〉 = 〈Γ1〉 ∩ 〈Γ2〉;
(iii) even with Γ1 and Γ2 being connected, Γ1 × Γ2 may not be so;
(iv) even with Γ1 and Γ2 being core, Γ1 × Γ2 may not be so;
(v) If Γ1 and Γ2 are deterministic, then for every (p,q) ∈ Γ1 × Γ2,

0 ⩽ deg(p,q) ⩽ min{deg(p), deg(q)}.

Corollary
The Stallings automaton of the intersection H ∩ K is

St(H ∩ K) = core
(
St(H)× St(K)

)
.

Two immediate applications follow …

PROPERTIES OF THE PRODUCT OF AUTOMATA

Proposition
Consider the product Γ1 × Γ2 of two A-automata Γ1 and Γ2. Then,
(i) if Γ1 and Γ2 are deterministic then so is Γ1 × Γ2;

(ii) 〈Γ1 × Γ2〉 = 〈Γ1〉 ∩ 〈Γ2〉;
(iii) even with Γ1 and Γ2 being connected, Γ1 × Γ2 may not be so;
(iv) even with Γ1 and Γ2 being core, Γ1 × Γ2 may not be so;
(v) If Γ1 and Γ2 are deterministic, then for every (p,q) ∈ Γ1 × Γ2,

0 ⩽ deg(p,q) ⩽ min{deg(p), deg(q)}.

Corollary
The Stallings automaton of the intersection H ∩ K is

St(H ∩ K) = core
(
St(H)× St(K)

)
.

Two immediate applications follow …

PROPERTIES OF THE PRODUCT OF AUTOMATA

Proposition
Consider the product Γ1 × Γ2 of two A-automata Γ1 and Γ2. Then,
(i) if Γ1 and Γ2 are deterministic then so is Γ1 × Γ2;
(ii) 〈Γ1 × Γ2〉 = 〈Γ1〉 ∩ 〈Γ2〉;

(iii) even with Γ1 and Γ2 being connected, Γ1 × Γ2 may not be so;
(iv) even with Γ1 and Γ2 being core, Γ1 × Γ2 may not be so;
(v) If Γ1 and Γ2 are deterministic, then for every (p,q) ∈ Γ1 × Γ2,

0 ⩽ deg(p,q) ⩽ min{deg(p), deg(q)}.

Corollary
The Stallings automaton of the intersection H ∩ K is

St(H ∩ K) = core
(
St(H)× St(K)

)
.

Two immediate applications follow …

PROPERTIES OF THE PRODUCT OF AUTOMATA

Proposition
Consider the product Γ1 × Γ2 of two A-automata Γ1 and Γ2. Then,
(i) if Γ1 and Γ2 are deterministic then so is Γ1 × Γ2;
(ii) 〈Γ1 × Γ2〉 = 〈Γ1〉 ∩ 〈Γ2〉;
(iii) even with Γ1 and Γ2 being connected, Γ1 × Γ2 may not be so;

(iv) even with Γ1 and Γ2 being core, Γ1 × Γ2 may not be so;
(v) If Γ1 and Γ2 are deterministic, then for every (p,q) ∈ Γ1 × Γ2,

0 ⩽ deg(p,q) ⩽ min{deg(p), deg(q)}.

Corollary
The Stallings automaton of the intersection H ∩ K is

St(H ∩ K) = core
(
St(H)× St(K)

)
.

Two immediate applications follow …

PROPERTIES OF THE PRODUCT OF AUTOMATA

Proposition
Consider the product Γ1 × Γ2 of two A-automata Γ1 and Γ2. Then,
(i) if Γ1 and Γ2 are deterministic then so is Γ1 × Γ2;
(ii) 〈Γ1 × Γ2〉 = 〈Γ1〉 ∩ 〈Γ2〉;
(iii) even with Γ1 and Γ2 being connected, Γ1 × Γ2 may not be so;
(iv) even with Γ1 and Γ2 being core, Γ1 × Γ2 may not be so;

(v) If Γ1 and Γ2 are deterministic, then for every (p,q) ∈ Γ1 × Γ2,

0 ⩽ deg(p,q) ⩽ min{deg(p), deg(q)}.

Corollary
The Stallings automaton of the intersection H ∩ K is

St(H ∩ K) = core
(
St(H)× St(K)

)
.

Two immediate applications follow …

PROPERTIES OF THE PRODUCT OF AUTOMATA

Proposition
Consider the product Γ1 × Γ2 of two A-automata Γ1 and Γ2. Then,
(i) if Γ1 and Γ2 are deterministic then so is Γ1 × Γ2;
(ii) 〈Γ1 × Γ2〉 = 〈Γ1〉 ∩ 〈Γ2〉;
(iii) even with Γ1 and Γ2 being connected, Γ1 × Γ2 may not be so;
(iv) even with Γ1 and Γ2 being core, Γ1 × Γ2 may not be so;
(v) If Γ1 and Γ2 are deterministic, then for every (p,q) ∈ Γ1 × Γ2,

0 ⩽ deg(p,q) ⩽ min{deg(p), deg(q)}.

Corollary
The Stallings automaton of the intersection H ∩ K is

St(H ∩ K) = core
(
St(H)× St(K)

)
.

Two immediate applications follow …

PROPERTIES OF THE PRODUCT OF AUTOMATA

Proposition
Consider the product Γ1 × Γ2 of two A-automata Γ1 and Γ2. Then,
(i) if Γ1 and Γ2 are deterministic then so is Γ1 × Γ2;
(ii) 〈Γ1 × Γ2〉 = 〈Γ1〉 ∩ 〈Γ2〉;
(iii) even with Γ1 and Γ2 being connected, Γ1 × Γ2 may not be so;
(iv) even with Γ1 and Γ2 being core, Γ1 × Γ2 may not be so;
(v) If Γ1 and Γ2 are deterministic, then for every (p,q) ∈ Γ1 × Γ2,

0 ⩽ deg(p,q) ⩽ min{deg(p), deg(q)}.

Corollary
The Stallings automaton of the intersection H ∩ K is

St(H ∩ K) = core
(
St(H)× St(K)

)
.

Two immediate applications follow …

PROPERTIES OF THE PRODUCT OF AUTOMATA

Proposition
Consider the product Γ1 × Γ2 of two A-automata Γ1 and Γ2. Then,
(i) if Γ1 and Γ2 are deterministic then so is Γ1 × Γ2;
(ii) 〈Γ1 × Γ2〉 = 〈Γ1〉 ∩ 〈Γ2〉;
(iii) even with Γ1 and Γ2 being connected, Γ1 × Γ2 may not be so;
(iv) even with Γ1 and Γ2 being core, Γ1 × Γ2 may not be so;
(v) If Γ1 and Γ2 are deterministic, then for every (p,q) ∈ Γ1 × Γ2,

0 ⩽ deg(p,q) ⩽ min{deg(p), deg(q)}.

Corollary
The Stallings automaton of the intersection H ∩ K is

St(H ∩ K) = core
(
St(H)× St(K)

)
.

Two immediate applications follow …

PROPERTIES OF THE PRODUCT OF AUTOMATA

Proposition
Consider the product Γ1 × Γ2 of two A-automata Γ1 and Γ2. Then,
(i) if Γ1 and Γ2 are deterministic then so is Γ1 × Γ2;
(ii) 〈Γ1 × Γ2〉 = 〈Γ1〉 ∩ 〈Γ2〉;
(iii) even with Γ1 and Γ2 being connected, Γ1 × Γ2 may not be so;
(iv) even with Γ1 and Γ2 being core, Γ1 × Γ2 may not be so;
(v) If Γ1 and Γ2 are deterministic, then for every (p,q) ∈ Γ1 × Γ2,

0 ⩽ deg(p,q) ⩽ min{deg(p), deg(q)}.

Corollary
The Stallings automaton of the intersection H ∩ K is

St(H ∩ K) = core
(
St(H)× St(K)

)
.

Two immediate applications follow …

HOWSON PROPERTY AND THE INTERSECTION PROBLEM

Theorem (Howson, 1954)
In a free group, the intersetion of two (and so, finitely many) finitely
generated subgroups is, again, finitely generated.

Proof: H, K are finitely generated⇒ St(H) and St(K) are finite⇒
St(H)× St(K) is finite⇒ H ∩ K is finitely generated. □

Theorem
The intersection problem for a free group is solvable.

Proof: The decision part is trivial. To compute a basis:
(i) Draw the Stallings A-automaton St(H) for H = 〈u1, . . . ,uk〉;
(ii) draw the Stallings A-automaton St(K) for K = 〈v1, . . . , vl〉;
(iii) compute the product St(H)× St(K);
(iv) take the connected component containing and compute its

core;
(v) choose a spanning tree and read a free basis for H ∩ K. □

HOWSON PROPERTY AND THE INTERSECTION PROBLEM

Theorem (Howson, 1954)
In a free group, the intersetion of two (and so, finitely many) finitely
generated subgroups is, again, finitely generated.

Proof: H, K are finitely generated⇒ St(H) and St(K) are finite⇒
St(H)× St(K) is finite⇒ H ∩ K is finitely generated. □

Theorem
The intersection problem for a free group is solvable.

Proof: The decision part is trivial. To compute a basis:
(i) Draw the Stallings A-automaton St(H) for H = 〈u1, . . . ,uk〉;
(ii) draw the Stallings A-automaton St(K) for K = 〈v1, . . . , vl〉;
(iii) compute the product St(H)× St(K);
(iv) take the connected component containing and compute its

core;
(v) choose a spanning tree and read a free basis for H ∩ K. □

HOWSON PROPERTY AND THE INTERSECTION PROBLEM

Theorem (Howson, 1954)
In a free group, the intersetion of two (and so, finitely many) finitely
generated subgroups is, again, finitely generated.

Proof: H, K are finitely generated⇒ St(H) and St(K) are finite⇒
St(H)× St(K) is finite⇒ H ∩ K is finitely generated. □

Theorem
The intersection problem for a free group is solvable.

Proof: The decision part is trivial. To compute a basis:
(i) Draw the Stallings A-automaton St(H) for H = 〈u1, . . . ,uk〉;
(ii) draw the Stallings A-automaton St(K) for K = 〈v1, . . . , vl〉;
(iii) compute the product St(H)× St(K);
(iv) take the connected component containing and compute its

core;
(v) choose a spanning tree and read a free basis for H ∩ K. □

HOWSON PROPERTY AND THE INTERSECTION PROBLEM

Theorem (Howson, 1954)
In a free group, the intersetion of two (and so, finitely many) finitely
generated subgroups is, again, finitely generated.

Proof: H, K are finitely generated⇒ St(H) and St(K) are finite⇒
St(H)× St(K) is finite⇒ H ∩ K is finitely generated. □

Theorem
The intersection problem for a free group is solvable.

Proof: The decision part is trivial.

To compute a basis:
(i) Draw the Stallings A-automaton St(H) for H = 〈u1, . . . ,uk〉;
(ii) draw the Stallings A-automaton St(K) for K = 〈v1, . . . , vl〉;
(iii) compute the product St(H)× St(K);
(iv) take the connected component containing and compute its

core;
(v) choose a spanning tree and read a free basis for H ∩ K. □

HOWSON PROPERTY AND THE INTERSECTION PROBLEM

Theorem (Howson, 1954)
In a free group, the intersetion of two (and so, finitely many) finitely
generated subgroups is, again, finitely generated.

Proof: H, K are finitely generated⇒ St(H) and St(K) are finite⇒
St(H)× St(K) is finite⇒ H ∩ K is finitely generated. □

Theorem
The intersection problem for a free group is solvable.

Proof: The decision part is trivial. To compute a basis:

(i) Draw the Stallings A-automaton St(H) for H = 〈u1, . . . ,uk〉;
(ii) draw the Stallings A-automaton St(K) for K = 〈v1, . . . , vl〉;
(iii) compute the product St(H)× St(K);
(iv) take the connected component containing and compute its

core;
(v) choose a spanning tree and read a free basis for H ∩ K. □

HOWSON PROPERTY AND THE INTERSECTION PROBLEM

Theorem (Howson, 1954)
In a free group, the intersetion of two (and so, finitely many) finitely
generated subgroups is, again, finitely generated.

Proof: H, K are finitely generated⇒ St(H) and St(K) are finite⇒
St(H)× St(K) is finite⇒ H ∩ K is finitely generated. □

Theorem
The intersection problem for a free group is solvable.

Proof: The decision part is trivial. To compute a basis:
(i) Draw the Stallings A-automaton St(H) for H = 〈u1, . . . ,uk〉;

(ii) draw the Stallings A-automaton St(K) for K = 〈v1, . . . , vl〉;
(iii) compute the product St(H)× St(K);
(iv) take the connected component containing and compute its

core;
(v) choose a spanning tree and read a free basis for H ∩ K. □

HOWSON PROPERTY AND THE INTERSECTION PROBLEM

Theorem (Howson, 1954)
In a free group, the intersetion of two (and so, finitely many) finitely
generated subgroups is, again, finitely generated.

Proof: H, K are finitely generated⇒ St(H) and St(K) are finite⇒
St(H)× St(K) is finite⇒ H ∩ K is finitely generated. □

Theorem
The intersection problem for a free group is solvable.

Proof: The decision part is trivial. To compute a basis:
(i) Draw the Stallings A-automaton St(H) for H = 〈u1, . . . ,uk〉;
(ii) draw the Stallings A-automaton St(K) for K = 〈v1, . . . , vl〉;

(iii) compute the product St(H)× St(K);
(iv) take the connected component containing and compute its

core;
(v) choose a spanning tree and read a free basis for H ∩ K. □

HOWSON PROPERTY AND THE INTERSECTION PROBLEM

Theorem (Howson, 1954)
In a free group, the intersetion of two (and so, finitely many) finitely
generated subgroups is, again, finitely generated.

Proof: H, K are finitely generated⇒ St(H) and St(K) are finite⇒
St(H)× St(K) is finite⇒ H ∩ K is finitely generated. □

Theorem
The intersection problem for a free group is solvable.

Proof: The decision part is trivial. To compute a basis:
(i) Draw the Stallings A-automaton St(H) for H = 〈u1, . . . ,uk〉;
(ii) draw the Stallings A-automaton St(K) for K = 〈v1, . . . , vl〉;
(iii) compute the product St(H)× St(K);

(iv) take the connected component containing and compute its
core;

(v) choose a spanning tree and read a free basis for H ∩ K. □

HOWSON PROPERTY AND THE INTERSECTION PROBLEM

Theorem (Howson, 1954)
In a free group, the intersetion of two (and so, finitely many) finitely
generated subgroups is, again, finitely generated.

Proof: H, K are finitely generated⇒ St(H) and St(K) are finite⇒
St(H)× St(K) is finite⇒ H ∩ K is finitely generated. □

Theorem
The intersection problem for a free group is solvable.

Proof: The decision part is trivial. To compute a basis:
(i) Draw the Stallings A-automaton St(H) for H = 〈u1, . . . ,uk〉;
(ii) draw the Stallings A-automaton St(K) for K = 〈v1, . . . , vl〉;
(iii) compute the product St(H)× St(K);
(iv) take the connected component containing and compute its

core;

(v) choose a spanning tree and read a free basis for H ∩ K. □

HOWSON PROPERTY AND THE INTERSECTION PROBLEM

Theorem (Howson, 1954)
In a free group, the intersetion of two (and so, finitely many) finitely
generated subgroups is, again, finitely generated.

Proof: H, K are finitely generated⇒ St(H) and St(K) are finite⇒
St(H)× St(K) is finite⇒ H ∩ K is finitely generated. □

Theorem
The intersection problem for a free group is solvable.

Proof: The decision part is trivial. To compute a basis:
(i) Draw the Stallings A-automaton St(H) for H = 〈u1, . . . ,uk〉;
(ii) draw the Stallings A-automaton St(K) for K = 〈v1, . . . , vl〉;
(iii) compute the product St(H)× St(K);
(iv) take the connected component containing and compute its

core;
(v) choose a spanning tree and read a free basis for H ∩ K. □

EXAMPLE (CONTINUATION)

Example
To compute H ∩ K with H = 〈b,a3,a−1bab−1a〉, K = 〈ab,a3,a−1ba〉 …

b
a

=

Taking the boldfaced spanning tree, we get the free basis

H ∩ K = 〈b−1a3b,a3,a−1ba3b−1a,a−1bab−1a3ba−1b−1a,
a−1bab−1aba−1ba−1b−1a〉.

Hence, the intersection H ∩ K has rank equal to 5.

EXAMPLE (CONTINUATION)

Example
To compute H ∩ K with H = 〈b,a3,a−1bab−1a〉, K = 〈ab,a3,a−1ba〉 …

b
a

=

Taking the boldfaced spanning tree, we get the free basis

H ∩ K = 〈b−1a3b,a3,a−1ba3b−1a,a−1bab−1a3ba−1b−1a,
a−1bab−1aba−1ba−1b−1a〉.

Hence, the intersection H ∩ K has rank equal to 5.

EXAMPLE (CONTINUATION)

Example
To compute H ∩ K with H = 〈b,a3,a−1bab−1a〉, K = 〈ab,a3,a−1ba〉 …

b
a

=

Taking the boldfaced spanning tree, we get the free basis

H ∩ K = 〈b−1a3b,a3,a−1ba3b−1a,a−1bab−1a3ba−1b−1a,
a−1bab−1aba−1ba−1b−1a〉.

Hence, the intersection H ∩ K has rank equal to 5.

EXAMPLE (CONTINUATION)

Example
To compute H ∩ K with H = 〈b,a3,a−1bab−1a〉, K = 〈ab,a3,a−1ba〉 …

b
a

=

Taking the boldfaced spanning tree, we get the free basis

H ∩ K = 〈b−1a3b,a3,a−1ba3b−1a,a−1bab−1a3ba−1b−1a,
a−1bab−1aba−1ba−1b−1a〉.

Hence, the intersection H ∩ K has rank equal to 5.

EXAMPLE (CONTINUATION)

Example
To compute H ∩ K with H = 〈b,a3,a−1bab−1a〉, K = 〈ab,a3,a−1ba〉 …

b
a

=

Taking the boldfaced spanning tree, we get the free basis

H ∩ K =

〈b−1a3b,a3,a−1ba3b−1a,a−1bab−1a3ba−1b−1a,
a−1bab−1aba−1ba−1b−1a〉.

Hence, the intersection H ∩ K has rank equal to 5.

EXAMPLE (CONTINUATION)

Example
To compute H ∩ K with H = 〈b,a3,a−1bab−1a〉, K = 〈ab,a3,a−1ba〉 …

b
a

=

Taking the boldfaced spanning tree, we get the free basis

H ∩ K = 〈b−1a3b,

a3,a−1ba3b−1a,a−1bab−1a3ba−1b−1a,
a−1bab−1aba−1ba−1b−1a〉.

Hence, the intersection H ∩ K has rank equal to 5.

EXAMPLE (CONTINUATION)

Example
To compute H ∩ K with H = 〈b,a3,a−1bab−1a〉, K = 〈ab,a3,a−1ba〉 …

b
a

=

Taking the boldfaced spanning tree, we get the free basis

H ∩ K = 〈b−1a3b,a3,

a−1ba3b−1a,a−1bab−1a3ba−1b−1a,
a−1bab−1aba−1ba−1b−1a〉.

Hence, the intersection H ∩ K has rank equal to 5.

EXAMPLE (CONTINUATION)

Example
To compute H ∩ K with H = 〈b,a3,a−1bab−1a〉, K = 〈ab,a3,a−1ba〉 …

b
a

=

Taking the boldfaced spanning tree, we get the free basis

H ∩ K = 〈b−1a3b,a3,a−1ba3b−1a,

a−1bab−1a3ba−1b−1a,
a−1bab−1aba−1ba−1b−1a〉.

Hence, the intersection H ∩ K has rank equal to 5.

EXAMPLE (CONTINUATION)

Example
To compute H ∩ K with H = 〈b,a3,a−1bab−1a〉, K = 〈ab,a3,a−1ba〉 …

b
a

=

Taking the boldfaced spanning tree, we get the free basis

H ∩ K = 〈b−1a3b,a3,a−1ba3b−1a,a−1bab−1a3ba−1b−1a,

a−1bab−1aba−1ba−1b−1a〉.

Hence, the intersection H ∩ K has rank equal to 5.

EXAMPLE (CONTINUATION)

Example
To compute H ∩ K with H = 〈b,a3,a−1bab−1a〉, K = 〈ab,a3,a−1ba〉 …

b
a

=

Taking the boldfaced spanning tree, we get the free basis

H ∩ K = 〈b−1a3b,a3,a−1ba3b−1a,a−1bab−1a3ba−1b−1a,
a−1bab−1aba−1ba−1b−1a〉.

Hence, the intersection H ∩ K has rank equal to 5.

EXAMPLE (CONTINUATION)

Example
Moreover, projecting paths in Γ1 × Γ2 to the components, and lifting
through the tower of foldings, we get expressions in terms of the
original generators:

H 3 u−1
1 u2u1 = b−1a3b = v−1

1 v2v1 ∈ K
H 3 u2 = a3 = v2 ∈ K
H 3 u3

3 = a−1ba3b−1a = v3v2v−1
3 ∈ K

H 3 u3u2u−1
3 = a−1bab−1a3ba−1b−1a = v3v−1

1 v2v1v−1
3 ∈ K

H 3 u3u1u−1
3 = a−1bab−1aba−1ba−1b−1a = v3v−1

1 v2v3v−1
2 v1v−1

3 ∈ K.

EXAMPLE (CONTINUATION)

Example
Moreover, projecting paths in Γ1 × Γ2 to the components, and lifting
through the tower of foldings, we get expressions in terms of the
original generators:

H 3 u−1
1 u2u1 = b−1a3b = v−1

1 v2v1 ∈ K

H 3 u2 = a3 = v2 ∈ K
H 3 u3

3 = a−1ba3b−1a = v3v2v−1
3 ∈ K

H 3 u3u2u−1
3 = a−1bab−1a3ba−1b−1a = v3v−1

1 v2v1v−1
3 ∈ K

H 3 u3u1u−1
3 = a−1bab−1aba−1ba−1b−1a = v3v−1

1 v2v3v−1
2 v1v−1

3 ∈ K.

EXAMPLE (CONTINUATION)

Example
Moreover, projecting paths in Γ1 × Γ2 to the components, and lifting
through the tower of foldings, we get expressions in terms of the
original generators:

H 3 u−1
1 u2u1 = b−1a3b = v−1

1 v2v1 ∈ K
H 3 u2 = a3 = v2 ∈ K

H 3 u3
3 = a−1ba3b−1a = v3v2v−1

3 ∈ K
H 3 u3u2u−1

3 = a−1bab−1a3ba−1b−1a = v3v−1
1 v2v1v−1

3 ∈ K
H 3 u3u1u−1

3 = a−1bab−1aba−1ba−1b−1a = v3v−1
1 v2v3v−1

2 v1v−1
3 ∈ K.

EXAMPLE (CONTINUATION)

Example
Moreover, projecting paths in Γ1 × Γ2 to the components, and lifting
through the tower of foldings, we get expressions in terms of the
original generators:

H 3 u−1
1 u2u1 = b−1a3b = v−1

1 v2v1 ∈ K
H 3 u2 = a3 = v2 ∈ K
H 3 u3

3 = a−1ba3b−1a = v3v2v−1
3 ∈ K

H 3 u3u2u−1
3 = a−1bab−1a3ba−1b−1a = v3v−1

1 v2v1v−1
3 ∈ K

H 3 u3u1u−1
3 = a−1bab−1aba−1ba−1b−1a = v3v−1

1 v2v3v−1
2 v1v−1

3 ∈ K.

EXAMPLE (CONTINUATION)

Example
Moreover, projecting paths in Γ1 × Γ2 to the components, and lifting
through the tower of foldings, we get expressions in terms of the
original generators:

H 3 u−1
1 u2u1 = b−1a3b = v−1

1 v2v1 ∈ K
H 3 u2 = a3 = v2 ∈ K
H 3 u3

3 = a−1ba3b−1a = v3v2v−1
3 ∈ K

H 3 u3u2u−1
3 = a−1bab−1a3ba−1b−1a = v3v−1

1 v2v1v−1
3 ∈ K

H 3 u3u1u−1
3 = a−1bab−1aba−1ba−1b−1a = v3v−1

1 v2v3v−1
2 v1v−1

3 ∈ K.

EXAMPLE (CONTINUATION)

Example
Moreover, projecting paths in Γ1 × Γ2 to the components, and lifting
through the tower of foldings, we get expressions in terms of the
original generators:

H 3 u−1
1 u2u1 = b−1a3b = v−1

1 v2v1 ∈ K
H 3 u2 = a3 = v2 ∈ K
H 3 u3

3 = a−1ba3b−1a = v3v2v−1
3 ∈ K

H 3 u3u2u−1
3 = a−1bab−1a3ba−1b−1a = v3v−1

1 v2v1v−1
3 ∈ K

H 3 u3u1u−1
3 = a−1bab−1aba−1ba−1b−1a = v3v−1

1 v2v3v−1
2 v1v−1

3 ∈ K.

COSET INTERSECTION PROBLEM

Coset Intersection Problem
Given u,u1, . . . ,uk; v, v1, . . . , vl ∈ FA, decide whether the coset
intersection 〈u1, . . . ,uk〉u ∩ 〈v1, . . . , vl〉v is empty and, if not, compute
a coset representative.

Remark
For the other variants, use
• uH ∩ vK = (Hu−1 ∩ Kv−1)−1;
• uH ∩ Kv = (uHu−1)u ∩ Kv = Hu−1u ∩ Kv;
• uHu ′ ∩ vKv ′ = Hu−1

(uu ′) ∩ Kv−1
(vv ′).

Observation

If Γ = St(H) and γ =
u p, then L ,p(Γ) = Hu .

COSET INTERSECTION PROBLEM

Coset Intersection Problem
Given u,u1, . . . ,uk; v, v1, . . . , vl ∈ FA, decide whether the coset
intersection 〈u1, . . . ,uk〉u ∩ 〈v1, . . . , vl〉v is empty and, if not, compute
a coset representative.

Remark
For the other variants, use
• uH ∩ vK = (Hu−1 ∩ Kv−1)−1;

• uH ∩ Kv = (uHu−1)u ∩ Kv = Hu−1u ∩ Kv;
• uHu ′ ∩ vKv ′ = Hu−1

(uu ′) ∩ Kv−1
(vv ′).

Observation

If Γ = St(H) and γ =
u p, then L ,p(Γ) = Hu .

COSET INTERSECTION PROBLEM

Coset Intersection Problem
Given u,u1, . . . ,uk; v, v1, . . . , vl ∈ FA, decide whether the coset
intersection 〈u1, . . . ,uk〉u ∩ 〈v1, . . . , vl〉v is empty and, if not, compute
a coset representative.

Remark
For the other variants, use
• uH ∩ vK = (Hu−1 ∩ Kv−1)−1;
• uH ∩ Kv = (uHu−1)u ∩ Kv = Hu−1u ∩ Kv;

• uHu ′ ∩ vKv ′ = Hu−1
(uu ′) ∩ Kv−1

(vv ′).

Observation

If Γ = St(H) and γ =
u p, then L ,p(Γ) = Hu .

COSET INTERSECTION PROBLEM

Coset Intersection Problem
Given u,u1, . . . ,uk; v, v1, . . . , vl ∈ FA, decide whether the coset
intersection 〈u1, . . . ,uk〉u ∩ 〈v1, . . . , vl〉v is empty and, if not, compute
a coset representative.

Remark
For the other variants, use
• uH ∩ vK = (Hu−1 ∩ Kv−1)−1;
• uH ∩ Kv = (uHu−1)u ∩ Kv = Hu−1u ∩ Kv;
• uHu ′ ∩ vKv ′ = Hu−1

(uu ′) ∩ Kv−1
(vv ′).

Observation

If Γ = St(H) and γ =
u p, then L ,p(Γ) = Hu .

COSET INTERSECTION PROBLEM

Coset Intersection Problem
Given u,u1, . . . ,uk; v, v1, . . . , vl ∈ FA, decide whether the coset
intersection 〈u1, . . . ,uk〉u ∩ 〈v1, . . . , vl〉v is empty and, if not, compute
a coset representative.

Remark
For the other variants, use
• uH ∩ vK = (Hu−1 ∩ Kv−1)−1;
• uH ∩ Kv = (uHu−1)u ∩ Kv = Hu−1u ∩ Kv;
• uHu ′ ∩ vKv ′ = Hu−1

(uu ′) ∩ Kv−1
(vv ′).

Observation

If Γ = St(H) and γ =
u p, then L ,p(Γ) = Hu .

THE COSET INTERSECTION PROBLEM FOR FREE GROUPS

Theorem
The coset intersection problem is solvable for free groups.

Proof: Let H = 〈u1, . . . ,uk〉, K = 〈v1, . . . , vl〉 ⩽ FA, and u, v ∈ FA,
(i) Draw the A-automaton Γ1 being the Stallings automaton for H

with an extra hair added (if necessary) to read u from (to vertex,
say, p);

(ii) Draw the A-automaton Γ2 being the Stallings automaton for K with
an extra hair added (if necessary) to read v from (to vertex, say,
q);

(iii) Compute the product Γ1 × Γ2;
(iv) Hu ∩ Kv = ∅ if and only if (,) and (p,q) belong to different

connected components of Γ1 × Γ2;
(v) if this is not the case, then any path γ = (,)

w
(p,q) spells a

word w ∈ Hu ∩ Kv.

THE COSET INTERSECTION PROBLEM FOR FREE GROUPS

Theorem
The coset intersection problem is solvable for free groups.

Proof: Let H = 〈u1, . . . ,uk〉, K = 〈v1, . . . , vl〉 ⩽ FA, and u, v ∈ FA,
(i) Draw the A-automaton Γ1 being the Stallings automaton for H

with an extra hair added (if necessary) to read u from (to vertex,
say, p);

(ii) Draw the A-automaton Γ2 being the Stallings automaton for K with
an extra hair added (if necessary) to read v from (to vertex, say,
q);

(iii) Compute the product Γ1 × Γ2;
(iv) Hu ∩ Kv = ∅ if and only if (,) and (p,q) belong to different

connected components of Γ1 × Γ2;
(v) if this is not the case, then any path γ = (,)

w
(p,q) spells a

word w ∈ Hu ∩ Kv.

THE COSET INTERSECTION PROBLEM FOR FREE GROUPS

Theorem
The coset intersection problem is solvable for free groups.

Proof: Let H = 〈u1, . . . ,uk〉, K = 〈v1, . . . , vl〉 ⩽ FA, and u, v ∈ FA,
(i) Draw the A-automaton Γ1 being the Stallings automaton for H

with an extra hair added (if necessary) to read u from (to vertex,
say, p);

(ii) Draw the A-automaton Γ2 being the Stallings automaton for K with
an extra hair added (if necessary) to read v from (to vertex, say,
q);

(iii) Compute the product Γ1 × Γ2;
(iv) Hu ∩ Kv = ∅ if and only if (,) and (p,q) belong to different

connected components of Γ1 × Γ2;
(v) if this is not the case, then any path γ = (,)

w
(p,q) spells a

word w ∈ Hu ∩ Kv.

THE COSET INTERSECTION PROBLEM FOR FREE GROUPS

Theorem
The coset intersection problem is solvable for free groups.

Proof: Let H = 〈u1, . . . ,uk〉, K = 〈v1, . . . , vl〉 ⩽ FA, and u, v ∈ FA,
(i) Draw the A-automaton Γ1 being the Stallings automaton for H

with an extra hair added (if necessary) to read u from (to vertex,
say, p);

(ii) Draw the A-automaton Γ2 being the Stallings automaton for K with
an extra hair added (if necessary) to read v from (to vertex, say,
q);

(iii) Compute the product Γ1 × Γ2;

(iv) Hu ∩ Kv = ∅ if and only if (,) and (p,q) belong to different
connected components of Γ1 × Γ2;

(v) if this is not the case, then any path γ = (,)
w

(p,q) spells a
word w ∈ Hu ∩ Kv.

THE COSET INTERSECTION PROBLEM FOR FREE GROUPS

Theorem
The coset intersection problem is solvable for free groups.

Proof: Let H = 〈u1, . . . ,uk〉, K = 〈v1, . . . , vl〉 ⩽ FA, and u, v ∈ FA,
(i) Draw the A-automaton Γ1 being the Stallings automaton for H

with an extra hair added (if necessary) to read u from (to vertex,
say, p);

(ii) Draw the A-automaton Γ2 being the Stallings automaton for K with
an extra hair added (if necessary) to read v from (to vertex, say,
q);

(iii) Compute the product Γ1 × Γ2;
(iv) Hu ∩ Kv = ∅ if and only if (,) and (p,q) belong to different

connected components of Γ1 × Γ2;

(v) if this is not the case, then any path γ = (,)
w

(p,q) spells a
word w ∈ Hu ∩ Kv.

THE COSET INTERSECTION PROBLEM FOR FREE GROUPS

Theorem
The coset intersection problem is solvable for free groups.

Proof: Let H = 〈u1, . . . ,uk〉, K = 〈v1, . . . , vl〉 ⩽ FA, and u, v ∈ FA,
(i) Draw the A-automaton Γ1 being the Stallings automaton for H

with an extra hair added (if necessary) to read u from (to vertex,
say, p);

(ii) Draw the A-automaton Γ2 being the Stallings automaton for K with
an extra hair added (if necessary) to read v from (to vertex, say,
q);

(iii) Compute the product Γ1 × Γ2;
(iv) Hu ∩ Kv = ∅ if and only if (,) and (p,q) belong to different

connected components of Γ1 × Γ2;
(v) if this is not the case, then any path γ = (,)

w
(p,q) spells a

word w ∈ Hu ∩ Kv.

MALNORMALITY

Definition
A subgroup H ⩽ G is malnormal (resp. cyclonormal) if, for all w 6∈ H,
Hw ∩ H is trivial (resp. cyclic).

Theorem
There is an algorithm to decide, given u1, . . . ,uk ∈ (Ã)∗, whether the
subgroup H = 〈u1, . . . ,uk〉 is malnormal (resp., cyclonormal).

Proof:
(i) Draw the Stallings A-automaton St(H);
(ii) compute the pull-back with itself St(H)× St(H);
(iii) ignore the diagonal component ∆ ' St(H) (just meaning that

H ∩ H = H);
(iv) H is malnormal⇔ all other components of St(H)×St(H) are trees;
(v) H is cyclonormal⇔ all other components of St(H)× St(H) have

graphical rank 0 or 1.

MALNORMALITY

Definition
A subgroup H ⩽ G is malnormal (resp. cyclonormal) if, for all w 6∈ H,
Hw ∩ H is trivial (resp. cyclic).

Theorem
There is an algorithm to decide, given u1, . . . ,uk ∈ (Ã)∗, whether the
subgroup H = 〈u1, . . . ,uk〉 is malnormal (resp., cyclonormal).

Proof:
(i) Draw the Stallings A-automaton St(H);
(ii) compute the pull-back with itself St(H)× St(H);
(iii) ignore the diagonal component ∆ ' St(H) (just meaning that

H ∩ H = H);
(iv) H is malnormal⇔ all other components of St(H)×St(H) are trees;
(v) H is cyclonormal⇔ all other components of St(H)× St(H) have

graphical rank 0 or 1.

MALNORMALITY

Definition
A subgroup H ⩽ G is malnormal (resp. cyclonormal) if, for all w 6∈ H,
Hw ∩ H is trivial (resp. cyclic).

Theorem
There is an algorithm to decide, given u1, . . . ,uk ∈ (Ã)∗, whether the
subgroup H = 〈u1, . . . ,uk〉 is malnormal (resp., cyclonormal).

Proof:
(i) Draw the Stallings A-automaton St(H);

(ii) compute the pull-back with itself St(H)× St(H);
(iii) ignore the diagonal component ∆ ' St(H) (just meaning that

H ∩ H = H);
(iv) H is malnormal⇔ all other components of St(H)×St(H) are trees;
(v) H is cyclonormal⇔ all other components of St(H)× St(H) have

graphical rank 0 or 1.

MALNORMALITY

Definition
A subgroup H ⩽ G is malnormal (resp. cyclonormal) if, for all w 6∈ H,
Hw ∩ H is trivial (resp. cyclic).

Theorem
There is an algorithm to decide, given u1, . . . ,uk ∈ (Ã)∗, whether the
subgroup H = 〈u1, . . . ,uk〉 is malnormal (resp., cyclonormal).

Proof:
(i) Draw the Stallings A-automaton St(H);
(ii) compute the pull-back with itself St(H)× St(H);

(iii) ignore the diagonal component ∆ ' St(H) (just meaning that
H ∩ H = H);

(iv) H is malnormal⇔ all other components of St(H)×St(H) are trees;
(v) H is cyclonormal⇔ all other components of St(H)× St(H) have

graphical rank 0 or 1.

MALNORMALITY

Definition
A subgroup H ⩽ G is malnormal (resp. cyclonormal) if, for all w 6∈ H,
Hw ∩ H is trivial (resp. cyclic).

Theorem
There is an algorithm to decide, given u1, . . . ,uk ∈ (Ã)∗, whether the
subgroup H = 〈u1, . . . ,uk〉 is malnormal (resp., cyclonormal).

Proof:
(i) Draw the Stallings A-automaton St(H);
(ii) compute the pull-back with itself St(H)× St(H);
(iii) ignore the diagonal component ∆ ' St(H) (just meaning that

H ∩ H = H);

(iv) H is malnormal⇔ all other components of St(H)×St(H) are trees;
(v) H is cyclonormal⇔ all other components of St(H)× St(H) have

graphical rank 0 or 1.

MALNORMALITY

Definition
A subgroup H ⩽ G is malnormal (resp. cyclonormal) if, for all w 6∈ H,
Hw ∩ H is trivial (resp. cyclic).

Theorem
There is an algorithm to decide, given u1, . . . ,uk ∈ (Ã)∗, whether the
subgroup H = 〈u1, . . . ,uk〉 is malnormal (resp., cyclonormal).

Proof:
(i) Draw the Stallings A-automaton St(H);
(ii) compute the pull-back with itself St(H)× St(H);
(iii) ignore the diagonal component ∆ ' St(H) (just meaning that

H ∩ H = H);
(iv) H is malnormal⇔ all other components of St(H)×St(H) are trees;

(v) H is cyclonormal⇔ all other components of St(H)× St(H) have
graphical rank 0 or 1.

MALNORMALITY

Definition
A subgroup H ⩽ G is malnormal (resp. cyclonormal) if, for all w 6∈ H,
Hw ∩ H is trivial (resp. cyclic).

Theorem
There is an algorithm to decide, given u1, . . . ,uk ∈ (Ã)∗, whether the
subgroup H = 〈u1, . . . ,uk〉 is malnormal (resp., cyclonormal).

Proof:
(i) Draw the Stallings A-automaton St(H);
(ii) compute the pull-back with itself St(H)× St(H);
(iii) ignore the diagonal component ∆ ' St(H) (just meaning that

H ∩ H = H);
(iv) H is malnormal⇔ all other components of St(H)×St(H) are trees;
(v) H is cyclonormal⇔ all other components of St(H)× St(H) have

graphical rank 0 or 1.

MALNORMALITY (EXAMPLE)

Does there exist a malnormal subgroup of F2 with infinite rank?

Yes!

...

...

b
a

H = 〈akbka−kb−k : k ⩾ 1〉

MALNORMALITY (EXAMPLE)

Does there exist a malnormal subgroup of F2 with infinite rank?

Yes!

...

...

b
a

H = 〈akbka−kb−k : k ⩾ 1〉

MALNORMALITY (EXAMPLE)

Does there exist a malnormal subgroup of F2 with infinite rank?

Yes!

...

...

b
a

H = 〈akbka−kb−k : k ⩾ 1〉

INTERSECTION AND FREE FACTORS

The result below (whose general proof requires the Kurosh Subgroup
Theorem) follows easily for free groups …

Proposition
Let G be a group and H, K,H ′, K ′ ⩽ G subgrups. If H ⩽f.f. K and
H ′ ⩽f.f. K ′, then H ∩ H ′ ⩽f.f. K ∩ K ′.

Proof (for G = F(A)):
Let us see first that H ⩽f.f. K ⩽ FA and L ⩽ FA ⇒ H ∩ L ⩽f.f. K ∩ L:

• Take a basis B ⊇ A for K, extending a basis A for H;
• observe that, w.r.t. B, St(H) is, simply, a bouquet with petals in
bijection with A ⊆ B;

• consider St(K ∩ L) and compute H ∩ L = H ∩ (K ∩ L) by looking at
the pull-back St(H)× St(K ∩ L): it is just the subautomaton of
St(K ∩ L) determined by the A-labelled arcs;

• hence, H ∩ L ⩽f.f. K ∩ L.

Applying this fact twice, H ∩ H ′ ⩽f.f. K ∩ H ′ ⩽f.f. K ∩ K ′. □

INTERSECTION AND FREE FACTORS

The result below (whose general proof requires the Kurosh Subgroup
Theorem) follows easily for free groups …

Proposition
Let G be a group and H, K,H ′, K ′ ⩽ G subgrups. If H ⩽f.f. K and
H ′ ⩽f.f. K ′, then H ∩ H ′ ⩽f.f. K ∩ K ′.

Proof (for G = F(A)):
Let us see first that H ⩽f.f. K ⩽ FA and L ⩽ FA ⇒ H ∩ L ⩽f.f. K ∩ L:

• Take a basis B ⊇ A for K, extending a basis A for H;
• observe that, w.r.t. B, St(H) is, simply, a bouquet with petals in
bijection with A ⊆ B;

• consider St(K ∩ L) and compute H ∩ L = H ∩ (K ∩ L) by looking at
the pull-back St(H)× St(K ∩ L): it is just the subautomaton of
St(K ∩ L) determined by the A-labelled arcs;

• hence, H ∩ L ⩽f.f. K ∩ L.

Applying this fact twice, H ∩ H ′ ⩽f.f. K ∩ H ′ ⩽f.f. K ∩ K ′. □

INTERSECTION AND FREE FACTORS

The result below (whose general proof requires the Kurosh Subgroup
Theorem) follows easily for free groups …

Proposition
Let G be a group and H, K,H ′, K ′ ⩽ G subgrups. If H ⩽f.f. K and
H ′ ⩽f.f. K ′, then H ∩ H ′ ⩽f.f. K ∩ K ′.

Proof (for G = F(A)):
Let us see first that H ⩽f.f. K ⩽ FA and L ⩽ FA ⇒ H ∩ L ⩽f.f. K ∩ L:

• Take a basis B ⊇ A for K, extending a basis A for H;
• observe that, w.r.t. B, St(H) is, simply, a bouquet with petals in
bijection with A ⊆ B;

• consider St(K ∩ L) and compute H ∩ L = H ∩ (K ∩ L) by looking at
the pull-back St(H)× St(K ∩ L): it is just the subautomaton of
St(K ∩ L) determined by the A-labelled arcs;

• hence, H ∩ L ⩽f.f. K ∩ L.

Applying this fact twice, H ∩ H ′ ⩽f.f. K ∩ H ′ ⩽f.f. K ∩ K ′. □

INTERSECTION AND FREE FACTORS

The result below (whose general proof requires the Kurosh Subgroup
Theorem) follows easily for free groups …

Proposition
Let G be a group and H, K,H ′, K ′ ⩽ G subgrups. If H ⩽f.f. K and
H ′ ⩽f.f. K ′, then H ∩ H ′ ⩽f.f. K ∩ K ′.

Proof (for G = F(A)):
Let us see first that H ⩽f.f. K ⩽ FA and L ⩽ FA ⇒ H ∩ L ⩽f.f. K ∩ L:

• Take a basis B ⊇ A for K, extending a basis A for H;

• observe that, w.r.t. B, St(H) is, simply, a bouquet with petals in
bijection with A ⊆ B;

• consider St(K ∩ L) and compute H ∩ L = H ∩ (K ∩ L) by looking at
the pull-back St(H)× St(K ∩ L): it is just the subautomaton of
St(K ∩ L) determined by the A-labelled arcs;

• hence, H ∩ L ⩽f.f. K ∩ L.

Applying this fact twice, H ∩ H ′ ⩽f.f. K ∩ H ′ ⩽f.f. K ∩ K ′. □

INTERSECTION AND FREE FACTORS

The result below (whose general proof requires the Kurosh Subgroup
Theorem) follows easily for free groups …

Proposition
Let G be a group and H, K,H ′, K ′ ⩽ G subgrups. If H ⩽f.f. K and
H ′ ⩽f.f. K ′, then H ∩ H ′ ⩽f.f. K ∩ K ′.

Proof (for G = F(A)):
Let us see first that H ⩽f.f. K ⩽ FA and L ⩽ FA ⇒ H ∩ L ⩽f.f. K ∩ L:

• Take a basis B ⊇ A for K, extending a basis A for H;
• observe that, w.r.t. B, St(H) is, simply, a bouquet with petals in
bijection with A ⊆ B;

• consider St(K ∩ L) and compute H ∩ L = H ∩ (K ∩ L) by looking at
the pull-back St(H)× St(K ∩ L): it is just the subautomaton of
St(K ∩ L) determined by the A-labelled arcs;

• hence, H ∩ L ⩽f.f. K ∩ L.

Applying this fact twice, H ∩ H ′ ⩽f.f. K ∩ H ′ ⩽f.f. K ∩ K ′. □

INTERSECTION AND FREE FACTORS

The result below (whose general proof requires the Kurosh Subgroup
Theorem) follows easily for free groups …

Proposition
Let G be a group and H, K,H ′, K ′ ⩽ G subgrups. If H ⩽f.f. K and
H ′ ⩽f.f. K ′, then H ∩ H ′ ⩽f.f. K ∩ K ′.

Proof (for G = F(A)):
Let us see first that H ⩽f.f. K ⩽ FA and L ⩽ FA ⇒ H ∩ L ⩽f.f. K ∩ L:

• Take a basis B ⊇ A for K, extending a basis A for H;
• observe that, w.r.t. B, St(H) is, simply, a bouquet with petals in
bijection with A ⊆ B;

• consider St(K ∩ L) and compute H ∩ L = H ∩ (K ∩ L) by looking at
the pull-back St(H)× St(K ∩ L): it is just the subautomaton of
St(K ∩ L) determined by the A-labelled arcs;

• hence, H ∩ L ⩽f.f. K ∩ L.

Applying this fact twice, H ∩ H ′ ⩽f.f. K ∩ H ′ ⩽f.f. K ∩ K ′. □

INTERSECTION AND FREE FACTORS

The result below (whose general proof requires the Kurosh Subgroup
Theorem) follows easily for free groups …

Proposition
Let G be a group and H, K,H ′, K ′ ⩽ G subgrups. If H ⩽f.f. K and
H ′ ⩽f.f. K ′, then H ∩ H ′ ⩽f.f. K ∩ K ′.

Proof (for G = F(A)):
Let us see first that H ⩽f.f. K ⩽ FA and L ⩽ FA ⇒ H ∩ L ⩽f.f. K ∩ L:

• Take a basis B ⊇ A for K, extending a basis A for H;
• observe that, w.r.t. B, St(H) is, simply, a bouquet with petals in
bijection with A ⊆ B;

• consider St(K ∩ L) and compute H ∩ L = H ∩ (K ∩ L) by looking at
the pull-back St(H)× St(K ∩ L): it is just the subautomaton of
St(K ∩ L) determined by the A-labelled arcs;

• hence, H ∩ L ⩽f.f. K ∩ L.

Applying this fact twice, H ∩ H ′ ⩽f.f. K ∩ H ′ ⩽f.f. K ∩ K ′. □

INTERSECTION AND FREE FACTORS

The result below (whose general proof requires the Kurosh Subgroup
Theorem) follows easily for free groups …

Proposition
Let G be a group and H, K,H ′, K ′ ⩽ G subgrups. If H ⩽f.f. K and
H ′ ⩽f.f. K ′, then H ∩ H ′ ⩽f.f. K ∩ K ′.

Proof (for G = F(A)):
Let us see first that H ⩽f.f. K ⩽ FA and L ⩽ FA ⇒ H ∩ L ⩽f.f. K ∩ L:

• Take a basis B ⊇ A for K, extending a basis A for H;
• observe that, w.r.t. B, St(H) is, simply, a bouquet with petals in
bijection with A ⊆ B;

• consider St(K ∩ L) and compute H ∩ L = H ∩ (K ∩ L) by looking at
the pull-back St(H)× St(K ∩ L): it is just the subautomaton of
St(K ∩ L) determined by the A-labelled arcs;

• hence, H ∩ L ⩽f.f. K ∩ L.

Applying this fact twice, H ∩ H ′ ⩽f.f. K ∩ H ′ ⩽f.f. K ∩ K ′. □

BRIEF HISTORY OF THE HANNA NEUMANN INEQUALITY

Definition

The reduced rank of a group G is r̃k(G) = max{rk(G) − 1, 0}, i.e.,
r̃k(G) = rk(G) − 1 except for the trivial group, for which r̃k({1}) = 0.

Theorem (H. Neumann, 1956)

For H, K ⩽ FA , r̃k(H ∩ K) ⩽ 2 r̃k(H) r̃k(K).

Theorem (W. Neumann, 1990)

For H, K ⩽ FA,
∑

HwK∈H\FA/K r̃k(H
w ∩ K) ⩽ 2 r̃k(H) r̃k(K),

where Hw = w−1Hw, and the sum runs over the set of double cosets
H\FA/K = {HwK | w ∈ FA}.

(Strenghtened) Hanna Neumann conjecture: the same is true without
the factor 2.
Theorem (J. Friedman, 2015; I. Mineyev, 2012)
The factor 2 can be removed in both theorems.

BRIEF HISTORY OF THE HANNA NEUMANN INEQUALITY

Definition

The reduced rank of a group G is r̃k(G) = max{rk(G) − 1, 0}, i.e.,
r̃k(G) = rk(G) − 1 except for the trivial group, for which r̃k({1}) = 0.

Theorem (H. Neumann, 1956)

For H, K ⩽ FA , r̃k(H ∩ K) ⩽ 2 r̃k(H) r̃k(K).

Theorem (W. Neumann, 1990)

For H, K ⩽ FA,
∑

HwK∈H\FA/K r̃k(H
w ∩ K) ⩽ 2 r̃k(H) r̃k(K),

where Hw = w−1Hw, and the sum runs over the set of double cosets
H\FA/K = {HwK | w ∈ FA}.

(Strenghtened) Hanna Neumann conjecture: the same is true without
the factor 2.
Theorem (J. Friedman, 2015; I. Mineyev, 2012)
The factor 2 can be removed in both theorems.

BRIEF HISTORY OF THE HANNA NEUMANN INEQUALITY

Definition

The reduced rank of a group G is r̃k(G) = max{rk(G) − 1, 0}, i.e.,
r̃k(G) = rk(G) − 1 except for the trivial group, for which r̃k({1}) = 0.

Theorem (H. Neumann, 1956)

For H, K ⩽ FA , r̃k(H ∩ K) ⩽ 2 r̃k(H) r̃k(K).

Theorem (W. Neumann, 1990)

For H, K ⩽ FA,
∑

HwK∈H\FA/K r̃k(H
w ∩ K) ⩽ 2 r̃k(H) r̃k(K),

where Hw = w−1Hw, and the sum runs over the set of double cosets
H\FA/K = {HwK | w ∈ FA}.

(Strenghtened) Hanna Neumann conjecture: the same is true without
the factor 2.
Theorem (J. Friedman, 2015; I. Mineyev, 2012)
The factor 2 can be removed in both theorems.

BRIEF HISTORY OF THE HANNA NEUMANN INEQUALITY

Definition

The reduced rank of a group G is r̃k(G) = max{rk(G) − 1, 0}, i.e.,
r̃k(G) = rk(G) − 1 except for the trivial group, for which r̃k({1}) = 0.

Theorem (H. Neumann, 1956)

For H, K ⩽ FA , r̃k(H ∩ K) ⩽ 2 r̃k(H) r̃k(K).

Theorem (W. Neumann, 1990)

For H, K ⩽ FA,
∑

HwK∈H\FA/K r̃k(H
w ∩ K) ⩽ 2 r̃k(H) r̃k(K),

where Hw = w−1Hw, and the sum runs over the set of double cosets
H\FA/K = {HwK | w ∈ FA}.

(Strenghtened) Hanna Neumann conjecture: the same is true without
the factor 2.

Theorem (J. Friedman, 2015; I. Mineyev, 2012)
The factor 2 can be removed in both theorems.

BRIEF HISTORY OF THE HANNA NEUMANN INEQUALITY

Definition

The reduced rank of a group G is r̃k(G) = max{rk(G) − 1, 0}, i.e.,
r̃k(G) = rk(G) − 1 except for the trivial group, for which r̃k({1}) = 0.

Theorem (H. Neumann, 1956)

For H, K ⩽ FA , r̃k(H ∩ K) ⩽ 2 r̃k(H) r̃k(K).

Theorem (W. Neumann, 1990)

For H, K ⩽ FA,
∑

HwK∈H\FA/K r̃k(H
w ∩ K) ⩽ 2 r̃k(H) r̃k(K),

where Hw = w−1Hw, and the sum runs over the set of double cosets
H\FA/K = {HwK | w ∈ FA}.

(Strenghtened) Hanna Neumann conjecture: the same is true without
the factor 2.
Theorem (J. Friedman, 2015; I. Mineyev, 2012)
The factor 2 can be removed in both theorems.

STRENGHTENED HANNA NEUMANN INEQUALITY

Lets us show that
∑

HwK∈H\FA/K r̃k(H
w ∩ K) ⩽ 2 r̃k(H) r̃k(K).

• It makes sense, since Hhwk ∩ K = Hwk ∩ Kk = (Hw ∩ K)k has the
same rank as Hw ∩ K;

• we can assume H, K 6= 1, i.e., St(H) and St(K) are not single
vertices;

• conjugating appropriately, we can assume that St(H) and St(K)
have no vertices of degree 1;

• forget about the double cosets (till the end of proof) and let us
show r̃k(W) ⩽ 2 r̃k(St(H)) r̃k(St(K)), where W = St(H)× St(K) and

r̃k(W) =
∑

C c.c. W
r̃k(C) =

∑
C c.c. W

max{|EC|− |VC|, 0}.

STRENGHTENED HANNA NEUMANN INEQUALITY

Lets us show that
∑

HwK∈H\FA/K r̃k(H
w ∩ K) ⩽ 2 r̃k(H) r̃k(K).

• It makes sense, since Hhwk ∩ K = Hwk ∩ Kk = (Hw ∩ K)k has the
same rank as Hw ∩ K;

• we can assume H, K 6= 1, i.e., St(H) and St(K) are not single
vertices;

• conjugating appropriately, we can assume that St(H) and St(K)
have no vertices of degree 1;

• forget about the double cosets (till the end of proof) and let us
show r̃k(W) ⩽ 2 r̃k(St(H)) r̃k(St(K)), where W = St(H)× St(K) and

r̃k(W) =
∑

C c.c. W
r̃k(C) =

∑
C c.c. W

max{|EC|− |VC|, 0}.

STRENGHTENED HANNA NEUMANN INEQUALITY

Lets us show that
∑

HwK∈H\FA/K r̃k(H
w ∩ K) ⩽ 2 r̃k(H) r̃k(K).

• It makes sense, since Hhwk ∩ K = Hwk ∩ Kk = (Hw ∩ K)k has the
same rank as Hw ∩ K;

• we can assume H, K 6= 1, i.e., St(H) and St(K) are not single
vertices;

• conjugating appropriately, we can assume that St(H) and St(K)
have no vertices of degree 1;

• forget about the double cosets (till the end of proof) and let us
show r̃k(W) ⩽ 2 r̃k(St(H)) r̃k(St(K)), where W = St(H)× St(K) and

r̃k(W) =
∑

C c.c. W
r̃k(C) =

∑
C c.c. W

max{|EC|− |VC|, 0}.

STRENGHTENED HANNA NEUMANN INEQUALITY

Lets us show that
∑

HwK∈H\FA/K r̃k(H
w ∩ K) ⩽ 2 r̃k(H) r̃k(K).

• It makes sense, since Hhwk ∩ K = Hwk ∩ Kk = (Hw ∩ K)k has the
same rank as Hw ∩ K;

• we can assume H, K 6= 1, i.e., St(H) and St(K) are not single
vertices;

• conjugating appropriately, we can assume that St(H) and St(K)
have no vertices of degree 1;

• forget about the double cosets (till the end of proof) and let us
show r̃k(W) ⩽ 2 r̃k(St(H)) r̃k(St(K)), where W = St(H)× St(K) and

r̃k(W) =
∑

C c.c. W
r̃k(C) =

∑
C c.c. W

max{|EC|− |VC|, 0}.

STRENGHTENED HANNA NEUMANN INEQUALITY

Lets us show that
∑

HwK∈H\FA/K r̃k(H
w ∩ K) ⩽ 2 r̃k(H) r̃k(K).

• It makes sense, since Hhwk ∩ K = Hwk ∩ Kk = (Hw ∩ K)k has the
same rank as Hw ∩ K;

• we can assume H, K 6= 1, i.e., St(H) and St(K) are not single
vertices;

• conjugating appropriately, we can assume that St(H) and St(K)
have no vertices of degree 1;

• forget about the double cosets (till the end of proof) and let us
show r̃k(W) ⩽ 2 r̃k(St(H)) r̃k(St(K)), where W = St(H)× St(K) and

r̃k(W) =
∑

C c.c. W
r̃k(C) =

∑
C c.c. W

max{|EC|− |VC|, 0}.

STRENGHTENED HANNA NEUMANN INEQUALITY

Lemma
Let X be a finite connected graph. Then,
(i) if X is not a tree then

∑
p∈VX

(
d(p) − 2

)
= 2 r̃k(X);

(ii) if X is a tree then
∑

p∈VX
(
d(p) − 2

)
= −2.

Lemma
Let X, Y be two deterministic A-automata without vertices of degree 0
or 1, and let W be their product. Then,
(i) ∀(p,q) ∈ VW, we have

(
d(p,q) − 2

)
⩽

(
d(p) − 2

)(
d(q) − 2

)
;

(ii) if (p,q) is isolated in W, then(
d(p,q) − 2

)
+ 2 ⩽

(
d(p) − 2

)(
d(q) − 2

)
;

(iii) if (p,q) is of degree 1 in W, then(
d(p,q) − 2

)
+ 1 ⩽

(
d(p) − 2

)(
d(q) − 2

)
.

STRENGHTENED HANNA NEUMANN INEQUALITY

Lemma
Let X be a finite connected graph. Then,
(i) if X is not a tree then

∑
p∈VX

(
d(p) − 2

)
= 2 r̃k(X);

(ii) if X is a tree then
∑

p∈VX
(
d(p) − 2

)
= −2.

Lemma
Let X, Y be two deterministic A-automata without vertices of degree 0
or 1, and let W be their product. Then,
(i) ∀(p,q) ∈ VW, we have

(
d(p,q) − 2

)
⩽

(
d(p) − 2

)(
d(q) − 2

)
;

(ii) if (p,q) is isolated in W, then(
d(p,q) − 2

)
+ 2 ⩽

(
d(p) − 2

)(
d(q) − 2

)
;

(iii) if (p,q) is of degree 1 in W, then(
d(p,q) − 2

)
+ 1 ⩽

(
d(p) − 2

)(
d(q) − 2

)
.

STRENGHTENED HANNA NEUMANN INEQUALITY

Lemma
Let X be a finite connected graph. Then,
(i) if X is not a tree then

∑
p∈VX

(
d(p) − 2

)
= 2 r̃k(X);

(ii) if X is a tree then
∑

p∈VX
(
d(p) − 2

)
= −2.

Lemma
Let X, Y be two deterministic A-automata without vertices of degree 0
or 1, and let W be their product. Then,
(i) ∀(p,q) ∈ VW, we have

(
d(p,q) − 2

)
⩽

(
d(p) − 2

)(
d(q) − 2

)
;

(ii) if (p,q) is isolated in W, then(
d(p,q) − 2

)
+ 2 ⩽

(
d(p) − 2

)(
d(q) − 2

)
;

(iii) if (p,q) is of degree 1 in W, then(
d(p,q) − 2

)
+ 1 ⩽

(
d(p) − 2

)(
d(q) − 2

)
.

STRENGHTENED HANNA NEUMANN INEQUALITY

Lemma
Let X be a finite connected graph. Then,
(i) if X is not a tree then

∑
p∈VX

(
d(p) − 2

)
= 2 r̃k(X);

(ii) if X is a tree then
∑

p∈VX
(
d(p) − 2

)
= −2.

Lemma
Let X, Y be two deterministic A-automata without vertices of degree 0
or 1, and let W be their product. Then,
(i) ∀(p,q) ∈ VW, we have

(
d(p,q) − 2

)
⩽

(
d(p) − 2

)(
d(q) − 2

)
;

(ii) if (p,q) is isolated in W, then(
d(p,q) − 2

)
+ 2 ⩽

(
d(p) − 2

)(
d(q) − 2

)
;

(iii) if (p,q) is of degree 1 in W, then(
d(p,q) − 2

)
+ 1 ⩽

(
d(p) − 2

)(
d(q) − 2

)
.

STRENGHTENED HANNA NEUMANN INEQUALITY

Lemma
Let X be a finite connected graph. Then,
(i) if X is not a tree then

∑
p∈VX

(
d(p) − 2

)
= 2 r̃k(X);

(ii) if X is a tree then
∑

p∈VX
(
d(p) − 2

)
= −2.

Lemma
Let X, Y be two deterministic A-automata without vertices of degree 0
or 1, and let W be their product. Then,
(i) ∀(p,q) ∈ VW, we have

(
d(p,q) − 2

)
⩽

(
d(p) − 2

)(
d(q) − 2

)
;

(ii) if (p,q) is isolated in W, then(
d(p,q) − 2

)
+ 2 ⩽

(
d(p) − 2

)(
d(q) − 2

)
;

(iii) if (p,q) is of degree 1 in W, then(
d(p,q) − 2

)
+ 1 ⩽

(
d(p) − 2

)(
d(q) − 2

)
.

STRENGHTENED HANNA NEUMANN INEQUALITY

Now,

2 r̃k(W) =
∑
C c.c. W
not tree

2 r̃k(C)

=
∑
C c.c. W
not tree

∑
(p,q)∈VC

(
d(p,q) − 2

)
=

∑
(p,q)∈VW

(
d(p,q) − 2

)
−

∑
C c.c. W
tree

(
− 2

)
=

∑
(p,q)∈VW

(
d(p,q) − 2

)
+ 2#c.c. tree

⩽
∑

(p,q)∈VW

(
d(p) − 2

)(
d(q) − 2

)
=

(∑
p∈VSt(H)

(d(p) − 2)
)(∑

q∈VSt(K)

(d(q) − 2)
)

= 2 r̃k(St(H)) · 2 r̃k(St(K)).

Finally, let us link the connected components of W with the double
cosets H\FA/K, …

STRENGHTENED HANNA NEUMANN INEQUALITY

Now,

2 r̃k(W) =
∑
C c.c. W
not tree

2 r̃k(C)

=
∑
C c.c. W
not tree

∑
(p,q)∈VC

(
d(p,q) − 2

)
=

∑
(p,q)∈VW

(
d(p,q) − 2

)
−

∑
C c.c. W
tree

(
− 2

)
=

∑
(p,q)∈VW

(
d(p,q) − 2

)
+ 2#c.c. tree

⩽
∑

(p,q)∈VW

(
d(p) − 2

)(
d(q) − 2

)
=

(∑
p∈VSt(H)

(d(p) − 2)
)(∑

q∈VSt(K)

(d(q) − 2)
)

= 2 r̃k(St(H)) · 2 r̃k(St(K)).

Finally, let us link the connected components of W with the double
cosets H\FA/K, …

STRENGHTENED HANNA NEUMANN INEQUALITY

Now,

2 r̃k(W) =
∑
C c.c. W
not tree

2 r̃k(C) =
∑
C c.c. W
not tree

∑
(p,q)∈VC

(
d(p,q) − 2

)

=
∑

(p,q)∈VW

(
d(p,q) − 2

)
−

∑
C c.c. W
tree

(
− 2

)
=

∑
(p,q)∈VW

(
d(p,q) − 2

)
+ 2#c.c. tree

⩽
∑

(p,q)∈VW

(
d(p) − 2

)(
d(q) − 2

)
=

(∑
p∈VSt(H)

(d(p) − 2)
)(∑

q∈VSt(K)

(d(q) − 2)
)

= 2 r̃k(St(H)) · 2 r̃k(St(K)).

Finally, let us link the connected components of W with the double
cosets H\FA/K, …

STRENGHTENED HANNA NEUMANN INEQUALITY

Now,

2 r̃k(W) =
∑
C c.c. W
not tree

2 r̃k(C) =
∑
C c.c. W
not tree

∑
(p,q)∈VC

(
d(p,q) − 2

)
=

∑
(p,q)∈VW

(
d(p,q) − 2

)
−

∑
C c.c. W
tree

(
− 2

)

=
∑

(p,q)∈VW

(
d(p,q) − 2

)
+ 2#c.c. tree

⩽
∑

(p,q)∈VW

(
d(p) − 2

)(
d(q) − 2

)
=

(∑
p∈VSt(H)

(d(p) − 2)
)(∑

q∈VSt(K)

(d(q) − 2)
)

= 2 r̃k(St(H)) · 2 r̃k(St(K)).

Finally, let us link the connected components of W with the double
cosets H\FA/K, …

STRENGHTENED HANNA NEUMANN INEQUALITY

Now,

2 r̃k(W) =
∑
C c.c. W
not tree

2 r̃k(C) =
∑
C c.c. W
not tree

∑
(p,q)∈VC

(
d(p,q) − 2

)
=

∑
(p,q)∈VW

(
d(p,q) − 2

)
−

∑
C c.c. W
tree

(
− 2

)
=

∑
(p,q)∈VW

(
d(p,q) − 2

)
+ 2#c.c. tree

⩽
∑

(p,q)∈VW

(
d(p) − 2

)(
d(q) − 2

)
=

(∑
p∈VSt(H)

(d(p) − 2)
)(∑

q∈VSt(K)

(d(q) − 2)
)

= 2 r̃k(St(H)) · 2 r̃k(St(K)).

Finally, let us link the connected components of W with the double
cosets H\FA/K, …

STRENGHTENED HANNA NEUMANN INEQUALITY

Now,

2 r̃k(W) =
∑
C c.c. W
not tree

2 r̃k(C) =
∑
C c.c. W
not tree

∑
(p,q)∈VC

(
d(p,q) − 2

)
=

∑
(p,q)∈VW

(
d(p,q) − 2

)
−

∑
C c.c. W
tree

(
− 2

)
=

∑
(p,q)∈VW

(
d(p,q) − 2

)
+ 2#c.c. tree

⩽
∑

(p,q)∈VW

(
d(p) − 2

)(
d(q) − 2

)

=
(∑

p∈VSt(H)

(d(p) − 2)
)(∑

q∈VSt(K)

(d(q) − 2)
)

= 2 r̃k(St(H)) · 2 r̃k(St(K)).

Finally, let us link the connected components of W with the double
cosets H\FA/K, …

STRENGHTENED HANNA NEUMANN INEQUALITY

Now,

2 r̃k(W) =
∑
C c.c. W
not tree

2 r̃k(C) =
∑
C c.c. W
not tree

∑
(p,q)∈VC

(
d(p,q) − 2

)
=

∑
(p,q)∈VW

(
d(p,q) − 2

)
−

∑
C c.c. W
tree

(
− 2

)
=

∑
(p,q)∈VW

(
d(p,q) − 2

)
+ 2#c.c. tree

⩽
∑

(p,q)∈VW

(
d(p) − 2

)(
d(q) − 2

)
=

(∑
p∈VSt(H)

(d(p) − 2)
)(∑

q∈VSt(K)

(d(q) − 2)
)

= 2 r̃k(St(H)) · 2 r̃k(St(K)).

Finally, let us link the connected components of W with the double
cosets H\FA/K, …

STRENGHTENED HANNA NEUMANN INEQUALITY

Now,

2 r̃k(W) =
∑
C c.c. W
not tree

2 r̃k(C) =
∑
C c.c. W
not tree

∑
(p,q)∈VC

(
d(p,q) − 2

)
=

∑
(p,q)∈VW

(
d(p,q) − 2

)
−

∑
C c.c. W
tree

(
− 2

)
=

∑
(p,q)∈VW

(
d(p,q) − 2

)
+ 2#c.c. tree

⩽
∑

(p,q)∈VW

(
d(p) − 2

)(
d(q) − 2

)
=

(∑
p∈VSt(H)

(d(p) − 2)
)(∑

q∈VSt(K)

(d(q) − 2)
)

= 2 r̃k(St(H)) · 2 r̃k(St(K)).

Finally, let us link the connected components of W with the double
cosets H\FA/K, …

STRENGHTENED HANNA NEUMANN INEQUALITY

Now,

2 r̃k(W) =
∑
C c.c. W
not tree

2 r̃k(C) =
∑
C c.c. W
not tree

∑
(p,q)∈VC

(
d(p,q) − 2

)
=

∑
(p,q)∈VW

(
d(p,q) − 2

)
−

∑
C c.c. W
tree

(
− 2

)
=

∑
(p,q)∈VW

(
d(p,q) − 2

)
+ 2#c.c. tree

⩽
∑

(p,q)∈VW

(
d(p) − 2

)(
d(q) − 2

)
=

(∑
p∈VSt(H)

(d(p) − 2)
)(∑

q∈VSt(K)

(d(q) − 2)
)

= 2 r̃k(St(H)) · 2 r̃k(St(K)).

Finally, let us link the connected components of W with the double
cosets H\FA/K, …

STRENGHTENED HANNA NEUMANN INEQUALITY

Lemma

Let (p,), (p ′,) be two vertices in W, and let x p and x′ p ′

be walks in St(H). Then,
(p,) and (p ′,) belong to the same c.c. of W ⇔ HxK = Hx ′K.

Corollary
The following map is a bijection

α : H\FA/K → {c.c. of W}

HxK 7→ the c.c. containing (p,), where x p
Hℓ(p)K ←[C , where (p,) ∈ VC

further satisfying that, for every x ∈ FA, 〈α(HxK)〉(p,) = Hx ∩ K.

STRENGHTENED HANNA NEUMANN INEQUALITY

Lemma

Let (p,), (p ′,) be two vertices in W, and let x p and x′ p ′

be walks in St(H). Then,
(p,) and (p ′,) belong to the same c.c. of W ⇔ HxK = Hx ′K.

Corollary
The following map is a bijection

α : H\FA/K → {c.c. of W}

HxK 7→ the c.c. containing (p,), where x p
Hℓ(p)K ←[C , where (p,) ∈ VC

further satisfying that, for every x ∈ FA, 〈α(HxK)〉(p,) = Hx ∩ K.

QUOTIENTS OF AUTOMATA

MOTIVATION

• In basic linear algebra:

U ⩽ V ⩽ Kn ⇒ V = U⊕ L.

• In Zn, the analog is almost true:

U ⩽ V ⩽ Zn ⇒ ∃ U ⩽fi U ′ ⩽ V s.t. V = U ′ ⊕ L.

• In FA, the analog is ...

far from true because H ⩽ K 6⇒ r(H) ⩽ r(K) …
almost true again, ... in the sense of Takahasi.

MOTIVATION

• In basic linear algebra:

U ⩽ V ⩽ Kn ⇒ V = U⊕ L.

• In Zn, the analog is almost true:

U ⩽ V ⩽ Zn ⇒ ∃ U ⩽fi U ′ ⩽ V s.t. V = U ′ ⊕ L.

• In FA, the analog is ...

far from true because H ⩽ K 6⇒ r(H) ⩽ r(K) …
almost true again, ... in the sense of Takahasi.

MOTIVATION

• In basic linear algebra:

U ⩽ V ⩽ Kn ⇒ V = U⊕ L.

• In Zn, the analog is almost true:

U ⩽ V ⩽ Zn ⇒ ∃ U ⩽fi U ′ ⩽ V s.t. V = U ′ ⊕ L.

• In FA, the analog is ...

far from true because H ⩽ K 6⇒ r(H) ⩽ r(K) …

almost true again, ... in the sense of Takahasi.

MOTIVATION

• In basic linear algebra:

U ⩽ V ⩽ Kn ⇒ V = U⊕ L.

• In Zn, the analog is almost true:

U ⩽ V ⩽ Zn ⇒ ∃ U ⩽fi U ′ ⩽ V s.t. V = U ′ ⊕ L.

• In FA, the analog is ...

far from true because H ⩽ K 6⇒ r(H) ⩽ r(K) …
almost true again, ... in the sense of Takahasi.

ALGEBRAIC AND FREE EXTENSIONS

Definition
Let H ⩽ K ⩽ FA. We say that H ⩽ K is an algebraic extension, denoted
by H ⩽alg K, if H is not contained in any proper free factor of K, i.e., if

H ⩽ K1 ⩽ K1 ∗ K2 = K ⇒ K2 = 1.

We say that H ⩽ K is a free extension, denoted by H ⩽ff K, if
H ⩽ H ∗ L = K for some L ⩽ FA.

Examples
• 〈a〉 ⩽ff 〈a,b〉 ⩽ff 〈a,b, c〉;
• 〈w r〉 ⩽alg 〈w〉, ∀w ∈ FA, ∀r ∈ Z \ {0};
• 〈a−1b−1ab〉 ⩽alg 〈a,b〉;
• 〈a−1b−1ab〉 ⩽ff 〈a, b−1ab〉 ⩽alg 〈a,b〉;
• if r(H) ⩾ 2 and r(K) ⩽ 2 then H ⩽alg K;
• if H ⩽alg K and H ⩽ff K then H = K.

ALGEBRAIC AND FREE EXTENSIONS

Definition
Let H ⩽ K ⩽ FA. We say that H ⩽ K is an algebraic extension, denoted
by H ⩽alg K, if H is not contained in any proper free factor of K, i.e., if

H ⩽ K1 ⩽ K1 ∗ K2 = K ⇒ K2 = 1.

We say that H ⩽ K is a free extension, denoted by H ⩽ff K, if
H ⩽ H ∗ L = K for some L ⩽ FA.

Examples
• 〈a〉 ⩽ff 〈a,b〉 ⩽ff 〈a,b, c〉;
• 〈w r〉 ⩽alg 〈w〉, ∀w ∈ FA, ∀r ∈ Z \ {0};
• 〈a−1b−1ab〉 ⩽alg 〈a,b〉;
• 〈a−1b−1ab〉 ⩽ff 〈a, b−1ab〉 ⩽alg 〈a,b〉;
• if r(H) ⩾ 2 and r(K) ⩽ 2 then H ⩽alg K;
• if H ⩽alg K and H ⩽ff K then H = K.

ALGEBRAIC AND FREE EXTENSIONS

Definition
Let H ⩽ K ⩽ FA. We say that H ⩽ K is an algebraic extension, denoted
by H ⩽alg K, if H is not contained in any proper free factor of K, i.e., if

H ⩽ K1 ⩽ K1 ∗ K2 = K ⇒ K2 = 1.

We say that H ⩽ K is a free extension, denoted by H ⩽ff K, if
H ⩽ H ∗ L = K for some L ⩽ FA.

Examples
• 〈a〉 ⩽ff 〈a,b〉 ⩽ff 〈a,b, c〉;

• 〈w r〉 ⩽alg 〈w〉, ∀w ∈ FA, ∀r ∈ Z \ {0};
• 〈a−1b−1ab〉 ⩽alg 〈a,b〉;
• 〈a−1b−1ab〉 ⩽ff 〈a, b−1ab〉 ⩽alg 〈a,b〉;
• if r(H) ⩾ 2 and r(K) ⩽ 2 then H ⩽alg K;
• if H ⩽alg K and H ⩽ff K then H = K.

ALGEBRAIC AND FREE EXTENSIONS

Definition
Let H ⩽ K ⩽ FA. We say that H ⩽ K is an algebraic extension, denoted
by H ⩽alg K, if H is not contained in any proper free factor of K, i.e., if

H ⩽ K1 ⩽ K1 ∗ K2 = K ⇒ K2 = 1.

We say that H ⩽ K is a free extension, denoted by H ⩽ff K, if
H ⩽ H ∗ L = K for some L ⩽ FA.

Examples
• 〈a〉 ⩽ff 〈a,b〉 ⩽ff 〈a,b, c〉;
• 〈w r〉 ⩽alg 〈w〉, ∀w ∈ FA, ∀r ∈ Z \ {0};

• 〈a−1b−1ab〉 ⩽alg 〈a,b〉;
• 〈a−1b−1ab〉 ⩽ff 〈a, b−1ab〉 ⩽alg 〈a,b〉;
• if r(H) ⩾ 2 and r(K) ⩽ 2 then H ⩽alg K;
• if H ⩽alg K and H ⩽ff K then H = K.

ALGEBRAIC AND FREE EXTENSIONS

Definition
Let H ⩽ K ⩽ FA. We say that H ⩽ K is an algebraic extension, denoted
by H ⩽alg K, if H is not contained in any proper free factor of K, i.e., if

H ⩽ K1 ⩽ K1 ∗ K2 = K ⇒ K2 = 1.

We say that H ⩽ K is a free extension, denoted by H ⩽ff K, if
H ⩽ H ∗ L = K for some L ⩽ FA.

Examples
• 〈a〉 ⩽ff 〈a,b〉 ⩽ff 〈a,b, c〉;
• 〈w r〉 ⩽alg 〈w〉, ∀w ∈ FA, ∀r ∈ Z \ {0};
• 〈a−1b−1ab〉 ⩽alg 〈a,b〉;

• 〈a−1b−1ab〉 ⩽ff 〈a, b−1ab〉 ⩽alg 〈a,b〉;
• if r(H) ⩾ 2 and r(K) ⩽ 2 then H ⩽alg K;
• if H ⩽alg K and H ⩽ff K then H = K.

ALGEBRAIC AND FREE EXTENSIONS

Definition
Let H ⩽ K ⩽ FA. We say that H ⩽ K is an algebraic extension, denoted
by H ⩽alg K, if H is not contained in any proper free factor of K, i.e., if

H ⩽ K1 ⩽ K1 ∗ K2 = K ⇒ K2 = 1.

We say that H ⩽ K is a free extension, denoted by H ⩽ff K, if
H ⩽ H ∗ L = K for some L ⩽ FA.

Examples
• 〈a〉 ⩽ff 〈a,b〉 ⩽ff 〈a,b, c〉;
• 〈w r〉 ⩽alg 〈w〉, ∀w ∈ FA, ∀r ∈ Z \ {0};
• 〈a−1b−1ab〉 ⩽alg 〈a,b〉;
• 〈a−1b−1ab〉 ⩽ff 〈a, b−1ab〉 ⩽alg 〈a,b〉;

• if r(H) ⩾ 2 and r(K) ⩽ 2 then H ⩽alg K;
• if H ⩽alg K and H ⩽ff K then H = K.

ALGEBRAIC AND FREE EXTENSIONS

Definition
Let H ⩽ K ⩽ FA. We say that H ⩽ K is an algebraic extension, denoted
by H ⩽alg K, if H is not contained in any proper free factor of K, i.e., if

H ⩽ K1 ⩽ K1 ∗ K2 = K ⇒ K2 = 1.

We say that H ⩽ K is a free extension, denoted by H ⩽ff K, if
H ⩽ H ∗ L = K for some L ⩽ FA.

Examples
• 〈a〉 ⩽ff 〈a,b〉 ⩽ff 〈a,b, c〉;
• 〈w r〉 ⩽alg 〈w〉, ∀w ∈ FA, ∀r ∈ Z \ {0};
• 〈a−1b−1ab〉 ⩽alg 〈a,b〉;
• 〈a−1b−1ab〉 ⩽ff 〈a, b−1ab〉 ⩽alg 〈a,b〉;
• if r(H) ⩾ 2 and r(K) ⩽ 2 then H ⩽alg K;

• if H ⩽alg K and H ⩽ff K then H = K.

ALGEBRAIC AND FREE EXTENSIONS

Definition
Let H ⩽ K ⩽ FA. We say that H ⩽ K is an algebraic extension, denoted
by H ⩽alg K, if H is not contained in any proper free factor of K, i.e., if

H ⩽ K1 ⩽ K1 ∗ K2 = K ⇒ K2 = 1.

We say that H ⩽ K is a free extension, denoted by H ⩽ff K, if
H ⩽ H ∗ L = K for some L ⩽ FA.

Examples
• 〈a〉 ⩽ff 〈a,b〉 ⩽ff 〈a,b, c〉;
• 〈w r〉 ⩽alg 〈w〉, ∀w ∈ FA, ∀r ∈ Z \ {0};
• 〈a−1b−1ab〉 ⩽alg 〈a,b〉;
• 〈a−1b−1ab〉 ⩽ff 〈a, b−1ab〉 ⩽alg 〈a,b〉;
• if r(H) ⩾ 2 and r(K) ⩽ 2 then H ⩽alg K;
• if H ⩽alg K and H ⩽ff K then H = K.

ALGEBRAIC AND FREE EXTENSIONS

Proposition (Miasnikov–V.–Weil, 2007)
Let H ⩽ Mi ⩽ K ⩽ FA, for i = 1, 2. Then,

i) if H ⩽alg M1 ⩽alg K, then H ⩽alg K;

i’) if H ⩽ff M1 ⩽ff K, then H ⩽ff K;
ii) if H ⩽alg K, then M1 ⩽alg K, while H 6⩽alg M1, in general;
ii ′) if H ⩽ff K, then H ⩽ff M1, while M1 6⩽ff K, in general;
iii) if H ⩽alg M1 and H ⩽alg M2, then H ⩽alg 〈M1 ∪M2〉, while

H 6⩽alg M1 ∩M2, in general;
iii’) if H ⩽ff M1 and H ⩽ff M2, then H ⩽ff M1 ∩M2, while H 6⩽ff 〈M1 ∪M2〉,

in general;
iv) Hi ⩽ff Ki, ∀i ∈ I⇒

⋂
i∈I Hi ⩽ff ∩i∈IKi;

iv’) Hi ⩽alg Ki, ∀i ∈ I⇒ 〈Hi, i ∈ I〉 ⩽alg 〈Ki, i ∈ I〉.

ALGEBRAIC AND FREE EXTENSIONS

Proposition (Miasnikov–V.–Weil, 2007)
Let H ⩽ Mi ⩽ K ⩽ FA, for i = 1, 2. Then,

i) if H ⩽alg M1 ⩽alg K, then H ⩽alg K;
i’) if H ⩽ff M1 ⩽ff K, then H ⩽ff K;

ii) if H ⩽alg K, then M1 ⩽alg K, while H 6⩽alg M1, in general;
ii ′) if H ⩽ff K, then H ⩽ff M1, while M1 6⩽ff K, in general;
iii) if H ⩽alg M1 and H ⩽alg M2, then H ⩽alg 〈M1 ∪M2〉, while

H 6⩽alg M1 ∩M2, in general;
iii’) if H ⩽ff M1 and H ⩽ff M2, then H ⩽ff M1 ∩M2, while H 6⩽ff 〈M1 ∪M2〉,

in general;
iv) Hi ⩽ff Ki, ∀i ∈ I⇒

⋂
i∈I Hi ⩽ff ∩i∈IKi;

iv’) Hi ⩽alg Ki, ∀i ∈ I⇒ 〈Hi, i ∈ I〉 ⩽alg 〈Ki, i ∈ I〉.

ALGEBRAIC AND FREE EXTENSIONS

Proposition (Miasnikov–V.–Weil, 2007)
Let H ⩽ Mi ⩽ K ⩽ FA, for i = 1, 2. Then,

i) if H ⩽alg M1 ⩽alg K, then H ⩽alg K;
i’) if H ⩽ff M1 ⩽ff K, then H ⩽ff K;
ii) if H ⩽alg K, then M1 ⩽alg K, while H 6⩽alg M1, in general;

ii ′) if H ⩽ff K, then H ⩽ff M1, while M1 6⩽ff K, in general;
iii) if H ⩽alg M1 and H ⩽alg M2, then H ⩽alg 〈M1 ∪M2〉, while

H 6⩽alg M1 ∩M2, in general;
iii’) if H ⩽ff M1 and H ⩽ff M2, then H ⩽ff M1 ∩M2, while H 6⩽ff 〈M1 ∪M2〉,

in general;
iv) Hi ⩽ff Ki, ∀i ∈ I⇒

⋂
i∈I Hi ⩽ff ∩i∈IKi;

iv’) Hi ⩽alg Ki, ∀i ∈ I⇒ 〈Hi, i ∈ I〉 ⩽alg 〈Ki, i ∈ I〉.

ALGEBRAIC AND FREE EXTENSIONS

Proposition (Miasnikov–V.–Weil, 2007)
Let H ⩽ Mi ⩽ K ⩽ FA, for i = 1, 2. Then,

i) if H ⩽alg M1 ⩽alg K, then H ⩽alg K;
i’) if H ⩽ff M1 ⩽ff K, then H ⩽ff K;
ii) if H ⩽alg K, then M1 ⩽alg K, while H 6⩽alg M1, in general;
ii ′) if H ⩽ff K, then H ⩽ff M1, while M1 6⩽ff K, in general;

iii) if H ⩽alg M1 and H ⩽alg M2, then H ⩽alg 〈M1 ∪M2〉, while
H 6⩽alg M1 ∩M2, in general;

iii’) if H ⩽ff M1 and H ⩽ff M2, then H ⩽ff M1 ∩M2, while H 6⩽ff 〈M1 ∪M2〉,
in general;

iv) Hi ⩽ff Ki, ∀i ∈ I⇒
⋂

i∈I Hi ⩽ff ∩i∈IKi;
iv’) Hi ⩽alg Ki, ∀i ∈ I⇒ 〈Hi, i ∈ I〉 ⩽alg 〈Ki, i ∈ I〉.

ALGEBRAIC AND FREE EXTENSIONS

Proposition (Miasnikov–V.–Weil, 2007)
Let H ⩽ Mi ⩽ K ⩽ FA, for i = 1, 2. Then,

i) if H ⩽alg M1 ⩽alg K, then H ⩽alg K;
i’) if H ⩽ff M1 ⩽ff K, then H ⩽ff K;
ii) if H ⩽alg K, then M1 ⩽alg K, while H 6⩽alg M1, in general;
ii ′) if H ⩽ff K, then H ⩽ff M1, while M1 6⩽ff K, in general;
iii) if H ⩽alg M1 and H ⩽alg M2, then H ⩽alg 〈M1 ∪M2〉, while

H 6⩽alg M1 ∩M2, in general;

iii’) if H ⩽ff M1 and H ⩽ff M2, then H ⩽ff M1 ∩M2, while H 6⩽ff 〈M1 ∪M2〉,
in general;

iv) Hi ⩽ff Ki, ∀i ∈ I⇒
⋂

i∈I Hi ⩽ff ∩i∈IKi;
iv’) Hi ⩽alg Ki, ∀i ∈ I⇒ 〈Hi, i ∈ I〉 ⩽alg 〈Ki, i ∈ I〉.

ALGEBRAIC AND FREE EXTENSIONS

Proposition (Miasnikov–V.–Weil, 2007)
Let H ⩽ Mi ⩽ K ⩽ FA, for i = 1, 2. Then,

i) if H ⩽alg M1 ⩽alg K, then H ⩽alg K;
i’) if H ⩽ff M1 ⩽ff K, then H ⩽ff K;
ii) if H ⩽alg K, then M1 ⩽alg K, while H 6⩽alg M1, in general;
ii ′) if H ⩽ff K, then H ⩽ff M1, while M1 6⩽ff K, in general;
iii) if H ⩽alg M1 and H ⩽alg M2, then H ⩽alg 〈M1 ∪M2〉, while

H 6⩽alg M1 ∩M2, in general;
iii’) if H ⩽ff M1 and H ⩽ff M2, then H ⩽ff M1 ∩M2, while H 6⩽ff 〈M1 ∪M2〉,

in general;

iv) Hi ⩽ff Ki, ∀i ∈ I⇒
⋂

i∈I Hi ⩽ff ∩i∈IKi;
iv’) Hi ⩽alg Ki, ∀i ∈ I⇒ 〈Hi, i ∈ I〉 ⩽alg 〈Ki, i ∈ I〉.

ALGEBRAIC AND FREE EXTENSIONS

Proposition (Miasnikov–V.–Weil, 2007)
Let H ⩽ Mi ⩽ K ⩽ FA, for i = 1, 2. Then,

i) if H ⩽alg M1 ⩽alg K, then H ⩽alg K;
i’) if H ⩽ff M1 ⩽ff K, then H ⩽ff K;
ii) if H ⩽alg K, then M1 ⩽alg K, while H 6⩽alg M1, in general;
ii ′) if H ⩽ff K, then H ⩽ff M1, while M1 6⩽ff K, in general;
iii) if H ⩽alg M1 and H ⩽alg M2, then H ⩽alg 〈M1 ∪M2〉, while

H 6⩽alg M1 ∩M2, in general;
iii’) if H ⩽ff M1 and H ⩽ff M2, then H ⩽ff M1 ∩M2, while H 6⩽ff 〈M1 ∪M2〉,

in general;
iv) Hi ⩽ff Ki, ∀i ∈ I⇒

⋂
i∈I Hi ⩽ff ∩i∈IKi;

iv’) Hi ⩽alg Ki, ∀i ∈ I⇒ 〈Hi, i ∈ I〉 ⩽alg 〈Ki, i ∈ I〉.

ALGEBRAIC AND FREE EXTENSIONS

Proposition (Miasnikov–V.–Weil, 2007)
Let H ⩽ Mi ⩽ K ⩽ FA, for i = 1, 2. Then,

i) if H ⩽alg M1 ⩽alg K, then H ⩽alg K;
i’) if H ⩽ff M1 ⩽ff K, then H ⩽ff K;
ii) if H ⩽alg K, then M1 ⩽alg K, while H 6⩽alg M1, in general;
ii ′) if H ⩽ff K, then H ⩽ff M1, while M1 6⩽ff K, in general;
iii) if H ⩽alg M1 and H ⩽alg M2, then H ⩽alg 〈M1 ∪M2〉, while

H 6⩽alg M1 ∩M2, in general;
iii’) if H ⩽ff M1 and H ⩽ff M2, then H ⩽ff M1 ∩M2, while H 6⩽ff 〈M1 ∪M2〉,

in general;
iv) Hi ⩽ff Ki, ∀i ∈ I⇒

⋂
i∈I Hi ⩽ff ∩i∈IKi;

iv’) Hi ⩽alg Ki, ∀i ∈ I⇒ 〈Hi, i ∈ I〉 ⩽alg 〈Ki, i ∈ I〉.

TAKAHASI’S THEOREM

Definition
For H ⩽ FA, we define AE(H) = {K ⩽ FA | H ⩽alg K}.

Question
How many algebraic extensions does a given H ⩽ FA have ? Can we
compute them all, at least when H is f.g.?

Theorem (Takahasi, 1951)
For every H ⩽fg FA, we have #AE(H) < ∞.

• Original proof by Takahasi was combinatorial and technical.
• Modern proof, using Stallings automata, is much simpler, and due
independently to V. (1997), Margolis–Sapir–Weil (2001) and
Kapovich–Miasnikov (2002).

• Additionally, AE(H) will be computable…

TAKAHASI’S THEOREM

Definition
For H ⩽ FA, we define AE(H) = {K ⩽ FA | H ⩽alg K}.

Question
How many algebraic extensions does a given H ⩽ FA have ? Can we
compute them all, at least when H is f.g.?

Theorem (Takahasi, 1951)
For every H ⩽fg FA, we have #AE(H) < ∞.

• Original proof by Takahasi was combinatorial and technical.
• Modern proof, using Stallings automata, is much simpler, and due
independently to V. (1997), Margolis–Sapir–Weil (2001) and
Kapovich–Miasnikov (2002).

• Additionally, AE(H) will be computable…

TAKAHASI’S THEOREM

Definition
For H ⩽ FA, we define AE(H) = {K ⩽ FA | H ⩽alg K}.

Question
How many algebraic extensions does a given H ⩽ FA have ? Can we
compute them all, at least when H is f.g.?

Theorem (Takahasi, 1951)
For every H ⩽fg FA, we have #AE(H) < ∞.

• Original proof by Takahasi was combinatorial and technical.
• Modern proof, using Stallings automata, is much simpler, and due
independently to V. (1997), Margolis–Sapir–Weil (2001) and
Kapovich–Miasnikov (2002).

• Additionally, AE(H) will be computable…

TAKAHASI’S THEOREM

Definition
For H ⩽ FA, we define AE(H) = {K ⩽ FA | H ⩽alg K}.

Question
How many algebraic extensions does a given H ⩽ FA have ? Can we
compute them all, at least when H is f.g.?

Theorem (Takahasi, 1951)
For every H ⩽fg FA, we have #AE(H) < ∞.

• Original proof by Takahasi was combinatorial and technical.

• Modern proof, using Stallings automata, is much simpler, and due
independently to V. (1997), Margolis–Sapir–Weil (2001) and
Kapovich–Miasnikov (2002).

• Additionally, AE(H) will be computable…

TAKAHASI’S THEOREM

Definition
For H ⩽ FA, we define AE(H) = {K ⩽ FA | H ⩽alg K}.

Question
How many algebraic extensions does a given H ⩽ FA have ? Can we
compute them all, at least when H is f.g.?

Theorem (Takahasi, 1951)
For every H ⩽fg FA, we have #AE(H) < ∞.

• Original proof by Takahasi was combinatorial and technical.
• Modern proof, using Stallings automata, is much simpler, and due
independently to V. (1997), Margolis–Sapir–Weil (2001) and
Kapovich–Miasnikov (2002).

• Additionally, AE(H) will be computable…

TAKAHASI’S THEOREM

Definition
For H ⩽ FA, we define AE(H) = {K ⩽ FA | H ⩽alg K}.

Question
How many algebraic extensions does a given H ⩽ FA have ? Can we
compute them all, at least when H is f.g.?

Theorem (Takahasi, 1951)
For every H ⩽fg FA, we have #AE(H) < ∞.

• Original proof by Takahasi was combinatorial and technical.
• Modern proof, using Stallings automata, is much simpler, and due
independently to V. (1997), Margolis–Sapir–Weil (2001) and
Kapovich–Miasnikov (2002).

• Additionally, AE(H) will be computable…

QUOTIENTS AND FRINGE

Definition
A morphism of reduced A-automata f : Γ1 → Γ2 is called onto if every
edge in Γ2 is the image of at least one edge from Γ1. Then, we say
that Γ2 is a quotient of Γ1, and write f : Γ1 Γ2.

Example
Let Γ be a finite reduced A-automata, and let ∼ be an equivalence
relation on VΓ . We denote by Γ/∼ the new reduced A-automata
resulting from identifying the vertices according to ∼, plus reduction.

Clearly, the projection π : Γ Γ/∼ is onto, Γ/∼ is a reduced quotient
of Γ , and every reduced quotient of Γ is of this form.

Definition
The fringe of a finite reduced A-automaton Γ , denoted by O(Γ), is
the (finite) collection of all its reduced quotients:

O(Γ) = {Γ/∼ | ∼ eq. rel. on VΓ } .

QUOTIENTS AND FRINGE

Definition
A morphism of reduced A-automata f : Γ1 → Γ2 is called onto if every
edge in Γ2 is the image of at least one edge from Γ1. Then, we say
that Γ2 is a quotient of Γ1, and write f : Γ1 Γ2.

Example
Let Γ be a finite reduced A-automata, and let ∼ be an equivalence
relation on VΓ . We denote by Γ/∼ the new reduced A-automata
resulting from identifying the vertices according to ∼, plus reduction.

Clearly, the projection π : Γ Γ/∼ is onto, Γ/∼ is a reduced quotient
of Γ , and every reduced quotient of Γ is of this form.

Definition
The fringe of a finite reduced A-automaton Γ , denoted by O(Γ), is
the (finite) collection of all its reduced quotients:

O(Γ) = {Γ/∼ | ∼ eq. rel. on VΓ } .

QUOTIENTS AND FRINGE

Definition
A morphism of reduced A-automata f : Γ1 → Γ2 is called onto if every
edge in Γ2 is the image of at least one edge from Γ1. Then, we say
that Γ2 is a quotient of Γ1, and write f : Γ1 Γ2.

Example
Let Γ be a finite reduced A-automata, and let ∼ be an equivalence
relation on VΓ . We denote by Γ/∼ the new reduced A-automata
resulting from identifying the vertices according to ∼, plus reduction.

Clearly, the projection π : Γ Γ/∼ is onto, Γ/∼ is a reduced quotient
of Γ , and every reduced quotient of Γ is of this form.

Definition
The fringe of a finite reduced A-automaton Γ , denoted by O(Γ), is
the (finite) collection of all its reduced quotients:

O(Γ) = {Γ/∼ | ∼ eq. rel. on VΓ } .

QUOTIENTS AND FRINGE

Definition
A morphism of reduced A-automata f : Γ1 → Γ2 is called onto if every
edge in Γ2 is the image of at least one edge from Γ1. Then, we say
that Γ2 is a quotient of Γ1, and write f : Γ1 Γ2.

Example
Let Γ be a finite reduced A-automata, and let ∼ be an equivalence
relation on VΓ . We denote by Γ/∼ the new reduced A-automata
resulting from identifying the vertices according to ∼, plus reduction.

Clearly, the projection π : Γ Γ/∼ is onto, Γ/∼ is a reduced quotient
of Γ , and every reduced quotient of Γ is of this form.

Definition
The fringe of a finite reduced A-automaton Γ , denoted by O(Γ), is
the (finite) collection of all its reduced quotients:

O(Γ) = {Γ/∼ | ∼ eq. rel. on VΓ } .

FRINGE OF A SUBGROUP

Definition
Let H ⩽fg FA. The fringe of H is

O(H) =
{
〈Γ〉 | Γ ∈ O(St(H))

}
=

{
〈St(H)/∼〉 | ∼ eq. rel. on VSt(H)

}
,

a finite and computable collection of f.g. extensions of H.

Example:
For H = 〈a−1b−1ab〉, O(H) = {H0,H1,H2,H3,H4,H5,H6}, where:

H0 = H = 〈a−1b−1ab〉, H1 = 〈a, b−1ab〉,
H2 = 〈b, a−1ba〉, H3 = 〈ab, ba〉,
H4 = 〈a−1b, a−2b2〉, H5 = 〈a2, b2, ab〉,
H6 = 〈a,b〉.

FRINGE OF A SUBGROUP

Definition
Let H ⩽fg FA. The fringe of H is

O(H) =
{
〈Γ〉 | Γ ∈ O(St(H))

}
=

{
〈St(H)/∼〉 | ∼ eq. rel. on VSt(H)

}
,

a finite and computable collection of f.g. extensions of H.

Example:
For H = 〈a−1b−1ab〉, O(H) = {H0,H1,H2,H3,H4,H5,H6}, where:

H0 = H = 〈a−1b−1ab〉, H1 = 〈a, b−1ab〉,
H2 = 〈b, a−1ba〉, H3 = 〈ab, ba〉,
H4 = 〈a−1b, a−2b2〉, H5 = 〈a2, b2, ab〉,
H6 = 〈a,b〉.

FRINGE OF A SUBGROUP

Definition
Let H ⩽fg FA. The fringe of H is

O(H) =
{
〈Γ〉 | Γ ∈ O(St(H))

}
=

{
〈St(H)/∼〉 | ∼ eq. rel. on VSt(H)

}
,

a finite and computable collection of f.g. extensions of H.

Example:
For H = 〈a−1b−1ab〉, O(H) = {H0,H1,H2,H3,H4,H5,H6}, where:

H0 = H = 〈a−1b−1ab〉,

H1 = 〈a, b−1ab〉,
H2 = 〈b, a−1ba〉, H3 = 〈ab, ba〉,
H4 = 〈a−1b, a−2b2〉, H5 = 〈a2, b2, ab〉,
H6 = 〈a,b〉.

FRINGE OF A SUBGROUP

Definition
Let H ⩽fg FA. The fringe of H is

O(H) =
{
〈Γ〉 | Γ ∈ O(St(H))

}
=

{
〈St(H)/∼〉 | ∼ eq. rel. on VSt(H)

}
,

a finite and computable collection of f.g. extensions of H.

Example:
For H = 〈a−1b−1ab〉, O(H) = {H0,H1,H2,H3,H4,H5,H6}, where:

H0 = H = 〈a−1b−1ab〉, H1 = 〈a, b−1ab〉,

H2 = 〈b, a−1ba〉, H3 = 〈ab, ba〉,
H4 = 〈a−1b, a−2b2〉, H5 = 〈a2, b2, ab〉,
H6 = 〈a,b〉.

FRINGE OF A SUBGROUP

Definition
Let H ⩽fg FA. The fringe of H is

O(H) =
{
〈Γ〉 | Γ ∈ O(St(H))

}
=

{
〈St(H)/∼〉 | ∼ eq. rel. on VSt(H)

}
,

a finite and computable collection of f.g. extensions of H.

Example:
For H = 〈a−1b−1ab〉, O(H) = {H0,H1,H2,H3,H4,H5,H6}, where:

H0 = H = 〈a−1b−1ab〉, H1 = 〈a, b−1ab〉,
H2 = 〈b, a−1ba〉,

H3 = 〈ab, ba〉,
H4 = 〈a−1b, a−2b2〉, H5 = 〈a2, b2, ab〉,
H6 = 〈a,b〉.

FRINGE OF A SUBGROUP

Definition
Let H ⩽fg FA. The fringe of H is

O(H) =
{
〈Γ〉 | Γ ∈ O(St(H))

}
=

{
〈St(H)/∼〉 | ∼ eq. rel. on VSt(H)

}
,

a finite and computable collection of f.g. extensions of H.

Example:
For H = 〈a−1b−1ab〉, O(H) = {H0,H1,H2,H3,H4,H5,H6}, where:

H0 = H = 〈a−1b−1ab〉, H1 = 〈a, b−1ab〉,
H2 = 〈b, a−1ba〉, H3 = 〈ab, ba〉,

H4 = 〈a−1b, a−2b2〉, H5 = 〈a2, b2, ab〉,
H6 = 〈a,b〉.

FRINGE OF A SUBGROUP

Definition
Let H ⩽fg FA. The fringe of H is

O(H) =
{
〈Γ〉 | Γ ∈ O(St(H))

}
=

{
〈St(H)/∼〉 | ∼ eq. rel. on VSt(H)

}
,

a finite and computable collection of f.g. extensions of H.

Example:
For H = 〈a−1b−1ab〉, O(H) = {H0,H1,H2,H3,H4,H5,H6}, where:

H0 = H = 〈a−1b−1ab〉, H1 = 〈a, b−1ab〉,
H2 = 〈b, a−1ba〉, H3 = 〈ab, ba〉,
H4 = 〈a−1b, a−2b2〉,

H5 = 〈a2, b2, ab〉,
H6 = 〈a,b〉.

FRINGE OF A SUBGROUP

Definition
Let H ⩽fg FA. The fringe of H is

O(H) =
{
〈Γ〉 | Γ ∈ O(St(H))

}
=

{
〈St(H)/∼〉 | ∼ eq. rel. on VSt(H)

}
,

a finite and computable collection of f.g. extensions of H.

Example:
For H = 〈a−1b−1ab〉, O(H) = {H0,H1,H2,H3,H4,H5,H6}, where:

H0 = H = 〈a−1b−1ab〉, H1 = 〈a, b−1ab〉,
H2 = 〈b, a−1ba〉, H3 = 〈ab, ba〉,
H4 = 〈a−1b, a−2b2〉, H5 = 〈a2, b2, ab〉,

H6 = 〈a,b〉.

FRINGE OF A SUBGROUP

Definition
Let H ⩽fg FA. The fringe of H is

O(H) =
{
〈Γ〉 | Γ ∈ O(St(H))

}
=

{
〈St(H)/∼〉 | ∼ eq. rel. on VSt(H)

}
,

a finite and computable collection of f.g. extensions of H.

Example:
For H = 〈a−1b−1ab〉, O(H) = {H0,H1,H2,H3,H4,H5,H6}, where:

H0 = H = 〈a−1b−1ab〉, H1 = 〈a, b−1ab〉,
H2 = 〈b, a−1ba〉, H3 = 〈ab, ba〉,
H4 = 〈a−1b, a−2b2〉, H5 = 〈a2, b2, ab〉,
H6 = 〈a,b〉.

COMPUTING ALGEBRAIC EXTENSIONS

Observation
For H ⩽fg FA, we have O(H) = {H0, H1, . . . ,Hk}, all f.g., computable, and
with minimum and maximum, H = H0 ⩽ Hi ⩽ Hk = 〈A ′〉 ⩽ff FA,
where A ′ ⊆ A is the set of letters in use.

Proposition
For H ⩽fg FA, we have AE(H) ⊆ O(H). In particular, #AE(H) < ∞.

Theorem
AE(H) is computable from a set of generators for H ⩽fg FA.

Proof.
• Compute St(H);
• compute St(H)/∼ for all equivalence relation ∼ on VSt(H);
• compute O(H);
• clean O(H) by deleting L whenever K, L ∈ O(H) with K ⩽ff L;
• the resulting set is AE(H).

COMPUTING ALGEBRAIC EXTENSIONS

Observation
For H ⩽fg FA, we have O(H) = {H0, H1, . . . ,Hk}, all f.g., computable, and
with minimum and maximum, H = H0 ⩽ Hi ⩽ Hk = 〈A ′〉 ⩽ff FA,
where A ′ ⊆ A is the set of letters in use.

Proposition
For H ⩽fg FA, we have AE(H) ⊆ O(H). In particular, #AE(H) < ∞.

Theorem
AE(H) is computable from a set of generators for H ⩽fg FA.

Proof.
• Compute St(H);
• compute St(H)/∼ for all equivalence relation ∼ on VSt(H);
• compute O(H);
• clean O(H) by deleting L whenever K, L ∈ O(H) with K ⩽ff L;
• the resulting set is AE(H).

COMPUTING ALGEBRAIC EXTENSIONS

Observation
For H ⩽fg FA, we have O(H) = {H0, H1, . . . ,Hk}, all f.g., computable, and
with minimum and maximum, H = H0 ⩽ Hi ⩽ Hk = 〈A ′〉 ⩽ff FA,
where A ′ ⊆ A is the set of letters in use.

Proposition
For H ⩽fg FA, we have AE(H) ⊆ O(H). In particular, #AE(H) < ∞.

Theorem
AE(H) is computable from a set of generators for H ⩽fg FA.

Proof.
• Compute St(H);
• compute St(H)/∼ for all equivalence relation ∼ on VSt(H);
• compute O(H);
• clean O(H) by deleting L whenever K, L ∈ O(H) with K ⩽ff L;
• the resulting set is AE(H).

COMPUTING ALGEBRAIC EXTENSIONS

Observation
For H ⩽fg FA, we have O(H) = {H0, H1, . . . ,Hk}, all f.g., computable, and
with minimum and maximum, H = H0 ⩽ Hi ⩽ Hk = 〈A ′〉 ⩽ff FA,
where A ′ ⊆ A is the set of letters in use.

Proposition
For H ⩽fg FA, we have AE(H) ⊆ O(H). In particular, #AE(H) < ∞.

Theorem
AE(H) is computable from a set of generators for H ⩽fg FA.

Proof.
• Compute St(H);

• compute St(H)/∼ for all equivalence relation ∼ on VSt(H);
• compute O(H);
• clean O(H) by deleting L whenever K, L ∈ O(H) with K ⩽ff L;
• the resulting set is AE(H).

COMPUTING ALGEBRAIC EXTENSIONS

Observation
For H ⩽fg FA, we have O(H) = {H0, H1, . . . ,Hk}, all f.g., computable, and
with minimum and maximum, H = H0 ⩽ Hi ⩽ Hk = 〈A ′〉 ⩽ff FA,
where A ′ ⊆ A is the set of letters in use.

Proposition
For H ⩽fg FA, we have AE(H) ⊆ O(H). In particular, #AE(H) < ∞.

Theorem
AE(H) is computable from a set of generators for H ⩽fg FA.

Proof.
• Compute St(H);
• compute St(H)/∼ for all equivalence relation ∼ on VSt(H);

• compute O(H);
• clean O(H) by deleting L whenever K, L ∈ O(H) with K ⩽ff L;
• the resulting set is AE(H).

COMPUTING ALGEBRAIC EXTENSIONS

Observation
For H ⩽fg FA, we have O(H) = {H0, H1, . . . ,Hk}, all f.g., computable, and
with minimum and maximum, H = H0 ⩽ Hi ⩽ Hk = 〈A ′〉 ⩽ff FA,
where A ′ ⊆ A is the set of letters in use.

Proposition
For H ⩽fg FA, we have AE(H) ⊆ O(H). In particular, #AE(H) < ∞.

Theorem
AE(H) is computable from a set of generators for H ⩽fg FA.

Proof.
• Compute St(H);
• compute St(H)/∼ for all equivalence relation ∼ on VSt(H);
• compute O(H);

• clean O(H) by deleting L whenever K, L ∈ O(H) with K ⩽ff L;
• the resulting set is AE(H).

COMPUTING ALGEBRAIC EXTENSIONS

Observation
For H ⩽fg FA, we have O(H) = {H0, H1, . . . ,Hk}, all f.g., computable, and
with minimum and maximum, H = H0 ⩽ Hi ⩽ Hk = 〈A ′〉 ⩽ff FA,
where A ′ ⊆ A is the set of letters in use.

Proposition
For H ⩽fg FA, we have AE(H) ⊆ O(H). In particular, #AE(H) < ∞.

Theorem
AE(H) is computable from a set of generators for H ⩽fg FA.

Proof.
• Compute St(H);
• compute St(H)/∼ for all equivalence relation ∼ on VSt(H);
• compute O(H);
• clean O(H) by deleting L whenever K, L ∈ O(H) with K ⩽ff L;

• the resulting set is AE(H).

COMPUTING ALGEBRAIC EXTENSIONS

Observation
For H ⩽fg FA, we have O(H) = {H0, H1, . . . ,Hk}, all f.g., computable, and
with minimum and maximum, H = H0 ⩽ Hi ⩽ Hk = 〈A ′〉 ⩽ff FA,
where A ′ ⊆ A is the set of letters in use.

Proposition
For H ⩽fg FA, we have AE(H) ⊆ O(H). In particular, #AE(H) < ∞.

Theorem
AE(H) is computable from a set of generators for H ⩽fg FA.

Proof.
• Compute St(H);
• compute St(H)/∼ for all equivalence relation ∼ on VSt(H);
• compute O(H);
• clean O(H) by deleting L whenever K, L ∈ O(H) with K ⩽ff L;
• the resulting set is AE(H).

DECIDING FREE-FACTORNESS

For the cleaning step we need:

Theorem
Given H, K ⩽fg FA, it is algorithmically decidable whether H ⩽ff K.

Proved by:
• Whitehead 1930’s (classical; exponential time);
• Silva-Weil 2006 (using Stallings graphs; exponential time);
• Roig–V.–Weil 2007 (an improvement of Whitehead algorithm
working in polynomial time);

• Puder 2011 (using Stallings graphs; exponential time).

Example
For H = 〈a−1b−1ab〉 ⩽ F2, we have AE(H) = {H,F2}. In particular,
a−1b−1ab is almost primitive.

DECIDING FREE-FACTORNESS

For the cleaning step we need:

Theorem
Given H, K ⩽fg FA, it is algorithmically decidable whether H ⩽ff K.

Proved by:
• Whitehead 1930’s (classical; exponential time);

• Silva-Weil 2006 (using Stallings graphs; exponential time);
• Roig–V.–Weil 2007 (an improvement of Whitehead algorithm
working in polynomial time);

• Puder 2011 (using Stallings graphs; exponential time).

Example
For H = 〈a−1b−1ab〉 ⩽ F2, we have AE(H) = {H,F2}. In particular,
a−1b−1ab is almost primitive.

DECIDING FREE-FACTORNESS

For the cleaning step we need:

Theorem
Given H, K ⩽fg FA, it is algorithmically decidable whether H ⩽ff K.

Proved by:
• Whitehead 1930’s (classical; exponential time);
• Silva-Weil 2006 (using Stallings graphs; exponential time);

• Roig–V.–Weil 2007 (an improvement of Whitehead algorithm
working in polynomial time);

• Puder 2011 (using Stallings graphs; exponential time).

Example
For H = 〈a−1b−1ab〉 ⩽ F2, we have AE(H) = {H,F2}. In particular,
a−1b−1ab is almost primitive.

DECIDING FREE-FACTORNESS

For the cleaning step we need:

Theorem
Given H, K ⩽fg FA, it is algorithmically decidable whether H ⩽ff K.

Proved by:
• Whitehead 1930’s (classical; exponential time);
• Silva-Weil 2006 (using Stallings graphs; exponential time);
• Roig–V.–Weil 2007 (an improvement of Whitehead algorithm
working in polynomial time);

• Puder 2011 (using Stallings graphs; exponential time).

Example
For H = 〈a−1b−1ab〉 ⩽ F2, we have AE(H) = {H,F2}. In particular,
a−1b−1ab is almost primitive.

DECIDING FREE-FACTORNESS

For the cleaning step we need:

Theorem
Given H, K ⩽fg FA, it is algorithmically decidable whether H ⩽ff K.

Proved by:
• Whitehead 1930’s (classical; exponential time);
• Silva-Weil 2006 (using Stallings graphs; exponential time);
• Roig–V.–Weil 2007 (an improvement of Whitehead algorithm
working in polynomial time);

• Puder 2011 (using Stallings graphs; exponential time).

Example
For H = 〈a−1b−1ab〉 ⩽ F2, we have AE(H) = {H,F2}. In particular,
a−1b−1ab is almost primitive.

DECIDING FREE-FACTORNESS

For the cleaning step we need:

Theorem
Given H, K ⩽fg FA, it is algorithmically decidable whether H ⩽ff K.

Proved by:
• Whitehead 1930’s (classical; exponential time);
• Silva-Weil 2006 (using Stallings graphs; exponential time);
• Roig–V.–Weil 2007 (an improvement of Whitehead algorithm
working in polynomial time);

• Puder 2011 (using Stallings graphs; exponential time).

Example
For H = 〈a−1b−1ab〉 ⩽ F2, we have AE(H) = {H,F2}. In particular,
a−1b−1ab is almost primitive.

DECIDING FREE-FACTORNESS

For the cleaning step we need:

Theorem
Given H, K ⩽fg FA, it is algorithmically decidable whether H ⩽ff K.

Proved by:
• Whitehead 1930’s (classical; exponential time);
• Silva-Weil 2006 (using Stallings graphs; exponential time);
• Roig–V.–Weil 2007 (an improvement of Whitehead algorithm
working in polynomial time);

• Puder 2011 (using Stallings graphs; exponential time).

Example
For H = 〈a−1b−1ab〉 ⩽ F2, we have AE(H) = {H,F2}. In particular,
a−1b−1ab is almost primitive.

THE ALGEBRAIC CLOSURE

Observation
• H ⩽alg K1 and H ⩽alg K2 then H ⩽alg 〈K1 ∪ K2〉;

• H ⩽ff K1 and H ⩽ff K2 then H ⩽ff K1 ∩ K2.

Theorem
For every extension H ⩽fg K ⩽fg FA of f.g. subgroups, there exists a
unique L such that H ⩽alg L ⩽ff K; it is called the K-algebraic closure
of H and denoted L = ClK(H).

Observation
For H ⩽ K, ClK(H) is the maximal algebraic extension of H contained
in K; in particular, it is computable from given generators of H and K.

THE ALGEBRAIC CLOSURE

Observation
• H ⩽alg K1 and H ⩽alg K2 then H ⩽alg 〈K1 ∪ K2〉;
• H ⩽ff K1 and H ⩽ff K2 then H ⩽ff K1 ∩ K2.

Theorem
For every extension H ⩽fg K ⩽fg FA of f.g. subgroups, there exists a
unique L such that H ⩽alg L ⩽ff K; it is called the K-algebraic closure
of H and denoted L = ClK(H).

Observation
For H ⩽ K, ClK(H) is the maximal algebraic extension of H contained
in K; in particular, it is computable from given generators of H and K.

THE ALGEBRAIC CLOSURE

Observation
• H ⩽alg K1 and H ⩽alg K2 then H ⩽alg 〈K1 ∪ K2〉;
• H ⩽ff K1 and H ⩽ff K2 then H ⩽ff K1 ∩ K2.

Theorem
For every extension H ⩽fg K ⩽fg FA of f.g. subgroups, there exists a
unique L such that H ⩽alg L ⩽ff K; it is called the K-algebraic closure
of H and denoted L = ClK(H).

Observation
For H ⩽ K, ClK(H) is the maximal algebraic extension of H contained
in K; in particular, it is computable from given generators of H and K.

THE ALGEBRAIC CLOSURE

Observation
• H ⩽alg K1 and H ⩽alg K2 then H ⩽alg 〈K1 ∪ K2〉;
• H ⩽ff K1 and H ⩽ff K2 then H ⩽ff K1 ∩ K2.

Theorem
For every extension H ⩽fg K ⩽fg FA of f.g. subgroups, there exists a
unique L such that H ⩽alg L ⩽ff K; it is called the K-algebraic closure
of H and denoted L = ClK(H).

Observation
For H ⩽ K, ClK(H) is the maximal algebraic extension of H contained
in K; in particular, it is computable from given generators of H and K.

THE ALGEBRAIC CLOSURE: REMARKS AND EXAMPLE

Remark
ClK(H) depends on K, a very different behaviour from classical field
extensions.

Example
Let H1 = 〈a−1b−1ab〉, H2 = 〈a, b−1ab〉, and H3 = F2 = 〈a,b〉.

We have H1 ⩽ff H2 ⩽alg H3, and H1 ⩽alg H3.

So ClH2(H1) = H1, while ClH3(H1) = H3.

Remark
Compare with M. Hall’s Theorem.

THE ALGEBRAIC CLOSURE: REMARKS AND EXAMPLE

Remark
ClK(H) depends on K, a very different behaviour from classical field
extensions.

Example
Let H1 = 〈a−1b−1ab〉, H2 = 〈a, b−1ab〉, and H3 = F2 = 〈a,b〉.

We have H1 ⩽ff H2 ⩽alg H3, and H1 ⩽alg H3.

So ClH2(H1) = H1, while ClH3(H1) = H3.

Remark
Compare with M. Hall’s Theorem.

THE ALGEBRAIC CLOSURE: REMARKS AND EXAMPLE

Remark
ClK(H) depends on K, a very different behaviour from classical field
extensions.

Example
Let H1 = 〈a−1b−1ab〉, H2 = 〈a, b−1ab〉, and H3 = F2 = 〈a,b〉.

We have H1 ⩽ff H2 ⩽alg H3, and H1 ⩽alg H3.

So ClH2(H1) = H1, while ClH3(H1) = H3.

Remark
Compare with M. Hall’s Theorem.

THE ALGEBRAIC CLOSURE: REMARKS AND EXAMPLE

Remark
ClK(H) depends on K, a very different behaviour from classical field
extensions.

Example
Let H1 = 〈a−1b−1ab〉, H2 = 〈a, b−1ab〉, and H3 = F2 = 〈a,b〉.

We have H1 ⩽ff H2 ⩽alg H3, and H1 ⩽alg H3.

So ClH2(H1) = H1, while ClH3(H1) = H3.

Remark
Compare with M. Hall’s Theorem.

THE ALGEBRAIC CLOSURE: REMARKS AND EXAMPLE

Remark
ClK(H) depends on K, a very different behaviour from classical field
extensions.

Example
Let H1 = 〈a−1b−1ab〉, H2 = 〈a, b−1ab〉, and H3 = F2 = 〈a,b〉.

We have H1 ⩽ff H2 ⩽alg H3, and H1 ⩽alg H3.

So ClH2(H1) = H1, while ClH3(H1) = H3.

Remark
Compare with M. Hall’s Theorem.

PSEUDO-VARIETIES

Definition
A pseudo-variety of groups V is a class of finite groups closed under
taking subgroups, quotients and finite direct products.

Examples
i) G = all finite groups;
ii) Gp = all finite p-groups, for p prime;
iii) Gnil = all finite nilpotent groups;
iv) Gsol = all finite soluble groups;
v) Gab = all finite abelian groups;
vi) for a finite group V, [V] = {quotients of subgroups of Vk, k ⩾ 1}.
vii) …

Definition
V is extension-closed if V P W with V,W/V ∈ V⇒ W ∈ V.

PSEUDO-VARIETIES

Definition
A pseudo-variety of groups V is a class of finite groups closed under
taking subgroups, quotients and finite direct products.

Examples
i) G = all finite groups;

ii) Gp = all finite p-groups, for p prime;
iii) Gnil = all finite nilpotent groups;
iv) Gsol = all finite soluble groups;
v) Gab = all finite abelian groups;
vi) for a finite group V, [V] = {quotients of subgroups of Vk, k ⩾ 1}.
vii) …

Definition
V is extension-closed if V P W with V,W/V ∈ V⇒ W ∈ V.

PSEUDO-VARIETIES

Definition
A pseudo-variety of groups V is a class of finite groups closed under
taking subgroups, quotients and finite direct products.

Examples
i) G = all finite groups;
ii) Gp = all finite p-groups, for p prime;

iii) Gnil = all finite nilpotent groups;
iv) Gsol = all finite soluble groups;
v) Gab = all finite abelian groups;
vi) for a finite group V, [V] = {quotients of subgroups of Vk, k ⩾ 1}.
vii) …

Definition
V is extension-closed if V P W with V,W/V ∈ V⇒ W ∈ V.

PSEUDO-VARIETIES

Definition
A pseudo-variety of groups V is a class of finite groups closed under
taking subgroups, quotients and finite direct products.

Examples
i) G = all finite groups;
ii) Gp = all finite p-groups, for p prime;
iii) Gnil = all finite nilpotent groups;

iv) Gsol = all finite soluble groups;
v) Gab = all finite abelian groups;
vi) for a finite group V, [V] = {quotients of subgroups of Vk, k ⩾ 1}.
vii) …

Definition
V is extension-closed if V P W with V,W/V ∈ V⇒ W ∈ V.

PSEUDO-VARIETIES

Definition
A pseudo-variety of groups V is a class of finite groups closed under
taking subgroups, quotients and finite direct products.

Examples
i) G = all finite groups;
ii) Gp = all finite p-groups, for p prime;
iii) Gnil = all finite nilpotent groups;
iv) Gsol = all finite soluble groups;

v) Gab = all finite abelian groups;
vi) for a finite group V, [V] = {quotients of subgroups of Vk, k ⩾ 1}.
vii) …

Definition
V is extension-closed if V P W with V,W/V ∈ V⇒ W ∈ V.

PSEUDO-VARIETIES

Definition
A pseudo-variety of groups V is a class of finite groups closed under
taking subgroups, quotients and finite direct products.

Examples
i) G = all finite groups;
ii) Gp = all finite p-groups, for p prime;
iii) Gnil = all finite nilpotent groups;
iv) Gsol = all finite soluble groups;
v) Gab = all finite abelian groups;

vi) for a finite group V, [V] = {quotients of subgroups of Vk, k ⩾ 1}.
vii) …

Definition
V is extension-closed if V P W with V,W/V ∈ V⇒ W ∈ V.

PSEUDO-VARIETIES

Definition
A pseudo-variety of groups V is a class of finite groups closed under
taking subgroups, quotients and finite direct products.

Examples
i) G = all finite groups;
ii) Gp = all finite p-groups, for p prime;
iii) Gnil = all finite nilpotent groups;
iv) Gsol = all finite soluble groups;
v) Gab = all finite abelian groups;
vi) for a finite group V, [V] = {quotients of subgroups of Vk, k ⩾ 1}.
vii) …

Definition
V is extension-closed if V P W with V,W/V ∈ V⇒ W ∈ V.

PSEUDO-VARIETIES

Definition
A pseudo-variety of groups V is a class of finite groups closed under
taking subgroups, quotients and finite direct products.

Examples
i) G = all finite groups;
ii) Gp = all finite p-groups, for p prime;
iii) Gnil = all finite nilpotent groups;
iv) Gsol = all finite soluble groups;
v) Gab = all finite abelian groups;
vi) for a finite group V, [V] = {quotients of subgroups of Vk, k ⩾ 1}.
vii) …

Definition
V is extension-closed if V P W with V,W/V ∈ V⇒ W ∈ V.

THE PRO-V TOPOLOGY

Definition
Let G be a group, and V be a pseudo-variety of finite groups. The
pro-V topology on G can be defined in several equivalent ways:

i) it is the smallest topology making all the morphisms from G into
all V ∈ V (with the discrete topology) continuous;

ii) a basis of open sets is given by φ−1(x), for all group morphism
φ : G→ V ∈ V;

iii) the normal (finite index) subgroups K⊴ G such that G/K ∈ V form
a basis of neighborhoods of 1;

iv) it is the topology given by the pseudo-ultra-metric

d(x, y) = 2−r(x,y),

where r(x, y) = min{ |V| | V ∈ V, and separates x and y }.

Observation:
The pro-V top. is Hausdorff ⇔ d is a metric ⇔ G is residually-V.

THE PRO-V TOPOLOGY

Definition
Let G be a group, and V be a pseudo-variety of finite groups. The
pro-V topology on G can be defined in several equivalent ways:
i) it is the smallest topology making all the morphisms from G into

all V ∈ V (with the discrete topology) continuous;

ii) a basis of open sets is given by φ−1(x), for all group morphism
φ : G→ V ∈ V;

iii) the normal (finite index) subgroups K⊴ G such that G/K ∈ V form
a basis of neighborhoods of 1;

iv) it is the topology given by the pseudo-ultra-metric

d(x, y) = 2−r(x,y),

where r(x, y) = min{ |V| | V ∈ V, and separates x and y }.

Observation:
The pro-V top. is Hausdorff ⇔ d is a metric ⇔ G is residually-V.

THE PRO-V TOPOLOGY

Definition
Let G be a group, and V be a pseudo-variety of finite groups. The
pro-V topology on G can be defined in several equivalent ways:
i) it is the smallest topology making all the morphisms from G into

all V ∈ V (with the discrete topology) continuous;
ii) a basis of open sets is given by φ−1(x), for all group morphism

φ : G→ V ∈ V;

iii) the normal (finite index) subgroups K⊴ G such that G/K ∈ V form
a basis of neighborhoods of 1;

iv) it is the topology given by the pseudo-ultra-metric

d(x, y) = 2−r(x,y),

where r(x, y) = min{ |V| | V ∈ V, and separates x and y }.

Observation:
The pro-V top. is Hausdorff ⇔ d is a metric ⇔ G is residually-V.

THE PRO-V TOPOLOGY

Definition
Let G be a group, and V be a pseudo-variety of finite groups. The
pro-V topology on G can be defined in several equivalent ways:
i) it is the smallest topology making all the morphisms from G into

all V ∈ V (with the discrete topology) continuous;
ii) a basis of open sets is given by φ−1(x), for all group morphism

φ : G→ V ∈ V;
iii) the normal (finite index) subgroups K⊴ G such that G/K ∈ V form

a basis of neighborhoods of 1;

iv) it is the topology given by the pseudo-ultra-metric

d(x, y) = 2−r(x,y),

where r(x, y) = min{ |V| | V ∈ V, and separates x and y }.

Observation:
The pro-V top. is Hausdorff ⇔ d is a metric ⇔ G is residually-V.

THE PRO-V TOPOLOGY

Definition
Let G be a group, and V be a pseudo-variety of finite groups. The
pro-V topology on G can be defined in several equivalent ways:
i) it is the smallest topology making all the morphisms from G into

all V ∈ V (with the discrete topology) continuous;
ii) a basis of open sets is given by φ−1(x), for all group morphism

φ : G→ V ∈ V;
iii) the normal (finite index) subgroups K⊴ G such that G/K ∈ V form

a basis of neighborhoods of 1;
iv) it is the topology given by the pseudo-ultra-metric

d(x, y) = 2−r(x,y),

where r(x, y) = min{ |V| | V ∈ V, and separates x and y }.

Observation:
The pro-V top. is Hausdorff ⇔ d is a metric ⇔ G is residually-V.

THE PRO-V TOPOLOGY

Definition
Let G be a group, and V be a pseudo-variety of finite groups. The
pro-V topology on G can be defined in several equivalent ways:
i) it is the smallest topology making all the morphisms from G into

all V ∈ V (with the discrete topology) continuous;
ii) a basis of open sets is given by φ−1(x), for all group morphism

φ : G→ V ∈ V;
iii) the normal (finite index) subgroups K⊴ G such that G/K ∈ V form

a basis of neighborhoods of 1;
iv) it is the topology given by the pseudo-ultra-metric

d(x, y) = 2−r(x,y),

where r(x, y) = min{ |V| | V ∈ V, and separates x and y }.

Observation:
The pro-V top. is Hausdorff ⇔ d is a metric ⇔ G is residually-V.

THE V-CLOSURE

Proposition (Ribes, Zaleskiĭ)
Let V be an extension-closed pseudo-variety, and consider FA with
the pro-V topology. For a given H ⩽fg FA,

H is V-closed ⇐⇒ H is a free factor of a clopen subgroup.

In particular, free factors of V-closed subgroups are V-closed.

Corollary
For an extension-closed V, and H ⩽fg FA, we have H ⩽alg ClV(H).

So, in the extension-closed case, we always have ClV(H) ∈ AE(H).

Proposition (Ribes, Zaleskiĭ)
For an extension-closed V, and H ⩽fg FA, we have rk(ClV(H)) ⩽ rk(H).

THE V-CLOSURE

Proposition (Ribes, Zaleskiĭ)
Let V be an extension-closed pseudo-variety, and consider FA with
the pro-V topology. For a given H ⩽fg FA,

H is V-closed ⇐⇒ H is a free factor of a clopen subgroup.

In particular, free factors of V-closed subgroups are V-closed.

Corollary
For an extension-closed V, and H ⩽fg FA, we have H ⩽alg ClV(H).

So, in the extension-closed case, we always have ClV(H) ∈ AE(H).

Proposition (Ribes, Zaleskiĭ)
For an extension-closed V, and H ⩽fg FA, we have rk(ClV(H)) ⩽ rk(H).

THE V-CLOSURE

Proposition (Ribes, Zaleskiĭ)
Let V be an extension-closed pseudo-variety, and consider FA with
the pro-V topology. For a given H ⩽fg FA,

H is V-closed ⇐⇒ H is a free factor of a clopen subgroup.

In particular, free factors of V-closed subgroups are V-closed.

Corollary
For an extension-closed V, and H ⩽fg FA, we have H ⩽alg ClV(H).

So, in the extension-closed case, we always have ClV(H) ∈ AE(H).

Proposition (Ribes, Zaleskiĭ)
For an extension-closed V, and H ⩽fg FA, we have rk(ClV(H)) ⩽ rk(H).

THE V-CLOSURE

Proposition (Ribes, Zaleskiĭ)
Let V be an extension-closed pseudo-variety, and consider FA with
the pro-V topology. For a given H ⩽fg FA,

H is V-closed ⇐⇒ H is a free factor of a clopen subgroup.

In particular, free factors of V-closed subgroups are V-closed.

Corollary
For an extension-closed V, and H ⩽fg FA, we have H ⩽alg ClV(H).

So, in the extension-closed case, we always have ClV(H) ∈ AE(H).

Proposition (Ribes, Zaleskiĭ)
For an extension-closed V, and H ⩽fg FA, we have rk(ClV(H)) ⩽ rk(H).

p-CLOSURE, nil-CLOSURE, sol-CLOSURE?

Theorem (Margolis–Sapir–Weil)
The p-closure of H ⩽fg FA is effectively computable, for every prime p.

And using the fact that Clnil(H) =
⋂

p Clp(H),

Theorem (Margolis–Sapir–Weil)
The nil-closure Clnil(H) of H ⩽fg FA is effectively computable.

Problem
Find an algorithm to compute the solvable closure Clsol(H) of a
given H ⩽fg FA.

p-CLOSURE, nil-CLOSURE, sol-CLOSURE?

Theorem (Margolis–Sapir–Weil)
The p-closure of H ⩽fg FA is effectively computable, for every prime p.

And using the fact that Clnil(H) =
⋂

p Clp(H),

Theorem (Margolis–Sapir–Weil)
The nil-closure Clnil(H) of H ⩽fg FA is effectively computable.

Problem
Find an algorithm to compute the solvable closure Clsol(H) of a
given H ⩽fg FA.

p-CLOSURE, nil-CLOSURE, sol-CLOSURE?

Theorem (Margolis–Sapir–Weil)
The p-closure of H ⩽fg FA is effectively computable, for every prime p.

And using the fact that Clnil(H) =
⋂

p Clp(H),

Theorem (Margolis–Sapir–Weil)
The nil-closure Clnil(H) of H ⩽fg FA is effectively computable.

Problem
Find an algorithm to compute the solvable closure Clsol(H) of a
given H ⩽fg FA.

p-CLOSURE, nil-CLOSURE, sol-CLOSURE?

Theorem (Margolis–Sapir–Weil)
The p-closure of H ⩽fg FA is effectively computable, for every prime p.

And using the fact that Clnil(H) =
⋂

p Clp(H),

Theorem (Margolis–Sapir–Weil)
The nil-closure Clnil(H) of H ⩽fg FA is effectively computable.

Problem
Find an algorithm to compute the solvable closure Clsol(H) of a
given H ⩽fg FA.

FIXED SUBGROUPS ARE COMPLICATED

ϕ : F3 → F3
a 7→ a
b 7→ ba
c 7→ ca2

Fix(ϕ) = 〈a,bab−1, cac−1〉

φ : F4 → F4
a 7→ dac
b 7→ c−1a−1d−1ac
c 7→ c−1a−1b−1ac
d 7→ c−1a−1bc

Fix(φ) = 〈w〉,where...

w = c−1a−1bd−1c−1a−1d−1ad−1c−1b−1acdadacdcdbcda−1a−1d−1

a−1d−1c−1a−1d−1c−1b−1d−1c−1d−1c−1daabcdaccdb−1a−1.

FIXED SUBGROUPS ARE COMPLICATED

ϕ : F3 → F3
a 7→ a
b 7→ ba
c 7→ ca2

Fix(ϕ) = 〈a,bab−1, cac−1〉

φ : F4 → F4
a 7→ dac
b 7→ c−1a−1d−1ac
c 7→ c−1a−1b−1ac
d 7→ c−1a−1bc

Fix(φ) = 〈w〉,where...

w = c−1a−1bd−1c−1a−1d−1ad−1c−1b−1acdadacdcdbcda−1a−1d−1

a−1d−1c−1a−1d−1c−1b−1d−1c−1d−1c−1daabcdaccdb−1a−1.

FIXED SUBGROUPS ARE COMPLICATED

ϕ : F3 → F3
a 7→ a
b 7→ ba
c 7→ ca2

Fix(ϕ) = 〈a,bab−1, cac−1〉

φ : F4 → F4
a 7→ dac
b 7→ c−1a−1d−1ac
c 7→ c−1a−1b−1ac
d 7→ c−1a−1bc

Fix(φ) = 〈w〉,where...

w = c−1a−1bd−1c−1a−1d−1ad−1c−1b−1acdadacdcdbcda−1a−1d−1

a−1d−1c−1a−1d−1c−1b−1d−1c−1d−1c−1daabcdaccdb−1a−1.

FIXED SUBGROUPS ARE COMPLICATED

ϕ : F3 → F3
a 7→ a
b 7→ ba
c 7→ ca2

Fix(ϕ) = 〈a,bab−1, cac−1〉

φ : F4 → F4
a 7→ dac
b 7→ c−1a−1d−1ac
c 7→ c−1a−1b−1ac
d 7→ c−1a−1bc

Fix(φ) = 〈w〉,where...

w = c−1a−1bd−1c−1a−1d−1ad−1c−1b−1acdadacdcdbcda−1a−1d−1

a−1d−1c−1a−1d−1c−1b−1d−1c−1d−1c−1daabcdaccdb−1a−1.

FIXED SUBGROUPS ARE COMPLICATED

ϕ : F3 → F3
a 7→ a
b 7→ ba
c 7→ ca2

Fix(ϕ) = 〈a,bab−1, cac−1〉

φ : F4 → F4
a 7→ dac
b 7→ c−1a−1d−1ac
c 7→ c−1a−1b−1ac
d 7→ c−1a−1bc

Fix(φ) = 〈w〉,where...

w = c−1a−1bd−1c−1a−1d−1ad−1c−1b−1acdadacdcdbcda−1a−1d−1

a−1d−1c−1a−1d−1c−1b−1d−1c−1d−1c−1daabcdaccdb−1a−1.

WHAT IS KNOWN ABOUT FIXED SUBGROUPS?

Theorem (Dyer–Scott, 75)
Let ϕ ∈ Aut(Fn) be of finite order. Then, Fix(ϕ) ⩽ff Fn.

Theorem (Gersten, 83 (published 87))
Let ϕ ∈ Aut(Fn). Then, rk(Fix(ϕ)) < ∞.

Theorem (Bestvina–Handel, 88 (published 92))
Let ϕ ∈ Aut(Fn). Then, rk(Fix(ϕ)) ⩽ n.

Theorem (Imrich–Turner, 89)
Let ϕ ∈ End(Fn). Then, rk(Fix(ϕ)) ⩽ n.

Theorem (Bogopolski–Maslakova, 2016; Feighn–Handel, 2018)
A free basis for Fix(φ) is computable, for φ ∈ Aut(Fn).

Theorem (Mutanguha, 2022)
A free basis for Fix(φ) is computable, for φ ∈ End(Fn).

WHAT IS KNOWN ABOUT FIXED SUBGROUPS?

Theorem (Dyer–Scott, 75)
Let ϕ ∈ Aut(Fn) be of finite order. Then, Fix(ϕ) ⩽ff Fn.

Theorem (Gersten, 83 (published 87))
Let ϕ ∈ Aut(Fn). Then, rk(Fix(ϕ)) < ∞.

Theorem (Bestvina–Handel, 88 (published 92))
Let ϕ ∈ Aut(Fn). Then, rk(Fix(ϕ)) ⩽ n.

Theorem (Imrich–Turner, 89)
Let ϕ ∈ End(Fn). Then, rk(Fix(ϕ)) ⩽ n.

Theorem (Bogopolski–Maslakova, 2016; Feighn–Handel, 2018)
A free basis for Fix(φ) is computable, for φ ∈ Aut(Fn).

Theorem (Mutanguha, 2022)
A free basis for Fix(φ) is computable, for φ ∈ End(Fn).

WHAT IS KNOWN ABOUT FIXED SUBGROUPS?

Theorem (Dyer–Scott, 75)
Let ϕ ∈ Aut(Fn) be of finite order. Then, Fix(ϕ) ⩽ff Fn.

Theorem (Gersten, 83 (published 87))
Let ϕ ∈ Aut(Fn). Then, rk(Fix(ϕ)) < ∞.

Theorem (Bestvina–Handel, 88 (published 92))
Let ϕ ∈ Aut(Fn). Then, rk(Fix(ϕ)) ⩽ n.

Theorem (Imrich–Turner, 89)
Let ϕ ∈ End(Fn). Then, rk(Fix(ϕ)) ⩽ n.

Theorem (Bogopolski–Maslakova, 2016; Feighn–Handel, 2018)
A free basis for Fix(φ) is computable, for φ ∈ Aut(Fn).

Theorem (Mutanguha, 2022)
A free basis for Fix(φ) is computable, for φ ∈ End(Fn).

WHAT IS KNOWN ABOUT FIXED SUBGROUPS?

Theorem (Dyer–Scott, 75)
Let ϕ ∈ Aut(Fn) be of finite order. Then, Fix(ϕ) ⩽ff Fn.

Theorem (Gersten, 83 (published 87))
Let ϕ ∈ Aut(Fn). Then, rk(Fix(ϕ)) < ∞.

Theorem (Bestvina–Handel, 88 (published 92))
Let ϕ ∈ Aut(Fn). Then, rk(Fix(ϕ)) ⩽ n.

Theorem (Imrich–Turner, 89)
Let ϕ ∈ End(Fn). Then, rk(Fix(ϕ)) ⩽ n.

Theorem (Bogopolski–Maslakova, 2016; Feighn–Handel, 2018)
A free basis for Fix(φ) is computable, for φ ∈ Aut(Fn).

Theorem (Mutanguha, 2022)
A free basis for Fix(φ) is computable, for φ ∈ End(Fn).

WHAT IS KNOWN ABOUT FIXED SUBGROUPS?

Theorem (Dyer–Scott, 75)
Let ϕ ∈ Aut(Fn) be of finite order. Then, Fix(ϕ) ⩽ff Fn.

Theorem (Gersten, 83 (published 87))
Let ϕ ∈ Aut(Fn). Then, rk(Fix(ϕ)) < ∞.

Theorem (Bestvina–Handel, 88 (published 92))
Let ϕ ∈ Aut(Fn). Then, rk(Fix(ϕ)) ⩽ n.

Theorem (Imrich–Turner, 89)
Let ϕ ∈ End(Fn). Then, rk(Fix(ϕ)) ⩽ n.

Theorem (Bogopolski–Maslakova, 2016; Feighn–Handel, 2018)
A free basis for Fix(φ) is computable, for φ ∈ Aut(Fn).

Theorem (Mutanguha, 2022)
A free basis for Fix(φ) is computable, for φ ∈ End(Fn).

WHAT IS KNOWN ABOUT FIXED SUBGROUPS?

Theorem (Dyer–Scott, 75)
Let ϕ ∈ Aut(Fn) be of finite order. Then, Fix(ϕ) ⩽ff Fn.

Theorem (Gersten, 83 (published 87))
Let ϕ ∈ Aut(Fn). Then, rk(Fix(ϕ)) < ∞.

Theorem (Bestvina–Handel, 88 (published 92))
Let ϕ ∈ Aut(Fn). Then, rk(Fix(ϕ)) ⩽ n.

Theorem (Imrich–Turner, 89)
Let ϕ ∈ End(Fn). Then, rk(Fix(ϕ)) ⩽ n.

Theorem (Bogopolski–Maslakova, 2016; Feighn–Handel, 2018)
A free basis for Fix(φ) is computable, for φ ∈ Aut(Fn).

Theorem (Mutanguha, 2022)
A free basis for Fix(φ) is computable, for φ ∈ End(Fn).

INERTIA

Definition
A subgroup H ⩽ Fn is inert if rk(H ∩ K) ⩽ rk(K), for every K ⩽ Fn.
And H is compressed if rk(H) ⩽ rk(K), for every H ⩽ K ⩽ Fn.

Observation
There is an algorithm which, on input u1, . . . ,uk ∈ FA decides whether
H = 〈u1, . . . ,uk〉 is compressed: check the members in AE(H).

We write Fix(S) =
⋂

φ∈S Fix(φ).

Theorem (Dicks–V., 96)
Let S ⊆ Mon (Fn) be a set of monomorphisms. Then, Fix(S) is inert.

Theorem (Antolín–Jaikin-Zapirain, 2021)
Let S ⊆ End(G), where G = Fn or G = Sn. Then, Fix(S) is inert.

INERTIA

Definition
A subgroup H ⩽ Fn is inert if rk(H ∩ K) ⩽ rk(K), for every K ⩽ Fn.
And H is compressed if rk(H) ⩽ rk(K), for every H ⩽ K ⩽ Fn.

Observation
There is an algorithm which, on input u1, . . . ,uk ∈ FA decides whether
H = 〈u1, . . . ,uk〉 is compressed: check the members in AE(H).

We write Fix(S) =
⋂

φ∈S Fix(φ).

Theorem (Dicks–V., 96)
Let S ⊆ Mon (Fn) be a set of monomorphisms. Then, Fix(S) is inert.

Theorem (Antolín–Jaikin-Zapirain, 2021)
Let S ⊆ End(G), where G = Fn or G = Sn. Then, Fix(S) is inert.

INERTIA

Definition
A subgroup H ⩽ Fn is inert if rk(H ∩ K) ⩽ rk(K), for every K ⩽ Fn.
And H is compressed if rk(H) ⩽ rk(K), for every H ⩽ K ⩽ Fn.

Observation
There is an algorithm which, on input u1, . . . ,uk ∈ FA decides whether
H = 〈u1, . . . ,uk〉 is compressed: check the members in AE(H).

We write Fix(S) =
⋂

φ∈S Fix(φ).

Theorem (Dicks–V., 96)
Let S ⊆ Mon (Fn) be a set of monomorphisms. Then, Fix(S) is inert.

Theorem (Antolín–Jaikin-Zapirain, 2021)
Let S ⊆ End(G), where G = Fn or G = Sn. Then, Fix(S) is inert.

INERTIA

Definition
A subgroup H ⩽ Fn is inert if rk(H ∩ K) ⩽ rk(K), for every K ⩽ Fn.
And H is compressed if rk(H) ⩽ rk(K), for every H ⩽ K ⩽ Fn.

Observation
There is an algorithm which, on input u1, . . . ,uk ∈ FA decides whether
H = 〈u1, . . . ,uk〉 is compressed: check the members in AE(H).

We write Fix(S) =
⋂

φ∈S Fix(φ).

Theorem (Dicks–V., 96)
Let S ⊆ Mon (Fn) be a set of monomorphisms. Then, Fix(S) is inert.

Theorem (Antolín–Jaikin-Zapirain, 2021)
Let S ⊆ End(G), where G = Fn or G = Sn. Then, Fix(S) is inert.

INERTIA

Definition
A subgroup H ⩽ Fn is inert if rk(H ∩ K) ⩽ rk(K), for every K ⩽ Fn.
And H is compressed if rk(H) ⩽ rk(K), for every H ⩽ K ⩽ Fn.

Observation
There is an algorithm which, on input u1, . . . ,uk ∈ FA decides whether
H = 〈u1, . . . ,uk〉 is compressed: check the members in AE(H).

We write Fix(S) =
⋂

φ∈S Fix(φ).

Theorem (Dicks–V., 96)
Let S ⊆ Mon (Fn) be a set of monomorphisms. Then, Fix(S) is inert.

Theorem (Antolín–Jaikin-Zapirain, 2021)
Let S ⊆ End(G), where G = Fn or G = Sn. Then, Fix(S) is inert.

INTERSECTIONS OF FIXED SUBGROUPS

Theorem (Martino–V. 2003)
The subgroup 〈b, cacbab−1c−1〉 ⩽ F3 = F{a,b,c} is the fixed subgroup
of φ : F3 → F3, a 7→ 1, b 7→ b, c 7→ cacbab−1c−1, but it is not the fixed
subgroup of any set of automorphisms of F3.

Question
Is the lattice of fixed subgroups of Fn (by autos or endos) closed
under intersections? i.e., is it true that
∀S ⊆ End(Fn) ∃φ ∈ End(Fn) s. t. Fix(S) = Fix(φ) ?

Theorem (Martino–V., 2000)
∀S ⊆ End(Fn) ∃φ ∈ End(Fn) s.t. Fix(S) ⩽ff Fix(φ)

INTERSECTIONS OF FIXED SUBGROUPS

Theorem (Martino–V. 2003)
The subgroup 〈b, cacbab−1c−1〉 ⩽ F3 = F{a,b,c} is the fixed subgroup
of φ : F3 → F3, a 7→ 1, b 7→ b, c 7→ cacbab−1c−1, but it is not the fixed
subgroup of any set of automorphisms of F3.

Question
Is the lattice of fixed subgroups of Fn (by autos or endos) closed
under intersections?

i.e., is it true that
∀S ⊆ End(Fn) ∃φ ∈ End(Fn) s. t. Fix(S) = Fix(φ) ?

Theorem (Martino–V., 2000)
∀S ⊆ End(Fn) ∃φ ∈ End(Fn) s.t. Fix(S) ⩽ff Fix(φ)

INTERSECTIONS OF FIXED SUBGROUPS

Theorem (Martino–V. 2003)
The subgroup 〈b, cacbab−1c−1〉 ⩽ F3 = F{a,b,c} is the fixed subgroup
of φ : F3 → F3, a 7→ 1, b 7→ b, c 7→ cacbab−1c−1, but it is not the fixed
subgroup of any set of automorphisms of F3.

Question
Is the lattice of fixed subgroups of Fn (by autos or endos) closed
under intersections? i.e., is it true that
∀S ⊆ End(Fn) ∃φ ∈ End(Fn) s. t. Fix(S) = Fix(φ) ?

Theorem (Martino–V., 2000)
∀S ⊆ End(Fn) ∃φ ∈ End(Fn) s.t. Fix(S) ⩽ff Fix(φ)

INTERSECTIONS OF FIXED SUBGROUPS

Theorem (Martino–V. 2003)
The subgroup 〈b, cacbab−1c−1〉 ⩽ F3 = F{a,b,c} is the fixed subgroup
of φ : F3 → F3, a 7→ 1, b 7→ b, c 7→ cacbab−1c−1, but it is not the fixed
subgroup of any set of automorphisms of F3.

Question
Is the lattice of fixed subgroups of Fn (by autos or endos) closed
under intersections? i.e., is it true that
∀S ⊆ End(Fn) ∃φ ∈ End(Fn) s. t. Fix(S) = Fix(φ) ?

Theorem (Martino–V., 2000)
∀S ⊆ End(Fn) ∃φ ∈ End(Fn) s.t. Fix(S) ⩽ff Fix(φ)

INTERSECTIONS OF FIXED SUBGROUPS

Theorem (Martino–V., 2000)
∀S ⊆ End(Fn) ∃φ ∈ End(Fn) s.t. Fix(S) ⩽ff Fix(φ)

Sketch of proof:
• Technical argument: reduce to autos.
• Technical argument: reduce to proving that ∀φ,ϕ ∈ Aut(Fn)

∃k ⩾ 0 s.t Fix(φ) ∩ Fix(ϕ) ⩽ff Fix(φϕk).
• Technical argument: can assume Per(ϕ) = Fix(ϕ).
• Let H = Fix(φ) ∩ Fix(ϕ) ⩽fg Fn.
• For every k ⩾ 0: since H ⩽ Fix(φϕk), there exists Mk ∈ AE(H)
such that H ⩽alg Mk ⩽ff Fix(φϕk).

• By finiteness of AE(H), there are 0 ⩽ r < s such that Mr = Ms.
• Then, H ⩽ Mr = Ms ⩽ Fix(φϕr) ∩ Fix(φϕs) = Fix(φ) ∩ Fix(ϕ) = H.
• Hence, H = Mr ⩽ff Fix(φϕr).

INTERSECTIONS OF FIXED SUBGROUPS

Theorem (Martino–V., 2000)
∀S ⊆ End(Fn) ∃φ ∈ End(Fn) s.t. Fix(S) ⩽ff Fix(φ)

Sketch of proof:
• Technical argument: reduce to autos.

• Technical argument: reduce to proving that ∀φ,ϕ ∈ Aut(Fn)

∃k ⩾ 0 s.t Fix(φ) ∩ Fix(ϕ) ⩽ff Fix(φϕk).
• Technical argument: can assume Per(ϕ) = Fix(ϕ).
• Let H = Fix(φ) ∩ Fix(ϕ) ⩽fg Fn.
• For every k ⩾ 0: since H ⩽ Fix(φϕk), there exists Mk ∈ AE(H)
such that H ⩽alg Mk ⩽ff Fix(φϕk).

• By finiteness of AE(H), there are 0 ⩽ r < s such that Mr = Ms.
• Then, H ⩽ Mr = Ms ⩽ Fix(φϕr) ∩ Fix(φϕs) = Fix(φ) ∩ Fix(ϕ) = H.
• Hence, H = Mr ⩽ff Fix(φϕr).

INTERSECTIONS OF FIXED SUBGROUPS

Theorem (Martino–V., 2000)
∀S ⊆ End(Fn) ∃φ ∈ End(Fn) s.t. Fix(S) ⩽ff Fix(φ)

Sketch of proof:
• Technical argument: reduce to autos.
• Technical argument: reduce to proving that ∀φ,ϕ ∈ Aut(Fn)

∃k ⩾ 0 s.t Fix(φ) ∩ Fix(ϕ) ⩽ff Fix(φϕk).

• Technical argument: can assume Per(ϕ) = Fix(ϕ).
• Let H = Fix(φ) ∩ Fix(ϕ) ⩽fg Fn.
• For every k ⩾ 0: since H ⩽ Fix(φϕk), there exists Mk ∈ AE(H)
such that H ⩽alg Mk ⩽ff Fix(φϕk).

• By finiteness of AE(H), there are 0 ⩽ r < s such that Mr = Ms.
• Then, H ⩽ Mr = Ms ⩽ Fix(φϕr) ∩ Fix(φϕs) = Fix(φ) ∩ Fix(ϕ) = H.
• Hence, H = Mr ⩽ff Fix(φϕr).

INTERSECTIONS OF FIXED SUBGROUPS

Theorem (Martino–V., 2000)
∀S ⊆ End(Fn) ∃φ ∈ End(Fn) s.t. Fix(S) ⩽ff Fix(φ)

Sketch of proof:
• Technical argument: reduce to autos.
• Technical argument: reduce to proving that ∀φ,ϕ ∈ Aut(Fn)

∃k ⩾ 0 s.t Fix(φ) ∩ Fix(ϕ) ⩽ff Fix(φϕk).
• Technical argument: can assume Per(ϕ) = Fix(ϕ).

• Let H = Fix(φ) ∩ Fix(ϕ) ⩽fg Fn.
• For every k ⩾ 0: since H ⩽ Fix(φϕk), there exists Mk ∈ AE(H)
such that H ⩽alg Mk ⩽ff Fix(φϕk).

• By finiteness of AE(H), there are 0 ⩽ r < s such that Mr = Ms.
• Then, H ⩽ Mr = Ms ⩽ Fix(φϕr) ∩ Fix(φϕs) = Fix(φ) ∩ Fix(ϕ) = H.
• Hence, H = Mr ⩽ff Fix(φϕr).

INTERSECTIONS OF FIXED SUBGROUPS

Theorem (Martino–V., 2000)
∀S ⊆ End(Fn) ∃φ ∈ End(Fn) s.t. Fix(S) ⩽ff Fix(φ)

Sketch of proof:
• Technical argument: reduce to autos.
• Technical argument: reduce to proving that ∀φ,ϕ ∈ Aut(Fn)

∃k ⩾ 0 s.t Fix(φ) ∩ Fix(ϕ) ⩽ff Fix(φϕk).
• Technical argument: can assume Per(ϕ) = Fix(ϕ).
• Let H = Fix(φ) ∩ Fix(ϕ) ⩽fg Fn.

• For every k ⩾ 0: since H ⩽ Fix(φϕk), there exists Mk ∈ AE(H)
such that H ⩽alg Mk ⩽ff Fix(φϕk).

• By finiteness of AE(H), there are 0 ⩽ r < s such that Mr = Ms.
• Then, H ⩽ Mr = Ms ⩽ Fix(φϕr) ∩ Fix(φϕs) = Fix(φ) ∩ Fix(ϕ) = H.
• Hence, H = Mr ⩽ff Fix(φϕr).

INTERSECTIONS OF FIXED SUBGROUPS

Theorem (Martino–V., 2000)
∀S ⊆ End(Fn) ∃φ ∈ End(Fn) s.t. Fix(S) ⩽ff Fix(φ)

Sketch of proof:
• Technical argument: reduce to autos.
• Technical argument: reduce to proving that ∀φ,ϕ ∈ Aut(Fn)

∃k ⩾ 0 s.t Fix(φ) ∩ Fix(ϕ) ⩽ff Fix(φϕk).
• Technical argument: can assume Per(ϕ) = Fix(ϕ).
• Let H = Fix(φ) ∩ Fix(ϕ) ⩽fg Fn.
• For every k ⩾ 0: since H ⩽ Fix(φϕk), there exists Mk ∈ AE(H)
such that H ⩽alg Mk ⩽ff Fix(φϕk).

• By finiteness of AE(H), there are 0 ⩽ r < s such that Mr = Ms.
• Then, H ⩽ Mr = Ms ⩽ Fix(φϕr) ∩ Fix(φϕs) = Fix(φ) ∩ Fix(ϕ) = H.
• Hence, H = Mr ⩽ff Fix(φϕr).

INTERSECTIONS OF FIXED SUBGROUPS

Theorem (Martino–V., 2000)
∀S ⊆ End(Fn) ∃φ ∈ End(Fn) s.t. Fix(S) ⩽ff Fix(φ)

Sketch of proof:
• Technical argument: reduce to autos.
• Technical argument: reduce to proving that ∀φ,ϕ ∈ Aut(Fn)

∃k ⩾ 0 s.t Fix(φ) ∩ Fix(ϕ) ⩽ff Fix(φϕk).
• Technical argument: can assume Per(ϕ) = Fix(ϕ).
• Let H = Fix(φ) ∩ Fix(ϕ) ⩽fg Fn.
• For every k ⩾ 0: since H ⩽ Fix(φϕk), there exists Mk ∈ AE(H)
such that H ⩽alg Mk ⩽ff Fix(φϕk).

• By finiteness of AE(H), there are 0 ⩽ r < s such that Mr = Ms.

• Then, H ⩽ Mr = Ms ⩽ Fix(φϕr) ∩ Fix(φϕs) = Fix(φ) ∩ Fix(ϕ) = H.
• Hence, H = Mr ⩽ff Fix(φϕr).

INTERSECTIONS OF FIXED SUBGROUPS

Theorem (Martino–V., 2000)
∀S ⊆ End(Fn) ∃φ ∈ End(Fn) s.t. Fix(S) ⩽ff Fix(φ)

Sketch of proof:
• Technical argument: reduce to autos.
• Technical argument: reduce to proving that ∀φ,ϕ ∈ Aut(Fn)

∃k ⩾ 0 s.t Fix(φ) ∩ Fix(ϕ) ⩽ff Fix(φϕk).
• Technical argument: can assume Per(ϕ) = Fix(ϕ).
• Let H = Fix(φ) ∩ Fix(ϕ) ⩽fg Fn.
• For every k ⩾ 0: since H ⩽ Fix(φϕk), there exists Mk ∈ AE(H)
such that H ⩽alg Mk ⩽ff Fix(φϕk).

• By finiteness of AE(H), there are 0 ⩽ r < s such that Mr = Ms.
• Then, H ⩽ Mr = Ms ⩽ Fix(φϕr) ∩ Fix(φϕs) = Fix(φ) ∩ Fix(ϕ) = H.

• Hence, H = Mr ⩽ff Fix(φϕr).

INTERSECTIONS OF FIXED SUBGROUPS

Theorem (Martino–V., 2000)
∀S ⊆ End(Fn) ∃φ ∈ End(Fn) s.t. Fix(S) ⩽ff Fix(φ)

Sketch of proof:
• Technical argument: reduce to autos.
• Technical argument: reduce to proving that ∀φ,ϕ ∈ Aut(Fn)

∃k ⩾ 0 s.t Fix(φ) ∩ Fix(ϕ) ⩽ff Fix(φϕk).
• Technical argument: can assume Per(ϕ) = Fix(ϕ).
• Let H = Fix(φ) ∩ Fix(ϕ) ⩽fg Fn.
• For every k ⩾ 0: since H ⩽ Fix(φϕk), there exists Mk ∈ AE(H)
such that H ⩽alg Mk ⩽ff Fix(φϕk).

• By finiteness of AE(H), there are 0 ⩽ r < s such that Mr = Ms.
• Then, H ⩽ Mr = Ms ⩽ Fix(φϕr) ∩ Fix(φϕs) = Fix(φ) ∩ Fix(ϕ) = H.
• Hence, H = Mr ⩽ff Fix(φϕr).

ASYMPTOTIC BEHAVIOR

ASYMPTOTIC BEHAVIOR: OBJECTIVES

• Objective: what does a “typical” subgroup of FA look like?

• Asymptotic properties: how likely is it that a subgroup has finite
index? is malnormal? What is the expected rank of a subgroup?

• Three levels of questions:

• Counting subgroups (with a given property)
• (efficiently) generating subgroups uniformly at random
• establishing asymptotic properties, e.g. probability of having finite
index, of being malnormal; expected rank

ASYMPTOTIC BEHAVIOR: OBJECTIVES

• Objective: what does a “typical” subgroup of FA look like?
• Asymptotic properties: how likely is it that a subgroup has finite
index? is malnormal? What is the expected rank of a subgroup?

• Three levels of questions:

• Counting subgroups (with a given property)
• (efficiently) generating subgroups uniformly at random
• establishing asymptotic properties, e.g. probability of having finite
index, of being malnormal; expected rank

ASYMPTOTIC BEHAVIOR: OBJECTIVES

• Objective: what does a “typical” subgroup of FA look like?
• Asymptotic properties: how likely is it that a subgroup has finite
index? is malnormal? What is the expected rank of a subgroup?

• Three levels of questions:

• Counting subgroups (with a given property)
• (efficiently) generating subgroups uniformly at random
• establishing asymptotic properties, e.g. probability of having finite
index, of being malnormal; expected rank

ASYMPTOTIC BEHAVIOR: OBJECTIVES

• Objective: what does a “typical” subgroup of FA look like?
• Asymptotic properties: how likely is it that a subgroup has finite
index? is malnormal? What is the expected rank of a subgroup?

• Three levels of questions:
• Counting subgroups (with a given property)

• (efficiently) generating subgroups uniformly at random
• establishing asymptotic properties, e.g. probability of having finite
index, of being malnormal; expected rank

ASYMPTOTIC BEHAVIOR: OBJECTIVES

• Objective: what does a “typical” subgroup of FA look like?
• Asymptotic properties: how likely is it that a subgroup has finite
index? is malnormal? What is the expected rank of a subgroup?

• Three levels of questions:
• Counting subgroups (with a given property)
• (efficiently) generating subgroups uniformly at random

• establishing asymptotic properties, e.g. probability of having finite
index, of being malnormal; expected rank

ASYMPTOTIC BEHAVIOR: OBJECTIVES

• Objective: what does a “typical” subgroup of FA look like?
• Asymptotic properties: how likely is it that a subgroup has finite
index? is malnormal? What is the expected rank of a subgroup?

• Three levels of questions:
• Counting subgroups (with a given property)
• (efficiently) generating subgroups uniformly at random
• establishing asymptotic properties, e.g. probability of having finite
index, of being malnormal; expected rank

WE CAN COUNT ONLY FINITE QUANTITIES

• Counting requires finite sets: choose parameters which
guarantee finiteness

• In the literature (but not here!):

• fix k, draw uniformly at random a k-tuple ~w of reduced words of
length at most n, consider H = 〈~w〉

• same thing, but let k be a function of n; includes Gromov’s density
model

• Gromov, Arjantseva, Ol’shanskii, Kapovich, Miasnikov, Schupp,
Shpilrain, Ollivier, Jitsukawa, Bassino, Nicaud, W. …

WE CAN COUNT ONLY FINITE QUANTITIES

• Counting requires finite sets: choose parameters which
guarantee finiteness

• In the literature (but not here!):

• fix k, draw uniformly at random a k-tuple ~w of reduced words of
length at most n, consider H = 〈~w〉

• same thing, but let k be a function of n; includes Gromov’s density
model

• Gromov, Arjantseva, Ol’shanskii, Kapovich, Miasnikov, Schupp,
Shpilrain, Ollivier, Jitsukawa, Bassino, Nicaud, W. …

WE CAN COUNT ONLY FINITE QUANTITIES

• Counting requires finite sets: choose parameters which
guarantee finiteness

• In the literature (but not here!):
• fix k, draw uniformly at random a k-tuple ~w of reduced words of
length at most n, consider H = 〈~w〉

• same thing, but let k be a function of n; includes Gromov’s density
model

• Gromov, Arjantseva, Ol’shanskii, Kapovich, Miasnikov, Schupp,
Shpilrain, Ollivier, Jitsukawa, Bassino, Nicaud, W. …

WE CAN COUNT ONLY FINITE QUANTITIES

• Counting requires finite sets: choose parameters which
guarantee finiteness

• In the literature (but not here!):
• fix k, draw uniformly at random a k-tuple ~w of reduced words of
length at most n, consider H = 〈~w〉

• same thing, but let k be a function of n; includes Gromov’s density
model

• Gromov, Arjantseva, Ol’shanskii, Kapovich, Miasnikov, Schupp,
Shpilrain, Ollivier, Jitsukawa, Bassino, Nicaud, W. …

WE CAN COUNT ONLY FINITE QUANTITIES

• Counting requires finite sets: choose parameters which
guarantee finiteness

• In the literature (but not here!):
• fix k, draw uniformly at random a k-tuple ~w of reduced words of
length at most n, consider H = 〈~w〉

• same thing, but let k be a function of n; includes Gromov’s density
model

• Gromov, Arjantseva, Ol’shanskii, Kapovich, Miasnikov, Schupp,
Shpilrain, Ollivier, Jitsukawa, Bassino, Nicaud, W. …

OUR APPROACH HERE

• Here: we exploit the bijection between finitely generated
subgroups of FA and Stallings automata; the parameter is the size
n of the Stallings automaton (the number of vertices)

• What does a size n subgroup look like?
• A (simplified) picture with n = 200 and |A| = 2

• Work by Bassino, Martino, Nicaud, V., W.

OUR APPROACH HERE

• Here: we exploit the bijection between finitely generated
subgroups of FA and Stallings automata; the parameter is the size
n of the Stallings automaton (the number of vertices)

• What does a size n subgroup look like?

• A (simplified) picture with n = 200 and |A| = 2

• Work by Bassino, Martino, Nicaud, V., W.

OUR APPROACH HERE

• Here: we exploit the bijection between finitely generated
subgroups of FA and Stallings automata; the parameter is the size
n of the Stallings automaton (the number of vertices)

• What does a size n subgroup look like?
• A (simplified) picture with n = 200 and |A| = 2

• Work by Bassino, Martino, Nicaud, V., W.

OUR APPROACH HERE

• Here: we exploit the bijection between finitely generated
subgroups of FA and Stallings automata; the parameter is the size
n of the Stallings automaton (the number of vertices)

• What does a size n subgroup look like?
• A (simplified) picture with n = 200 and |A| = 2

• Work by Bassino, Martino, Nicaud, V., W.

STRATEGY

• Instead of counting or randomly generating subgroups of FA, we
count or generate Stallings automata

• These are discrete objects: finite pointed connected core
A-automata

• Consider a size n Stallings automaton: each letter a defines a
partial injection fa on the vertex set of Γ

• Γ is determined by the A-tuple (fa)a∈A and the selection of a
basepoint

• Counting strategy: determine the number PIn of partial injections
on n elements. Unfortunately, the number of size n subgroups is
not n PI|A|n . Why?

• Random generation strategy: draw independently, uniformly at
random, |A| partial injections, select randomly a base point. This
almost works…

STRATEGY

• Instead of counting or randomly generating subgroups of FA, we
count or generate Stallings automata

• These are discrete objects: finite pointed connected core
A-automata

• Consider a size n Stallings automaton: each letter a defines a
partial injection fa on the vertex set of Γ

• Γ is determined by the A-tuple (fa)a∈A and the selection of a
basepoint

• Counting strategy: determine the number PIn of partial injections
on n elements. Unfortunately, the number of size n subgroups is
not n PI|A|n . Why?

• Random generation strategy: draw independently, uniformly at
random, |A| partial injections, select randomly a base point. This
almost works…

STRATEGY

• Instead of counting or randomly generating subgroups of FA, we
count or generate Stallings automata

• These are discrete objects: finite pointed connected core
A-automata

• Consider a size n Stallings automaton: each letter a defines a
partial injection fa on the vertex set of Γ

• Γ is determined by the A-tuple (fa)a∈A and the selection of a
basepoint

• Counting strategy: determine the number PIn of partial injections
on n elements. Unfortunately, the number of size n subgroups is
not n PI|A|n . Why?

• Random generation strategy: draw independently, uniformly at
random, |A| partial injections, select randomly a base point. This
almost works…

STRATEGY

• Instead of counting or randomly generating subgroups of FA, we
count or generate Stallings automata

• These are discrete objects: finite pointed connected core
A-automata

• Consider a size n Stallings automaton: each letter a defines a
partial injection fa on the vertex set of Γ

• Γ is determined by the A-tuple (fa)a∈A and the selection of a
basepoint

• Counting strategy: determine the number PIn of partial injections
on n elements. Unfortunately, the number of size n subgroups is
not n PI|A|n . Why?

• Random generation strategy: draw independently, uniformly at
random, |A| partial injections, select randomly a base point. This
almost works…

STRATEGY

• Instead of counting or randomly generating subgroups of FA, we
count or generate Stallings automata

• These are discrete objects: finite pointed connected core
A-automata

• Consider a size n Stallings automaton: each letter a defines a
partial injection fa on the vertex set of Γ

• Γ is determined by the A-tuple (fa)a∈A and the selection of a
basepoint

• Counting strategy: determine the number PIn of partial injections
on n elements. Unfortunately, the number of size n subgroups is
not n PI|A|n . Why?

• Random generation strategy: draw independently, uniformly at
random, |A| partial injections, select randomly a base point. This
almost works…

STRATEGY

• Instead of counting or randomly generating subgroups of FA, we
count or generate Stallings automata

• These are discrete objects: finite pointed connected core
A-automata

• Consider a size n Stallings automaton: each letter a defines a
partial injection fa on the vertex set of Γ

• Γ is determined by the A-tuple (fa)a∈A and the selection of a
basepoint

• Counting strategy: determine the number PIn of partial injections
on n elements. Unfortunately, the number of size n subgroups is
not n PI|A|n . Why?

• Random generation strategy: draw independently, uniformly at
random, |A| partial injections, select randomly a base point. This
almost works…

COUNTING AND SYMMETRIES

• Counting is highly sensitive to the presence of non-trivial
automorphisms

• Example: up to isomorphism, there is only one A-automaton
consisting of a circuit labeled a3 (resp. a2b) — with 3 vertices

• If the vertex set is V = {p,q, r}, we have in fact 2 graphs for a3, and
6 for a2b

• In general, the number of A-automaton (on a fixed set of vertices)
consisting of a circuit labeled u depends on the length of u and
on whether u is a non-trivial power

• Symmetries mess up counting

COUNTING AND SYMMETRIES

• Counting is highly sensitive to the presence of non-trivial
automorphisms

• Example: up to isomorphism, there is only one A-automaton
consisting of a circuit labeled a3 (resp. a2b) — with 3 vertices

• If the vertex set is V = {p,q, r}, we have in fact 2 graphs for a3, and
6 for a2b

• In general, the number of A-automaton (on a fixed set of vertices)
consisting of a circuit labeled u depends on the length of u and
on whether u is a non-trivial power

• Symmetries mess up counting

COUNTING AND SYMMETRIES

• Counting is highly sensitive to the presence of non-trivial
automorphisms

• Example: up to isomorphism, there is only one A-automaton
consisting of a circuit labeled a3 (resp. a2b) — with 3 vertices

• If the vertex set is V = {p,q, r}, we have in fact 2 graphs for a3, and
6 for a2b

• In general, the number of A-automaton (on a fixed set of vertices)
consisting of a circuit labeled u depends on the length of u and
on whether u is a non-trivial power

• Symmetries mess up counting

COUNTING AND SYMMETRIES

• Counting is highly sensitive to the presence of non-trivial
automorphisms

• Example: up to isomorphism, there is only one A-automaton
consisting of a circuit labeled a3 (resp. a2b) — with 3 vertices

• If the vertex set is V = {p,q, r}, we have in fact 2 graphs for a3, and
6 for a2b

• In general, the number of A-automaton (on a fixed set of vertices)
consisting of a circuit labeled u depends on the length of u and
on whether u is a non-trivial power

• Symmetries mess up counting

COUNTING AND SYMMETRIES

• Counting is highly sensitive to the presence of non-trivial
automorphisms

• Example: up to isomorphism, there is only one A-automaton
consisting of a circuit labeled a3 (resp. a2b) — with 3 vertices

• If the vertex set is V = {p,q, r}, we have in fact 2 graphs for a3, and
6 for a2b

• In general, the number of A-automaton (on a fixed set of vertices)
consisting of a circuit labeled u depends on the length of u and
on whether u is a non-trivial power

• Symmetries mess up counting

SO WE COUNT LABELED STALLINGS AUTOMATA

• a solution to break symmetries: consider labeled structures
(graphs)

• if Γ = (V, E) and |V| = n, a labeling of Γ is a bijection from V to [n]

Proposition
If Γ is a Stallings automaton (pointed connected reduced
A-automaton), then Γ admits n! labelings.

• Proof: Fix a spanning tree T, totally order vertices using the
T-path from the basepoint to each vertex: v1 < v2 < · · · < vn. A
labeling is a permutation of [n]

• Counting labeled Stallings automata gives us n! times the
number of Stallings automata (of subgroups)

• Forgetting the labeling of a random labeled Stallings automaton,
yields a random Stallings automaton

SO WE COUNT LABELED STALLINGS AUTOMATA

• a solution to break symmetries: consider labeled structures
(graphs)

• if Γ = (V, E) and |V| = n, a labeling of Γ is a bijection from V to [n]

Proposition
If Γ is a Stallings automaton (pointed connected reduced
A-automaton), then Γ admits n! labelings.

• Proof: Fix a spanning tree T, totally order vertices using the
T-path from the basepoint to each vertex: v1 < v2 < · · · < vn. A
labeling is a permutation of [n]

• Counting labeled Stallings automata gives us n! times the
number of Stallings automata (of subgroups)

• Forgetting the labeling of a random labeled Stallings automaton,
yields a random Stallings automaton

SO WE COUNT LABELED STALLINGS AUTOMATA

• a solution to break symmetries: consider labeled structures
(graphs)

• if Γ = (V, E) and |V| = n, a labeling of Γ is a bijection from V to [n]

Proposition
If Γ is a Stallings automaton (pointed connected reduced
A-automaton), then Γ admits n! labelings.

• Proof: Fix a spanning tree T, totally order vertices using the
T-path from the basepoint to each vertex: v1 < v2 < · · · < vn. A
labeling is a permutation of [n]

• Counting labeled Stallings automata gives us n! times the
number of Stallings automata (of subgroups)

• Forgetting the labeling of a random labeled Stallings automaton,
yields a random Stallings automaton

SO WE COUNT LABELED STALLINGS AUTOMATA

• a solution to break symmetries: consider labeled structures
(graphs)

• if Γ = (V, E) and |V| = n, a labeling of Γ is a bijection from V to [n]

Proposition
If Γ is a Stallings automaton (pointed connected reduced
A-automaton), then Γ admits n! labelings.

• Proof: Fix a spanning tree T, totally order vertices using the
T-path from the basepoint to each vertex: v1 < v2 < · · · < vn. A
labeling is a permutation of [n]

• Counting labeled Stallings automata gives us n! times the
number of Stallings automata (of subgroups)

• Forgetting the labeling of a random labeled Stallings automaton,
yields a random Stallings automaton

SO WE COUNT LABELED STALLINGS AUTOMATA

• a solution to break symmetries: consider labeled structures
(graphs)

• if Γ = (V, E) and |V| = n, a labeling of Γ is a bijection from V to [n]

Proposition
If Γ is a Stallings automaton (pointed connected reduced
A-automaton), then Γ admits n! labelings.

• Proof: Fix a spanning tree T, totally order vertices using the
T-path from the basepoint to each vertex: v1 < v2 < · · · < vn. A
labeling is a permutation of [n]

• Counting labeled Stallings automata gives us n! times the
number of Stallings automata (of subgroups)

• Forgetting the labeling of a random labeled Stallings automaton,
yields a random Stallings automaton

SO WE COUNT LABELED STALLINGS AUTOMATA

• a solution to break symmetries: consider labeled structures
(graphs)

• if Γ = (V, E) and |V| = n, a labeling of Γ is a bijection from V to [n]

Proposition
If Γ is a Stallings automaton (pointed connected reduced
A-automaton), then Γ admits n! labelings.

• Proof: Fix a spanning tree T, totally order vertices using the
T-path from the basepoint to each vertex: v1 < v2 < · · · < vn. A
labeling is a permutation of [n]

• Counting labeled Stallings automata gives us n! times the
number of Stallings automata (of subgroups)

• Forgetting the labeling of a random labeled Stallings automaton,
yields a random Stallings automaton

DIGRESSION: GENERATING SERIES

• A, a class of finite combinatorial structures: e.g. graphs, pointed
graphs, labeled graphs, permutations, partial injections, words,
etc

• Let an be the number of A-structures of size n
• Generating series:

∑
n anzn, where z is a formal variable. Formal

power series: we don’t care about convergence
• Example: permutations,

∑
n!zn

• Exponential generating series (EGS):
∑

n
an
n! z

n

• better for labeled structures; and better for convergence, so we
can use analysis

• Permutations:
∑

zn = 1
1−z

• Refer to the Bible: Ph. Flajolet, R. Sedgewick, Analytic
combinatorics, Cambridge University Press, 2009

DIGRESSION: GENERATING SERIES

• A, a class of finite combinatorial structures: e.g. graphs, pointed
graphs, labeled graphs, permutations, partial injections, words,
etc

• Let an be the number of A-structures of size n

• Generating series:
∑

n anzn, where z is a formal variable. Formal
power series: we don’t care about convergence

• Example: permutations,
∑

n!zn

• Exponential generating series (EGS):
∑

n
an
n! z

n

• better for labeled structures; and better for convergence, so we
can use analysis

• Permutations:
∑

zn = 1
1−z

• Refer to the Bible: Ph. Flajolet, R. Sedgewick, Analytic
combinatorics, Cambridge University Press, 2009

DIGRESSION: GENERATING SERIES

• A, a class of finite combinatorial structures: e.g. graphs, pointed
graphs, labeled graphs, permutations, partial injections, words,
etc

• Let an be the number of A-structures of size n
• Generating series:

∑
n anzn, where z is a formal variable. Formal

power series: we don’t care about convergence

• Example: permutations,
∑

n!zn

• Exponential generating series (EGS):
∑

n
an
n! z

n

• better for labeled structures; and better for convergence, so we
can use analysis

• Permutations:
∑

zn = 1
1−z

• Refer to the Bible: Ph. Flajolet, R. Sedgewick, Analytic
combinatorics, Cambridge University Press, 2009

DIGRESSION: GENERATING SERIES

• A, a class of finite combinatorial structures: e.g. graphs, pointed
graphs, labeled graphs, permutations, partial injections, words,
etc

• Let an be the number of A-structures of size n
• Generating series:

∑
n anzn, where z is a formal variable. Formal

power series: we don’t care about convergence
• Example: permutations,

∑
n!zn

• Exponential generating series (EGS):
∑

n
an
n! z

n

• better for labeled structures; and better for convergence, so we
can use analysis

• Permutations:
∑

zn = 1
1−z

• Refer to the Bible: Ph. Flajolet, R. Sedgewick, Analytic
combinatorics, Cambridge University Press, 2009

DIGRESSION: GENERATING SERIES

• A, a class of finite combinatorial structures: e.g. graphs, pointed
graphs, labeled graphs, permutations, partial injections, words,
etc

• Let an be the number of A-structures of size n
• Generating series:

∑
n anzn, where z is a formal variable. Formal

power series: we don’t care about convergence
• Example: permutations,

∑
n!zn

• Exponential generating series (EGS):
∑

n
an
n! z

n

• better for labeled structures; and better for convergence, so we
can use analysis

• Permutations:
∑

zn = 1
1−z

• Refer to the Bible: Ph. Flajolet, R. Sedgewick, Analytic
combinatorics, Cambridge University Press, 2009

DIGRESSION: GENERATING SERIES

• A, a class of finite combinatorial structures: e.g. graphs, pointed
graphs, labeled graphs, permutations, partial injections, words,
etc

• Let an be the number of A-structures of size n
• Generating series:

∑
n anzn, where z is a formal variable. Formal

power series: we don’t care about convergence
• Example: permutations,

∑
n!zn

• Exponential generating series (EGS):
∑

n
an
n! z

n

• better for labeled structures; and better for convergence, so we
can use analysis

• Permutations:
∑

zn = 1
1−z

• Refer to the Bible: Ph. Flajolet, R. Sedgewick, Analytic
combinatorics, Cambridge University Press, 2009

DIGRESSION: GENERATING SERIES

• A, a class of finite combinatorial structures: e.g. graphs, pointed
graphs, labeled graphs, permutations, partial injections, words,
etc

• Let an be the number of A-structures of size n
• Generating series:

∑
n anzn, where z is a formal variable. Formal

power series: we don’t care about convergence
• Example: permutations,

∑
n!zn

• Exponential generating series (EGS):
∑

n
an
n! z

n

• better for labeled structures; and better for convergence, so we
can use analysis

• Permutations:
∑

zn = 1
1−z

• Refer to the Bible: Ph. Flajolet, R. Sedgewick, Analytic
combinatorics, Cambridge University Press, 2009

DIGRESSION: GENERATING SERIES

• A, a class of finite combinatorial structures: e.g. graphs, pointed
graphs, labeled graphs, permutations, partial injections, words,
etc

• Let an be the number of A-structures of size n
• Generating series:

∑
n anzn, where z is a formal variable. Formal

power series: we don’t care about convergence
• Example: permutations,

∑
n!zn

• Exponential generating series (EGS):
∑

n
an
n! z

n

• better for labeled structures; and better for convergence, so we
can use analysis

• Permutations:
∑

zn = 1
1−z

• Refer to the Bible: Ph. Flajolet, R. Sedgewick, Analytic
combinatorics, Cambridge University Press, 2009

DIGRESSION: A CALCULUS OF LABELED COMBINATORIAL STRUCTURES

• A and B disjoint families of labeled structures (think: graphs),
with EGS A(z),B(z)

• C = structures that are either A or B: C(z) = A(z) + B(z)
• C = pairs (X, Y), of an A-structure X and a B-structure Y
• …with appropriate labeling (the size is the sum of the sizes of X
and Y)

• C(z) = A(z)B(z)

DIGRESSION: A CALCULUS OF LABELED COMBINATORIAL STRUCTURES

• A and B disjoint families of labeled structures (think: graphs),
with EGS A(z),B(z)

• C = structures that are either A or B: C(z) = A(z) + B(z)

• C = pairs (X, Y), of an A-structure X and a B-structure Y
• …with appropriate labeling (the size is the sum of the sizes of X
and Y)

• C(z) = A(z)B(z)

DIGRESSION: A CALCULUS OF LABELED COMBINATORIAL STRUCTURES

• A and B disjoint families of labeled structures (think: graphs),
with EGS A(z),B(z)

• C = structures that are either A or B: C(z) = A(z) + B(z)
• C = pairs (X, Y), of an A-structure X and a B-structure Y

• …with appropriate labeling (the size is the sum of the sizes of X
and Y)

• C(z) = A(z)B(z)

DIGRESSION: A CALCULUS OF LABELED COMBINATORIAL STRUCTURES

• A and B disjoint families of labeled structures (think: graphs),
with EGS A(z),B(z)

• C = structures that are either A or B: C(z) = A(z) + B(z)
• C = pairs (X, Y), of an A-structure X and a B-structure Y
• …with appropriate labeling (the size is the sum of the sizes of X
and Y)

• C(z) = A(z)B(z)

DIGRESSION: A CALCULUS OF LABELED COMBINATORIAL STRUCTURES

• A and B disjoint families of labeled structures (think: graphs),
with EGS A(z),B(z)

• C = structures that are either A or B: C(z) = A(z) + B(z)
• C = pairs (X, Y), of an A-structure X and a B-structure Y
• …with appropriate labeling (the size is the sum of the sizes of X
and Y)

• C(z) = A(z)B(z)

MORE CALCULUS

• C = pairs of two A-structures: C(z) = A2(z)

• C = k-tuple of A-structures: C(z) = Ak(z)
• C = sequences of A-structures: C(z) =

∑
k Ak(z) = 1

1−A(z)

• Example. The EGS of 1 point is z. A permutation is a labeled
sequence of points: its EGS is 1

1−z =
∑ n!

n!z
n

MORE CALCULUS

• C = pairs of two A-structures: C(z) = A2(z)
• C = k-tuple of A-structures: C(z) = Ak(z)

• C = sequences of A-structures: C(z) =
∑

k Ak(z) = 1
1−A(z)

• Example. The EGS of 1 point is z. A permutation is a labeled
sequence of points: its EGS is 1

1−z =
∑ n!

n!z
n

MORE CALCULUS

• C = pairs of two A-structures: C(z) = A2(z)
• C = k-tuple of A-structures: C(z) = Ak(z)
• C = sequences of A-structures: C(z) =

∑
k Ak(z) = 1

1−A(z)

• Example. The EGS of 1 point is z. A permutation is a labeled
sequence of points: its EGS is 1

1−z =
∑ n!

n!z
n

MORE CALCULUS

• C = pairs of two A-structures: C(z) = A2(z)
• C = k-tuple of A-structures: C(z) = Ak(z)
• C = sequences of A-structures: C(z) =

∑
k Ak(z) = 1

1−A(z)

• Example. The EGS of 1 point is z. A permutation is a labeled
sequence of points: its EGS is 1

1−z =
∑ n!

n!z
n

AND MORE

• set of k A-structures = a sequence where we forget the order:
Ak(z)
k!

• set of A-structures:
∑

k
Ak(z)
k! = exp(A(z))

• Example: set of points. There is exactly one of each size: the EGS
is ∑ 1

n!z
n = exp(z)

• cycle of k A-structures = a sequence up to cyclic shift: Ak(z)
k

• cycle of size ⩾ 1 of A-structures:

∑
k⩾1

Ak(z)
k = − log(1− A(z)) = log

(
1

1− A(z)

)

AND MORE

• set of k A-structures = a sequence where we forget the order:
Ak(z)
k!

• set of A-structures:
∑

k
Ak(z)
k! = exp(A(z))

• Example: set of points. There is exactly one of each size: the EGS
is ∑ 1

n!z
n = exp(z)

• cycle of k A-structures = a sequence up to cyclic shift: Ak(z)
k

• cycle of size ⩾ 1 of A-structures:

∑
k⩾1

Ak(z)
k = − log(1− A(z)) = log

(
1

1− A(z)

)

AND MORE

• set of k A-structures = a sequence where we forget the order:
Ak(z)
k!

• set of A-structures:
∑

k
Ak(z)
k! = exp(A(z))

• Example: set of points. There is exactly one of each size: the EGS
is ∑ 1

n!z
n = exp(z)

• cycle of k A-structures = a sequence up to cyclic shift: Ak(z)
k

• cycle of size ⩾ 1 of A-structures:

∑
k⩾1

Ak(z)
k = − log(1− A(z)) = log

(
1

1− A(z)

)

AND MORE

• set of k A-structures = a sequence where we forget the order:
Ak(z)
k!

• set of A-structures:
∑

k
Ak(z)
k! = exp(A(z))

• Example: set of points. There is exactly one of each size: the EGS
is ∑ 1

n!z
n = exp(z)

• cycle of k A-structures = a sequence up to cyclic shift: Ak(z)
k

• cycle of size ⩾ 1 of A-structures:

∑
k⩾1

Ak(z)
k = − log(1− A(z)) = log

(
1

1− A(z)

)

AND MORE

• set of k A-structures = a sequence where we forget the order:
Ak(z)
k!

• set of A-structures:
∑

k
Ak(z)
k! = exp(A(z))

• Example: set of points. There is exactly one of each size: the EGS
is ∑ 1

n!z
n = exp(z)

• cycle of k A-structures = a sequence up to cyclic shift: Ak(z)
k

• cycle of size ⩾ 1 of A-structures:

∑
k⩾1

Ak(z)
k = − log(1− A(z)) = log

(
1

1− A(z)

)

BACK TO COUNTING PARTIAL INJECTIONS:
A SIMPLE BUT DISAPPOINTING IDEA

• direct computation of PIn: for each k ⩽ n, choose a domain and a
range (both k-subsets of [n]), and a permutation of k elements.

• PIn =
∑n

k=0
(n
k
)2 k!

• shortcomings of this elementary computation:

• very long to compute (quadratic time + multiplication of large
numbers.

• difficult to analyze when the time comes to discuss connectivity.

BACK TO COUNTING PARTIAL INJECTIONS:
A SIMPLE BUT DISAPPOINTING IDEA

• direct computation of PIn: for each k ⩽ n, choose a domain and a
range (both k-subsets of [n]), and a permutation of k elements.

• PIn =
∑n

k=0
(n
k
)2 k!

• shortcomings of this elementary computation:

• very long to compute (quadratic time + multiplication of large
numbers.

• difficult to analyze when the time comes to discuss connectivity.

BACK TO COUNTING PARTIAL INJECTIONS:
A SIMPLE BUT DISAPPOINTING IDEA

• direct computation of PIn: for each k ⩽ n, choose a domain and a
range (both k-subsets of [n]), and a permutation of k elements.

• PIn =
∑n

k=0
(n
k
)2 k!

• shortcomings of this elementary computation:

• very long to compute (quadratic time + multiplication of large
numbers.

• difficult to analyze when the time comes to discuss connectivity.

BACK TO COUNTING PARTIAL INJECTIONS:
A SIMPLE BUT DISAPPOINTING IDEA

• direct computation of PIn: for each k ⩽ n, choose a domain and a
range (both k-subsets of [n]), and a permutation of k elements.

• PIn =
∑n

k=0
(n
k
)2 k!

• shortcomings of this elementary computation:
• very long to compute (quadratic time + multiplication of large
numbers.

• difficult to analyze when the time comes to discuss connectivity.

BACK TO COUNTING PARTIAL INJECTIONS:
A SIMPLE BUT DISAPPOINTING IDEA

• direct computation of PIn: for each k ⩽ n, choose a domain and a
range (both k-subsets of [n]), and a permutation of k elements.

• PIn =
∑n

k=0
(n
k
)2 k!

• shortcomings of this elementary computation:
• very long to compute (quadratic time + multiplication of large
numbers.

• difficult to analyze when the time comes to discuss connectivity.

COUNTING PARTIAL INJECTIONS: MUCH EASIER USING CALCULUS

• What is a partial injection? Think of its functional graphs (the
a-edges in a Stallings automaton)

• The connected components (orbits) are isolated points,
sequences and cycles

• Seen differently: a labeled set of structures that are either
sequences of ⩾ 1 points, or cycles of ⩾ 1 points

• The EGS of a point is z, of a non-empty sequence of points
1

1−z − 1 = z
1−z

• The EGS of a cycle of ⩾ 1 points is log
(1
1−z

)
• The EGS PInj is exp

(z
1−z + log

(1
1−z

))
= 1

1−z exp
(z
1−z

)

COUNTING PARTIAL INJECTIONS: MUCH EASIER USING CALCULUS

• What is a partial injection? Think of its functional graphs (the
a-edges in a Stallings automaton)

• The connected components (orbits) are isolated points,
sequences and cycles

• Seen differently: a labeled set of structures that are either
sequences of ⩾ 1 points, or cycles of ⩾ 1 points

• The EGS of a point is z, of a non-empty sequence of points
1

1−z − 1 = z
1−z

• The EGS of a cycle of ⩾ 1 points is log
(1
1−z

)
• The EGS PInj is exp

(z
1−z + log

(1
1−z

))
= 1

1−z exp
(z
1−z

)

COUNTING PARTIAL INJECTIONS: MUCH EASIER USING CALCULUS

• What is a partial injection? Think of its functional graphs (the
a-edges in a Stallings automaton)

• The connected components (orbits) are isolated points,
sequences and cycles

• Seen differently: a labeled set of structures that are either
sequences of ⩾ 1 points, or cycles of ⩾ 1 points

• The EGS of a point is z, of a non-empty sequence of points
1

1−z − 1 = z
1−z

• The EGS of a cycle of ⩾ 1 points is log
(1
1−z

)
• The EGS PInj is exp

(z
1−z + log

(1
1−z

))
= 1

1−z exp
(z
1−z

)

COUNTING PARTIAL INJECTIONS: MUCH EASIER USING CALCULUS

• What is a partial injection? Think of its functional graphs (the
a-edges in a Stallings automaton)

• The connected components (orbits) are isolated points,
sequences and cycles

• Seen differently: a labeled set of structures that are either
sequences of ⩾ 1 points, or cycles of ⩾ 1 points

• The EGS of a point is z, of a non-empty sequence of points
1

1−z − 1 = z
1−z

• The EGS of a cycle of ⩾ 1 points is log
(1
1−z

)
• The EGS PInj is exp

(z
1−z + log

(1
1−z

))
= 1

1−z exp
(z
1−z

)

COUNTING PARTIAL INJECTIONS: MUCH EASIER USING CALCULUS

• What is a partial injection? Think of its functional graphs (the
a-edges in a Stallings automaton)

• The connected components (orbits) are isolated points,
sequences and cycles

• Seen differently: a labeled set of structures that are either
sequences of ⩾ 1 points, or cycles of ⩾ 1 points

• The EGS of a point is z, of a non-empty sequence of points
1

1−z − 1 = z
1−z

• The EGS of a cycle of ⩾ 1 points is log
(1
1−z

)

• The EGS PInj is exp
(z
1−z + log

(1
1−z

))
= 1

1−z exp
(z
1−z

)

COUNTING PARTIAL INJECTIONS: MUCH EASIER USING CALCULUS

• What is a partial injection? Think of its functional graphs (the
a-edges in a Stallings automaton)

• The connected components (orbits) are isolated points,
sequences and cycles

• Seen differently: a labeled set of structures that are either
sequences of ⩾ 1 points, or cycles of ⩾ 1 points

• The EGS of a point is z, of a non-empty sequence of points
1

1−z − 1 = z
1−z

• The EGS of a cycle of ⩾ 1 points is log
(1
1−z

)
• The EGS PInj is exp

(z
1−z + log

(1
1−z

))
= 1

1−z exp
(z
1−z

)

A RECURRENCE RELATION FOR PIn

• PInj(z) = 1
1−z exp

(z
1−z

)

• d
dzPInj(z) =

2−z
(1−z)2PInj(z)

• (1− z)2
∑

n PIn
n! z

n−1 = (2− z)
∑ PIn

n! z
n

Proposition
PI0 = 1, PI1 = 2 and for n ⩾ 2, PIn = 2nPIn−1 − (n− 1)2PIn−2

• Verify the count for n = 2: PI2 = 7
• Note: PIn is computed in linear time (in the RAM model)
• Also: PIn−1

PIn ⩽
1
2n

A RECURRENCE RELATION FOR PIn

• PInj(z) = 1
1−z exp

(z
1−z

)
• d

dzPInj(z) =
2−z

(1−z)2PInj(z)

• (1− z)2
∑

n PIn
n! z

n−1 = (2− z)
∑ PIn

n! z
n

Proposition
PI0 = 1, PI1 = 2 and for n ⩾ 2, PIn = 2nPIn−1 − (n− 1)2PIn−2

• Verify the count for n = 2: PI2 = 7
• Note: PIn is computed in linear time (in the RAM model)
• Also: PIn−1

PIn ⩽
1
2n

A RECURRENCE RELATION FOR PIn

• PInj(z) = 1
1−z exp

(z
1−z

)
• d

dzPInj(z) =
2−z

(1−z)2PInj(z)

• (1− z)2
∑

n PIn
n! z

n−1 = (2− z)
∑ PIn

n! z
n

Proposition
PI0 = 1, PI1 = 2 and for n ⩾ 2, PIn = 2nPIn−1 − (n− 1)2PIn−2

• Verify the count for n = 2: PI2 = 7
• Note: PIn is computed in linear time (in the RAM model)
• Also: PIn−1

PIn ⩽
1
2n

A RECURRENCE RELATION FOR PIn

• PInj(z) = 1
1−z exp

(z
1−z

)
• d

dzPInj(z) =
2−z

(1−z)2PInj(z)

• (1− z)2
∑

n PIn
n! z

n−1 = (2− z)
∑ PIn

n! z
n

Proposition
PI0 = 1, PI1 = 2 and for n ⩾ 2, PIn = 2nPIn−1 − (n− 1)2PIn−2

• Verify the count for n = 2: PI2 = 7
• Note: PIn is computed in linear time (in the RAM model)
• Also: PIn−1

PIn ⩽
1
2n

A RECURRENCE RELATION FOR PIn

• PInj(z) = 1
1−z exp

(z
1−z

)
• d

dzPInj(z) =
2−z

(1−z)2PInj(z)

• (1− z)2
∑

n PIn
n! z

n−1 = (2− z)
∑ PIn

n! z
n

Proposition
PI0 = 1, PI1 = 2 and for n ⩾ 2, PIn = 2nPIn−1 − (n− 1)2PIn−2

• Verify the count for n = 2: PI2 = 7

• Note: PIn is computed in linear time (in the RAM model)
• Also: PIn−1

PIn ⩽
1
2n

A RECURRENCE RELATION FOR PIn

• PInj(z) = 1
1−z exp

(z
1−z

)
• d

dzPInj(z) =
2−z

(1−z)2PInj(z)

• (1− z)2
∑

n PIn
n! z

n−1 = (2− z)
∑ PIn

n! z
n

Proposition
PI0 = 1, PI1 = 2 and for n ⩾ 2, PIn = 2nPIn−1 − (n− 1)2PIn−2

• Verify the count for n = 2: PI2 = 7
• Note: PIn is computed in linear time (in the RAM model)

• Also: PIn−1
PIn ⩽

1
2n

A RECURRENCE RELATION FOR PIn

• PInj(z) = 1
1−z exp

(z
1−z

)
• d

dzPInj(z) =
2−z

(1−z)2PInj(z)

• (1− z)2
∑

n PIn
n! z

n−1 = (2− z)
∑ PIn

n! z
n

Proposition
PI0 = 1, PI1 = 2 and for n ⩾ 2, PIn = 2nPIn−1 − (n− 1)2PIn−2

• Verify the count for n = 2: PI2 = 7
• Note: PIn is computed in linear time (in the RAM model)
• Also: PIn−1

PIn ⩽
1
2n

HANDLING CONNECTEDNESS: COUNTING

• We have computed the EGS of partial injections,
PInj(z) = 1

1−z exp
(z
1−z

)
.

• If |A| = r, the EGS of |A|-tuples of partial injections of [n] is 1+ J(z),
with J(z) =

∑
n⩾1

PIrn
n! z

n.
• We only want connected |A|-tuples: that is, which define a
connected A-automaton.

• Let C(z) be the EGS of connected |A|-tuples: then
1+ J(z) = exp(C(z))

• so C(z) = log(1+ J(z)) =
∑

n
Cn
n! z

n

• Take the derivative: d
dz J(z) =

d
dzC(z) (1+ J(z))

• Yields a formula for the coefficients Cn, in terms of the PIn

HANDLING CONNECTEDNESS: COUNTING

• We have computed the EGS of partial injections,
PInj(z) = 1

1−z exp
(z
1−z

)
.

• If |A| = r, the EGS of |A|-tuples of partial injections of [n] is 1+ J(z),
with J(z) =

∑
n⩾1

PIrn
n! z

n.

• We only want connected |A|-tuples: that is, which define a
connected A-automaton.

• Let C(z) be the EGS of connected |A|-tuples: then
1+ J(z) = exp(C(z))

• so C(z) = log(1+ J(z)) =
∑

n
Cn
n! z

n

• Take the derivative: d
dz J(z) =

d
dzC(z) (1+ J(z))

• Yields a formula for the coefficients Cn, in terms of the PIn

HANDLING CONNECTEDNESS: COUNTING

• We have computed the EGS of partial injections,
PInj(z) = 1

1−z exp
(z
1−z

)
.

• If |A| = r, the EGS of |A|-tuples of partial injections of [n] is 1+ J(z),
with J(z) =

∑
n⩾1

PIrn
n! z

n.
• We only want connected |A|-tuples: that is, which define a
connected A-automaton.

• Let C(z) be the EGS of connected |A|-tuples: then
1+ J(z) = exp(C(z))

• so C(z) = log(1+ J(z)) =
∑

n
Cn
n! z

n

• Take the derivative: d
dz J(z) =

d
dzC(z) (1+ J(z))

• Yields a formula for the coefficients Cn, in terms of the PIn

HANDLING CONNECTEDNESS: COUNTING

• We have computed the EGS of partial injections,
PInj(z) = 1

1−z exp
(z
1−z

)
.

• If |A| = r, the EGS of |A|-tuples of partial injections of [n] is 1+ J(z),
with J(z) =

∑
n⩾1

PIrn
n! z

n.
• We only want connected |A|-tuples: that is, which define a
connected A-automaton.

• Let C(z) be the EGS of connected |A|-tuples: then
1+ J(z) = exp(C(z))

• so C(z) = log(1+ J(z)) =
∑

n
Cn
n! z

n

• Take the derivative: d
dz J(z) =

d
dzC(z) (1+ J(z))

• Yields a formula for the coefficients Cn, in terms of the PIn

HANDLING CONNECTEDNESS: COUNTING

• We have computed the EGS of partial injections,
PInj(z) = 1

1−z exp
(z
1−z

)
.

• If |A| = r, the EGS of |A|-tuples of partial injections of [n] is 1+ J(z),
with J(z) =

∑
n⩾1

PIrn
n! z

n.
• We only want connected |A|-tuples: that is, which define a
connected A-automaton.

• Let C(z) be the EGS of connected |A|-tuples: then
1+ J(z) = exp(C(z))

• so C(z) = log(1+ J(z)) =
∑

n
Cn
n! z

n

• Take the derivative: d
dz J(z) =

d
dzC(z) (1+ J(z))

• Yields a formula for the coefficients Cn, in terms of the PIn

HANDLING CONNECTEDNESS: COUNTING

• We have computed the EGS of partial injections,
PInj(z) = 1

1−z exp
(z
1−z

)
.

• If |A| = r, the EGS of |A|-tuples of partial injections of [n] is 1+ J(z),
with J(z) =

∑
n⩾1

PIrn
n! z

n.
• We only want connected |A|-tuples: that is, which define a
connected A-automaton.

• Let C(z) be the EGS of connected |A|-tuples: then
1+ J(z) = exp(C(z))

• so C(z) = log(1+ J(z)) =
∑

n
Cn
n! z

n

• Take the derivative: d
dz J(z) =

d
dzC(z) (1+ J(z))

• Yields a formula for the coefficients Cn, in terms of the PIn

HANDLING CONNECTEDNESS: COUNTING

• We have computed the EGS of partial injections,
PInj(z) = 1

1−z exp
(z
1−z

)
.

• If |A| = r, the EGS of |A|-tuples of partial injections of [n] is 1+ J(z),
with J(z) =

∑
n⩾1

PIrn
n! z

n.
• We only want connected |A|-tuples: that is, which define a
connected A-automaton.

• Let C(z) be the EGS of connected |A|-tuples: then
1+ J(z) = exp(C(z))

• so C(z) = log(1+ J(z)) =
∑

n
Cn
n! z

n

• Take the derivative: d
dz J(z) =

d
dzC(z) (1+ J(z))

• Yields a formula for the coefficients Cn, in terms of the PIn

HANDLING CONNECTEDNESS: PROBABILITY

• Now the probability that an |A|-tuple is connected is Cn
PIrn . What

does that look like?

• Dive into real analysis!…

Theorem (Bender)
Let F(z, y) is a real function, analytic at (0, 0). Let J(z) =

∑
n>0 jnzn,

C(z) =
∑

n>0 cnzn and D(z) =
∑

n>0 dnzn with C(z) = F(z, J(z)) and
D(z) = ∂F

∂y (z, J(z)). If jn−1 = o(jn) and there exists s ⩾ 1 such that∑n−s
k=s |jkjn−k| = O(jn−s), then cn =

∑s−1
k=0 dkjn−k + O(jn−s).

• Recall that C(z) = log(1+ J(z)). Use F(z, y) = log(1+ y)

Proposition
The probability that a size n tuple of partial injections is connected
is 1− 2r

nr−1 + o(1
nr−1): connectedness holds with probability tending

to 1

HANDLING CONNECTEDNESS: PROBABILITY

• Now the probability that an |A|-tuple is connected is Cn
PIrn . What

does that look like?
• Dive into real analysis!…

Theorem (Bender)
Let F(z, y) is a real function, analytic at (0, 0). Let J(z) =

∑
n>0 jnzn,

C(z) =
∑

n>0 cnzn and D(z) =
∑

n>0 dnzn with C(z) = F(z, J(z)) and
D(z) = ∂F

∂y (z, J(z)). If jn−1 = o(jn) and there exists s ⩾ 1 such that∑n−s
k=s |jkjn−k| = O(jn−s), then cn =

∑s−1
k=0 dkjn−k + O(jn−s).

• Recall that C(z) = log(1+ J(z)). Use F(z, y) = log(1+ y)

Proposition
The probability that a size n tuple of partial injections is connected
is 1− 2r

nr−1 + o(1
nr−1): connectedness holds with probability tending

to 1

HANDLING CONNECTEDNESS: PROBABILITY

• Now the probability that an |A|-tuple is connected is Cn
PIrn . What

does that look like?
• Dive into real analysis!…

Theorem (Bender)
Let F(z, y) is a real function, analytic at (0, 0). Let J(z) =

∑
n>0 jnzn,

C(z) =
∑

n>0 cnzn and D(z) =
∑

n>0 dnzn with C(z) = F(z, J(z)) and
D(z) = ∂F

∂y (z, J(z)). If jn−1 = o(jn) and there exists s ⩾ 1 such that∑n−s
k=s |jkjn−k| = O(jn−s), then cn =

∑s−1
k=0 dkjn−k + O(jn−s).

• Recall that C(z) = log(1+ J(z)). Use F(z, y) = log(1+ y)

Proposition
The probability that a size n tuple of partial injections is connected
is 1− 2r

nr−1 + o(1
nr−1): connectedness holds with probability tending

to 1

HANDLING CONNECTEDNESS: PROBABILITY

• Now the probability that an |A|-tuple is connected is Cn
PIrn . What

does that look like?
• Dive into real analysis!…

Theorem (Bender)
Let F(z, y) is a real function, analytic at (0, 0). Let J(z) =

∑
n>0 jnzn,

C(z) =
∑

n>0 cnzn and D(z) =
∑

n>0 dnzn with C(z) = F(z, J(z)) and
D(z) = ∂F

∂y (z, J(z)). If jn−1 = o(jn) and there exists s ⩾ 1 such that∑n−s
k=s |jkjn−k| = O(jn−s), then cn =

∑s−1
k=0 dkjn−k + O(jn−s).

• Recall that C(z) = log(1+ J(z)). Use F(z, y) = log(1+ y)

Proposition
The probability that a size n tuple of partial injections is connected
is 1− 2r

nr−1 + o(1
nr−1): connectedness holds with probability tending

to 1

HANDLING CONNECTEDNESS: PROBABILITY

• Now the probability that an |A|-tuple is connected is Cn
PIrn . What

does that look like?
• Dive into real analysis!…

Theorem (Bender)
Let F(z, y) is a real function, analytic at (0, 0). Let J(z) =

∑
n>0 jnzn,

C(z) =
∑

n>0 cnzn and D(z) =
∑

n>0 dnzn with C(z) = F(z, J(z)) and
D(z) = ∂F

∂y (z, J(z)). If jn−1 = o(jn) and there exists s ⩾ 1 such that∑n−s
k=s |jkjn−k| = O(jn−s), then cn =

∑s−1
k=0 dkjn−k + O(jn−s).

• Recall that C(z) = log(1+ J(z)). Use F(z, y) = log(1+ y)

Proposition
The probability that a size n tuple of partial injections is connected
is 1− 2r

nr−1 + o(1
nr−1): connectedness holds with probability tending

to 1

HANDLING CORENESS: COUNT SEQUENCES

• We also want tuples of partial injections where every vertex that
is not the basepoint, is adjacent to at least two edges.

• We show that the probablility that this holds also tends to 1.
Enough to consider A = {a,b}.

• For a given partial injection f, a point in [n] is either isolated (a
sequence of length 1), or an extremity of a sequence, or has arity
2 in the graph of f.

• A vertex has arity 1 if it is an extremity for one letter and isolated
for the other letter.

• The number of extremities, and of isolated points can be
bounded above and under in terms of the number of sequences
in the partial injection.

• Let Xn be the random variable which counts the number of
sequences in a partial injection of size n.

HANDLING CORENESS: COUNT SEQUENCES

• We also want tuples of partial injections where every vertex that
is not the basepoint, is adjacent to at least two edges.

• We show that the probablility that this holds also tends to 1.
Enough to consider A = {a,b}.

• For a given partial injection f, a point in [n] is either isolated (a
sequence of length 1), or an extremity of a sequence, or has arity
2 in the graph of f.

• A vertex has arity 1 if it is an extremity for one letter and isolated
for the other letter.

• The number of extremities, and of isolated points can be
bounded above and under in terms of the number of sequences
in the partial injection.

• Let Xn be the random variable which counts the number of
sequences in a partial injection of size n.

HANDLING CORENESS: COUNT SEQUENCES

• We also want tuples of partial injections where every vertex that
is not the basepoint, is adjacent to at least two edges.

• We show that the probablility that this holds also tends to 1.
Enough to consider A = {a,b}.

• For a given partial injection f, a point in [n] is either isolated (a
sequence of length 1), or an extremity of a sequence, or has arity
2 in the graph of f.

• A vertex has arity 1 if it is an extremity for one letter and isolated
for the other letter.

• The number of extremities, and of isolated points can be
bounded above and under in terms of the number of sequences
in the partial injection.

• Let Xn be the random variable which counts the number of
sequences in a partial injection of size n.

HANDLING CORENESS: COUNT SEQUENCES

• We also want tuples of partial injections where every vertex that
is not the basepoint, is adjacent to at least two edges.

• We show that the probablility that this holds also tends to 1.
Enough to consider A = {a,b}.

• For a given partial injection f, a point in [n] is either isolated (a
sequence of length 1), or an extremity of a sequence, or has arity
2 in the graph of f.

• A vertex has arity 1 if it is an extremity for one letter and isolated
for the other letter.

• The number of extremities, and of isolated points can be
bounded above and under in terms of the number of sequences
in the partial injection.

• Let Xn be the random variable which counts the number of
sequences in a partial injection of size n.

HANDLING CORENESS: COUNT SEQUENCES

• We also want tuples of partial injections where every vertex that
is not the basepoint, is adjacent to at least two edges.

• We show that the probablility that this holds also tends to 1.
Enough to consider A = {a,b}.

• For a given partial injection f, a point in [n] is either isolated (a
sequence of length 1), or an extremity of a sequence, or has arity
2 in the graph of f.

• A vertex has arity 1 if it is an extremity for one letter and isolated
for the other letter.

• The number of extremities, and of isolated points can be
bounded above and under in terms of the number of sequences
in the partial injection.

• Let Xn be the random variable which counts the number of
sequences in a partial injection of size n.

HANDLING CORENESS: COUNT SEQUENCES

• We also want tuples of partial injections where every vertex that
is not the basepoint, is adjacent to at least two edges.

• We show that the probablility that this holds also tends to 1.
Enough to consider A = {a,b}.

• For a given partial injection f, a point in [n] is either isolated (a
sequence of length 1), or an extremity of a sequence, or has arity
2 in the graph of f.

• A vertex has arity 1 if it is an extremity for one letter and isolated
for the other letter.

• The number of extremities, and of isolated points can be
bounded above and under in terms of the number of sequences
in the partial injection.

• Let Xn be the random variable which counts the number of
sequences in a partial injection of size n.

COUNTING SEQUENCES

• Again EGS and powerful real analysis theorems help

• Let PIn,k is the number of partial injections of size n with k
sequences and SPInj(z,u) =

∑
n,k

PIn,k
n! z

nuk

• Similar calculus: cycles are log
(1
1−z

)
and non-empty sequences

are zu
1−z , so SPInj(z,u) = 1

1−z exp
(zu
1−z

)
• Expected value of Xn: E(Xn) =

∑
k k PIn,k
PIn

• Variance of Xn: σ2(Xn) = E(X2n) − E(Xn)2

• Using saddlepoint asymptotics

Proposition (statistics on the number of sequences)
E(Xn) =

√
n(1+ o(1)) and σ2(Xn) = n(1+ o(1))

COUNTING SEQUENCES

• Again EGS and powerful real analysis theorems help
• Let PIn,k is the number of partial injections of size n with k
sequences and SPInj(z,u) =

∑
n,k

PIn,k
n! z

nuk

• Similar calculus: cycles are log
(1
1−z

)
and non-empty sequences

are zu
1−z , so SPInj(z,u) = 1

1−z exp
(zu
1−z

)
• Expected value of Xn: E(Xn) =

∑
k k PIn,k
PIn

• Variance of Xn: σ2(Xn) = E(X2n) − E(Xn)2

• Using saddlepoint asymptotics

Proposition (statistics on the number of sequences)
E(Xn) =

√
n(1+ o(1)) and σ2(Xn) = n(1+ o(1))

COUNTING SEQUENCES

• Again EGS and powerful real analysis theorems help
• Let PIn,k is the number of partial injections of size n with k
sequences and SPInj(z,u) =

∑
n,k

PIn,k
n! z

nuk

• Similar calculus: cycles are log
(1
1−z

)
and non-empty sequences

are zu
1−z , so SPInj(z,u) = 1

1−z exp
(zu
1−z

)

• Expected value of Xn: E(Xn) =
∑

k k PIn,k
PIn

• Variance of Xn: σ2(Xn) = E(X2n) − E(Xn)2

• Using saddlepoint asymptotics

Proposition (statistics on the number of sequences)
E(Xn) =

√
n(1+ o(1)) and σ2(Xn) = n(1+ o(1))

COUNTING SEQUENCES

• Again EGS and powerful real analysis theorems help
• Let PIn,k is the number of partial injections of size n with k
sequences and SPInj(z,u) =

∑
n,k

PIn,k
n! z

nuk

• Similar calculus: cycles are log
(1
1−z

)
and non-empty sequences

are zu
1−z , so SPInj(z,u) = 1

1−z exp
(zu
1−z

)
• Expected value of Xn: E(Xn) =

∑
k k PIn,k
PIn

• Variance of Xn: σ2(Xn) = E(X2n) − E(Xn)2

• Using saddlepoint asymptotics

Proposition (statistics on the number of sequences)
E(Xn) =

√
n(1+ o(1)) and σ2(Xn) = n(1+ o(1))

COUNTING SEQUENCES

• Again EGS and powerful real analysis theorems help
• Let PIn,k is the number of partial injections of size n with k
sequences and SPInj(z,u) =

∑
n,k

PIn,k
n! z

nuk

• Similar calculus: cycles are log
(1
1−z

)
and non-empty sequences

are zu
1−z , so SPInj(z,u) = 1

1−z exp
(zu
1−z

)
• Expected value of Xn: E(Xn) =

∑
k k PIn,k
PIn

• Variance of Xn: σ2(Xn) = E(X2n) − E(Xn)2

• Using saddlepoint asymptotics

Proposition (statistics on the number of sequences)
E(Xn) =

√
n(1+ o(1)) and σ2(Xn) = n(1+ o(1))

COUNTING SEQUENCES

• Again EGS and powerful real analysis theorems help
• Let PIn,k is the number of partial injections of size n with k
sequences and SPInj(z,u) =

∑
n,k

PIn,k
n! z

nuk

• Similar calculus: cycles are log
(1
1−z

)
and non-empty sequences

are zu
1−z , so SPInj(z,u) = 1

1−z exp
(zu
1−z

)
• Expected value of Xn: E(Xn) =

∑
k k PIn,k
PIn

• Variance of Xn: σ2(Xn) = E(X2n) − E(Xn)2

• Using saddlepoint asymptotics

Proposition (statistics on the number of sequences)
E(Xn) =

√
n(1+ o(1)) and σ2(Xn) = n(1+ o(1))

COUNTING SEQUENCES

• Again EGS and powerful real analysis theorems help
• Let PIn,k is the number of partial injections of size n with k
sequences and SPInj(z,u) =

∑
n,k

PIn,k
n! z

nuk

• Similar calculus: cycles are log
(1
1−z

)
and non-empty sequences

are zu
1−z , so SPInj(z,u) = 1

1−z exp
(zu
1−z

)
• Expected value of Xn: E(Xn) =

∑
k k PIn,k
PIn

• Variance of Xn: σ2(Xn) = E(X2n) − E(Xn)2

• Using saddlepoint asymptotics

Proposition (statistics on the number of sequences)
E(Xn) =

√
n(1+ o(1)) and σ2(Xn) = n(1+ o(1))

BACK TO CORENESS

• Chebyshev’s inequality: P(|Xn − E(Xn)| > α) < σ2(Xn)
α2

• Take α =
√
n: P(Xn > 3

√
n) < o(n)

n = o(1)
• Pick fa: with probability tending to 1, it has ⩽ 3

√
n sequences,

⩽ 6
√
n extremities

• The number of partial injections fb for which a given vertex is
isolated is PIn−1

• There are ⩽ 6
√
nPIn−1 PIn pairs (fa, fb) where an extremity of a

sequence of fa is isolated in fb:
• the corresponding probability is at most

6
√
nPIn−1 PIn
PI2n

⩽ 6
√
nPIn−1

PIn
⩽ 6√

n

BACK TO CORENESS

• Chebyshev’s inequality: P(|Xn − E(Xn)| > α) < σ2(Xn)
α2

• Take α =
√
n: P(Xn > 3

√
n) < o(n)

n = o(1)

• Pick fa: with probability tending to 1, it has ⩽ 3
√
n sequences,

⩽ 6
√
n extremities

• The number of partial injections fb for which a given vertex is
isolated is PIn−1

• There are ⩽ 6
√
nPIn−1 PIn pairs (fa, fb) where an extremity of a

sequence of fa is isolated in fb:
• the corresponding probability is at most

6
√
nPIn−1 PIn
PI2n

⩽ 6
√
nPIn−1

PIn
⩽ 6√

n

BACK TO CORENESS

• Chebyshev’s inequality: P(|Xn − E(Xn)| > α) < σ2(Xn)
α2

• Take α =
√
n: P(Xn > 3

√
n) < o(n)

n = o(1)
• Pick fa: with probability tending to 1, it has ⩽ 3

√
n sequences,

⩽ 6
√
n extremities

• The number of partial injections fb for which a given vertex is
isolated is PIn−1

• There are ⩽ 6
√
nPIn−1 PIn pairs (fa, fb) where an extremity of a

sequence of fa is isolated in fb:
• the corresponding probability is at most

6
√
nPIn−1 PIn
PI2n

⩽ 6
√
nPIn−1

PIn
⩽ 6√

n

BACK TO CORENESS

• Chebyshev’s inequality: P(|Xn − E(Xn)| > α) < σ2(Xn)
α2

• Take α =
√
n: P(Xn > 3

√
n) < o(n)

n = o(1)
• Pick fa: with probability tending to 1, it has ⩽ 3

√
n sequences,

⩽ 6
√
n extremities

• The number of partial injections fb for which a given vertex is
isolated is PIn−1

• There are ⩽ 6
√
nPIn−1 PIn pairs (fa, fb) where an extremity of a

sequence of fa is isolated in fb:
• the corresponding probability is at most

6
√
nPIn−1 PIn
PI2n

⩽ 6
√
nPIn−1

PIn
⩽ 6√

n

BACK TO CORENESS

• Chebyshev’s inequality: P(|Xn − E(Xn)| > α) < σ2(Xn)
α2

• Take α =
√
n: P(Xn > 3

√
n) < o(n)

n = o(1)
• Pick fa: with probability tending to 1, it has ⩽ 3

√
n sequences,

⩽ 6
√
n extremities

• The number of partial injections fb for which a given vertex is
isolated is PIn−1

• There are ⩽ 6
√
nPIn−1 PIn pairs (fa, fb) where an extremity of a

sequence of fa is isolated in fb:

• the corresponding probability is at most

6
√
nPIn−1 PIn
PI2n

⩽ 6
√
nPIn−1

PIn
⩽ 6√

n

BACK TO CORENESS

• Chebyshev’s inequality: P(|Xn − E(Xn)| > α) < σ2(Xn)
α2

• Take α =
√
n: P(Xn > 3

√
n) < o(n)

n = o(1)
• Pick fa: with probability tending to 1, it has ⩽ 3

√
n sequences,

⩽ 6
√
n extremities

• The number of partial injections fb for which a given vertex is
isolated is PIn−1

• There are ⩽ 6
√
nPIn−1 PIn pairs (fa, fb) where an extremity of a

sequence of fa is isolated in fb:
• the corresponding probability is at most

6
√
nPIn−1 PIn
PI2n

⩽ 6
√
nPIn−1

PIn
⩽ 6√

n

WHERE DOES THAT TAKE US?

• The probability that an A-tuple of size n partial injections does
not define a Stallings automaton (non-connectedness,
non-coreness) tends to 0 as n grows to infinity

Algorithm
A rejection algorithm to randomly generate a subgroup of Fr:

Draw a random partial injection fa of [n], independently for each
a ∈ A; if the (fa)a∈A do not induce a Stallings automaton (with base
vertex 1), reject and repeat.

• The expected number of steps is at most 2
• (Forget the labeling of the graph)
• Still needed: an efficient random generation algorithm for partial
injections

WHERE DOES THAT TAKE US?

• The probability that an A-tuple of size n partial injections does
not define a Stallings automaton (non-connectedness,
non-coreness) tends to 0 as n grows to infinity

Algorithm
A rejection algorithm to randomly generate a subgroup of Fr:

Draw a random partial injection fa of [n], independently for each
a ∈ A; if the (fa)a∈A do not induce a Stallings automaton (with base
vertex 1), reject and repeat.

• The expected number of steps is at most 2
• (Forget the labeling of the graph)
• Still needed: an efficient random generation algorithm for partial
injections

WHERE DOES THAT TAKE US?

• The probability that an A-tuple of size n partial injections does
not define a Stallings automaton (non-connectedness,
non-coreness) tends to 0 as n grows to infinity

Algorithm
A rejection algorithm to randomly generate a subgroup of Fr:

Draw a random partial injection fa of [n], independently for each
a ∈ A; if the (fa)a∈A do not induce a Stallings automaton (with base
vertex 1), reject and repeat.

• The expected number of steps is at most 2

• (Forget the labeling of the graph)
• Still needed: an efficient random generation algorithm for partial
injections

WHERE DOES THAT TAKE US?

• The probability that an A-tuple of size n partial injections does
not define a Stallings automaton (non-connectedness,
non-coreness) tends to 0 as n grows to infinity

Algorithm
A rejection algorithm to randomly generate a subgroup of Fr:

Draw a random partial injection fa of [n], independently for each
a ∈ A; if the (fa)a∈A do not induce a Stallings automaton (with base
vertex 1), reject and repeat.

• The expected number of steps is at most 2
• (Forget the labeling of the graph)

• Still needed: an efficient random generation algorithm for partial
injections

WHERE DOES THAT TAKE US?

• The probability that an A-tuple of size n partial injections does
not define a Stallings automaton (non-connectedness,
non-coreness) tends to 0 as n grows to infinity

Algorithm
A rejection algorithm to randomly generate a subgroup of Fr:

Draw a random partial injection fa of [n], independently for each
a ∈ A; if the (fa)a∈A do not induce a Stallings automaton (with base
vertex 1), reject and repeat.

• The expected number of steps is at most 2
• (Forget the labeling of the graph)
• Still needed: an efficient random generation algorithm for partial
injections

ANOTHER BY-PRODUCT: EXPECTED RANK OF A SIZE n SUBGROUP

• The expected number of sequences of fa is
√
n, so the expected

number of a-labeled edge is n−
√
n

Proposition
The expected rank of a random subgroup of size n is E− V+ 1, that
is: (|A|− 1)n− |A|

√
n+ 1

• Also: In
n! ∼

1√
2eπn

− 1
4 e2

√
n [more saddlepoint asymptotics!]

Proposition
The number of size n subgroups in Fr is

1
n!PI

r
n (1+ o(1)) ∼ n!r−1n1−r/4e2r

√
n

(2
√
eπ)r

ANOTHER BY-PRODUCT: EXPECTED RANK OF A SIZE n SUBGROUP

• The expected number of sequences of fa is
√
n, so the expected

number of a-labeled edge is n−
√
n

Proposition
The expected rank of a random subgroup of size n is E− V+ 1, that
is: (|A|− 1)n− |A|

√
n+ 1

• Also: In
n! ∼

1√
2eπn

− 1
4 e2

√
n [more saddlepoint asymptotics!]

Proposition
The number of size n subgroups in Fr is

1
n!PI

r
n (1+ o(1)) ∼ n!r−1n1−r/4e2r

√
n

(2
√
eπ)r

ANOTHER BY-PRODUCT: EXPECTED RANK OF A SIZE n SUBGROUP

• The expected number of sequences of fa is
√
n, so the expected

number of a-labeled edge is n−
√
n

Proposition
The expected rank of a random subgroup of size n is E− V+ 1, that
is: (|A|− 1)n− |A|

√
n+ 1

• Also: In
n! ∼

1√
2eπn

− 1
4 e2

√
n [more saddlepoint asymptotics!]

Proposition
The number of size n subgroups in Fr is

1
n!PI

r
n (1+ o(1)) ∼ n!r−1n1−r/4e2r

√
n

(2
√
eπ)r

ANOTHER BY-PRODUCT: EXPECTED RANK OF A SIZE n SUBGROUP

• The expected number of sequences of fa is
√
n, so the expected

number of a-labeled edge is n−
√
n

Proposition
The expected rank of a random subgroup of size n is E− V+ 1, that
is: (|A|− 1)n− |A|

√
n+ 1

• Also: In
n! ∼

1√
2eπn

− 1
4 e2

√
n [more saddlepoint asymptotics!]

Proposition
The number of size n subgroups in Fr is

1
n!PI

r
n (1+ o(1)) ∼ n!r−1n1−r/4e2r

√
n

(2
√
eπ)r

STRATEGY TO DRAW A RANDOM INJECTION

• A size n partial injection is a disjoint union of orbits that are
either cycles, or sequences

• Compute the distribution of sizes of orbits (cycles and
sequences), and the distribution of cycles vs. sequences for each
size of orbits

• Draw a size m of an orbit, decide whether it is a cycle or a
sequence; and draw another random partial injection of size
n−m

STRATEGY TO DRAW A RANDOM INJECTION

• A size n partial injection is a disjoint union of orbits that are
either cycles, or sequences

• Compute the distribution of sizes of orbits (cycles and
sequences), and the distribution of cycles vs. sequences for each
size of orbits

• Draw a size m of an orbit, decide whether it is a cycle or a
sequence; and draw another random partial injection of size
n−m

STRATEGY TO DRAW A RANDOM INJECTION

• A size n partial injection is a disjoint union of orbits that are
either cycles, or sequences

• Compute the distribution of sizes of orbits (cycles and
sequences), and the distribution of cycles vs. sequences for each
size of orbits

• Draw a size m of an orbit, decide whether it is a cycle or a
sequence; and draw another random partial injection of size
n−m

DISTRIBUTION OF THE SIZES OF COMPONENTS OF A PARTIAL INJECTION
1/2

• Pointing operator: selecting a vertex in a partial injection. The
corresponding EGS is ΘPInj(z) =

∑
n

nPIn
n! z

n = z d
dzPInj(z)

• We have PInj(z) = exp(D(z)), with D(z) = z
1−z + log

(1
1−z

)
(sequences + cycles)

• ΘPInj(z) = z d
dzD(z) PInj(z) = ΘD(z) PInj(z)

• That is: pointing a vertex in a partial injection = pointing a vertex
in one component (say, of size k) and the remaining part is just a
partial injection of size n− k

• Computationally:
•
(

z
(1−z)2 + z

1−z

)
PInj(z) =

(∑
k kzk +

∑
k zk

)
PInj(z)

DISTRIBUTION OF THE SIZES OF COMPONENTS OF A PARTIAL INJECTION
1/2

• Pointing operator: selecting a vertex in a partial injection. The
corresponding EGS is ΘPInj(z) =

∑
n

nPIn
n! z

n = z d
dzPInj(z)

• We have PInj(z) = exp(D(z)), with D(z) = z
1−z + log

(1
1−z

)
(sequences + cycles)

• ΘPInj(z) = z d
dzD(z) PInj(z) = ΘD(z) PInj(z)

• That is: pointing a vertex in a partial injection = pointing a vertex
in one component (say, of size k) and the remaining part is just a
partial injection of size n− k

• Computationally:
•
(

z
(1−z)2 + z

1−z

)
PInj(z) =

(∑
k kzk +

∑
k zk

)
PInj(z)

DISTRIBUTION OF THE SIZES OF COMPONENTS OF A PARTIAL INJECTION
1/2

• Pointing operator: selecting a vertex in a partial injection. The
corresponding EGS is ΘPInj(z) =

∑
n

nPIn
n! z

n = z d
dzPInj(z)

• We have PInj(z) = exp(D(z)), with D(z) = z
1−z + log

(1
1−z

)
(sequences + cycles)

• ΘPInj(z) = z d
dzD(z) PInj(z) = ΘD(z) PInj(z)

• That is: pointing a vertex in a partial injection = pointing a vertex
in one component (say, of size k) and the remaining part is just a
partial injection of size n− k

• Computationally:
•
(

z
(1−z)2 + z

1−z

)
PInj(z) =

(∑
k kzk +

∑
k zk

)
PInj(z)

DISTRIBUTION OF THE SIZES OF COMPONENTS OF A PARTIAL INJECTION
1/2

• Pointing operator: selecting a vertex in a partial injection. The
corresponding EGS is ΘPInj(z) =

∑
n

nPIn
n! z

n = z d
dzPInj(z)

• We have PInj(z) = exp(D(z)), with D(z) = z
1−z + log

(1
1−z

)
(sequences + cycles)

• ΘPInj(z) = z d
dzD(z) PInj(z) = ΘD(z) PInj(z)

• That is: pointing a vertex in a partial injection = pointing a vertex
in one component (say, of size k) and the remaining part is just a
partial injection of size n− k

• Computationally:
•
(

z
(1−z)2 + z

1−z

)
PInj(z) =

(∑
k kzk +

∑
k zk

)
PInj(z)

DISTRIBUTION OF THE SIZES OF COMPONENTS OF A PARTIAL INJECTION
1/2

• Pointing operator: selecting a vertex in a partial injection. The
corresponding EGS is ΘPInj(z) =

∑
n

nPIn
n! z

n = z d
dzPInj(z)

• We have PInj(z) = exp(D(z)), with D(z) = z
1−z + log

(1
1−z

)
(sequences + cycles)

• ΘPInj(z) = z d
dzD(z) PInj(z) = ΘD(z) PInj(z)

• That is: pointing a vertex in a partial injection = pointing a vertex
in one component (say, of size k) and the remaining part is just a
partial injection of size n− k

• Computationally:

•
(

z
(1−z)2 + z

1−z

)
PInj(z) =

(∑
k kzk +

∑
k zk

)
PInj(z)

DISTRIBUTION OF THE SIZES OF COMPONENTS OF A PARTIAL INJECTION
1/2

• Pointing operator: selecting a vertex in a partial injection. The
corresponding EGS is ΘPInj(z) =

∑
n

nPIn
n! z

n = z d
dzPInj(z)

• We have PInj(z) = exp(D(z)), with D(z) = z
1−z + log

(1
1−z

)
(sequences + cycles)

• ΘPInj(z) = z d
dzD(z) PInj(z) = ΘD(z) PInj(z)

• That is: pointing a vertex in a partial injection = pointing a vertex
in one component (say, of size k) and the remaining part is just a
partial injection of size n− k

• Computationally:
•
(

z
(1−z)2 + z

1−z

)
PInj(z) =

(∑
k kzk +

∑
k zk

)
PInj(z)

DISTRIBUTION OF THE SIZES OF COMPONENTS OF A PARTIAL INJECTION
2/2

•
(

z
(1−z)2 + z

1−z

)
PInj(z) =

(∑
k kzk +

∑
k zk

)
PInj(z)

• nPIn
n! =

∑
k(k + 1) PIn−k

(n−k)!

• The probability that the pointed vertex is in a size k component is
(k +1)

PIn−k
(n−k)!

PIn
n!

• and the probability that a size k component is a sequence (resp.
a cycle) is k

k+1 (resp.
1
k+1)

• Now we can randomly generate a partial injection

DISTRIBUTION OF THE SIZES OF COMPONENTS OF A PARTIAL INJECTION
2/2

•
(

z
(1−z)2 + z

1−z

)
PInj(z) =

(∑
k kzk +

∑
k zk

)
PInj(z)

• nPIn
n! =

∑
k(k + 1) PIn−k

(n−k)!

• The probability that the pointed vertex is in a size k component is
(k +1)

PIn−k
(n−k)!

PIn
n!

• and the probability that a size k component is a sequence (resp.
a cycle) is k

k+1 (resp.
1
k+1)

• Now we can randomly generate a partial injection

DISTRIBUTION OF THE SIZES OF COMPONENTS OF A PARTIAL INJECTION
2/2

•
(

z
(1−z)2 + z

1−z

)
PInj(z) =

(∑
k kzk +

∑
k zk

)
PInj(z)

• nPIn
n! =

∑
k(k + 1) PIn−k

(n−k)!

• The probability that the pointed vertex is in a size k component is
(k +1)

PIn−k
(n−k)!

PIn
n!

• and the probability that a size k component is a sequence (resp.
a cycle) is k

k+1 (resp.
1
k+1)

• Now we can randomly generate a partial injection

DISTRIBUTION OF THE SIZES OF COMPONENTS OF A PARTIAL INJECTION
2/2

•
(

z
(1−z)2 + z

1−z

)
PInj(z) =

(∑
k kzk +

∑
k zk

)
PInj(z)

• nPIn
n! =

∑
k(k + 1) PIn−k

(n−k)!

• The probability that the pointed vertex is in a size k component is
(k +1)

PIn−k
(n−k)!

PIn
n!

• and the probability that a size k component is a sequence (resp.
a cycle) is k

k+1 (resp.
1
k+1)

• Now we can randomly generate a partial injection

DISTRIBUTION OF THE SIZES OF COMPONENTS OF A PARTIAL INJECTION
2/2

•
(

z
(1−z)2 + z

1−z

)
PInj(z) =

(∑
k kzk +

∑
k zk

)
PInj(z)

• nPIn
n! =

∑
k(k + 1) PIn−k

(n−k)!

• The probability that the pointed vertex is in a size k component is
(k +1)

PIn−k
(n−k)!

PIn
n!

• and the probability that a size k component is a sequence (resp.
a cycle) is k

k+1 (resp.
1
k+1)

• Now we can randomly generate a partial injection

COMPLEXITY ISSUES

• The pre-computation of the PIk (k ⩽ n) takes linear time in n

• The random generation of a partial injection as above takes
linear time

• Checking connectedness and coreness takes linear time
• The expected number of rejects is ⩽ 2
• This is in the RAM model, where arithmetic operations on integers
take unit time

• It looks complicated…but it is fast!
• We are dealing with very large numbers: PIn ⩾ (n+ 1)! has size
O(n log n): in the bitcost model, the precomputation is in
O(n2 log n) and the cost of one generation is O(n2 log2 n)

COMPLEXITY ISSUES

• The pre-computation of the PIk (k ⩽ n) takes linear time in n
• The random generation of a partial injection as above takes
linear time

• Checking connectedness and coreness takes linear time
• The expected number of rejects is ⩽ 2
• This is in the RAM model, where arithmetic operations on integers
take unit time

• It looks complicated…but it is fast!
• We are dealing with very large numbers: PIn ⩾ (n+ 1)! has size
O(n log n): in the bitcost model, the precomputation is in
O(n2 log n) and the cost of one generation is O(n2 log2 n)

COMPLEXITY ISSUES

• The pre-computation of the PIk (k ⩽ n) takes linear time in n
• The random generation of a partial injection as above takes
linear time

• Checking connectedness and coreness takes linear time

• The expected number of rejects is ⩽ 2
• This is in the RAM model, where arithmetic operations on integers
take unit time

• It looks complicated…but it is fast!
• We are dealing with very large numbers: PIn ⩾ (n+ 1)! has size
O(n log n): in the bitcost model, the precomputation is in
O(n2 log n) and the cost of one generation is O(n2 log2 n)

COMPLEXITY ISSUES

• The pre-computation of the PIk (k ⩽ n) takes linear time in n
• The random generation of a partial injection as above takes
linear time

• Checking connectedness and coreness takes linear time
• The expected number of rejects is ⩽ 2

• This is in the RAM model, where arithmetic operations on integers
take unit time

• It looks complicated…but it is fast!
• We are dealing with very large numbers: PIn ⩾ (n+ 1)! has size
O(n log n): in the bitcost model, the precomputation is in
O(n2 log n) and the cost of one generation is O(n2 log2 n)

COMPLEXITY ISSUES

• The pre-computation of the PIk (k ⩽ n) takes linear time in n
• The random generation of a partial injection as above takes
linear time

• Checking connectedness and coreness takes linear time
• The expected number of rejects is ⩽ 2
• This is in the RAM model, where arithmetic operations on integers
take unit time

• It looks complicated…but it is fast!
• We are dealing with very large numbers: PIn ⩾ (n+ 1)! has size
O(n log n): in the bitcost model, the precomputation is in
O(n2 log n) and the cost of one generation is O(n2 log2 n)

COMPLEXITY ISSUES

• The pre-computation of the PIk (k ⩽ n) takes linear time in n
• The random generation of a partial injection as above takes
linear time

• Checking connectedness and coreness takes linear time
• The expected number of rejects is ⩽ 2
• This is in the RAM model, where arithmetic operations on integers
take unit time

• It looks complicated…but it is fast!

• We are dealing with very large numbers: PIn ⩾ (n+ 1)! has size
O(n log n): in the bitcost model, the precomputation is in
O(n2 log n) and the cost of one generation is O(n2 log2 n)

COMPLEXITY ISSUES

• The pre-computation of the PIk (k ⩽ n) takes linear time in n
• The random generation of a partial injection as above takes
linear time

• Checking connectedness and coreness takes linear time
• The expected number of rejects is ⩽ 2
• This is in the RAM model, where arithmetic operations on integers
take unit time

• It looks complicated…but it is fast!
• We are dealing with very large numbers: PIn ⩾ (n+ 1)! has size
O(n log n): in the bitcost model, the precomputation is in
O(n2 log n) and the cost of one generation is O(n2 log2 n)

SPECIALIZE FOR FINITE INDEX SUBGROUPS

• Stallings automata are saturated: made of permutations, not
partial injections

• Follow the same reasoning. Number of permutations of size n: n!.
Exact computation follows as in the general case (see subgroup
growth)

• Randomly generating a size n permutation takes time O(n)
• Bender’s theorem shows that connectedness holds with
probability tending to 1

• Core-ness is guaranteed
• Comparing the number of size n saturated Stallings automata
with the number of general Stallings automata yields the
following probability: O(nr/4e−2r

√
n) = o(n−k)

SPECIALIZE FOR FINITE INDEX SUBGROUPS

• Stallings automata are saturated: made of permutations, not
partial injections

• Follow the same reasoning. Number of permutations of size n: n!.
Exact computation follows as in the general case (see subgroup
growth)

• Randomly generating a size n permutation takes time O(n)
• Bender’s theorem shows that connectedness holds with
probability tending to 1

• Core-ness is guaranteed
• Comparing the number of size n saturated Stallings automata
with the number of general Stallings automata yields the
following probability: O(nr/4e−2r

√
n) = o(n−k)

SPECIALIZE FOR FINITE INDEX SUBGROUPS

• Stallings automata are saturated: made of permutations, not
partial injections

• Follow the same reasoning. Number of permutations of size n: n!.
Exact computation follows as in the general case (see subgroup
growth)

• Randomly generating a size n permutation takes time O(n)

• Bender’s theorem shows that connectedness holds with
probability tending to 1

• Core-ness is guaranteed
• Comparing the number of size n saturated Stallings automata
with the number of general Stallings automata yields the
following probability: O(nr/4e−2r

√
n) = o(n−k)

SPECIALIZE FOR FINITE INDEX SUBGROUPS

• Stallings automata are saturated: made of permutations, not
partial injections

• Follow the same reasoning. Number of permutations of size n: n!.
Exact computation follows as in the general case (see subgroup
growth)

• Randomly generating a size n permutation takes time O(n)
• Bender’s theorem shows that connectedness holds with
probability tending to 1

• Core-ness is guaranteed
• Comparing the number of size n saturated Stallings automata
with the number of general Stallings automata yields the
following probability: O(nr/4e−2r

√
n) = o(n−k)

SPECIALIZE FOR FINITE INDEX SUBGROUPS

• Stallings automata are saturated: made of permutations, not
partial injections

• Follow the same reasoning. Number of permutations of size n: n!.
Exact computation follows as in the general case (see subgroup
growth)

• Randomly generating a size n permutation takes time O(n)
• Bender’s theorem shows that connectedness holds with
probability tending to 1

• Core-ness is guaranteed

• Comparing the number of size n saturated Stallings automata
with the number of general Stallings automata yields the
following probability: O(nr/4e−2r

√
n) = o(n−k)

SPECIALIZE FOR FINITE INDEX SUBGROUPS

• Stallings automata are saturated: made of permutations, not
partial injections

• Follow the same reasoning. Number of permutations of size n: n!.
Exact computation follows as in the general case (see subgroup
growth)

• Randomly generating a size n permutation takes time O(n)
• Bender’s theorem shows that connectedness holds with
probability tending to 1

• Core-ness is guaranteed
• Comparing the number of size n saturated Stallings automata
with the number of general Stallings automata yields the
following probability: O(nr/4e−2r

√
n) = o(n−k)

MORE ASYMPTOTIC PROPERTIES

Theorem (Bassino, Martino, Nicaud, V., W.)
The probability that a size n subgroup is malnormal tends to 0.

• A subgroup is Whitehead minimal if no automorphism of Fr

reduces its size.

Theorem (Bassino, Nicaud, W.)
The probability that a size n subgroup is Whitehead minimal tends
to 1.

Theorem (Bassino, Martino, Nicaud, V., W.)
With probablility tending to e−r, H fails to contain a conjugate of a
letter.

MORE ASYMPTOTIC PROPERTIES

Theorem (Bassino, Martino, Nicaud, V., W.)
The probability that a size n subgroup is malnormal tends to 0.

• A subgroup is Whitehead minimal if no automorphism of Fr

reduces its size.

Theorem (Bassino, Nicaud, W.)
The probability that a size n subgroup is Whitehead minimal tends
to 1.

Theorem (Bassino, Martino, Nicaud, V., W.)
With probablility tending to e−r, H fails to contain a conjugate of a
letter.

MORE ASYMPTOTIC PROPERTIES

Theorem (Bassino, Martino, Nicaud, V., W.)
The probability that a size n subgroup is malnormal tends to 0.

• A subgroup is Whitehead minimal if no automorphism of Fr

reduces its size.

Theorem (Bassino, Nicaud, W.)
The probability that a size n subgroup is Whitehead minimal tends
to 1.

Theorem (Bassino, Martino, Nicaud, V., W.)
With probablility tending to e−r, H fails to contain a conjugate of a
letter.

MORE ASYMPTOTIC PROPERTIES

Theorem (Bassino, Martino, Nicaud, V., W.)
The probability that a size n subgroup is malnormal tends to 0.

• A subgroup is Whitehead minimal if no automorphism of Fr

reduces its size.

Theorem (Bassino, Nicaud, W.)
The probability that a size n subgroup is Whitehead minimal tends
to 1.

Theorem (Bassino, Martino, Nicaud, V., W.)
With probablility tending to e−r, H fails to contain a conjugate of a
letter.

WORD-BASED MODELS

• Draw a tuple ~h of generators at random. Parameters: size of the
tuple, length of the words, distribution on words.

• Few-generator model: fix k ⩾ 2, pick uniformly at random a
k-tuple of words of length at most n, and let n tend to infinity.

• Gromov’s density model: let Bn be the ball of radius n in FA

(|Bn| = Θ((2r− 1)n). Fix 0 < d < 1. Pick uniformly at random a
|Bn|

d-tuple of words of length at most n, and let n tend to infinity.
• Variant: use the sphere rather than the ball.
• Easy to implement, and questionable (uniqueness).

WORD-BASED MODELS

• Draw a tuple ~h of generators at random. Parameters: size of the
tuple, length of the words, distribution on words.

• Few-generator model: fix k ⩾ 2, pick uniformly at random a
k-tuple of words of length at most n, and let n tend to infinity.

• Gromov’s density model: let Bn be the ball of radius n in FA

(|Bn| = Θ((2r− 1)n). Fix 0 < d < 1. Pick uniformly at random a
|Bn|

d-tuple of words of length at most n, and let n tend to infinity.
• Variant: use the sphere rather than the ball.
• Easy to implement, and questionable (uniqueness).

WORD-BASED MODELS

• Draw a tuple ~h of generators at random. Parameters: size of the
tuple, length of the words, distribution on words.

• Few-generator model: fix k ⩾ 2, pick uniformly at random a
k-tuple of words of length at most n, and let n tend to infinity.

• Gromov’s density model: let Bn be the ball of radius n in FA

(|Bn| = Θ((2r− 1)n). Fix 0 < d < 1. Pick uniformly at random a
|Bn|

d-tuple of words of length at most n, and let n tend to infinity.

• Variant: use the sphere rather than the ball.
• Easy to implement, and questionable (uniqueness).

WORD-BASED MODELS

• Draw a tuple ~h of generators at random. Parameters: size of the
tuple, length of the words, distribution on words.

• Few-generator model: fix k ⩾ 2, pick uniformly at random a
k-tuple of words of length at most n, and let n tend to infinity.

• Gromov’s density model: let Bn be the ball of radius n in FA

(|Bn| = Θ((2r− 1)n). Fix 0 < d < 1. Pick uniformly at random a
|Bn|

d-tuple of words of length at most n, and let n tend to infinity.
• Variant: use the sphere rather than the ball.

• Easy to implement, and questionable (uniqueness).

WORD-BASED MODELS

• Draw a tuple ~h of generators at random. Parameters: size of the
tuple, length of the words, distribution on words.

• Few-generator model: fix k ⩾ 2, pick uniformly at random a
k-tuple of words of length at most n, and let n tend to infinity.

• Gromov’s density model: let Bn be the ball of radius n in FA

(|Bn| = Θ((2r− 1)n). Fix 0 < d < 1. Pick uniformly at random a
|Bn|

d-tuple of words of length at most n, and let n tend to infinity.
• Variant: use the sphere rather than the ball.
• Easy to implement, and questionable (uniqueness).

THE CENTRAL TREE PROPERTY: FREE GENERATION

• The central tree property for ~h = (h1, . . . ,hk): small initial
cancellation = St (H) consists of a central tree, and of one loop for
each hi connecting leaves of the tree.

• guaranteed if lcp(~h) < 1
2 min~h, where lcp(~h) is the length of the

least common prefix of the elements of ~h and ~h−1 and
min~h = min |hi|.

• If the central tree property holds, then ~h freely generates H.
• Also note: the central tree is usually very small: fix f(n) an
unbounded, non-decreasing function. In the few-generator
model, generically (only), lcp(~h) < f(n).

THE CENTRAL TREE PROPERTY: FREE GENERATION

• The central tree property for ~h = (h1, . . . ,hk): small initial
cancellation = St (H) consists of a central tree, and of one loop for
each hi connecting leaves of the tree.

• guaranteed if lcp(~h) < 1
2 min~h, where lcp(~h) is the length of the

least common prefix of the elements of ~h and ~h−1 and
min~h = min |hi|.

• If the central tree property holds, then ~h freely generates H.
• Also note: the central tree is usually very small: fix f(n) an
unbounded, non-decreasing function. In the few-generator
model, generically (only), lcp(~h) < f(n).

THE CENTRAL TREE PROPERTY: FREE GENERATION

• The central tree property for ~h = (h1, . . . ,hk): small initial
cancellation = St (H) consists of a central tree, and of one loop for
each hi connecting leaves of the tree.

• guaranteed if lcp(~h) < 1
2 min~h, where lcp(~h) is the length of the

least common prefix of the elements of ~h and ~h−1 and
min~h = min |hi|.

• If the central tree property holds, then ~h freely generates H.

• Also note: the central tree is usually very small: fix f(n) an
unbounded, non-decreasing function. In the few-generator
model, generically (only), lcp(~h) < f(n).

THE CENTRAL TREE PROPERTY: FREE GENERATION

• The central tree property for ~h = (h1, . . . ,hk): small initial
cancellation = St (H) consists of a central tree, and of one loop for
each hi connecting leaves of the tree.

• guaranteed if lcp(~h) < 1
2 min~h, where lcp(~h) is the length of the

least common prefix of the elements of ~h and ~h−1 and
min~h = min |hi|.

• If the central tree property holds, then ~h freely generates H.
• Also note: the central tree is usually very small: fix f(n) an
unbounded, non-decreasing function. In the few-generator
model, generically (only), lcp(~h) < f(n).

THE CENTRAL TREE PROPERTY: MALNORMALITY

• Recall: H is malnormal if Hx ∩ H = 1 for every x 6∈ H. Equivalently,
no word labels a closed walk at two different vertices of St (H).

• Assume that the central tree property holds. A sufficient
condition for malnormality can be expressed in terms of common
factors occurring in the hi:

• if lcp(~h) < 1
4 min~h and no word of length 1

8 min~h occurs twice as a
factor of the elements of ~h and ~h−1, then H is malnormal.

THE CENTRAL TREE PROPERTY: MALNORMALITY

• Recall: H is malnormal if Hx ∩ H = 1 for every x 6∈ H. Equivalently,
no word labels a closed walk at two different vertices of St (H).

• Assume that the central tree property holds. A sufficient
condition for malnormality can be expressed in terms of common
factors occurring in the hi:

• if lcp(~h) < 1
4 min~h and no word of length 1

8 min~h occurs twice as a
factor of the elements of ~h and ~h−1, then H is malnormal.

THE CENTRAL TREE PROPERTY: MALNORMALITY

• Recall: H is malnormal if Hx ∩ H = 1 for every x 6∈ H. Equivalently,
no word labels a closed walk at two different vertices of St (H).

• Assume that the central tree property holds. A sufficient
condition for malnormality can be expressed in terms of common
factors occurring in the hi:

• if lcp(~h) < 1
4 min~h and no word of length 1

8 min~h occurs twice as a
factor of the elements of ~h and ~h−1, then H is malnormal.

THE CENTRAL TREE PROPERTY: RIGIDITY

• Rigidity: if ~g and ~h have the central tree property and
H(~g) = H(~h), then ~g and ~h coincide up to the order of their
elements and replacing a word by its inverse.

• So: picking a tuple of generators at random is — in practice — a
method to randomly generate a subgroup in the sense that
collisions are exponentially rare.

• The distribution of subgroups induced is radically different from
the distribution based on drawing Stallings automata.

• Malnormality is generic in the word-based model, and negligible
in the graph-based model.

THE CENTRAL TREE PROPERTY: RIGIDITY

• Rigidity: if ~g and ~h have the central tree property and
H(~g) = H(~h), then ~g and ~h coincide up to the order of their
elements and replacing a word by its inverse.

• So: picking a tuple of generators at random is — in practice — a
method to randomly generate a subgroup in the sense that
collisions are exponentially rare.

• The distribution of subgroups induced is radically different from
the distribution based on drawing Stallings automata.

• Malnormality is generic in the word-based model, and negligible
in the graph-based model.

THE CENTRAL TREE PROPERTY: RIGIDITY

• Rigidity: if ~g and ~h have the central tree property and
H(~g) = H(~h), then ~g and ~h coincide up to the order of their
elements and replacing a word by its inverse.

• So: picking a tuple of generators at random is — in practice — a
method to randomly generate a subgroup in the sense that
collisions are exponentially rare.

• The distribution of subgroups induced is radically different from
the distribution based on drawing Stallings automata.

• Malnormality is generic in the word-based model, and negligible
in the graph-based model.

THE CENTRAL TREE PROPERTY: RIGIDITY

• Rigidity: if ~g and ~h have the central tree property and
H(~g) = H(~h), then ~g and ~h coincide up to the order of their
elements and replacing a word by its inverse.

• So: picking a tuple of generators at random is — in practice — a
method to randomly generate a subgroup in the sense that
collisions are exponentially rare.

• The distribution of subgroups induced is radically different from
the distribution based on drawing Stallings automata.

• Malnormality is generic in the word-based model, and negligible
in the graph-based model.

WHITEHEAD MINIMALITY

• Recall: H is Whitehead minimal if it has the smallest size in its
orbit under Aut(F).

• [Bassino, Nicaud, W.] Whitehead minimality is exponentially
generic in the few-generator model (Kapovich, Schupp, Shpilrain
for cyclic subgroups)
and it is also exponentially generic in the graph-based model.

WHITEHEAD MINIMALITY

• Recall: H is Whitehead minimal if it has the smallest size in its
orbit under Aut(F).

• [Bassino, Nicaud, W.] Whitehead minimality is exponentially
generic in the few-generator model (Kapovich, Schupp, Shpilrain
for cyclic subgroups)
and it is also exponentially generic in the graph-based model.

GROUP PRESENTATIONS: AN ODD RESULT

• Classically: G = 〈A | ~h〉 = FA/〈〈~h〉〉.

• Why not G = 〈A | H〉 = FA/〈〈H〉〉?
• Up to density 1/2, 〈A | ~h〉 is generically infinite, hyperbolic
(Gromov, Ol’shanskii, Ollivier).

• But the probability that FA/〈〈H〉〉 is trivial tends to 1 as the size of
n grows to infinity.

GROUP PRESENTATIONS: AN ODD RESULT

• Classically: G = 〈A | ~h〉 = FA/〈〈~h〉〉.
• Why not G = 〈A | H〉 = FA/〈〈H〉〉?

• Up to density 1/2, 〈A | ~h〉 is generically infinite, hyperbolic
(Gromov, Ol’shanskii, Ollivier).

• But the probability that FA/〈〈H〉〉 is trivial tends to 1 as the size of
n grows to infinity.

GROUP PRESENTATIONS: AN ODD RESULT

• Classically: G = 〈A | ~h〉 = FA/〈〈~h〉〉.
• Why not G = 〈A | H〉 = FA/〈〈H〉〉?
• Up to density 1/2, 〈A | ~h〉 is generically infinite, hyperbolic
(Gromov, Ol’shanskii, Ollivier).

• But the probability that FA/〈〈H〉〉 is trivial tends to 1 as the size of
n grows to infinity.

GROUP PRESENTATIONS: AN ODD RESULT

• Classically: G = 〈A | ~h〉 = FA/〈〈~h〉〉.
• Why not G = 〈A | H〉 = FA/〈〈H〉〉?
• Up to density 1/2, 〈A | ~h〉 is generically infinite, hyperbolic
(Gromov, Ol’shanskii, Ollivier).

• But the probability that FA/〈〈H〉〉 is trivial tends to 1 as the size of
n grows to infinity.

BEYOND FREE GROUPS: FEW GENERATORS IN HYPERBOLIC GROUPS

• [Gilman, Miasnikov, Osin, 2010] Let G be hyperbolic, A-generated
and let k ⩾ 1. Exponentially generically, a random k-tuple
~h = (h1, . . . ,hk) of elements of G freely generates the subgroup
H(~h) = 〈~h〉 of G, and H(~h) is quasi-convex.

STALLINGS AUTOMATA

• [Kharlampovich, Miasnikov, W., 2017] Let G = 〈A | R〉, finite
presentation. Assume that L is a language of representatives. Let
H ⩽ G and ΓL(H) be the fragment of the Schreier graph S(G,H)
spanned by the loops at H labeled by the L-representatives of the
elements of H.

• A good analogue of Stallings automata: finite if and only if H is
L-quasi-convex; membership problem, computation of
intersections, decision of finiteness; under reasonable additional
hypotheses on G: decision of conjugacy, almost malnormality.

• Computable if H is L-quasi-convex (semi-algorithm)
• Examples: quasi-convex subgroups of hyperbolic groups, all
subgroups of virtually free subgroups.

• Generalizes work by Short, Gersten, Kapovich, Gitik,
Markus-Epstein, Silva, Soler-Escriva, V.

STALLINGS AUTOMATA

• [Kharlampovich, Miasnikov, W., 2017] Let G = 〈A | R〉, finite
presentation. Assume that L is a language of representatives. Let
H ⩽ G and ΓL(H) be the fragment of the Schreier graph S(G,H)
spanned by the loops at H labeled by the L-representatives of the
elements of H.

• A good analogue of Stallings automata: finite if and only if H is
L-quasi-convex; membership problem, computation of
intersections, decision of finiteness; under reasonable additional
hypotheses on G: decision of conjugacy, almost malnormality.

• Computable if H is L-quasi-convex (semi-algorithm)
• Examples: quasi-convex subgroups of hyperbolic groups, all
subgroups of virtually free subgroups.

• Generalizes work by Short, Gersten, Kapovich, Gitik,
Markus-Epstein, Silva, Soler-Escriva, V.

STALLINGS AUTOMATA

• [Kharlampovich, Miasnikov, W., 2017] Let G = 〈A | R〉, finite
presentation. Assume that L is a language of representatives. Let
H ⩽ G and ΓL(H) be the fragment of the Schreier graph S(G,H)
spanned by the loops at H labeled by the L-representatives of the
elements of H.

• A good analogue of Stallings automata: finite if and only if H is
L-quasi-convex; membership problem, computation of
intersections, decision of finiteness; under reasonable additional
hypotheses on G: decision of conjugacy, almost malnormality.

• Computable if H is L-quasi-convex (semi-algorithm)

• Examples: quasi-convex subgroups of hyperbolic groups, all
subgroups of virtually free subgroups.

• Generalizes work by Short, Gersten, Kapovich, Gitik,
Markus-Epstein, Silva, Soler-Escriva, V.

STALLINGS AUTOMATA

• [Kharlampovich, Miasnikov, W., 2017] Let G = 〈A | R〉, finite
presentation. Assume that L is a language of representatives. Let
H ⩽ G and ΓL(H) be the fragment of the Schreier graph S(G,H)
spanned by the loops at H labeled by the L-representatives of the
elements of H.

• A good analogue of Stallings automata: finite if and only if H is
L-quasi-convex; membership problem, computation of
intersections, decision of finiteness; under reasonable additional
hypotheses on G: decision of conjugacy, almost malnormality.

• Computable if H is L-quasi-convex (semi-algorithm)
• Examples: quasi-convex subgroups of hyperbolic groups, all
subgroups of virtually free subgroups.

• Generalizes work by Short, Gersten, Kapovich, Gitik,
Markus-Epstein, Silva, Soler-Escriva, V.

STALLINGS AUTOMATA

• [Kharlampovich, Miasnikov, W., 2017] Let G = 〈A | R〉, finite
presentation. Assume that L is a language of representatives. Let
H ⩽ G and ΓL(H) be the fragment of the Schreier graph S(G,H)
spanned by the loops at H labeled by the L-representatives of the
elements of H.

• A good analogue of Stallings automata: finite if and only if H is
L-quasi-convex; membership problem, computation of
intersections, decision of finiteness; under reasonable additional
hypotheses on G: decision of conjugacy, almost malnormality.

• Computable if H is L-quasi-convex (semi-algorithm)
• Examples: quasi-convex subgroups of hyperbolic groups, all
subgroups of virtually free subgroups.

• Generalizes work by Short, Gersten, Kapovich, Gitik,
Markus-Epstein, Silva, Soler-Escriva, V.

THE MODULAR GROUP

• [Bassino, Nicaud, W.] The particular case of subgroups of
PSL2(Z) = Z2 ∗ Z3 = 〈a,b | a2 = b3 = 1〉: the Stallings automata
are combinatorially nice enough and can be counted: statistics,
random generation.

• E.g., the expected isomorphism type of a subgroup of PSL2(Z) of
size n is (

n 1
2 + o(n 1

2),n 1
3 + o(n 1

3),
n
6 −

1
3n

2
3 + o(n 2

3)

)
,

and there is strong concentration around these values.
• Also: counting and random generation of finite index subgroups
(Stothers, 1970s), free subgroups, subgroups of a fixed
isomorphism type.

THE MODULAR GROUP

• [Bassino, Nicaud, W.] The particular case of subgroups of
PSL2(Z) = Z2 ∗ Z3 = 〈a,b | a2 = b3 = 1〉: the Stallings automata
are combinatorially nice enough and can be counted: statistics,
random generation.

• E.g., the expected isomorphism type of a subgroup of PSL2(Z) of
size n is (

n 1
2 + o(n 1

2),n 1
3 + o(n 1

3),
n
6 −

1
3n

2
3 + o(n 2

3)

)
,

and there is strong concentration around these values.

• Also: counting and random generation of finite index subgroups
(Stothers, 1970s), free subgroups, subgroups of a fixed
isomorphism type.

THE MODULAR GROUP

• [Bassino, Nicaud, W.] The particular case of subgroups of
PSL2(Z) = Z2 ∗ Z3 = 〈a,b | a2 = b3 = 1〉: the Stallings automata
are combinatorially nice enough and can be counted: statistics,
random generation.

• E.g., the expected isomorphism type of a subgroup of PSL2(Z) of
size n is (

n 1
2 + o(n 1

2),n 1
3 + o(n 1

3),
n
6 −

1
3n

2
3 + o(n 2

3)

)
,

and there is strong concentration around these values.
• Also: counting and random generation of finite index subgroups
(Stothers, 1970s), free subgroups, subgroups of a fixed
isomorphism type.

ENRICHED STALLINGS AUTOMATA

FREE-ABELIAN BY FREE GROUPS

A group is free-abelian by free (FABF) if it is of the form

Gα = Fn⋉αZm =

〈
x1, . . . , xn
t1, . . . , tm

∣∣∣∣∣ titk = tkti ∀i, k ∈ [1,m]

x−1
j ti xj = tiαj ∀i ∈ [1,m], ∀j ∈ [1,n]

〉
,

where

• T = {t1, . . . , tm} is a free-abelian basis for 〈T〉 ' Zm,
• X = {x1, . . . , xn} is a free basis for 〈X〉 ' Fn,
• α1,α2, . . . ,αn ∈ Aut(Zm) = GLm(Z), defining a homomorphism

α : Fn → Aut(Zm) = GLm(Z)

Remarks

• Normal form: w ta11 · · · t
am
m

= w ta (w ∈ Fn, a = (a1, . . . , am) ∈ Zm).

• Multiplication rules: ta w = w taAw and w ta = taA−1
w w.

• If A1,A2, . . . ,An = Im, then

Gα = Fn × Zm is a free-abelian times free (FATF) group.

FREE-ABELIAN BY FREE GROUPS

A group is free-abelian by free (FABF) if it is of the form

Gα = Fn⋉αZm =

〈
x1, . . . , xn
t1, . . . , tm

∣∣∣∣∣ titk = tkti ∀i, k ∈ [1,m]

x−1
j ti xj = tiαj ∀i ∈ [1,m], ∀j ∈ [1,n]

〉
,

where

• T = {t1, . . . , tm} is a free-abelian basis for 〈T〉 ' Zm,
• X = {x1, . . . , xn} is a free basis for 〈X〉 ' Fn,
• α1,α2, . . . ,αn ∈ Aut(Zm) = GLm(Z), defining a homomorphism

α : Fn → Aut(Zm) = GLm(Z)

Remarks

• Normal form: w ta11 · · · t
am
m

= w ta (w ∈ Fn, a = (a1, . . . , am) ∈ Zm).

• Multiplication rules: ta w = w taAw and w ta = taA−1
w w.

• If A1,A2, . . . ,An = Im, then

Gα = Fn × Zm is a free-abelian times free (FATF) group.

FREE-ABELIAN BY FREE GROUPS

A group is free-abelian by free (FABF) if it is of the form

Gα = Fn⋉αZm =

〈
x1, . . . , xn
t1, . . . , tm

∣∣∣∣∣ titk = tkti ∀i, k ∈ [1,m]

x−1
j ti xj = tiαj ∀i ∈ [1,m], ∀j ∈ [1,n]

〉
,

where

• T = {t1, . . . , tm} is a free-abelian basis for 〈T〉 ' Zm,
• X = {x1, . . . , xn} is a free basis for 〈X〉 ' Fn,
• α1,α2, . . . ,αn ∈ Aut(Zm) = GLm(Z), defining a homomorphism

α : Fn → Aut(Zm) = GLm(Z)

Remarks

• Normal form: w ta11 · · · t
am
m

= w ta (w ∈ Fn, a = (a1, . . . , am) ∈ Zm).

• Multiplication rules: ta w = w taAw and w ta = taA−1
w w.

• If A1,A2, . . . ,An = Im, then

Gα = Fn × Zm is a free-abelian times free (FATF) group.

FREE-ABELIAN BY FREE GROUPS

A group is free-abelian by free (FABF) if it is of the form

Gα = Fn⋉αZm =

〈
x1, . . . , xn
t1, . . . , tm

∣∣∣∣∣ titk = tkti ∀i, k ∈ [1,m]

x−1
j ti xj = tiαj ∀i ∈ [1,m], ∀j ∈ [1,n]

〉
,

where
• T = {t1, . . . , tm} is a free-abelian basis for 〈T〉 ' Zm,

• X = {x1, . . . , xn} is a free basis for 〈X〉 ' Fn,
• α1,α2, . . . ,αn ∈ Aut(Zm) = GLm(Z), defining a homomorphism

α : Fn → Aut(Zm) = GLm(Z)

Remarks

• Normal form: w ta11 · · · t
am
m

= w ta (w ∈ Fn, a = (a1, . . . , am) ∈ Zm).

• Multiplication rules: ta w = w taAw and w ta = taA−1
w w.

• If A1,A2, . . . ,An = Im, then

Gα = Fn × Zm is a free-abelian times free (FATF) group.

FREE-ABELIAN BY FREE GROUPS

A group is free-abelian by free (FABF) if it is of the form

Gα = Fn⋉αZm =

〈
x1, . . . , xn
t1, . . . , tm

∣∣∣∣∣ titk = tkti ∀i, k ∈ [1,m]

x−1
j ti xj = tiαj ∀i ∈ [1,m], ∀j ∈ [1,n]

〉
,

where
• T = {t1, . . . , tm} is a free-abelian basis for 〈T〉 ' Zm,
• X = {x1, . . . , xn} is a free basis for 〈X〉 ' Fn,

• α1,α2, . . . ,αn ∈ Aut(Zm) = GLm(Z), defining a homomorphism

α : Fn → Aut(Zm) = GLm(Z)

Remarks

• Normal form: w ta11 · · · t
am
m

= w ta (w ∈ Fn, a = (a1, . . . , am) ∈ Zm).

• Multiplication rules: ta w = w taAw and w ta = taA−1
w w.

• If A1,A2, . . . ,An = Im, then

Gα = Fn × Zm is a free-abelian times free (FATF) group.

FREE-ABELIAN BY FREE GROUPS

A group is free-abelian by free (FABF) if it is of the form

Gα = Fn⋉αZm =

〈
x1, . . . , xn
t1, . . . , tm

∣∣∣∣∣ titk = tkti ∀i, k ∈ [1,m]

x−1
j ti xj = tiαj ∀i ∈ [1,m], ∀j ∈ [1,n]

〉
,

where
• T = {t1, . . . , tm} is a free-abelian basis for 〈T〉 ' Zm,
• X = {x1, . . . , xn} is a free basis for 〈X〉 ' Fn,

• α1,α2, . . . ,αn ∈ Aut(Zm) = GLm(Z), defining a homomorphism

α : Fn → Aut(Zm) = GLm(Z)

Remarks

• Normal form: w ta11 · · · t
am
m

= w ta (w ∈ Fn, a = (a1, . . . , am) ∈ Zm).

• Multiplication rules: ta w = w taAw and w ta = taA−1
w w.

• If A1,A2, . . . ,An = Im, then

Gα = Fn × Zm is a free-abelian times free (FATF) group.

FREE-ABELIAN BY FREE GROUPS

A group is free-abelian by free (FABF) if it is of the form

Gα = Fn⋉αZm =

〈
x1, . . . , xn
t1, . . . , tm

∣∣∣∣∣ titk = tkti ∀i, k ∈ [1,m]

x−1
j ti xj = tiαj ∀i ∈ [1,m], ∀j ∈ [1,n]

〉
,

where
• T = {t1, . . . , tm} is a free-abelian basis for 〈T〉 ' Zm,
• X = {x1, . . . , xn} is a free basis for 〈X〉 ' Fn,
• α1,α2, . . . ,αn ∈ Aut(Zm) = GLm(Z), defining a homomorphism

α : Fn → Aut(Zm) = GLm(Z)
xj 7→ αj

= Aj
Remarks

• Normal form: w ta11 · · · t
am
m

= w ta (w ∈ Fn, a = (a1, . . . , am) ∈ Zm).

• Multiplication rules: ta w = w taAw and w ta = taA−1
w w.

• If A1,A2, . . . ,An = Im, then

Gα = Fn × Zm is a free-abelian times free (FATF) group.

FREE-ABELIAN BY FREE GROUPS

A group is free-abelian by free (FABF) if it is of the form

Gα = Fn⋉αZm =

〈
x1, . . . , xn
t1, . . . , tm

∣∣∣∣∣ titk = tkti ∀i, k ∈ [1,m]

x−1
j ti xj = tiαj ∀i ∈ [1,m], ∀j ∈ [1,n]

〉
,

where
• T = {t1, . . . , tm} is a free-abelian basis for 〈T〉 ' Zm,
• X = {x1, . . . , xn} is a free basis for 〈X〉 ' Fn,
• α1,α2, . . . ,αn ∈ Aut(Zm) = GLm(Z), defining a homomorphism

α : Fn → Aut(Zm) = GLm(Z)
xj 7→ αj = Aj

Remarks

• Normal form: w ta11 · · · t
am
m

= w ta (w ∈ Fn, a = (a1, . . . , am) ∈ Zm).

• Multiplication rules: ta w = w taAw and w ta = taA−1
w w.

• If A1,A2, . . . ,An = Im, then

Gα = Fn × Zm is a free-abelian times free (FATF) group.

FREE-ABELIAN BY FREE GROUPS

A group is free-abelian by free (FABF) if it is of the form

Gα = Fn⋉αZm =

〈
x1, . . . , xn
t1, . . . , tm

∣∣∣∣∣ titk = tkti ∀i, k ∈ [1,m]

x−1
j ti xj = tiαj ∀i ∈ [1,m], ∀j ∈ [1,n]

〉
,

where
• T = {t1, . . . , tm} is a free-abelian basis for 〈T〉 ' Zm,
• X = {x1, . . . , xn} is a free basis for 〈X〉 ' Fn,
• α1,α2, . . . ,αn ∈ Aut(Zm) = GLm(Z), defining a homomorphism

α : Fn → Aut(Zm) = GLm(Z)
w 7→ αw = Aw

Remarks

• Normal form: w ta11 · · · t
am
m = w ta (w ∈ Fn, a = (a1, . . . , am) ∈ Zm).

• Multiplication rules: ta w = w taAw and w ta = taA−1
w w.

• If A1,A2, . . . ,An = Im, then

Gα = Fn × Zm is a free-abelian times free (FATF) group.

FREE-ABELIAN BY FREE GROUPS

A group is free-abelian by free (FABF) if it is of the form

Gα = Fn⋉αZm =

〈
x1, . . . , xn
t1, . . . , tm

∣∣∣∣∣ titk = tkti ∀i, k ∈ [1,m]

x−1
j ti xj = tiαj ∀i ∈ [1,m], ∀j ∈ [1,n]

〉
,

where
• T = {t1, . . . , tm} is a free-abelian basis for 〈T〉 ' Zm,
• X = {x1, . . . , xn} is a free basis for 〈X〉 ' Fn,
• α1,α2, . . . ,αn ∈ Aut(Zm) = GLm(Z), defining a homomorphism

α : Fn → Aut(Zm) = GLm(Z)
w 7→ αw = Aw

Remarks

• Normal form: w ta11 · · · t
am
m = w ta (w ∈ Fn, a = (a1, . . . , am) ∈ Zm).

• Multiplication rules: ta w = w taAw and w ta = taA−1
w w.

• If A1,A2, . . . ,An = Im, then

Gα = Fn × Zm is a free-abelian times free (FATF) group.

FREE-ABELIAN BY FREE GROUPS

A group is free-abelian by free (FABF) if it is of the form

Gα = Fn⋉αZm =

〈
x1, . . . , xn
t1, . . . , tm

∣∣∣∣∣ titk = tkti ∀i, k ∈ [1,m]

x−1
j ti xj = tiαj ∀i ∈ [1,m], ∀j ∈ [1,n]

〉
,

where
• T = {t1, . . . , tm} is a free-abelian basis for 〈T〉 ' Zm,
• X = {x1, . . . , xn} is a free basis for 〈X〉 ' Fn,
• α1,α2, . . . ,αn ∈ Aut(Zm) = GLm(Z), defining a homomorphism

α : Fn → Aut(Zm) = GLm(Z)
w 7→ αw = Aw

Remarks
• Normal form: w ta11 · · · t

am
m = w ta (w ∈ Fn, a = (a1, . . . , am) ∈ Zm).

• Multiplication rules: ta w = w taAw and w ta = taA−1
w w.

• If A1,A2, . . . ,An = Im, then

Gα = Fn × Zm is a free-abelian times free (FATF) group.

FREE-ABELIAN BY FREE GROUPS

A group is free-abelian by free (FABF) if it is of the form

Gα = Fn⋉αZm =

〈
x1, . . . , xn
t1, . . . , tm

∣∣∣∣∣ titk = tkti ∀i, k ∈ [1,m]

x−1
j ti xj = tiαj ∀i ∈ [1,m], ∀j ∈ [1,n]

〉
,

where
• T = {t1, . . . , tm} is a free-abelian basis for 〈T〉 ' Zm,
• X = {x1, . . . , xn} is a free basis for 〈X〉 ' Fn,
• α1,α2, . . . ,αn ∈ Aut(Zm) = GLm(Z), defining a homomorphism

α : Fn → Aut(Zm) = GLm(Z)
w 7→ αw = Aw

Remarks
• Normal form: w ta11 · · · t

am
m = w ta (w ∈ Fn, a = (a1, . . . , am) ∈ Zm).

• Multiplication rules: ta w = w taAw and w ta = taA−1
w w.

• If A1,A2, . . . ,An = Im, then

Gα = Fn × Zm is a free-abelian times free (FATF) group.

FREE-ABELIAN BY FREE GROUPS

A group is free-abelian by free (FABF) if it is of the form

Gα = Fn⋉αZm =

〈
x1, . . . , xn
t1, . . . , tm

∣∣∣∣∣ titk = tkti ∀i, k ∈ [1,m]

x−1
j ti xj = tiαj ∀i ∈ [1,m], ∀j ∈ [1,n]

〉
,

where
• T = {t1, . . . , tm} is a free-abelian basis for 〈T〉 ' Zm,
• X = {x1, . . . , xn} is a free basis for 〈X〉 ' Fn,
• α1,α2, . . . ,αn ∈ Aut(Zm) = GLm(Z), defining a homomorphism

α : Fn → Aut(Zm) = GLm(Z)
w 7→ αw = Aw

Remarks
• Normal form: w ta11 · · · t

am
m = w ta (w ∈ Fn, a = (a1, . . . , am) ∈ Zm).

• Multiplication rules: ta w = w taAw and w ta = taA−1
w w.

• If A1,A2, . . . ,An = Im, then

Gα = Fn × Zm is a free-abelian times free (FATF) group.

SUBGROUPS OF FABF GROUPS

Let H ⩽ Gα = Fn ⋉α Zm and consider the short exact sequence
associated to Gα and its restriction to H:

Zm Gα FnP ⩽ ⩽

LH = H ∩ Zm = ker(π|H) H Hπ

π

σ

π|H

σH

Proposition
Let H ⩽ Gα = Fn ⋉α Zm. Then,

H ' Hπ⋉αH (H ∩ Zm) ' Fn′ ⋉ Zm′

where n ′ ∈ [0,∞], m ′ ∈ [0,m], and (u)αH = αu|H∩Zm ∈ GL(H ∩ Zm).

Definition. LH = H ∩ Zm is called the base subgroup of H.

Corollary
Subgroups of FABF (resp., FATF) groups are again FABF (resp FATF).

SUBGROUPS OF FABF GROUPS

Let H ⩽ Gα = Fn ⋉α Zm and consider the short exact sequence
associated to Gα and its restriction to H:

Zm Gα FnP ⩽ ⩽

LH = H ∩ Zm = ker(π|H) H Hπ

π

σ

π|H

σH

Proposition
Let H ⩽ Gα = Fn ⋉α Zm. Then,

H ' Hπ⋉αH (H ∩ Zm) ' Fn′ ⋉ Zm′

where n ′ ∈ [0,∞], m ′ ∈ [0,m], and (u)αH = αu|H∩Zm ∈ GL(H ∩ Zm).

Definition. LH = H ∩ Zm is called the base subgroup of H.

Corollary
Subgroups of FABF (resp., FATF) groups are again FABF (resp FATF).

SUBGROUPS OF FABF GROUPS

Let H ⩽ Gα = Fn ⋉α Zm and consider the short exact sequence
associated to Gα and its restriction to H:

Zm Gα FnP ⩽ ⩽

LH = H ∩ Zm = ker(π|H) H Hπ

π

σ

π|H

σH

Proposition
Let H ⩽ Gα = Fn ⋉α Zm. Then,

H ' Hπ⋉αH (H ∩ Zm) ' Fn′ ⋉ Zm′

where n ′ ∈ [0,∞], m ′ ∈ [0,m], and (u)αH = αu|H∩Zm ∈ GL(H ∩ Zm).

Definition. LH = H ∩ Zm is called the base subgroup of H.

Corollary
Subgroups of FABF (resp., FATF) groups are again FABF (resp FATF).

SUBGROUPS OF FABF GROUPS

Let H ⩽ Gα = Fn ⋉α Zm and consider the short exact sequence
associated to Gα and its restriction to H:

Zm Gα FnP ⩽ ⩽

LH = H ∩ Zm = ker(π|H) H Hπ

π

σ

π|H

σH

Proposition
Let H ⩽ Gα = Fn ⋉α Zm. Then,

H ' Hπ⋉αH (H ∩ Zm) ' Fn′ ⋉ Zm′

where n ′ ∈ [0,∞], m ′ ∈ [0,m], and (u)αH = αu|H∩Zm ∈ GL(H ∩ Zm).

Definition. LH = H ∩ Zm is called the base subgroup of H.

Corollary
Subgroups of FABF (resp., FATF) groups are again FABF (resp FATF).

BASES

Recall that every subgroup H ⩽ Gα splits as:
H = Hπσ⋉ (H ∩ Zm), (1)

where σ : Hπ→ Gα is a section of πH : H→ Hπ

Definition
A ‘basis’ of a subgroup H ⩽ Gα is a pair

(Vσ;B) = (v1tc1 , v2tc2 , . . . , vn′tcn′ ; tb1 , tb2 , . . . , tbm′)

such that:
• B = (b1,b2, . . . ,bm′) is a free-abelian basis of LH = H ∩ Zm ' Zm′ ,
• V = (v1, v2, . . . , vn′) is a free basis of Hπ ' Fn′ ,
• σ is a section of π|H.

Remark. Note that Vσ is a free basis of the subgroup Hπσ, hence:

• A basis of H is the result of joining a basis of each factor in (1).

BASES

Recall that every subgroup H ⩽ Gα splits as:
H = Hπσ⋉ (H ∩ Zm), (1)

where σ : Hπ→ Gα is a section of πH : H→ Hπ

Definition
A ‘basis’ of a subgroup H ⩽ Gα is a pair

(Vσ;B) = (v1tc1 , v2tc2 , . . . , vn′tcn′ ; tb1 , tb2 , . . . , tbm′)

such that:
• B = (b1,b2, . . . ,bm′) is a free-abelian basis of LH = H ∩ Zm ' Zm′ ,
• V = (v1, v2, . . . , vn′) is a free basis of Hπ ' Fn′ ,
• σ is a section of π|H.

Remark. Note that Vσ is a free basis of the subgroup Hπσ, hence:

• A basis of H is the result of joining a basis of each factor in (1).

BASES

Recall that every subgroup H ⩽ Gα splits as:
H = Hπσ⋉ (H ∩ Zm), (1)

where σ : Hπ→ Gα is a section of πH : H→ Hπ

Definition
A ‘basis’ of a subgroup H ⩽ Gα is a pair

(Vσ;B) = (v1tc1 , v2tc2 , . . . , vn′tcn′ ; tb1 , tb2 , . . . , tbm′)

such that:
• B = (b1,b2, . . . ,bm′) is a free-abelian basis of LH = H ∩ Zm ' Zm′ ,
• V = (v1, v2, . . . , vn′) is a free basis of Hπ ' Fn′ ,
• σ is a section of π|H.

Remark. Note that Vσ is a free basis of the subgroup Hπσ, hence:

• A basis of H is the result of joining a basis of each factor in (1).

COMPLETION

Let H ⩽ Gα = Fn ⋉ Zm and let w ∈ Fn.
Definition
The completion of w in H is cH(w) = { c ∈ Zm : wtc ∈ H } = (w)π τ.

Lemma
cH(w) is either empty or a coset of LH = H ∩ Zm.

In Fn × Zm completions are well behaved…

Lemma
If {v1tc1 , . . . , vn′tcn′ ; tb1 , . . . , tbm′ } is a basis of Fn × Zm and w ∈ Fn,
then

cH(w) =

{
∅ if w /∈ Hπ
wϕρC+ LH if w ∈ Hπ ,

where ϕ : Hπ → Fn′ is the change of basis xi 7→ xi(vj),
ρ : Fn′ Zn′ is the abelianization map,
C is the n ′ ×m integer matrix having ci as ith row.

COMPLETION

Let H ⩽ Gα = Fn ⋉ Zm and let w ∈ Fn.
Definition
The completion of w in H is cH(w) = { c ∈ Zm : wtc ∈ H } = (w)π τ.

Lemma
cH(w) is either empty or a coset of LH = H ∩ Zm.

In Fn × Zm completions are well behaved…

Lemma
If {v1tc1 , . . . , vn′tcn′ ; tb1 , . . . , tbm′ } is a basis of Fn × Zm and w ∈ Fn,
then

cH(w) =

{
∅ if w /∈ Hπ
wϕρC+ LH if w ∈ Hπ ,

where ϕ : Hπ → Fn′ is the change of basis xi 7→ xi(vj),
ρ : Fn′ Zn′ is the abelianization map,
C is the n ′ ×m integer matrix having ci as ith row.

COMPLETION

Let H ⩽ Gα = Fn ⋉ Zm and let w ∈ Fn.
Definition
The completion of w in H is cH(w) = { c ∈ Zm : wtc ∈ H } = (w)π τ.

Lemma
cH(w) is either empty or a coset of LH = H ∩ Zm.

In Fn × Zm completions are well behaved…

Lemma
If {v1tc1 , . . . , vn′tcn′ ; tb1 , . . . , tbm′ } is a basis of Fn × Zm and w ∈ Fn,
then

cH(w) =

{
∅ if w /∈ Hπ
wϕρC+ LH if w ∈ Hπ ,

where ϕ : Hπ → Fn′ is the change of basis xi 7→ xi(vj),
ρ : Fn′ Zn′ is the abelianization map,
C is the n ′ ×m integer matrix having ci as ith row.

COMPLETION

Let H ⩽ Gα = Fn ⋉ Zm and let w ∈ Fn.
Definition
The completion of w in H is cH(w) = { c ∈ Zm : wtc ∈ H } = (w)π τ.

Lemma
cH(w) is either empty or a coset of LH = H ∩ Zm.

In Fn × Zm completions are well behaved…

Lemma
If {v1tc1 , . . . , vn′tcn′ ; tb1 , . . . , tbm′ } is a basis of Fn × Zm and w ∈ Fn,
then

cH(w) =

{
∅ if w /∈ Hπ
wϕρC+ LH if w ∈ Hπ ,

where ϕ : Hπ → Fn′ is the change of basis xi 7→ xi(vj),
ρ : Fn′ Zn′ is the abelianization map,
C is the n ′ ×m integer matrix having ci as ith row.

ENRICHED FLOWER AUTOMATA

Let S = {u1ta1 , . . . ,uktak }

Fs ≡

L=

⟨b1,...,br⟩⩽Zm

u1

a2

u2

as

us

b1
1

ak

ukbr 1⟨b1,...,br⟩

• We add the basepoint subgroup L ⩽ Zm as a label for .
• We add two labels a,b ∈ Zm to the head and tail of every arc:

xi

a b

t−a xi tb

t−b x−1
i ta

s.t. the abelian contribution of the j-th petal adds up to aj, e.g.

· · ·xi1
0 0

xi2
0 0

xil
0 aj

where uj = xi1xi2 · · · xil .
• FS is called the (enriched) flower automaton of S.

ENRICHED FLOWER AUTOMATA

Let S = {u1ta1 , . . . ,uktak }

Fs ≡

L=

⟨b1,...,br⟩⩽Zm

u1

a2

u2

as

us

b1
1

ak

ukbr 1⟨b1,...,br⟩

• We add the basepoint subgroup L ⩽ Zm as a label for .
• We add two labels a,b ∈ Zm to the head and tail of every arc:

xi

a b

t−a xi tb

t−b x−1
i ta

s.t. the abelian contribution of the j-th petal adds up to aj, e.g.

· · ·xi1
0 0

xi2
0 0

xil
0 aj

where uj = xi1xi2 · · · xil .
• FS is called the (enriched) flower automaton of S.

ENRICHED FLOWER AUTOMATA

Let S = {u1ta1 , . . . ,uktak }

Fs ≡

L=

⟨b1,...,br⟩⩽Zm

u1

a2

u2

as

us

b1
1

ak

uk

br 1⟨b1,...,br⟩

• We add the basepoint subgroup L ⩽ Zm as a label for .
• We add two labels a,b ∈ Zm to the head and tail of every arc:

xi

a b

t−a xi tb

t−b x−1
i ta

s.t. the abelian contribution of the j-th petal adds up to aj, e.g.

· · ·xi1
0 0

xi2
0 0

xil
0 aj

where uj = xi1xi2 · · · xil .
• FS is called the (enriched) flower automaton of S.

ENRICHED FLOWER AUTOMATA

Let S = {u1ta1 , . . . ,uktak }

Fs ≡

L=

⟨b1,...,br⟩⩽Zm

a1u1

a2

u2

as

us

b1
1

ak uk

br 1⟨b1,...,br⟩

• We add the basepoint subgroup L ⩽ Zm as a label for .
• We add two labels a,b ∈ Zm to the head and tail of every arc:

xi

a b

t−a xi tb

t−b x−1
i ta

s.t. the abelian contribution of the j-th petal adds up to aj, e.g.

· · ·xi1
0 0

xi2
0 0

xil
0 aj

where uj = xi1xi2 · · · xil .
• FS is called the (enriched) flower automaton of S.

ENRICHED FLOWER AUTOMATA

Let S = {u1ta1 , . . . ,uktak } = {u1ta1 , . . . ,ustas , tb1 , . . . , tbr }

Fs ≡

L=

⟨b1,...,br⟩⩽Zm

a1u1

a2

u2

as

us

b1
1

ak uk

br 1⟨b1,...,br⟩

• We add the basepoint subgroup L ⩽ Zm as a label for .
• We add two labels a,b ∈ Zm to the head and tail of every arc:

xi

a b

t−a xi tb

t−b x−1
i ta

s.t. the abelian contribution of the j-th petal adds up to aj, e.g.

· · ·xi1
0 0

xi2
0 0

xil
0 aj

where uj = xi1xi2 · · · xil .
• FS is called the (enriched) flower automaton of S.

ENRICHED FLOWER AUTOMATA

Let S = {u1ta1 , . . . ,uktak } = {u1ta1 , . . . ,ustas , tb1 , . . . , tbr }

Fs ≡

L=

⟨b1,...,br⟩⩽Zm

a1u1

a2

u2

as

us

b1
1

ak

uk

br 1

⟨b1,...,br⟩

• We add the basepoint subgroup L ⩽ Zm as a label for .
• We add two labels a,b ∈ Zm to the head and tail of every arc:

xi
a b

t−a xi tb

t−b x−1
i ta

s.t. the abelian contribution of the j-th petal adds up to aj, e.g.

· · ·xi1
0 0

xi2
0 0

xil
0 aj

where uj = xi1xi2 · · · xil .
• FS is called the (enriched) flower automaton of S.

ENRICHED FLOWER AUTOMATA

Let S = {u1ta1 , . . . ,uktak } = {u1ta1 , . . . ,ustas , tb1 , . . . , tbr }

Fs ≡

L=

⟨b1,...,br⟩⩽Zm

a1u1

a2

u2

as

us

b1
1

ak

ukbr 1

⟨b1,...,br⟩

• We add the basepoint subgroup L ⩽ Zm as a label for .
• We add two labels a,b ∈ Zm to the head and tail of every arc:

xi
a b

t−a xi tb

t−b x−1
i ta

s.t. the abelian contribution of the j-th petal adds up to aj, e.g.

· · ·xi1
0 0

xi2
0 0

xil
0 aj

where uj = xi1xi2 · · · xil .
• FS is called the (enriched) flower automaton of S.

ENRICHED FLOWER AUTOMATA

Let S = {u1ta1 , . . . ,uktak } = {u1ta1 , . . . ,ustas , tb1 , . . . , tbr }

Fs ≡

L=

⟨b1,...,br⟩⩽Zma1u1

a2

u2

as

us

b1
1

ak

ukbr 1⟨b1,...,br⟩

• We add the basepoint subgroup L ⩽ Zm as a label for .
• We add two labels a,b ∈ Zm to the head and tail of every arc:

xi
a b

t−a xi tb

t−b x−1
i ta

s.t. the abelian contribution of the j-th petal adds up to aj, e.g.

· · ·xi1
0 0

xi2
0 0

xil
0 aj

where uj = xi1xi2 · · · xil .
• FS is called the (enriched) flower automaton of S.

ENRICHED FLOWER AUTOMATA

Let S = {u1ta1 , . . . ,uktak } = {u1ta1 , . . . ,ustas , tb1 , . . . , tbr }

Fs ≡ L= ⟨b1,...,br⟩⩽Zma1u1

a2

u2

as

us

b1
1

ak

ukbr 1⟨b1,...,br⟩

• We add the basepoint subgroup L ⩽ Zm as a label for .
• We add two labels a,b ∈ Zm to the head and tail of every arc:

xi
a b

t−a xi tb

t−b x−1
i ta

s.t. the abelian contribution of the j-th petal adds up to aj, e.g.

· · ·xi1
0 0

xi2
0 0

xil
0 aj

where uj = xi1xi2 · · · xil .
• FS is called the (enriched) flower automaton of S.

ENRICHED FLOWER AUTOMATA

Let S = {u1ta1 , . . . ,uktak } = {u1ta1 , . . . ,ustas , tb1 , . . . , tbr }

Fs ≡ L= ⟨b1,...,br⟩⩽Zma1u1

a2

u2

as

us

b1
1

ak

ukbr 1⟨b1,...,br⟩

• We add the basepoint subgroup L ⩽ Zm as a label for .

• We add two labels a,b ∈ Zm to the head and tail of every arc:

xi
a b

t−a xi tb

t−b x−1
i ta

s.t. the abelian contribution of the j-th petal adds up to aj, e.g.

· · ·xi1
0 0

xi2
0 0

xil
0 aj

where uj = xi1xi2 · · · xil .
• FS is called the (enriched) flower automaton of S.

ENRICHED FLOWER AUTOMATA

Let S = {u1ta1 , . . . ,uktak } = {u1ta1 , . . . ,ustas , tb1 , . . . , tbr }

Fs ≡ L= ⟨b1,...,br⟩⩽Zma1u1

a2

u2

as

us

b1
1

ak

ukbr 1⟨b1,...,br⟩

• We add the basepoint subgroup L ⩽ Zm as a label for .
• We add two labels a,b ∈ Zm to the head and tail of every arc:

xi
a b

t−a xi tb

t−b x−1
i ta

s.t. the abelian contribution of the j-th petal adds up to aj, e.g.

· · ·xi1
0 0

xi2
0 0

xil
0 aj

where uj = xi1xi2 · · · xil .
• FS is called the (enriched) flower automaton of S.

ENRICHED FLOWER AUTOMATA

Let S = {u1ta1 , . . . ,uktak } = {u1ta1 , . . . ,ustas , tb1 , . . . , tbr }

Fs ≡ L= ⟨b1,...,br⟩⩽Zma1u1

a2

u2

as

us

b1
1

ak

ukbr 1⟨b1,...,br⟩

• We add the basepoint subgroup L ⩽ Zm as a label for .
• We add two labels a,b ∈ Zm to the head and tail of every arc:

xi
a b

t−a xi tb

t−b x−1
i ta

s.t. the abelian contribution of the j-th petal adds up to aj, e.g.

· · ·xi1
0 0

xi2
0 0

xil
0 aj

where uj = xi1xi2 · · · xil .
• FS is called the (enriched) flower automaton of S.

ENRICHED FLOWER AUTOMATA

Let S = {u1ta1 , . . . ,uktak } = {u1ta1 , . . . ,ustas , tb1 , . . . , tbr }

Fs ≡ L= ⟨b1,...,br⟩⩽Zma1u1

a2

u2

as

us

b1
1

ak

ukbr 1⟨b1,...,br⟩

• We add the basepoint subgroup L ⩽ Zm as a label for .
• We add two labels a,b ∈ Zm to the head and tail of every arc:

xi
a b

t−a xi tb

t−b x−1
i ta

s.t. the abelian contribution of the j-th petal adds up to aj, e.g.

· · ·xi1
0 0

xi2
0 0

xil
0 aj

where uj = xi1xi2 · · · xil .
• FS is called the (enriched) flower automaton of S.

ENRICHED FLOWER AUTOMATA

Let S = {u1ta1 , . . . ,uktak } = {u1ta1 , . . . ,ustas , tb1 , . . . , tbr }

Fs ≡ L= ⟨b1,...,br⟩⩽Zma1u1

a2

u2

as

us

b1
1

ak

ukbr 1⟨b1,...,br⟩

• We add the basepoint subgroup L ⩽ Zm as a label for .
• We add two labels a,b ∈ Zm to the head and tail of every arc:

xi
a b

t−a xi tb

t−b x−1
i ta

s.t. the abelian contribution of the j-th petal adds up to aj, e.g.

· · ·xi1
0 0

xi2
0 0

xil
0 aj

where uj = xi1xi2 · · · xil .
• FS is called the (enriched) flower automaton of S.

ENRICHED FLOWER AUTOMATA

Let S = {u1ta1 , . . . ,uktak } = {u1ta1 , . . . ,ustas , tb1 , . . . , tbr }

Fs ≡ L= ⟨b1,...,br⟩⩽Zma1u1

a2

u2

as

us

b1
1

ak

ukbr 1⟨b1,...,br⟩

• We add the basepoint subgroup L ⩽ Zm as a label for .
• We add two labels a,b ∈ Zm to the head and tail of every arc:

xi
a b

t−a xi tb

t−b x−1
i ta

s.t. the abelian contribution of the j-th petal adds up to aj, e.g.

· · ·xi1
0 0

xi2
0 0

xil
0 aj

where uj = xi1xi2 · · · xil .
• FS is called the (enriched) flower automaton of S.

ENRICHED FLOWER AUTOMATA

Let S = {u1ta1 , . . . ,uktak } = {u1ta1 , . . . ,ustas , tb1 , . . . , tbr }

Fs ≡ L= ⟨b1,...,br⟩⩽Zma1u1

a2

u2

as

us

b1
1

ak

ukbr 1⟨b1,...,br⟩

• We add the basepoint subgroup L ⩽ Zm as a label for .
• We add two labels a,b ∈ Zm to the head and tail of every arc:

xi
a b

t−a xi tb

t−b x−1
i ta

s.t. the abelian contribution of the j-th petal adds up to aj,

e.g.

· · ·xi1
0 0

xi2
0 0

xil
0 aj

where uj = xi1xi2 · · · xil .
• FS is called the (enriched) flower automaton of S.

ENRICHED FLOWER AUTOMATA

Let S = {u1ta1 , . . . ,uktak } = {u1ta1 , . . . ,ustas , tb1 , . . . , tbr }

Fs ≡ L= ⟨b1,...,br⟩⩽Zma1u1

a2

u2

as

us

b1
1

ak

ukbr 1⟨b1,...,br⟩

• We add the basepoint subgroup L ⩽ Zm as a label for .
• We add two labels a,b ∈ Zm to the head and tail of every arc:

xi
a b

t−a xi tb

t−b x−1
i ta

s.t. the abelian contribution of the j-th petal adds up to aj, e.g.

· · ·xi1
0 0

xi2
0 0

xil
0 aj

where uj = xi1xi2 · · · xil .
• FS is called the (enriched) flower automaton of S.

ENRICHED FLOWER AUTOMATA

Let S = {u1ta1 , . . . ,uktak } = {u1ta1 , . . . ,ustas , tb1 , . . . , tbr }

Fs ≡ L= ⟨b1,...,br⟩⩽Zma1u1

a2

u2

as

us

b1
1

ak

ukbr 1⟨b1,...,br⟩

• We add the basepoint subgroup L ⩽ Zm as a label for .
• We add two labels a,b ∈ Zm to the head and tail of every arc:

xi
a b

t−a xi tb

t−b x−1
i ta

s.t. the abelian contribution of the j-th petal adds up to aj, e.g.

· · ·xi1
0 0

xi2
0 0

xil
0 aj

where uj = xi1xi2 · · · xil .

• FS is called the (enriched) flower automaton of S.

ENRICHED FLOWER AUTOMATA

Let S = {u1ta1 , . . . ,uktak } = {u1ta1 , . . . ,ustas , tb1 , . . . , tbr }

Fs ≡ L= ⟨b1,...,br⟩⩽Zma1u1

a2

u2

as

us

b1
1

ak

ukbr 1⟨b1,...,br⟩

• We add the basepoint subgroup L ⩽ Zm as a label for .
• We add two labels a,b ∈ Zm to the head and tail of every arc:

xi
a b

t−a xi tb

t−b x−1
i ta

s.t. the abelian contribution of the j-th petal adds up to aj, e.g.

· · ·xi1

0 0

xi2

0 0

xil

0

aj

where uj = xi1xi2 · · · xil .

• FS is called the (enriched) flower automaton of S.

ENRICHED FLOWER AUTOMATA

Let S = {u1ta1 , . . . ,uktak } = {u1ta1 , . . . ,ustas , tb1 , . . . , tbr }

Fs ≡ L= ⟨b1,...,br⟩⩽Zm

a1

u1

a2

u2

as

us

b1
1

ak

ukbr 1⟨b1,...,br⟩

• We add the basepoint subgroup L ⩽ Zm as a label for .
• We add two labels a,b ∈ Zm to the head and tail of every arc:

xi
a b

t−a xi tb

t−b x−1
i ta

s.t. the abelian contribution of the j-th petal adds up to aj, e.g.

· · ·xi1

0 0

xi2

0 0

xil

0

aj

where uj = xi1xi2 · · · xil .

• FS is called the (enriched) flower automaton of S.

ENRICHED FLOWER AUTOMATA

Let S = {u1ta1 , . . . ,uktak } = {u1ta1 , . . . ,ustas , tb1 , . . . , tbr }

Fs ≡ L= ⟨b1,...,br⟩⩽Zm

a1

u1

a2

u2

as

us

b1
1

ak

ukbr 1⟨b1,...,br⟩

• We add the basepoint subgroup L ⩽ Zm as a label for .
• We add two labels a,b ∈ Zm to the head and tail of every arc:

xi
a b

t−a xi tb

t−b x−1
i ta

s.t. the abelian contribution of the j-th petal adds up to aj, e.g.

· · ·xi1

0 0

xi2

0 0

xil

0

aj

where uj = xi1xi2 · · · xil .
• FS is called the (enriched) flower automaton of S.

ENRICHED AUTOMATA

Definition
A Zm-enriched X-automaton Γ̂ L = (Γ̂ , L) is a pointed involutive
automaton Γ̂ with:

1. the basepoint labelled by a subgroup L ⩽ Zm.

and every arc having:

2. a middle “free label” xi ∈ X.
3. two “abelian labels” a,b ∈ Zm in the head and tail respectively,

meant to be read

(for a given action α = (Ai)i : FX → GLm(Z)):

= xi tb− aAi

= x−1
i ta−bA−1

i

xi

a b

t−a xi tb

t−b x−1
i ta

Definition.
The subgroup recognized by Γ̂ L in Gα, denoted by 〈Γ̂ L〉α is the set of
α-enriched labels of -walks in Γ̂ .

ENRICHED AUTOMATA

Definition
A Zm-enriched X-automaton Γ̂ L = (Γ̂ , L) is a pointed involutive
automaton Γ̂ with:
1. the basepoint labelled by a subgroup L ⩽ Zm.

and every arc having:

2. a middle “free label” xi ∈ X.
3. two “abelian labels” a,b ∈ Zm in the head and tail respectively,

meant to be read

(for a given action α = (Ai)i : FX → GLm(Z)):

= xi tb− aAi

= x−1
i ta−bA−1

i

xi

a b

t−a xi tb

t−b x−1
i ta

Definition.
The subgroup recognized by Γ̂ L in Gα, denoted by 〈Γ̂ L〉α is the set of
α-enriched labels of -walks in Γ̂ .

ENRICHED AUTOMATA

Definition
A Zm-enriched X-automaton Γ̂ L = (Γ̂ , L) is a pointed involutive
automaton Γ̂ with:
1. the basepoint labelled by a subgroup L ⩽ Zm.

and every arc having:
2. a middle “free label” xi ∈ X.

3. two “abelian labels” a,b ∈ Zm in the head and tail respectively,
meant to be read

(for a given action α = (Ai)i : FX → GLm(Z)):

= xi tb− aAi

= x−1
i ta−bA−1

i

xi

a b

t−a xi tb

t−b x−1
i ta

Definition.
The subgroup recognized by Γ̂ L in Gα, denoted by 〈Γ̂ L〉α is the set of
α-enriched labels of -walks in Γ̂ .

ENRICHED AUTOMATA

Definition
A Zm-enriched X-automaton Γ̂ L = (Γ̂ , L) is a pointed involutive
automaton Γ̂ with:
1. the basepoint labelled by a subgroup L ⩽ Zm.

and every arc having:
2. a middle “free label” xi ∈ X.

3. two “abelian labels” a,b ∈ Zm in the head and tail respectively,
meant to be read

(for a given action α = (Ai)i : FX → GLm(Z)):

= xi tb− aAi

= x−1
i ta−bA−1

i

xi

a b

t−a xi tb

t−b x−1
i ta

Definition.
The subgroup recognized by Γ̂ L in Gα, denoted by 〈Γ̂ L〉α is the set of
α-enriched labels of -walks in Γ̂ .

ENRICHED AUTOMATA

Definition
A Zm-enriched X-automaton Γ̂ L = (Γ̂ , L) is a pointed involutive
automaton Γ̂ with:
1. the basepoint labelled by a subgroup L ⩽ Zm.

and every arc having:
2. a middle “free label” xi ∈ X.
3. two “abelian labels” a,b ∈ Zm in the head and tail respectively,

meant to be read

(for a given action α = (Ai)i : FX → GLm(Z)):

= xi tb− aAi

= x−1
i ta−bA−1

i

xi

a b

t−a xi tb

t−b x−1
i ta

Definition.
The subgroup recognized by Γ̂ L in Gα, denoted by 〈Γ̂ L〉α is the set of
α-enriched labels of -walks in Γ̂ .

ENRICHED AUTOMATA

Definition
A Zm-enriched X-automaton Γ̂ L = (Γ̂ , L) is a pointed involutive
automaton Γ̂ with:
1. the basepoint labelled by a subgroup L ⩽ Zm.

and every arc having:
2. a middle “free label” xi ∈ X.
3. two “abelian labels” a,b ∈ Zm in the head and tail respectively,

meant to be read

(for a given action α = (Ai)i : FX → GLm(Z)):

= xi tb− aAi

= x−1
i ta−bA−1

i

xi
a b

t−a xi tb

t−b x−1
i ta

Definition.
The subgroup recognized by Γ̂ L in Gα, denoted by 〈Γ̂ L〉α is the set of
α-enriched labels of -walks in Γ̂ .

ENRICHED AUTOMATA

Definition
A Zm-enriched X-automaton Γ̂ L = (Γ̂ , L) is a pointed involutive
automaton Γ̂ with:
1. the basepoint labelled by a subgroup L ⩽ Zm.

and every arc having:
2. a middle “free label” xi ∈ X.
3. two “abelian labels” a,b ∈ Zm in the head and tail respectively,

meant to be read

(for a given action α = (Ai)i : FX → GLm(Z)):

= xi tb− aAi

= x−1
i ta−bA−1

i

xi
a b

t−a xi tb

t−b x−1
i ta

Definition.
The subgroup recognized by Γ̂ L in Gα, denoted by 〈Γ̂ L〉α is the set of
α-enriched labels of -walks in Γ̂ .

ENRICHED AUTOMATA

Definition
A Zm-enriched X-automaton Γ̂ L = (Γ̂ , L) is a pointed involutive
automaton Γ̂ with:
1. the basepoint labelled by a subgroup L ⩽ Zm.

and every arc having:
2. a middle “free label” xi ∈ X.
3. two “abelian labels” a,b ∈ Zm in the head and tail respectively,

meant to be read

(for a given action α = (Ai)i : FX → GLm(Z)):

= xi tb− aAi

= x−1
i ta−bA−1

i

xi
a b

t−a xi tb

t−b x−1
i ta

Definition.
The subgroup recognized by Γ̂ L in Gα, denoted by 〈Γ̂ L〉α is the set of
α-enriched labels of -walks in Γ̂ .

ENRICHED AUTOMATA

Definition
A Zm-enriched X-automaton Γ̂ L = (Γ̂ , L) is a pointed involutive
automaton Γ̂ with:
1. the basepoint labelled by a subgroup L ⩽ Zm.

and every arc having:
2. a middle “free label” xi ∈ X.
3. two “abelian labels” a,b ∈ Zm in the head and tail respectively,

meant to be read

(for a given action α = (Ai)i : FX → GLm(Z)):

= xi tb− aAi

= x−1
i ta−bA−1

i

xi
a b

t−a xi tb

t−b x−1
i ta

Definition.
The subgroup recognized by Γ̂ L in Gα, denoted by 〈Γ̂ L〉α is the set of
α-enriched labels of -walks in Γ̂ .

ENRICHED AUTOMATA

Definition
A Zm-enriched X-automaton Γ̂ L = (Γ̂ , L) is a pointed involutive
automaton Γ̂ with:
1. the basepoint labelled by a subgroup L ⩽ Zm.

and every arc having:
2. a middle “free label” xi ∈ X.
3. two “abelian labels” a,b ∈ Zm in the head and tail respectively,

meant to be read (for a given action α = (Ai)i : FX → GLm(Z)):

= xi tb− aAi

= x−1
i ta−bA−1

i

xi
a b

t−a xi tb

t−b x−1
i ta

Definition.
The subgroup recognized by Γ̂ L in Gα, denoted by 〈Γ̂ L〉α is the set of
α-enriched labels of -walks in Γ̂ .

ENRICHED AUTOMATA

Definition
A Zm-enriched X-automaton Γ̂ L = (Γ̂ , L) is a pointed involutive
automaton Γ̂ with:
1. the basepoint labelled by a subgroup L ⩽ Zm.

and every arc having:
2. a middle “free label” xi ∈ X.
3. two “abelian labels” a,b ∈ Zm in the head and tail respectively,

meant to be read (for a given action α = (Ai)i : FX → GLm(Z)):

= xi tb− aAi

= x−1
i ta−bA−1

i

xi
a b

t−a xi tb

t−b x−1
i ta

Definition.
The subgroup recognized by Γ̂ L in Gα, denoted by 〈Γ̂ L〉α is the set of
α-enriched labels of -walks in Γ̂ .

ENRICHED AUTOMATA

Definition
A Zm-enriched X-automaton Γ̂ L = (Γ̂ , L) is a pointed involutive
automaton Γ̂ with:
1. the basepoint labelled by a subgroup L ⩽ Zm.

and every arc having:
2. a middle “free label” xi ∈ X.
3. two “abelian labels” a,b ∈ Zm in the head and tail respectively,

meant to be read (for a given action α = (Ai)i : FX → GLm(Z)):

= xi tb− aAi

= x−1
i ta−bA−1

i

xi
a b

t−a xi tb

t−b x−1
i ta

Definition.
The subgroup recognized by Γ̂ L in Gα, denoted by 〈Γ̂ L〉α is the set of
α-enriched labels of -walks in Γ̂ .

ENRICHED AUTOMATA

Definition
A Zm-enriched X-automaton Γ̂ L = (Γ̂ , L) is a pointed involutive
automaton Γ̂ with:
1. the basepoint labelled by a subgroup L ⩽ Zm.

and every arc having:
2. a middle “free label” xi ∈ X.
3. two “abelian labels” a,b ∈ Zm in the head and tail respectively,

meant to be read (for a given action α = (Ai)i : FX → GLm(Z)):

= xi tb− aAi

= x−1
i ta−bA−1

i

xi
a b

t−a xi tb

t−b x−1
i ta

Definition.
The subgroup recognized by Γ̂ L in Gα, denoted by 〈Γ̂ L〉α is the set of
α-enriched labels of -walks in Γ̂ .

SKELETON

Definition:
The skeleton of Γ̂ L, denoted by sk(Γ̂ L) is the X-automaton obtained
after removing from Γ̂ all the abelian labels.

It is clear that 〈sk(Γ̂ L)〉 = (〈Γ̂ L〉)π ⩽ FX.

Example: A Z2-enriched {x, y}-automaton and its skeleton

Γ̂ L
⟨(2,3)⟩

x

(0,2)
y

x y
x

(1,2) (0,2) y

(1,2)

sk(Γ̂ L)

x

y

y
x y

SKELETON

Definition:
The skeleton of Γ̂ L, denoted by sk(Γ̂ L) is the X-automaton obtained
after removing from Γ̂ all the abelian labels.

It is clear that 〈sk(Γ̂ L)〉 = (〈Γ̂ L〉)π ⩽ FX.

Example: A Z2-enriched {x, y}-automaton and its skeleton

Γ̂ L
⟨(2,3)⟩

x

(0,2)
y

x y
x

(1,2) (0,2) y

(1,2)

sk(Γ̂ L)

x

y

y
x y

SKELETON

Definition:
The skeleton of Γ̂ L, denoted by sk(Γ̂ L) is the X-automaton obtained
after removing from Γ̂ all the abelian labels.

It is clear that 〈sk(Γ̂ L)〉 = (〈Γ̂ L〉)π ⩽ FX.

Example: A Z2-enriched {x, y}-automaton and its skeleton

Γ̂ L
⟨(2,3)⟩

x

(0,2)
y

x y
x

(1,2) (0,2) y

(1,2)

sk(Γ̂ L)

x

y

y
x y

SKELETON

Definition:
The skeleton of Γ̂ L, denoted by sk(Γ̂ L) is the X-automaton obtained
after removing from Γ̂ all the abelian labels.

It is clear that 〈sk(Γ̂ L)〉 = (〈Γ̂ L〉)π ⩽ FX.

Example: A Z2-enriched {x, y}-automaton and its skeleton

Γ̂ L
⟨(2,3)⟩

x

(0,2)
y

x y
x

(1,2) (0,2) y

(1,2)

sk(Γ̂ L)

x

y

y
x y

REDUNDANCY

As it happens in the free group, it is clear that

{Zm-enriched X-automata} → {subgroups of Gα}

Γ̂ 7→ 〈Γ̂〉α
is well-defined and onto (why?),

but very far from injective…

There is a lot of redundancy in an enriched automaton Γ̂ :
• In the skeleton sk(Γ̂)

(coming from non-determinism and non-coreness),
• In the basepoint subgroup L
(by conjugation w.r.t. the free part or closed foldings),

• In the arc-labelling
(by the multiplication rules in Gα + the action of L).

In order to get rid of these redundancy we introduce different kinds of
transformations …

REDUNDANCY

As it happens in the free group, it is clear that

{Zm-enriched X-automata} → {subgroups of Gα}

Γ̂ 7→ 〈Γ̂〉α
is well-defined and onto (why?), but very far from injective…

There is a lot of redundancy in an enriched automaton Γ̂ :
• In the skeleton sk(Γ̂)

(coming from non-determinism and non-coreness),
• In the basepoint subgroup L
(by conjugation w.r.t. the free part or closed foldings),

• In the arc-labelling
(by the multiplication rules in Gα + the action of L).

In order to get rid of these redundancy we introduce different kinds of
transformations …

REDUNDANCY

As it happens in the free group, it is clear that

{Zm-enriched X-automata} → {subgroups of Gα}

Γ̂ 7→ 〈Γ̂〉α
is well-defined and onto (why?), but very far from injective…

There is a lot of redundancy in an enriched automaton Γ̂ :
• In the skeleton sk(Γ̂)

(coming from non-determinism and non-coreness),

• In the basepoint subgroup L
(by conjugation w.r.t. the free part or closed foldings),

• In the arc-labelling
(by the multiplication rules in Gα + the action of L).

In order to get rid of these redundancy we introduce different kinds of
transformations …

REDUNDANCY

As it happens in the free group, it is clear that

{Zm-enriched X-automata} → {subgroups of Gα}

Γ̂ 7→ 〈Γ̂〉α
is well-defined and onto (why?), but very far from injective…

There is a lot of redundancy in an enriched automaton Γ̂ :
• In the skeleton sk(Γ̂)

(coming from non-determinism and non-coreness),
• In the basepoint subgroup L
(by conjugation w.r.t. the free part or closed foldings),

• In the arc-labelling
(by the multiplication rules in Gα + the action of L).

In order to get rid of these redundancy we introduce different kinds of
transformations …

REDUNDANCY

As it happens in the free group, it is clear that

{Zm-enriched X-automata} → {subgroups of Gα}

Γ̂ 7→ 〈Γ̂〉α
is well-defined and onto (why?), but very far from injective…

There is a lot of redundancy in an enriched automaton Γ̂ :
• In the skeleton sk(Γ̂)

(coming from non-determinism and non-coreness),
• In the basepoint subgroup L
(by conjugation w.r.t. the free part or closed foldings),

• In the arc-labelling
(by the multiplication rules in Gα + the action of L).

In order to get rid of these redundancy we introduce different kinds of
transformations …

REDUNDANCY

As it happens in the free group, it is clear that

{Zm-enriched X-automata} → {subgroups of Gα}

Γ̂ 7→ 〈Γ̂〉α
is well-defined and onto (why?), but very far from injective…

There is a lot of redundancy in an enriched automaton Γ̂ :
• In the skeleton sk(Γ̂)

(coming from non-determinism and non-coreness),
• In the basepoint subgroup L
(by conjugation w.r.t. the free part or closed foldings),

• In the arc-labelling
(by the multiplication rules in Gα + the action of L).

In order to get rid of these redundancy we introduce different kinds of
transformations …

ABELIAN TRANSFORMATIONS

Lemma

The following transformations do not change the subgroup H = 〈Γ̂ L〉:

A0 Replacing the base subgroup L L = LHπ = (L)AHπ.
A1 Adding any l ∈ L to any abelian label in the neighborhood of :

L Lxi
a b

xi
a+l b

A2 Adding c and cAi to the tail and head of an arc with free label xi:

xi
a b

xi
a+c b+c Ai

A3 Adding any c ∈ Zm to every abelian label in the neighborhood of
a nonbase vertex:

x1
a1

x2
a2

x3
a3

x1
a1+c

x2
a2+c

x3
a3+c

ABELIAN TRANSFORMATIONS

Lemma
The following transformations do not change the subgroup H = 〈Γ̂ L〉:

A0 Replacing the base subgroup L L = LHπ = (L)AHπ.
A1 Adding any l ∈ L to any abelian label in the neighborhood of :

L Lxi
a b

xi
a+l b

A2 Adding c and cAi to the tail and head of an arc with free label xi:

xi
a b

xi
a+c b+c Ai

A3 Adding any c ∈ Zm to every abelian label in the neighborhood of
a nonbase vertex:

x1
a1

x2
a2

x3
a3

x1
a1+c

x2
a2+c

x3
a3+c

ABELIAN TRANSFORMATIONS

Lemma
The following transformations do not change the subgroup H = 〈Γ̂ L〉:

A0 Replacing the base subgroup L L = LHπ = (L)AHπ.

A1 Adding any l ∈ L to any abelian label in the neighborhood of :

L Lxi
a b

xi
a+l b

A2 Adding c and cAi to the tail and head of an arc with free label xi:

xi
a b

xi
a+c b+c Ai

A3 Adding any c ∈ Zm to every abelian label in the neighborhood of
a nonbase vertex:

x1
a1

x2
a2

x3
a3

x1
a1+c

x2
a2+c

x3
a3+c

ABELIAN TRANSFORMATIONS

Lemma
The following transformations do not change the subgroup H = 〈Γ̂ L〉:

A0 Replacing the base subgroup L L = LHπ = (L)AHπ.
A1 Adding any l ∈ L to any abelian label in the neighborhood of :

L Lxi
a b

xi
a+l b

A2 Adding c and cAi to the tail and head of an arc with free label xi:

xi
a b

xi
a+c b+c Ai

A3 Adding any c ∈ Zm to every abelian label in the neighborhood of
a nonbase vertex:

x1
a1

x2
a2

x3
a3

x1
a1+c

x2
a2+c

x3
a3+c

ABELIAN TRANSFORMATIONS

Lemma
The following transformations do not change the subgroup H = 〈Γ̂ L〉:

A0 Replacing the base subgroup L L = LHπ = (L)AHπ.
A1 Adding any l ∈ L to any abelian label in the neighborhood of :

L Lxi
a b

xi
a+l b

A2 Adding c and cAi to the tail and head of an arc with free label xi:

xi
a b

xi
a+c b+c Ai

A3 Adding any c ∈ Zm to every abelian label in the neighborhood of
a nonbase vertex:

x1
a1

x2
a2

x3
a3

x1
a1+c

x2
a2+c

x3
a3+c

ABELIAN TRANSFORMATIONS

Lemma
The following transformations do not change the subgroup H = 〈Γ̂ L〉:

A0 Replacing the base subgroup L L = LHπ = (L)AHπ.
A1 Adding any l ∈ L to any abelian label in the neighborhood of :

L Lxi
a b

xi
a+l b

A2 Adding c and cAi to the tail and head of an arc with free label xi:

xi
a b

xi
a+c b+c Ai

A3 Adding any c ∈ Zm to every abelian label in the neighborhood of
a nonbase vertex:

x1
a1

x2
a2

x3
a3

x1
a1+c

x2
a2+c

x3
a3+c

ABELIAN TRANSFORMATIONS

Lemma
The following transformations do not change the subgroup H = 〈Γ̂ L〉:

A0 Replacing the base subgroup L L = LHπ = (L)AHπ.
A1 Adding any l ∈ L to any abelian label in the neighborhood of :

L Lxi
a b

xi
a+l b

A2 Adding c and cAi to the tail and head of an arc with free label xi:

xi
a b

xi
a+c b+c Ai

A3 Adding any c ∈ Zm to every abelian label in the neighborhood of
a nonbase vertex:

x1
a1

x2
a2

x3
a3

x1
a1+c

x2
a2+c

x3
a3+c

ABELIAN TRANSFORMATIONS

Lemma
The following transformations do not change the subgroup H = 〈Γ̂ L〉:

A0 Replacing the base subgroup L L = LHπ = (L)AHπ.
A1 Adding any l ∈ L to any abelian label in the neighborhood of :

L Lxi
a b

xi
a+l b

A2 Adding c and cAi to the tail and head of an arc with free label xi:

xi
a b

xi
a+c b+c Ai

A3 Adding any c ∈ Zm to every abelian label in the neighborhood of
a nonbase vertex:

x1
a1

x2
a2

x3
a3

x1
a1+c

x2
a2+c

x3
a3+c

ABELIAN TRANSFORMATIONS

Lemma
The following transformations do not change the subgroup H = 〈Γ̂ L〉:

A0 Replacing the base subgroup L L = LHπ = (L)AHπ.
A1 Adding any l ∈ L to any abelian label in the neighborhood of :

L Lxi
a b

xi
a+l b

A2 Adding c and cAi to the tail and head of an arc with free label xi:

xi
a b

xi
a+c b+c Ai

A3 Adding any c ∈ Zm to every abelian label in the neighborhood of
a nonbase vertex:

x1
a1

x2
a2

x3
a3

x1
a1+c

x2
a2+c

x3
a3+c

ABELIAN TRANSFORMATIONS

Lemma
The following transformations do not change the subgroup H = 〈Γ̂ L〉:

A0 Replacing the base subgroup L L = LHπ = (L)AHπ.
A1 Adding any l ∈ L to any abelian label in the neighborhood of :

L Lxi
a b

xi
a+l b

A2 Adding c and cAi to the tail and head of an arc with free label xi:

xi
a b

xi
a+c b+c Ai

A3 Adding any c ∈ Zm to every abelian label in the neighborhood of
a nonbase vertex:

x1
a1

x2
a2

x3
a3

x1
a1+c

x2
a2+c

x3
a3+c

ENRICHED FOLDINGS

Lemma
The following transformations do not change the subgroup recognized
by an enriched automaton:

F1 Identify two nonparallel incident arcs with the same labels:

xia
b

xia
b

(open folding)

xi
a b

F2 “Identify” two parallel edges with the same free label:

L

xia b

xic d

v

(closed folding)

L+ ⟨(d−b+(a−c)Ai)Av⟩

xi
a b

v

ENRICHED FOLDINGS

Lemma
The following transformations do not change the subgroup recognized
by an enriched automaton:

F1 Identify two nonparallel incident arcs with the same labels:

xia
b

xia
b

(open folding)

xi
a b

F2 “Identify” two parallel edges with the same free label:

L

xia b

xic d

v

(closed folding)

L+ ⟨(d−b+(a−c)Ai)Av⟩

xi
a b

v

ENRICHED FOLDINGS

Lemma
The following transformations do not change the subgroup recognized
by an enriched automaton:

F1 Identify two nonparallel incident arcs with the same labels:

xia
b

xia
b

(open folding)

xi
a b

F2 “Identify” two parallel edges with the same free label:

L

xia b

xic d

v

(closed folding)

L+ ⟨(d−b+(a−c)Ai)Av⟩

xi
a b

v

ENRICHED FOLDINGS

Lemma
The following transformations do not change the subgroup recognized
by an enriched automaton:

F1 Identify two nonparallel incident arcs with the same labels:

xia
b

xia
b

(open folding)

xi
a b

F2 “Identify” two parallel edges with the same free label:

L

xia b

xic d

v

(closed folding)

L+ ⟨(d−b+(a−c)Ai)Av⟩

xi
a b

v

ENRICHED FOLDINGS

Lemma
The following transformations do not change the subgroup recognized
by an enriched automaton:

F1 Identify two nonparallel incident arcs with the same labels:

xia
b

xia
b

(open folding)xi
a b

F2 “Identify” two parallel edges with the same free label:

L

xia b

xic d

v

(closed folding)

L+ ⟨(d−b+(a−c)Ai)Av⟩

xi
a b

v

ENRICHED FOLDINGS

Lemma
The following transformations do not change the subgroup recognized
by an enriched automaton:

F1 Identify two nonparallel incident arcs with the same labels:

xia
b

xia
b

(open folding)xi
a b

F2 “Identify” two parallel edges with the same free label:

L

xia b

xic d

v

(closed folding)

L+ ⟨(d−b+(a−c)Ai)Av⟩

xi
a b

v

ENRICHED FOLDINGS

Lemma
The following transformations do not change the subgroup recognized
by an enriched automaton:

F1 Identify two nonparallel incident arcs with the same labels:

xia
b

xia
b

(open folding)xi
a b

F2 “Identify” two parallel edges with the same free label:

L

xia b

xic d

v

(closed folding)

L+ ⟨(d−b+(a−c)Ai)Av⟩

xi
a b

v

ENRICHED FOLDINGS

Lemma
The following transformations do not change the subgroup recognized
by an enriched automaton:

F1 Identify two nonparallel incident arcs with the same labels:

xia
b

xia
b

(open folding)xi
a b

F2 “Identify” two parallel edges with the same free label:

L

xia b

xic d

v

(closed folding)

L+ ⟨(d−b+(a−c)Ai)Av⟩

xi
a b

v

ENRICHED FOLDINGS

Lemma
The following transformations do not change the subgroup recognized
by an enriched automaton:

F1 Identify two nonparallel incident arcs with the same labels:

xia
b

xia
b

(open folding)xi
a b

F2 “Identify” two parallel edges with the same free label:

L

xia b

xic d

v

(closed folding)

L+ ⟨(d−b+(a−c)Ai)Av⟩

xi
a b

v

ENRICHED FOLDINGS

Lemma
The following transformations do not change the subgroup recognized
by an enriched automaton:

F1 Identify two nonparallel incident arcs with the same labels:

xia
b

xia
b

(open folding)xi
a b

F2 “Identify” two parallel edges with the same free label:

L

xia b

xic d

v

(closed folding)

L+ ⟨(d−b+(a−c)Ai)Av⟩

xi
a b

v

TWO IMPORTANT LEMMAS

Lemma
If Γ̂ L is finite then a basis for L = LHπ is computable.

Proof. Given Γ̂ L a finite enriched automaton,

Lemma

A pair of enriched arcs ê1, ê2 in Γ̂ L admit an open (resp. closed)
folding if and only if the corresponding arcs e1, e2 admit an open
(resp. closed) folding in sk(Γ̂ L).

Proof. Play with abelian transformations.

TWO IMPORTANT LEMMAS

Lemma
If Γ̂ L is finite then a basis for L = LHπ is computable.

Proof. Given Γ̂ L a finite enriched automaton,

Lemma

A pair of enriched arcs ê1, ê2 in Γ̂ L admit an open (resp. closed)
folding if and only if the corresponding arcs e1, e2 admit an open
(resp. closed) folding in sk(Γ̂ L).

Proof. Play with abelian transformations.

TWO IMPORTANT LEMMAS

Lemma
If Γ̂ L is finite then a basis for L = LHπ is computable.

Proof. Given Γ̂ L a finite enriched automaton,
1. Compute a free-abelian basis B of L;

2. compute a basis W of Hπ = 〈sk(Γ̂ L)〉;
3. check whether L = 〈B〉 is invariant by conjugation by Hπ,

i.e., check whether
(B)AW ⊆ B

(decidable since both B and W are finite)
4. if YES then return B;
5. otherwise compute a basis for B ′ for 〈B ∪ (B)AW〉;
6. update B← B ′ and repeat step 3.

Lemma

A pair of enriched arcs ê1, ê2 in Γ̂ L admit an open (resp. closed)
folding if and only if the corresponding arcs e1, e2 admit an open
(resp. closed) folding in sk(Γ̂ L).

Proof. Play with abelian transformations.

TWO IMPORTANT LEMMAS

Lemma
If Γ̂ L is finite then a basis for L = LHπ is computable.

Proof. Given Γ̂ L a finite enriched automaton,
1. Compute a free-abelian basis B of L;
2. compute a basis W of Hπ = 〈sk(Γ̂ L)〉;

3. check whether L = 〈B〉 is invariant by conjugation by Hπ,
i.e., check whether

(B)AW ⊆ B
(decidable since both B and W are finite)

4. if YES then return B;
5. otherwise compute a basis for B ′ for 〈B ∪ (B)AW〉;
6. update B← B ′ and repeat step 3.

Lemma

A pair of enriched arcs ê1, ê2 in Γ̂ L admit an open (resp. closed)
folding if and only if the corresponding arcs e1, e2 admit an open
(resp. closed) folding in sk(Γ̂ L).

Proof. Play with abelian transformations.

TWO IMPORTANT LEMMAS

Lemma
If Γ̂ L is finite then a basis for L = LHπ is computable.

Proof. Given Γ̂ L a finite enriched automaton,
1. Compute a free-abelian basis B of L;
2. compute a basis W of Hπ = 〈sk(Γ̂ L)〉;
3. check whether L = 〈B〉 is invariant by conjugation by Hπ,

i.e., check whether
(B)AW ⊆ B

(decidable since both B and W are finite)
4. if YES then return B;
5. otherwise compute a basis for B ′ for 〈B ∪ (B)AW〉;
6. update B← B ′ and repeat step 3.

Lemma

A pair of enriched arcs ê1, ê2 in Γ̂ L admit an open (resp. closed)
folding if and only if the corresponding arcs e1, e2 admit an open
(resp. closed) folding in sk(Γ̂ L).

Proof. Play with abelian transformations.

TWO IMPORTANT LEMMAS

Lemma
If Γ̂ L is finite then a basis for L = LHπ is computable.

Proof. Given Γ̂ L a finite enriched automaton,
1. Compute a free-abelian basis B of L;
2. compute a basis W of Hπ = 〈sk(Γ̂ L)〉;
3. check whether L = 〈B〉 is invariant by conjugation by Hπ,

i.e., check whether
(B)AW ⊆ B

(decidable since both B and W are finite)

4. if YES then return B;
5. otherwise compute a basis for B ′ for 〈B ∪ (B)AW〉;
6. update B← B ′ and repeat step 3.

Lemma

A pair of enriched arcs ê1, ê2 in Γ̂ L admit an open (resp. closed)
folding if and only if the corresponding arcs e1, e2 admit an open
(resp. closed) folding in sk(Γ̂ L).

Proof. Play with abelian transformations.

TWO IMPORTANT LEMMAS

Lemma
If Γ̂ L is finite then a basis for L = LHπ is computable.

Proof. Given Γ̂ L a finite enriched automaton,
1. Compute a free-abelian basis B of L;
2. compute a basis W of Hπ = 〈sk(Γ̂ L)〉;
3. check whether L = 〈B〉 is invariant by conjugation by Hπ,

i.e., check whether
(B)AW ⊆ B

(decidable since both B and W are finite)
4. if YES then return B;

5. otherwise compute a basis for B ′ for 〈B ∪ (B)AW〉;
6. update B← B ′ and repeat step 3.

Lemma

A pair of enriched arcs ê1, ê2 in Γ̂ L admit an open (resp. closed)
folding if and only if the corresponding arcs e1, e2 admit an open
(resp. closed) folding in sk(Γ̂ L).

Proof. Play with abelian transformations.

TWO IMPORTANT LEMMAS

Lemma
If Γ̂ L is finite then a basis for L = LHπ is computable.

Proof. Given Γ̂ L a finite enriched automaton,
1. Compute a free-abelian basis B of L;
2. compute a basis W of Hπ = 〈sk(Γ̂ L)〉;
3. check whether L = 〈B〉 is invariant by conjugation by Hπ,

i.e., check whether
(B)AW ⊆ B

(decidable since both B and W are finite)
4. if YES then return B;
5. otherwise compute a basis for B ′ for 〈B ∪ (B)AW〉;

6. update B← B ′ and repeat step 3.

Lemma

A pair of enriched arcs ê1, ê2 in Γ̂ L admit an open (resp. closed)
folding if and only if the corresponding arcs e1, e2 admit an open
(resp. closed) folding in sk(Γ̂ L).

Proof. Play with abelian transformations.

TWO IMPORTANT LEMMAS

Lemma
If Γ̂ L is finite then a basis for L = LHπ is computable.

Proof. Given Γ̂ L a finite enriched automaton,
1. Compute a free-abelian basis B of L;
2. compute a basis W of Hπ = 〈sk(Γ̂ L)〉;
3. check whether L = 〈B〉 is invariant by conjugation by Hπ,

i.e., check whether
(B)AW ⊆ B

(decidable since both B and W are finite)
4. if YES then return B;
5. otherwise compute a basis for B ′ for 〈B ∪ (B)AW〉;
6. update B← B ′ and repeat step 3.

Lemma

A pair of enriched arcs ê1, ê2 in Γ̂ L admit an open (resp. closed)
folding if and only if the corresponding arcs e1, e2 admit an open
(resp. closed) folding in sk(Γ̂ L).

Proof. Play with abelian transformations.

TWO IMPORTANT LEMMAS

Lemma
If Γ̂ L is finite then a basis for L = LHπ is computable.

Proof. Given Γ̂ L a finite enriched automaton, the previous algorithm
always ends because every updating of B either:

• increases the rank of 〈B〉, or
• decreases the index of 〈B〉 in its direct sum completion C:
〈B〉 ⩽fi C ⩽⊕ Zm.

Since the rk(〈B〉) ⩽ m and |C : 〈B〉| ⩽∞, the algorithm is guaranteed to
terminate in finite time with output L = LHπ.

Lemma

A pair of enriched arcs ê1, ê2 in Γ̂ L admit an open (resp. closed)
folding if and only if the corresponding arcs e1, e2 admit an open
(resp. closed) folding in sk(Γ̂ L).

Proof. Play with abelian transformations.

TWO IMPORTANT LEMMAS

Lemma
If Γ̂ L is finite then a basis for L = LHπ is computable.

Proof. Given Γ̂ L a finite enriched automaton, the previous algorithm
always ends because every updating of B either:

• increases the rank of 〈B〉, or
• decreases the index of 〈B〉 in its direct sum completion C:
〈B〉 ⩽fi C ⩽⊕ Zm.

Since the rk(〈B〉) ⩽ m and |C : 〈B〉| ⩽∞, the algorithm is guaranteed to
terminate in finite time with output L = LHπ.

Lemma

A pair of enriched arcs ê1, ê2 in Γ̂ L admit an open (resp. closed)
folding if and only if the corresponding arcs e1, e2 admit an open
(resp. closed) folding in sk(Γ̂ L).

Proof. Play with abelian transformations.

TWO IMPORTANT LEMMAS

Lemma
If Γ̂ L is finite then a basis for L = LHπ is computable.

Proof. Given Γ̂ L a finite enriched automaton, the previous algorithm
always ends because every updating of B either:

• increases the rank of 〈B〉, or
• decreases the index of 〈B〉 in its direct sum completion C:
〈B〉 ⩽fi C ⩽⊕ Zm.

Since the rk(〈B〉) ⩽ m and |C : 〈B〉| ⩽∞, the algorithm is guaranteed to
terminate in finite time with output L = LHπ.

Lemma

A pair of enriched arcs ê1, ê2 in Γ̂ L admit an open (resp. closed)
folding if and only if the corresponding arcs e1, e2 admit an open
(resp. closed) folding in sk(Γ̂ L).

Proof. Play with abelian transformations.

TWO IMPORTANT LEMMAS

Lemma
If Γ̂ L is finite then a basis for L = LHπ is computable.

Proof. Given Γ̂ L a finite enriched automaton, the previous algorithm
always ends because every updating of B either:

• increases the rank of 〈B〉, or
• decreases the index of 〈B〉 in its direct sum completion C:
〈B〉 ⩽fi C ⩽⊕ Zm.

Since the rk(〈B〉) ⩽ m and |C : 〈B〉| ⩽∞, the algorithm is guaranteed to
terminate in finite time with output L = LHπ.

Lemma

A pair of enriched arcs ê1, ê2 in Γ̂ L admit an open (resp. closed)
folding if and only if the corresponding arcs e1, e2 admit an open
(resp. closed) folding in sk(Γ̂ L).

Proof. Play with abelian transformations.

REDUCED ENRICHED AUTOMATA

Definition.
An enriched automaton is said to be deterministic (resp., core) if its
skeleton is so.

An enriched automaton is said to be reduced if it is deterministic,
core, and basepoint closed (i.e., L = L).

Proposition
Let Γ̂ L be a reduced automaton recognizing H ⩽ Gα. Then,
1. L = H ∩ Zm;
2. 〈Γ̂0〉 = Hπσ, where σ is given by T-petals in sk(Γ̂ L);
3. sk(Γ̂ L) = St(Hπ).

Hence, a reduced enriched automaton recognizing H properly
encodes a splitting:

H = Hπσ⋉ (H ∩ Zm)

But it is still not unique…

REDUCED ENRICHED AUTOMATA

Definition.
An enriched automaton is said to be deterministic (resp., core) if its
skeleton is so.

An enriched automaton is said to be reduced if it is deterministic,
core, and basepoint closed (i.e., L = L).

Proposition
Let Γ̂ L be a reduced automaton recognizing H ⩽ Gα. Then,
1. L = H ∩ Zm;
2. 〈Γ̂0〉 = Hπσ, where σ is given by T-petals in sk(Γ̂ L);
3. sk(Γ̂ L) = St(Hπ).

Hence, a reduced enriched automaton recognizing H properly
encodes a splitting:

H = Hπσ⋉ (H ∩ Zm)

But it is still not unique…

REDUCED ENRICHED AUTOMATA

Definition.
An enriched automaton is said to be deterministic (resp., core) if its
skeleton is so.

An enriched automaton is said to be reduced if it is deterministic,
core, and basepoint closed (i.e., L = L).

Proposition
Let Γ̂ L be a reduced automaton recognizing H ⩽ Gα. Then,
1. L = H ∩ Zm;
2. 〈Γ̂0〉 = Hπσ, where σ is given by T-petals in sk(Γ̂ L);
3. sk(Γ̂ L) = St(Hπ).

Hence, a reduced enriched automaton recognizing H properly
encodes a splitting:

H = Hπσ⋉ (H ∩ Zm)

But it is still not unique…

REDUCED ENRICHED AUTOMATA

Definition.
An enriched automaton is said to be deterministic (resp., core) if its
skeleton is so.

An enriched automaton is said to be reduced if it is deterministic,
core, and basepoint closed (i.e., L = L).

Proposition
Let Γ̂ L be a reduced automaton recognizing H ⩽ Gα. Then,
1. L = H ∩ Zm;
2. 〈Γ̂0〉 = Hπσ, where σ is given by T-petals in sk(Γ̂ L);
3. sk(Γ̂ L) = St(Hπ).

Hence, a reduced enriched automaton recognizing H properly
encodes a splitting:

H = Hπσ⋉ (H ∩ Zm)

But it is still not unique…

REDUCED ENRICHED AUTOMATA

Definition.
An enriched automaton is said to be deterministic (resp., core) if its
skeleton is so.

An enriched automaton is said to be reduced if it is deterministic,
core, and basepoint closed (i.e., L = L).

Proposition
Let Γ̂ L be a reduced automaton recognizing H ⩽ Gα. Then,
1. L = H ∩ Zm;
2. 〈Γ̂0〉 = Hπσ, where σ is given by T-petals in sk(Γ̂ L);
3. sk(Γ̂ L) = St(Hπ).

Hence, a reduced enriched automaton recognizing H properly
encodes a splitting:

H = Hπσ⋉ (H ∩ Zm)

But it is still not unique…

NORMALIZATION

The sources of redundancy of a reduced enriched automaton Γ̂ L are:
I. the dependence of the abelian labels in the arcs “modulo the
basepoint subgroup”;

II. the dependence of the abelian labels in the arcs “modulo the
multiplication rules in Gα”.

Redundancy of type I is intrinsic and there is not much that we can do
about it, other than considering the enriched automaton Γ̂ L modulo L.

In order to fix redundancy of type II, we choose a spanning tree T in Γ̂ L

and we use abelian transformations to obtain an equivalent
automaton ∆̂L with zeros at every abelian arc-label except at the end
of the arcs outside T.
Lemma
For every reduced automata Γ̂ L and every spanning tree T in Γ̂ L there
exists a unique equivalent T-normalized automaton (modulo L).

NORMALIZATION

The sources of redundancy of a reduced enriched automaton Γ̂ L are:
I. the dependence of the abelian labels in the arcs “modulo the
basepoint subgroup”;

II. the dependence of the abelian labels in the arcs “modulo the
multiplication rules in Gα”.

Redundancy of type I is intrinsic and there is not much that we can do
about it, other than considering the enriched automaton Γ̂ L modulo L.

In order to fix redundancy of type II, we choose a spanning tree T in Γ̂ L

and we use abelian transformations to obtain an equivalent
automaton ∆̂L with zeros at every abelian arc-label except at the end
of the arcs outside T.
Lemma
For every reduced automata Γ̂ L and every spanning tree T in Γ̂ L there
exists a unique equivalent T-normalized automaton (modulo L).

NORMALIZATION

The sources of redundancy of a reduced enriched automaton Γ̂ L are:
I. the dependence of the abelian labels in the arcs “modulo the
basepoint subgroup”;

II. the dependence of the abelian labels in the arcs “modulo the
multiplication rules in Gα”.

Redundancy of type I is intrinsic and there is not much that we can do
about it, other than considering the enriched automaton Γ̂ L modulo L.

In order to fix redundancy of type II, we choose a spanning tree T in Γ̂ L

and we use abelian transformations to obtain an equivalent
automaton ∆̂L with zeros at every abelian arc-label except at the end
of the arcs outside T.
Lemma
For every reduced automata Γ̂ L and every spanning tree T in Γ̂ L there
exists a unique equivalent T-normalized automaton (modulo L).

NORMALIZATION

The sources of redundancy of a reduced enriched automaton Γ̂ L are:
I. the dependence of the abelian labels in the arcs “modulo the
basepoint subgroup”;

II. the dependence of the abelian labels in the arcs “modulo the
multiplication rules in Gα”.

Redundancy of type I is intrinsic and there is not much that we can do
about it, other than considering the enriched automaton Γ̂ L modulo L.

In order to fix redundancy of type II, we choose a spanning tree T in Γ̂ L

and we use abelian transformations to obtain an equivalent
automaton ∆̂L with zeros at every abelian arc-label except at the end
of the arcs outside T.

Lemma
For every reduced automata Γ̂ L and every spanning tree T in Γ̂ L there
exists a unique equivalent T-normalized automaton (modulo L).

NORMALIZATION

The sources of redundancy of a reduced enriched automaton Γ̂ L are:
I. the dependence of the abelian labels in the arcs “modulo the
basepoint subgroup”;

II. the dependence of the abelian labels in the arcs “modulo the
multiplication rules in Gα”.

Redundancy of type I is intrinsic and there is not much that we can do
about it, other than considering the enriched automaton Γ̂ L modulo L.

In order to fix redundancy of type II, we choose a spanning tree T in Γ̂ L

and we use abelian transformations to obtain an equivalent
automaton ∆̂L with zeros at every abelian arc-label except at the end
of the arcs outside T.
Lemma
For every reduced automata Γ̂ L and every spanning tree T in Γ̂ L there
exists a unique equivalent T-normalized automaton (modulo L).

NORMALIZATION

The sources of redundancy of a reduced enriched automaton Γ̂ L are:
I. the dependence of the abelian labels in the arcs “modulo the
basepoint subgroup”;

II. the dependence of the abelian labels in the arcs “modulo the
multiplication rules in Gα”.

Redundancy of type I is intrinsic and there is not much that we can do
about it, other than considering the enriched automaton Γ̂ L modulo L.

In order to fix redundancy of type II, we choose a spanning tree T in Γ̂ L

and we use abelian transformations to obtain an equivalent
automaton ∆̂L with zeros at every abelian arc-label except at the end
of the arcs outside T.
Lemma
For every reduced automata Γ̂ L and every spanning tree T in Γ̂ L there
exists a unique equivalent T-normalized automaton (modulo L).

ENRICHED STALLINGS AUTOMATA

Definition
Given H ⩽ Gα, a (enriched) Stallings automaton of H is a normalized
reduced automaton recognizing H.

For a chosen spanning tree T, it is
denoted by StT(H).

Proposition
Given S a finite subset of Gα, a Stallings automaton for 〈S〉 is
computable.

Proof. Given S ⊆ Fn ⋉ Zm finite generating H:

S ⇝ (FS, L) ⇝ (Γ ′, L ′) ⇝ · · · ⇝ (Γ (p), L(p)) → (Γ (p), L(p)).

After fixing a uniform way of choosing spanning trees…

Theorem (D.–V.)
There exists a (computable) bijection

{ (f.g.) subgroups of Fn ⋉ Zm } → S ⊆ { (finite) enriched automata }
H 7→ St (H)

ENRICHED STALLINGS AUTOMATA

Definition
Given H ⩽ Gα, a (enriched) Stallings automaton of H is a normalized
reduced automaton recognizing H. For a chosen spanning tree T, it is
denoted by StT(H).

Proposition
Given S a finite subset of Gα, a Stallings automaton for 〈S〉 is
computable.

Proof. Given S ⊆ Fn ⋉ Zm finite generating H:

S ⇝ (FS, L) ⇝ (Γ ′, L ′) ⇝ · · · ⇝ (Γ (p), L(p)) → (Γ (p), L(p)).

After fixing a uniform way of choosing spanning trees…

Theorem (D.–V.)
There exists a (computable) bijection

{ (f.g.) subgroups of Fn ⋉ Zm } → S ⊆ { (finite) enriched automata }
H 7→ St (H)

ENRICHED STALLINGS AUTOMATA

Definition
Given H ⩽ Gα, a (enriched) Stallings automaton of H is a normalized
reduced automaton recognizing H. For a chosen spanning tree T, it is
denoted by StT(H).

Proposition
Given S a finite subset of Gα, a Stallings automaton for 〈S〉 is
computable.

Proof. Given S ⊆ Fn ⋉ Zm finite generating H:
S ⇝ (FS, L)

⇝ (Γ ′, L ′) ⇝ · · · ⇝ (Γ (p), L(p)) → (Γ (p), L(p)).

After fixing a uniform way of choosing spanning trees…

Theorem (D.–V.)
There exists a (computable) bijection

{ (f.g.) subgroups of Fn ⋉ Zm } → S ⊆ { (finite) enriched automata }
H 7→ St (H)

ENRICHED STALLINGS AUTOMATA

Definition
Given H ⩽ Gα, a (enriched) Stallings automaton of H is a normalized
reduced automaton recognizing H. For a chosen spanning tree T, it is
denoted by StT(H).

Proposition
Given S a finite subset of Gα, a Stallings automaton for 〈S〉 is
computable.

Proof. Given S ⊆ Fn ⋉ Zm finite generating H:
S ⇝ (FS, L) ⇝ (Γ ′, L ′)

⇝ · · · ⇝ (Γ (p), L(p)) → (Γ (p), L(p)).

After fixing a uniform way of choosing spanning trees…

Theorem (D.–V.)
There exists a (computable) bijection

{ (f.g.) subgroups of Fn ⋉ Zm } → S ⊆ { (finite) enriched automata }
H 7→ St (H)

ENRICHED STALLINGS AUTOMATA

Definition
Given H ⩽ Gα, a (enriched) Stallings automaton of H is a normalized
reduced automaton recognizing H. For a chosen spanning tree T, it is
denoted by StT(H).

Proposition
Given S a finite subset of Gα, a Stallings automaton for 〈S〉 is
computable.

Proof. Given S ⊆ Fn ⋉ Zm finite generating H:
S ⇝ (FS, L) ⇝ (Γ ′, L ′) ⇝ · · · ⇝ (Γ (p), L(p))

→ (Γ (p), L(p)).

After fixing a uniform way of choosing spanning trees…

Theorem (D.–V.)
There exists a (computable) bijection

{ (f.g.) subgroups of Fn ⋉ Zm } → S ⊆ { (finite) enriched automata }
H 7→ St (H)

ENRICHED STALLINGS AUTOMATA

Definition
Given H ⩽ Gα, a (enriched) Stallings automaton of H is a normalized
reduced automaton recognizing H. For a chosen spanning tree T, it is
denoted by StT(H).

Proposition
Given S a finite subset of Gα, a Stallings automaton for 〈S〉 is
computable.

Proof. Given S ⊆ Fn ⋉ Zm finite generating H:
S ⇝ (FS, L) ⇝ (Γ ′, L ′) ⇝ · · · ⇝ (Γ (p), L(p)) → (Γ (p), L(p)).

After fixing a uniform way of choosing spanning trees…

Theorem (D.–V.)
There exists a (computable) bijection

{ (f.g.) subgroups of Fn ⋉ Zm } → S ⊆ { (finite) enriched automata }
H 7→ St (H)

ENRICHED STALLINGS AUTOMATA

Definition
Given H ⩽ Gα, a (enriched) Stallings automaton of H is a normalized
reduced automaton recognizing H. For a chosen spanning tree T, it is
denoted by StT(H).

Proposition
Given S a finite subset of Gα, a Stallings automaton for 〈S〉 is
computable.

Proof. Given S ⊆ Fn ⋉ Zm finite generating H:
S ⇝ (FS, L) ⇝ (Γ ′, L ′) ⇝ · · · ⇝ (Γ (p), L(p)) → (Γ (p), L(p)).

After fixing a uniform way of choosing spanning trees…

Theorem (D.–V.)
There exists a (computable) bijection

{ (f.g.) subgroups of Fn ⋉ Zm } → S ⊆ { (finite) enriched automata }
H 7→ St (H)

ENRICHED STALLINGS AUTOMATA

Definition
Given H ⩽ Gα, a (enriched) Stallings automaton of H is a normalized
reduced automaton recognizing H. For a chosen spanning tree T, it is
denoted by StT(H).

Proposition
Given S a finite subset of Gα, a Stallings automaton for 〈S〉 is
computable.

Proof. Given S ⊆ Fn ⋉ Zm finite generating H:
S ⇝ (FS, L) ⇝ (Γ ′, L ′) ⇝ · · · ⇝ (Γ (p), L(p)) → (Γ (p), L(p)).

After fixing a uniform way of choosing spanning trees…

Theorem (D.–V.)
There exists a (computable) bijection

{ (f.g.) subgroups of Fn ⋉ Zm } → S ⊆ { (finite) enriched automata }
H 7→ St (H)

FIRST APPLICATIONS: MEMBERSHIP PROBLEM

Corollary
A basis for a finitely generated subgroup H ⩽ Gα is computable from
any finite set of generators.

Membership Problem for G = 〈X | R〉, MP(G)
Given u, v1, . . . , vk ∈ FX, decide whether u ∈ H = 〈v1, . . . , vk〉G;
if yes, express u as a word in v1, . . . , vk.

Theorem (D.–V.)
The membership problem MP(Gα) is computable.

Proof. Let uta ∈ Gα and S = {v1tb1 , . . . , vktbk } ⊆ Gα

1. Build an Stallings automaton Γ̂ L = St(〈S〉);
2. try to read u as a label of a -walk in Γ̂ L; if not possible, return NO;
3. if the final vertex is not return NO;
4. compute the completion cw of w in Γ̂ L and check whether

a− cw ∈ L. If so return YES, otherwise return NO.

FIRST APPLICATIONS: MEMBERSHIP PROBLEM

Corollary
A basis for a finitely generated subgroup H ⩽ Gα is computable from
any finite set of generators.

Membership Problem for G = 〈X | R〉, MP(G)
Given u, v1, . . . , vk ∈ FX, decide whether u ∈ H = 〈v1, . . . , vk〉G;
if yes, express u as a word in v1, . . . , vk.

Theorem (D.–V.)
The membership problem MP(Gα) is computable.

Proof. Let uta ∈ Gα and S = {v1tb1 , . . . , vktbk } ⊆ Gα

1. Build an Stallings automaton Γ̂ L = St(〈S〉);
2. try to read u as a label of a -walk in Γ̂ L; if not possible, return NO;
3. if the final vertex is not return NO;
4. compute the completion cw of w in Γ̂ L and check whether

a− cw ∈ L. If so return YES, otherwise return NO.

FIRST APPLICATIONS: MEMBERSHIP PROBLEM

Corollary
A basis for a finitely generated subgroup H ⩽ Gα is computable from
any finite set of generators.

Membership Problem for G = 〈X | R〉, MP(G)
Given u, v1, . . . , vk ∈ FX, decide whether u ∈ H = 〈v1, . . . , vk〉G;
if yes, express u as a word in v1, . . . , vk.

Theorem (D.–V.)
The membership problem MP(Gα) is computable.

Proof. Let uta ∈ Gα and S = {v1tb1 , . . . , vktbk } ⊆ Gα

1. Build an Stallings automaton Γ̂ L = St(〈S〉);
2. try to read u as a label of a -walk in Γ̂ L; if not possible, return NO;
3. if the final vertex is not return NO;
4. compute the completion cw of w in Γ̂ L and check whether

a− cw ∈ L. If so return YES, otherwise return NO.

FIRST APPLICATIONS: MEMBERSHIP PROBLEM

Corollary
A basis for a finitely generated subgroup H ⩽ Gα is computable from
any finite set of generators.

Membership Problem for G = 〈X | R〉, MP(G)
Given u, v1, . . . , vk ∈ FX, decide whether u ∈ H = 〈v1, . . . , vk〉G;
if yes, express u as a word in v1, . . . , vk.

Theorem (D.–V.)
The membership problem MP(Gα) is computable.

Proof. Let uta ∈ Gα and S = {v1tb1 , . . . , vktbk } ⊆ Gα

1. Build an Stallings automaton Γ̂ L = St(〈S〉);

2. try to read u as a label of a -walk in Γ̂ L; if not possible, return NO;
3. if the final vertex is not return NO;
4. compute the completion cw of w in Γ̂ L and check whether

a− cw ∈ L. If so return YES, otherwise return NO.

FIRST APPLICATIONS: MEMBERSHIP PROBLEM

Corollary
A basis for a finitely generated subgroup H ⩽ Gα is computable from
any finite set of generators.

Membership Problem for G = 〈X | R〉, MP(G)
Given u, v1, . . . , vk ∈ FX, decide whether u ∈ H = 〈v1, . . . , vk〉G;
if yes, express u as a word in v1, . . . , vk.

Theorem (D.–V.)
The membership problem MP(Gα) is computable.

Proof. Let uta ∈ Gα and S = {v1tb1 , . . . , vktbk } ⊆ Gα

1. Build an Stallings automaton Γ̂ L = St(〈S〉);
2. try to read u as a label of a -walk in Γ̂ L;

if not possible, return NO;
3. if the final vertex is not return NO;
4. compute the completion cw of w in Γ̂ L and check whether

a− cw ∈ L. If so return YES, otherwise return NO.

FIRST APPLICATIONS: MEMBERSHIP PROBLEM

Corollary
A basis for a finitely generated subgroup H ⩽ Gα is computable from
any finite set of generators.

Membership Problem for G = 〈X | R〉, MP(G)
Given u, v1, . . . , vk ∈ FX, decide whether u ∈ H = 〈v1, . . . , vk〉G;
if yes, express u as a word in v1, . . . , vk.

Theorem (D.–V.)
The membership problem MP(Gα) is computable.

Proof. Let uta ∈ Gα and S = {v1tb1 , . . . , vktbk } ⊆ Gα

1. Build an Stallings automaton Γ̂ L = St(〈S〉);
2. try to read u as a label of a -walk in Γ̂ L; if not possible, return NO;

3. if the final vertex is not return NO;
4. compute the completion cw of w in Γ̂ L and check whether

a− cw ∈ L. If so return YES, otherwise return NO.

FIRST APPLICATIONS: MEMBERSHIP PROBLEM

Corollary
A basis for a finitely generated subgroup H ⩽ Gα is computable from
any finite set of generators.

Membership Problem for G = 〈X | R〉, MP(G)
Given u, v1, . . . , vk ∈ FX, decide whether u ∈ H = 〈v1, . . . , vk〉G;
if yes, express u as a word in v1, . . . , vk.

Theorem (D.–V.)
The membership problem MP(Gα) is computable.

Proof. Let uta ∈ Gα and S = {v1tb1 , . . . , vktbk } ⊆ Gα

1. Build an Stallings automaton Γ̂ L = St(〈S〉);
2. try to read u as a label of a -walk in Γ̂ L; if not possible, return NO;
3. if the final vertex is not return NO;

4. compute the completion cw of w in Γ̂ L and check whether
a− cw ∈ L. If so return YES, otherwise return NO.

FIRST APPLICATIONS: MEMBERSHIP PROBLEM

Corollary
A basis for a finitely generated subgroup H ⩽ Gα is computable from
any finite set of generators.

Membership Problem for G = 〈X | R〉, MP(G)
Given u, v1, . . . , vk ∈ FX, decide whether u ∈ H = 〈v1, . . . , vk〉G;
if yes, express u as a word in v1, . . . , vk.

Theorem (D.–V.)
The membership problem MP(Gα) is computable.

Proof. Let uta ∈ Gα and S = {v1tb1 , . . . , vktbk } ⊆ Gα

1. Build an Stallings automaton Γ̂ L = St(〈S〉);
2. try to read u as a label of a -walk in Γ̂ L; if not possible, return NO;
3. if the final vertex is not return NO;
4. compute the completion cw of w in Γ̂ L and check whether

a− cw ∈ L. If so return YES, otherwise return NO.

INTERSECTIONS IN Fn× Zm

FREE-ABELIAN TIMES FREE GROUPS

A group is free-abelian times free (FATF) if it is of the form

Fn × Zm =

〈
x1, . . . , xn
t1, . . . , tm

∣∣∣∣∣ titk = tkti ∀i, k ∈ [1,m]

x−1
j ti xj = ti ∀i ∈ [1,m], ∀j ∈ [1,n]

〉
where

• T = {t1, . . . , tm} is a free-abelian basis for 〈T〉 ' Zm.
• X = {x1, . . . , xn} is a free basis for 〈X〉 ' Fn.

Normal form: w ta11 · · · t
am
m = w ta (w ∈ Fn, a = (a1, . . . , am) ∈ Zm).

Lemma
Let H ⩽ Fn × Zm. Then,

H ' Hπ× (H ∩ Zm) ' Fn′ × Zm′

where n ′ ∈ [0,∞], m ′ ∈ [0,m].

Hence,

H is finitely generated ⇔ Hπ is finitely generated

FREE-ABELIAN TIMES FREE GROUPS

A group is free-abelian times free (FATF) if it is of the form

Fn × Zm =

〈
x1, . . . , xn
t1, . . . , tm

∣∣∣∣∣ titk = tkti ∀i, k ∈ [1,m]

x−1
j ti xj = ti ∀i ∈ [1,m], ∀j ∈ [1,n]

〉

where

• T = {t1, . . . , tm} is a free-abelian basis for 〈T〉 ' Zm.
• X = {x1, . . . , xn} is a free basis for 〈X〉 ' Fn.

Normal form: w ta11 · · · t
am
m = w ta (w ∈ Fn, a = (a1, . . . , am) ∈ Zm).

Lemma
Let H ⩽ Fn × Zm. Then,

H ' Hπ× (H ∩ Zm) ' Fn′ × Zm′

where n ′ ∈ [0,∞], m ′ ∈ [0,m].

Hence,

H is finitely generated ⇔ Hπ is finitely generated

FREE-ABELIAN TIMES FREE GROUPS

A group is free-abelian times free (FATF) if it is of the form

Fn × Zm =

〈
x1, . . . , xn
t1, . . . , tm

∣∣∣∣∣ titk = tkti ∀i, k ∈ [1,m]

x−1
j ti xj = ti ∀i ∈ [1,m], ∀j ∈ [1,n]

〉

where

• T = {t1, . . . , tm} is a free-abelian basis for 〈T〉 ' Zm.
• X = {x1, . . . , xn} is a free basis for 〈X〉 ' Fn.

Normal form: w ta11 · · · t
am
m = w ta (w ∈ Fn, a = (a1, . . . , am) ∈ Zm).

Lemma
Let H ⩽ Fn × Zm. Then,

H ' Hπ× (H ∩ Zm) ' Fn′ × Zm′

where n ′ ∈ [0,∞], m ′ ∈ [0,m].

Hence,

H is finitely generated ⇔ Hπ is finitely generated

FREE-ABELIAN TIMES FREE GROUPS

A group is free-abelian times free (FATF) if it is of the form

Fn × Zm =

〈
x1, . . . , xn
t1, . . . , tm

∣∣∣∣∣ titk = tkti ∀i, k ∈ [1,m]

x−1
j ti xj = ti ∀i ∈ [1,m], ∀j ∈ [1,n]

〉
where

• T = {t1, . . . , tm} is a free-abelian basis for 〈T〉 ' Zm.

• X = {x1, . . . , xn} is a free basis for 〈X〉 ' Fn.

Normal form: w ta11 · · · t
am
m = w ta (w ∈ Fn, a = (a1, . . . , am) ∈ Zm).

Lemma
Let H ⩽ Fn × Zm. Then,

H ' Hπ× (H ∩ Zm) ' Fn′ × Zm′

where n ′ ∈ [0,∞], m ′ ∈ [0,m].

Hence,

H is finitely generated ⇔ Hπ is finitely generated

FREE-ABELIAN TIMES FREE GROUPS

A group is free-abelian times free (FATF) if it is of the form

Fn × Zm =

〈
x1, . . . , xn
t1, . . . , tm

∣∣∣∣∣ titk = tkti ∀i, k ∈ [1,m]

x−1
j ti xj = ti ∀i ∈ [1,m], ∀j ∈ [1,n]

〉
where

• T = {t1, . . . , tm} is a free-abelian basis for 〈T〉 ' Zm.
• X = {x1, . . . , xn} is a free basis for 〈X〉 ' Fn.

Normal form: w ta11 · · · t
am
m = w ta (w ∈ Fn, a = (a1, . . . , am) ∈ Zm).

Lemma
Let H ⩽ Fn × Zm. Then,

H ' Hπ× (H ∩ Zm) ' Fn′ × Zm′

where n ′ ∈ [0,∞], m ′ ∈ [0,m].

Hence,

H is finitely generated ⇔ Hπ is finitely generated

FREE-ABELIAN TIMES FREE GROUPS

A group is free-abelian times free (FATF) if it is of the form

Fn × Zm =

〈
x1, . . . , xn
t1, . . . , tm

∣∣∣∣∣ titk = tkti ∀i, k ∈ [1,m]

x−1
j ti xj = ti ∀i ∈ [1,m], ∀j ∈ [1,n]

〉
where

• T = {t1, . . . , tm} is a free-abelian basis for 〈T〉 ' Zm.
• X = {x1, . . . , xn} is a free basis for 〈X〉 ' Fn.

Normal form: w ta11 · · · t
am
m = w ta (w ∈ Fn, a = (a1, . . . , am) ∈ Zm).

Lemma
Let H ⩽ Fn × Zm. Then,

H ' Hπ× (H ∩ Zm) ' Fn′ × Zm′

where n ′ ∈ [0,∞], m ′ ∈ [0,m].

Hence,

H is finitely generated ⇔ Hπ is finitely generated

FREE-ABELIAN TIMES FREE GROUPS

A group is free-abelian times free (FATF) if it is of the form

Fn × Zm =

〈
x1, . . . , xn
t1, . . . , tm

∣∣∣∣∣ titk = tkti ∀i, k ∈ [1,m]

x−1
j ti xj = ti ∀i ∈ [1,m], ∀j ∈ [1,n]

〉
where

• T = {t1, . . . , tm} is a free-abelian basis for 〈T〉 ' Zm.
• X = {x1, . . . , xn} is a free basis for 〈X〉 ' Fn.

Normal form: w ta11 · · · t
am
m = w ta (w ∈ Fn, a = (a1, . . . , am) ∈ Zm).

Lemma
Let H ⩽ Fn × Zm. Then,

H ' Hπ× (H ∩ Zm) ' Fn′ × Zm′

where n ′ ∈ [0,∞], m ′ ∈ [0,m].

Hence,

H is finitely generated ⇔ Hπ is finitely generated

FREE-ABELIAN TIMES FREE GROUPS

A group is free-abelian times free (FATF) if it is of the form

Fn × Zm =

〈
x1, . . . , xn
t1, . . . , tm

∣∣∣∣∣ titk = tkti ∀i, k ∈ [1,m]

x−1
j ti xj = ti ∀i ∈ [1,m], ∀j ∈ [1,n]

〉
where

• T = {t1, . . . , tm} is a free-abelian basis for 〈T〉 ' Zm.
• X = {x1, . . . , xn} is a free basis for 〈X〉 ' Fn.

Normal form: w ta11 · · · t
am
m = w ta (w ∈ Fn, a = (a1, . . . , am) ∈ Zm).

Lemma
Let H ⩽ Fn × Zm. Then,

H ' Hπ× (H ∩ Zm) ' Fn′ × Zm′

where n ′ ∈ [0,∞], m ′ ∈ [0,m]. Hence,

H is finitely generated ⇔ Hπ is finitely generated

BASES

A basis for H ⩽ Fn × Zm has the form:

v1ta1 , . . . , vntan′ ; tb1 , . . . , tbm′

where:
• {v1, . . . , vn′ } is a basis of Hπ
• {b1, . . . ,bm} is a free-abelian basis of L = H ∩ Zm.

Lemma
If {v1ta1 , . . . , vn′tan′ ; tb1 , . . . , tbm′ } is a basis of H and w ∈ Fn,
then

cH(w) =

{
∅ if w /∈ Hπ
wϕρA+ L if w ∈ Hπ ,

where ϕ : Hπ → Fn′ is the change of basis xi 7→ xi(vj)
ρ : Fn′ Zn′ is the abelianization map,
A = (ai)i∈[1,n′] is an integral n ′ ×m matrix.

BASES

A basis for H ⩽ Fn × Zm has the form:

v1ta1 , . . . , vntan′ ; tb1 , . . . , tbm′

where:
• {v1, . . . , vn′ } is a basis of Hπ
• {b1, . . . ,bm} is a free-abelian basis of L = H ∩ Zm.

Lemma
If {v1ta1 , . . . , vn′tan′ ; tb1 , . . . , tbm′ } is a basis of H and w ∈ Fn,
then

cH(w) =

{
∅ if w /∈ Hπ
wϕρA+ L if w ∈ Hπ ,

where ϕ : Hπ → Fn′ is the change of basis xi 7→ xi(vj)
ρ : Fn′ Zn′ is the abelianization map,
A = (ai)i∈[1,n′] is an integral n ′ ×m matrix.

SUBGROUP INTERSECTION

Let H1,H2 ⩽fg Fn × Zm and respective bases for them, then
H1 = {wta ∈ Fn × Zm | w ∈ H1π and a ∈ wϕ1ρ1A1 + L1},
H2 = {wta ∈ Fn × Zm | w ∈ H2π and a ∈ wϕ2ρ2A2 + L2}

Hence,

H1 ∩ H2 =

{
wta ∈ Fn × Zm

∣∣∣∣ w ∈ H1π ∩ H2π

a ∈ (wϕ1ρ1A1 + L1) ∩ (wϕ2ρ2A2 + L2)

}

Remark

(H1 ∩ H2)π ⩽ H1π ∩ H2π ⩽fg Fn

SUBGROUP INTERSECTION

Let H1,H2 ⩽fg Fn × Zm and respective bases for them, then
H1 = {wta ∈ Fn × Zm | w ∈ H1π and a ∈ wϕ1ρ1A1 + L1},
H2 = {wta ∈ Fn × Zm | w ∈ H2π and a ∈ wϕ2ρ2A2 + L2}

Hence,

H1 ∩ H2 =

{
wta ∈ Fn × Zm

∣∣∣∣ w ∈ H1π ∩ H2π

a ∈ (wϕ1ρ1A1 + L1) ∩ (wϕ2ρ2A2 + L2)

}

Remark

(H1 ∩ H2)π ⩽ H1π ∩ H2π ⩽fg Fn

SUBGROUP INTERSECTION

Let H1,H2 ⩽fg Fn × Zm and respective bases for them, then
H1 = {wta ∈ Fn × Zm | w ∈ H1π and a ∈ wϕ1ρ1A1 + L1},
H2 = {wta ∈ Fn × Zm | w ∈ H2π and a ∈ wϕ2ρ2A2 + L2}

Hence,

H1 ∩ H2 =

{
wta ∈ Fn × Zm

∣∣∣∣ w ∈ H1π ∩ H2π

a ∈ (wϕ1ρ1A1 + L1) ∩ (wϕ2ρ2A2 + L2)

}

Therefore,

(H1 ∩ H2)π =
{
w ∈ H1π ∩ H2π | (wϕ1ρ1A1 + L1) ∩ (wϕ2ρ2A2 + L2) 6= ∅

}

Remark

(H1 ∩ H2)π ⩽ H1π ∩ H2π ⩽fg Fn

SUBGROUP INTERSECTION

Let H1,H2 ⩽fg Fn × Zm and respective bases for them, then
H1 = {wta ∈ Fn × Zm | w ∈ H1π and a ∈ wϕ1ρ1A1 + L1},
H2 = {wta ∈ Fn × Zm | w ∈ H2π and a ∈ wϕ2ρ2A2 + L2}

Hence,

H1 ∩ H2 =

{
wta ∈ Fn × Zm

∣∣∣∣ w ∈ H1π ∩ H2π

a ∈ (wϕ1ρ1A1 + L1) ∩ (wϕ2ρ2A2 + L2)

}

Therefore,

(H1 ∩ H2)π =
{
w ∈ H1π ∩ H2π | (wϕ1ρ1A1 + L1) ∩ (wϕ2ρ2A2 + L2) 6= ∅

}
Remark

(H1 ∩ H2)π ⩽ H1π ∩ H2π ⩽fg Fn

SUBGROUP INTERSECTION

Let H1,H2 ⩽fg Fn × Zm and respective bases for them, then
H1 = {wta ∈ Fn × Zm | w ∈ H1π and a ∈ wϕ1ρ1A1 + L1},
H2 = {wta ∈ Fn × Zm | w ∈ H2π and a ∈ wϕ2ρ2A2 + L2}

Hence,

H1 ∩ H2 =

{
wta ∈ Fn × Zm

∣∣∣∣ w ∈ H1π ∩ H2π

a ∈ (wϕ1ρ1A1 + L1) ∩ (wϕ2ρ2A2 + L2)

}

Therefore,

(H1 ∩ H2)π =
{
w ∈ H1π ∩ H2π | (wϕ1ρ1A1 + L1) ∩ (wϕ2ρ2A2 + L2) 6= ∅

}
Remark

(H1 ∩ H2)π ⩽ H1π ∩ H2π ⩽fg Fn

INTERSECTIONS IN FTFA GROUPS

Let H,H1,H2 ⩽ Fn × Zm, and π : Fn × Zm → Fn

u ta 7→ u

Remarks:

1. H ' Hπ× (H ∩ Zm).
2. H is f.g. ⇔ Hπ is f.g.
3. (H1 ∩ H2)π ⩽ H1π ∩ H2π.

So,

if H1,H2 are finitely generated:

(H1 ∩ H2)π H1π ∩ H2π ⩽

fg

Fn

Example: F2 × Z is not Howson

Subgroup Intersection Problem for G = 〈X | R〉, SIP(G)
Input: u1, . . . ,uk, v1, . . . , vl ∈ (X±)∗
Decide: 〈u1, . . . ,uk〉 ∩ 〈v1, . . . , vl〉 is f.g.,

and if so, compute generators.

INTERSECTIONS IN FTFA GROUPS

Let H,H1,H2 ⩽ Fn × Zm, and π : Fn × Zm → Fn

u ta 7→ u

Remarks:
1. H ' Hπ× (H ∩ Zm).

2. H is f.g. ⇔ Hπ is f.g.
3. (H1 ∩ H2)π ⩽ H1π ∩ H2π.

So,

if H1,H2 are finitely generated:

(H1 ∩ H2)π H1π ∩ H2π ⩽

fg

Fn

Example: F2 × Z is not Howson

Subgroup Intersection Problem for G = 〈X | R〉, SIP(G)
Input: u1, . . . ,uk, v1, . . . , vl ∈ (X±)∗
Decide: 〈u1, . . . ,uk〉 ∩ 〈v1, . . . , vl〉 is f.g.,

and if so, compute generators.

INTERSECTIONS IN FTFA GROUPS

Let H,H1,H2 ⩽ Fn × Zm, and π : Fn × Zm → Fn

u ta 7→ u

Remarks:
1. H ' Hπ× (H ∩ Zm).
2. H is f.g. ⇔ Hπ is f.g.

3. (H1 ∩ H2)π ⩽ H1π ∩ H2π.

So,

if H1,H2 are finitely generated:

(H1 ∩ H2)π H1π ∩ H2π ⩽

fg

Fn

Example: F2 × Z is not Howson

Subgroup Intersection Problem for G = 〈X | R〉, SIP(G)
Input: u1, . . . ,uk, v1, . . . , vl ∈ (X±)∗
Decide: 〈u1, . . . ,uk〉 ∩ 〈v1, . . . , vl〉 is f.g.,

and if so, compute generators.

INTERSECTIONS IN FTFA GROUPS

Let H,H1,H2 ⩽ Fn × Zm, and π : Fn × Zm → Fn

u ta 7→ u

Remarks:
1. H ' Hπ× (H ∩ Zm).
2. H is f.g. ⇔ Hπ is f.g.
3. (H1 ∩ H2)π ⩽ H1π ∩ H2π.

So,

if H1,H2 are finitely generated:

(H1 ∩ H2)π H1π ∩ H2π ⩽

fg

Fn

Example: F2 × Z is not Howson

Subgroup Intersection Problem for G = 〈X | R〉, SIP(G)
Input: u1, . . . ,uk, v1, . . . , vl ∈ (X±)∗
Decide: 〈u1, . . . ,uk〉 ∩ 〈v1, . . . , vl〉 is f.g.,

and if so, compute generators.

INTERSECTIONS IN FTFA GROUPS

Let H,H1,H2 ⩽ Fn × Zm, and π : Fn × Zm → Fn

u ta 7→ u

Remarks:
1. H ' Hπ× (H ∩ Zm).
2. H is f.g. ⇔ Hπ is f.g.
3. (H1 ∩ H2)π ⩽ H1π ∩ H2π.

So,

if H1,H2 are finitely generated:

(H1 ∩ H2)π ⩽ H1π ∩ H2π ⩽

fg

Fn

Example: F2 × Z is not Howson

Subgroup Intersection Problem for G = 〈X | R〉, SIP(G)
Input: u1, . . . ,uk, v1, . . . , vl ∈ (X±)∗
Decide: 〈u1, . . . ,uk〉 ∩ 〈v1, . . . , vl〉 is f.g.,

and if so, compute generators.

INTERSECTIONS IN FTFA GROUPS

Let H,H1,H2 ⩽ Fn × Zm, and π : Fn × Zm → Fn

u ta 7→ u

Remarks:
1. H ' Hπ× (H ∩ Zm).
2. H is f.g. ⇔ Hπ is f.g.
3. (H1 ∩ H2)π ⩽ H1π ∩ H2π.

So, if H1,H2 are finitely generated:

(H1 ∩ H2)π ⩽ H1π ∩ H2π ⩽

fg

Fn

Example: F2 × Z is not Howson

Subgroup Intersection Problem for G = 〈X | R〉, SIP(G)
Input: u1, . . . ,uk, v1, . . . , vl ∈ (X±)∗
Decide: 〈u1, . . . ,uk〉 ∩ 〈v1, . . . , vl〉 is f.g.,

and if so, compute generators.

INTERSECTIONS IN FTFA GROUPS

Let H,H1,H2 ⩽ Fn × Zm, and π : Fn × Zm → Fn

u ta 7→ u

Remarks:
1. H ' Hπ× (H ∩ Zm).
2. H is f.g. ⇔ Hπ is f.g.
3. (H1 ∩ H2)π ⩽ H1π ∩ H2π.

So, if H1,H2 are finitely generated:

(H1 ∩ H2)π ⩽ H1π ∩ H2π ⩽fg Fn

Example: F2 × Z is not Howson

Subgroup Intersection Problem for G = 〈X | R〉, SIP(G)
Input: u1, . . . ,uk, v1, . . . , vl ∈ (X±)∗
Decide: 〈u1, . . . ,uk〉 ∩ 〈v1, . . . , vl〉 is f.g.,

and if so, compute generators.

INTERSECTIONS IN FTFA GROUPS

Let H,H1,H2 ⩽ Fn × Zm, and π : Fn × Zm → Fn

u ta 7→ u

Remarks:
1. H ' Hπ× (H ∩ Zm).
2. H is f.g. ⇔ Hπ is f.g.
3. (H1 ∩ H2)π ⩽ H1π ∩ H2π.

So, if H1,H2 are finitely generated:

(H1 ∩ H2)π < H1π ∩ H2π ⩽fg Fn

Example: F2 × Z is not Howson

Subgroup Intersection Problem for G = 〈X | R〉, SIP(G)
Input: u1, . . . ,uk, v1, . . . , vl ∈ (X±)∗
Decide: 〈u1, . . . ,uk〉 ∩ 〈v1, . . . , vl〉 is f.g.,

and if so, compute generators.

INTERSECTIONS IN FTFA GROUPS

Let H,H1,H2 ⩽ Fn × Zm, and π : Fn × Zm → Fn

u ta 7→ u

Remarks:
1. H ' Hπ× (H ∩ Zm).
2. H is f.g. ⇔ Hπ is f.g.
3. (H1 ∩ H2)π ⩽ H1π ∩ H2π.

So, if H1,H2 are finitely generated:

(H1 ∩ H2)π < H1π ∩ H2π ⩽fg Fn

Example: F2 × Z is not Howson

Subgroup Intersection Problem for G = 〈X | R〉, SIP(G)
Input: u1, . . . ,uk, v1, . . . , vl ∈ (X±)∗
Decide: 〈u1, . . . ,uk〉 ∩ 〈v1, . . . , vl〉 is f.g.,

and if so, compute generators.

INTERSECTIONS IN FTFA GROUPS

Let H,H1,H2 ⩽ Fn × Zm, and π : Fn × Zm → Fn

u ta 7→ u

Remarks:
1. H ' Hπ× (H ∩ Zm).
2. H is f.g. ⇔ Hπ is f.g.
3. (H1 ∩ H2)π ⩽ H1π ∩ H2π.

So, if H1,H2 are finitely generated:

(H1 ∩ H2)π < H1π ∩ H2π ⩽fg Fn

Example: F2 × Z is not Howson

Subgroup Intersection Problem for G = 〈X | R〉, SIP(G)
Input: u1, . . . ,uk, v1, . . . , vl ∈ (X±)∗
Decide: 〈u1, . . . ,uk〉 ∩ 〈v1, . . . , vl〉 is f.g.,

and if so, compute generators.

FREE-ABELIAN TIMES FREE GROUPS ARE NOT HOWSON

Lemma
The group F2 × Z is not Howson.

Example
Let F2 × Z = 〈x, y | −〉 × 〈 t | −〉, and consider the subgroups:

H = 〈x, y〉 and K = 〈tx, y〉
Then:

H ∩ K = {w(x, y) | w ∈ F2} ∩ {w(xt, y) | w ∈ F2}

= {w(x, y) | w ∈ F2} ∩ {w(x, y)t|w|x | w ∈ F2}

= {w(x, y)t0 | w ∈ F2, |w|x = 0}
= 〈x−kyxk, k ∈ Z〉 = 〈〈y〉〉F2

is not finitely generated, since its Stallings automaton is infinite:

· · ·· · ·

y

x

Remark: H and K are free groups with non-f.g. intersection…
doesn’t this contradict Howson’s property for free groups?

FREE-ABELIAN TIMES FREE GROUPS ARE NOT HOWSON

Lemma
The group F2 × Z is not Howson.

Example
Let F2 × Z = 〈x, y | −〉 × 〈 t | −〉, and consider the subgroups:

H = 〈x, y〉 and K = 〈tx, y〉

Then:
H ∩ K = {w(x, y) | w ∈ F2} ∩ {w(xt, y) | w ∈ F2}

= {w(x, y) | w ∈ F2} ∩ {w(x, y)t|w|x | w ∈ F2}

= {w(x, y)t0 | w ∈ F2, |w|x = 0}
= 〈x−kyxk, k ∈ Z〉 = 〈〈y〉〉F2

is not finitely generated, since its Stallings automaton is infinite:

· · ·· · ·

y

x

Remark: H and K are free groups with non-f.g. intersection…
doesn’t this contradict Howson’s property for free groups?

FREE-ABELIAN TIMES FREE GROUPS ARE NOT HOWSON

Lemma
The group F2 × Z is not Howson.

Example
Let F2 × Z = 〈x, y | −〉 × 〈 t | −〉, and consider the subgroups:

H = 〈x, y〉 and K = 〈tx, y〉
Then:

H ∩ K = {w(x, y) | w ∈ F2} ∩ {w(xt, y) | w ∈ F2}

= {w(x, y) | w ∈ F2} ∩ {w(x, y)t|w|x | w ∈ F2}

= {w(x, y)t0 | w ∈ F2, |w|x = 0}
= 〈x−kyxk, k ∈ Z〉 = 〈〈y〉〉F2

is not finitely generated, since its Stallings automaton is infinite:

· · ·· · ·

y

x

Remark: H and K are free groups with non-f.g. intersection…
doesn’t this contradict Howson’s property for free groups?

FREE-ABELIAN TIMES FREE GROUPS ARE NOT HOWSON

Lemma
The group F2 × Z is not Howson.

Example
Let F2 × Z = 〈x, y | −〉 × 〈 t | −〉, and consider the subgroups:

H = 〈x, y〉 and K = 〈tx, y〉
Then:

H ∩ K = {w(x, y) | w ∈ F2} ∩ {w(xt, y) | w ∈ F2}

= {w(x, y) | w ∈ F2} ∩ {w(x, y)t|w|x | w ∈ F2}

= {w(x, y)t0 | w ∈ F2, |w|x = 0}
= 〈x−kyxk, k ∈ Z〉 = 〈〈y〉〉F2

is not finitely generated, since its Stallings automaton is infinite:

· · ·· · ·

y

x

Remark: H and K are free groups with non-f.g. intersection…
doesn’t this contradict Howson’s property for free groups?

FREE-ABELIAN TIMES FREE GROUPS ARE NOT HOWSON

Lemma
The group F2 × Z is not Howson.

Example
Let F2 × Z = 〈x, y | −〉 × 〈 t | −〉, and consider the subgroups:

H = 〈x, y〉 and K = 〈tx, y〉
Then:

H ∩ K = {w(x, y) | w ∈ F2} ∩ {w(xt, y) | w ∈ F2}

= {w(x, y) | w ∈ F2} ∩ {w(x, y)t|w|x | w ∈ F2}

= {w(x, y)t0 | w ∈ F2, |w|x = 0}
= 〈x−kyxk, k ∈ Z〉 = 〈〈y〉〉F2

is not finitely generated, since its Stallings automaton is infinite:

· · ·· · ·

y

x

Remark: H and K are free groups with non-f.g. intersection…
doesn’t this contradict Howson’s property for free groups?

INTERSECTION DIAGRAM

(H1 ∩ H2)π⩽

H1π H1π ∩ H2π H2π

Zr1 Zr Zr2

Zm

⩽

L1 + L2

ρ1 ρ

←↩ →ϕ2←↩→ϕ1

ρ2

A1

//////

R

P2P1

A2

(H1 ∩ H2)π = {w ∈ H1π ∩ H2π : cH1(w) ∩ cH2(w) 6= ∅}

= {w ∈ H1π ∩ H2π : (wϕ1ρ1A1 + L1) ∩ (wϕ2ρ2A2 + L2) 6= ∅}

= {w ∈ H1π ∩ H2π : (wρP1A1 + L1) ∩ (wρP2A2 + L2) 6= ∅}

= {w ∈ H1π ∩ H2π : wρ(P1A1 − P2A2) ∈ L1 + L2}
= (L1 + L2)(P1A1 − P2A2) ρ = (L1 + L2)R ρ .

INTERSECTION DIAGRAM

(H1 ∩ H2)π⩽

H1π H1π ∩ H2π H2π

Zr1 Zr Zr2

Zm

⩽

L1 + L2

ρ1 ρ

←↩ →ϕ2←↩→ϕ1

ρ2

A1

//////

R

P2P1

A2

(H1 ∩ H2)π = {w ∈ H1π ∩ H2π : cH1(w) ∩ cH2(w) 6= ∅}

= {w ∈ H1π ∩ H2π : (wϕ1ρ1A1 + L1) ∩ (wϕ2ρ2A2 + L2) 6= ∅}

= {w ∈ H1π ∩ H2π : (wρP1A1 + L1) ∩ (wρP2A2 + L2) 6= ∅}

= {w ∈ H1π ∩ H2π : wρ(P1A1 − P2A2) ∈ L1 + L2}
= (L1 + L2)(P1A1 − P2A2) ρ = (L1 + L2)R ρ .

INTERSECTION DIAGRAM

(H1 ∩ H2)π⩽

H1π H1π ∩ H2π H2π

Zr1 Zr Zr2

Zm

⩽

L1 + L2

ρ1 ρ

←↩ →ϕ2←↩→ϕ1

ρ2

A1

//////

R

P2P1

A2

(H1 ∩ H2)π = {w ∈ H1π ∩ H2π : cH1(w) ∩ cH2(w) 6= ∅}

= {w ∈ H1π ∩ H2π : (wϕ1ρ1A1 + L1) ∩ (wϕ2ρ2A2 + L2) 6= ∅}

= {w ∈ H1π ∩ H2π : (wρP1A1 + L1) ∩ (wρP2A2 + L2) 6= ∅}

= {w ∈ H1π ∩ H2π : wρ(P1A1 − P2A2) ∈ L1 + L2}
= (L1 + L2)(P1A1 − P2A2) ρ = (L1 + L2)R ρ .

INTERSECTION DIAGRAM

(H1 ∩ H2)π⩽

H1π H1π ∩ H2π H2π

Zr1 Zr Zr2

Zm

⩽

L1 + L2

ρ1 ρ

←↩ →ϕ2←↩→ϕ1

ρ2

A1

//////

R

P2P1

A2

(H1 ∩ H2)π = {w ∈ H1π ∩ H2π : cH1(w) ∩ cH2(w) 6= ∅}

= {w ∈ H1π ∩ H2π : (wϕ1ρ1A1 + L1) ∩ (wϕ2ρ2A2 + L2) 6= ∅}

= {w ∈ H1π ∩ H2π : (wρP1A1 + L1) ∩ (wρP2A2 + L2) 6= ∅}

= {w ∈ H1π ∩ H2π : wρ(P1A1 − P2A2) ∈ L1 + L2}

= (L1 + L2)(P1A1 − P2A2) ρ = (L1 + L2)R ρ .

INTERSECTION DIAGRAM

(H1 ∩ H2)π⩽

H1π H1π ∩ H2π H2π

Zr1 Zr Zr2

Zm

⩽

L1 + L2

ρ1 ρ

←↩ →ϕ2←↩→ϕ1

ρ2

A1

//////

R

P2P1

A2

(H1 ∩ H2)π = {w ∈ H1π ∩ H2π : cH1(w) ∩ cH2(w) 6= ∅}

= {w ∈ H1π ∩ H2π : (wϕ1ρ1A1 + L1) ∩ (wϕ2ρ2A2 + L2) 6= ∅}

= {w ∈ H1π ∩ H2π : (wρP1A1 + L1) ∩ (wρP2A2 + L2) 6= ∅}

= {w ∈ H1π ∩ H2π : wρ(P1A1 − P2A2) ∈ L1 + L2}
= (L1 + L2)(P1A1 − P2A2) ρ

= (L1 + L2)R ρ .

INTERSECTION DIAGRAM

(H1 ∩ H2)π⩽

H1π H1π ∩ H2π H2π

Zr1 Zr Zr2

Zm

⩽

L1 + L2

ρ1 ρ

←↩ →ϕ2←↩→ϕ1

ρ2

A1

//////

R

P2P1

A2

(H1 ∩ H2)π = {w ∈ H1π ∩ H2π : cH1(w) ∩ cH2(w) 6= ∅}

= {w ∈ H1π ∩ H2π : (wϕ1ρ1A1 + L1) ∩ (wϕ2ρ2A2 + L2) 6= ∅}

= {w ∈ H1π ∩ H2π : (wρP1A1 + L1) ∩ (wρP2A2 + L2) 6= ∅}

= {w ∈ H1π ∩ H2π : wρ(P1A1 − P2A2) ∈ L1 + L2}
= (L1 + L2)(P1A1 − P2A2) ρ = (L1 + L2)R ρ .

DECIDING INTERSECTIONS

We have:
Fn ⩾ H1π ∩ H2π ' Fr Zr ZmP P P

(H1 ∩ H2)π ' (L1 + L2)R ρ︸ ︷︷ ︸
Mρ

(L1 + L2)R︸ ︷︷ ︸
M

L1 + L2

ρ ← →R

← [→ ← [→

Theorem
Let H1,H2 ⩽fg Fn × Zm. Then, TFAE:
1. the intersection H1 ∩ H2 is finitely generated;
2. the projection (H1 ∩ H2)π is finitely generated;
3. (H1 ∩ H2)π is either trivial, or has finite index in H1π ∩ H2π,
4. either r = 0, 1 and M is trivial, or |Zr : M| < ∞.

Corollary
The subgroup intersection problem SIP(Fn × Zm) is decidable.

DECIDING INTERSECTIONS

We have:
Fn ⩾ H1π ∩ H2π ' Fr Zr ZmP P P

(H1 ∩ H2)π ' (L1 + L2)R ρ︸ ︷︷ ︸
Mρ

(L1 + L2)R︸ ︷︷ ︸
M

L1 + L2

ρ ← →R

← [→ ← [→

Theorem
Let H1,H2 ⩽fg Fn × Zm. Then, TFAE:
1. the intersection H1 ∩ H2 is finitely generated;
2. the projection (H1 ∩ H2)π is finitely generated;
3. (H1 ∩ H2)π is either trivial, or has finite index in H1π ∩ H2π,
4. either r = 0, 1 and M is trivial, or |Zr : M| < ∞.

Corollary
The subgroup intersection problem SIP(Fn × Zm) is decidable.

DECIDING INTERSECTIONS

We have:
Fn ⩾ H1π ∩ H2π ' Fr Zr ZmP P P

(H1 ∩ H2)π ' (L1 + L2)R ρ︸ ︷︷ ︸
Mρ

(L1 + L2)R︸ ︷︷ ︸
M

L1 + L2

ρ ← →R

← [→ ← [→

Theorem
Let H1,H2 ⩽fg Fn × Zm. Then, TFAE:
1. the intersection H1 ∩ H2 is finitely generated;
2. the projection (H1 ∩ H2)π is finitely generated;
3. (H1 ∩ H2)π is either trivial, or has finite index in H1π ∩ H2π,
4. either r = 0, 1 and M is trivial, or |Zr : M| < ∞.

Corollary
The subgroup intersection problem SIP(Fn × Zm) is decidable.

INTERSECTION EXAMPLE

Let H1 = 〈tL1 , x3 ta, yx〉, H2 = 〈tL2 , x2 td, yxy−1〉 ⩽ F2 × Z2

L2

L1

H1

H2

dd

a

a

L1,L2

a,d

0,d

a,0

0,d

w1 w2

St (H1)× St (H2)

⇝
2a,3d

a,0

Claim:

H1 ∩ H2 = {u ta : u ta is componentwise-readable in St (H1)× St (H2) }

(H1 ∩ H2)π =
{
w ∈ Fw1,w2 : w(w1t2a,w2ta) tL1 ∩ w(w1t3d,w2t0) tL2 6= ∅

}
=

{
w ∈ Fw1,w2 : wab

[2a−3d
a−0

]
∈ L1 + L2

}
= (L1 + L2)R ρ , where R =

[2a−3d
a−0

]
and ρ = ab .

INTERSECTION EXAMPLE

Let H1 = 〈tL1 , x3 ta, yx〉,

H2 = 〈tL2 , x2 td, yxy−1〉 ⩽ F2 × Z2

L2

L1

H1

H2

dd

a

a

L1,L2

a,d

0,d

a,0

0,d

w1 w2

St (H1)× St (H2)

⇝
2a,3d

a,0

Claim:

H1 ∩ H2 = {u ta : u ta is componentwise-readable in St (H1)× St (H2) }

(H1 ∩ H2)π =
{
w ∈ Fw1,w2 : w(w1t2a,w2ta) tL1 ∩ w(w1t3d,w2t0) tL2 6= ∅

}
=

{
w ∈ Fw1,w2 : wab

[2a−3d
a−0

]
∈ L1 + L2

}
= (L1 + L2)R ρ , where R =

[2a−3d
a−0

]
and ρ = ab .

INTERSECTION EXAMPLE

Let H1 = 〈tL1 , x3 ta, yx〉, H2 = 〈tL2 , x2 td, yxy−1〉

⩽ F2 × Z2

L2

L1

H1

H2

dd

a

a

L1,L2

a,d

0,d

a,0

0,d

w1 w2

St (H1)× St (H2)

⇝
2a,3d

a,0

Claim:

H1 ∩ H2 = {u ta : u ta is componentwise-readable in St (H1)× St (H2) }

(H1 ∩ H2)π =
{
w ∈ Fw1,w2 : w(w1t2a,w2ta) tL1 ∩ w(w1t3d,w2t0) tL2 6= ∅

}
=

{
w ∈ Fw1,w2 : wab

[2a−3d
a−0

]
∈ L1 + L2

}
= (L1 + L2)R ρ , where R =

[2a−3d
a−0

]
and ρ = ab .

INTERSECTION EXAMPLE

Let H1 = 〈tL1 , x3 ta, yx〉, H2 = 〈tL2 , x2 td, yxy−1〉 ⩽ F2 × Z2

L2

L1

H1

H2

dd

a

a

L1,L2

a,d

0,d

a,0

0,d

w1 w2

St (H1)× St (H2)

⇝
2a,3d

a,0

Claim:

H1 ∩ H2 = {u ta : u ta is componentwise-readable in St (H1)× St (H2) }

(H1 ∩ H2)π =
{
w ∈ Fw1,w2 : w(w1t2a,w2ta) tL1 ∩ w(w1t3d,w2t0) tL2 6= ∅

}
=

{
w ∈ Fw1,w2 : wab

[2a−3d
a−0

]
∈ L1 + L2

}
= (L1 + L2)R ρ , where R =

[2a−3d
a−0

]
and ρ = ab .

INTERSECTION EXAMPLE

Let H1 = 〈tL1 , x3 ta, yx〉, H2 = 〈tL2 , x2 td, yxy−1〉 ⩽ F2 × Z2

L2

L1

H1

H2

dd

a

a

L1,L2

a,d

0,d

a,0

0,d

w1 w2

St (H1)× St (H2)

⇝
2a,3d

a,0

Claim:

H1 ∩ H2 = {u ta : u ta is componentwise-readable in St (H1)× St (H2) }

(H1 ∩ H2)π =
{
w ∈ Fw1,w2 : w(w1t2a,w2ta) tL1 ∩ w(w1t3d,w2t0) tL2 6= ∅

}
=

{
w ∈ Fw1,w2 : wab

[2a−3d
a−0

]
∈ L1 + L2

}
= (L1 + L2)R ρ , where R =

[2a−3d
a−0

]
and ρ = ab .

INTERSECTION EXAMPLE

Let H1 = 〈tL1 , x3 ta, yx〉, H2 = 〈tL2 , x2 td, yxy−1〉 ⩽ F2 × Z2

L2

L1

H1

H2

dd

a

a

L1,L2

a,d

0,d

a,0

0,d

w1 w2

St (H1)× St (H2)

⇝
2a,3d

a,0

Claim:

H1 ∩ H2 = {u ta : u ta is componentwise-readable in St (H1)× St (H2) }

(H1 ∩ H2)π =
{
w ∈ Fw1,w2 : w(w1t2a,w2ta) tL1 ∩ w(w1t3d,w2t0) tL2 6= ∅

}
=

{
w ∈ Fw1,w2 : wab

[2a−3d
a−0

]
∈ L1 + L2

}
= (L1 + L2)R ρ , where R =

[2a−3d
a−0

]
and ρ = ab .

INTERSECTION EXAMPLE

Let H1 = 〈tL1 , x3 ta, yx〉, H2 = 〈tL2 , x2 td, yxy−1〉 ⩽ F2 × Z2

L2

L1

H1

H2

dd

a

a

L1,L2

a,d

0,d

a,0

0,d

w1 w2

St (H1)× St (H2)

⇝
2a,3d

a,0

Claim:

H1 ∩ H2 = {u ta : u ta is componentwise-readable in St (H1)× St (H2) }

(H1 ∩ H2)π =
{
w ∈ Fw1,w2 : w(w1t2a,w2ta) tL1 ∩ w(w1t3d,w2t0) tL2 6= ∅

}
=

{
w ∈ Fw1,w2 : wab

[2a−3d
a−0

]
∈ L1 + L2

}
= (L1 + L2)R ρ , where R =

[2a−3d
a−0

]
and ρ = ab .

INTERSECTION EXAMPLE

Let H1 = 〈tL1 , x3 ta, yx〉, H2 = 〈tL2 , x2 td, yxy−1〉 ⩽ F2 × Z2

L2

L1

H1

H2

dd

a

L1,L2

a,d

0,d

a,0

0,d

w1 w2

St (H1)× St (H2)

⇝
2a,3d

a,0

Claim:

H1 ∩ H2 = {u ta : u ta is componentwise-readable in St (H1)× St (H2) }

(H1 ∩ H2)π =
{
w ∈ Fw1,w2 : w(w1t2a,w2ta) tL1 ∩ w(w1t3d,w2t0) tL2 6= ∅

}
=

{
w ∈ Fw1,w2 : wab

[2a−3d
a−0

]
∈ L1 + L2

}
= (L1 + L2)R ρ , where R =

[2a−3d
a−0

]
and ρ = ab .

INTERSECTION EXAMPLE

Let H1 = 〈tL1 , x3 ta, yx〉, H2 = 〈tL2 , x2 td, yxy−1〉 ⩽ F2 × Z2

L2

L1

H1

H2

dd

a

L1,L2

a,d

0,d

a,0

0,d

w1 w2

St (H1)× St (H2)

⇝
2a,3d

a,0

Claim:

H1 ∩ H2 = {u ta : u ta is componentwise-readable in St (H1)× St (H2) }

(H1 ∩ H2)π =
{
w ∈ Fw1,w2 : w(w1t2a,w2ta) tL1 ∩ w(w1t3d,w2t0) tL2 6= ∅

}
=

{
w ∈ Fw1,w2 : wab

[2a−3d
a−0

]
∈ L1 + L2

}
= (L1 + L2)R ρ , where R =

[2a−3d
a−0

]
and ρ = ab .

INTERSECTION EXAMPLE

Let H1 = 〈tL1 , x3 ta, yx〉, H2 = 〈tL2 , x2 td, yxy−1〉 ⩽ F2 × Z2

L2

L1

H1

H2

dd

a

L1,L2

a,d

0,d

a,0

0,d

w1 w2

St (H1)× St (H2)

⇝
2a,3d

a,0

Claim:

H1 ∩ H2 = {u ta : u ta is componentwise-readable in St (H1)× St (H2) }

(H1 ∩ H2)π =
{
w ∈ Fw1,w2 : w(w1t2a,w2ta) tL1 ∩ w(w1t3d,w2t0) tL2 6= ∅

}
=

{
w ∈ Fw1,w2 : wab

[2a−3d
a−0

]
∈ L1 + L2

}
= (L1 + L2)R ρ , where R =

[2a−3d
a−0

]
and ρ = ab .

INTERSECTION EXAMPLE

Let H1 = 〈tL1 , x3 ta, yx〉, H2 = 〈tL2 , x2 td, yxy−1〉 ⩽ F2 × Z2

L2

L1

H1

H2

d

d

a

L1,L2

a,d

0,d

a,0

0,d

w1 w2

St (H1)× St (H2)

⇝
2a,3d

a,0

Claim:

H1 ∩ H2 = {u ta : u ta is componentwise-readable in St (H1)× St (H2) }

(H1 ∩ H2)π =
{
w ∈ Fw1,w2 : w(w1t2a,w2ta) tL1 ∩ w(w1t3d,w2t0) tL2 6= ∅

}
=

{
w ∈ Fw1,w2 : wab

[2a−3d
a−0

]
∈ L1 + L2

}
= (L1 + L2)R ρ , where R =

[2a−3d
a−0

]
and ρ = ab .

INTERSECTION EXAMPLE

Let H1 = 〈tL1 , x3 ta, yx〉, H2 = 〈tL2 , x2 td, yxy−1〉 ⩽ F2 × Z2

L2

L1

H1

H2

d

d

a

L1,L2

a,d

0,d

a,0

0,d

w1 w2

St (H1)× St (H2)

⇝
2a,3d

a,0

Claim:

H1 ∩ H2 = {u ta : u ta is componentwise-readable in St (H1)× St (H2) }

(H1 ∩ H2)π =
{
w ∈ Fw1,w2 : w(w1t2a,w2ta) tL1 ∩ w(w1t3d,w2t0) tL2 6= ∅

}
=

{
w ∈ Fw1,w2 : wab

[2a−3d
a−0

]
∈ L1 + L2

}
= (L1 + L2)R ρ , where R =

[2a−3d
a−0

]
and ρ = ab .

INTERSECTION EXAMPLE

Let H1 = 〈tL1 , x3 ta, yx〉, H2 = 〈tL2 , x2 td, yxy−1〉 ⩽ F2 × Z2

L2

L1

H1

H2

d

d

a

L1,L2

a,d

0,d

a,0

0,d

w1 w2

St (H1)× St (H2)

⇝
2a,3d

a,0

Claim:

H1 ∩ H2 = {u ta : u ta is componentwise-readable in St (H1)× St (H2) }

(H1 ∩ H2)π =
{
w ∈ Fw1,w2 : w(w1t2a,w2ta) tL1 ∩ w(w1t3d,w2t0) tL2 6= ∅

}
=

{
w ∈ Fw1,w2 : wab

[2a−3d
a−0

]
∈ L1 + L2

}
= (L1 + L2)R ρ , where R =

[2a−3d
a−0

]
and ρ = ab .

INTERSECTION EXAMPLE

Let H1 = 〈tL1 , x3 ta, yx〉, H2 = 〈tL2 , x2 td, yxy−1〉 ⩽ F2 × Z2

L2

L1

H1

H2

d

d

a

L1,L2

a,d

0,d

a,0

0,d

w1 w2

St (H1)× St (H2)

⇝
2a,3d

a,0

Claim:

H1 ∩ H2 = {u ta : u ta is componentwise-readable in St (H1)× St (H2) }

(H1 ∩ H2)π =
{
w ∈ Fw1,w2 : w(w1t2a,w2ta) tL1 ∩ w(w1t3d,w2t0) tL2 6= ∅

}
=

{
w ∈ Fw1,w2 : wab

[2a−3d
a−0

]
∈ L1 + L2

}
= (L1 + L2)R ρ , where R =

[2a−3d
a−0

]
and ρ = ab .

INTERSECTION EXAMPLE

Let H1 = 〈tL1 , x3 ta, yx〉, H2 = 〈tL2 , x2 td, yxy−1〉 ⩽ F2 × Z2

L2

L1

H1

H2

d

d

a

L1,L2

a,d

0,d

a,0

0,d

w1 w2

St (H1)× St (H2)

⇝
2a,3d

a,0

Claim:

H1 ∩ H2 = {u ta : u ta is componentwise-readable in St (H1)× St (H2) }

(H1 ∩ H2)π =
{
w ∈ Fw1,w2 : w(w1t2a,w2ta) tL1 ∩ w(w1t3d,w2t0) tL2 6= ∅

}
=

{
w ∈ Fw1,w2 : wab

[2a−3d
a−0

]
∈ L1 + L2

}
= (L1 + L2)R ρ , where R =

[2a−3d
a−0

]
and ρ = ab .

INTERSECTION EXAMPLE

Let H1 = 〈tL1 , x3 ta, yx〉, H2 = 〈tL2 , x2 td, yxy−1〉 ⩽ F2 × Z2

L2

L1

H1

H2

dd

a

L1,L2

a,d

0,d

a,0

0,d

w1 w2

St (H1)× St (H2)

⇝
2a,3d

a,0

Claim:

H1 ∩ H2 = {u ta : u ta is componentwise-readable in St (H1)× St (H2) }

(H1 ∩ H2)π =
{
w ∈ Fw1,w2 : w(w1t2a,w2ta) tL1 ∩ w(w1t3d,w2t0) tL2 6= ∅

}
=

{
w ∈ Fw1,w2 : wab

[2a−3d
a−0

]
∈ L1 + L2

}
= (L1 + L2)R ρ , where R =

[2a−3d
a−0

]
and ρ = ab .

INTERSECTION EXAMPLE

Let H1 = 〈tL1 , x3 ta, yx〉, H2 = 〈tL2 , x2 td, yxy−1〉 ⩽ F2 × Z2

L2

L1

H1

H2

dd

a

L1,L2

a,d

0,d

a,0

0,d

w1 w2

St (H1)× St (H2)

⇝
2a,3d

a,0

Claim:

H1 ∩ H2 = {u ta : u ta is componentwise-readable in St (H1)× St (H2) }

(H1 ∩ H2)π =
{
w ∈ Fw1,w2 : w(w1t2a,w2ta) tL1 ∩ w(w1t3d,w2t0) tL2 6= ∅

}
=

{
w ∈ Fw1,w2 : wab

[2a−3d
a−0

]
∈ L1 + L2

}
= (L1 + L2)R ρ , where R =

[2a−3d
a−0

]
and ρ = ab .

INTERSECTION EXAMPLE

Let H1 = 〈tL1 , x3 ta, yx〉, H2 = 〈tL2 , x2 td, yxy−1〉 ⩽ F2 × Z2

L2

L1

H1

H2

d

d

a

L1,L2

a,d

0,d

a,0
a,0

0,d

w1 w2

St (H1)× St (H2)

⇝
2a,3d

a,0

Claim:

H1 ∩ H2 = {u ta : u ta is componentwise-readable in St (H1)× St (H2) }

(H1 ∩ H2)π =
{
w ∈ Fw1,w2 : w(w1t2a,w2ta) tL1 ∩ w(w1t3d,w2t0) tL2 6= ∅

}
=

{
w ∈ Fw1,w2 : wab

[2a−3d
a−0

]
∈ L1 + L2

}
= (L1 + L2)R ρ , where R =

[2a−3d
a−0

]
and ρ = ab .

INTERSECTION EXAMPLE

Let H1 = 〈tL1 , x3 ta, yx〉, H2 = 〈tL2 , x2 td, yxy−1〉 ⩽ F2 × Z2

L2

L1

H1

H2

d

d

a

L1,L2

a,d

0,d

a,0
a,0

0,d

w1
L1,L2

w2

St (H1)× St (H2)

⇝
2a,3d

a,0

Claim:

H1 ∩ H2 = {u ta : u ta is componentwise-readable in St (H1)× St (H2) }

(H1 ∩ H2)π =
{
w ∈ Fw1,w2 : w(w1t2a,w2ta) tL1 ∩ w(w1t3d,w2t0) tL2 6= ∅

}
=

{
w ∈ Fw1,w2 : wab

[2a−3d
a−0

]
∈ L1 + L2

}
= (L1 + L2)R ρ , where R =

[2a−3d
a−0

]
and ρ = ab .

INTERSECTION EXAMPLE

Let H1 = 〈tL1 , x3 ta, yx〉, H2 = 〈tL2 , x2 td, yxy−1〉 ⩽ F2 × Z2

L2

L1

H1

H2

d

d

a

L1,L2

a,d

0,d

a,0
a,0

0,d

w1
L1,L2

w2

St (H1)× St (H2)

⇝
2a,3d

a,0

Claim:

H1 ∩ H2 = {u ta : u ta is componentwise-readable in St (H1)× St (H2) }

(H1 ∩ H2)π =
{
w ∈ Fw1,w2 : w(w1t2a,w2ta) tL1 ∩ w(w1t3d,w2t0) tL2 6= ∅

}
=

{
w ∈ Fw1,w2 : wab

[2a−3d
a−0

]
∈ L1 + L2

}
= (L1 + L2)R ρ , where R =

[2a−3d
a−0

]
and ρ = ab .

INTERSECTION EXAMPLE

Let H1 = 〈tL1 , x3 ta, yx〉, H2 = 〈tL2 , x2 td, yxy−1〉 ⩽ F2 × Z2

L2

L1

H1

H2

d

d

a

L1,L2

a,d

0,d

a,0
a,0

0,d

w1
L1,L2

w2

St (H1)× St (H2)

⇝
2a,3d

a,0

Claim:

H1 ∩ H2 = {u ta : u ta is componentwise-readable in St (H1)× St (H2) }

(H1 ∩ H2)π =
{
w ∈ Fw1,w2 : w(w1t2a,w2ta) tL1 ∩ w(w1t3d,w2t0) tL2 6= ∅

}
=

{
w ∈ Fw1,w2 : wab

[2a−3d
a−0

]
∈ L1 + L2

}
= (L1 + L2)R ρ , where R =

[2a−3d
a−0

]
and ρ = ab .

INTERSECTION EXAMPLE

Let H1 = 〈tL1 , x3 ta, yx〉, H2 = 〈tL2 , x2 td, yxy−1〉 ⩽ F2 × Z2

L2

L1

H1

H2

d

d

a

L1,L2

a,d

0,d

a,0
a,0

0,d

w1
L1,L2

w2

St (H1)× St (H2)

⇝
2a,3d

a,0

Claim:

H1 ∩ H2 = {u ta : u ta is componentwise-readable in St (H1)× St (H2) }

(H1 ∩ H2)π =
{
w ∈ Fw1,w2 : w(w1t2a,w2ta) tL1 ∩ w(w1t3d,w2t0) tL2 6= ∅

}
=

{
w ∈ Fw1,w2 : wab

[2a−3d
a−0

]
∈ L1 + L2

}
= (L1 + L2)R ρ , where R =

[2a−3d
a−0

]
and ρ = ab .

INTERSECTION EXAMPLE

Let H1 = 〈tL1 , x3 ta, yx〉, H2 = 〈tL2 , x2 td, yxy−1〉 ⩽ F2 × Z2

L2

L1

H1

H2

d

d

a

L1,L2

a,d

0,d

a,0
a,0

0,d

w1
L1,L2

w2

St (H1)× St (H2)

⇝
2a,3d

a,0

Claim:

H1 ∩ H2 = {u ta : u ta is componentwise-readable in St (H1)× St (H2) }

(H1 ∩ H2)π =
{
w ∈ Fw1,w2 : w(w1t2a,w2ta) tL1 ∩ w(w1t3d,w2t0) tL2 6= ∅

}

=
{
w ∈ Fw1,w2 : wab

[2a−3d
a−0

]
∈ L1 + L2

}
= (L1 + L2)R ρ , where R =

[2a−3d
a−0

]
and ρ = ab .

INTERSECTION EXAMPLE

Let H1 = 〈tL1 , x3 ta, yx〉, H2 = 〈tL2 , x2 td, yxy−1〉 ⩽ F2 × Z2

L2

L1

H1

H2

d

d

a

L1,L2

a,d

0,d

a,0
a,0

0,d

w1
L1,L2

w2

St (H1)× St (H2)

⇝
2a,3d

a,0

Claim:

H1 ∩ H2 = {u ta : u ta is componentwise-readable in St (H1)× St (H2) }

(H1 ∩ H2)π =
{
w ∈ Fw1,w2 : w(w1t2a,w2ta) tL1 ∩ w(w1t3d,w2t0) tL2 6= ∅

}
=

{
w ∈ Fw1,w2 : wab

[2a−3d
a−0

]
∈ L1 + L2

}

= (L1 + L2)R ρ , where R =
[2a−3d

a−0
]
and ρ = ab .

INTERSECTION EXAMPLE

Let H1 = 〈tL1 , x3 ta, yx〉, H2 = 〈tL2 , x2 td, yxy−1〉 ⩽ F2 × Z2

L2

L1

H1

H2

d

d

a

L1,L2

a,d

0,d

a,0
a,0

0,d

w1
L1,L2

w2

St (H1)× St (H2)

⇝
2a,3d

a,0

Claim:

H1 ∩ H2 = {u ta : u ta is componentwise-readable in St (H1)× St (H2) }

(H1 ∩ H2)π =
{
w ∈ Fw1,w2 : w(w1t2a,w2ta) tL1 ∩ w(w1t3d,w2t0) tL2 6= ∅

}
=

{
w ∈ Fw1,w2 : wab

[2a−3d
a−0

]
∈ L1 + L2

}
= (L1 + L2)R ρ , where R =

[2a−3d
a−0

]
and ρ = ab .

FROM STALLINGS TO CAYLEY

w1=x6
L1,L2 w2=yx3y−1

R =
[2a−3d

a−0
]

〈M〉 =

M = (L1 + L2)R
PMQ = D = diag(δ1, δ2)

2a,3d a,0

We have that (H1 ∩ H2)π = (L1 + L2)R−1ρ−1 = Mρ−1, i.e.,

F{x,y} ⩾ H1π ∩ H2π ' Fw1,w2 Z2 Zm

P P P P

(H1 ∩ H2)π ' Mρ−1 M L1 + L2

ρ ← →R

Then, St ((H1 ∩ H2)π, {wi}i)

' St
(
Mρ−1, {wi}i

)
' Sch

(
Mρ−1, {wi}i

)
' Cay

(
Fw1,w2/Mρ−1, {[wi]}i

)
' Cay

(
Z2/〈D〉 , {eiQ}i

)
' Cay(Z/δ1Z⊕ Z/δ2Z , {eiQ}i) .

FROM STALLINGS TO CAYLEY

w1=x6
L1,L2 w2=yx3y−1

R =
[2a−3d

a−0
]

〈M〉 =

M = (L1 + L2)R

PMQ = D = diag(δ1, δ2)

2a,3d a,0

We have that (H1 ∩ H2)π = (L1 + L2)R−1ρ−1 = Mρ−1, i.e.,

F{x,y} ⩾ H1π ∩ H2π ' Fw1,w2 Z2 Zm

P P P P

(H1 ∩ H2)π ' Mρ−1 M L1 + L2

ρ ← →R

Then, St ((H1 ∩ H2)π, {wi}i)

' St
(
Mρ−1, {wi}i

)
' Sch

(
Mρ−1, {wi}i

)
' Cay

(
Fw1,w2/Mρ−1, {[wi]}i

)
' Cay

(
Z2/〈D〉 , {eiQ}i

)
' Cay(Z/δ1Z⊕ Z/δ2Z , {eiQ}i) .

FROM STALLINGS TO CAYLEY

w1=x6
L1,L2 w2=yx3y−1

R =
[2a−3d

a−0
]

〈M〉 =

M = (L1 + L2)R

PMQ = D = diag(δ1, δ2)

2a,3d a,0

We have that (H1 ∩ H2)π = (L1 + L2)R−1ρ−1 = Mρ−1, i.e.,

F{x,y} ⩾ H1π ∩ H2π ' Fw1,w2 Z2 Zm
P P P P

(H1 ∩ H2)π ' Mρ−1 M L1 + L2

ρ ← →R

Then, St ((H1 ∩ H2)π, {wi}i)

' St
(
Mρ−1, {wi}i

)
' Sch

(
Mρ−1, {wi}i

)
' Cay

(
Fw1,w2/Mρ−1, {[wi]}i

)
' Cay

(
Z2/〈D〉 , {eiQ}i

)
' Cay(Z/δ1Z⊕ Z/δ2Z , {eiQ}i) .

FROM STALLINGS TO CAYLEY

w1=x6
L1,L2 w2=yx3y−1

R =
[2a−3d

a−0
]

〈M〉 =

M = (L1 + L2)R

PMQ = D = diag(δ1, δ2)

2a,3d a,0

We have that (H1 ∩ H2)π = (L1 + L2)R−1ρ−1 = Mρ−1, i.e.,

F{x,y} ⩾ H1π ∩ H2π ' Fw1,w2 Z2 Zm
P P P P

(H1 ∩ H2)π ' Mρ−1 M L1 + L2

ρ ← →R

Then, St ((H1 ∩ H2)π, {wi}i) ' St
(
Mρ−1, {wi}i

)

' Sch
(
Mρ−1, {wi}i

)
' Cay

(
Fw1,w2/Mρ−1, {[wi]}i

)
' Cay

(
Z2/〈D〉 , {eiQ}i

)
' Cay(Z/δ1Z⊕ Z/δ2Z , {eiQ}i) .

FROM STALLINGS TO CAYLEY

w1=x6
L1,L2 w2=yx3y−1

R =
[2a−3d

a−0
]

〈M〉 =

M = (L1 + L2)R

PMQ = D = diag(δ1, δ2)

2a,3d a,0

We have that (H1 ∩ H2)π = (L1 + L2)R−1ρ−1 = Mρ−1, i.e.,

F{x,y} ⩾ H1π ∩ H2π ' Fw1,w2 Z2 Zm
P P P P

(H1 ∩ H2)π ' Mρ−1 M L1 + L2

ρ ← →R

Then, St ((H1 ∩ H2)π, {wi}i) ' St
(
Mρ−1, {wi}i

)
' Sch

(
Mρ−1, {wi}i

)

' Cay
(
Fw1,w2/Mρ−1, {[wi]}i

)
' Cay

(
Z2/〈D〉 , {eiQ}i

)
' Cay(Z/δ1Z⊕ Z/δ2Z , {eiQ}i) .

FROM STALLINGS TO CAYLEY

w1=x6
L1,L2 w2=yx3y−1

R =
[2a−3d

a−0
]

〈M〉 =

M = (L1 + L2)R

PMQ = D = diag(δ1, δ2)

2a,3d a,0

We have that (H1 ∩ H2)π = (L1 + L2)R−1ρ−1 = Mρ−1, i.e.,

F{x,y} ⩾ H1π ∩ H2π ' Fw1,w2 Z2 Zm
P P P P

(H1 ∩ H2)π ' Mρ−1 M L1 + L2

ρ ← →R

Then, St ((H1 ∩ H2)π, {wi}i) ' St
(
Mρ−1, {wi}i

)
' Sch

(
Mρ−1, {wi}i

)
' Cay

(
Fw1,w2/Mρ−1, {[wi]}i

)

' Cay
(
Z2/〈D〉 , {eiQ}i

)
' Cay(Z/δ1Z⊕ Z/δ2Z , {eiQ}i) .

FROM STALLINGS TO CAYLEY

w1=x6
L1,L2 w2=yx3y−1

R =
[2a−3d

a−0
]

〈M〉 =

M = (L1 + L2)R

PMQ = D = diag(δ1, δ2)

2a,3d a,0

We have that (H1 ∩ H2)π = (L1 + L2)R−1ρ−1 = Mρ−1, i.e.,

F{x,y} ⩾ H1π ∩ H2π ' Fw1,w2 Z2 Zm
P P P P

(H1 ∩ H2)π ' Mρ−1 M L1 + L2

ρ ← →R

Then, St ((H1 ∩ H2)π, {wi}i) ' St
(
Mρ−1, {wi}i

)
' Sch

(
Mρ−1, {wi}i

)
' Cay

(
Fw1,w2/Mρ−1, {[wi]}i

)
' Cay

(
Z2/M, {ei}i

)

' Cay
(
Z2/〈D〉 , {eiQ}i

)
' Cay(Z/δ1Z⊕ Z/δ2Z , {eiQ}i) .

FROM STALLINGS TO CAYLEY

w1=x6
L1,L2 w2=yx3y−1

R =
[2a−3d

a−0
]

〈M〉 = M = (L1 + L2)R

PMQ = D = diag(δ1, δ2)

2a,3d a,0

We have that (H1 ∩ H2)π = (L1 + L2)R−1ρ−1 = Mρ−1, i.e.,

F{x,y} ⩾ H1π ∩ H2π ' Fw1,w2 Z2 Zm
P P P P

(H1 ∩ H2)π ' Mρ−1 M L1 + L2

ρ ← →R

Then, St ((H1 ∩ H2)π, {wi}i) ' St
(
Mρ−1, {wi}i

)
' Sch

(
Mρ−1, {wi}i

)
' Cay

(
Fw1,w2/Mρ−1, {[wi]}i

)
' Cay

(
Z2/M, {ei}i

)

' Cay
(
Z2/〈D〉 , {eiQ}i

)
' Cay(Z/δ1Z⊕ Z/δ2Z , {eiQ}i) .

FROM STALLINGS TO CAYLEY

w1=x6
L1,L2 w2=yx3y−1

R =
[2a−3d

a−0
]

〈M〉 = M = (L1 + L2)R

PMQ = D = diag(δ1, δ2)

2a,3d a,0

We have that (H1 ∩ H2)π = (L1 + L2)R−1ρ−1 = Mρ−1, i.e.,

F{x,y} ⩾ H1π ∩ H2π ' Fw1,w2 Z2 Zm
P P P P

(H1 ∩ H2)π ' Mρ−1 M L1 + L2

ρ ← →R

Then, St ((H1 ∩ H2)π, {wi}i) ' St
(
Mρ−1, {wi}i

)
' Sch

(
Mρ−1, {wi}i

)
' Cay

(
Fw1,w2/Mρ−1, {[wi]}i

)
' Cay

(
Z2/〈M〉, {ei}i

)

' Cay
(
Z2/〈D〉 , {eiQ}i

)
' Cay(Z/δ1Z⊕ Z/δ2Z , {eiQ}i) .

FROM STALLINGS TO CAYLEY

w1=x6
L1,L2 w2=yx3y−1

R =
[2a−3d

a−0
]

〈M〉 = M = (L1 + L2)R
PMQ = D = diag(δ1, δ2)

2a,3d a,0

We have that (H1 ∩ H2)π = (L1 + L2)R−1ρ−1 = Mρ−1, i.e.,

F{x,y} ⩾ H1π ∩ H2π ' Fw1,w2 Z2 Zm
P P P P

(H1 ∩ H2)π ' Mρ−1 M L1 + L2

ρ ← →R

Then, St ((H1 ∩ H2)π, {wi}i) ' St
(
Mρ−1, {wi}i

)
' Sch

(
Mρ−1, {wi}i

)
' Cay

(
Fw1,w2/Mρ−1, {[wi]}i

)
' Cay

(
Z2/〈M〉, {ei}i

)
' Cay

(
Z2/〈D〉 , {eiQ}i

)

' Cay(Z/δ1Z⊕ Z/δ2Z , {eiQ}i) .

FROM STALLINGS TO CAYLEY

w1=x6
L1,L2 w2=yx3y−1

R =
[2a−3d

a−0
]

〈M〉 = M = (L1 + L2)R
PMQ = D = diag(δ1, δ2)

2a,3d a,0

We have that (H1 ∩ H2)π = (L1 + L2)R−1ρ−1 = Mρ−1, i.e.,

F{x,y} ⩾ H1π ∩ H2π ' Fw1,w2 Z2 Zm
P P P P

(H1 ∩ H2)π ' Mρ−1 M L1 + L2

ρ ← →R

Then, St ((H1 ∩ H2)π, {wi}i) ' St
(
Mρ−1, {wi}i

)
' Sch

(
Mρ−1, {wi}i

)
' Cay

(
Fw1,w2/Mρ−1, {[wi]}i

)
' Cay

(
Z2/〈M〉, {ei}i

)
' Cay

(
Z2/〈D〉 , {eiQ}i

)
' Cay(Z/δ1Z⊕ Z/δ2Z , {eiQ}i) .

INTERSECTION AUTOMATON

Theorem (D.–V.)
Let H1,H2 ⩽ Fn × Zm. Then

St ((H1 ∩ H2)π, {wi(X)}i) = Cay(
⊕r

i=1 Z/δiZ , {eiQ}i) ,

where r = rk(H1π ∩ H2π).

Corollary
Let H1,H2 ⩽ Fn × Zm. Then,

H1 ∩ H2 is f.g. ⇔ δi 6= 0, for all i = 1, . . . , r

⇔ | (H1 ∩ H2)π : H1π ∩ H2π | < ∞ .

Theorem (D.–V.)
Let H1,H2 ⩽ Fn × Zm. Then,
1. we can algorithmically decide whether H1 ∩ H2 is f.g.
2. if so, St(H1 ∩ H2) is computable.

In particular, SIP(Fn × Zm) is solvable.

INTERSECTION AUTOMATON

Theorem (D.–V.)
Let H1,H2 ⩽ Fn × Zm. Then

St ((H1 ∩ H2)π, {wi(X)}i) = Cay(
⊕r

i=1 Z/δiZ , {eiQ}i) ,

where r = rk(H1π ∩ H2π).

Corollary
Let H1,H2 ⩽ Fn × Zm. Then,

H1 ∩ H2 is f.g. ⇔ δi 6= 0, for all i = 1, . . . , r

⇔ | (H1 ∩ H2)π : H1π ∩ H2π | < ∞ .

Theorem (D.–V.)
Let H1,H2 ⩽ Fn × Zm. Then,
1. we can algorithmically decide whether H1 ∩ H2 is f.g.
2. if so, St(H1 ∩ H2) is computable.

In particular, SIP(Fn × Zm) is solvable.

INTERSECTION AUTOMATON

Theorem (D.–V.)
Let H1,H2 ⩽ Fn × Zm. Then

St ((H1 ∩ H2)π, {wi(X)}i) = Cay(
⊕r

i=1 Z/δiZ , {eiQ}i) ,

where r = rk(H1π ∩ H2π).

Corollary
Let H1,H2 ⩽ Fn × Zm. Then,

H1 ∩ H2 is f.g. ⇔ δi 6= 0, for all i = 1, . . . , r
⇔ | (H1 ∩ H2)π : H1π ∩ H2π | < ∞ .

Theorem (D.–V.)
Let H1,H2 ⩽ Fn × Zm. Then,
1. we can algorithmically decide whether H1 ∩ H2 is f.g.
2. if so, St(H1 ∩ H2) is computable.

In particular, SIP(Fn × Zm) is solvable.

INTERSECTION AUTOMATON

Theorem (D.–V.)
Let H1,H2 ⩽ Fn × Zm. Then

St ((H1 ∩ H2)π, {wi(X)}i) = Cay(
⊕r

i=1 Z/δiZ , {eiQ}i) ,

where r = rk(H1π ∩ H2π).

Corollary
Let H1,H2 ⩽ Fn × Zm. Then,

H1 ∩ H2 is f.g. ⇔ δi 6= 0, for all i = 1, . . . , r
⇔ | (H1 ∩ H2)π : H1π ∩ H2π | < ∞ .

Theorem (D.–V.)
Let H1,H2 ⩽ Fn × Zm. Then,
1. we can algorithmically decide whether H1 ∩ H2 is f.g.
2. if so, St(H1 ∩ H2) is computable.

In particular, SIP(Fn × Zm) is solvable.

INTERSECTION SHOWCASE

H1 = 〈tL1 , x3 ta, yx〉, H2 = 〈tL2 , x2 td, yxy−1〉 ⩽ F2 × Z2

Case 1: a = (1, 0), d = (0, 1), L1 = 〈(0, 6)〉, L2 = 〈(3,−3)〉

Then, R =
[2 −3
1 0

]
,M =

[
−2 4
1 1

]
,Q =

[1 −1
0 1

]
,D =

[1 0
0 6

]
.

INTERSECTION SHOWCASE

H1 = 〈tL1 , x3 ta, yx〉, H2 = 〈tL2 , x2 td, yxy−1〉 ⩽ F2 × Z2

Case 1: a = (1, 0), d = (0, 1), L1 = 〈(0, 6)〉, L2 = 〈(3,−3)〉

Then, R =
[2 −3
1 0

]
,M =

[
−2 4
1 1

]
,Q =

[1 −1
0 1

]
,D =

[1 0
0 6

]
.

INTERSECTION SHOWCASE

H1 = 〈tL1 , x3 ta, yx〉, H2 = 〈tL2 , x2 td, yxy−1〉 ⩽ F2 × Z2

Case 1: a = (1, 0), d = (0, 1), L1 = 〈(0, 6)〉, L2 = 〈(3,−3)〉

Then, R =
[2 −3
1 0

]
,M =

[
−2 4
1 1

]
,Q =

[1 −1
0 1

]
,D =

[1 0
0 6

]
.

INTERSECTION SHOWCASE

H1 = 〈tL1 , x3 ta, yx〉, H2 = 〈tL2 , x2 td, yxy−1〉 ⩽ F2 × Z2

Case 1: a = (1, 0), d = (0, 1), L1 = 〈(0, 6)〉, L2 = 〈(3,−3)〉

Then, R =
[2 −3
1 0

]
,M =

[
−2 4
1 1

]
,Q =

[1 −1
0 1

]
,D =

[1 0
0 6

]
.

Hence: St ((H1 ∩ H2)π, {w1,w2}) = Cay (Z/6Z , {−1, 1})

INTERSECTION SHOWCASE

H1 = 〈tL1 , x3 ta, yx〉, H2 = 〈tL2 , x2 td, yxy−1〉 ⩽ F2 × Z2

Case 1: a = (1, 0), d = (0, 1), L1 = 〈(0, 6)〉, L2 = 〈(3,−3)〉

Then, R =
[2 −3
1 0

]
,M =

[
−2 4
1 1

]
,Q =

[1 −1
0 1

]
,D =

[1 0
0 6

]
.

Hence: St ((H1 ∩ H2)π, {w1,w2}) = Cay (Z/6Z , {−1, 1})

w1

w2

INTERSECTION SHOWCASE

H1 = 〈tL1 , x3 ta, yx〉, H2 = 〈tL2 , x2 td, yxy−1〉 ⩽ F2 × Z2

Case 1: a = (1, 0), d = (0, 1), L1 = 〈(0, 6)〉, L2 = 〈(3,−3)〉

Then, R =
[2 −3
1 0

]
,M =

[
−2 4
1 1

]
,Q =

[1 −1
0 1

]
,D =

[1 0
0 6

]
.

After replacing w1 → x6t(2,0),(0,3), w2 → yx3y−1t(1,0),(0,0) and folding:

w1

w2

INTERSECTION SHOWCASE

H1 = 〈tL1 , x3 ta, yx〉, H2 = 〈tL2 , x2 td, yxy−1〉 ⩽ F2 × Z2

Case 1: a = (1, 0), d = (0, 1), L1 = 〈(0, 6)〉, L2 = 〈(3,−3)〉

Then, R =
[2 −3
1 0

]
,M =

[
−2 4
1 1

]
,Q =

[1 −1
0 1

]
,D =

[1 0
0 6

]
.

After replacing w1 → x6t(2,0),(0,3), w2 → yx3y−1t(1,0),(0,0) and folding:

(2,0)(0,3)
(2,0)(0,3)

(2,0)(0,3)

(2,0)(0,3)
(2,0)(0,3)

(2,0)(0,3)

(1,0)(0,0)

(1,0)(0,0)
(1,0)(0,0)

(1,0)(0,0)

(1,0)(0,0)(1,0)(0,0)

INTERSECTION SHOWCASE

H1 = 〈tL1 , x3 ta, yx〉, H2 = 〈tL2 , x2 td, yxy−1〉 ⩽ F2 × Z2

Case 1: a = (1, 0), d = (0, 1), L1 = 〈(0, 6)〉, L2 = 〈(3,−3)〉

Then, R =
[2 −3
1 0

]
,M =

[
−2 4
1 1

]
,Q =

[1 −1
0 1

]
,D =

[1 0
0 6

]
.

After normalizing w.r.t. an spanning tree:

(2,0)(0,3)
(2,0)(0,3)

(2,0)(0,3)

(2,0)(0,3)
(2,0)(0,3)

(2,0)(0,3)

(1,0)(0,0)

(1,0)(0,0)
(1,0)(0,0)

(1,0)(0,0)

(1,0)(0,0)(1,0)(0,0)

INTERSECTION SHOWCASE

H1 = 〈tL1 , x3 ta, yx〉, H2 = 〈tL2 , x2 td, yxy−1〉 ⩽ F2 × Z2

Case 1: a = (1, 0), d = (0, 1), L1 = 〈(0, 6)〉, L2 = 〈(3,−3)〉

Then, R =
[2 −3
1 0

]
,M =

[
−2 4
1 1

]
,Q =

[1 −1
0 1

]
,D =

[1 0
0 6

]
.

After normalizing w.r.t. an spanning tree:

(−3,0),(0,3)
(3,0),(0,3)

(3,0),(0,3)

(3,0),(0,3)
(3,0),(0,3)

(3,0),(0,3)
(6,0),(0,0)

INTERSECTION SHOWCASE

H1 = 〈tL1 , x3 ta, yx〉, H2 = 〈tL2 , x2 td, yxy−1〉 ⩽ F2 × Z2

Case 1: a = (1, 0), d = (0, 1), L1 = 〈(0, 6)〉, L2 = 〈(3,−3)〉

Then, R =
[2 −3
1 0

]
,M =

[
−2 4
1 1

]
,Q =

[1 −1
0 1

]
,D =

[1 0
0 6

]
.

Finally, after equalizing the abelian labels we obtain St(H1 ∩ H2):

(−3,0),(0,3)
(3,0),(0,3)

(3,0),(0,3)

(3,0),(0,3)
(3,0),(0,3)

(3,0),(0,3)
(6,0),(0,0)

INTERSECTION SHOWCASE

H1 = 〈tL1 , x3 ta, yx〉, H2 = 〈tL2 , x2 td, yxy−1〉 ⩽ F2 × Z2

Case 1: a = (1, 0), d = (0, 1), L1 = 〈(0, 6)〉, L2 = 〈(3,−3)〉

Then, R =
[2 −3
1 0

]
,M =

[
−2 4
1 1

]
,Q =

[1 −1
0 1

]
,D =

[1 0
0 6

]
.

Finally, after equalizing the abelian labels we obtain St(H1 ∩ H2):

(−3,6)
(3,0)

(3,0)

(3,0)
(3,0)

(3,0)
(6,−6)

INTERSECTION SHOWCASE

H1 = 〈tL1 , x3 ta, yx〉, H2 = 〈tL2 , x2 td, yxy−1〉 ⩽ F2 × Z2

Case 2: a = (3, 3), d = (2, 2), L1 = 〈(1, 2)〉, L2 = 〈(0, 0)〉.

Then, St ((H1 ∩ H2)π, {w1,w2}) = Cay (Z, {0, 1})

· · ·· · ·

w1

w2

After replacing, folding, normalizing, and equalizing, we obtain
St(H1 ∩ H2):

· · ·· · ·

(6,6) (6,6) (6,6)(6,6)(6,6)

INTERSECTION SHOWCASE

H1 = 〈tL1 , x3 ta, yx〉, H2 = 〈tL2 , x2 td, yxy−1〉 ⩽ F2 × Z2

Case 2: a = (3, 3), d = (2, 2), L1 = 〈(1, 2)〉, L2 = 〈(0, 0)〉.

Then, St ((H1 ∩ H2)π, {w1,w2}) = Cay (Z, {0, 1})

· · ·· · ·

w1

w2

After replacing, folding, normalizing, and equalizing, we obtain
St(H1 ∩ H2):

· · ·· · ·

(6,6) (6,6) (6,6)(6,6)(6,6)

INTERSECTION SHOWCASE

H1 = 〈tL1 , x3 ta, yx〉, H2 = 〈tL2 , x2 td, yxy−1〉 ⩽ F2 × Z2

Case 2: a = (3, 3), d = (2, 2), L1 = 〈(1, 2)〉, L2 = 〈(0, 0)〉.

Then, St ((H1 ∩ H2)π, {w1,w2}) = Cay (Z, {0, 1})

· · ·· · ·

w1

w2

After replacing, folding, normalizing, and equalizing, we obtain
St(H1 ∩ H2):

· · ·· · ·

(6,6) (6,6) (6,6)(6,6)(6,6)

INTERSECTION SHOWCASE

H1 = 〈tL1 , x3 ta, yx〉, H2 = 〈tL2 , x2 td, yxy−1〉 ⩽ F2 × Z2

Case 2: a = (3, 3), d = (2, 2), L1 = 〈(1, 2)〉, L2 = 〈(0, 0)〉.

Then, St ((H1 ∩ H2)π, {w1,w2}) = Cay (Z, {0, 1})

· · ·· · ·

w1

w2

After replacing, folding, normalizing, and equalizing, we obtain
St(H1 ∩ H2):

· · ·· · ·

(6,6) (6,6) (6,6)(6,6)(6,6)

INTERSECTION SHOWCASE

H1 = 〈tL1 , x3 ta, yx〉, H2 = 〈tL2 , x2 td, yxy−1〉 ⩽ F2 × Z2

Case 2: a = (3, 3), d = (2, 2), L1 = 〈(1, 2)〉, L2 = 〈(0, 0)〉.

Then, St ((H1 ∩ H2)π, {w1,w2}) = Cay (Z, {0, 1})

· · ·· · ·

w1

w2

After replacing, folding, normalizing, and equalizing, we obtain
St(H1 ∩ H2):

· · ·· · ·

(6,6) (6,6) (6,6)(6,6)(6,6)

INTERSECTION SHOWCASE

H1 = 〈tL1 , x3 ta, yx〉, H2 = 〈tL2 , x2 td, yxy−1〉 ⩽ F2 × Z2

Case 2: a = (3, 3), d = (2, 2), L1 = 〈(1, 2)〉, L2 = 〈(0, 0)〉.

Then, St ((H1 ∩ H2)π, {w1,w2}) = Cay (Z, {0, 1})

· · ·· · ·

w1

w2

After replacing, folding, normalizing, and equalizing, we obtain
St(H1 ∩ H2):

· · ·· · ·

(6,6) (6,6) (6,6)(6,6)(6,6)

INTERSECTION SHOWCASE

H1 = 〈tL1 , x3 ta, yx〉, H2 = 〈tL2 , x2 td, yxy−1〉 ⩽ F2 × Z2

Case 3: a = (3, 3), d = (2, 2), L1 = 〈(2, 2)〉, L2 = 〈(0, 0)〉.

Then, St ((H1 ∩ H2)π, {w1,w2}) = Cay (Z/2Z , {0, 1})

w1 w1

w2

w2

After replacing, folding, normalizing, and equalizing, we obtain
St(H1 ∩ H2):

(6,6)

(6,6)

INTERSECTION SHOWCASE

H1 = 〈tL1 , x3 ta, yx〉, H2 = 〈tL2 , x2 td, yxy−1〉 ⩽ F2 × Z2

Case 3: a = (3, 3), d = (2, 2), L1 = 〈(2, 2)〉, L2 = 〈(0, 0)〉.

Then, St ((H1 ∩ H2)π, {w1,w2}) = Cay (Z/2Z , {0, 1})

w1 w1

w2

w2

After replacing, folding, normalizing, and equalizing, we obtain
St(H1 ∩ H2):

(6,6)

(6,6)

INTERSECTION SHOWCASE

H1 = 〈tL1 , x3 ta, yx〉, H2 = 〈tL2 , x2 td, yxy−1〉 ⩽ F2 × Z2

Case 3: a = (3, 3), d = (2, 2), L1 = 〈(2, 2)〉, L2 = 〈(0, 0)〉.

Then, St ((H1 ∩ H2)π, {w1,w2}) = Cay (Z/2Z , {0, 1})

w1 w1

w2

w2

After replacing, folding, normalizing, and equalizing, we obtain
St(H1 ∩ H2):

(6,6)

(6,6)

INTERSECTION SHOWCASE

H1 = 〈tL1 , x3 ta, yx〉, H2 = 〈tL2 , x2 td, yxy−1〉 ⩽ F2 × Z2

Case 3: a = (3, 3), d = (2, 2), L1 = 〈(2, 2)〉, L2 = 〈(0, 0)〉.

Then, St ((H1 ∩ H2)π, {w1,w2}) = Cay (Z/2Z , {0, 1})

w1 w1

w2

w2

After replacing, folding, normalizing, and equalizing, we obtain
St(H1 ∩ H2):

(6,6)

(6,6)

INTERSECTION SHOWCASE

H1 = 〈tL1 , x3 ta, yx〉, H2 = 〈tL2 , x2 td, yxy−1〉 ⩽ F2 × Z2

Case 3: a = (3, 3), d = (2, 2), L1 = 〈(2, 2)〉, L2 = 〈(0, 0)〉.

Then, St ((H1 ∩ H2)π, {w1,w2}) = Cay (Z/2Z , {0, 1})

w1 w1

w2

w2

After replacing, folding, normalizing, and equalizing, we obtain
St(H1 ∩ H2):

(6,6)

(6,6)

INTERSECTION SHOWCASE

H1 = 〈tL1 , x3 ta, yx〉, H2 = 〈tL2 , x2 td, yxy−1〉 ⩽ F2 × Z2

Case 3: a = (3, 3), d = (2, 2), L1 = 〈(2, 2)〉, L2 = 〈(0, 0)〉.

Then, St ((H1 ∩ H2)π, {w1,w2}) = Cay (Z/2Z , {0, 1})

w1 w1

w2

w2

After replacing, folding, normalizing, and equalizing, we obtain
St(H1 ∩ H2):

(6,6)

(6,6)

INTERSECTION SHOWCASE

H1 = 〈tL1 , x3 ta, yx〉, H2 = 〈tL2 , x2 td, yxy−1〉 ⩽ F2 × Z2

Case 4: a = (3, 3), d = (2, 2) ∈ Z2, and L2 = 〈(1, 1)〉, L2 = 〈(0, 0)〉.

Then, St ((H1 ∩ H2)π, {w1,w2}) = Cay ({0} , {0, 0})

w1 w2

After replacing, folding, normalizing, and equalizing, we obtain
St(H1 ∩ H2):

(6,6)

INTERSECTION SHOWCASE

H1 = 〈tL1 , x3 ta, yx〉, H2 = 〈tL2 , x2 td, yxy−1〉 ⩽ F2 × Z2

Case 4: a = (3, 3), d = (2, 2) ∈ Z2, and L2 = 〈(1, 1)〉, L2 = 〈(0, 0)〉.

Then, St ((H1 ∩ H2)π, {w1,w2}) = Cay ({0} , {0, 0})

w1 w2

After replacing, folding, normalizing, and equalizing, we obtain
St(H1 ∩ H2):

(6,6)

INTERSECTION SHOWCASE

H1 = 〈tL1 , x3 ta, yx〉, H2 = 〈tL2 , x2 td, yxy−1〉 ⩽ F2 × Z2

Case 4: a = (3, 3), d = (2, 2) ∈ Z2, and L2 = 〈(1, 1)〉, L2 = 〈(0, 0)〉.

Then, St ((H1 ∩ H2)π, {w1,w2}) = Cay ({0} , {0, 0})

w1 w2

After replacing, folding, normalizing, and equalizing, we obtain
St(H1 ∩ H2):

(6,6)

INTERSECTION SHOWCASE

H1 = 〈tL1 , x3 ta, yx〉, H2 = 〈tL2 , x2 td, yxy−1〉 ⩽ F2 × Z2

Case 4: a = (3, 3), d = (2, 2) ∈ Z2, and L2 = 〈(1, 1)〉, L2 = 〈(0, 0)〉.

Then, St ((H1 ∩ H2)π, {w1,w2}) = Cay ({0} , {0, 0})

w1 w2

After replacing, folding, normalizing, and equalizing, we obtain
St(H1 ∩ H2):

(6,6)

INTERSECTION SHOWCASE

H1 = 〈tL1 , x3 ta, yx〉, H2 = 〈tL2 , x2 td, yxy−1〉 ⩽ F2 × Z2

Case 4: a = (3, 3), d = (2, 2) ∈ Z2, and L2 = 〈(1, 1)〉, L2 = 〈(0, 0)〉.

Then, St ((H1 ∩ H2)π, {w1,w2}) = Cay ({0} , {0, 0})

w1 w2

After replacing, folding, normalizing, and equalizing, we obtain
St(H1 ∩ H2):

(6,6)

INTERSECTION SHOWCASE

H1 = 〈tL1 , x3 ta, yx〉, H2 = 〈tL2 , x2 td, yxy−1〉 ⩽ F2 × Z2

Case 4: a = (3, 3), d = (2, 2) ∈ Z2, and L2 = 〈(1, 1)〉, L2 = 〈(0, 0)〉.

Then, St ((H1 ∩ H2)π, {w1,w2}) = Cay ({0} , {0, 0})

w1 w2

After replacing, folding, normalizing, and equalizing, we obtain
St(H1 ∩ H2):

(6,6)

INTERSECTION SHOWCASE

H1 = 〈tL1 , x3 ta, yx〉, H2 = 〈tL2 , x2 td, yxy−1〉 ⩽ F2 × Z2

Case 5: a = (6, 6), d = (4, 4) ∈ Z2, L1 = 〈(6p, 6p)〉, L2 = 〈(0, 0)〉, for
some p ∈ Z.

INTERSECTION SHOWCASE

H1 = 〈tL1 , x3 ta, yx〉, H2 = 〈tL2 , x2 td, yxy−1〉 ⩽ F2 × Z2

Case 5: a = (6, 6), d = (4, 4) ∈ Z2, L1 = 〈(6p, 6p)〉, L2 = 〈(0, 0)〉, for
some p ∈ Z.

INTERSECTION SHOWCASE

H1 = 〈tL1 , x3 ta, yx〉, H2 = 〈tL2 , x2 td, yxy−1〉 ⩽ F2 × Z2

Case 5: a = (6, 6), d = (4, 4) ∈ Z2, L1 = 〈(6p, 6p)〉, L2 = 〈(0, 0)〉, for
some p ∈ Z.

Then, St ((H1 ∩ H2)π, {w1,w2}) = Cay (Z/pZ , {0, 1})

INTERSECTION SHOWCASE

H1 = 〈tL1 , x3 ta, yx〉, H2 = 〈tL2 , x2 td, yxy−1〉 ⩽ F2 × Z2

Case 5: a = (6, 6), d = (4, 4) ∈ Z2, L1 = 〈(6p, 6p)〉, L2 = 〈(0, 0)〉, for
some p ∈ Z.

Then, St ((H1 ∩ H2)π, {w1,w2}) = Cay (Z/pZ , {0, 1})

p vertices

INTERSECTION SHOWCASE

After replacing, folding, normalizing, and equalizing, we obtain
St(H1 ∩ H2):

(p times)

(12,12)

(12,12)

(12,12)

(12,12)

(12,12)

(12,12)

(12,12)

(12,12)

INTERSECTION SHOWCASE

After replacing, folding, normalizing, and equalizing, we obtain
St(H1 ∩ H2):

(p times)

(12,12)

(12,12)

(12,12)

(12,12)

(12,12)

(12,12)

(12,12)

(12,12)

MULTIPLE INTERSECTIONS IN
Fn× Zm

WHAT ABOUT THE MULTIPLE VERSIONS?

Subgroup Intersection Problem in G, SIP(G)
Given H1,H2 ⩽fg G (by finite sets of generators), decide whether
H1 ∩ H2 is finitely generated; if yes, compute generators for H1 ∩ H2.

Multiple Subgroup Intersection Problem in G, MSIP(G)
Given H1, . . . ,Hk ⩽fg G (by finite sets of generators), decide whether
H1 ∩ · · · ∩ Hk is finitely generated; if yes, compute generators for
H1 ∩ · · · ∩ Hk.

Remark:
If G is not Howson one cannot just apply induction …

H1 ∩ · · · ∩ Hk = (H1 ∩ · · · ∩ Hk−1) ∩ Hk

There are subgroups H1,H2,H3 ⩽ Fn × Zm such that H1,H2,H3 and
H1∩H2∩H3 are finitely generated, but H1∩H2, H1∩H3, H2∩H3 are not …

WHAT ABOUT THE MULTIPLE VERSIONS?

Subgroup Intersection Problem in G, SIP(G)
Given H1,H2 ⩽fg G (by finite sets of generators), decide whether
H1 ∩ H2 is finitely generated; if yes, compute generators for H1 ∩ H2.

Multiple Subgroup Intersection Problem in G, MSIP(G)
Given H1, . . . ,Hk ⩽fg G (by finite sets of generators), decide whether
H1 ∩ · · · ∩ Hk is finitely generated; if yes, compute generators for
H1 ∩ · · · ∩ Hk.

Remark:
If G is not Howson one cannot just apply induction …

H1 ∩ · · · ∩ Hk = (H1 ∩ · · · ∩ Hk−1) ∩ Hk

There are subgroups H1,H2,H3 ⩽ Fn × Zm such that H1,H2,H3 and
H1∩H2∩H3 are finitely generated, but H1∩H2, H1∩H3, H2∩H3 are not …

WHAT ABOUT THE MULTIPLE VERSIONS?

Subgroup Intersection Problem in G, SIP(G)
Given H1,H2 ⩽fg G (by finite sets of generators), decide whether
H1 ∩ H2 is finitely generated; if yes, compute generators for H1 ∩ H2.

Multiple Subgroup Intersection Problem in G, MSIP(G)
Given H1, . . . ,Hk ⩽fg G (by finite sets of generators), decide whether
H1 ∩ · · · ∩ Hk is finitely generated; if yes, compute generators for
H1 ∩ · · · ∩ Hk.

Remark:
If G is not Howson one cannot just apply induction …

H1 ∩ · · · ∩ Hk = (H1 ∩ · · · ∩ Hk−1) ∩ Hk

There are subgroups H1,H2,H3 ⩽ Fn × Zm such that H1,H2,H3 and
H1∩H2∩H3 are finitely generated, but H1∩H2, H1∩H3, H2∩H3 are not …

WHAT ABOUT THE MULTIPLE VERSIONS?

Subgroup Intersection Problem in G, SIP(G)
Given H1,H2 ⩽fg G (by finite sets of generators), decide whether
H1 ∩ H2 is finitely generated; if yes, compute generators for H1 ∩ H2.

Multiple Subgroup Intersection Problem in G, MSIP(G)
Given H1, . . . ,Hk ⩽fg G (by finite sets of generators), decide whether
H1 ∩ · · · ∩ Hk is finitely generated; if yes, compute generators for
H1 ∩ · · · ∩ Hk.

Remark:
If G is not Howson one cannot just apply induction …

H1 ∩ · · · ∩ Hk = (H1 ∩ · · · ∩ Hk−1) ∩ Hk

There are subgroups H1,H2,H3 ⩽ Fn × Zm such that H1,H2,H3 and
H1∩H2∩H3 are finitely generated, but H1∩H2, H1∩H3, H2∩H3 are not …

MULTIPLE INTERSECTIONS

Let H1,H2 ⩽ G. There are 23 = 8 possibilities for the finite/infinite
generation of H1, H2, H1 ∩ H2:

, , , ,

, , , .

Observation
G is Howson ⇔ the highlighted 2-configuration is not realizable.

MULTIPLE INTERSECTIONS

Let H1,H2 ⩽ G. There are 23 = 8 possibilities for the finite/infinite
generation of H1, H2, H1 ∩ H2:

, , , ,

, , , .

Observation
G is Howson ⇔ the highlighted 2-configuration is not realizable.

INTERSECTION CONFIGURATIONS

What about intersection configurations with k ⩾ 2 subgroups?
Which ones are realizable in Fn × Zm?

Is non-Howsonity the only obstruction to the realizability of
k-intersection configurations in a free group?

Definition
A k-configuration is a map χ : P([k]) \ {∅}→ {0, 1}.
(0 indicates f.g., and 1 non-f.g.).

Its support is I = {∅ 6= I ⊆ [k] | (I)χ = 1}. We write χ = χI.

Examples:
• 0 = χ∅ is the zero k-configuration,
• 1 = χP([k]) is the one k-configuration.
• χ{I} is an almost-0 k-configuration.

INTERSECTION CONFIGURATIONS

What about intersection configurations with k ⩾ 2 subgroups?
Which ones are realizable in Fn × Zm?

Is non-Howsonity the only obstruction to the realizability of
k-intersection configurations in a free group?

Definition
A k-configuration is a map χ : P([k]) \ {∅}→ {0, 1}.
(0 indicates f.g., and 1 non-f.g.).

Its support is I = {∅ 6= I ⊆ [k] | (I)χ = 1}. We write χ = χI.

Examples:
• 0 = χ∅ is the zero k-configuration,
• 1 = χP([k]) is the one k-configuration.
• χ{I} is an almost-0 k-configuration.

INTERSECTION CONFIGURATIONS

What about intersection configurations with k ⩾ 2 subgroups?
Which ones are realizable in Fn × Zm?

Is non-Howsonity the only obstruction to the realizability of
k-intersection configurations in a free group?

Definition
A k-configuration is a map χ : P([k]) \ {∅}→ {0, 1}.
(0 indicates f.g., and 1 non-f.g.).

Its support is I = {∅ 6= I ⊆ [k] | (I)χ = 1}. We write χ = χI.

Examples:
• 0 = χ∅ is the zero k-configuration,
• 1 = χP([k]) is the one k-configuration.
• χ{I} is an almost-0 k-configuration.

INTERSECTION CONFIGURATIONS

What about intersection configurations with k ⩾ 2 subgroups?
Which ones are realizable in Fn × Zm?

Is non-Howsonity the only obstruction to the realizability of
k-intersection configurations in a free group?

Definition
A k-configuration is a map χ : P([k]) \ {∅}→ {0, 1}.
(0 indicates f.g., and 1 non-f.g.).

Its support is I = {∅ 6= I ⊆ [k] | (I)χ = 1}. We write χ = χI.

Examples:
• 0 = χ∅ is the zero k-configuration,
• 1 = χP([k]) is the one k-configuration.
• χ{I} is an almost-0 k-configuration.

INTERSECTION CONFIGURATIONS

What about intersection configurations with k ⩾ 2 subgroups?
Which ones are realizable in Fn × Zm?

Is non-Howsonity the only obstruction to the realizability of
k-intersection configurations in a free group?

Definition
A k-configuration is a map χ : P([k]) \ {∅}→ {0, 1}.
(0 indicates f.g., and 1 non-f.g.).

Its support is I = {∅ 6= I ⊆ [k] | (I)χ = 1}. We write χ = χI.

Examples:
• 0 = χ∅ is the zero k-configuration,

• 1 = χP([k]) is the one k-configuration.
• χ{I} is an almost-0 k-configuration.

INTERSECTION CONFIGURATIONS

What about intersection configurations with k ⩾ 2 subgroups?
Which ones are realizable in Fn × Zm?

Is non-Howsonity the only obstruction to the realizability of
k-intersection configurations in a free group?

Definition
A k-configuration is a map χ : P([k]) \ {∅}→ {0, 1}.
(0 indicates f.g., and 1 non-f.g.).

Its support is I = {∅ 6= I ⊆ [k] | (I)χ = 1}. We write χ = χI.

Examples:
• 0 = χ∅ is the zero k-configuration,
• 1 = χP([k]) is the one k-configuration.

• χ{I} is an almost-0 k-configuration.

INTERSECTION CONFIGURATIONS

What about intersection configurations with k ⩾ 2 subgroups?
Which ones are realizable in Fn × Zm?

Is non-Howsonity the only obstruction to the realizability of
k-intersection configurations in a free group?

Definition
A k-configuration is a map χ : P([k]) \ {∅}→ {0, 1}.
(0 indicates f.g., and 1 non-f.g.).

Its support is I = {∅ 6= I ⊆ [k] | (I)χ = 1}. We write χ = χI.

Examples:
• 0 = χ∅ is the zero k-configuration,
• 1 = χP([k]) is the one k-configuration.
• χ{I} is an almost-0 k-configuration.

INTERSECTION CONFIGURATIONS

∅

{2}{1} {3}

{1, 2} {1, 3} {2, 3}

{1, 2, 3}

χ{{2},{3},{1,2},{1,2,3}} χ∅ = 0 χ{1} χ[{1, 2, 3}]

INTERSECTION CONFIGURATIONS

∅

{2}{1} {3}

{1, 2} {1, 3} {2, 3}

{1, 2, 3}

χ{{2},{3},{1,2},{1,2,3}}

χ∅ = 0 χ{1} χ[{1, 2, 3}]

INTERSECTION CONFIGURATIONS

∅

{2}{1} {3}

{1, 2} {1, 3} {2, 3}

{1, 2, 3}

χ{{2},{3},{1,2},{1,2,3}} χ∅ = 0

χ{1} χ[{1, 2, 3}]

INTERSECTION CONFIGURATIONS

∅

{2}{1} {3}

{1, 2} {1, 3} {2, 3}

{1, 2, 3}

χ{{2},{3},{1,2},{1,2,3}} χ∅ = 0 χ{1} χ[{1, 2, 3}]

REALIZABILITY

Let G be a group, and k ⩾ 1.

Definition
A k-configuration χ : P([k]) \ {∅}→ {0, 1} is realizable in G if there
exist k subgroups H = {H1, . . . ,Hk} of G (with possible repetitions)
such that, for every ∅ 6= I ⊆ [k],

HI =
⋂
i∈I

Hi is finitely generated⇔ (I)χ = 0.

Remarks:
• The k-configuration 0 is always realizable in any group G;
• the k-configuration 1 is realizable in a group G if and only if G
contains a non-finitely-generated subgroup H ⩽ G;

• if a k-configuration χ is realizable in a free group Fn, n ⩾ 2, then χ

satisfies the Howson property:
∀ ∅ 6= I, J ⊆ [k], (I)χ = (J)χ = 0 ⇒ (I ∪ J)χ = 0.

REALIZABILITY

Let G be a group, and k ⩾ 1.

Definition
A k-configuration χ : P([k]) \ {∅}→ {0, 1} is realizable in G if there
exist k subgroups H = {H1, . . . ,Hk} of G (with possible repetitions)
such that, for every ∅ 6= I ⊆ [k],

HI =
⋂
i∈I

Hi is finitely generated⇔ (I)χ = 0.

Remarks:
• The k-configuration 0 is always realizable in any group G;

• the k-configuration 1 is realizable in a group G if and only if G
contains a non-finitely-generated subgroup H ⩽ G;

• if a k-configuration χ is realizable in a free group Fn, n ⩾ 2, then χ

satisfies the Howson property:
∀ ∅ 6= I, J ⊆ [k], (I)χ = (J)χ = 0 ⇒ (I ∪ J)χ = 0.

REALIZABILITY

Let G be a group, and k ⩾ 1.

Definition
A k-configuration χ : P([k]) \ {∅}→ {0, 1} is realizable in G if there
exist k subgroups H = {H1, . . . ,Hk} of G (with possible repetitions)
such that, for every ∅ 6= I ⊆ [k],

HI =
⋂
i∈I

Hi is finitely generated⇔ (I)χ = 0.

Remarks:
• The k-configuration 0 is always realizable in any group G;
• the k-configuration 1 is realizable in a group G if and only if G
contains a non-finitely-generated subgroup H ⩽ G;

• if a k-configuration χ is realizable in a free group Fn, n ⩾ 2, then χ

satisfies the Howson property:
∀ ∅ 6= I, J ⊆ [k], (I)χ = (J)χ = 0 ⇒ (I ∪ J)χ = 0.

REALIZABILITY

Let G be a group, and k ⩾ 1.

Definition
A k-configuration χ : P([k]) \ {∅}→ {0, 1} is realizable in G if there
exist k subgroups H = {H1, . . . ,Hk} of G (with possible repetitions)
such that, for every ∅ 6= I ⊆ [k],

HI =
⋂
i∈I

Hi is finitely generated⇔ (I)χ = 0.

Remarks:
• The k-configuration 0 is always realizable in any group G;
• the k-configuration 1 is realizable in a group G if and only if G
contains a non-finitely-generated subgroup H ⩽ G;

• if a k-configuration χ is realizable in a free group Fn, n ⩾ 2, then χ

satisfies the Howson property:
∀ ∅ 6= I, J ⊆ [k], (I)χ = (J)χ = 0 ⇒ (I ∪ J)χ = 0.

INTERSECTION SATURATION

Question
Is it true that a k-configuration χ is realizable in a free group Fn, n ⩾ 2
⇔ χ respects the Howson property?

Definition
A group G is said to be intersection-saturated if every k-configura-
tion (for every finite k ⩾ 1) is realizable in G.

Question
Does there exists a finitely presented intersection-saturated group?

INTERSECTION SATURATION

Question
Is it true that a k-configuration χ is realizable in a free group Fn, n ⩾ 2
⇔ χ respects the Howson property?

Definition
A group G is said to be intersection-saturated if every k-configura-
tion (for every finite k ⩾ 1) is realizable in G.

Question
Does there exists a finitely presented intersection-saturated group?

INTERSECTION SATURATION

Question
Is it true that a k-configuration χ is realizable in a free group Fn, n ⩾ 2
⇔ χ respects the Howson property?

Definition
A group G is said to be intersection-saturated if every k-configura-
tion (for every finite k ⩾ 1) is realizable in G.

Question
Does there exists a finitely presented intersection-saturated group?

THE MULTIPLE INTERSECTION PROBLEM IS COMPUTABLE

Theorem (D.–Roy–V.)
MSIP(Fn × Zm) is computable.

That is, there exists an algorithm
which, given k ⩾ 2 f.g. subgroups H1, . . . ,Hk ⩽fg Fn × Zm (by finite
sets of generators), decides whether H1 ∩ · · · ∩ Hk is finitely
generated and, in the affirmative case, computes a basis for it.

To understand realizability of configurations in Fn × Zm we need a
couple more results:

Proposition
Let M ′,M ′′ ⩽ Fn be two subgroups of Fn in free factor position,
i.e., such that 〈M ′,M ′′〉 = M ′ ∗M ′′. Then, for any H ′

1, . . . ,H ′
k ⩽ M ′ ⩽ Fn

and H ′′
1 , . . . ,H ′′

k ⩽ M ′′ ⩽ Fn, then⋂k

i=1
〈H ′

i ,H ′′
i 〉 =

〈⋂k

i=1
H ′
i ,

⋂k

i=1
H ′′
i

〉
.

Remark: The same equality is not true, in general, in Fn × Zm.

THE MULTIPLE INTERSECTION PROBLEM IS COMPUTABLE

Theorem (D.–Roy–V.)
MSIP(Fn × Zm) is computable. That is, there exists an algorithm
which, given k ⩾ 2 f.g. subgroups H1, . . . ,Hk ⩽fg Fn × Zm (by finite
sets of generators), decides whether H1 ∩ · · · ∩ Hk is finitely
generated and, in the affirmative case, computes a basis for it.

To understand realizability of configurations in Fn × Zm we need a
couple more results:

Proposition
Let M ′,M ′′ ⩽ Fn be two subgroups of Fn in free factor position,
i.e., such that 〈M ′,M ′′〉 = M ′ ∗M ′′. Then, for any H ′

1, . . . ,H ′
k ⩽ M ′ ⩽ Fn

and H ′′
1 , . . . ,H ′′

k ⩽ M ′′ ⩽ Fn, then⋂k

i=1
〈H ′

i ,H ′′
i 〉 =

〈⋂k

i=1
H ′
i ,

⋂k

i=1
H ′′
i

〉
.

Remark: The same equality is not true, in general, in Fn × Zm.

THE MULTIPLE INTERSECTION PROBLEM IS COMPUTABLE

Theorem (D.–Roy–V.)
MSIP(Fn × Zm) is computable. That is, there exists an algorithm
which, given k ⩾ 2 f.g. subgroups H1, . . . ,Hk ⩽fg Fn × Zm (by finite
sets of generators), decides whether H1 ∩ · · · ∩ Hk is finitely
generated and, in the affirmative case, computes a basis for it.

To understand realizability of configurations in Fn × Zm we need a
couple more results:

Proposition
Let M ′,M ′′ ⩽ Fn be two subgroups of Fn in free factor position,
i.e., such that 〈M ′,M ′′〉 = M ′ ∗M ′′. Then, for any H ′

1, . . . ,H ′
k ⩽ M ′ ⩽ Fn

and H ′′
1 , . . . ,H ′′

k ⩽ M ′′ ⩽ Fn, then⋂k

i=1
〈H ′

i ,H ′′
i 〉 =

〈⋂k

i=1
H ′
i ,

⋂k

i=1
H ′′
i

〉
.

Remark: The same equality is not true, in general, in Fn × Zm.

THE MULTIPLE INTERSECTION PROBLEM IS COMPUTABLE

Theorem (D.–Roy–V.)
MSIP(Fn × Zm) is computable. That is, there exists an algorithm
which, given k ⩾ 2 f.g. subgroups H1, . . . ,Hk ⩽fg Fn × Zm (by finite
sets of generators), decides whether H1 ∩ · · · ∩ Hk is finitely
generated and, in the affirmative case, computes a basis for it.

To understand realizability of configurations in Fn × Zm we need a
couple more results:

Proposition
Let M ′,M ′′ ⩽ Fn be two subgroups of Fn in free factor position,
i.e., such that 〈M ′,M ′′〉 = M ′ ∗M ′′. Then, for any H ′

1, . . . ,H ′
k ⩽ M ′ ⩽ Fn

and H ′′
1 , . . . ,H ′′

k ⩽ M ′′ ⩽ Fn, then⋂k

i=1
〈H ′

i ,H ′′
i 〉 =

〈⋂k

i=1
H ′
i ,

⋂k

i=1
H ′′
i

〉
.

Remark: The same equality is not true, in general, in Fn × Zm.

THE MULTIPLE INTERSECTION PROBLEM IS COMPUTABLE

Theorem (D.–Roy–V.)
MSIP(Fn × Zm) is computable. That is, there exists an algorithm
which, given k ⩾ 2 f.g. subgroups H1, . . . ,Hk ⩽fg Fn × Zm (by finite
sets of generators), decides whether H1 ∩ · · · ∩ Hk is finitely
generated and, in the affirmative case, computes a basis for it.

To understand realizability of configurations in Fn × Zm we need a
couple more results:

Proposition
Let M ′,M ′′ ⩽ Fn be two subgroups of Fn in free factor position,
i.e., such that 〈M ′,M ′′〉 = M ′ ∗M ′′. Then, for any H ′

1, . . . ,H ′
k ⩽ M ′ ⩽ Fn

and H ′′
1 , . . . ,H ′′

k ⩽ M ′′ ⩽ Fn, then⋂k

i=1
〈H ′

i ,H ′′
i 〉 =

〈⋂k

i=1
H ′
i ,

⋂k

i=1
H ′′
i

〉
.

Remark: The same equality is not true, in general, in Fn × Zm.

STRONG COMPLEMENTARITY

Definition
Two subgroups M ′,M ′′ ⩽ Fn × Zm are strongly complementary,
denoted by 〈M ′,M ′′〉 = M ′ ⊛M ′′, if

〈M ′π,M ′′π〉 = M ′π ∗M ′′π and 〈M ′τ,M ′′τ〉 = M ′τ⊕M ′′τ .

A basis for M ′ ⊛M ′′ can be obtained by joining bases for M ′ and M ′′.

Theorem (D.–Roy–V.)
Let M ′,M ′′ ⩽ Fn × Zm be strongly complementary. Then, for
any H ′

1, . . . ,H ′
k ⩽ M ′ ⩽ Fn × Zm satisfying r ′ = rk

(
∩ki=1 H ′

iπ
)
⩾ 2, and

any H ′′
1 , . . . ,H ′′

k ⩽ M ′′ ⩽ Fn × Zm satisfying r ′′ = rk
(
∩ki=1 H ′′

i π
)
⩾ 2,⋂k

i=1
〈H ′

i ,H ′′
i 〉 is f.g. ⇔

⋂k

i=1
H ′
i and

⋂k

i=1
H ′′
i are both f.g.

Remark: It is not true without the hypotheses.

STRONG COMPLEMENTARITY

Definition
Two subgroups M ′,M ′′ ⩽ Fn × Zm are strongly complementary,
denoted by 〈M ′,M ′′〉 = M ′ ⊛M ′′, if

〈M ′π,M ′′π〉 = M ′π ∗M ′′π and 〈M ′τ,M ′′τ〉 = M ′τ⊕M ′′τ .

A basis for M ′ ⊛M ′′ can be obtained by joining bases for M ′ and M ′′.

Theorem (D.–Roy–V.)
Let M ′,M ′′ ⩽ Fn × Zm be strongly complementary. Then, for
any H ′

1, . . . ,H ′
k ⩽ M ′ ⩽ Fn × Zm satisfying r ′ = rk

(
∩ki=1 H ′

iπ
)
⩾ 2, and

any H ′′
1 , . . . ,H ′′

k ⩽ M ′′ ⩽ Fn × Zm satisfying r ′′ = rk
(
∩ki=1 H ′′

i π
)
⩾ 2,⋂k

i=1
〈H ′

i ,H ′′
i 〉 is f.g. ⇔

⋂k

i=1
H ′
i and

⋂k

i=1
H ′′
i are both f.g.

Remark: It is not true without the hypotheses.

STRONG COMPLEMENTARITY

Definition
Two subgroups M ′,M ′′ ⩽ Fn × Zm are strongly complementary,
denoted by 〈M ′,M ′′〉 = M ′ ⊛M ′′, if

〈M ′π,M ′′π〉 = M ′π ∗M ′′π and 〈M ′τ,M ′′τ〉 = M ′τ⊕M ′′τ .

A basis for M ′ ⊛M ′′ can be obtained by joining bases for M ′ and M ′′.

Theorem (D.–Roy–V.)
Let M ′,M ′′ ⩽ Fn × Zm be strongly complementary. Then, for
any H ′

1, . . . ,H ′
k ⩽ M ′ ⩽ Fn × Zm satisfying r ′ = rk

(
∩ki=1 H ′

iπ
)
⩾ 2, and

any H ′′
1 , . . . ,H ′′

k ⩽ M ′′ ⩽ Fn × Zm satisfying r ′′ = rk
(
∩ki=1 H ′′

i π
)
⩾ 2,⋂k

i=1
〈H ′

i ,H ′′
i 〉 is f.g. ⇔

⋂k

i=1
H ′
i and

⋂k

i=1
H ′′
i are both f.g.

Remark: It is not true without the hypotheses.

STRONG COMPLEMENTARITY

Definition
Two subgroups M ′,M ′′ ⩽ Fn × Zm are strongly complementary,
denoted by 〈M ′,M ′′〉 = M ′ ⊛M ′′, if

〈M ′π,M ′′π〉 = M ′π ∗M ′′π and 〈M ′τ,M ′′τ〉 = M ′τ⊕M ′′τ .

A basis for M ′ ⊛M ′′ can be obtained by joining bases for M ′ and M ′′.

Theorem (D.–Roy–V.)
Let M ′,M ′′ ⩽ Fn × Zm be strongly complementary. Then, for
any H ′

1, . . . ,H ′
k ⩽ M ′ ⩽ Fn × Zm satisfying r ′ = rk

(
∩ki=1 H ′

iπ
)
⩾ 2, and

any H ′′
1 , . . . ,H ′′

k ⩽ M ′′ ⩽ Fn × Zm satisfying r ′′ = rk
(
∩ki=1 H ′′

i π
)
⩾ 2,⋂k

i=1
〈H ′

i ,H ′′
i 〉 is f.g. ⇔

⋂k

i=1
H ′
i and

⋂k

i=1
H ′′
i are both f.g.

Remark: It is not true without the hypotheses.

OBSTRUCTIONS TO REALIZABILITY

Lemma
Let H1, . . . ,Hk ⩽ Fn × Zm. If, for some ∅ 6= I, J ⊆ [k], HI and HJ are f.g.
whereas HI∪J = HI ∩ HJ is not, then ∃i ∈ I, ∃j ∈ J s.t. both Li, Lj ⩽ Zm

have rank strictly smaller than m.

Proposition
Let χ be a k-configuration for which ∃ r ⩾ 2 non-empty subsets
I1, . . . , Ir ⊆ [k] s.t. ∀j ∈ {1, . . . , r}, (I1 ∪ · · · ∪ Îj ∪ · · · ∪ Ir)χ = 0 but
(I1 ∪ · · · ∪ Ir)χ = 1. Then χ is not realizable in Fn × Zr−2.

Example: An unrealizable configuration in F2 × Z:

OBSTRUCTIONS TO REALIZABILITY

Lemma
Let H1, . . . ,Hk ⩽ Fn × Zm. If, for some ∅ 6= I, J ⊆ [k], HI and HJ are f.g.
whereas HI∪J = HI ∩ HJ is not, then ∃i ∈ I, ∃j ∈ J s.t. both Li, Lj ⩽ Zm

have rank strictly smaller than m.

Proposition
Let χ be a k-configuration for which ∃ r ⩾ 2 non-empty subsets
I1, . . . , Ir ⊆ [k] s.t. ∀j ∈ {1, . . . , r}, (I1 ∪ · · · ∪ Îj ∪ · · · ∪ Ir)χ = 0 but
(I1 ∪ · · · ∪ Ir)χ = 1. Then χ is not realizable in Fn × Zr−2.

Example: An unrealizable configuration in F2 × Z:

OBSTRUCTIONS TO REALIZABILITY

Lemma
Let H1, . . . ,Hk ⩽ Fn × Zm. If, for some ∅ 6= I, J ⊆ [k], HI and HJ are f.g.
whereas HI∪J = HI ∩ HJ is not, then ∃i ∈ I, ∃j ∈ J s.t. both Li, Lj ⩽ Zm

have rank strictly smaller than m.

Proposition
Let χ be a k-configuration for which ∃ r ⩾ 2 non-empty subsets
I1, . . . , Ir ⊆ [k] s.t. ∀j ∈ {1, . . . , r}, (I1 ∪ · · · ∪ Îj ∪ · · · ∪ Ir)χ = 0 but
(I1 ∪ · · · ∪ Ir)χ = 1. Then χ is not realizable in Fn × Zr−2.

Example: An unrealizable configuration in F2 × Z:

OBSTRUCTIONS TO REALIZABILITY

Lemma
Let H1, . . . ,Hk ⩽ Fn × Zm. If, for some ∅ 6= I, J ⊆ [k], HI and HJ are f.g.
whereas HI∪J = HI ∩ HJ is not, then ∃i ∈ I, ∃j ∈ J s.t. both Li, Lj ⩽ Zm

have rank strictly smaller than m.

Proposition
Let χ be a k-configuration for which ∃ r ⩾ 2 non-empty subsets
I1, . . . , Ir ⊆ [k] s.t. ∀j ∈ {1, . . . , r}, (I1 ∪ · · · ∪ Îj ∪ · · · ∪ Ir)χ = 0 but
(I1 ∪ · · · ∪ Ir)χ = 1. Then χ is not realizable in Fn × Zr−2.

Example: An unrealizable configuration in F2 × Z:

REALIZING k-CONFIGURATIONS

Proposition (D.–Roy–V.)
The k-config. χ[k] is realizable in F2 × Zk−1, but not in F2 × Zk−2.

Proof: The second claim follows from previous proposition.

For k = 1 the statement is clear. Assume k ⩾ 2.

Let {x, y} be two free letters generating F2, and let {e1, . . . , ek−1} be the
canonical free-abelian basis for Zk−1. Consider:

H1 = 〈x, y; te2 , . . . , tek−1〉 ⩽ F2 × Zk−1,

H2 = 〈x, y; te1 , te3 , . . . , tek−1〉 ⩽ F2 × Zk−1,

...
Hk−1 = 〈x, y; te1 , . . . , tek−2〉 ⩽ F2 × Zk−1,

Hk = 〈x, yte1 ; te2−e1 , . . . , tek−1−e1〉
= 〈x, yte1 , . . . , ytek−1〉 ⩽ F2 × Zk−1.

REALIZING k-CONFIGURATIONS

Proposition (D.–Roy–V.)
The k-config. χ[k] is realizable in F2 × Zk−1, but not in F2 × Zk−2.

Proof: The second claim follows from previous proposition.

For k = 1 the statement is clear. Assume k ⩾ 2.

Let {x, y} be two free letters generating F2, and let {e1, . . . , ek−1} be the
canonical free-abelian basis for Zk−1. Consider:

H1 = 〈x, y; te2 , . . . , tek−1〉 ⩽ F2 × Zk−1,

H2 = 〈x, y; te1 , te3 , . . . , tek−1〉 ⩽ F2 × Zk−1,

...
Hk−1 = 〈x, y; te1 , . . . , tek−2〉 ⩽ F2 × Zk−1,

Hk = 〈x, yte1 ; te2−e1 , . . . , tek−1−e1〉
= 〈x, yte1 , . . . , ytek−1〉 ⩽ F2 × Zk−1.

REALIZING k-CONFIGURATIONS

Proposition (D.–Roy–V.)
The k-config. χ[k] is realizable in F2 × Zk−1, but not in F2 × Zk−2.

Proof: The second claim follows from previous proposition.

For k = 1 the statement is clear. Assume k ⩾ 2.

Let {x, y} be two free letters generating F2, and let {e1, . . . , ek−1} be the
canonical free-abelian basis for Zk−1. Consider:

H1 = 〈x, y; te2 , . . . , tek−1〉 ⩽ F2 × Zk−1,

H2 = 〈x, y; te1 , te3 , . . . , tek−1〉 ⩽ F2 × Zk−1,

...
Hk−1 = 〈x, y; te1 , . . . , tek−2〉 ⩽ F2 × Zk−1,

Hk = 〈x, yte1 ; te2−e1 , . . . , tek−1−e1〉
= 〈x, yte1 , . . . , ytek−1〉 ⩽ F2 × Zk−1.

REALIZING k-CONFIGURATIONS

Proposition (D.–Roy–V.)
The k-config. χ[k] is realizable in F2 × Zk−1, but not in F2 × Zk−2.

Proof: The second claim follows from previous proposition.

For k = 1 the statement is clear. Assume k ⩾ 2.

Let {x, y} be two free letters generating F2, and let {e1, . . . , ek−1} be the
canonical free-abelian basis for Zk−1. Consider:

H1 = 〈x, y; te2 , . . . , tek−1〉 ⩽ F2 × Zk−1,

H2 = 〈x, y; te1 , te3 , . . . , tek−1〉 ⩽ F2 × Zk−1,

...
Hk−1 = 〈x, y; te1 , . . . , tek−2〉 ⩽ F2 × Zk−1,

Hk = 〈x, yte1 ; te2−e1 , . . . , tek−1−e1〉
= 〈x, yte1 , . . . , ytek−1〉 ⩽ F2 × Zk−1.

REALIZING k-CONFIGURATIONS

Proposition (D.–Roy–V.)
The k-config. χ[k] is realizable in F2 × Zk−1, but not in F2 × Zk−2.

Proof: The second claim follows from previous proposition.

For k = 1 the statement is clear. Assume k ⩾ 2.

Let {x, y} be two free letters generating F2, and let {e1, . . . , ek−1} be the
canonical free-abelian basis for Zk−1. Consider:

H1 = 〈x, y; te2 , . . . , tek−1〉 ⩽ F2 × Zk−1,

H2 = 〈x, y; te1 , te3 , . . . , tek−1〉 ⩽ F2 × Zk−1,

...
Hk−1 = 〈x, y; te1 , . . . , tek−2〉 ⩽ F2 × Zk−1,

Hk = 〈x, yte1 ; te2−e1 , . . . , tek−1−e1〉
= 〈x, yte1 , . . . , ytek−1〉 ⩽ F2 × Zk−1.

REALIZING k-CONFIGURATIONS

Proposition (D.–Roy–V.)
The k-config. χ[k] is realizable in F2 × Zk−1, but not in F2 × Zk−2.

Proof: The second claim follows from previous proposition.

For k = 1 the statement is clear. Assume k ⩾ 2.

Let {x, y} be two free letters generating F2, and let {e1, . . . , ek−1} be the
canonical free-abelian basis for Zk−1. Consider:

H1 = 〈x, y; te2 , . . . , tek−1〉 ⩽ F2 × Zk−1,

H2 = 〈x, y; te1 , te3 , . . . , tek−1〉 ⩽ F2 × Zk−1,

...
Hk−1 = 〈x, y; te1 , . . . , tek−2〉 ⩽ F2 × Zk−1,

Hk = 〈x, yte1 ; te2−e1 , . . . , tek−1−e1〉
= 〈x, yte1 , . . . , ytek−1〉 ⩽ F2 × Zk−1.

REALIZING k-CONFIGURATIONS

Proposition (D.–Roy–V.)
The k-config. χ[k] is realizable in F2 × Zk−1, but not in F2 × Zk−2.

Proof: The second claim follows from previous proposition.

For k = 1 the statement is clear. Assume k ⩾ 2.

Let {x, y} be two free letters generating F2, and let {e1, . . . , ek−1} be the
canonical free-abelian basis for Zk−1. Consider:

H1 = 〈x, y; te2 , . . . , tek−1〉 ⩽ F2 × Zk−1,

H2 = 〈x, y; te1 , te3 , . . . , tek−1〉 ⩽ F2 × Zk−1,

...
Hk−1 = 〈x, y; te1 , . . . , tek−2〉 ⩽ F2 × Zk−1,

Hk = 〈x, yte1 ; te2−e1 , . . . , tek−1−e1〉
= 〈x, yte1 , . . . , ytek−1〉 ⩽ F2 × Zk−1.

REALIZING k-CONFIGURATIONS

For a given set of indices ∅ 6= I ⊆ [k], let us compute HI:

• Case 1: k /∈ I ⊊ [k]. In this case, clearly, HI = 〈x, y; tej for j /∈ I〉 is f.g.

• Case 2: k ∈ I ⊊ [k]. In this case, wlog. assume 1 /∈ I, and the
intersection HI = HI\{k} ∩ Hk is:

= 〈x, y; te1 , tej for j 6∈ I〉 ∩ 〈x, yte1 , yte2 , . . . , ytek−1〉
= {w(x, y)ta | aj = 0, ∀j ∈ I} ∩ {w(x, y)ta | a1 + · · ·+ ak−1 = |w|y}
= {w(x, y)ta | a1 + · · ·+ ak−1 = |w|y, aj = 0 ∀j ∈ I}
= 〈x, yte1 , ytej for j 6∈ I〉
= 〈x, yte1 ; tej−e1 for j 6∈ I〉

which is again finitely generated.

• Case 3: I = [k]. In this case,
HI = (H1∩· · ·∩Hk−1)∩Hk = 〈x, y〉∩〈x, yte1 ; te2−e1 , . . . , tek−1−e1〉 = 〈〈x〉〉F2

is not finitely generated.

REALIZING k-CONFIGURATIONS

For a given set of indices ∅ 6= I ⊆ [k], let us compute HI:

• Case 1: k /∈ I ⊊ [k]. In this case, clearly, HI = 〈x, y; tej for j /∈ I〉 is f.g.
• Case 2: k ∈ I ⊊ [k]. In this case, wlog. assume 1 /∈ I, and the
intersection HI = HI\{k} ∩ Hk is:

= 〈x, y; te1 , tej for j 6∈ I〉 ∩ 〈x, yte1 , yte2 , . . . , ytek−1〉
= {w(x, y)ta | aj = 0, ∀j ∈ I} ∩ {w(x, y)ta | a1 + · · ·+ ak−1 = |w|y}
= {w(x, y)ta | a1 + · · ·+ ak−1 = |w|y, aj = 0 ∀j ∈ I}
= 〈x, yte1 , ytej for j 6∈ I〉
= 〈x, yte1 ; tej−e1 for j 6∈ I〉

which is again finitely generated.

• Case 3: I = [k]. In this case,
HI = (H1∩· · ·∩Hk−1)∩Hk = 〈x, y〉∩〈x, yte1 ; te2−e1 , . . . , tek−1−e1〉 = 〈〈x〉〉F2

is not finitely generated.

REALIZING k-CONFIGURATIONS

For a given set of indices ∅ 6= I ⊆ [k], let us compute HI:

• Case 1: k /∈ I ⊊ [k]. In this case, clearly, HI = 〈x, y; tej for j /∈ I〉 is f.g.
• Case 2: k ∈ I ⊊ [k]. In this case, wlog. assume 1 /∈ I, and the
intersection HI = HI\{k} ∩ Hk is:

= 〈x, y; te1 , tej for j 6∈ I〉 ∩ 〈x, yte1 , yte2 , . . . , ytek−1〉

= {w(x, y)ta | aj = 0, ∀j ∈ I} ∩ {w(x, y)ta | a1 + · · ·+ ak−1 = |w|y}
= {w(x, y)ta | a1 + · · ·+ ak−1 = |w|y, aj = 0 ∀j ∈ I}
= 〈x, yte1 , ytej for j 6∈ I〉
= 〈x, yte1 ; tej−e1 for j 6∈ I〉

which is again finitely generated.

• Case 3: I = [k]. In this case,
HI = (H1∩· · ·∩Hk−1)∩Hk = 〈x, y〉∩〈x, yte1 ; te2−e1 , . . . , tek−1−e1〉 = 〈〈x〉〉F2

is not finitely generated.

REALIZING k-CONFIGURATIONS

For a given set of indices ∅ 6= I ⊆ [k], let us compute HI:

• Case 1: k /∈ I ⊊ [k]. In this case, clearly, HI = 〈x, y; tej for j /∈ I〉 is f.g.
• Case 2: k ∈ I ⊊ [k]. In this case, wlog. assume 1 /∈ I, and the
intersection HI = HI\{k} ∩ Hk is:

= 〈x, y; te1 , tej for j 6∈ I〉 ∩ 〈x, yte1 , yte2 , . . . , ytek−1〉
= {w(x, y)ta | aj = 0, ∀j ∈ I} ∩ {w(x, y)ta | a1 + · · ·+ ak−1 = |w|y}

= {w(x, y)ta | a1 + · · ·+ ak−1 = |w|y, aj = 0 ∀j ∈ I}
= 〈x, yte1 , ytej for j 6∈ I〉
= 〈x, yte1 ; tej−e1 for j 6∈ I〉

which is again finitely generated.

• Case 3: I = [k]. In this case,
HI = (H1∩· · ·∩Hk−1)∩Hk = 〈x, y〉∩〈x, yte1 ; te2−e1 , . . . , tek−1−e1〉 = 〈〈x〉〉F2

is not finitely generated.

REALIZING k-CONFIGURATIONS

For a given set of indices ∅ 6= I ⊆ [k], let us compute HI:

• Case 1: k /∈ I ⊊ [k]. In this case, clearly, HI = 〈x, y; tej for j /∈ I〉 is f.g.
• Case 2: k ∈ I ⊊ [k]. In this case, wlog. assume 1 /∈ I, and the
intersection HI = HI\{k} ∩ Hk is:

= 〈x, y; te1 , tej for j 6∈ I〉 ∩ 〈x, yte1 , yte2 , . . . , ytek−1〉
= {w(x, y)ta | aj = 0, ∀j ∈ I} ∩ {w(x, y)ta | a1 + · · ·+ ak−1 = |w|y}
= {w(x, y)ta | a1 + · · ·+ ak−1 = |w|y, aj = 0 ∀j ∈ I}
= 〈x, yte1 , ytej for j 6∈ I〉

= 〈x, yte1 ; tej−e1 for j 6∈ I〉

which is again finitely generated.

• Case 3: I = [k]. In this case,
HI = (H1∩· · ·∩Hk−1)∩Hk = 〈x, y〉∩〈x, yte1 ; te2−e1 , . . . , tek−1−e1〉 = 〈〈x〉〉F2

is not finitely generated.

REALIZING k-CONFIGURATIONS

For a given set of indices ∅ 6= I ⊆ [k], let us compute HI:

• Case 1: k /∈ I ⊊ [k]. In this case, clearly, HI = 〈x, y; tej for j /∈ I〉 is f.g.
• Case 2: k ∈ I ⊊ [k]. In this case, wlog. assume 1 /∈ I, and the
intersection HI = HI\{k} ∩ Hk is:

= 〈x, y; te1 , tej for j 6∈ I〉 ∩ 〈x, yte1 , yte2 , . . . , ytek−1〉
= {w(x, y)ta | aj = 0, ∀j ∈ I} ∩ {w(x, y)ta | a1 + · · ·+ ak−1 = |w|y}
= {w(x, y)ta | a1 + · · ·+ ak−1 = |w|y, aj = 0 ∀j ∈ I}
= 〈x, yte1 , ytej for j 6∈ I〉
= 〈x, yte1 ; tej−e1 for j 6∈ I〉

which is again finitely generated.

• Case 3: I = [k]. In this case,
HI = (H1∩· · ·∩Hk−1)∩Hk = 〈x, y〉∩〈x, yte1 ; te2−e1 , . . . , tek−1−e1〉 = 〈〈x〉〉F2

is not finitely generated.

REALIZING k-CONFIGURATIONS

For a given set of indices ∅ 6= I ⊆ [k], let us compute HI:

• Case 1: k /∈ I ⊊ [k]. In this case, clearly, HI = 〈x, y; tej for j /∈ I〉 is f.g.
• Case 2: k ∈ I ⊊ [k]. In this case, wlog. assume 1 /∈ I, and the
intersection HI = HI\{k} ∩ Hk is:

= 〈x, y; te1 , tej for j 6∈ I〉 ∩ 〈x, yte1 , yte2 , . . . , ytek−1〉
= {w(x, y)ta | aj = 0, ∀j ∈ I} ∩ {w(x, y)ta | a1 + · · ·+ ak−1 = |w|y}
= {w(x, y)ta | a1 + · · ·+ ak−1 = |w|y, aj = 0 ∀j ∈ I}
= 〈x, yte1 , ytej for j 6∈ I〉
= 〈x, yte1 ; tej−e1 for j 6∈ I〉

which is again finitely generated.

• Case 3: I = [k]. In this case,
HI = (H1∩· · ·∩Hk−1)∩Hk = 〈x, y〉∩〈x, yte1 ; te2−e1 , . . . , tek−1−e1〉 = 〈〈x〉〉F2

is not finitely generated.

REALIZING k-CONFIGURATIONS

Lemma
Any almost-0 k-configuration χ[I0] is realizable in F2 × Z|I0|−1.

Proposition
Let χ, χ ′ be two k-configurations, and suppose that χ is realizable in
Fn ×Zm, and χ ′ is realizable in Fn′ ×Zm′ . Then, χ ∨ χ ′ = max{χ, χ ′} is
realizable in F2 × Zm+m′ .

Theorem (D.–Roy–V.)
For k ⩾ 1, every k-configuration χ is realizable in Fn × Zm, for every
n ⩾ 2 and m� 0; more precisely, for m =

∑
(I)χ=1(|I|− 1).

Corollary
Fn ×⊕∞

i=1Z is intersection-saturated.

Theorem (D.–Roy–V.)
There exist finitely presented intersection-saturated groups G.

REALIZING k-CONFIGURATIONS

Lemma
Any almost-0 k-configuration χ[I0] is realizable in F2 × Z|I0|−1.

Proposition
Let χ, χ ′ be two k-configurations, and suppose that χ is realizable in
Fn ×Zm, and χ ′ is realizable in Fn′ ×Zm′ . Then, χ ∨ χ ′ = max{χ, χ ′} is
realizable in F2 × Zm+m′ .

Theorem (D.–Roy–V.)
For k ⩾ 1, every k-configuration χ is realizable in Fn × Zm, for every
n ⩾ 2 and m� 0; more precisely, for m =

∑
(I)χ=1(|I|− 1).

Corollary
Fn ×⊕∞

i=1Z is intersection-saturated.

Theorem (D.–Roy–V.)
There exist finitely presented intersection-saturated groups G.

REALIZING k-CONFIGURATIONS

Lemma
Any almost-0 k-configuration χ[I0] is realizable in F2 × Z|I0|−1.

Proposition
Let χ, χ ′ be two k-configurations, and suppose that χ is realizable in
Fn ×Zm, and χ ′ is realizable in Fn′ ×Zm′ . Then, χ ∨ χ ′ = max{χ, χ ′} is
realizable in F2 × Zm+m′ .

Theorem (D.–Roy–V.)
For k ⩾ 1, every k-configuration χ is realizable in Fn × Zm, for every
n ⩾ 2 and m� 0; more precisely, for m =

∑
(I)χ=1(|I|− 1).

Corollary
Fn ×⊕∞

i=1Z is intersection-saturated.

Theorem (D.–Roy–V.)
There exist finitely presented intersection-saturated groups G.

REALIZING k-CONFIGURATIONS

Lemma
Any almost-0 k-configuration χ[I0] is realizable in F2 × Z|I0|−1.

Proposition
Let χ, χ ′ be two k-configurations, and suppose that χ is realizable in
Fn ×Zm, and χ ′ is realizable in Fn′ ×Zm′ . Then, χ ∨ χ ′ = max{χ, χ ′} is
realizable in F2 × Zm+m′ .

Theorem (D.–Roy–V.)
For k ⩾ 1, every k-configuration χ is realizable in Fn × Zm, for every
n ⩾ 2 and m� 0; more precisely, for m =

∑
(I)χ=1(|I|− 1).

Corollary
Fn ×⊕∞

i=1Z is intersection-saturated.

Theorem (D.–Roy–V.)
There exist finitely presented intersection-saturated groups G.

REALIZING k-CONFIGURATIONS

Lemma
Any almost-0 k-configuration χ[I0] is realizable in F2 × Z|I0|−1.

Proposition
Let χ, χ ′ be two k-configurations, and suppose that χ is realizable in
Fn ×Zm, and χ ′ is realizable in Fn′ ×Zm′ . Then, χ ∨ χ ′ = max{χ, χ ′} is
realizable in F2 × Zm+m′ .

Theorem (D.–Roy–V.)
For k ⩾ 1, every k-configuration χ is realizable in Fn × Zm, for every
n ⩾ 2 and m� 0; more precisely, for m =

∑
(I)χ=1(|I|− 1).

Corollary
Fn ×⊕∞

i=1Z is intersection-saturated.

Theorem (D.–Roy–V.)
There exist finitely presented intersection-saturated groups G.

BACK TO THE FREE CASE

Theorem (D.–Roy–V.)
A k-configuration χ is realizable in a free group Fn, n ⩾ 2 if and only
if χ satisfies the Howson property; i.e., if and only if

∀ ∅ 6= I, J ⊆ [k], (I)χ = (J)χ = 0 ⇒ (I ∪ J)χ = 0.

references i

[1] L. Bartholdi and P. Silva. “Rational Subsets of Groups”. In: Handbook of

Automata Theory. Volume II. Automata in Mathematics and Selected

Applications. Berlin: European Mathematical Society (EMS), 2021,

pp. 841–869.

[2] F. Bassino, A.Martino, et al. “Statistical Properties of Subgroups of Free

Groups”. Random Structures & Algorithms 42.3 (May 2013), pp. 349–373.

[3] F. Bassino, C. Nicaud, and P.Weil. “Random Generation of Finitely

Generated Subgroups of a Free Group”. International Journal of Algebra

and Computation 18.02 (Mar. 1, 2008), pp. 375–405.

[4] J. Delgado. “Extensions of Free Groups: Algebraic, Geometric, and

Algorithmic Aspects”. PhD thesis. Universitat Politècnica de Catalunya,

Sept. 15, 2017.

[5] J. Delgado, M. Roy, and E. Ventura. “Intersection Configurations in Free

and Free Times Free-Abelian Groups”. 2022. arXiv: 2107.12426 [math].

https://arxiv.org/abs/2107.12426

references ii

[6] J. Delgado and E. Ventura. “A List of Applications of Stallings Automata”.

Transactions on Combinatorics 11.3 (June 15, 2022), pp. 181–235.

[7] J. Delgado and E. Ventura. “Stallings Automata for Free-Times-Abelian

Groups: Intersections and Index”. Publicacions Matemàtiques 66.2

(2022), pp. 789–830.

[8] I. Kapovich and A.Myasnikov. “Stallings Foldings and Subgroups of Free

Groups”. Journal of Algebra 248.2 (Feb. 15, 2002), pp. 608–668.

[9] A.Miasnikov, E. Ventura, and P.Weil. “Algebraic Extensions in Free

Groups”. In: Geometric Group Theory. Ed. by G. N. Arzhantseva, J. Burillo,

et al. Trends in Mathematics. Birkhäuser Basel, Jan. 1, 2007, pp. 225–253.

[10] P. V. Silva and P.Weil. “On an Algorithm to Decide Whether a Free Group

Is a Free Factor of Another”. RAIRO. Theoretical Informatics and

Applications 42.2 (2008), pp. 395–414.

[11] J. R. Stallings. “Topology of Finite Graphs”. Inventiones Mathematicae 71

(Mar. 1983), pp. 551–565.

Thanks!

View publication stats

https://www.researchgate.net/publication/368714533

	2023_Stallings_BGS.pdf
	Free groups
	Digraphs and automata
	Stallings bijection
	First applications
	Cosets and index
	Intersections
	Quotients of automata
	Asymptotic behavior
	Enriched Stallings automata
	Intersections in Fn x Zm
	Multiple intersections in Fn x Zm

	refs.pdf

