

STALLINGS AUTOMATA AND APPLICATIONS

BGSMATH GRADUATE COURSE

Jordi Delgado & Enric Ventura (Universitat Politècnica de Catalunya) with the collaboration of Pascal Weil (LABRI & Université Bordeaux I)

> Centre de Recerca Matemàtica January - February 2023

> > v1.0

TABLE OF CONTENTS

- Free groups
- Digraphs and automata
- Stallings bijection
- First applications
- Cosets and index
- Intersections
- Quotients of automata
- Asymptotic behavior
- Enriched Stallings automata
- Intersections in $\mathbb{F}_n \times \mathbb{Z}^m$
- Multiple intersections in $\mathbb{F}_n \times \mathbb{Z}^m$

FREE GROUPS

Definition

Let *F* be a group and $A \subseteq F$. Then, *F* is **free over** $A \subseteq F$ (or *A* is a free basis for *F*) \Leftrightarrow $\forall G$ group and $\forall \varphi \in Map(A, G) \exists ! \widetilde{\varphi} \in Hom(F, G)$ such that $\iota \widetilde{\varphi} = \varphi$.

$$\begin{array}{c} A \xrightarrow{\phi} G \\ \downarrow & \overleftarrow{\exists! \tilde{\varphi} \text{ morphism}} \\ F \end{array}$$

Definition

Let *F* be a group and $A \subseteq F$. Then, *F* is **free over** $A \subseteq F$ (or *A* is a free basis for *F*) \Leftrightarrow $\forall G$ group and $\forall \varphi \in Map(A, G) \exists ! \tilde{\varphi} \in Hom(F, G)$ such that $\iota \tilde{\varphi} = \varphi$.

$$\begin{array}{c} A \xrightarrow{\phi} G \\ \downarrow & \swarrow \\ F \end{array} \xrightarrow{\pi} G \\ \exists! \tilde{\varphi} \text{ morphism} \end{array}$$

Example

• $(\mathbb{Z}, +)$ is free over $A = \{1\}$ (i.e., $\{1\}$ is a free basis for $(\mathbb{Z}, +)$);

Definition

Let *F* be a group and $A \subseteq F$. Then, *F* is *free over* $A \subseteq F$ (or *A is a free basis for F*) \Leftrightarrow $\forall G$ group and $\forall \varphi \in Map(A, G) \exists ! \widetilde{\varphi} \in Hom(F, G)$ such that $\iota \widetilde{\varphi} = \varphi$.

$$\begin{array}{c} A \xrightarrow{\phi} G \\ \downarrow & \swarrow \\ F \end{array} \xrightarrow{\pi} G \\ \exists! \tilde{\varphi} \text{ morphism} \end{array}$$

Example

- $(\mathbb{Z}, +)$ is free over $A = \{1\}$ (i.e., $\{1\}$ is a free basis for $(\mathbb{Z}, +)$);
- $(\mathbb{Z}, +)$ is not free over $A = \{2\}$ (i.e., $\{2\}$ is not a free basis for $(\mathbb{Z}, +)$);

Definition

Let *F* be a group and *A* ⊆ *F*. Then, *F* is *free over A* ⊆ *F* (or *A is a free basis for F*) ⇔

 $\forall G \text{ group and } \forall \phi \in \mathsf{Map}(A, G) \exists ! \widetilde{\phi} \in \mathsf{Hom}(F, G) \text{ such that } \iota \widetilde{\phi} = \phi.$

$$\begin{array}{c} A \xrightarrow{\phi} G \\ \downarrow & \overleftarrow{\exists! \tilde{\phi} \text{ morphism}} \\ F \end{array}$$

Example

- $(\mathbb{Z}, +)$ is free over $A = \{1\}$ (i.e., $\{1\}$ is a free basis for $(\mathbb{Z}, +)$);
- $(\mathbb{Z}, +)$ is not free over $A = \{2\}$ (i.e., $\{2\}$ is not a free basis for $(\mathbb{Z}, +)$);
- $(\mathbb{Z}/n\mathbb{Z}, +)$ is not free (i.e., it has no free basis);

Definition

Let F be a group and $A \subseteq F$. Then,

F is free over $A \subseteq F$ (or A is a free basis for F) \Leftrightarrow

 $\forall G \text{ group and } \forall \phi \in \mathsf{Map}(A, G) \exists ! \widetilde{\phi} \in \mathsf{Hom}(F, G) \text{ such that } \iota \widetilde{\phi} = \phi.$

$$\begin{array}{c} A \xrightarrow{\phi} G \\ \downarrow & \overleftarrow{\exists! \tilde{\phi} \text{ morphism}} \\ F \end{array}$$

Example

- $(\mathbb{Z}, +)$ is free over $A = \{1\}$ (i.e., $\{1\}$ is a free basis for $(\mathbb{Z}, +)$);
- $(\mathbb{Z}, +)$ is not free over $A = \{2\}$ (i.e., $\{2\}$ is not a free basis for $(\mathbb{Z}, +)$);
- $(\mathbb{Z}/n\mathbb{Z}, +)$ is not free (i.e., it has no free basis);
- $(\mathbb{Z}^2, +)$ is not free (i.e., it has no free basis).

Definition

Let *F* be a group and $A \subseteq F$. Then,

F is free over $A \subseteq F$ (or A is a free basis for F) \Leftrightarrow

 $\forall G \text{ group and } \forall \phi \in \mathsf{Map}(A, G) \exists ! \widetilde{\phi} \in \mathsf{Hom}(F, G) \text{ such that } \iota \widetilde{\phi} = \phi.$

$$\begin{array}{c} A \xrightarrow{\phi} G \\ \downarrow & \overleftarrow{\exists! \tilde{\phi} \text{ morphism}} \\ F \end{array}$$

Example

- $(\mathbb{Z}, +)$ is free over $A = \{1\}$ (i.e., $\{1\}$ is a free basis for $(\mathbb{Z}, +)$);
- $(\mathbb{Z}, +)$ is not free over $A = \{2\}$ (i.e., $\{2\}$ is not a free basis for $(\mathbb{Z}, +)$);
- $(\mathbb{Z}/n\mathbb{Z}, +)$ is not free (i.e., it has no free basis);
- $(\mathbb{Z}^2, +)$ is not free (i.e., it has no free basis).

Question

Which groups are free?

Definition

Let *F* be a group and $A \subseteq F$. Then, *F* is *free over* $A \subset F$ (or *A* is a free basis for *F*) \Leftrightarrow

 $\forall G \text{ group and } \forall \varphi \in \mathsf{Map}(A, G) \exists ! \widetilde{\varphi} \in \mathsf{Hom}(F, G) \text{ such that } \iota \widetilde{\varphi} = \varphi.$

$$\begin{array}{c} A \xrightarrow{\phi} G \\ \downarrow & \swarrow \\ F \end{array} \xrightarrow{\pi} G \\ \exists! \tilde{\varphi} \text{ morphism} \end{array}$$

Example

- $(\mathbb{Z}, +)$ is free over $A = \{1\}$ (i.e., $\{1\}$ is a free basis for $(\mathbb{Z}, +)$);
- $(\mathbb{Z}, +)$ is not free over $A = \{2\}$ (i.e., $\{2\}$ is not a free basis for $(\mathbb{Z}, +)$);
- $(\mathbb{Z}/n\mathbb{Z}, +)$ is not free (i.e., it has no free basis);
- $(\mathbb{Z}^2, +)$ is not free (i.e., it has no free basis).

Question

Which groups are free? Does there exist a free group over any set A?

THE RANK OF A FREE GROUP

Proposition

Let F_A be free over A and F_B be free over B. Then,

 $F_A\simeq F_B \ \Leftrightarrow \ \#A=\#B$

Proposition

Let F_A be free over A and F_B be free over B. Then,

$$F_A \simeq F_B \iff \#A = \#B$$

Definition

The *rank* of a free group F_A is the cardinal of a (any) free basis of F_A , i.e., $rk(F_A) = #A$. If #A = r we write $\mathbb{F}_r \simeq F_A$.

Proposition

Let F_A be free over A and F_B be free over B. Then,

$$F_A \simeq F_B \iff \#A = \#B$$

Definition

The *rank* of a free group F_A is the cardinal of a (any) free basis of F_A , i.e., $rk(F_A) = #A$. If #A = r we write $\mathbb{F}_r \simeq F_A$.

Remark

It is clear that $\mathbb{F}_1\simeq\mathbb{Z},$ but we still do not know whether free groups of higher ranks

 $\mathbb{F}_2, F_3, \ldots, F_{\aleph_0}, F_{\aleph_1}, \ldots$

do exist. Let us construct them combinatorially

Let $A = \{a_1, \ldots, a_r\}$ be a (possibly infinite) set called *alphabet*. Then, $\widetilde{A} = \{a_1, \ldots, a_r, a_1^{-1}, \ldots, a_r^{-1}\}$ is an *involutive alphabet* ($\#\widetilde{A} = 2\#A$). Convention: $(a_i^{-1})^{-1} = a_i$.

A word on A is a finite sequence of letters from A, $w = a_{i_1}a_{i_2}\cdots a_{i_n}$, $n \ge 0$. For n = 0 we have the *empty word*, denoted by 1. The *length* of w is |w| = n. Note that |1| = 0 and |uv| = |u| + |v|.

A word on A is a finite sequence of letters from A, $w = a_{i_1}a_{i_2}\cdots a_{i_n}$, $n \ge 0$. For n = 0 we have the *empty word*, denoted by 1. The *length* of w is |w| = n. Note that |1| = 0 and |uv| = |u| + |v|.

Observation

The set $A^* = \{a_{i_1}a_{i_2}\cdots a_{i_n} \mid n \ge 0\}$ with the operation of concatenation, $u \cdot v = uv$, is a monoid. Any subset $L \subseteq A^*$ is called a *language*.

A word on A is a finite sequence of letters from A, $w = a_{i_1}a_{i_2}\cdots a_{i_n}$, $n \ge 0$. For n = 0 we have the *empty word*, denoted by 1. The *length* of w is |w| = n. Note that |1| = 0 and |uv| = |u| + |v|.

Observation

The set $A^* = \{a_{i_1}a_{i_2}\cdots a_{i_n} \mid n \ge 0\}$ with the operation of concatenation, $u \cdot v = uv$, is a monoid. Any subset $L \subseteq A^*$ is called a *language*.

Definition

Elementary reductions/insertions: $uaa^{-1}v \sim uv$, for $u, v \in \widetilde{A}^*$, $a \in \widetilde{A}$.

A word on A is a finite sequence of letters from A, $w = a_{i_1}a_{i_2}\cdots a_{i_n}$, $n \ge 0$. For n = 0 we have the *empty word*, denoted by 1. The *length* of w is |w| = n. Note that |1| = 0 and |uv| = |u| + |v|.

Observation

The set $A^* = \{a_{i_1}a_{i_2}\cdots a_{i_n} \mid n \ge 0\}$ with the operation of concatenation, $u \cdot v = uv$, is a monoid. Any subset $L \subseteq A^*$ is called a *language*.

Definition

Elementary reductions/insertions: $uaa^{-1}v \sim uv$, for $u, v \in \widetilde{A}^*$, $a \in \widetilde{A}$.

Free equivalence: For $u, v \in \widetilde{A}^*$, define $u \sim^* v \Leftrightarrow \exists$ a finite chain of elementary reductions/insertions $u = u_1 \sim u_2 \sim \cdots \sim u_n = v$.

The relation \sim^* (or simply \sim) is an equivalence in \widetilde{A}^* . We denote the quotient by $\mathbb{F}_A = \widetilde{A}^* / \sim = \{[u] \mid u \in \widetilde{A}^*\}$ and $\widetilde{A}^* \longrightarrow \mathbb{F}_A$, $u \mapsto [u]$.

The relation \sim^* (or simply \sim) is an equivalence in \widetilde{A}^* . We denote the quotient by $\mathbb{F}_A = \widetilde{A}^* / \sim = \{[u] \mid u \in \widetilde{A}^*\}$ and $\widetilde{A}^* \longrightarrow \mathbb{F}_A$, $u \mapsto [u]$.

Proposition

 \mathbb{F}_A is a **group** with the operation [u][v] = [uv]. The trivial element is [1], and $[a_{i_1}^{\epsilon_1} \cdots a_{i_n}^{\epsilon_n}]^{-1} = [a_{i_n}^{-\epsilon_n} \cdots a_{i_1}^{-\epsilon_1}]$.

The relation \sim^* (or simply \sim) is an equivalence in \widetilde{A}^* . We denote the quotient by $\mathbb{F}_A = \widetilde{A}^* / \sim = \{[u] \mid u \in \widetilde{A}^*\}$ and $\widetilde{A}^* \longrightarrow \mathbb{F}_A$, $u \mapsto [u]$.

Proposition

 \mathbb{F}_A is a **group** with the operation [u][v] = [uv]. The trivial element is [1], and $[a_{i_1}^{\epsilon_1} \cdots a_{i_n}^{\epsilon_n}]^{-1} = [a_{i_n}^{-\epsilon_n} \cdots a_{i_1}^{-\epsilon_1}]$.

Definition

A word $w \in \widetilde{A}^*$ is **reduced** if it contains no consecutive letters inverse of each other. We denote by $R(A) \subseteq \widetilde{A}^*$ the set of reduced words.

The relation \sim^* (or simply \sim) is an equivalence in \widetilde{A}^* . We denote the quotient by $\mathbb{F}_A = \widetilde{A}^* / \sim = \{[u] \mid u \in \widetilde{A}^*\}$ and $\widetilde{A}^* \longrightarrow \mathbb{F}_A$, $u \mapsto [u]$.

Proposition

 \mathbb{F}_A is a **group** with the operation [u][v] = [uv]. The trivial element is [1], and $[a_{i_1}^{e_1} \cdots a_{i_n}^{e_n}]^{-1} = [a_{i_n}^{-e_n} \cdots a_{i_1}^{-e_1}]$.

Definition

A word $w \in \widetilde{A}^*$ is **reduced** if it contains no consecutive letters inverse of each other. We denote by $R(A) \subseteq \widetilde{A}^*$ the set of reduced words.

Lemma

Every class $[u] \in \mathbb{F}_A$ contains a unique reduced word, $\overline{u} \in R(A)$.

The relation \sim^* (or simply \sim) is an equivalence in \widetilde{A}^* . We denote the quotient by $\mathbb{F}_A = \widetilde{A}^* / \sim = \{[u] \mid u \in \widetilde{A}^*\}$ and $\widetilde{A}^* \longrightarrow \mathbb{F}_A$, $u \mapsto [u]$.

Proposition

 \mathbb{F}_A is a **group** with the operation [u][v] = [uv]. The trivial element is [1], and $[a_{i_1}^{e_1} \cdots a_{i_n}^{e_n}]^{-1} = [a_{i_n}^{-e_n} \cdots a_{i_1}^{-e_1}]$.

Definition

A word $w \in \widetilde{A}^*$ is **reduced** if it contains no consecutive letters inverse of each other. We denote by $R(A) \subseteq \widetilde{A}^*$ the set of reduced words.

Lemma

Every class $[u] \in \mathbb{F}_A$ contains a unique reduced word, $\overline{u} \in R(A)$.

So, we can think \mathbb{F}_A as R(A) with the operation $u \cdot v = \overline{uv}$, $u, v \in R(A)$.

Corollary

The map $A \hookrightarrow \mathbb{F}_A$, $a \mapsto [a]$ is injective.

Corollary

The map $A \hookrightarrow \mathbb{F}_A$, $a \mapsto [a]$ is injective.

Proposition

 \mathbb{F}_A is free over A.

Corollary

The map $A \hookrightarrow \mathbb{F}_A$, $a \mapsto [a]$ is injective.

Proposition

 \mathbb{F}_A is free over A.

Theorem

Every group G is a quotient of a free group. In particular, every finitely generated group G is a quotient of \mathbb{F}_r for some $r \in \mathbb{N}$.

Corollary

The map $A \hookrightarrow \mathbb{F}_A$, $a \mapsto [a]$ is injective.

Proposition

 \mathbb{F}_A is free over A.

Theorem

Every group G is a quotient of a free group. In particular, every finitely generated group G is a quotient of \mathbb{F}_r for some $r \in \mathbb{N}$.

Definition

Given $S \subseteq G$ with $\langle S \rangle = G$, let $\pi_S \colon F(S) \twoheadrightarrow G$ be the natural projection. Then,

Corollary

The map $A \hookrightarrow \mathbb{F}_A$, $a \mapsto [a]$ is injective.

Proposition

 \mathbb{F}_A is free over A.

Theorem

Every group G is a quotient of a free group. In particular, every finitely generated group G is a quotient of \mathbb{F}_r for some $r \in \mathbb{N}$.

Definition

Given $S \subseteq G$ with $\langle S \rangle = G$, let $\pi_S \colon F(S) \twoheadrightarrow G$ be the natural projection. Then,

• S is a *generating set* of $G \Leftrightarrow \pi_S$ is surjective,

Corollary

The map $A \hookrightarrow \mathbb{F}_A$, $a \mapsto [a]$ is injective.

Proposition

 \mathbb{F}_A is free over A.

Theorem

Every group G is a quotient of a free group. In particular, every finitely generated group G is a quotient of \mathbb{F}_r for some $r \in \mathbb{N}$.

Definition

Given $S \subseteq G$ with $\langle S \rangle = G$, let $\pi_S \colon F(S) \twoheadrightarrow G$ be the natural projection. Then,

- S is a *generating set* of G $\Leftrightarrow \pi_S$ is surjective,
- S is a *free family* in $G \Leftrightarrow \pi_S$ is injective,

Corollary

The map $A \hookrightarrow \mathbb{F}_A$, $a \mapsto [a]$ is injective.

Proposition

 \mathbb{F}_A is free over A.

Theorem

Every group G is a quotient of a free group. In particular, every finitely generated group G is a quotient of \mathbb{F}_r for some $r \in \mathbb{N}$.

Definition

Given $S \subseteq G$ with $\langle S \rangle = G$, let $\pi_S \colon F(S) \twoheadrightarrow G$ be the natural projection. Then,

- S is a *generating set* of G $\Leftrightarrow \pi_S$ is surjective,
- S is a *free family* in G $\Leftrightarrow \pi_S$ is injective,
- S is a (free) **basis** of $G \Leftrightarrow \pi_S$ is bijective.

Given $u, v_1, \ldots, v_n \in \mathbb{F}_A$, decide whether $u \in H = \langle v_1, \ldots, v_n \rangle$; if yes, express u as a word in v_1, \ldots, v_n .

Given $u, v_1, \ldots, v_n \in \mathbb{F}_A$, decide whether $u \in H = \langle v_1, \ldots, v_n \rangle$; if yes, express u as a word in v_1, \ldots, v_n .

Example

Consider $\mathbb{FF}_2 = \langle a, b \rangle$ and the subgroup $H = \langle v_1, v_2, v_3 \rangle \leq \mathbb{FF}_2$, where $v_1 = baba^{-1}$, $v_2 = aba^{-1}$, and $v_3 = aba^2$. Is it true that $a \in H$? is it true that $u = b^2 aba^{-1} b^7 a^{-2} b^{-1} a^2 \in H$? If yes, express them as a (unique?) word on $\{v_1^{\pm 1}, v_2^{\pm 1}, v_2^{\pm 1}\}$.

Given $u, v_1, \ldots, v_n \in \mathbb{F}_A$, decide whether $u \in H = \langle v_1, \ldots, v_n \rangle$; if yes, express u as a word in v_1, \ldots, v_n .

Example

Consider $\mathbb{FF}_2 = \langle a, b \rangle$ and the subgroup $H = \langle v_1, v_2, v_3 \rangle \leq \mathbb{FF}_2$, where $v_1 = baba^{-1}$, $v_2 = aba^{-1}$, and $v_3 = aba^2$. Is it true that $a \in H$? is it true that $u = b^2 aba^{-1} b^7 a^{-2} b^{-1} a^2 \in H$? If yes, express them as a (unique?) word on $\{v_1^{\pm 1}, v_2^{\pm 1}, v_3^{\pm 1}\}$.

$$|v_1|_a = |baba^{-1}|_a = 0 |v_2|_a = |aba^{-1}|_a = 0 |v_3|_a = |aba^2|_a = 3$$
 \Rightarrow $a \notin H.$

Given $u, v_1, \ldots, v_n \in \mathbb{F}_A$, decide whether $u \in H = \langle v_1, \ldots, v_n \rangle$; if yes, express u as a word in v_1, \ldots, v_n .

Example

Consider $\mathbb{FF}_2 = \langle a, b \rangle$ and the subgroup $H = \langle v_1, v_2, v_3 \rangle \leq \mathbb{FF}_2$, where $v_1 = baba^{-1}$, $v_2 = aba^{-1}$, and $v_3 = aba^2$. Is it true that $a \in H$? is it true that $u = b^2 aba^{-1}b^7a^{-2}b^{-1}a^2 \in H$? If yes, express them as a (unique?) word on $\{v_1^{\pm 1}, v_2^{\pm 1}, v_3^{\pm 1}\}$.

$$\begin{array}{lll} |v_1|_a &= |baba^{-1}|_a = 0\\ |v_2|_a &= |aba^{-1}|_a = 0\\ |v_3|_a &= |aba^2|_a = 3 \end{array} \right\} \quad \Rightarrow \quad a \notin H.$$

But $|u|_a = |b^2 a b a^{-1} b^7 a^{-2} b^{-1} a^2|_a = 1 - 1 - 2 + 2 = 0$; so, $u \in H$?
$$v_1v_2^{-1}v_1(v_1v_2^{-1})^7v_3^{-1}v_2^{-1}v_3 =$$

 $v_1 v_2^{-1} v_1 (v_1 v_2^{-1})^7 v_3^{-1} v_2^{-1} v_3 =$ = $baba^{-1} (aba^{-1})^{-1} baba^{-1} ((baba^{-1})(ab^{-1}a^{-1}))^7 (aba^2)^{-1} (aba^{-1})^{-1} aba^2$

$$v_1v_2^{-1}v_1(v_1v_2^{-1})^7v_3^{-1}v_2^{-1}v_3 =$$

$$= baba^{-1}(aba^{-1})^{-1}baba^{-1}((baba^{-1})(ab^{-1}a^{-1}))^7(aba^2)^{-1}(aba^{-1})^{-1}aba^2$$

$$= baba^{-1} \cdot ab^{-1}a^{-1} \cdot baba^{-1} \cdot b^7 \cdot a^{-2}b^{-1}a^{-1} \cdot ab^{-1}a^{-1} \cdot aba^2$$

$$\begin{aligned} & v_1 v_2^{-1} v_1 (v_1 v_2^{-1})^7 v_3^{-1} v_2^{-1} v_3 = \\ &= baba^{-1} (aba^{-1})^{-1} baba^{-1} ((baba^{-1}) (ab^{-1}a^{-1}))^7 (aba^2)^{-1} (aba^{-1})^{-1} aba^2 \\ &= baba^{-1} \cdot ab^{-1} a^{-1} \cdot baba^{-1} \cdot b^7 \cdot a^{-2} b^{-1} a^{-1} \cdot ab^{-1} a^{-1} \cdot aba^2 \\ &= bbaba^{-1} b^7 a^{-2} b^{-1} a^2 = b^2 aba^{-1} b^7 a^{-2} b^{-1} a^2 = u. \end{aligned}$$

$$v_1 v_2^{-1} v_1 (v_1 v_2^{-1})^7 v_3^{-1} v_2^{-1} v_3 =$$

$$= baba^{-1} (aba^{-1})^{-1} baba^{-1} ((baba^{-1})(ab^{-1}a^{-1}))^7 (aba^2)^{-1} (aba^{-1})^{-1} aba^2$$

$$= baba^{-1} \cdot ab^{-1}a^{-1} \cdot baba^{-1} \cdot b^7 \cdot a^{-2}b^{-1}a^{-1} \cdot ab^{-1}a^{-1} \cdot aba^2$$

$$= bbaba^{-1}b^7 a^{-2}b^{-1}a^2 = b^2 aba^{-1}b^7 a^{-2}b^{-1}a^2 = u.$$

So, YES, *u* ∈ *H* !!!

$$\begin{split} & v_1 v_2^{-1} v_1 (v_1 v_2^{-1})^7 v_3^{-1} v_2^{-1} v_3 = \\ &= baba^{-1} (aba^{-1})^{-1} baba^{-1} ((baba^{-1}) (ab^{-1}a^{-1}))^7 (aba^2)^{-1} (aba^{-1})^{-1} aba^2 \\ &= baba^{-1} \cdot ab^{-1} a^{-1} \cdot baba^{-1} \cdot b^7 \cdot a^{-2} b^{-1} a^{-1} \cdot ab^{-1} a^{-1} \cdot aba^2 \\ &= bbaba^{-1} b^7 a^{-2} b^{-1} a^2 = b^2 aba^{-1} b^7 a^{-2} b^{-1} a^2 = u \,. \end{split}$$

So, YES, *u* ∈ *H* !!!

Question Is this expression unique?

$$v_1v_2^{-1}v_1(v_1v_2^{-1})^7v_3^{-1}v_2^{-1}v_3 =$$

$$= baba^{-1}(aba^{-1})^{-1}baba^{-1}((baba^{-1})(ab^{-1}a^{-1}))^7(aba^2)^{-1}(aba^{-1})^{-1}aba^2$$

$$= baba^{-1} \cdot ab^{-1}a^{-1} \cdot baba^{-1} \cdot b^7 \cdot a^{-2}b^{-1}a^{-1} \cdot ab^{-1}a^{-1} \cdot aba^2$$

$$= bbaba^{-1}b^7a^{-2}b^{-1}a^2 = b^2aba^{-1}b^7a^{-2}b^{-1}a^2 = u.$$

So, YES, *u* ∈ *H* !!!

Question

Is this expression unique? How to find it/them systematically?

Subgroup Intersection Problem, $SIP(\mathbb{F}_A)$

Given $u_1, \ldots, u_n; v_1, \ldots, v_m \in \mathbb{F}_A$, decide whether the intersection of $H = \langle u_1, \ldots, u_n \rangle$ and $K = \langle v_1, \ldots, v_m \rangle$ is finitely generated; if yes, compute generators for $H \cap K$.

Subgroup Intersection Problem, $SIP(\mathbb{F}_A)$

Given $u_1, \ldots, u_n; v_1, \ldots, v_m \in \mathbb{F}_A$, decide whether the intersection of $H = \langle u_1, \ldots, u_n \rangle$ and $K = \langle v_1, \ldots, v_m \rangle$ is finitely generated; if yes, compute generators for $H \cap K$.

Example

Consider $\mathbb{F}_2 = \langle a, b \rangle$ and the subgroups

$$\begin{split} H &= \langle u_1, u_2, u_3 \rangle \leqslant \mathbb{F}_2, \quad \text{and} \quad K &= \langle v_1, v_2, v_3 \rangle \leqslant \mathbb{F}_2 \\ u_1 &= b, & v_1 &= ab, \\ u_2 &= a^3, & v_2 &= a^3, \\ u_3 &= a^{-1}bab^{-1}a; & v_3 &= a^{-1}ba. \end{split}$$

How to find generators (or just elements!) for $H \cap K$?

Subgroup Intersection Problem, $SIP(\mathbb{F}_A)$

Given $u_1, \ldots, u_n; v_1, \ldots, v_m \in \mathbb{F}_A$, decide whether the intersection of $H = \langle u_1, \ldots, u_n \rangle$ and $K = \langle v_1, \ldots, v_m \rangle$ is finitely generated; if yes, compute generators for $H \cap K$.

Example

Consider $\mathbb{F}_2 = \langle a, b \rangle$ and the subgroups

$$\begin{split} H &= \langle u_1, u_2, u_3 \rangle \leqslant \mathbb{F}_2, \quad \text{and} \quad K &= \langle v_1, v_2, v_3 \rangle \leqslant \mathbb{F}_2 \\ u_1 &= b, & v_1 &= ab, \\ u_2 &= a^3, & v_2 &= a^3, \\ u_3 &= a^{-1}bab^{-1}a; & v_3 &= a^{-1}ba. \end{split}$$

How to find generators (or just elements!) for $H \cap K$?

Clearly, $H \ni u_2 = a^3 = v_2 \in K$. What else?

$$\begin{split} H &= \langle u_1, u_2, u_3 \rangle \leqslant \mathbb{F}_2, & K &= \langle v_1, v_2, v_3 \rangle \leqslant \mathbb{F}_2 \\ u_1 &= b, & v_1 &= ab, \\ u_2 &= a^3, & v_2 &= a^3, \\ u_3 &= a^{-1}bab^{-1}a; & v_3 &= a^{-1}ba. \end{split}$$

$$\begin{split} H &= \langle u_1, u_2, u_3 \rangle \leqslant \mathbb{F}_2, & K &= \langle v_1, v_2, v_3 \rangle \leqslant \mathbb{F}_2 \\ u_1 &= b, & v_1 &= ab, \\ u_2 &= a^3, & v_2 &= a^3, \\ u_3 &= a^{-1}bab^{-1}a; & v_3 &= a^{-1}ba. \end{split}$$

$$H \ni u_2 = a^3 = v_2 \in K,$$

$$H = \langle u_1, u_2, u_3 \rangle \leqslant \mathbb{F}_2, u_1 = b, u_2 = a^3, u_3 = a^{-1}bab^{-1}a;$$

$$\begin{split} & K = \langle v_1, v_2, v_3 \rangle \leqslant \mathbb{F}_2 \\ & v_1 = ab, \\ & v_2 = a^3, \\ & v_3 = a^{-1}ba. \end{split}$$

$$\begin{array}{ll} H \ni u_2 = & a^3 & = v_2 \in K, \\ H \ni u_1^{-1} u_2 u_1 = & b^{-1} a^3 b & = v_1^{-1} v_2 v_1 \in K, \end{array}$$

$$\begin{split} H &= \langle u_1, u_2, u_3 \rangle \leqslant \mathbb{F}_2, & K &= \langle v_1, v_2, v_3 \rangle \leqslant \mathbb{F}_2 \\ u_1 &= b, & v_1 &= ab, \\ u_2 &= a^3, & v_2 &= a^3, \\ u_3 &= a^{-1}bab^{-1}a; & v_3 &= a^{-1}ba. \end{split}$$

$$\begin{array}{rcl} H \ni u_2 = & a^3 & = v_2 \in K, \\ H \ni u_1^{-1} u_2 u_1 = & b^{-1} a^3 b & = v_1^{-1} v_2 v_1 \in K, \\ H \ni u_3^3 = & a^{-1} b a^3 b^{-1} a & = v_3 v_2 v_3^{-1} \in K, \end{array}$$

$$\begin{aligned} H &= \langle u_1, u_2, u_3 \rangle \leqslant \mathbb{F}_2, & K &= \langle v_1, v_2, v_3 \rangle \leqslant \mathbb{F}_2 \\ u_1 &= b, & v_1 &= ab, \\ u_2 &= a^3, & v_2 &= a^3, \\ u_3 &= a^{-1}bab^{-1}a; & v_3 &= a^{-1}ba. \end{aligned}$$

$$\begin{array}{rcl} H \ni u_2 = & a^3 & = v_2 \in K, \\ H \ni u_1^{-1} u_2 u_1 = & b^{-1} a^3 b & = v_1^{-1} v_2 v_1 \in K, \\ H \ni u_3^3 = & a^{-1} b a^3 b^{-1} a & = v_3 v_2 v_3^{-1} \in K, \end{array}$$

Anything else?

$$\begin{split} H &= \langle u_1, u_2, u_3 \rangle \leqslant \mathbb{F}_2, & K &= \langle v_1, v_2, v_3 \rangle \leqslant \mathbb{F}_2 \\ u_1 &= b, & v_1 &= ab, \\ u_2 &= a^3, & v_2 &= a^3, \\ u_3 &= a^{-1}bab^{-1}a; & v_3 &= a^{-1}ba. \end{split}$$

$$\begin{array}{rcl} H \ni u_2 = & a^3 & = v_2 \in K, \\ H \ni u_1^{-1} u_2 u_1 = & b^{-1} a^3 b & = v_1^{-1} v_2 v_1 \in K, \\ H \ni u_3^3 = & a^{-1} b a^3 b^{-1} a & = v_3 v_2 v_3^{-1} \in K, \end{array}$$

Anything else?

Is $H = \langle a^3, b^{-1}a^3b, a^{-1}ba^3b^{-1}a \rangle$?

$$\begin{split} H &= \langle u_1, u_2, u_3 \rangle \leqslant \mathbb{F}_2, & K &= \langle v_1, v_2, v_3 \rangle \leqslant \mathbb{F}_2 \\ u_1 &= b, & v_1 &= ab, \\ u_2 &= a^3, & v_2 &= a^3, \\ u_3 &= a^{-1}bab^{-1}a; & v_3 &= a^{-1}ba. \end{split}$$

$$\begin{array}{rcl} H \ni u_2 = & a^3 & = v_2 \in K, \\ H \ni u_1^{-1} u_2 u_1 = & b^{-1} a^3 b & = v_1^{-1} v_2 v_1 \in K, \\ H \ni u_3^3 = & a^{-1} b a^3 b^{-1} a & = v_3 v_2 v_3^{-1} \in K, \end{array}$$

Anything else?

Is $H = \langle a^3, b^{-1}a^3b, a^{-1}ba^3b^{-1}a \rangle$? Do we need more generators?

DIGRAPHS AND AUTOMATA

Let
$$A = \{a_1, \ldots, a_n\}$$
 and let $\mathbb{F}_n \simeq \mathbb{F}_A = \langle A \mid - \rangle$

Let
$$A = \{a_1, \ldots, a_n\}$$
 and let $\mathbb{F}_n \simeq \mathbb{F}_A = \langle A \mid - \rangle$

Goal

A bijection: { 'nice' drawings} \leftrightarrow {subgroups of \mathbb{F}_A }.

Let
$$A = \{a_1, \dots, a_n\}$$
 and let $\mathbb{F}_n \simeq \mathbb{F}_A = \langle A \mid - \rangle$

Goal

A bijection: { 'nice' drawings} \leftrightarrow {subgroups of \mathbb{F}_A }.

Example: Let
$$H = \langle \underbrace{a^{-1}bab^{-1}}_{u_1}, \underbrace{a^3}_{u_2}, \underbrace{abab^{-1}}_{u_3} \rangle \leq \mathbb{F}_{\{a,b\}}.$$

Goal

Let
$$A = \{a_1, \dots, a_n\}$$
 and let $\mathbb{F}_n \simeq \mathbb{F}_A = \langle A \mid - \rangle$

A bijection: { 'nice' drawings} \leftrightarrow {subgroups of \mathbb{F}_A }.

Example: Let
$$H = \langle \underbrace{a^{-1}bab^{-1}}_{u_1}, \underbrace{a^3}_{u_2}, \underbrace{abab^{-1}}_{u_3} \rangle \leq \mathbb{F}_{\{a,b\}}.$$

Goal

Let
$$A = \{a_1, \dots, a_n\}$$
 and let $\mathbb{F}_n \simeq \mathbb{F}_A = \langle A \mid - \rangle$

A bijection: { 'nice' drawings} \leftrightarrow {subgroups of \mathbb{F}_A }.

Example: Let
$$H = \langle \underbrace{a^{-1}bab^{-1}}_{u_1}, \underbrace{a^3}_{u_2}, \underbrace{abab^{-1}}_{u_3} \rangle \leqslant \mathbb{F}_{\{a,b\}}.$$

Goal

Let
$$A = \{a_1, \dots, a_n\}$$
 and let $\mathbb{F}_n \simeq \mathbb{F}_A = \langle A \mid - \rangle$

A bijection: { 'nice' drawings} \leftrightarrow {subgroups of \mathbb{F}_A }.

Example: Let
$$H = \langle \underbrace{a^{-1}bab^{-1}}_{u_1}, \underbrace{a^3}_{u_2}, \underbrace{abab^{-1}}_{u_3} \rangle \leqslant \mathbb{F}_{\{a,b\}}.$$

Goal

Let
$$A = \{a_1, \dots, a_n\}$$
 and let $\mathbb{F}_n \simeq \mathbb{F}_A = \langle A \mid - \rangle$

A bijection: { 'nice' drawings} \leftrightarrow {subgroups of \mathbb{F}_A }.

Example: Let
$$H = \langle \underbrace{a^{-1}bab^{-1}}_{u_1}, \underbrace{a^3}_{u_2}, \underbrace{abab^{-1}}_{u_3} \rangle \leq \mathbb{F}_{\{a,b\}}.$$

Goal

Let
$$A = \{a_1, \dots, a_n\}$$
 and let $\mathbb{F}_n \simeq \mathbb{F}_A = \langle A \mid - \rangle$

A bijection: { 'nice' drawings} \leftrightarrow {subgroups of \mathbb{F}_A }.

Example: Let
$$H = \langle \underbrace{a^{-1}bab^{-1}}_{u_1}, \underbrace{a^3}_{u_2}, \underbrace{abab^{-1}}_{u_3} \rangle \leq \mathbb{F}_{\{a,b\}}.$$

Goal

Let
$$A = \{a_1, \ldots, a_n\}$$
 and let $\mathbb{F}_n \simeq \mathbb{F}_A = \langle A \mid - \rangle$

A bijection: { 'nice' drawings} \leftrightarrow {subgroups of \mathbb{F}_A }.

Example: Let
$$H = \langle \underbrace{a^{-1}bab^{-1}}_{u_1}, \underbrace{a^3}_{u_2}, \underbrace{abab^{-1}}_{u_3} \rangle \leq \mathbb{F}_{\{a,b\}}.$$

Consider the *petal automata* associated to the given generators, and identify the basepoints \odot to obtain the *flower automaton* $Fl(u_1, u_2, u_3)$:

Let
$$A = \{a_1, \ldots, a_n\}$$
 and let $\mathbb{F}_n \simeq \mathbb{F}_A = \langle A \mid - \rangle$

A bijection: { 'nice' drawings} \leftrightarrow {subgroups of \mathbb{F}_A }.

Example: Let
$$H = \langle \underbrace{a^{-1}bab^{-1}}_{u_1}, \underbrace{a^3}_{u_2}, \underbrace{abab^{-1}}_{u_3} \rangle \leq \mathbb{F}_{\{a,b\}}.$$

Consider the *petal automata* associated to the given generators, and identify the basepoints \odot to obtain the *flower automaton* Fl(u_1, u_2, u_3):

Fact:

Goal

H is described by the (reduced) labels of walks $\bullet \longrightarrow \bullet$ in Fl(u_1, u_2, u_3).

Let
$$A = \{a_1, \ldots, a_n\}$$
 and let $\mathbb{F}_n \simeq \mathbb{F}_A = \langle A \mid - \rangle$

A bijection: { 'nice' drawings} \leftrightarrow {subgroups of \mathbb{F}_A }.

Example: Let
$$H = \langle \underbrace{a^{-1}bab^{-1}}_{u_1}, \underbrace{a^3}_{u_2}, \underbrace{abab^{-1}}_{u_3} \rangle \leq \mathbb{F}_{\{a,b\}}.$$

Consider the *petal automata* associated to the given generators, and identify the basepoints \bullet to obtain the *flower automaton* Fl(u_1, u_2, u_3):

Fact:

Goal

H is described by the (reduced) labels of walks $\bullet \longrightarrow \bullet$ in Fl(u_1, u_2, u_3).

Flower automata are natural 'drawings' associated to every subgroup of $\mathbb{F}_{A},$

Let
$$A = \{a_1, \ldots, a_n\}$$
 and let $\mathbb{F}_n \simeq \mathbb{F}_A = \langle A \mid - \rangle$

A bijection: { 'nice' drawings} \leftrightarrow {subgroups of \mathbb{F}_A }.

Example: Let
$$H = \langle \underbrace{a^{-1}bab^{-1}}_{u_1}, \underbrace{a^3}_{u_2}, \underbrace{abab^{-1}}_{u_3} \rangle \leq \mathbb{F}_{\{a,b\}}.$$

Consider the *petal automata* associated to the given generators, and identify the basepoints \odot to obtain the *flower automaton* Fl(u_1, u_2, u_3):

Fact:

Goal

H is described by the (reduced) labels of walks $\bullet \longrightarrow \bullet$ in Fl(u_1, u_2, u_3).

Flower automata are natural 'drawings' associated to every subgroup of \mathbb{F}_A , are they 'nice'?

A *directed graph* (*digraph*) is a tuple $\Delta = (V, E, \iota, \tau)$, where:

- V and E are disjoint sets (of *vertices* and *arcs*, respectively)
- $\cdot \ \iota, \tau \colon E \to V$ are maps (sending each arc to its origin and end)

A *directed graph* (*digraph*) is a tuple $\Delta = (V, E, \iota, \tau)$, where:

- V and E are disjoint sets (of *vertices* and *arcs*, respectively)
- · $\iota,\tau\colon E\to V$ are maps (sending each arc to its origin and end)

We write $V = V\Delta$ and $E = E\Delta$.

A *directed graph* (*digraph*) is a tuple $\Delta = (V, E, \iota, \tau)$, where:

- V and E are disjoint sets (of *vertices* and *arcs*, respectively)
- · $\iota, \tau \colon E \to V$ are maps (sending each arc to its origin and end)

We write $V = V\Delta$ and $E = E\Delta$.

Remark: Loops and parallel arcs are allowed.

A *directed graph* (*digraph*) is a tuple $\Delta = (V, E, \iota, \tau)$, where:

- V and E are disjoint sets (of *vertices* and *arcs*, respectively)
- · $\iota, \tau: E \rightarrow V$ are maps (sending each arc to its *origin* and *end*)

We write $V = V\Delta$ and $E = E\Delta$.

Remark: Loops and parallel arcs are allowed.

A walk in a digraph Δ is a finite sequence $\gamma = p_0 e_1 p_1 \cdots e_l p_l$ where $p_i \in V\Delta$, $e_i \in E\Delta$, $\iota e_i = p_{i-1}$ and $\tau e_i = p_i$ for $i = 1, \dots, l$.
A *directed graph* (*digraph*) is a tuple $\Delta = (V, E, \iota, \tau)$, where:

- V and E are disjoint sets (of *vertices* and *arcs*, respectively)
- · $\iota, \tau: E \rightarrow V$ are maps (sending each arc to its *origin* and *end*)

We write $V = V\Delta$ and $E = E\Delta$.

Remark: Loops and parallel arcs are allowed.

A walk in a digraph Δ is a finite sequence $\gamma = p_0 e_1 p_1 \cdots e_l p_l$ where $p_i \in V\Delta$, $e_i \in E\Delta$, $\iota e_i = p_{i-1}$ and $\tau e_i = p_i$ for $i = 1, \dots, l$.

Then,

· $p_0 = \iota(\gamma)$ and $p_l = \tau(\gamma)$ are the *origin* and *end* of γ , respectively

A *directed graph* (*digraph*) is a tuple $\Delta = (V, E, \iota, \tau)$, where:

- V and E are disjoint sets (of *vertices* and *arcs*, respectively)
- · $\iota, \tau: E \rightarrow V$ are maps (sending each arc to its *origin* and *end*)

We write $V = V\Delta$ and $E = E\Delta$.

Remark: Loops and parallel arcs are allowed.

A walk in a digraph Δ is a finite sequence $\gamma = p_0 e_1 p_1 \cdots e_l p_l$ where $p_i \in V\Delta$, $e_i \in E\Delta$, $\iota e_i = p_{i-1}$ and $\tau e_i = p_i$ for $i = 1, \dots, l$.

Then,

- $p_0 = \iota(\gamma)$ and $p_l = \tau(\gamma)$ are the *origin* and *end* of γ , respectively
- γ is a walk from p_0 to p_l $(\gamma \equiv p_0 \rightsquigarrow p_l)$

A *directed graph* (*digraph*) is a tuple $\Delta = (V, E, \iota, \tau)$, where:

- V and E are disjoint sets (of *vertices* and *arcs*, respectively)
- · $\iota, \tau: E \rightarrow V$ are maps (sending each arc to its *origin* and *end*)

We write $V = V\Delta$ and $E = E\Delta$.

Remark: Loops and parallel arcs are allowed.

A walk in a digraph Δ is a finite sequence $\gamma = p_0 e_1 p_1 \cdots e_l p_l$ where $p_i \in V\Delta$, $e_i \in E\Delta$, $\iota e_i = p_{i-1}$ and $\tau e_i = p_i$ for $i = 1, \dots, l$.

Then,

- $p_0 = \iota(\gamma)$ and $p_l = \tau(\gamma)$ are the **origin** and **end** of γ , respectively
- γ is a walk from p_0 to p_l $(\gamma \equiv p_0 \rightsquigarrow p_l)$
- $\cdot \ \mathsf{p}_0 \leadsto \mathsf{p}_l \ \Leftrightarrow \ \exists \gamma \equiv \mathsf{p}_0 \leadsto \mathsf{p}_l$

A *directed graph* (*digraph*) is a tuple $\Delta = (V, E, \iota, \tau)$, where:

- V and E are disjoint sets (of *vertices* and *arcs*, respectively)
- · $\iota, \tau: E \rightarrow V$ are maps (sending each arc to its *origin* and *end*)

We write $V = V\Delta$ and $E = E\Delta$.

Remark: Loops and parallel arcs are allowed.

A walk in a digraph Δ is a finite sequence $\gamma = p_0 e_1 p_1 \cdots e_l p_l$ where $p_i \in V\Delta$, $e_i \in E\Delta$, $\iota e_i = p_{i-1}$ and $\tau e_i = p_i$ for $i = 1, \dots, l$.

Then,

- $p_0 = \iota(\gamma)$ and $p_l = \tau(\gamma)$ are the **origin** and **end** of γ , respectively
- γ is a walk from p_0 to p_l $(\gamma \equiv p_0 \rightsquigarrow p_l)$
- $\cdot \ \mathsf{p}_0 \leadsto \mathsf{p}_l \ \Leftrightarrow \ \exists \gamma \equiv \mathsf{p}_0 \leadsto \mathsf{p}_l$
- γ is **closed** if $p_0 = p_l$

 $(\gamma \text{ is a } p_0 \text{-walk})$

A *directed graph* (*digraph*) is a tuple $\Delta = (V, E, \iota, \tau)$, where:

- V and E are disjoint sets (of *vertices* and *arcs*, respectively)
- · $\iota, \tau: E \rightarrow V$ are maps (sending each arc to its *origin* and *end*)

We write $V = V\Delta$ and $E = E\Delta$.

Remark: Loops and parallel arcs are allowed.

A walk in a digraph Δ is a finite sequence $\gamma = p_0 e_1 p_1 \cdots e_l p_l$ where $p_i \in V\Delta$, $e_i \in E\Delta$, $\iota e_i = p_{i-1}$ and $\tau e_i = p_i$ for $i = 1, \dots, l$.

Then,

- · $p_0 = \iota(\gamma)$ and $p_l = \tau(\gamma)$ are the **origin** and **end** of γ , respectively
- γ is a walk from p_0 to p_l $(\gamma \equiv p_0 \rightsquigarrow p_l)$
- $\cdot \ \mathsf{p}_0 \leadsto \mathsf{p}_l \ \Leftrightarrow \ \exists \gamma \equiv \mathsf{p}_0 \leadsto \mathsf{p}_l$
- γ is **closed** if $p_0 = p_l$

 $(\gamma \text{ is a } p_0 \text{-walk})$ $(|\gamma| = l)$

 \cdot The *length* of γ is the number of arcs in γ

A *directed graph* (*digraph*) is a tuple $\Delta = (V, E, \iota, \tau)$, where:

- V and E are disjoint sets (of *vertices* and *arcs*, respectively)
- · $\iota, \tau: E \rightarrow V$ are maps (sending each arc to its *origin* and *end*)

We write $V = V\Delta$ and $E = E\Delta$.

Remark: Loops and parallel arcs are allowed.

A walk in a digraph Δ is a finite sequence $\gamma = p_0 e_1 p_1 \cdots e_l p_l$ where $p_i \in V\Delta$, $e_i \in E\Delta$, $\iota e_i = p_{i-1}$ and $\tau e_i = p_i$ for $i = 1, \dots, l$.

Then,

- · $p_0 = \iota(\gamma)$ and $p_l = \tau(\gamma)$ are the **origin** and **end** of γ , respectively
- γ is a walk from p_0 to p_l $(\gamma \equiv p_0 \rightsquigarrow p_l)$

 $(\gamma \text{ is a } p_0 \text{-walk})$

 $(|\gamma| = l)$

- $\cdot \ \mathsf{p}_0 \leadsto \mathsf{p}_l \ \Leftrightarrow \ \exists \gamma \equiv \mathsf{p}_0 \leadsto \mathsf{p}_l$
- γ is **closed** if $p_0 = p_l$
- The *length* of γ is the number of arcs in γ

We denote by $W\Delta$ the **set of walks** in Δ .

Definition

Let A be an alphabet. An **A**-digraph is a pair $\Gamma = (\Delta, \ell)$, where Δ is a digraph, and $\ell: E\Delta \to A$ is the *labelling* of Γ .

Definition

Let A be an alphabet. An **A**-digraph is a pair $\Gamma = (\Delta, \ell)$, where Δ is a digraph, and $\ell: E\Delta \to A$ is the *labelling* of Γ .

If $e \equiv p \rightarrow q$ and $\ell(e) = a$, we write $p \stackrel{a}{\rightarrow} q$. (e is an *a-arc*).

Definition

Let A be an alphabet. An **A**-digraph is a pair $\Gamma = (\Delta, \ell)$, where Δ is a digraph, and $\ell: E\Delta \to A$ is the *labelling* of Γ .

If $e \equiv p \rightarrow q$ and $\ell(e) = a$, we write $p \stackrel{a}{\rightarrow} q$. (e is an *a-arc*).

We extend ℓ to $\ell^* \colon W\Gamma \to A^*$ in the natural way. (we write $\ell^* = \ell$)

Definition

Let A be an alphabet. An **A**-digraph is a pair $\Gamma = (\Delta, \ell)$, where Δ is a digraph, and $\ell: E\Delta \to A$ is the *labelling* of Γ .

If $e \equiv p \rightarrow q$ and $\ell(e) = a$, we write $p \stackrel{a}{\rightarrow} q$. (e is an *a-arc*). We extend ℓ to $\ell^* \colon W\Gamma \rightarrow A^*$ in the natural way. (we write $\ell^* = \ell$) If $\exists \gamma \equiv p \rightsquigarrow q$ such that $\ell^*(\gamma) = w$, we write $p \stackrel{w}{\rightsquigarrow} q$.

Definition

Let A be an alphabet. An **A**-digraph is a pair $\Gamma = (\Delta, \ell)$, where Δ is a digraph, and $\ell: E\Delta \to A$ is the *labelling* of Γ .

If $e \equiv p \rightarrow q$ and $\ell(e) = a$, we write $p \stackrel{a}{\rightarrow} q$. (e is an *a-arc*). We extend ℓ to $\ell^* \colon W\Gamma \rightarrow A^*$ in the natural way. (we write $\ell^* = \ell$) If $\exists \gamma \equiv p \rightsquigarrow q$ such that $\ell^*(\gamma) = w$, we write $p \stackrel{w}{\rightsquigarrow} q$.

Definition

Let Γ be an A-digraph and let $P, Q \in V\Gamma$. Then,

$$\mathcal{L}_{P,Q}(\Gamma) = \left\{ w \in A^* : \exists p \in P, \exists q \in Q, p \checkmark q \right\}$$

is the *language from P to Q* (in Γ).

Definition

Let A be an alphabet. An **A**-digraph is a pair $\Gamma = (\Delta, \ell)$, where Δ is a digraph, and $\ell: E\Delta \rightarrow A$ is the *labelling* of Γ .

If $e \equiv p \rightarrow q$ and $\ell(e) = a$, we write $p \stackrel{a}{\rightarrow} q$. (e is an *a-arc*). We extend ℓ to $\ell^* \colon W\Gamma \rightarrow A^*$ in the natural way. (we write $\ell^* = \ell$) If $\exists \gamma \equiv p \rightsquigarrow q$ such that $\ell^*(\gamma) = w$, we write $p \stackrel{w}{\rightsquigarrow} q$.

Definition

Let Γ be an A-digraph and let $P, Q \in V\Gamma$. Then,

$$\mathcal{L}_{P,Q}(\Gamma) = \left\{ w \in A^* : \exists p \in P, \exists q \in Q, p \checkmark^{W} q \right\}$$

is the *language from P to Q* (in Γ).

If p, q $\in V\Gamma$, then $\mathcal{L}_{\{p\},\{q\}}(\Gamma) = \mathcal{L}_{p,q}(\Gamma)$ and $\mathcal{L}_{\{p\},\{p\}}(\Gamma) = \mathcal{L}_{p}(\Gamma)$.

Definition

Let A be an alphabet. An **A**-automaton is an A-digraph with two distinguished sets of vertices; formally, a triple $\Gamma = (\Delta, P, Q)$ where Δ is an A-digraph, and $P, Q \subseteq V\Delta$.

Definition

Let A be an alphabet. An **A**-automaton is an A-digraph with two distinguished sets of vertices; formally, a triple $\Gamma = (\Delta, P, Q)$ where Δ is an A-digraph, and $P, Q \subseteq V\Delta$.

In this context:

· vertices are called the *states* of Γ .

Definition

Let A be an alphabet. An **A**-automaton is an A-digraph with two distinguished sets of vertices; formally, a triple $\Gamma = (\Delta, P, Q)$ where Δ is an A-digraph, and $P, Q \subseteq V\Delta$.

In this context:

- · vertices are called the *states* of Γ .
- arcs are called the *transitions* of Γ .

Definition

Let A be an alphabet. An **A**-automaton is an A-digraph with two distinguished sets of vertices; formally, a triple $\Gamma = (\Delta, P, Q)$ where Δ is an A-digraph, and $P, Q \subseteq V\Delta$.

In this context:

- · vertices are called the *states* of Γ .
- · arcs are called the *transitions* of Γ .
- *P* is the set of *initial states* of Γ .

Definition

Let A be an alphabet. An **A**-automaton is an A-digraph with two distinguished sets of vertices; formally, a triple $\Gamma = (\Delta, P, Q)$ where Δ is an A-digraph, and $P, Q \subseteq V\Delta$.

In this context:

- · vertices are called the **states** of Γ .
- · arcs are called the *transitions* of Γ .
- *P* is the set of *initial states* of Γ .
- *Q* is the set of *terminal (or accepting) states* of Γ .

Definition

Let A be an alphabet. An **A**-automaton is an A-digraph with two distinguished sets of vertices; formally, a triple $\Gamma = (\Delta, P, Q)$ where Δ is an A-digraph, and $P, Q \subseteq V\Delta$.

In this context:

- · vertices are called the **states** of Γ .
- · arcs are called the *transitions* of Γ .
- *P* is the set of *initial states* of Γ .
- Q is the set of *terminal (or accepting) states* of Γ .

Since *P* and *Q* are assumed, we write $\mathcal{L}(\Gamma) = \mathcal{L}_{P,Q}(\Gamma)$.

Definition

Let A be an alphabet. An **A**-automaton is an A-digraph with two distinguished sets of vertices; formally, a triple $\Gamma = (\Delta, P, Q)$ where Δ is an A-digraph, and $P, Q \subseteq V\Delta$.

In this context:

- · vertices are called the **states** of Γ .
- · arcs are called the *transitions* of Γ .
- *P* is the set of *initial states* of Γ .
- Q is the set of *terminal (or accepting) states* of Γ .

Since *P* and *Q* are assumed, we write $\mathcal{L}(\Gamma) = \mathcal{L}_{P,Q}(\Gamma)$.

Definition

An automaton $\Gamma = (\Delta, P, Q)$ is **pointed** if it has a unique common initial and terminal state (i.e., if $P = Q = \{\mathbf{o}\}$).

Definition

An *A-involutive automaton* is an A^{\pm} -automaton with a labelled involution on its arcs; i.e., to every arc $e \equiv p \xrightarrow{a} q$ we associate a unique arc $e^{-1} \equiv p \xleftarrow{a^{-1}} q$ (the *inverse* of e) such that $e' \neq e$ and $(e^{-1})^{-1} = e$.

Definition

An *A-involutive automaton* is an A^{\pm} -automaton with a labelled involution on its arcs; i.e., to every arc $e \equiv p \xrightarrow{a} q$ we associate a unique arc $e^{-1} \equiv p \xleftarrow{a^{-1}} q$ (the *inverse* of e) such that $e' \neq e$ and $(e^{-1})^{-1} = e$.

That is, labelled arcs appear by (mutually inverse) pairs.

$$\bullet$$

Definition

An *A-involutive automaton* is an A^{\pm} -automaton with a labelled involution on its arcs; i.e., to every arc $e \equiv p \xrightarrow{a} q$ we associate a unique arc $e^{-1} \equiv p \xleftarrow{a^{-1}} q$ (the *inverse* of e) such that $e' \neq e$ and $(e^{-1})^{-1} = e$.

That is, labelled arcs appear by (mutually inverse) pairs.

$$\bullet$$

 $E^+(\Gamma) = \{ e \in E\Gamma : \ell(e) \in A \}$ is the set of *positive arcs* of Γ .

Definition

An *A-involutive automaton* is an A^{\pm} -automaton with a labelled involution on its arcs; i.e., to every arc $e \equiv p \xrightarrow{a} q$ we associate a unique arc $e^{-1} \equiv p \xleftarrow{a^{-1}} q$ (the *inverse* of e) such that $e' \neq e$ and $(e^{-1})^{-1} = e$.

That is, labelled arcs appear by (mutually inverse) pairs.

$$\bullet$$

$$\begin{split} \mathsf{E}^+(\Gamma) &= \{ \mathsf{e} \in \mathsf{E}\Gamma : \ \ell(\mathsf{e}) \in \mathsf{A} \} \text{ is the set of } \textit{positive arcs of } \Gamma. \\ \mathsf{E}^-(\Gamma) &= \{ \mathsf{e} \in \mathsf{E}\Gamma : \ \ell(\mathsf{e}) \in \mathsf{A}^{-1} \} \text{ is the set of } \textit{negative arcs of } \Gamma. \end{split}$$

Definition

An *A-involutive automaton* is an A^{\pm} -automaton with a labelled involution on its arcs; i.e., to every arc $e \equiv p \xrightarrow{a} q$ we associate a unique arc $e^{-1} \equiv p \xleftarrow{a^{-1}} q$ (the *inverse* of e) such that $e' \neq e$ and $(e^{-1})^{-1} = e$.

That is, labelled arcs appear by (mutually inverse) pairs.

$$\bullet$$

$$\begin{split} \mathsf{E}^+(\Gamma) &= \{ \mathsf{e} \in \mathsf{E}\Gamma : \, \ell(\mathsf{e}) \in A \} \text{ is the set of } \textit{positive arcs of } \Gamma. \\ \mathsf{E}^-(\Gamma) &= \{ \mathsf{e} \in \mathsf{E}\Gamma : \, \ell(\mathsf{e}) \in A^{-1} \} \text{ is the set of } \textit{negative arcs of } \Gamma. \end{split}$$

The **positive part** of an involutive automaton Γ is the automaton Γ^+ obtained after removing all the negative arcs from Γ .

Definition

An *A-involutive automaton* is an A^{\pm} -automaton with a labelled involution on its arcs; i.e., to every arc $e \equiv p \xrightarrow{a} q$ we associate a unique arc $e^{-1} \equiv p \xleftarrow{a^{-1}} q$ (the *inverse* of e) such that $e' \neq e$ and $(e^{-1})^{-1} = e$.

That is, labelled arcs appear by (mutually inverse) pairs.

$$\bullet$$

$$\begin{split} \mathsf{E}^+(\Gamma) &= \{ \mathsf{e} \in \mathsf{E}\Gamma : \, \ell(\mathsf{e}) \in A \} \text{ is the set of } \textit{positive arcs of } \Gamma. \\ \mathsf{E}^-(\Gamma) &= \{ \mathsf{e} \in \mathsf{E}\Gamma : \, \ell(\mathsf{e}) \in A^{-1} \} \text{ is the set of } \textit{negative arcs of } \Gamma. \end{split}$$

The *positive part* of an involutive automaton Γ is the automaton Γ^+ obtained after removing all the negative arcs from Γ .

Convention: we represent involutive automata Γ through Γ^+ (an arc p \xrightarrow{a} q reads the inverse label a^{-1} when crossed backwards).

Definition

An *A-involutive automaton* is an A^{\pm} -automaton with a labelled involution on its arcs; i.e., to every arc $e \equiv p \xrightarrow{a} q$ we associate a unique arc $e^{-1} \equiv p \xleftarrow{a^{-1}} q$ (the *inverse* of e) such that $e' \neq e$ and $(e^{-1})^{-1} = e$.

That is, labelled arcs appear by (mutually inverse) pairs.

$$\bullet$$

$$\begin{split} \mathsf{E}^+(\Gamma) &= \{ \mathsf{e} \in \mathsf{E}\Gamma : \, \ell(\mathsf{e}) \in A \} \text{ is the set of } \textit{positive arcs of } \Gamma. \\ \mathsf{E}^-(\Gamma) &= \{ \mathsf{e} \in \mathsf{E}\Gamma : \, \ell(\mathsf{e}) \in A^{-1} \} \text{ is the set of } \textit{negative arcs of } \Gamma. \end{split}$$

The *positive part* of an involutive automaton Γ is the automaton Γ^+ obtained after removing all the negative arcs from Γ .

Convention: we represent involutive automata Γ through Γ^+ (an arc p \xrightarrow{a} q reads the inverse label a^{-1} when crossed backwards).

From now on, automata = pointed involutive automata.

UNDERLYING GRAPH AND RANK

The *underlying graph* of $\Gamma(\widetilde{\Gamma})$ is the undirected graph obtained if we ignore the labelling and identify all the mutually inverse pairs in Γ .

The *underlying graph* of $\Gamma(\widetilde{\Gamma})$ is the undirected graph obtained if we ignore the labelling and identify all the mutually inverse pairs in Γ .

Remark: Every undirected graph can be obtained in this way.

The *underlying graph* of $\Gamma(\widetilde{\Gamma})$ is the undirected graph obtained if we ignore the labelling and identify all the mutually inverse pairs in Γ .

Remark: Every undirected graph can be obtained in this way.

Definition

The *rank* of a finite undirected graph Λ , $rk(\Lambda)$, is the number of arcs outside a spanning forest.

The *underlying graph* of $\Gamma(\widetilde{\Gamma})$ is the undirected graph obtained if we ignore the labelling and identify all the mutually inverse pairs in Γ .

Remark: Every undirected graph can be obtained in this way.

Definition

The *rank* of a finite undirected graph Λ , $rk(\Lambda)$, is the number of arcs outside a spanning forest.

Lemma

If Λ is finite, then $\mathsf{rk}(\Lambda) = \#\mathsf{E}(\Lambda) - \#\mathsf{V}(\Lambda) + \#\mathsf{CC}(\Lambda)$.

The *underlying graph* of $\Gamma(\widetilde{\Gamma})$ is the undirected graph obtained if we ignore the labelling and identify all the mutually inverse pairs in Γ .

Remark: Every undirected graph can be obtained in this way.

Definition

The *rank* of a finite undirected graph Λ , $rk(\Lambda)$, is the number of arcs outside a spanning forest.

Lemma

If Λ is finite, then $\mathsf{rk}(\Lambda) = \#\mathsf{E}(\Lambda) - \#\mathsf{V}(\Lambda) + \#\mathsf{CC}(\Lambda)$.

We extend graph-theoretical notions to involutive automata:

• Γ is a *tree* (*cycle, path*, ...) $\Leftrightarrow \widetilde{\Gamma}$ is a tree (cycle, path, ...)
Let Γ be and involutive automaton.

The *underlying graph* of $\Gamma(\widetilde{\Gamma})$ is the undirected graph obtained if we ignore the labelling and identify all the mutually inverse pairs in Γ .

Remark: Every undirected graph can be obtained in this way.

Definition

The *rank* of a finite undirected graph Λ , $rk(\Lambda)$, is the number of arcs outside a spanning forest.

Lemma

If Λ is finite, then $\mathsf{rk}(\Lambda) = \#\mathsf{E}(\Lambda) - \#\mathsf{V}(\Lambda) + \#\mathsf{CC}(\Lambda)$.

We extend graph-theoretical notions to involutive automata:

- Γ is a *tree* (*cycle, path*, ...) $\Leftrightarrow \widetilde{\Gamma}$ is a tree (cycle, path, ...)
- Γ is **connected** $\Leftrightarrow \widetilde{\Gamma}$ is connected

Let Γ be and involutive automaton.

The *underlying graph* of $\Gamma(\widetilde{\Gamma})$ is the undirected graph obtained if we ignore the labelling and identify all the mutually inverse pairs in Γ .

Remark: Every undirected graph can be obtained in this way.

Definition

The *rank* of a finite undirected graph Λ , $rk(\Lambda)$, is the number of arcs outside a spanning forest.

Lemma

If Λ is finite, then $\mathsf{rk}(\Lambda) = \#\mathsf{E}(\Lambda) - \#\mathsf{V}(\Lambda) + \#\mathsf{CC}(\Lambda)$.

We extend graph-theoretical notions to involutive automata:

- Γ is a *tree* (*cycle*, *path*, ...) $\Leftrightarrow \widetilde{\Gamma}$ is a tree (cycle, path, ...)
- Γ is **connected** $\Leftrightarrow \widetilde{\Gamma}$ is connected
- Γ is *vertex-transitive* $\Leftrightarrow \widetilde{\Gamma}$ is vertex-transitive

Let Γ be and involutive automaton.

The *underlying graph* of $\Gamma(\widetilde{\Gamma})$ is the undirected graph obtained if we ignore the labelling and identify all the mutually inverse pairs in Γ .

Remark: Every undirected graph can be obtained in this way.

Definition

The *rank* of a finite undirected graph Λ , $rk(\Lambda)$, is the number of arcs outside a spanning forest.

Lemma

If Λ is finite, then $\mathsf{rk}(\Lambda) = \#\mathsf{E}(\Lambda) - \#\mathsf{V}(\Lambda) + \#\mathsf{CC}(\Lambda)$.

We extend graph-theoretical notions to involutive automata:

- Γ is a *tree* (*cycle*, *path*, ...) $\Leftrightarrow \widetilde{\Gamma}$ is a tree (cycle, path, ...)
- Γ is **connected** $\Leftrightarrow \widetilde{\Gamma}$ is connected
- Γ is **vertex-transitive** $\Leftrightarrow \widetilde{\Gamma}$ is vertex-transitive
- the *rank* of Γ is $rk(\Gamma) = rk(\widetilde{\Gamma})$

Let Γ be an A-involutive automaton, and let $\gamma=p_0e_1p_1\cdots e_lp_l$ be a walk in $\Gamma.$ Then,

Let Γ be an A-involutive automaton, and let $\gamma = p_0 e_1 p_1 \cdots e_l p_l$ be a walk in $\Gamma.$ Then,

• the *inverse walk* of γ is $\gamma^{-1} = p_l e_l^{-1} p_{l-1} \cdots e_1^{-1} p_0$ (note that $\ell(\gamma^{-1}) = \ell(\gamma)^{-1}$),

Let Γ be an A-involutive automaton, and let $\gamma = p_0 e_1 p_1 \cdots e_l p_l$ be a walk in $\Gamma.$ Then,

- the *inverse walk* of γ is $\gamma^{-1} = p_l e_l^{-1} p_{l-1} \cdots e_1^{-1} p_0$ (note that $\ell(\gamma^{-1}) = \ell(\gamma)^{-1}$),
- γ presents *backtracking* if it has two successive arcs inverse of each other,

Let Γ be an A-involutive automaton, and let $\gamma=p_0e_1p_1\cdots e_lp_l$ be a walk in $\Gamma.$ Then,

- the *inverse walk* of γ is $\gamma^{-1} = p_l e_l^{-1} p_{l-1} \cdots e_1^{-1} p_0$ (note that $\ell(\gamma^{-1}) = \ell(\gamma)^{-1}$),
- γ presents *backtracking* if it has two successive arcs inverse of each other,
- γ is *reduced* if it presents no backtracking,

Let Γ be an A-involutive automaton, and let $\gamma=p_0e_1p_1\cdots e_lp_l$ be a walk in $\Gamma.$ Then,

- the *inverse walk* of γ is $\gamma^{-1} = p_l e_l^{-1} p_{l-1} \cdots e_1^{-1} p_0$ (note that $\ell(\gamma^{-1}) = \ell(\gamma)^{-1}$),
- γ presents *backtracking* if it has two successive arcs inverse of each other,
- γ is *reduced* if it presents no backtracking,
- the *reduced label* of γ is $\overline{\ell}(\gamma) = \overline{\ell(\gamma)}$.

Let Γ be an A-involutive automaton, and let $\gamma=p_0e_1p_1\cdots e_lp_l$ be a walk in $\Gamma.$ Then,

- the *inverse walk* of γ is $\gamma^{-1} = p_l e_l^{-1} p_{l-1} \cdots e_1^{-1} p_0$ (note that $\ell(\gamma^{-1}) = \ell(\gamma)^{-1}$),
- γ presents *backtracking* if it has two successive arcs inverse of each other,
- γ is *reduced* if it presents no backtracking,
- the *reduced label* of γ is $\overline{\ell}(\gamma) = \overline{\ell(\gamma)}$.

Remark: $\ell(\gamma)$ is reduced $\Rightarrow \gamma$ is reduced. (is the converse true?)

Let Γ be an A-involutive automaton, and let $\gamma=p_0e_1p_1\cdots e_lp_l$ be a walk in $\Gamma.$ Then,

- the *inverse walk* of γ is $\gamma^{-1} = p_l e_l^{-1} p_{l-1} \cdots e_1^{-1} p_0$ (note that $\ell(\gamma^{-1}) = \ell(\gamma)^{-1}$),
- γ presents *backtracking* if it has two successive arcs inverse of each other,
- γ is *reduced* if it presents no backtracking,
- the *reduced label* of γ is $\overline{\ell}(\gamma) = \overline{\ell(\gamma)}$.

Remark: $\ell(\gamma)$ is reduced $\Rightarrow \gamma$ is reduced. (is the converse true?)

Lemma

Let Γ be A-involutive and let $p, q \in V\Gamma$ such that $p \rightsquigarrow q$. Then, i) $\overline{\mathcal{L}}_p(\Gamma) = \{ \overline{w} \in \mathbb{F}_A : p \rightsquigarrow p \}$ is a subgroup of \mathbb{F}_A , ii) $\overline{\mathcal{L}}_{p,q}(\Gamma) = \{ \overline{w} \in \mathbb{F}_A : p \rightsquigarrow q \}$ is a coset of $\overline{\mathcal{L}}_p(\Gamma)$ in \mathbb{F}_A . Let Γ be an A-involutive automaton, and let $\gamma=p_0e_1p_1\cdots e_lp_l$ be a walk in $\Gamma.$ Then,

- the *inverse walk* of γ is $\gamma^{-1} = p_l e_l^{-1} p_{l-1} \cdots e_1^{-1} p_0$ (note that $\ell(\gamma^{-1}) = \ell(\gamma)^{-1}$),
- γ presents *backtracking* if it has two successive arcs inverse of each other,
- γ is *reduced* if it presents no backtracking,
- the *reduced label* of γ is $\overline{\ell}(\gamma) = \overline{\ell(\gamma)}$.

Remark: $\ell(\gamma)$ is reduced $\Rightarrow \gamma$ is reduced. (is the converse true?)

Lemma

Let Γ be A-involutive and let $p,q\in V\Gamma$ such that $p\dashrightarrow q.$ Then,

i)
$$\overline{\mathcal{L}}_{p}(\Gamma) = \{ \overline{w} \in \mathbb{F}_{A} : p \stackrel{w}{\leadsto} p \} \text{ is a subgroup of } \mathbb{F}_{A},$$

ii) $\overline{\mathcal{L}}_{p,q}(\Gamma) = \{ \overline{w} \in \mathbb{F}_A : p \xrightarrow{w} q \} \text{ is a coset of } \overline{\mathcal{L}}_p(\Gamma) \text{ in } \mathbb{F}_A.$

If Γ is pointed then we say that $\overline{\mathcal{L}}_{\odot}(\Gamma)$ is the *subgroup recognized by* Γ , and we write $\overline{\mathcal{L}}_{\odot}(\Gamma) = \langle \Gamma \rangle$.

Remark

Since for every (pointed & involutive) A-automaton Γ we have that $\langle \Gamma \rangle$ is a subgroup of \mathbb{F}_A , this is a reasonable candidate family of drawings representing subgroups of \mathbb{F}_A .

Remark

Since for every (pointed & involutive) A-automaton Γ we have that $\langle \Gamma \rangle$ is a subgroup of \mathbb{F}_A , this is a reasonable candidate family of drawings representing subgroups of \mathbb{F}_A . Then,

 $\{ \text{ pointed & involutive A-automata} \} \rightarrow \{ \text{ subgroups of } \mathbb{F}_A \}$ $\Gamma \mapsto \langle \Gamma \rangle$

Remark

Since for every (pointed & involutive) A-automaton Γ we have that $\langle \Gamma \rangle$ is a subgroup of \mathbb{F}_A , this is a reasonable candidate family of drawings representing subgroups of \mathbb{F}_A . Then,

 $\{ \text{ pointed & involutive A-automata} \} \rightarrow \{ \text{ subgroups of } \mathbb{F}_A \}$ $\Gamma \quad \mapsto \quad \langle \Gamma \rangle$

• is well defined,

Remark

Since for every (pointed & involutive) A-automaton Γ we have that $\langle \Gamma \rangle$ is a subgroup of \mathbb{F}_A , this is a reasonable candidate family of drawings representing subgroups of \mathbb{F}_A . Then,

 $\{ \text{ pointed & involutive A-automata} \} \rightarrow \{ \text{ subgroups of } \mathbb{F}_{A} \}$ $\Gamma \mapsto \langle \Gamma \rangle$

- is well defined,
- is surjective,

(why?)

Remark

Since for every (pointed & involutive) A-automaton Γ we have that $\langle \Gamma \rangle$ is a subgroup of \mathbb{F}_A , this is a reasonable candidate family of drawings representing subgroups of \mathbb{F}_A . Then,

 $\{ \text{pointed & involutive A-automata} \} \rightarrow \{ \text{subgroups of } \mathbb{F}_A \}$ $\Gamma \mapsto \langle \Gamma \rangle$

- is well defined,
- is surjective, (why?) is not injective. (why?)

Remark

Since for every (pointed & involutive) A-automaton Γ we have that $\langle \Gamma \rangle$ is a subgroup of \mathbb{F}_A , this is a reasonable candidate family of drawings representing subgroups of \mathbb{F}_A . Then,

 $\{ \text{pointed & involutive A-automata} \} \rightarrow \{ \text{subgroups of } \mathbb{F}_A \}$ $\Gamma \mapsto \langle \Gamma \rangle$

- is well defined,
- is surjective, (why?)is not injective. (why?)

Sources of redundancy:

Remark

Since for every (pointed & involutive) A-automaton Γ we have that $\langle \Gamma \rangle$ is a subgroup of \mathbb{F}_A , this is a reasonable candidate family of drawings representing subgroups of \mathbb{F}_A . Then,

 $\{ \text{pointed & involutive A-automata} \} \rightarrow \{ \text{subgroups of } \mathbb{F}_A \}$ $\Gamma \mapsto \langle \Gamma \rangle$

- is well defined,
- is surjective,
- is not injective.

(why?) (why?)

Sources of redundancy:

i) Γ can be disconnected,

Remark

Since for every (pointed & involutive) A-automaton Γ we have that $\langle \Gamma \rangle$ is a subgroup of \mathbb{F}_A , this is a reasonable candidate family of drawings representing subgroups of \mathbb{F}_A . Then,

 $\{ \text{ pointed & involutive A-automata} \} \rightarrow \{ \text{ subgroups of } \mathbb{F}_{A} \}$ $\Gamma \mapsto \langle \Gamma \rangle$

- is well defined,
- is surjective,
- is not injective.

(why?) (why?)

Sources of redundancy:

- i) Γ can be disconnected,
- ii) 'hanging trees' not containing the basepoint,

Remark

Since for every (pointed & involutive) A-automaton Γ we have that $\langle \Gamma \rangle$ is a subgroup of \mathbb{F}_A , this is a reasonable candidate family of drawings representing subgroups of \mathbb{F}_A . Then,

 $\{ \text{ pointed & involutive A-automata} \} \rightarrow \{ \text{ subgroups of } \mathbb{F}_{A} \}$ $\Gamma \mapsto \langle \Gamma \rangle$

- is well defined,
- is surjective,
- is not injective.

(why?) (why?)

Sources of redundancy:

- i) Γ can be disconnected,
- ii) 'hanging trees' not containing the basepoint,
- iii) non-determinism.

An A-automaton Γ is *deterministic at* $p \in V\Gamma$ if no two arcs with the same label depart from p.

An A-automaton Γ is *deterministic at* $p \in V\Gamma$ if no two arcs with the same label depart from p. ($\iota(e) = \iota(e')$ and $\ell(e) = \ell(e') \Rightarrow e = e'$)

An A-automaton Γ is *deterministic at* $p \in V\Gamma$ if no two arcs with the same label depart from p. ($\iota(e) = \iota(e')$ and $\ell(e) = \ell(e') \Rightarrow e = e'$)

Definition

An A-automaton Γ is deterministic if it is deterministic at every vertex.

An A-automaton Γ is *deterministic at* $p \in V\Gamma$ if no two arcs with the same label depart from p. ($\iota(e) = \iota(e')$ and $\ell(e) = \ell(e') \Rightarrow e = e'$)

Definition

An A-automaton Γ is deterministic if it is deterministic at every vertex.

Then, $\forall \gamma_1, \gamma_2$ walks in Γ ,

 $\iota(\gamma_1) = \iota(\gamma_2) \text{ and } \ell(\gamma_1) = \ell(\gamma_2) \ \Rightarrow \ \gamma_1 = \gamma_2$

An A-automaton Γ is *deterministic at* $p \in V\Gamma$ if no two arcs with the same label depart from p. ($\iota(e) = \iota(e')$ and $\ell(e) = \ell(e') \Rightarrow e = e'$)

Definition

An A-automaton Γ is *deterministic* if it is deterministic at every vertex.

Then, $\forall \gamma_1, \gamma_2$ walks in Γ ,

$$\iota(\gamma_1) = \iota(\gamma_2) \text{ and } \ell(\gamma_1) = \ell(\gamma_2) \implies \gamma_1 = \gamma_2$$

Remark: An *involutive* A-automaton is *non-deterministic* if for some $a \in A$ there are two *a*-arcs leaving or arriving to some vertex.

An A-automaton Γ is *deterministic at* $p \in V\Gamma$ if no two arcs with the same label depart from p. ($\iota(e) = \iota(e')$ and $\ell(e) = \ell(e') \Rightarrow e = e'$)

Definition

An A-automaton Γ is deterministic if it is deterministic at every vertex.

Then, $\forall \gamma_1, \gamma_2$ walks in Γ ,

$$\iota(\gamma_1) = \iota(\gamma_2) \text{ and } \ell(\gamma_1) = \ell(\gamma_2) \implies \gamma_1 = \gamma_2$$

Remark: An *involutive* A-automaton is *non-deterministic* if for some $a \in A$ there are two *a*-arcs leaving or arriving to some vertex.

Lemma

If Γ is involutive and deterministic and γ is a walk in $\Gamma\!\!,$ then:

 γ is reduced $\Leftrightarrow \ell(\gamma)$ is reduced

and

$$\langle \Gamma \rangle = \{ \ell(\gamma) : \gamma \equiv 0 \rightsquigarrow \bullet reduced \}$$

A vertex (resp., arc) in Γ is *alive* if it belongs to some reduced \bullet -walk, otherwise it is *dead*.

A vertex (resp., arc) in Γ is *alive* if it belongs to some reduced \bullet -walk, otherwise it is *dead*.

Definition

 Γ is *core* if it has no dead vertices (equivalently, no dead arcs).

A vertex (resp., arc) in Γ is *alive* if it belongs to some reduced \bullet -walk, otherwise it is *dead*.

Definition

 Γ is *core* if it has no dead vertices (equivalently, no dead arcs).

The *core* of Γ , *core*(Γ), is the maximal core subautomaton of Γ (containing the basepoint).

A vertex (resp., arc) in Γ is *alive* if it belongs to some reduced \bullet -walk, otherwise it is *dead*.

Definition

 Γ is *core* if it has no dead vertices (equivalently, no dead arcs). The *core* of Γ , *core*(Γ), is the maximal core subautomaton of Γ (containing the basepoint).

Remarks:

core(Γ) is what remains after taking the CC of Γ containing

 and removing from it all the 'hanging trees' not containing
 ,

A vertex (resp., arc) in Γ is *alive* if it belongs to some reduced \bullet -walk, otherwise it is *dead*.

Definition

 Γ is *core* if it has no dead vertices (equivalently, no dead arcs). The *core* of Γ , *core*(Γ), is the maximal core subautomaton of Γ (containing the basepoint).

Remarks:

- core(Γ) is what remains after taking the CC of Γ containing \odot and removing from it all the 'hanging trees' not containing \odot ,
- $core(\Gamma)$ is connected,

A vertex (resp., arc) in Γ is *alive* if it belongs to some reduced \bullet -walk, otherwise it is *dead*.

Definition

 Γ is *core* if it has no dead vertices (equivalently, no dead arcs). The *core* of Γ , *core*(Γ), is the maximal core subautomaton of Γ (containing the basepoint).

Remarks:

- core(Γ) is what remains after taking the CC of Γ containing

 and removing from it all the 'hanging trees' not containing
 ,
- $core(\Gamma)$ is connected,
- $\langle \operatorname{core}(\Gamma) \rangle = \langle \Gamma \rangle$,
CORE AND REDUCED AUTOMATA

A vertex (resp., arc) in Γ is *alive* if it belongs to some reduced •-walk, otherwise it is *dead*.

Definition

 Γ is *core* if it has no dead vertices (equivalently, no dead arcs). The *core* of Γ , *core*(Γ), is the maximal core subautomaton of Γ (containing the basepoint).

Remarks:

- core(Γ) is what remains after taking the CC of Γ containing

 and removing from it all the 'hanging trees' not containing
 ,
- $core(\Gamma)$ is connected,
- $\langle \operatorname{core}(\Gamma) \rangle = \langle \Gamma \rangle$,
- if Γ is finite, then Γ is core $\Leftrightarrow \Gamma$ has no non- \bullet vertices of degree 1.

CORE AND REDUCED AUTOMATA

A vertex (resp., arc) in Γ is *alive* if it belongs to some reduced •-walk, otherwise it is *dead*.

Definition

 Γ is *core* if it has no dead vertices (equivalently, no dead arcs). The *core* of Γ , *core*(Γ), is the maximal core subautomaton of Γ (containing the basepoint).

Remarks:

- core(Γ) is what remains after taking the CC of Γ containing

 and removing from it all the 'hanging trees' not containing
 ,
- · core(Γ) is connected,
- $\langle \operatorname{core}(\Gamma) \rangle = \langle \Gamma \rangle$,
- if Γ is finite, then Γ is core $\Leftrightarrow \Gamma$ has no non- ${\scriptstyle \odot}$ vertices of degree 1.

Definition

An automaton Γ is *reduced* if it is deterministic and core.

SCHREIER AUTOMATON

Let $G = \langle S \rangle$ be a group and let *H* be a subgroup of *G*.

Definition

Definition

The (*right*) *Schreier automaton* of *H* w.r.t. *S*, denoted by Sch(*H*, *S*), is the (involutive and pointed) *S*-automata with:

• set of vertices $H \setminus G$ (right cosets of H in G),

Definition

- set of vertices $H \setminus G$ (right cosets of H in G),
- an arc $Hg \xrightarrow{s} Hgs$, $\forall Hg \in H \setminus G$, $\forall s \in S^{\pm}$,

Definition

- set of vertices $H \setminus G$ (right cosets of H in G),
- an arc $Hg \xrightarrow{s} Hgs$, $\forall Hg \in H \setminus G$, $\forall s \in S^{\pm}$,
- *H* as basepoint.

Definition

- set of vertices $H \setminus G$ (right cosets of H in G),
- an arc $Hg \xrightarrow{s} Hgs$, $\forall Hg \in H \setminus G$, $\forall s \in S^{\pm}$,
- *H* as basepoint.

Definition

The (*right*) *Schreier automaton* of *H* w.r.t. *S*, denoted by Sch(*H*, *S*), is the (involutive and pointed) *S*-automata with:

- set of vertices $H \setminus G$ (right cosets of H in G),
- an arc $Hg \xrightarrow{s} Hgs$, $\forall Hg \in H \setminus G$, $\forall s \in S^{\pm}$,
- H as basepoint.

Proposition

Let H be a subgroup of \mathbb{F}_A . Then, Sch(H, A) is deterministic, saturated, connected, and (Sch(H, A)) = H.

Definition

The (*right*) *Schreier automaton* of *H* w.r.t. *S*, denoted by Sch(*H*, *S*), is the (involutive and pointed) *S*-automata with:

- set of vertices $H \setminus G$ (right cosets of H in G),
- an arc $Hg \xrightarrow{s} Hgs$, $\forall Hg \in H \setminus G$, $\forall s \in S^{\pm}$,
- H as basepoint.

Proposition

Let H be a subgroup of \mathbb{F}_A . Then, Sch(H, A) is deterministic, saturated, connected, and (Sch(H, A)) = H.

Remark: The Schreier automaton depends on the chosen generating set for *G*.

CAYLEY AUTOMATON OF \mathbb{F}_2

The Cayley automaton $Cay(\mathbb{F}_{\{a,b\}}, \{a, b\})$ (consisting in four *Cayley branches* adjacent to the basepoint \bullet).

STALLINGS AUTOMATON

Let *H* be a subgroup of \mathbb{F}_A .

Definition

The **Stallings automaton** of H w.r.t. A is St(H, A) = core(Sch(H, A)).

Definition

The **Stallings automaton** of H w.r.t. A is St(H, A) = core(Sch(H, A)).

Remark. The following statements are equivalent:

- Sch(H, A) is core,
- St(H, A) is saturated,
- Sch(H, A) = St(H, A).

Definition

The **Stallings automaton** of H w.r.t. A is St(H, A) = core(Sch(H, A)).

Remark. The following statements are equivalent:

- Sch(H, A) is core,
- St(H, A) is saturated,
- Sch(H, A) = St(H, A).

Proposition

The Stallings automaton St(H, A) is reduced and (St(H, A)) = H.

Definition

The **Stallings automaton** of H w.r.t. A is St(H, A) = core(Sch(H, A)).

Remark. The following statements are equivalent:

- Sch(H, A) is core,
- St(H, A) is saturated,
- Sch(H, A) = St(H, A).

Proposition

The Stallings automaton St(H, A) is reduced and (St(H, A)) = H.

Remark: The Stallings automaton St(*H*, *A*) depends on the chosen basis *A* for the ambient free group.

Definition

A homomorphism (of automata) between Γ and Γ' is a function $\phi: V\Gamma \to V\Gamma'$ such that:

i)
$$\varphi(\bullet) = \bullet'$$
,

ii) $\forall p, q \in V\Gamma, \forall a \in A, \text{ if } p \xrightarrow{a} q \text{ then } \phi(p) \xrightarrow{a} \phi(q).$

Definition

A homomorphism (of automata) between Γ and Γ' is a function $\phi: V\Gamma \to V\Gamma'$ such that:

i)
$$\varphi(\bullet) = \bullet'$$
,

ii)
$$\forall p, q \in V\Gamma, \forall a \in A$$
, if $p \xrightarrow{a} q$ then $\phi(p) \xrightarrow{a} \phi(q)$.

Lemma

If $\varphi\colon \Gamma\to \Gamma'$ is a homomorphism of automata, then

$$\forall p,q \in V\Gamma, \; \forall w \in A^*, \quad p \stackrel{\scriptscriptstyle W}{\leadsto} q \;\; \Rightarrow \;\; \varphi(p) \stackrel{\scriptscriptstyle W}{\leadsto} \varphi(q) \,.$$

Definition

A homomorphism (of automata) between Γ and Γ' is a function $\phi: V\Gamma \to V\Gamma'$ such that:

i)
$$\varphi(\bullet) = \bullet'$$
,

ii)
$$\forall p, q \in V\Gamma, \forall a \in A, \text{ if } p \xrightarrow{a} q \text{ then } \phi(p) \xrightarrow{a} \phi(q).$$

Lemma

If $\varphi\colon \Gamma\to \Gamma'$ is a homomorphism of automata, then

$$\forall \mathsf{p},\mathsf{q} \in \mathsf{V}\Gamma, \; \forall w \in \mathsf{A}^*, \quad \mathsf{p} \xrightarrow{w} \mathsf{q} \; \Rightarrow \; \varphi(\mathsf{p}) \xrightarrow{w} \varphi(\mathsf{q}).$$

Corollary

If $\phi \colon \Gamma \to \Gamma'$ is a homomorphism of automata, then $\mathcal{L}(\Gamma) \subseteq \mathcal{L}(\Gamma')$.

STALLINGS BIJECTION

Theorem

Let Γ, Γ' be reduced (pointed and involutive) A-automata. Then,

 $\langle \Gamma \rangle \leqslant \langle \Gamma' \rangle \ \Leftrightarrow \ \exists \varphi \colon \Gamma \to \Gamma' \text{ homomorphism}$

and, if so, the homomorphism is unique.

Theorem

Let Γ, Γ' be reduced (pointed and involutive) A-automata. Then,

 $\langle \Gamma \rangle \leqslant \langle \Gamma' \rangle \ \Leftrightarrow \ \exists \varphi \colon \Gamma \to \Gamma' \text{ homomorphism}$

and, if so, the homomorphism is unique.

Sketch of proof.

Theorem

Let Γ, Γ' be reduced (pointed and involutive) A-automata. Then,

 $\langle \Gamma \rangle \leqslant \langle \Gamma' \rangle \iff \exists \varphi \colon \Gamma \to \Gamma' \text{ homomorphism}$

and, if so, the homomorphism is unique.

Sketch of proof. [Unicity] Follows from the determinism of Γ' .

 $[\Leftarrow]$

Theorem

Let Γ, Γ' be reduced (pointed and involutive) A-automata. Then,

 $\langle \Gamma \rangle \leqslant \langle \Gamma' \rangle \ \Leftrightarrow \ \exists \varphi \colon \Gamma \to \Gamma' \text{ homomorphism}$

and, if so, the homomorphism is unique.

Sketch of proof. [Unicity] Follows from the determinism of Γ' .

 $[\Leftarrow] \exists \varphi \colon \Gamma \to \Gamma' \text{ homomorphism } \Rightarrow \mathcal{L}(\Gamma) \leqslant \mathcal{L}(\Gamma)$

Theorem

Let Γ, Γ' be reduced (pointed and involutive) A-automata. Then,

 $\langle \Gamma \rangle \leqslant \langle \Gamma' \rangle \ \Leftrightarrow \ \exists \varphi \colon \Gamma \to \Gamma' \text{ homomorphism}$

and, if so, the homomorphism is unique.

Sketch of proof. [Unicity] Follows from the determinism of Γ' .

 $[\Leftarrow] \exists \varphi \colon \Gamma \to \Gamma' \text{ homomorphism } \Rightarrow \ \mathcal{L}(\Gamma) \leqslant \mathcal{L}(\Gamma) \ \Rightarrow \ \langle \Gamma \rangle \leqslant \langle \Gamma \rangle.$

Theorem

Let Γ, Γ' be reduced (pointed and involutive) A-automata. Then,

 $\langle \Gamma \rangle \leqslant \langle \Gamma' \rangle \ \Leftrightarrow \ \exists \varphi \colon \Gamma \to \Gamma' \text{ homomorphism}$

and, if so, the homomorphism is unique.

Sketch of proof. [Unicity] Follows from the determinism of Γ' .

$$\begin{split} [\Leftarrow] \exists \varphi \colon \Gamma \to \Gamma' \text{ homomorphism } \Rightarrow \mathcal{L}(\Gamma) \leqslant \mathcal{L}(\Gamma) \Rightarrow \langle \Gamma \rangle \leqslant \langle \Gamma \rangle. \\ [\Rightarrow] \end{split}$$

Theorem

Let Γ, Γ' be reduced (pointed and involutive) A-automata. Then,

 $\langle \Gamma \rangle \leqslant \langle \Gamma' \rangle \ \Leftrightarrow \ \exists \varphi \colon \Gamma \to \Gamma' \text{ homomorphism}$

and, if so, the homomorphism is unique.

Sketch of proof. [Unicity] Follows from the determinism of Γ' .

$$\begin{split} [\Leftarrow] \exists \varphi \colon \Gamma \to \Gamma' \text{ homomorphism } \Rightarrow \mathcal{L}(\Gamma) \leqslant \mathcal{L}(\Gamma) \Rightarrow \langle \Gamma \rangle \leqslant \langle \Gamma \rangle. \\ [\Rightarrow] \text{ Take } \varphi(\bullet) = \bullet', \end{split}$$

Theorem

Let Γ, Γ' be reduced (pointed and involutive) A-automata. Then,

 $\langle \Gamma \rangle \leqslant \langle \Gamma' \rangle \ \Leftrightarrow \ \exists \varphi \colon \Gamma \to \Gamma' \text{ homomorphism}$

and, if so, the homomorphism is unique.

Sketch of proof. [Unicity] Follows from the determinism of Γ' .

 $[\Leftarrow] \exists \varphi \colon \Gamma \to \Gamma' \text{ homomorphism } \Rightarrow \ \mathcal{L}(\Gamma) \leqslant \mathcal{L}(\Gamma) \Rightarrow \ \langle \Gamma \rangle \leqslant \langle \Gamma \rangle.$

 $[\Rightarrow]$ Take $\phi(\bullet) = \bullet'$, and for $\bullet \neq p \in V(\Gamma)$ let $\bullet \stackrel{^{U}}{\leadsto} p \stackrel{^{V}}{\leadsto} \bullet$ be reduced.

Theorem

Let Γ, Γ' be reduced (pointed and involutive) A-automata. Then,

 $\langle \Gamma \rangle \leqslant \langle \Gamma' \rangle \ \Leftrightarrow \ \exists \varphi \colon \Gamma \to \Gamma' \text{ homomorphism}$

and, if so, the homomorphism is unique.

Sketch of proof. [Unicity] Follows from the determinism of Γ' .

 $[\Leftarrow] \exists \varphi \colon \Gamma \to \Gamma' \text{ homomorphism } \Rightarrow \ \mathcal{L}(\Gamma) \leqslant \mathcal{L}(\Gamma) \Rightarrow \ \langle \Gamma \rangle \leqslant \langle \Gamma \rangle.$

 $[\Rightarrow]$ Take $\phi(\bullet) = \bullet'$, and for $\bullet \neq p \in V(\Gamma)$ let $\bullet \stackrel{u}{\leadsto} p \stackrel{v}{\leadsto} \bullet$ be reduced. Then uv is reduced (no cancellation) and $uv \in \langle \Gamma \rangle \Rightarrow uv \in \langle \Gamma' \rangle$.

Theorem

Let Γ, Γ' be reduced (pointed and involutive) A-automata. Then,

 $\langle \Gamma \rangle \leqslant \langle \Gamma' \rangle \ \Leftrightarrow \ \exists \varphi \colon \Gamma \to \Gamma' \text{ homomorphism}$

and, if so, the homomorphism is unique.

Sketch of proof. [Unicity] Follows from the determinism of Γ' .

 $[\Leftarrow] \exists \varphi \colon \Gamma \to \Gamma' \text{ homomorphism } \Rightarrow \ \mathcal{L}(\Gamma) \leqslant \mathcal{L}(\Gamma) \Rightarrow \ \langle \Gamma \rangle \leqslant \langle \Gamma \rangle.$

[⇒] Take $\phi(\bullet) = \bullet'$, and for $\bullet \neq p \in V(\Gamma)$ let $\bullet \stackrel{u}{\leadsto} p \stackrel{v}{\leadsto} \bullet$ be reduced. Then *uv* is reduced (no cancellation) and *uv* ∈ $\langle \Gamma \rangle \Rightarrow uv \in \langle \Gamma' \rangle$. Let $\bullet' \stackrel{u}{\leadsto} p' \stackrel{v}{\leadsto} \bullet'$ be reduced.

Theorem

Let Γ, Γ' be reduced (pointed and involutive) A-automata. Then,

 $\langle \Gamma \rangle \leqslant \langle \Gamma' \rangle \ \Leftrightarrow \ \exists \varphi \colon \Gamma \to \Gamma' \text{ homomorphism}$

and, if so, the homomorphism is unique.

Sketch of proof. [Unicity] Follows from the determinism of Γ' .

 $[\Leftarrow] \exists \varphi \colon \Gamma \to \Gamma' \text{ homomorphism } \Rightarrow \ \mathcal{L}(\Gamma) \leqslant \mathcal{L}(\Gamma) \Rightarrow \ \langle \Gamma \rangle \leqslant \langle \Gamma \rangle.$

[⇒] Take $\phi(\bullet) = \bullet'$, and for $\bullet \neq p \in V(\Gamma)$ let $\bullet \stackrel{u}{\leadsto} p \stackrel{v}{\leadsto} \bullet$ be reduced. Then *uv* is reduced (no cancellation) and $uv \in \langle \Gamma \rangle \Rightarrow uv \in \langle \Gamma' \rangle$. Let $\bullet' \stackrel{u}{\leadsto} p' \stackrel{v}{\leadsto} \bullet'$ be reduced. We define $\phi(p) = p'$.

Theorem

Let Γ, Γ' be reduced (pointed and involutive) A-automata. Then,

 $\langle \Gamma \rangle \leqslant \langle \Gamma' \rangle \ \Leftrightarrow \ \exists \varphi \colon \Gamma \to \Gamma' \text{ homomorphism}$

and, if so, the homomorphism is unique.

Sketch of proof. [Unicity] Follows from the determinism of Γ' .

 $[\Leftarrow] \exists \varphi \colon \Gamma \to \Gamma' \text{ homomorphism } \Rightarrow \mathcal{L}(\Gamma) \leqslant \mathcal{L}(\Gamma) \Rightarrow \langle \Gamma \rangle \leqslant \langle \Gamma \rangle.$

 $[\Rightarrow] \text{ Take } \varphi(\textcircled{\bullet}) = \textcircled{\bullet}', \text{ and for } \textcircled{\bullet} \neq p \in V(\Gamma) \text{ let } \textcircled{\bullet} \stackrel{u}{\leadsto} p \stackrel{v}{\leadsto} \textcircled{\bullet} \text{ be reduced.}$ Then uv is reduced (no cancellation) and $uv \in \langle \Gamma \rangle \Rightarrow uv \in \langle \Gamma' \rangle.$ Let $\textcircled{\bullet}' \stackrel{u}{\leadsto} p' \stackrel{v}{\leadsto} \textcircled{\bullet}' \text{ be reduced.}$ We define $\varphi(p) = p'.$

(i) $\phi \colon \Gamma \to \Gamma'$ is well defined by the determinism of Γ' (why?).

Theorem

Let Γ, Γ' be reduced (pointed and involutive) A-automata. Then,

 $\langle \Gamma \rangle \leqslant \langle \Gamma' \rangle \ \Leftrightarrow \ \exists \varphi \colon \Gamma \to \Gamma' \text{ homomorphism}$

and, if so, the homomorphism is unique.

Sketch of proof. [Unicity] Follows from the determinism of Γ' .

 $[\Leftarrow] \exists \varphi \colon \Gamma \to \Gamma' \text{ homomorphism } \Rightarrow \ \mathcal{L}(\Gamma) \leqslant \mathcal{L}(\Gamma) \Rightarrow \ \langle \Gamma \rangle \leqslant \langle \Gamma \rangle.$

 $[\Rightarrow] \text{ Take } \varphi(\textcircled{\bullet}) = \textcircled{\bullet}', \text{ and for } \textcircled{\bullet} \neq p \in V(\Gamma) \text{ let } \textcircled{\bullet} \stackrel{u}{\leadsto} p \stackrel{v}{\leadsto} \textcircled{\bullet} \text{ be reduced.}$ Then uv is reduced (no cancellation) and $uv \in \langle \Gamma \rangle \Rightarrow uv \in \langle \Gamma' \rangle$. Let $\textcircled{\bullet}' \stackrel{u}{\leadsto} p' \stackrel{v}{\leadsto} \textcircled{\bullet}' \text{ be reduced.}$ We define $\varphi(p) = p'$.

(i) φ: Γ → Γ' is *well defined* by the determinism of Γ' (why?).
(ii) φ: Γ → Γ' is a homomorphism:

Theorem

Let Γ, Γ' be reduced (pointed and involutive) A-automata. Then,

 $\langle \Gamma \rangle \leqslant \langle \Gamma' \rangle \ \Leftrightarrow \ \exists \varphi \colon \Gamma \to \Gamma' \text{ homomorphism}$

and, if so, the homomorphism is unique.

Sketch of proof. [Unicity] Follows from the determinism of Γ' .

 $[\Leftarrow] \exists \varphi \colon \Gamma \to \Gamma' \text{ homomorphism } \Rightarrow \ \mathcal{L}(\Gamma) \leqslant \mathcal{L}(\Gamma) \Rightarrow \ \langle \Gamma \rangle \leqslant \langle \Gamma \rangle.$

 $[\Rightarrow] \text{ Take } \varphi(\textcircled{\bullet}) = \textcircled{\bullet}', \text{ and for } \textcircled{\bullet} \neq p \in V(\Gamma) \text{ let } \textcircled{\bullet} \stackrel{u}{\leadsto} p \stackrel{v}{\leadsto} \textcircled{\bullet} \text{ be reduced.}$ Then uv is reduced (no cancellation) and $uv \in \langle \Gamma \rangle \Rightarrow uv \in \langle \Gamma' \rangle.$ Let $\textcircled{\bullet}' \stackrel{u}{\leadsto} p' \stackrel{v}{\leadsto} \textcircled{\bullet}' \text{ be reduced.}$ We define $\varphi(p) = p'.$

(i) $\phi \colon \Gamma \to \Gamma'$ is well defined by the determinism of Γ' (why?).

(ii) $\phi: \Gamma \to \Gamma'$ is a homomorphism: given $e \equiv p \xrightarrow{a} q$, let • $\xrightarrow{u} p \xrightarrow{a} q \xrightarrow{v} \bullet$ e be reduced,
A CRUCIAL RESULT

Theorem

Let Γ, Γ' be reduced (pointed and involutive) A-automata. Then,

 $\langle \Gamma \rangle \leqslant \langle \Gamma' \rangle \ \Leftrightarrow \ \exists \varphi \colon \Gamma \to \Gamma' \text{ homomorphism}$

and, if so, the homomorphism is unique.

Sketch of proof. [Unicity] Follows from the determinism of Γ' .

 $[\Leftarrow] \exists \varphi \colon \Gamma \to \Gamma' \text{ homomorphism } \Rightarrow \ \mathcal{L}(\Gamma) \leqslant \mathcal{L}(\Gamma) \Rightarrow \ \langle \Gamma \rangle \leqslant \langle \Gamma \rangle.$

 $[\Rightarrow] \text{ Take } \varphi(\bullet) = \bullet', \text{ and for } \bullet \neq p \in V(\Gamma) \text{ let } \bullet \stackrel{u}{\longrightarrow} p \stackrel{v}{\longrightarrow} \bullet \text{ be reduced.}$ Then uv is reduced (no cancellation) and $uv \in \langle \Gamma \rangle \Rightarrow uv \in \langle \Gamma' \rangle.$ Let $\bullet' \stackrel{u}{\longrightarrow} p' \stackrel{v}{\longrightarrow} \bullet'$ be reduced. We define $\varphi(p) = p'.$

(i) $\phi: \Gamma \to \Gamma'$ is well defined by the determinism of Γ' (why?).

(ii) $\phi: \Gamma \to \Gamma'$ is a homomorphism: given $e \equiv p \xrightarrow{a} q$, let • $\xrightarrow{u} p \xrightarrow{a} q \xrightarrow{v} \bullet$ be reduced, hence $uav \in \langle \Gamma \rangle \leq \langle \Gamma' \rangle$ (no cancellation),

A CRUCIAL RESULT

Theorem

Let Γ, Γ' be reduced (pointed and involutive) A-automata. Then,

 $\langle \Gamma \rangle \leqslant \langle \Gamma' \rangle \ \Leftrightarrow \ \exists \varphi \colon \Gamma \to \Gamma' \ \text{homomorphism}$

and, if so, the homomorphism is unique.

Sketch of proof. [Unicity] Follows from the determinism of Γ' .

 $[\Leftarrow] \exists \varphi \colon \Gamma \to \Gamma' \text{ homomorphism } \Rightarrow \ \mathcal{L}(\Gamma) \leqslant \mathcal{L}(\Gamma) \Rightarrow \ \langle \Gamma \rangle \leqslant \langle \Gamma \rangle.$

[⇒] Take $\phi(\bullet) = \bullet'$, and for $\bullet \neq p \in V(\Gamma)$ let $\bullet \stackrel{u}{\leadsto} p \stackrel{v}{\leadsto} \bullet$ be reduced. Then *uv* is reduced (no cancellation) and *uv* ∈ $\langle \Gamma \rangle \Rightarrow uv \in \langle \Gamma' \rangle$. Let $\bullet' \stackrel{u}{\leadsto} p' \stackrel{v}{\leadsto} \bullet'$ be reduced. We define $\phi(p) = p'$.

(i) $\phi: \Gamma \to \Gamma'$ is well defined by the determinism of Γ' (why?).

(ii) $\phi: \Gamma \to \Gamma'$ is a homomorphism: given $e \equiv p \xrightarrow{a} q$, let • $\xrightarrow{u} p \xrightarrow{a} q \xrightarrow{v} \bullet$ e be reduced,

hence $uav \in \langle \Gamma \rangle \leqslant \langle \Gamma' \rangle$ (no cancellation), and therefore there exists $\bullet' \xrightarrow{u} \phi(p) \xrightarrow{a} \phi(q) \xrightarrow{v} \bullet'$ reduced.

A CRUCIAL RESULT

Theorem

Let Γ, Γ' be reduced (pointed and involutive) A-automata. Then,

 $\langle \Gamma \rangle \leqslant \langle \Gamma' \rangle \ \Leftrightarrow \ \exists \varphi \colon \Gamma \to \Gamma' \ \text{homomorphism}$

and, if so, the homomorphism is unique.

Sketch of proof. [Unicity] Follows from the determinism of Γ' .

 $[\Leftarrow] \exists \varphi \colon \Gamma \to \Gamma' \text{ homomorphism } \Rightarrow \ \mathcal{L}(\Gamma) \leqslant \mathcal{L}(\Gamma) \Rightarrow \ \langle \Gamma \rangle \leqslant \langle \Gamma \rangle.$

[⇒] Take $\phi(\bullet) = \bullet'$, and for $\bullet \neq p \in V(\Gamma)$ let $\bullet \stackrel{u}{\leadsto} p \stackrel{v}{\leadsto} \bullet$ be reduced. Then *uv* is reduced (no cancellation) and *uv* ∈ $\langle \Gamma \rangle \Rightarrow uv \in \langle \Gamma' \rangle$. Let $\bullet' \stackrel{u}{\leadsto} p' \stackrel{v}{\leadsto} \bullet'$ be reduced. We define $\phi(p) = p'$.

(i) $\phi \colon \Gamma \to \Gamma'$ is well defined by the determinism of Γ' (why?).

(ii) $\phi: \Gamma \to \Gamma'$ is a homomorphism: given $e \equiv p \xrightarrow{a} q$, let • $\xrightarrow{u} p \xrightarrow{a} q \xrightarrow{v} \bullet$ be reduced,

hence $uav \in \langle \Gamma \rangle \leqslant \langle \Gamma' \rangle$ (no cancellation), and therefore there exists $\mathfrak{G}' \xrightarrow{u} \phi(p) \xrightarrow{a} \phi(q) \xrightarrow{v} \mathfrak{G}'$ reduced. So $\phi(p) \xrightarrow{a} \phi(q)$.

Corollary

If Γ is a reduced A-automata, then the only homomorphism $\Gamma \to \Gamma$ is the identity.

Corollary

If Γ is a reduced A-automata, then the only homomorphism $\Gamma \to \Gamma$ is the identity.

Corollary

If Γ, Γ' are reduced A-automata, then

$$\langle \Gamma \rangle = \langle \Gamma' \rangle \iff \Gamma \simeq \Gamma'$$

Corollary

If Γ is a reduced A-automata, then the only homomorphism $\Gamma \to \Gamma$ is the identity.

Corollary

If Γ, Γ' are reduced A-automata, then

$$\left< \Gamma \right> = \left< \Gamma' \right> \ \Leftrightarrow \ \Gamma \simeq \Gamma'$$

Theorem (Stallings, 1983)

Let \mathbb{F}_A be a free group with basis A. Then,

is a bijection.

Given a *finite* generating set $S = \{w_1, \ldots, w_k\}$ of $H \leq \mathbb{F}_A = \mathbb{F}_{\{a_1, \ldots, a_n\}}$,

Given a *finite* generating set $S = \{w_1, \ldots, w_k\}$ of $H \leq \mathbb{F}_A = \mathbb{F}_{\{a_1, \ldots, a_n\}}$,

Given a *finite* generating set $S = \{w_1, \ldots, w_k\}$ of $H \leq \mathbb{F}_A = \mathbb{F}_{\{a_1, \ldots, a_n\}}$,

1. Represent every $w_i = a_{i_1}a_{i_2}a_{i_3}\cdots a_{i_p}$ as a *petal automaton*

Given a *finite* generating set $S = \{w_1, \ldots, w_k\}$ of $H \leq \mathbb{F}_A = \mathbb{F}_{\{a_1, \ldots, a_n\}}$,

1. Represent every $w_i = a_{i_1}a_{i_2}a_{i_3}\cdots a_{i_p}$ as a *petal automaton*

Given a *finite* generating set $S = \{w_1, \dots, w_k\}$ of $H \leq \mathbb{F}_A = \mathbb{F}_{\{a_1, \dots, a_n\}}$,

1. Represent every $w_i = a_{i_1}a_{i_2}a_{i_3}\cdots a_{i_p}$ as a *petal automaton*

2. Identify the basepoints to obtain the *flower automaton* $\mathcal{F}(S)$.

Given a *finite* generating set $S = \{w_1, \dots, w_k\}$ of $H \leq \mathbb{F}_A = \mathbb{F}_{\{a_1, \dots, a_n\}}$,

1. Represent every $w_i = a_{i_1}a_{i_2}a_{i_3}\cdots a_{i_p}$ as a *petal automaton*

2. Identify the basepoints to obtain the *flower automaton* $\mathcal{F}(S)$.

Given a *finite* generating set $S = \{w_1, \dots, w_k\}$ of $H \leq \mathbb{F}_A = \mathbb{F}_{\{a_1, \dots, a_n\}}$,

1. Represent every $w_i = a_{i_1}a_{i_2}a_{i_3}\cdots a_{i_p}$ as a *petal automaton*

2. Identify the basepoints to obtain the *flower automaton* $\mathcal{F}(S)$.

3. Identify (*fold*) incident arcs with the same labels:

Given a *finite* generating set $S = \{w_1, \dots, w_k\}$ of $H \leq \mathbb{F}_A = \mathbb{F}_{\{a_1, \dots, a_n\}}$,

1. Represent every $w_i = a_{i_1}a_{i_2}a_{i_3}\cdots a_{i_p}$ as a *petal automaton*

2. Identify the basepoints to obtain the *flower automaton* $\mathcal{F}(S)$.

3. Identify (*fold*) incident arcs with the same labels:

Given a *finite* generating set $S = \{w_1, \dots, w_k\}$ of $H \leq \mathbb{F}_A = \mathbb{F}_{\{a_1, \dots, a_n\}}$,

1. Represent every $w_i = a_{i_1}a_{i_2}a_{i_3}\cdots a_{i_p}$ as a *petal automaton*

2. Identify the basepoints to obtain the *flower automaton* $\mathcal{F}(S)$.

3. Identify (*fold*) incident arcs with the same labels:

4. Keep folding until (necessarily) reaching St(H).

(why?)

Let $S = \{w_1, \ldots, w_k\}$ be a generating set of $H \leq \mathbb{F}_A$

Let $S = \{w_1, \ldots, w_k\}$ be a generating set of $H \leq \mathbb{F}_A$

Remark: The folding sequence on Fl(S) is not necessarily unique.

Let $S = \{w_1, \ldots, w_k\}$ be a generating set of $H \leq \mathbb{F}_A$

Remark: The folding sequence on Fl(S) is not necessarily unique.

Proposition

If S is finite then any folding sequence on Fl(S) ends at St(H).

Let $S = \{w_1, \ldots, w_k\}$ be a generating set of $H \leq \mathbb{F}_A$

Remark: The folding sequence on Fl(S) is not necessarily unique.

Proposition

If S is finite then any folding sequence on Fl(S) ends at St(H).

Let $S = \{w_1, \ldots, w_k\}$ be a generating set of $H \leq \mathbb{F}_A$

Remark: The folding sequence on Fl(S) is not necessarily unique.

Proposition

If S is finite then any folding sequence on Fl(S) ends at St(H).

Proof. Recall:

• Fl(S) recognizes H and is core,

Let $S = \{w_1, \ldots, w_k\}$ be a generating set of $H \leq \mathbb{F}_A$

Remark: The folding sequence on Fl(S) is not necessarily unique.

Proposition

If S is finite then any folding sequence on Fl(S) ends at St(H).

- Fl(S) recognizes H and is core,
- foldings do not break coreness*,

Let $S = \{w_1, \ldots, w_k\}$ be a generating set of $H \leq \mathbb{F}_A$

Remark: The folding sequence on Fl(S) is not necessarily unique.

Proposition

If S is finite then any folding sequence on Fl(S) ends at St(H).

- Fl(S) recognizes H and is core,
- foldings do not break coreness*,
- · foldings do not change the recognized subgroup,

Let $S = \{w_1, \ldots, w_k\}$ be a generating set of $H \leq \mathbb{F}_A$

Remark: The folding sequence on Fl(S) is not necessarily unique.

Proposition

If S is finite then any folding sequence on Fl(S) ends at St(H).

- Fl(S) recognizes H and is core,
- foldings do not break coreness*,
- · foldings do not change the recognized subgroup,
- every folding reduces the number of arcs by one.

Let $S = \{w_1, \ldots, w_k\}$ be a generating set of $H \leq \mathbb{F}_A$

Remark: The folding sequence on Fl(S) is not necessarily unique.

Proposition

If S is finite then any folding sequence on Fl(S) ends at St(H).

Proof. Recall:

- Fl(S) recognizes H and is core,
- foldings do not break coreness*,
- · foldings do not change the recognized subgroup,
- every folding reduces the number of arcs by one.

If Fl(S) is finite, after a finite number of foldings, no more foldings are available: the resulting object is deterministic & core (i.e., reduced) and recognizes *H*. Since such an object is unique, it must be St(H).

Let $S = \{w_1, \ldots, w_k\}$ be a generating set of $H \leq \mathbb{F}_A$

Remark: The folding sequence on Fl(S) is not necessarily unique.

Proposition

If S is finite then any folding sequence on Fl(S) ends at St(H).

Proof. Recall:

- Fl(S) recognizes H and is core,
- foldings do not break coreness*,
- · foldings do not change the recognized subgroup,
- every folding reduces the number of arcs by one.

If Fl(S) is finite, after a finite number of foldings, no more foldings are available: the resulting object is deterministic & core (i.e., reduced) and recognizes *H*. Since such an object is unique, it must be St(H).

Remark: the result of the folding process depends neither on the folding sequence *nor on the starting (finite) generating set* for *H.*

Let
$$H = \langle \underbrace{a^{-1}bab^{-1}}_{u_1}, \underbrace{a^3}_{u_2}, \underbrace{abab^{-1}}_{u_3} \rangle \leqslant \mathbb{F}_{\{a,b\}}.$$

Let
$$H = \langle \underbrace{a^{-1}bab^{-1}}_{u_1}, \underbrace{a^3}_{u_2}, \underbrace{abab^{-1}}_{u_3} \rangle \leqslant \mathbb{F}_{\{a,b\}}.$$

Let
$$H = \langle \underbrace{a^{-1}bab^{-1}}_{u_1}, \underbrace{a^3}_{u_2}, \underbrace{abab^{-1}}_{u_3} \rangle \leqslant \mathbb{F}_{\{a,b\}}.$$

Let
$$H = \langle \underbrace{a^{-1}bab^{-1}}_{u_1}, \underbrace{a^3}_{u_2}, \underbrace{abab^{-1}}_{u_3} \rangle \leqslant \mathbb{F}_{\{a,b\}}.$$

Let
$$H = \langle \underbrace{a^{-1}bab^{-1}}_{u_1}, \underbrace{a^3}_{u_2}, \underbrace{abab^{-1}}_{u_3} \rangle \leqslant \mathbb{F}_{\{a,b\}}.$$

Let
$$H = \langle \underbrace{a^{-1}bab^{-1}}_{u_1}, \underbrace{a^3}_{u_2}, \underbrace{abab^{-1}}_{u_3} \rangle \leqslant \mathbb{F}_{\{a,b\}}.$$

Let
$$H = \langle \underbrace{a^{-1}bab^{-1}}_{u_1}, \underbrace{a^3}_{u_2}, \underbrace{abab^{-1}}_{u_3} \rangle \leqslant \mathbb{F}_{\{a,b\}}.$$

Let
$$H = \langle \underbrace{a^{-1}bab^{-1}}_{u_1}, \underbrace{a^3}_{u_2}, \underbrace{abab^{-1}}_{u_3} \rangle \leqslant \mathbb{F}_{\{a,b\}}.$$

Let
$$H = \langle \underbrace{a^{-1}bab^{-1}}_{u_1}, \underbrace{a^3}_{u_2}, \underbrace{abab^{-1}}_{u_3} \rangle \leqslant \mathbb{F}_{\{a,b\}}.$$

$COMPUTABILITY OF GENERATORS (\leftarrow). FREENESS$

Theorem

Let Γ be a connected A-automaton, let T be an spanning tree of $\Gamma,$ and let

$$S_T = \{ \overline{\ell} (\bullet \stackrel{\tau}{\leadsto} \bullet \stackrel{e}{\longrightarrow} \bullet \stackrel{\tau}{\leadsto} \bullet) : e \in E^+ \Gamma \setminus ET \}$$

Then,

Theorem

Let Γ be a connected A-automaton, let T be an spanning tree of $\Gamma,$ and let

$$S_T = \{ \overline{\ell} (\bullet \stackrel{\tau}{\leadsto} \bullet \stackrel{e}{\longrightarrow} \bullet \stackrel{\tau}{\leadsto} \bullet) : e \in E^+ \Gamma \smallsetminus ET \}$$

Then,

i) S_T is a generating set for $\langle \Gamma \rangle$,

Theorem

Let Γ be a connected A-automaton, let T be an spanning tree of $\Gamma,$ and let

$$S_T = \{ \overline{\ell} (\bullet \stackrel{\tau}{\leadsto} \bullet \stackrel{e}{\longrightarrow} \bullet \stackrel{\tau}{\leadsto} \bullet) : e \in E^+ \Gamma \setminus ET \}$$

Then,

```
i) S_T is a generating set for \langle \Gamma \rangle,
```

COMPUTABILITY OF GENERATORS (\leftarrow). FREENESS

Theorem

Let Γ be a connected A-automaton, let T be an spanning tree of $\Gamma,$ and let

$$S_{T} = \{ \overline{\ell} (\bullet \stackrel{\tau}{\leadsto} \bullet \stackrel{e}{\longrightarrow} \bullet \stackrel{\tau}{\leadsto} \bullet) : e \in E^{+} \Gamma \smallsetminus ET \}$$

Then,

```
i) S_T is a generating set for \langle \Gamma \rangle,
```

Sketch of proof. i) Let $w = \overline{\ell}(\gamma) \in \langle \Gamma \rangle$, where γ is reduced. Write: $\gamma: \textcircled{o} \xrightarrow{T} \textcircled{o} \xleftarrow{e_1^{e_1}} \textcircled{o} \xrightarrow{T} \textcircled{o} \xleftarrow{e_2^{e_2}} \textcircled{o} \xrightarrow{T} \textcircled{o} \cdots \textcircled{o} \xrightarrow{T} \textcircled{o} \xleftarrow{e_l^{e_l}} \textcircled{o} \xrightarrow{T} \textcircled{o}$ where $e_1, \dots, e_l \in E^+\Gamma \setminus ET$ and $e_j = \pm 1$. Now consider $\gamma': \textcircled{o} \xrightarrow{T} \textcircled{o} \xleftarrow{e_1^{e_1}} \textcircled{o} \xrightarrow{T} \textcircled{o} \xleftarrow{e_2^{e_2}} \overbrace{T} \textcircled{o} \cdots \textcircled{o} \xrightarrow{T} \textcircled{o} \xleftarrow{e_l^{e_l}} \overbrace{T} \textcircled{o}$ It is clear that $w = \overline{\ell}(\gamma) = \overline{\ell}(\gamma') = w_{e_1}^{e_1} w_{e_2}^{e_2} \cdots w_{e_l}^{e_l} \in \langle S_T \rangle$.

Theorem

Let Γ be a connected A-automaton, let T be an spanning tree of $\Gamma,$ and let

$$S_{T} = \{ \overline{\ell} (\bullet \stackrel{\tau}{\leadsto} \bullet \stackrel{e}{\longrightarrow} \bullet \stackrel{\tau}{\leadsto} \bullet) : e \in E^{+} \Gamma \setminus ET \}$$

Then,

- i) S_T is a generating set for $\langle \Gamma \rangle$,
- ii) if Γ is deterministic, then $\langle \Gamma \rangle$ is free with basis S_T , $(rk\langle \Gamma \rangle = rk \Gamma)$

Sketch of proof.

Theorem

Let Γ be a connected A-automaton, let T be an spanning tree of $\Gamma,$ and let

$$S_T = \{ \overline{\ell} (\bullet \stackrel{^{_T}}{\leadsto} \bullet \stackrel{e}{\longrightarrow} \bullet \stackrel{^{_T}}{\leadsto} \bullet) : e \in E^+ \Gamma \smallsetminus ET \}$$

Then,

- i) S_T is a generating set for $\langle \Gamma \rangle$,
- ii) if Γ is deterministic, then $\langle \Gamma \rangle$ is free with basis S_T , $(rk \langle \Gamma \rangle = rk \Gamma)$

Sketch of proof. ii) Let $1 \neq w = w_{e_1}^{e_1} w_{e_2}^{e_2} \cdots w_{e_l}^{e_l}$ reduced in $S_T = \{w_{e_l}\}_i$. Then, $\overline{w} = \overline{\ell} \left(\textcircled{O} \longrightarrow \textcircled{O} \xrightarrow{e_1^{e_1}} \textcircled{O} \longrightarrow \textcircled{O} \xrightarrow{T} \textcircled{O} \xrightarrow{e_2^{e_2}} \textcircled{O} \xrightarrow{T} \textcircled{O} \cdots \textcircled{O} \xrightarrow{T} \textcircled{O} \xrightarrow{e_l^{e_l}} \textcircled{O} \xrightarrow{T} \textcircled{O} \right)$ $= \overline{\ell} \left(\textcircled{O} \xrightarrow{T} \textcircled{O} \xrightarrow{e_1^{e_1}} \textcircled{O} \xrightarrow{T} \textcircled{O} \xrightarrow{e_2^{e_2}} \textcircled{O} \xrightarrow{T} \textcircled{O} \cdots \textcircled{O} \xrightarrow{T} \textcircled{O} \xrightarrow{e_l^{e_l}} \overbrace{T} \textcircled{O} \right).$

The last walk is nontrivial and reduced. Since Γ is deterministic, $\overline{w} \neq 1$.

Theorem

Let Γ be a connected A-automaton, let T be an spanning tree of $\Gamma,$ and let

$$S_T = \{ \overline{\ell} (\bullet \stackrel{^{_T}}{\leadsto} \bullet \stackrel{e}{\longrightarrow} \bullet \stackrel{^{_T}}{\leadsto} \bullet) : e \in E^+ \Gamma \smallsetminus ET \}$$

Then,

- i) S_T is a generating set for $\langle \Gamma \rangle$,
- ii) if Γ is deterministic, then $\langle \Gamma \rangle$ is free with basis S_T , $(rk \langle \Gamma \rangle = rk \Gamma)$

Sketch of proof. ii) Let $1 \neq w = w_{e_1}^{e_1} w_{e_2}^{e_2} \cdots w_{e_l}^{e_l}$ reduced in $S_T = \{w_{e_l}\}_i$. Then, $\overline{w} = \overline{\ell} \left(\textcircled{O} \longrightarrow \textcircled{O} \xrightarrow{e_1^{e_1}} \textcircled{O} \longrightarrow \textcircled{O} \xrightarrow{T} \textcircled{O} \xrightarrow{e_2^{e_2}} \textcircled{O} \xrightarrow{T} \textcircled{O} \cdots \textcircled{O} \xrightarrow{T} \textcircled{O} \xrightarrow{e_l^{e_l}} \textcircled{O} \xrightarrow{T} \textcircled{O} \right)$ $= \overline{\ell} \left(\textcircled{O} \xrightarrow{T} \textcircled{O} \xrightarrow{e_1^{e_1}} \textcircled{O} \xrightarrow{T} \textcircled{O} \xrightarrow{e_2^{e_2}} \textcircled{O} \xrightarrow{T} \textcircled{O} \cdots \textcircled{O} \xrightarrow{T} \textcircled{O} \xrightarrow{e_l^{e_l}} \overbrace{T} \textcircled{O} \right).$

The last walk is nontrivial and reduced. Since Γ is deterministic, $\overline{w} \neq 1$.

COMPUTABILITY OF GENERATORS (\leftarrow). FREENESS

Theorem

Let Γ be a connected A-automaton, let T be an spanning tree of $\Gamma,$ and let

$$S_{T} = \{ \overline{\ell} (\bullet \stackrel{\tau}{\leadsto} \bullet \stackrel{e}{\longrightarrow} \bullet \stackrel{\tau}{\leadsto} \bullet) : e \in E^{+} \Gamma \setminus ET \}$$

Then,

- i) S_T is a generating set for $\langle \Gamma \rangle$,
- ii) if Γ is deterministic, then $\langle \Gamma \rangle$ is free with basis $S_T, ~~(rk \langle \Gamma \rangle = rk \, \Gamma)$
- iii) if Γ is reduced, then $\langle \Gamma \rangle$ is f.g. if and only if Γ is finite, and then

$$\mathrm{rk}\langle\Gamma
angle = 1 - \mathrm{\#V}\Gamma + \mathrm{\#E^{+}}\Gamma$$

Sketch of proof.

COMPUTABILITY OF GENERATORS (\leftarrow). FREENESS

Theorem

Let Γ be a connected A-automaton, let T be an spanning tree of $\Gamma,$ and let

$$S_T = \{ \overline{\ell} (\bullet \stackrel{^{_T}}{\leadsto} \bullet \stackrel{e}{\longrightarrow} \bullet \stackrel{^{_T}}{\leadsto} \bullet) : e \in E^+ \Gamma \smallsetminus ET \}$$

Then,

- i) S_T is a generating set for $\langle \Gamma \rangle$,
- ii) if Γ is deterministic, then $\langle \Gamma \rangle$ is free with basis $S_T, ~~(rk \langle \Gamma \rangle = rk \, \Gamma)$
- iii) if Γ is reduced, then $\langle \Gamma \rangle$ is f.g. if and only if Γ is finite, and then

$$\mathsf{rk}\langle\Gamma\rangle = 1 - \#\mathsf{V}\Gamma + \#\mathsf{E}^+\Gamma$$

Sketch of proof. iii) Assume that Γ is reduced.

If Γ is finite, then $\mathsf{rk}\langle\Gamma\rangle = \#(\mathsf{E}^+ \smallsetminus \mathsf{E}T) < \infty$.

If $\mathsf{rk} \Gamma = \mathsf{rk}(\mathsf{core}(\Gamma)) < \infty$ then Γ is finite (why?).

Then, $\mathbf{rk} \langle \Gamma \rangle = \mathbf{rk} \Gamma = \# \mathsf{E} \Gamma^+ - \# \mathsf{V} \Gamma + 1$.

Let
$$H = \langle \underbrace{a^{-1}bab^{-1}}_{u_1}, \underbrace{a^3}_{u_2}, \underbrace{abab^{-1}}_{u_3} \rangle \leqslant \mathbb{F}_{\{a,b\}}.$$

Let
$$H = \langle \underbrace{a^{-1}bab^{-1}}_{u_1}, \underbrace{a^3}_{u_2}, \underbrace{abab^{-1}}_{u_3} \rangle \leqslant \mathbb{F}_{\{a,b\}}.$$

Let
$$H = \langle \underbrace{a^{-1}bab^{-1}}_{u_1}, \underbrace{a^3}_{u_2}, \underbrace{abab^{-1}}_{u_3} \rangle \leqslant \mathbb{F}_{\{a,b\}}.$$

Let
$$H = \langle \underbrace{a^{-1}bab^{-1}}_{u_1}, \underbrace{a^3}_{u_2}, \underbrace{abab^{-1}}_{u_3} \rangle \leqslant \mathbb{F}_{\{a,b\}}.$$

Then, we start by drawing the flower automaton $Fl(u_1, u_2, u_3)$:

Hence, $\{a, bab^{-1}\}$ is a free basis of *H*, which is free of rank 2.

STALLINGS BIJECTION (FULL RESULT)

Let \mathbb{F}_A be the free group with basis A.

Theorem

There exists a (computable) bijection:

Theorem

There exists a (computable) bijection:

 $\begin{array}{rcl} \{(f.g.) \text{ subgroups of } \mathbb{F}_A\} & \longrightarrow & \mathfrak{S} = \{(finite) \text{ reduced } A\text{-automata}\} \\ & H & \longmapsto & \operatorname{St}(H, A) \\ & & \langle \Gamma \rangle & \longleftrightarrow & \Gamma \end{array}$

Sketch of computability:

 $[\mapsto]$ Let $S = \{w_1, \ldots, w_k\} \subseteq \mathbb{F}_A$ such that $\langle S \rangle = H$,

Theorem

There exists a (computable) bijection:

 $\begin{array}{rcl} \{(f.g.) \text{ subgroups of } \mathbb{F}_A\} & \longrightarrow & \mathfrak{S} = \{(finite) \text{ reduced } A\text{-automata}\} \\ & H & \longmapsto & \operatorname{St}(H, A) \\ & & \langle \Gamma \rangle & \longleftrightarrow & \Gamma \end{array}$

$$[\mapsto]$$
 Let $S = \{w_1, \ldots, w_k\} \subseteq \mathbb{F}_A$ such that $\langle S \rangle = H_A$

Theorem

There exists a (computable) bijection:

 $\begin{array}{rcl} \{(f.g.) \text{ subgroups of } \mathbb{F}_A\} & \longrightarrow & \mathfrak{S} = \{(finite) \text{ reduced } A\text{-automata}\} \\ & H & \longmapsto & \operatorname{St}(H, A) \\ & & \langle \Gamma \rangle & \longleftrightarrow & \Gamma \end{array}$

$$[\mapsto]$$
 Let $S = \{w_1, \ldots, w_k\} \subseteq \mathbb{F}_A$ such that $\langle S \rangle = H$,

$$w_1 \underbrace{\overset{W_2}{\longrightarrow} \cdots}_{W_k} = \mathcal{F}_S$$

Theorem

There exists a (computable) bijection:

 $\begin{array}{rcl} \{(f.g.) \text{ subgroups of } \mathbb{F}_A\} & \longrightarrow & \mathfrak{S} = \{(finite) \text{ reduced } A\text{-automata}\} \\ & H & \longmapsto & \operatorname{St}(H, A) \\ & & \langle \Gamma \rangle & \longleftrightarrow & \Gamma \end{array}$

$$[\mapsto]$$
 Let $S = \{w_1, \ldots, w_k\} \subseteq \mathbb{F}_A$ such that $\langle S \rangle = H$,

$$\underset{w_1 \longrightarrow w_k}{\overset{W_2}{\longrightarrow}} = \mathcal{F}_S \stackrel{\phi_1}{\frown} \Gamma^{(1)}$$

Theorem

There exists a (computable) bijection:

 $\begin{array}{rcl} \{(f.g.) \text{ subgroups of } \mathbb{F}_A\} & \longrightarrow & \mathfrak{S} = \{(finite) \text{ reduced } A\text{-automata}\} \\ & H & \longmapsto & \operatorname{St}(H, A) \\ & & \langle \Gamma \rangle & \longleftrightarrow & \Gamma \end{array}$

$$[\mapsto]$$
 Let $S = \{w_1, \ldots, w_k\} \subseteq \mathbb{F}_A$ such that $\langle S \rangle = H$,

$$\underset{W_1 \longrightarrow W_k}{\overset{W_2}{\longrightarrow}} = \mathcal{F}_S \stackrel{\varphi_1}{\frown} \Gamma^{(1)} \stackrel{\varphi_2}{\frown} \cdots \stackrel{\varphi_p}{\frown} \Gamma^{(p)}$$

Theorem

There exists a (computable) bijection:

 $\begin{array}{rcl} \{(f.g.) \text{ subgroups of } \mathbb{F}_A\} & \longrightarrow & \mathfrak{S} = \{(finite) \text{ reduced } A\text{-automata}\} \\ & H & \longmapsto & \operatorname{St}(H, A) \\ & & \langle \Gamma \rangle & \longleftrightarrow & \Gamma \end{array}$

$$[\mapsto]$$
 Let $S = \{w_1, \ldots, w_k\} \subseteq \mathbb{F}_A$ such that $\langle S \rangle = H$,

$$\underset{W_1 \longrightarrow W_k}{\overset{W_2}{\longrightarrow}} = \mathcal{F}_S \stackrel{\varphi_1}{\frown} \Gamma^{(1)} \stackrel{\varphi_2}{\frown} \cdots \stackrel{\varphi_p}{\frown} \Gamma^{(p)}$$

Theorem

There exists a (computable) bijection:

$$[\mapsto]$$
 Let $S = \{w_1, \ldots, w_k\} \subseteq \mathbb{F}_A$ such that $\langle S \rangle = H$,

$$\underset{w_1 \longrightarrow w_k}{\overset{w_2}{\longrightarrow}} = \mathcal{F}_S \stackrel{\varphi_1}{\frown} \Gamma^{(1)} \stackrel{\varphi_2}{\frown} \cdots \stackrel{\varphi_p}{\frown} \Gamma^{(p)} = \mathrm{St}(H, A)$$

Theorem

There exists a (computable) bijection:

Sketch of computability:

$$[\mapsto]$$
 Let $S = \{w_1, \ldots, w_k\} \subseteq \mathbb{F}_A$ such that $\langle S \rangle = H$,

$$w_1 \underbrace{\overset{W_2}{\longrightarrow}}_{w_k} = \mathcal{F}_S \stackrel{\varphi_1}{\frown} \Gamma^{(1)} \stackrel{\varphi_2}{\frown} \cdots \stackrel{\varphi_p}{\frown} \Gamma^{(p)} = \mathrm{St}(H, A)$$

 $[\leftarrow]$

Theorem

There exists a (computable) bijection:

Sketch of computability:

$$[\mapsto]$$
 Let $S = \{w_1, \ldots, w_k\} \subseteq \mathbb{F}_A$ such that $\langle S \rangle = H$,

$$\underset{w_1 \longrightarrow w_k}{\overset{w_2}{\longrightarrow}} = \mathcal{F}_S \stackrel{\varphi_1}{\frown} \Gamma^{(1)} \stackrel{\varphi_2}{\frown} \cdots \stackrel{\varphi_p}{\frown} \Gamma^{(p)} = \mathsf{St}(H, \mathsf{A})$$

 $[\leftarrow]$ Given $\Gamma \in \mathfrak{S}$, take *T* a spanning tree of Γ ,

Theorem

There exists a (computable) bijection:

Sketch of computability:

$$[\mapsto]$$
 Let $S = \{w_1, \ldots, w_k\} \subseteq \mathbb{F}_A$ such that $\langle S \rangle = H$,

$$\underset{W_1 \longrightarrow W_k}{\overset{W_2}{\longrightarrow}} = \mathcal{F}_S \xrightarrow{\phi_1} \Gamma^{(1)} \xrightarrow{\phi_2} \cdots \xrightarrow{\phi_p} \Gamma^{(p)} = \operatorname{St}(H, A)$$

 $[\leftarrow]$ Given $\Gamma \in \mathfrak{S}$, take *T* a spanning tree of Γ ,

$$\left\{ \,\overline{\ell}(\textcircled{\bullet} \checkmark^{r} \rightarrow \textcircled{\bullet} \xleftarrow{e_{i}} \bullet \checkmark^{r} \rightarrow \textcircled{\bullet}) \, : \, e_{i} \in E^{+}\Gamma \setminus ET \, \right\}$$

is a basis for the subgroup $H = \langle \Gamma \rangle$.

Let Γ be a pointed involutive A-automaton.

Let Γ be a pointed involutive A-automaton.

We distinguish two folding situations:

Let Γ be a pointed involutive A-automaton.

We distinguish two folding situations:

Let Γ be a pointed involutive A-automaton.

We distinguish two folding situations:

Let Γ be a pointed involutive A-automaton.

We distinguish two folding situations:

Let Γ be a pointed involutive A-automaton.

We distinguish two folding situations:

Let Γ be a pointed involutive A-automaton.

We distinguish two folding situations:

(1) Identify two *nonparallel* incident arcs with the same label:

(2) Identify two *parallel* arcs with the same label:

Let Γ be a pointed involutive A-automaton.

We distinguish two folding situations:

(1) Identify two *nonparallel* incident arcs with the same label:

(2) Identify two *parallel* arcs with the same label:

Let Γ be a pointed involutive A-automaton.

We distinguish two folding situations:

(1) Identify two *nonparallel* incident arcs with the same label:

(2) Identify two *parallel* arcs with the same label:

KINDS OF FOLDINGS

Let Γ be a pointed involutive A-automaton.

We distinguish two folding situations:

(1) Identify two *nonparallel* incident arcs with the same label:

(2) Identify two *parallel* arcs with the same label:

KINDS OF FOLDINGS

Let Γ be a pointed involutive A-automaton.

We distinguish two folding situations:

(1) Identify two *nonparallel* incident arcs with the same label:

(2) Identify two *parallel* arcs with the same label:

Remark: If Γ is finite and $\Gamma \curvearrowright \Gamma'$ is a Stallings folding, then:

$$\mathsf{rk}(\Gamma') = \begin{cases} \mathsf{rk}(\Gamma) & \text{ if } \Gamma \curvearrowright \Gamma' \text{ is open,} \\ \mathsf{rk}(\Gamma) - 1 & \text{ if } \Gamma \curvearrowright \Gamma' \text{ is closed.} \end{cases}$$

Corollary

Let Γ be a connected A-automaton, let T be an spanning tree of Γ , and let S_T be the set of T-petals of Γ . Then,

 $\pi_{\bullet}(\widetilde{\Gamma})\,\simeq\,\mathbb{F}_{S_T}$

Corollary

Let Γ be a connected A-automaton, let T be an spanning tree of Γ , and let S_T be the set of T-petals of Γ . Then,

$$\pi_{\bullet}(\widetilde{\Gamma}) \simeq \mathbb{F}_{S_7}$$

and

$$\begin{array}{rcl} \mathfrak{u}_{\mathcal{T}} \colon \mathbb{F}_{S_{\mathcal{T}}} & \to & \left\langle \Gamma \right\rangle \\ w(S_t) & \mapsto & \overline{\ell(w(S_{\mathcal{T}}))} \end{array}$$

is a surjective homomorphism of (free) groups.

Corollary

Let Γ be a connected A-automaton, let T be an spanning tree of $\Gamma,$ and let S_T be the set of T-petals of $\Gamma.$ Then,

$$\pi_{\bullet}(\widetilde{\Gamma}) \, \simeq \, \mathbb{F}_{S_7}$$

and

$$\begin{array}{rcl} \mathfrak{u}_{T} \colon \mathbb{F}_{S_{T}} & \to & \left< \Gamma \right> \\ w(S_{t}) & \mapsto & \overline{\ell(w(S_{T}))} \end{array}$$

is a surjective homomorphism of (free) groups.

Definition

If Γ is finite and $\Gamma \stackrel{\Phi_1}{\longrightarrow} \Gamma_1 \stackrel{\Phi_2}{\longrightarrow} \cdots \stackrel{\Phi_p}{\longrightarrow} \Gamma_p = \overline{\Gamma}$ is a folding sequence, then the *loss* of Γ is:

$$\mathsf{loss}(\Gamma) = \mathsf{rk}(\Gamma) - \mathsf{rk}\langle\Gamma\rangle$$

Corollary

Let Γ be a connected A-automaton, let T be an spanning tree of $\Gamma,$ and let S_T be the set of T-petals of $\Gamma.$ Then,

$$\pi_{\bullet}(\widetilde{\Gamma}) \, \simeq \, \mathbb{F}_{S_7}$$

and

$$\begin{array}{rcl} \mathfrak{u}_{T} \colon \mathbb{F}_{S_{T}} & \to & \left\langle \Gamma \right\rangle \\ w(S_{t}) & \mapsto & \overline{\ell(w(S_{T}))} \end{array}$$

is a surjective homomorphism of (free) groups.

Definition

If Γ is finite and $\Gamma \stackrel{\Phi_1}{\longrightarrow} \Gamma_1 \stackrel{\Phi_2}{\longrightarrow} \cdots \stackrel{\Phi_p}{\longrightarrow} \Gamma_p = \overline{\Gamma}$ is a folding sequence, then the *loss* of Γ is:

$$\begin{aligned} \mathsf{loss}(\Gamma) \ &= \ \mathsf{rk}(\Gamma) - \mathsf{rk}\langle\Gamma\rangle \\ &= \ \mathsf{rk}(\Gamma) - \mathsf{rk}\,\overline{\Gamma} \end{aligned}$$

Corollary

Let Γ be a connected A-automaton, let T be an spanning tree of $\Gamma,$ and let S_T be the set of T-petals of $\Gamma.$ Then,

$$\pi_{\bullet}(\widetilde{\Gamma})\,\simeq\,\mathbb{F}_{S_7}$$

and

$$\begin{array}{rcl} \mathfrak{u}_{T} \colon \mathbb{F}_{S_{T}} & \to & \left< \Gamma \right> \\ w(S_{t}) & \mapsto & \overline{\ell(w(S_{T}))} \end{array}$$

is a surjective homomorphism of (free) groups.

Definition

If Γ is finite and $\Gamma \stackrel{\Phi_1}{\longrightarrow} \Gamma_1 \stackrel{\Phi_2}{\longrightarrow} \cdots \stackrel{\Phi_p}{\longrightarrow} \Gamma_p = \overline{\Gamma}$ is a folding sequence, then the *loss* of Γ is:

$$\begin{split} \mathsf{loss}(\Gamma) \ &= \ \mathsf{rk}(\Gamma) - \mathsf{rk}\langle \Gamma \rangle \\ &= \ \mathsf{rk}(\Gamma) - \mathsf{rk}\,\overline{\Gamma} \\ &= \ \# \ \mathsf{closed} \ \mathsf{foldings} \ \mathsf{in} \ (\varphi_1, \dots, \varphi_p) \end{split}$$

Theorem (Nielsen-Schreier)

Subgroups of free groups are again free.

Theorem (Nielsen-Schreier)

Subgroups of free groups are again free.

Proposition

Given a finite subset $S \subseteq \mathbb{F}_n$, a basis for (and hence the rank of) the subgroup $H = \langle S \rangle \leqslant \mathbb{F}_n$ is computable.

Theorem (Nielsen-Schreier)

Subgroups of free groups are again free.

Proposition

Given a finite subset $S \subseteq \mathbb{F}_n$, a basis for (and hence the rank of) the subgroup $H = \langle S \rangle \leq \mathbb{F}_n$ is computable.

Proposition

For every $\kappa \in [0, \aleph_0]$ there exists $H \leqslant \mathbb{F}_2$ such that $H \simeq \mathbb{F}\kappa \quad (\mathbb{F}\kappa \mapsto \mathbb{F}_2)$.

Proof: Draw it!

Theorem (Nielsen-Schreier)

Subgroups of free groups are again free.

Proposition

Given a finite subset $S \subseteq \mathbb{F}_n$, a basis for (and hence the rank of) the subgroup $H = \langle S \rangle \leq \mathbb{F}_n$ is computable.

Proposition

For every $\kappa \in [0, \aleph_0]$ there exists $H \leqslant \mathbb{F}_2$ such that $H \simeq \mathbb{F}\kappa \quad (\mathbb{F}\kappa \mapsto \mathbb{F}_2)$.

Proof: Draw it! For example take:

Theorem (Nielsen-Schreier)

Subgroups of free groups are again free.

Proposition

Given a finite subset $S \subseteq \mathbb{F}_n$, a basis for (and hence the rank of) the subgroup $H = \langle S \rangle \leqslant \mathbb{F}_n$ is computable.

Proposition

For every $\kappa \in [0, \aleph_0]$ there exists $H \leqslant \mathbb{F}_2$ such that $H \simeq \mathbb{F}\kappa \quad (\mathbb{F}\kappa \mapsto \mathbb{F}_2)$.

Proof: Draw it! For example take:

...and remove all but a finite segment containing .

Theorem (Nielsen-Schreier)

Subgroups of free groups are again free.

Proposition

Given a finite subset $S \subseteq \mathbb{F}_n$, a basis for (and hence the rank of) the subgroup $H = \langle S \rangle \leqslant \mathbb{F}_n$ is computable.

Proposition

For every $\kappa \in [0, \aleph_0]$ there exists $H \leqslant \mathbb{F}_2$ such that $H \simeq \mathbb{F}\kappa \quad (\mathbb{F}\kappa \mapsto \mathbb{F}_2)$.

Proof: Draw it! For example take:

...and remove all but a finite segment containing \odot . How many different subgroups of \mathbb{F}_2 are there?

Remark

Let $S \subseteq \mathbb{F}_A$. Then,

- i) $\langle S \rangle = \mathbb{F}_A \iff \operatorname{St}(\langle S \rangle) = \operatorname{Fl}(A),$
- ii) S is free (in \mathbb{F}_A) \Leftrightarrow loss(Fl(S)) = 0.

Both conditions are algorithmically decidable if S is finite.

Remark

Let $S \subseteq \mathbb{F}_A$. Then,

- i) $\langle S \rangle = \mathbb{F}_A \iff \operatorname{St}(\langle S \rangle) = \operatorname{Fl}(A),$
- ii) S is free (in \mathbb{F}_A) \Leftrightarrow loss(Fl(S)) = 0.

Both conditions are algorithmically decidable if S is finite.

Theorem

 $\mathbb{F}_A \simeq \mathbb{F}_B \iff \#A = \#B.$

Remark

Let $S \subseteq \mathbb{F}_A$. Then,

- i) $\langle S \rangle = \mathbb{F}_A \iff \operatorname{St}(\langle S \rangle) = \operatorname{Fl}(A),$
- ii) S is free (in \mathbb{F}_A) \Leftrightarrow loss(Fl(S)) = 0.

Both conditions are algorithmically decidable if S is finite.

Theorem

 $\mathbb{F}_A \simeq \mathbb{F}_B \iff \#A = \#B.$

Definition

A group is called *Hopfian* if every surjective endomorphism is injective.

Remark

Let $S \subseteq \mathbb{F}_A$. Then,

- i) $\langle S \rangle = \mathbb{F}_A \iff \operatorname{St}(\langle S \rangle) = \operatorname{Fl}(A),$
- ii) S is free (in \mathbb{F}_A) \Leftrightarrow loss(Fl(S)) = 0.

Both conditions are algorithmically decidable if S is finite.

Theorem

 $\mathbb{F}_A \simeq \mathbb{F}_B \iff \#A = \#B.$

Definition

A group is called *Hopfian* if every surjective endomorphism is injective.

Theorem

Finitely generated free groups are Hopfian.

THE MEMBERSHIP PROBLEM

Theorem

The subgroup membership problem is solvable in $\mathbb{F}_A = \langle A | - \rangle$: given v, $u_1, \ldots, u_n \in (\widetilde{A})^*$, it is decidable whether $v \in H = \langle u_1, \ldots, u_n \rangle$. In this case, we can compute v as a word in $\{u_1, \ldots, u_n\}$.

THE MEMBERSHIP PROBLEM

Theorem

The subgroup membership problem is solvable in $\mathbb{F}_A = \langle A | - \rangle$: given v, $u_1, \ldots, u_n \in (\widetilde{A})^*$, it is decidable whether $v \in H = \langle u_1, \ldots, u_n \rangle$. In this case, we can compute v as a word in $\{u_1, \ldots, u_n\}$.

Proof of decidability

(1) reducing, we can assume $U = \{u_1, \ldots, u_n\} \subseteq R(A);$

THE MEMBERSHIP PROBLEM

Theorem

The subgroup membership problem is solvable in $\mathbb{F}_A = \langle A | - \rangle$: given v, $u_1, \ldots, u_n \in (\widetilde{A})^*$, it is decidable whether $v \in H = \langle u_1, \ldots, u_n \rangle$. In this case, we can compute v as a word in $\{u_1, \ldots, u_n\}$.

- (1) reducing, we can assume $U = \{u_1, \ldots, u_n\} \subseteq R(A);$
- (2) draw the flower automaton Fl(U);

The subgroup membership problem is solvable in $\mathbb{F}_A = \langle A | - \rangle$: given v, $u_1, \ldots, u_n \in (\widetilde{A})^*$, it is decidable whether $v \in H = \langle u_1, \ldots, u_n \rangle$. In this case, we can compute v as a word in $\{u_1, \ldots, u_n\}$.

- (1) reducing, we can assume $U = \{u_1, \ldots, u_n\} \subseteq R(A);$
- (2) draw the flower automaton Fl(U);
- (3) apply an arbitrary sequence of foldings until getting a reduced automaton Fl(U) ~ · · · ~ St (H);

The subgroup membership problem is solvable in $\mathbb{F}_A = \langle A | - \rangle$: given v, $u_1, \ldots, u_n \in (\widetilde{A})^*$, it is decidable whether $v \in H = \langle u_1, \ldots, u_n \rangle$. In this case, we can compute v as a word in $\{u_1, \ldots, u_n\}$.

- (1) reducing, we can assume $U = \{u_1, \ldots, u_n\} \subseteq R(A);$
- (2) draw the flower automaton Fl(U);
- (3) apply an arbitrary sequence of foldings until getting a reduced automaton Fl(U) ~ · · · ~ St (H);
- (4) try to read \overline{v} as (the label of) a walk in St (*H*), starting from \bullet ;

The subgroup membership problem is solvable in $\mathbb{F}_A = \langle A | - \rangle$: given v, $u_1, \ldots, u_n \in (\widetilde{A})^*$, it is decidable whether $v \in H = \langle u_1, \ldots, u_n \rangle$. In this case, we can compute v as a word in $\{u_1, \ldots, u_n\}$.

- (1) reducing, we can assume $U = \{u_1, \ldots, u_n\} \subseteq R(A);$
- (2) draw the flower automaton Fl(U);
- (3) apply an arbitrary sequence of foldings until getting a reduced automaton Fl(U) ~ · · · ~ St (H);
- (4) try to read \overline{v} as (the label of) a walk in St (*H*), starting from \bullet ;
- (5) if it not possible then $v \notin H$;

The subgroup membership problem is solvable in $\mathbb{F}_A = \langle A | - \rangle$: given v, $u_1, \ldots, u_n \in (\widetilde{A})^*$, it is decidable whether $v \in H = \langle u_1, \ldots, u_n \rangle$. In this case, we can compute v as a word in $\{u_1, \ldots, u_n\}$.

- (1) reducing, we can assume $U = \{u_1, \ldots, u_n\} \subseteq R(A);$
- (2) draw the flower automaton Fl(U);
- (3) apply an arbitrary sequence of foldings until getting a reduced automaton Fl(U) ~ · · · ~ St (H);
- (4) try to read \overline{v} as (the label of) a walk in St (*H*), starting from \bullet ;
- (5) if it not possible then $v \notin H$;
- (6) if it is possible (in a unique way) but as an open walk then $v \notin H$;

The subgroup membership problem is solvable in $\mathbb{F}_A = \langle A | - \rangle$: given v, $u_1, \ldots, u_n \in (\widetilde{A})^*$, it is decidable whether $v \in H = \langle u_1, \ldots, u_n \rangle$. In this case, we can compute v as a word in $\{u_1, \ldots, u_n\}$.

- (1) reducing, we can assume $U = \{u_1, \ldots, u_n\} \subseteq R(A);$
- (2) draw the flower automaton Fl(U);
- (3) apply an arbitrary sequence of foldings until getting a reduced automaton Fl(U) ~ · · · ~ St (H);
- (4) try to read \overline{v} as (the label of) a walk in St (*H*), starting from \bullet ;
- (5) if it not possible then $v \notin H$;
- (6) if it is possible (in a unique way) but as an open walk then $v \notin H$;
- (7) if it possible as a closed path (at \bullet), then $v \in H$.

The subgroup membership problem is solvable in $\mathbb{F}_A = \langle A | - \rangle$: given v, $u_1, \ldots, u_n \in (\widetilde{A})^*$, it is decidable whether $v \in H = \langle u_1, \ldots, u_n \rangle$. In this case, we can compute v as a word in $\{u_1, \ldots, u_n\}$.

Proof of decidability

- (1) reducing, we can assume $U = \{u_1, \ldots, u_n\} \subseteq R(A);$
- (2) draw the flower automaton Fl(U);
- (3) apply an arbitrary sequence of foldings until getting a reduced automaton Fl(U) ~ · · · ~ St (H);
- (4) try to read \overline{v} as (the label of) a walk in St (*H*), starting from \bullet ;
- (5) if it not possible then $v \notin H$;
- (6) if it is possible (in a unique way) but as an open walk then $v \notin H$;
- (7) if it possible as a closed path (at \bullet), then $v \in H$.

When $v \in H$, how to express it as a word in $\{u_1, \ldots, u_n\}$?

$$u_1 = a^{-1}bab^{-1}$$
, $u_2 = a^3$, $u_3 = abab^{-1}$.

$$u_1 = a^{-1}bab^{-1}$$
, $u_2 = a^3$, $u_3 = abab^{-1}$.

Is it true that $a \in H$?

$$u_1 = a^{-1}bab^{-1}$$
, $u_2 = a^3$, $u_3 = abab^{-1}$.

Is it true that $a \in H$?

Is it true that $aba^2b^{-1}a^{-50}ba^{-30}b^{-1} \in H$?

$$u_1 = a^{-1}bab^{-1}$$
, $u_2 = a^3$, $u_3 = abab^{-1}$.

Is it true that $a \in H$?

- Is it true that $aba^2b^{-1}a^{-50}ba^{-30}b^{-1} \in H$?
- Is it true that $a^2b \in H$?

$$u_1 = a^{-1}bab^{-1}$$
, $u_2 = a^3$, $u_3 = abab^{-1}$.

Is it true that $a \in H$?

- Is it true that $aba^2b^{-1}a^{-50}ba^{-30}b^{-1} \in H$?
- Is it true that $a^2b \in H$?

Is it true that $ab^{20}ab^{-20} \in H$?

$$u_1 = a^{-1}bab^{-1}$$
, $u_2 = a^3$, $u_3 = abab^{-1}$.

Is it true that $a \in H$?

- Is it true that $aba^2b^{-1}a^{-50}ba^{-30}b^{-1} \in H$?
- Is it true that $a^2b \in H$?
- Is it true that $ab^{20}ab^{-20} \in H$?

If yes, express them as a (unique?) word on $\{u_1, u_2, u_3\}$.
Consider $\mathbb{F}_2 = \langle a, b \rangle$ and the subgroup $H = \langle u_1, u_2, u_3 \rangle \leqslant \mathbb{F}_2$, where

$$u_1 = a^{-1}bab^{-1}$$
, $u_2 = a^3$, $u_3 = abab^{-1}$.

Is it true that $a \in H$?

- Is it true that $aba^2b^{-1}a^{-50}ba^{-30}b^{-1} \in H$?
- Is it true that $a^2b \in H$?
- Is it true that $ab^{20}ab^{-20} \in H$?

If yes, express them as a (unique?) word on $\{u_1, u_2, u_3\}$.

Let us recover the construction of the Stallings automaton St(H)...

Let
$$H = \langle \underbrace{a^{-1}bab^{-1}}_{u_1}, \underbrace{a^3}_{u_2}, \underbrace{abab^{-1}}_{u_3} \rangle \leq \mathbb{F}_{\{a,b\}}.$$

Let
$$H = \langle \underbrace{a^{-1}bab^{-1}}_{u_1}, \underbrace{a^3}_{u_2}, \underbrace{abab^{-1}}_{u_3} \rangle \leqslant \mathbb{F}_{\{a,b\}}.$$

Let
$$H = \langle \underbrace{a^{-1}bab^{-1}}_{u_1}, \underbrace{a^3}_{u_2}, \underbrace{abab^{-1}}_{u_3} \rangle \leqslant \mathbb{F}_{\{a,b\}}.$$

Let
$$H = \langle \underbrace{a^{-1}bab^{-1}}_{u_1}, \underbrace{a^3}_{u_2}, \underbrace{abab^{-1}}_{u_3} \rangle \leqslant \mathbb{F}_{\{a,b\}}.$$

Let
$$H = \langle \underbrace{a^{-1}bab^{-1}}_{u_1}, \underbrace{a^3}_{u_2}, \underbrace{abab^{-1}}_{u_3} \rangle \leqslant \mathbb{F}_{\{a,b\}}.$$

Let
$$H = \langle \underbrace{a^{-1}bab^{-1}}_{u_1}, \underbrace{a^3}_{u_2}, \underbrace{abab^{-1}}_{u_3} \rangle \leqslant \mathbb{F}_{\{a,b\}}.$$

Let
$$H = \langle \underbrace{a^{-1}bab^{-1}}_{u_1}, \underbrace{a^3}_{u_2}, \underbrace{abab^{-1}}_{u_3} \rangle \leqslant \mathbb{F}_{\{a,b\}}.$$

Let
$$H = \langle \underbrace{a^{-1}bab^{-1}}_{u_1}, \underbrace{a^3}_{u_2}, \underbrace{abab^{-1}}_{u_3} \rangle \leqslant \mathbb{F}_{\{a,b\}}.$$

Let
$$H = \langle \underbrace{a^{-1}bab^{-1}}_{u_1}, \underbrace{a^3}_{u_2}, \underbrace{abab^{-1}}_{u_3} \rangle \leqslant \mathbb{F}_{\{a,b\}}.$$

 $H = \langle a, bab^{-1} \rangle.$

 $H = \langle a, bab^{-1} \rangle.$

So, it is clear that both a and $aba^2b^{-1}a^{-50}ba^{-30}b^{-1}$ belong to H because they are labels of \bullet -paths at St (H).

 $H = \langle a, bab^{-1} \rangle.$

So, it is clear that both a and $aba^2b^{-1}a^{-50}ba^{-30}b^{-1}$ belong to H because they are labels of \bullet -paths at St (H).

...while $ab^{20}ab^{-20}$, a^2b do not.

 $H = \langle a, bab^{-1} \rangle.$

So, it is clear that both a and $aba^2b^{-1}a^{-50}ba^{-30}b^{-1}$ belong to H because they are labels of \bullet -paths at St (H).

...while $ab^{20}ab^{-20}$, a^2b do not.

Let us now express a as a word on $\{u_1, u_2, u_3\}$...

When $v \in H$, how to express v as a word in $\{u_1, \ldots, u_n\}$?

(8) Look at the computed tower of foldings

$$Fl(U) = \Gamma_0 \curvearrowright \Gamma_1 \curvearrowright \cdots \curvearrowright \Gamma_n = St(H);$$

When $v \in H$, how to express v as a word in $\{u_1, \ldots, u_n\}$?

(8) Look at the computed tower of foldings

$$\operatorname{Fl}(U) = \Gamma_0 \curvearrowright \Gamma_1 \curvearrowright \cdots \curvearrowright \Gamma_n = \operatorname{St}(H);$$

(9) realize v as (the label of) a \bullet -path γ in St (H);

When $v \in H$, how to express v as a word in $\{u_1, \ldots, u_n\}$?

(8) Look at the computed tower of foldings

$$Fl(U) = \Gamma_0 \curvearrowright \Gamma_1 \curvearrowright \cdots \curvearrowright \Gamma_n = St(H);$$

(9) realize v as (the label of) a \bullet -path γ in St (*H*);

(10) lift γ up the tower of foldings (keeping the label) until Fl(U);

When $v \in H$, how to express v as a word in $\{u_1, \ldots, u_n\}$?

(8) Look at the computed tower of foldings

$$\operatorname{Fl}(U) = \Gamma_0 \curvearrowright \Gamma_1 \curvearrowright \cdots \curvearrowright \Gamma_n = \operatorname{St}(H);$$

(9) realize v as (the label of) a \bullet -path γ in St(H);

- (10) lift γ up the tower of foldings (keeping the label) until Fl(U);
- (11) a ●-path is Fl(U) spelling v "is" a word on {u₁,..., u_n} equaling v: this is what we are looking for.

When $v \in H$, how to express v as a word in $\{u_1, \ldots, u_n\}$?

(8) Look at the computed tower of foldings

$$Fl(U) = \Gamma_0 \curvearrowright \Gamma_1 \curvearrowright \cdots \curvearrowright \Gamma_n = St(H);$$

(9) realize v as (the label of) a \bullet -path γ in St (H);

- (10) lift γ up the tower of foldings (keeping the label) until Fl(U);
- (11) a ●-path is Fl(U) spelling v "is" a word on {u₁,..., u_n} equaling v: this is what we are looking for.

Lemma

Let $\mathcal{A} \curvearrowright \mathcal{A}'$ be an elementary Stallings folding and $\phi: \mathcal{A} \to \mathcal{A}'$ be the natural morphism. Then,

When $v \in H$, how to express v as a word in $\{u_1, \ldots, u_n\}$?

(8) Look at the computed tower of foldings

$$Fl(U) = \Gamma_0 \curvearrowright \Gamma_1 \curvearrowright \cdots \curvearrowright \Gamma_n = St(H);$$

(9) realize v as (the label of) a \bullet -path γ in St (H);

- (10) lift γ up the tower of foldings (keeping the label) until Fl(U);
- (11) a ●-path is Fl(U) spelling v "is" a word on {u₁,..., u_n} equaling v: this is what we are looking for.

Lemma

Let $\mathcal{A} \curvearrowright \mathcal{A}'$ be an elementary Stallings folding and $\phi: \mathcal{A} \to \mathcal{A}'$ be the natural morphism. Then,

 (i) if γ is a reduced path in A, then γφ is reduced except for consecutive visits to the folded edge;

When $v \in H$, how to express v as a word in $\{u_1, \ldots, u_n\}$?

(8) Look at the computed tower of foldings

$$Fl(U) = \Gamma_0 \curvearrowright \Gamma_1 \curvearrowright \cdots \curvearrowright \Gamma_n = St(H);$$

(9) realize v as (the label of) a \bullet -path γ in St (H);

- (10) lift γ up the tower of foldings (keeping the label) until Fl(U);
- (11) a •-path is Fl(U) spelling v "is" a word on {u₁,..., u_n} equaling v: this is what we are looking for.

Lemma

Let $\mathcal{A} \curvearrowright \mathcal{A}'$ be an elementary Stallings folding and $\phi: \mathcal{A} \to \mathcal{A}'$ be the natural morphism. Then,

 (i) if γ is a reduced path in A, then γφ is reduced except for consecutive visits to the folded edge;

(ii) for every reduced \bullet -path γ in \mathcal{A}' there exists a reduced \bullet -path $\widetilde{\gamma}$ in \mathcal{A} satisfying $\overline{\ell}(\widetilde{\gamma}) = \overline{\ell}(\gamma) \in \mathbb{F}_{\mathcal{A}}$ and $\widetilde{\widetilde{\gamma}\varphi} = \gamma$ (called a lift of γ);

THE MEMBERSHIP PROBLEM

Lemma

(continuation)

(iii) if the folding $\mathcal{A} \curvearrowright \mathcal{A}'$ is open, then $\widetilde{\gamma}$ is unique;

(iv) if the folding $\mathcal{A} \curvearrowright \mathcal{A}'$ is closed then $\widetilde{\gamma}$ is not unique.

Lemma

(continuation)

(iii) if the folding $\mathcal{A} \curvearrowright \mathcal{A}'$ is open, then $\widetilde{\gamma}$ is unique;

(iv) if the folding $\mathcal{A} \curvearrowright \mathcal{A}'$ is closed then $\widetilde{\gamma}$ is not unique.

Back to the example ...

Clearly, $a \in H$ thanks to the walk $\gamma_6 = a_1$:

Lemma

(continuation)

(iii) if the folding $\mathcal{A} \curvearrowright \mathcal{A}'$ is open, then $\widetilde{\gamma}$ is unique;

(iv) if the folding $\mathcal{A} \curvearrowright \mathcal{A}'$ is closed then $\widetilde{\gamma}$ is not unique.

Back to the example ...

Clearly, $a \in H$ thanks to the walk $\gamma_6 = a_1$:

Lifting to Γ_5 (no interaction with the folded arcs), we get $\gamma_5 = a_1$:

Lifting to Γ_4 , we have multiple choices (since $\Gamma_4 \rightsquigarrow \Gamma_5$ is a closed folding); we get $\gamma_4 = a_{11}$:

Lifting to Γ_4 , we have multiple choices (since $\Gamma_4 \rightsquigarrow \Gamma_5$ is a closed folding); we get $\gamma_4 = a_{11}$:

Lifting up to Γ_3 , we get $\gamma_3 = a_{11}a_{122}^{-1}a_{121}$:

Lifting to Γ_2 , we get $\gamma_2 = a_{11}a_{1211}a_{1212}^{-1}a_{122}^{-1}a_{1211}$:

Lifting to Γ_2 , we get $\gamma_2 = a_{11}a_{1211}a_{1212}^{-1}a_{122}^{-1}a_{1211}$:

Lifting up to Γ_1 , we get $\gamma_1 = a_{111}a_{1211}a_{1212}^{-1}a_{122}^{-1}a_{112}a_{111}a_{1211}$:

Finally, lifting to $\Gamma_0 = Fl(U)$, we get:

 $\gamma_0 = a_{111}b_{21}a_{21}b_{11}^{-1}b_{12}a_{22}^{-1}b_{22}^{-1}a_{1211}a_{1212}^{-1}a_{122}^{-1}a_{111}a_{111}b_{21}a_{21}b_{11}^{-1}b_{12}a_{22}^{-1}b_{22}^{-1}a_{1211}$

Finally, lifting to $\Gamma_0 = Fl(U)$, we get:

 $\gamma_0 = a_{111}b_{21}a_{21}b_{11}^{-1}b_{12}a_{22}^{-1}b_{22}^{-1}a_{1211}a_{1212}^{-1}a_{122}^{-1}a_{112}^{-1}a_{111}b_{21}a_{21}b_{11}^{-1}b_{12}a_{22}^{-1}b_{22}^{-1}a_{1211}$

Factorizing through the visits to •, we get the desired word:

$$a = (abab^{-1})(ba^{-1}b^{-1}a)(a^{-1}a^{-1}a^{-1})(abab^{-1})(ba^{-1}b^{-1}a)$$

= $u_2u_3^{-1}u_1^{-1}u_2u_3^{-1}$.

Taking $\gamma_4 = a_{12}$ (instead of $\gamma_4 = a_{11}$) at the closed folding, we get the alternative expression:

$$a = (a^{-1}bab^{-1})(ba^{-1}b^{-1}a^{-1})(aaa) = u_3u_2^{-1}u_1.$$

Taking $\gamma_4 = a_{12}$ (instead of $\gamma_4 = a_{11}$) at the closed folding, we get the alternative expression:

$$a = (a^{-1}bab^{-1})(ba^{-1}b^{-1}a^{-1})(aaa) = u_3u_2^{-1}u_1.$$

This non-uniqueness of the expression for a,

$$u_2 u_3^{-1} u_1^{-1} u_2 u_3^{-1} = a = u_3 u_2^{-1} u_1$$

reveals a nontrivial relation between $\{u_1, u_2, u_3\}$:

 $u_2 u_3^{-1} u_1^{-1} u_2 u_3^{-1} u_1^{-1} u_2 u_3^{-1} = 1.$

Taking $\gamma_4 = a_{12}$ (instead of $\gamma_4 = a_{11}$) at the closed folding, we get the alternative expression:

$$a = (a^{-1}bab^{-1})(ba^{-1}b^{-1}a^{-1})(aaa) = u_3u_2^{-1}u_1.$$

This non-uniqueness of the expression for a,

$$u_2 u_3^{-1} u_1^{-1} u_2 u_3^{-1} = a = u_3 u_2^{-1} u_1$$

reveals a nontrivial relation between $\{u_1, u_2, u_3\}$:

$$u_2 u_3^{-1} u_1^{-1} u_2 u_3^{-1} u_1^{-1} u_2 u_3^{-1} = 1.$$

The responsible for this is the closed folding ...

A PRESENTATION FOR THE SUBGROUP

In general,

At every closed folding $\Gamma_i \sim \Gamma_{i+1}$, take the reduced non-trivial walk

reading the trivial element, $\bar{\ell}(\gamma) = 1$, and lift it up to Fl(U) getting a nontrivial relation $w_i(u_1, \dots, u_n) = 1$.

A PRESENTATION FOR THE SUBGROUP

In general,

At every closed folding $\Gamma_i \sim \Gamma_{i+1}$, take the reduced non-trivial walk

reading the trivial element, $\bar{\ell}(\gamma) = 1$, and lift it up to Fl(U) getting a nontrivial relation $w_i(u_1, \ldots, u_n) = 1$.

Proposition

Let $\{u_1, \ldots, u_n\}$ be a set of generators for the (free) subgroup $H = \langle u_1, \ldots, u_n \rangle \leqslant \mathbb{F}_A$. Then,

$$H = \langle u_1, \ldots, u_n | w_i = 1 \text{ for each closed folding} \rangle$$

is a presentation for H with generators $\{u_1, \ldots, u_n\}$.
Definition

Let *G* be a group, $H \leq G$ a subgroup. An *equation over H* is an expression of the form $w(X) = h_0 X^{\epsilon_1} h_1 \cdots X^{\epsilon_n} h_n \in H * \langle X \rangle = H * \mathbb{Z}$, where $h_0, \ldots, h_n \in H$, $\epsilon_1, \ldots, \epsilon_n = \pm 1$, and $h_i = 1 \Rightarrow \epsilon_i = \epsilon_{i+1}$, for $i = 1, \ldots, n-1$. The *degree* is *n* (for n = 0 it is a *trivial* equation).

Definition

Let *G* be a group, $H \leq G$ a subgroup. An *equation over H* is an expression of the form $w(X) = h_0 X^{\epsilon_1} h_1 \cdots X^{\epsilon_n} h_n \in H * \langle X \rangle = H * \mathbb{Z}$, where $h_0, \ldots, h_n \in H$, $\epsilon_1, \ldots, \epsilon_n = \pm 1$, and $h_i = 1 \Rightarrow \epsilon_i = \epsilon_{i+1}$, for $i = 1, \ldots, n-1$. The *degree* is *n* (for n = 0 it is a *trivial* equation).

We say that $g \in G$ satisfies (or is a root of) w(X) if w(g) = 1 in G.

Definition

Let *G* be a group, $H \leq G$ a subgroup. An *equation over H* is an expression of the form $w(X) = h_0 X^{\epsilon_1} h_1 \cdots X^{\epsilon_n} h_n \in H * \langle X \rangle = H * \mathbb{Z}$, where $h_0, \ldots, h_n \in H$, $\epsilon_1, \ldots, \epsilon_n = \pm 1$, and $h_i = 1 \Rightarrow \epsilon_i = \epsilon_{i+1}$, for $i = 1, \ldots, n-1$. The *degree* is *n* (for n = 0 it is a *trivial* equation). We say that $g \in G$ *satisfies* (or *is a root of*) w(X) if w(g) = 1 in *G*. We also say that *g* is *dependent* on *H* if it satisfies some non-trivial equation over *H*.

Definition

Let *G* be a group, $H \leq G$ a subgroup. An *equation over H* is an expression of the form $w(X) = h_0 X^{\epsilon_1} h_1 \cdots X^{\epsilon_n} h_n \in H * \langle X \rangle = H * \mathbb{Z}$, where $h_0, \ldots, h_n \in H$, $\epsilon_1, \ldots, \epsilon_n = \pm 1$, and $h_i = 1 \Rightarrow \epsilon_i = \epsilon_{i+1}$, for $i = 1, \ldots, n-1$. The *degree* is *n* (for n = 0 it is a *trivial* equation). We say that $g \in G$ *satisfies* (or *is a root of*) w(X) if w(g) = 1 in *G*.

We also say that *g* is *dependent* on *H* if it satisfies some non-trivial equation over *H*.

Question:

Given $H \leq_{\text{f.g.}} \mathbb{F}_A$ and $g \in \mathbb{F}_A$,

• can we decide whether g is dependent on H?

Definition

Let *G* be a group, $H \leq G$ a subgroup. An *equation over H* is an expression of the form $w(X) = h_0 X^{\epsilon_1} h_1 \cdots X^{\epsilon_n} h_n \in H * \langle X \rangle = H * \mathbb{Z}$, where $h_0, \ldots, h_n \in H$, $\epsilon_1, \ldots, \epsilon_n = \pm 1$, and $h_i = 1 \Rightarrow \epsilon_i = \epsilon_{i+1}$, for $i = 1, \ldots, n-1$. The *degree* is *n* (for n = 0 it is a *trivial* equation). We say that $q \in G$ *satisfies* (or *is a root of*) w(X) if w(q) = 1 in *G*.

We also say that *g* is *dependent* on *H* if it satisfies some non-trivial equation over *H*.

Question:

Given $H \leq_{\text{f.g.}} \mathbb{F}_A$ and $g \in \mathbb{F}_A$,

- can we decide whether *g* is dependent on *H*?
- if yes, can we compute a nontrivial equation over H satisfied by g?

Definition

Let *G* be a group, $H \leq G$ a subgroup. An *equation over H* is an expression of the form $w(X) = h_0 X^{\epsilon_1} h_1 \cdots X^{\epsilon_n} h_n \in H * \langle X \rangle = H * \mathbb{Z}$, where $h_0, \ldots, h_n \in H$, $\epsilon_1, \ldots, \epsilon_n = \pm 1$, and $h_i = 1 \Rightarrow \epsilon_i = \epsilon_{i+1}$, for $i = 1, \ldots, n-1$. The *degree* is *n* (for n = 0 it is a *trivial* equation). We say that $q \in G$ satisfies (or *is a root of*) w(X) if w(q) = 1 in *G*.

We also say that *g* is *dependent* on *H* if it satisfies some non-trivial equation over *H*.

Question:

Given $H \leq_{\text{f.g.}} \mathbb{F}_A$ and $g \in \mathbb{F}_A$,

- can we decide whether g is dependent on H?
- if yes, can we compute a nontrivial equation over H satisfied by g?
- can we compute them all?

Observation

Let $H \leq_{\text{f.g.}} \mathbb{F}_A$ and $g \in \mathbb{F}_A$. Then,

```
(i) \mathsf{rk}(\langle H, g \rangle) \leq \mathsf{rk}(H) + 1;
```

(ii) with strict inequality if and only if g is dependent on H.

Observation

Let $H \leq_{\text{f.g.}} \mathbb{F}_A$ and $g \in \mathbb{F}_A$. Then,

```
(i) \operatorname{rk}(\langle H, g \rangle) \leq \operatorname{rk}(H) + 1;
```

(ii) with strict inequality if and only if g is dependent on H.

So, the decision is easy ...

Observation

Let $H \leq_{\text{f.g.}} \mathbb{F}_A$ and $g \in \mathbb{F}_A$. Then,

```
(i) \operatorname{rk}(\langle H, g \rangle) \leq \operatorname{rk}(H) + 1;
```

(ii) with strict inequality if and only if g is dependent on H.

So, the decision is easy ...

(i) Take a basis for H, say $\{h_1, \ldots, h_r\}$;

Observation

Let $H \leqslant_{\text{f.g.}} \mathbb{F}_A$ and $g \in \mathbb{F}_A$. Then,

```
(i) \operatorname{rk}(\langle H, g \rangle) \leq \operatorname{rk}(H) + 1;
```

(ii) with strict inequality if and only if g is dependent on H.

So, the decision is easy ...

(i) Take a basis for H, say $\{h_1, \ldots, h_r\}$;

(ii) construct the tower of foldings

$$\mathsf{Fl}(\{h_1,\ldots,h_r\})=\Gamma_0 \curvearrowright \Gamma_1 \curvearrowright \cdots \curvearrowright \Gamma_n=\mathsf{St}(H)$$

(observe all these foldings are open);

Observation

Let $H \leq_{\text{f.g.}} \mathbb{F}_A$ and $g \in \mathbb{F}_A$. Then,

```
(i) \operatorname{rk}(\langle H, g \rangle) \leq \operatorname{rk}(H) + 1;
```

(ii) with strict inequality if and only if g is dependent on H.

So, the decision is easy ...

- (i) Take a basis for H, say $\{h_1, \ldots, h_r\}$;
- (ii) construct the tower of foldings

$$Fl(\{h_1,\ldots,h_r\}) = \Gamma_0 \curvearrowright \Gamma_1 \curvearrowright \cdots \curvearrowright \Gamma_n = St(H)$$

(observe all these foldings are open);

(iii) attach an extra petal reading g at \bullet everywhere in the tower;

Observation

Let $H \leq_{\text{f.g.}} \mathbb{F}_A$ and $g \in \mathbb{F}_A$. Then,

```
(i) \operatorname{rk}(\langle H, g \rangle) \leq \operatorname{rk}(H) + 1;
```

(ii) with strict inequality if and only if g is dependent on H.

So, the decision is easy ...

- (i) Take a basis for H, say $\{h_1, \ldots, h_r\}$;
- (ii) construct the tower of foldings

$$Fl(\{h_1,\ldots,h_r\}) = \Gamma_0 \curvearrowright \Gamma_1 \curvearrowright \cdots \curvearrowright \Gamma_n = St(H)$$

(observe all these foldings are open);

(iii) attach an extra petal reading g at ● everywhere in the tower;
(iv) continue folding down to St (⟨H, g⟩);

Observation

Let $H \leqslant_{\text{f.g.}} \mathbb{F}_A$ and $g \in \mathbb{F}_A$. Then,

```
(i) \operatorname{rk}(\langle H, g \rangle) \leq \operatorname{rk}(H) + 1;
```

(ii) with strict inequality if and only if g is dependent on H.

So, the decision is easy ...

- (i) Take a basis for H, say $\{h_1, \ldots, h_r\}$;
- (ii) construct the tower of foldings

$$\mathsf{Fl}(\{h_1,\ldots,h_r\})=\Gamma_0 \curvearrowright \Gamma_1 \curvearrowright \cdots \curvearrowright \Gamma_n=\mathsf{St}(H)$$

(observe all these foldings are open);

- (iii) attach an extra petal reading g at \odot everywhere in the tower;
- (iv) continue folding down to St ($\langle H, g \rangle$);
- (v) *g* is dependent on *H* if and only if some folding is closed in this second part.

Observation

Let $H \leqslant_{\text{f.g.}} \mathbb{F}_A$ and $g \in \mathbb{F}_A$. Then,

```
(i) \operatorname{rk}(\langle H, g \rangle) \leq \operatorname{rk}(H) + 1;
```

(ii) with strict inequality if and only if g is dependent on H.

So, the decision is easy ...

- (i) Take a basis for H, say $\{h_1, \ldots, h_r\}$;
- (ii) construct the tower of foldings

$$\mathsf{Fl}(\{h_1,\ldots,h_r\})=\Gamma_0 \curvearrowright \Gamma_1 \curvearrowright \cdots \curvearrowright \Gamma_n=\mathsf{St}(H)$$

(observe all these foldings are open);

- (iii) attach an extra petal reading g at \odot everywhere in the tower;
- (iv) continue folding down to St ($\langle H, g \rangle$);
- (v) *g* is dependent on *H* if and only if some folding is closed in this second part.

Constructing an explicit equation is easy as well ...

Constructing an explicit equation is easy as well ...

(i) Assume there is some closed folding;

Constructing an explicit equation is easy as well ...

- (i) Assume there is some closed folding;
- (ii) take a reduced non-trivial walk of the form

reading the trivial element, $\overline{\ell}(\gamma) = 1$, and lift it up to $Fl(\{h_1, \ldots, h_r, g\})$.

Constructing an explicit equation is easy as well ...

- (i) Assume there is some closed folding;
- (ii) take a reduced non-trivial walk of the form

reading the trivial element, $\overline{\ell}(\gamma) = 1$, and lift it up to $Fl(\{h_1, \ldots, h_r, g\})$.

(iii) We obtain a non-trivial word $w(h_1, \ldots, h_r, g)$ with trivial label, $w(h_1, \ldots, h_r, g) =_{\mathbb{F}_A} 1 \ldots$

Constructing an explicit equation is easy as well ...

- (i) Assume there is some closed folding;
- (ii) take a reduced non-trivial walk of the form

reading the trivial element, $\overline{\ell}(\gamma) = 1$, and lift it up to $Fl(\{h_1, \ldots, h_r, g\})$.

- (iii) We obtain a non-trivial word $w(h_1, \ldots, h_r, g)$ with trivial label, $w(h_1, \ldots, h_r, g) =_{\mathbb{F}_A} 1 \ldots$
- (iv) ... which must mandatorily use g because {h₁,..., h_r} were freely independent.

Constructing an explicit equation is easy as well ...

- (i) Assume there is some closed folding;
- (ii) take a reduced non-trivial walk of the form

reading the trivial element, $\overline{\ell}(\gamma) = 1$, and lift it up to $Fl(\{h_1, \ldots, h_r, g\})$.

- (iii) We obtain a non-trivial word $w(h_1, \ldots, h_r, g)$ with trivial label, $w(h_1, \ldots, h_r, g) =_{\mathbb{F}_A} 1 \ldots$
- (iv) ... which must mandatorily use g because $\{h_1, \ldots, h_r\}$ were freely independent.
- (iv) This is already the equation w(X) we are looking for.

Constructing all such equations is also easy ...

Definition

Let G be a group, $H \leq G$, and $g \in G$. The **anihilator of g over H** is

 $I_H(g) = \{ w(X) \in H * \langle X \rangle \mid w(g) =_G 1 \} \triangleleft H * \langle X \rangle.$

Constructing all such equations is also easy ...

Definition

Let G be a group, $H \leq G$, and $g \in G$. The *anihilator of g over H* is

 $I_H(g) = \{ w(X) \in H * \langle X \rangle \mid w(g) =_G 1 \} \triangleleft H * \langle X \rangle.$

Theorem

Let $w_1(X), \ldots, w_k(X) \in H * \langle X \rangle$ be the equations computed from the $k \ge 0$ closed foldings in the tower. Then,

 $I_H(g) = \langle\!\langle W_1(X), \ldots, W_k(X) \rangle\!\rangle \triangleleft H * \langle X \rangle.$

Constructing all such equations is also easy ...

Definition

Let G be a group, $H \leq G$, and $g \in G$. The *anihilator of g over H* is

 $I_H(g) = \{ w(X) \in H * \langle X \rangle \mid w(g) =_G 1 \} \triangleleft H * \langle X \rangle.$

Theorem

Let $w_1(X), \ldots, w_k(X) \in H * \langle X \rangle$ be the equations computed from the $k \ge 0$ closed foldings in the tower. Then,

$$I_H(g) = \langle\!\langle w_1(X), \ldots, w_k(X) \rangle\!\rangle \leqslant H * \langle X \rangle.$$

Rosenmann, V. *Dependence and algebraicity over subgroups of free groups*, arXiv.2107.03154v1.

Constructing all such equations is also easy ...

Definition

Let G be a group, $H \leq G$, and $g \in G$. The **anihilator of g over H** is

 $I_H(g) = \{ w(X) \in H * \langle X \rangle \mid w(g) =_G 1 \} \triangleleft H * \langle X \rangle.$

Theorem

Let $w_1(X), \ldots, w_k(X) \in H * \langle X \rangle$ be the equations computed from the $k \ge 0$ closed foldings in the tower. Then,

$$I_H(g) = \langle\!\langle w_1(X), \ldots, w_k(X) \rangle\!\rangle \leqslant H * \langle X \rangle.$$

Rosenmann, V. *Dependence and algebraicity over subgroups of free groups*, arXiv.2107.03154v1.

Ascari. *Ideals of equations for elements in a free group and Stallings folding*, arXiv.2207.04759v1.

COSETS AND INDEX

DEFICIENCY AND SATURATION

Let Γ be a (pointed and involutive) A-automaton, and let $a \in A^{\pm}$.

DEFICIENCY AND SATURATION

Let Γ be a (pointed and involutive) A-automaton, and let $a \in A^{\pm}$.

Definition

A vertex $p \in V\Gamma$ is *saturated* if $\forall a \in A^{\pm}$ there is at least one *a*-arc leaving p.

Definition

A vertex $p \in V\Gamma$ is *saturated* if $\forall a \in A^{\pm}$ there is at least one *a*-arc leaving p. Otherwise, we say that p is *unsaturated* (or *a*-*deficient* if there is no *a*-arc leaving p).

Definition

A vertex $p \in V\Gamma$ is *saturated* if $\forall a \in A^{\pm}$ there is at least one *a*-arc leaving p. Otherwise, we say that p is *unsaturated* (or *a*-*deficient* if there is no *a*-arc leaving p).

The *a*-deficit of Γ , def_a(Γ), is the number of *a*-deficient vertices in Γ .

Definition

A vertex $p \in V\Gamma$ is **saturated** if $\forall a \in A^{\pm}$ there is at least one *a*-arc leaving p. Otherwise, we say that p is **unsaturated** (or *a***-deficient** if there is no *a*-arc leaving p).

The *a*-deficit of Γ , def_a(Γ), is the number of *a*-deficient vertices in Γ .

 Γ is **saturated**^{*} if all its vertices are saturated.

Definition

A vertex $p \in V\Gamma$ is **saturated** if $\forall a \in A^{\pm}$ there is at least one *a*-arc leaving p. Otherwise, we say that p is **unsaturated** (or *a***-deficient** if there is no *a*-arc leaving p).

The *a*-deficit of Γ , def_a(Γ), is the number of *a*-deficient vertices in Γ .

 Γ is **saturated**^{*} if all its vertices are saturated.

 Γ is *unsaturated* otherwise (Γ has at least one unsaturated vertex).

Definition

A vertex $p \in V\Gamma$ is **saturated** if $\forall a \in A^{\pm}$ there is at least one *a*-arc leaving p. Otherwise, we say that p is **unsaturated** (or *a***-deficient** if there is no *a*-arc leaving p).

The *a-deficit* of Γ , def_a(Γ), is the number of *a*-deficient vertices in Γ .

 Γ is *saturated*^{*} if all its vertices are saturated.

 Γ is *unsaturated* otherwise (Γ has at least one unsaturated vertex).

Remark: If Γ is deterministic, then:

 Γ is saturated $\Leftrightarrow \forall a \in A, \forall p \in V\Gamma, \exists ! p \xrightarrow{a} \text{ and } \exists ! p \xleftarrow{a}$

Definition

A vertex $p \in V\Gamma$ is **saturated** if $\forall a \in A^{\pm}$ there is at least one *a*-arc leaving p. Otherwise, we say that p is **unsaturated** (or *a***-deficient** if there is no *a*-arc leaving p).

The *a-deficit* of Γ , def_a(Γ), is the number of *a*-deficient vertices in Γ .

 Γ is *saturated*^{*} if all its vertices are saturated.

 Γ is *unsaturated* otherwise (Γ has at least one unsaturated vertex).

Remark: If Γ is deterministic, then:

 $\begin{array}{l} \Gamma \text{ is saturated } \Leftrightarrow \forall a \in A, \ \forall p \in V\Gamma, \ \exists ! \ p \xrightarrow{a} \ \text{and } \exists ! \ p \xleftarrow{a} \\ \Rightarrow \ \Gamma \text{ is } (2\#A) \text{-regular.} \end{array}$

Definition

A vertex $p \in V\Gamma$ is **saturated** if $\forall a \in A^{\pm}$ there is at least one *a*-arc leaving p. Otherwise, we say that p is **unsaturated** (or *a***-deficient** if there is no *a*-arc leaving p).

The *a-deficit* of Γ , def_a(Γ), is the number of *a*-deficient vertices in Γ .

 Γ is *saturated*^{*} if all its vertices are saturated.

 Γ is *unsaturated* otherwise (Γ has at least one unsaturated vertex).

Remark: If Γ is deterministic, then:

$$\Gamma$$
 is saturated $\Leftrightarrow \forall a \in A, \forall p \in V\Gamma, \exists ! p \xrightarrow{a} \text{ and } \exists ! p \xleftarrow{a} \Rightarrow \Gamma \text{ is } (2\#A)\text{-regular.}$

Remark: Sch(*H*) is a connected, deterministic, and saturated (but not necessarily core) automaton recognizing *H*.

SCHREIER AND STALLINGS AUTOMATA. CAYLEY BRANCHES

SCHREIER AND STALLINGS AUTOMATA. CAYLEY BRANCHES

Recall: if $H \leq \mathbb{F}_A$, then St(H) = core(Sch(H)).
Recall: if $H \leq \mathbb{F}_A$, then St(H) = core(Sch(H)).

 St(H) is what you obtain after removing from Sch(H) eventual 'hanging trees' not containing .

Recall: if $H \leq \mathbb{F}_A$, then St(H) = core(Sch(H)).

- St(*H*) is what you obtain after removing from Sch(*H*) eventual 'hanging trees' not containing **•**.
- How to obtain Sch(H) from St(H)? what is $Sch(H) \setminus St(H)$?

Recall: if $H \leq \mathbb{F}_A$, then St(H) = core(Sch(H)).

- St(*H*) is what you obtain after removing from Sch(*H*) eventual 'hanging trees' not containing **•**.
- How to obtain Sch(H) from St(H)? what is $Sch(H) \setminus St(H)$?

Definition. A *Cayley branch* of \mathbb{F}_A is a connected component obtained after removing \circledast from Cay (\mathbb{F}_A).

Recall: if $H \leq \mathbb{F}_A$, then St(H) = core(Sch(H)).

- St(H) is what you obtain after removing from Sch(H) eventual 'hanging trees' not containing .
- How to obtain Sch(H) from St(H)? what is $Sch(H) \setminus St(H)$?

Definition. A *Cayley branch* of \mathbb{F}_A is a connected component obtained after removing \circledast from Cay (\mathbb{F}_A). The *a-Cayley branch* of \mathbb{F}_2 is:

Recall: if $H \leq \mathbb{F}_A$, then St(H) = core(Sch(H)).

- St(H) is what you obtain after removing from Sch(H) eventual 'hanging trees' not containing .
- How to obtain Sch(H) from St(H)? what is $Sch(H) \setminus St(H)$?

Definition. A *Cayley branch* of \mathbb{F}_A is a connected component obtained after removing o from Cay (\mathbb{F}_A). The *a-Cayley branch* of \mathbb{F}_2 is:

Lemma

Sch(H) is the automaton obtained after adjoining an a-Cayley branch to every a-deficient vertex in St(H).

Remark:

Sch(H, A) is core \Leftrightarrow $Sch(H, A) = St(H, A) \Leftrightarrow$ St(H, A) is saturated

Remark:

Sch(H, A) is core \Leftrightarrow $Sch(H, A) = St(H, A) \Leftrightarrow$ St(H, A) is saturated

Finite Index Problem for $G = \langle A | R \rangle$, FIP(G)

Decide, given words $u_1, \ldots, u_k \in (A^{\pm})^*$, whether $\langle u_1, \ldots, u_k \rangle_G$ has finite index in *G*.

Remark:

Sch(H, A) is core \Leftrightarrow $Sch(H, A) = St(H, A) \Leftrightarrow$ St(H, A) is saturated

Finite Index Problem for $G = \langle A | R \rangle$, FIP(G)

Decide, given words $u_1, \ldots, u_k \in (A^{\pm})^*$, whether $\langle u_1, \ldots, u_k \rangle_G$ has finite index in *G*.

Remark:

Sch(H, A) is core \Leftrightarrow $Sch(H, A) = St(H, A) \Leftrightarrow$ St(H, A) is saturated

Finite Index Problem for $G = \langle A | R \rangle$, FIP(G)

Decide, given words $u_1, \ldots, u_k \in (A^{\pm})^*$, whether $\langle u_1, \ldots, u_k \rangle_G$ has finite index in *G*.

Proposition

Let $H \leq \mathbb{F}_A$. Then,

 $|\mathbb{F}_A: H| < \infty \iff \operatorname{St}(H) \text{ is saturated and } \#\operatorname{VSt}(H) < \infty$

Remark:

Sch(H, A) is core \Leftrightarrow $Sch(H, A) = St(H, A) \Leftrightarrow$ St(H, A) is saturated

Finite Index Problem for $G = \langle A | R \rangle$, FIP(G)

Decide, given words $u_1, \ldots, u_k \in (A^{\pm})^*$, whether $\langle u_1, \ldots, u_k \rangle_G$ has finite index in *G*.

Proposition

Let $H \leq \mathbb{F}_A$. Then,

 $|\mathbb{F}_A: H| < \infty \iff \operatorname{St}(H) \text{ is saturated and } \#\operatorname{VSt}(H) < \infty$

in particular if H is finitely generated (i.e., St(H) is finite):

 $|\mathbb{F}_A: H| < \infty \iff \operatorname{St}(H)$ is saturated

Remark:

Sch(H, A) is core \Leftrightarrow $Sch(H, A) = St(H, A) \Leftrightarrow$ St(H, A) is saturated

Finite Index Problem for $G = \langle A | R \rangle$, FIP(G)

Decide, given words $u_1, \ldots, u_k \in (A^{\pm})^*$, whether $\langle u_1, \ldots, u_k \rangle_G$ has finite index in *G*.

Proposition

Let $H \leq \mathbb{F}_A$. Then,

 $|\mathbb{F}_A: H| < \infty \iff \operatorname{St}(H) \text{ is saturated and } \#\operatorname{VSt}(H) < \infty$

in particular if H is finitely generated (i.e., St(H) is finite):

 $|\mathbb{F}_A: H| < \infty \iff \operatorname{St}(H)$ is saturated

Corollary

Given a finite $S \subseteq \mathbb{F}_A$, we can compute the index of $\langle H \rangle$ in \mathbb{F}_A . In particular, $FIP(\mathbb{F}_A)$ is decidable.

SCHREIER INDEX FORMULA

 \mathbb{F}_n denotes the free group of *finite* rank *n*.

SCHREIER INDEX FORMULA

 \mathbb{F}_n denotes the free group of *finite* rank *n*.

Corollary

 \mathbb{F}_n has finitely many subgroups of index $k \in \mathbb{N}_{\geq 1}$.

Corollary

 \mathbb{F}_n has finitely many subgroups of index $k \in \mathbb{N}_{\geq 1}$.

Exercise: Find all the subgroups of \mathbb{F}_2 of index 2.

Corollary

 \mathbb{F}_n has finitely many subgroups of index $k \in \mathbb{N}_{\geq 1}$.

Exercise: Find all the subgroups of \mathbb{F}_2 of index 2.

Schreier index formula

If *H* is a subgroup of finite index in \mathbb{F}_n , then

 $\mathsf{rk}(H) - 1 = (n-1) |\mathbb{F}_n: H|$

Corollary \mathbb{F}_n has finitely many subgroups of index $k \in \mathbb{N}_{\geq 1}$.

Exercise: Find all the subgroups of \mathbb{F}_2 of index 2.

Schreier index formula

If *H* is a subgroup of finite index in \mathbb{F}_n , then

$$\mathbf{rk}(H) - 1 = (n-1) |\mathbb{F}_n: H|$$
$$\widetilde{\mathbf{rk}}(H) = \widetilde{\mathbf{rk}}(\mathbb{F}_n) |\mathbb{F}_n: H|$$

Corollary \mathbb{F}_n has finitely many subgroups of index $k \in \mathbb{N}_{\geq 1}$.

Exercise: Find all the subgroups of \mathbb{F}_2 of index 2.

Schreier index formula

If *H* is a subgroup of finite index in \mathbb{F}_n , then

$$\mathbf{rk}(H) - 1 = (n - 1) |\mathbb{F}_n: H|$$
$$\widetilde{\mathbf{rk}}(H) = \widetilde{\mathbf{rk}}(\mathbb{F}_n) |\mathbb{F}_n: H|$$

Corollary \mathbb{F}_n has finitely many subgroups of index $k \in \mathbb{N}_{\geq 1}$.

Exercise: Find all the subgroups of \mathbb{F}_2 of index 2.

Schreier index formula

If *H* is a subgroup of finite index in \mathbb{F}_n , then

$$\mathbf{rk}(H) - 1 = (n - 1) |\mathbb{F}_n: H|$$
$$\widetilde{\mathbf{rk}}(H) = \widetilde{\mathbf{rk}}(\mathbb{F}_n) |\mathbb{F}_n: H|$$

$$\operatorname{rk}(H) - 1 = \operatorname{rk}(\Gamma) - 1$$

Corollary \mathbb{F}_n has finitely many subgroups of index $k \in \mathbb{N}_{\geq 1}$.

Exercise: Find all the subgroups of \mathbb{F}_2 of index 2.

Schreier index formula

If *H* is a subgroup of finite index in \mathbb{F}_n , then

$$\mathbf{rk}(H) - 1 = (n-1) |\mathbb{F}_n: H|$$
$$\widetilde{\mathbf{rk}}(H) = \widetilde{\mathbf{rk}}(\mathbb{F}_n) |\mathbb{F}_n: H|$$

$$rk(H) - 1 = rk(\Gamma) - 1 = #E\Gamma^{+} - #ET - 1$$

Corollary \mathbb{F}_n has finitely many subgroups of index $k \in \mathbb{N}_{\geq 1}$.

Exercise: Find all the subgroups of \mathbb{F}_2 of index 2.

Schreier index formula

If *H* is a subgroup of finite index in \mathbb{F}_n , then

$$\mathbf{rk}(H) - 1 = (n-1) |\mathbb{F}_n: H|$$
$$\widetilde{\mathbf{rk}}(H) = \widetilde{\mathbf{rk}}(\mathbb{F}_n) |\mathbb{F}_n: H|$$

$$rk(H) - 1 = rk(\Gamma) - 1 = #E\Gamma^{+} - #ET - 1$$

= #E\Gamma^{+} - #VT

Corollary \mathbb{F}_n has finitely many subgroups of index $k \in \mathbb{N}_{\geq 1}$.

Exercise: Find all the subgroups of \mathbb{F}_2 of index 2.

Schreier index formula

If *H* is a subgroup of finite index in \mathbb{F}_n , then

$$\mathbf{rk}(H) - 1 = (n-1) |\mathbb{F}_n: H|$$
$$\widetilde{\mathbf{rk}}(H) = \widetilde{\mathbf{rk}}(\mathbb{F}_n) |\mathbb{F}_n: H|$$

$$rk(H) - 1 = rk(\Gamma) - 1 = \#E\Gamma^{+} - \#ET - 1$$

= #E\Gamma^{+} - #V\T = n#V\Gamma^{+} - #V\Gamma^{+}

Corollary \mathbb{F}_n has finitely many subgroups of index $k \in \mathbb{N}_{\geq 1}$.

Exercise: Find all the subgroups of \mathbb{F}_2 of index 2.

Schreier index formula

If *H* is a subgroup of finite index in \mathbb{F}_n , then

$$\mathbf{rk}(H) - 1 = (n-1) |\mathbb{F}_n: H|$$
$$\widetilde{\mathbf{rk}}(H) = \widetilde{\mathbf{rk}}(\mathbb{F}_n) |\mathbb{F}_n: H|$$

$$rk(H) - 1 = rk(\Gamma) - 1 = #E\Gamma^{+} - #ET - 1$$

= #E\Gamma^{+} - #V\T = n#V\Gamma^{+} - #V\Gamma^{+}
= (n - 1) |\mathbb{F}_{n} : H|. \Box

FREE FACTORS AND HANDSHAKING LEMMA

Let Γ be a reduced A-automaton, and let Δ be a connected subautomaton of Γ . Then $\langle \Delta \rangle$ is a free factor of $\langle \Gamma \rangle$. $(\langle \Delta \rangle \leqslant_* \langle \Gamma \rangle)$

Let Γ be a reduced A-automaton, and let Δ be a connected subautomaton of Γ . Then $\langle \Delta \rangle$ is a free factor of $\langle \Gamma \rangle$. $(\langle \Delta \rangle \leqslant_* \langle \Gamma \rangle)$

Proof: Every spanning tree of Δ can be extended to an spanning tree of Γ .

Let Γ be a reduced A-automaton, and let Δ be a connected subautomaton of Γ . Then $\langle \Delta \rangle$ is a free factor of $\langle \Gamma \rangle$. $(\langle \Delta \rangle \leqslant_* \langle \Gamma \rangle)$

Proof: Every spanning tree of Δ can be extended to an spanning tree of Γ .

Remark: not every free factor of Γ appears in this way, why?

Let Γ be a reduced A-automaton, and let Δ be a connected subautomaton of Γ . Then $\langle \Delta \rangle$ is a free factor of $\langle \Gamma \rangle$. $(\langle \Delta \rangle \leqslant_* \langle \Gamma \rangle)$

Proof: Every spanning tree of Δ can be extended to an spanning tree of Γ .

Remark: not every free factor of Γ appears in this way, why?

Lemma (Handshaking lemma)

If Γ is a finite reduced A-automaton. Then $\forall a \in A$, $def_a(\Gamma) = def_{a^{-1}}(\Gamma)$.

Let Γ be a reduced A-automaton, and let Δ be a connected subautomaton of Γ . Then $\langle \Delta \rangle$ is a free factor of $\langle \Gamma \rangle$. $(\langle \Delta \rangle \leqslant_* \langle \Gamma \rangle)$

Proof: Every spanning tree of Δ can be extended to an spanning tree of Γ .

Remark: not every free factor of Γ appears in this way, why?

Lemma (Handshaking lemma) If Γ is a finite reduced A-automaton. Then $\forall a \in A$, $def_a(\Gamma) = def_{a^{-1}}(\Gamma)$.

This property fails for infinite reduced automata:

MARSHALL-HALL THEOREM AND RESIDUAL FINITENESS

If H is a finitely generated subgroup of a free group \mathbb{F} , then H is a free factor of a finite-index subgroup of \mathbb{F} ; i.e.,

 $H \leqslant_{\mathrm{fg}} \mathbb{F} \ \Rightarrow \ \exists K : \ H \leqslant_{\mathrm{ff}} K \leqslant_{\mathrm{fi}} \mathbb{F}.$

If H is a finitely generated subgroup of a free group \mathbb{F} , then H is a free factor of a finite-index subgroup of \mathbb{F} ; i.e.,

 $H \leqslant_{\mathrm{fg}} \mathbb{F} \implies \exists K : H \leqslant_{\mathrm{ff}} K \leqslant_{\mathrm{fi}} \mathbb{F}.$

If H is a finitely generated subgroup of a free group \mathbb{F} , then H is a free factor of a finite-index subgroup of \mathbb{F} ; i.e.,

 $H \leqslant_{\mathrm{fg}} \mathbb{F} \implies \exists K : H \leqslant_{\mathrm{ff}} K \leqslant_{\mathrm{fi}} \mathbb{F}.$

If H is a finitely generated subgroup of a free group \mathbb{F} , then H is a free factor of a finite-index subgroup of \mathbb{F} ; i.e.,

 $H \leqslant_{\mathrm{fg}} \mathbb{F} \implies \exists K : H \leqslant_{\mathrm{ff}} K \leqslant_{\mathrm{fi}} \mathbb{F}.$

If H is a finitely generated subgroup of a free group \mathbb{F} , then H is a free factor of a finite-index subgroup of \mathbb{F} ; i.e.,

 $H \leqslant_{\mathrm{fg}} \mathbb{F} \implies \exists K : H \leqslant_{\mathrm{ff}} K \leqslant_{\mathrm{fi}} \mathbb{F}.$

If H is a finitely generated subgroup of a free group \mathbb{F} , then H is a free factor of a finite-index subgroup of \mathbb{F} ; i.e.,

 $H \leqslant_{\mathrm{fg}} \mathbb{F} \implies \exists K : H \leqslant_{\mathrm{ff}} K \leqslant_{\mathrm{fi}} \mathbb{F}.$

Proof (by example): Consider the subgroup recognized by the Stallings automaton:

Definition: G is *residually finite* if $\forall g \in G \setminus \{1\}, \exists N \leq_{f.i.} G$ s.t. $g \notin N$.

If H is a finitely generated subgroup of a free group \mathbb{F} , then H is a free factor of a finite-index subgroup of \mathbb{F} ; i.e.,

 $H \leqslant_{\mathrm{fg}} \mathbb{F} \implies \exists K : H \leqslant_{\mathrm{ff}} K \leqslant_{\mathrm{fi}} \mathbb{F}.$

Proof (by example): Consider the subgroup recognized by the Stallings automaton:

Definition: G is *residually finite* if $\forall g \in G \setminus \{1\}, \exists N \leq_{f.i.} G$ s.t. $g \notin N$.

Theorem

Finitely generated free groups are residually finite.
Theorem (Marshall-Hall Jr.)

If H is a finitely generated subgroup of a free group \mathbb{F} , then H is a free factor of a finite-index subgroup of \mathbb{F} ; i.e.,

 $H \leqslant_{\mathrm{fg}} \mathbb{F} \implies \exists K : H \leqslant_{\mathrm{ff}} K \leqslant_{\mathrm{fi}} \mathbb{F}.$

Proof (by example): Consider the subgroup recognized by the Stallings automaton:

Definition: G is *residually finite* if $\forall g \in G \setminus \{1\}, \exists N \leq_{f.i.} G$ s.t. $g \notin N$.

Theorem

Finitely generated free groups are residually finite.

Prove it using Stallings automata!

Lemma

Let $H \leq \mathbb{F}_A$ and let $w \in \mathbb{F}_A$. Then, $St(H^w) = core(Sch_{Hw}(H))$.

Lemma

Let $H \leq \mathbb{F}_A$ and let $w \in \mathbb{F}_A$. Then, $St(H^w) = core(Sch_{Hw}(H))$.

Definition

 Γ is *vertex-transitive* if $\forall p, q \in \Gamma, \exists \varphi : \Gamma \to \Gamma$ automorphism of A-digraphs, such that $\varphi(p) = q$.

Lemma

Let $H \leq \mathbb{F}_A$ and let $w \in \mathbb{F}_A$. Then, $St(H^w) = core(Sch_{Hw}(H))$.

Definition

 Γ is *vertex-transitive* if $\forall p, q \in \Gamma, \exists \varphi : \Gamma \to \Gamma$ automorphism of A-digraphs, such that $\varphi(p) = q$.

Proposition

Let $H \neq \{1\}$ be a subgroup of \mathbb{F}_A . Then:

H is normal in $\mathbb{F}_A \Leftrightarrow St(H)$ is saturated and vertex-transitive

Lemma

Let $H \leq \mathbb{F}_A$ and let $w \in \mathbb{F}_A$. Then, $St(H^w) = core(Sch_{Hw}(H))$.

Definition

 Γ is *vertex-transitive* if $\forall p, q \in \Gamma, \exists \varphi : \Gamma \to \Gamma$ automorphism of A-digraphs, such that $\varphi(p) = q$.

Proposition

Let $H \neq \{1\}$ be a subgroup of \mathbb{F}_A . Then:

H is normal in $\mathbb{F}_A \Leftrightarrow St(H)$ is saturated and vertex-transitive

Corollary: The *normality problem* is decidable for free groups.

Lemma

Let $H \leq \mathbb{F}_A$ and let $w \in \mathbb{F}_A$. Then, $St(H^w) = core(Sch_{Hw}(H))$.

Definition

 Γ is *vertex-transitive* if $\forall p, q \in \Gamma, \exists \varphi : \Gamma \to \Gamma$ automorphism of A-digraphs, such that $\varphi(p) = q$.

Proposition

Let $H \neq \{1\}$ be a subgroup of \mathbb{F}_A . Then:

H is normal in $\mathbb{F}_A \Leftrightarrow St(H)$ is saturated and vertex-transitive

Corollary: The normality problem is decidable for free groups.

Corollary Let $\{1\} \neq H \leq \mathbb{F}_n$, Then, H is finitely generated $\Leftrightarrow H \leq_{fi} \mathbb{F}_n$

Let Γ be a (pointed and involutive) A-automaton.

Let Γ be a (pointed and involutive) A-automaton.

Lemma

Let $H \leq \mathbb{F}_A$ and let $w \in \mathbb{F}_A$. Then, $St(H^w) = core(Sch_{Hw}(H))$.

Let Γ be a (pointed and involutive) A-automaton.

Lemma

Let $H \leq \mathbb{F}_A$ and let $w \in \mathbb{F}_A$. Then, $St(H^w) = core(Sch_{Hw}(H))$.

Definition

The *restricted core* of Γ , denoted by core^{*}(Γ), is the labelled digraph obtained after successively removing from core(Γ) all the (eventual) vertices of degree one and ignoring the basepoint.

We write $St^*(H) = core^*(St(H))$.

(restricted Stallings digraph)

Let Γ be a (pointed and involutive) A-automaton.

Lemma

Let $H \leq \mathbb{F}_A$ and let $w \in \mathbb{F}_A$. Then, $St(H^w) = core(Sch_{Hw}(H))$.

Definition

The *restricted core* of Γ , denoted by core^{*}(Γ), is the labelled digraph obtained after successively removing from core(Γ) all the (eventual) vertices of degree one and ignoring the basepoint.

We write $St^*(H) = core^*(St(H))$.

(restricted Stallings digraph)

Proposition

Two subgroups $H, K \leq \mathbb{F}_A$ are conjugate \Leftrightarrow $St^*(H) = St^*(K)$.

Let Γ be a (pointed and involutive) A-automaton.

Lemma

Let $H \leq \mathbb{F}_A$ and let $w \in \mathbb{F}_A$. Then, $St(H^w) = core(Sch_{Hw}(H))$.

Definition

The *restricted core* of Γ , denoted by core^{*}(Γ), is the labelled digraph obtained after successively removing from core(Γ) all the (eventual) vertices of degree one and ignoring the basepoint.

We write $St^*(H) = core^*(St(H))$.

(restricted Stallings digraph)

Proposition

Two subgroups $H, K \leq \mathbb{F}_A$ are conjugate \Leftrightarrow $St^*(H) = St^*(K)$.

Theorem

The subgroup conjugacy problem $SCP(\mathbb{F}_n)$ is decidable.

 $SCP(G) \equiv H \sim K ?_{H,K \leq_{fg} G}$

INTERSECTIONS

Subgroup Intersection Problem

Given $u_1, \ldots, u_k; v_1, \ldots, v_l \in \mathbb{F}_A$, decide whether the intersection of $H = \langle u_1, \ldots, u_k \rangle$ and $K = \langle v_1, \ldots, v_l \rangle$ is finitely generated; when this is the case, compute generators for $H \cap K$.

Subgroup Intersection Problem

Given $u_1, \ldots, u_k; v_1, \ldots, v_l \in \mathbb{F}_A$, decide whether the intersection of $H = \langle u_1, \ldots, u_k \rangle$ and $K = \langle v_1, \ldots, v_l \rangle$ is finitely generated; when this is the case, compute generators for $H \cap K$.

Example

Consider $\mathbb{F}_2 = \langle a, b \rangle$ and the subgroups

$$\begin{split} H &= \langle u_1, u_2, u_3 \rangle \leqslant \mathbb{F}_2 \quad \text{and} \quad K &= \langle v_1, v_2, v_3 \rangle \leqslant \mathbb{F}_2 \\ u_1 &= b, & v_1 &= ab, \\ u_2 &= a^3, & v_2 &= a^3, \\ u_3 &= a^{-1}bab^{-1}a; & v_3 &= a^{-1}ba. \end{split}$$

How to find generators for $H \cap K$?

Subgroup Intersection Problem

Given $u_1, \ldots, u_k; v_1, \ldots, v_l \in \mathbb{F}_A$, decide whether the intersection of $H = \langle u_1, \ldots, u_k \rangle$ and $K = \langle v_1, \ldots, v_l \rangle$ is finitely generated; when this is the case, compute generators for $H \cap K$.

Example

Consider $\mathbb{F}_2 = \langle a, b \rangle$ and the subgroups

$$\begin{split} H &= \langle u_1, u_2, u_3 \rangle \leqslant \mathbb{F}_2 \quad \text{and} \quad K &= \langle v_1, v_2, v_3 \rangle \leqslant \mathbb{F}_2 \\ u_1 &= b, & v_1 &= ab, \\ u_2 &= a^3, & v_2 &= a^3, \\ u_3 &= a^{-1}bab^{-1}a; & v_3 &= a^{-1}ba. \end{split}$$

How to find generators for $H \cap K$?

Just playing, we realized that a^3 , $b^{-1}a^3b$, $a^{-1}ba^3b^{-1}a \in H \cap K$. What else?

Definition

Let Γ_1 and Γ_2 be two A-automata. Their *product* (or *pull-back*) is the A-automaton $\Gamma_1 \times \Gamma_2$ defined as:

• vertices: $V(\Gamma_1 \times \Gamma_2) = V(\Gamma_1) \times V(\Gamma_2)$;

Definition

Let Γ_1 and Γ_2 be two A-automata. Their *product* (or *pull-back*) is the A-automaton $\Gamma_1 \times \Gamma_2$ defined as:

- vertices: $V(\Gamma_1 \times \Gamma_2) = V(\Gamma_1) \times V(\Gamma_2)$;
- arcs: $(p_1, p_2) \xrightarrow{a} (q_1, q_2)$ for every pair of arcs $p_1 \xrightarrow{a} q_1$ in Γ_1 , and $p_2 \xrightarrow{a} q_2$ in Γ_2 , $a \in A$;

Definition

Let Γ_1 and Γ_2 be two A-automata. Their *product* (or *pull-back*) is the A-automaton $\Gamma_1 \times \Gamma_2$ defined as:

- vertices: $V(\Gamma_1 \times \Gamma_2) = V(\Gamma_1) \times V(\Gamma_2)$;
- arcs: $(p_1, p_2) \xrightarrow{a} (q_1, q_2)$ for every pair of arcs $p_1 \xrightarrow{a} q_1$ in Γ_1 , and $p_2 \xrightarrow{a} q_2$ in Γ_2 , $a \in A$;
- basepoint: $\bullet = (\bullet_1, \bullet_2)$.

Definition

Let Γ_1 and Γ_2 be two A-automata. Their *product* (or *pull-back*) is the A-automaton $\Gamma_1 \times \Gamma_2$ defined as:

- vertices: $V(\Gamma_1 \times \Gamma_2) = V(\Gamma_1) \times V(\Gamma_2)$;
- arcs: $(p_1, p_2) \xrightarrow{a} (q_1, q_2)$ for every pair of arcs $p_1 \xrightarrow{a} q_1$ in Γ_1 , and $p_2 \xrightarrow{a} q_2$ in Γ_2 , $a \in A$;

• basepoint:
$$\bullet = (\bullet_1, \bullet_2).$$

Example

Example

Example

Example

Example

Example

Example

Proposition

Proposition

Consider the product $\Gamma_1 \times \Gamma_2$ of two A-automata Γ_1 and Γ_2 . Then,

(i) if Γ_1 and Γ_2 are deterministic then so is $\Gamma_1 \times \Gamma_2$;

Proposition

```
(i) if \Gamma_1 and \Gamma_2 are deterministic then so is \Gamma_1 \times \Gamma_2;
```

```
(ii) \langle \Gamma_1 \times \Gamma_2 \rangle = \langle \Gamma_1 \rangle \cap \langle \Gamma_2 \rangle;
```

Proposition

- (i) if Γ_1 and Γ_2 are deterministic then so is $\Gamma_1 \times \Gamma_2$;
- (ii) $\langle \Gamma_1 \times \Gamma_2 \rangle = \langle \Gamma_1 \rangle \cap \langle \Gamma_2 \rangle$;
- (iii) even with Γ_1 and Γ_2 being connected, $\Gamma_1 \times \Gamma_2$ may not be so;

Proposition

- (i) if Γ_1 and Γ_2 are deterministic then so is $\Gamma_1 \times \Gamma_2$;
- (ii) $\langle \Gamma_1 \times \Gamma_2 \rangle = \langle \Gamma_1 \rangle \cap \langle \Gamma_2 \rangle$;
- (iii) even with Γ_1 and Γ_2 being connected, $\Gamma_1 \times \Gamma_2$ may not be so;
- (iv) even with Γ_1 and Γ_2 being core, $\Gamma_1 \times \Gamma_2$ may not be so;

Proposition

Consider the product $\Gamma_1 \times \Gamma_2$ of two A-automata Γ_1 and Γ_2 . Then,

- (i) if Γ_1 and Γ_2 are deterministic then so is $\Gamma_1 \times \Gamma_2$;
- (ii) $\langle \Gamma_1 \times \Gamma_2 \rangle = \langle \Gamma_1 \rangle \cap \langle \Gamma_2 \rangle$;
- (iii) even with Γ_1 and Γ_2 being connected, $\Gamma_1 \times \Gamma_2$ may not be so;
- (iv) even with Γ_1 and Γ_2 being core, $\Gamma_1 \times \Gamma_2$ may not be so;
- (v) If Γ_1 and Γ_2 are deterministic, then for every $(p,q)\in\Gamma_1\times\Gamma_2,$

 $0 \leqslant \text{deg}(p,q) \leqslant \min\{\text{deg}(p),\,\text{deg}(q)\}.$

Proposition

Consider the product $\Gamma_1 \times \Gamma_2$ of two A-automata Γ_1 and Γ_2 . Then,

- (i) if Γ_1 and Γ_2 are deterministic then so is $\Gamma_1 \times \Gamma_2$;
- (ii) $\langle \Gamma_1 \times \Gamma_2 \rangle = \langle \Gamma_1 \rangle \cap \langle \Gamma_2 \rangle$;
- (iii) even with Γ_1 and Γ_2 being connected, $\Gamma_1 \times \Gamma_2$ may not be so;
- (iv) even with Γ_1 and Γ_2 being core, $\Gamma_1 \times \Gamma_2$ may not be so;
- (v) If Γ_1 and Γ_2 are deterministic, then for every $(p,q)\in\Gamma_1\times\Gamma_2,$

 $0 \leqslant \text{deg}(p,q) \leqslant \min\{\text{deg}(p),\,\text{deg}(q)\}.$

Proposition

Consider the product $\Gamma_1 \times \Gamma_2$ of two A-automata Γ_1 and Γ_2 . Then,

- (i) if Γ_1 and Γ_2 are deterministic then so is $\Gamma_1 \times \Gamma_2$;
- (ii) $\langle \Gamma_1 \times \Gamma_2 \rangle = \langle \Gamma_1 \rangle \cap \langle \Gamma_2 \rangle$;
- (iii) even with Γ_1 and Γ_2 being connected, $\Gamma_1 \times \Gamma_2$ may not be so;
- (iv) even with Γ_1 and Γ_2 being core, $\Gamma_1 \times \Gamma_2$ may not be so;
- (v) If Γ_1 and Γ_2 are deterministic, then for every $(p,q)\in\Gamma_1\times\Gamma_2,$

 $0 \leqslant \text{deg}(p,q) \leqslant \min\{\text{deg}(p),\,\text{deg}(q)\}.$

Corollary

The Stallings automaton of the intersection $H \cap K$ is

 $St(H \cap K) = core (St(H) \times St(K)).$

Proposition

Consider the product $\Gamma_1 \times \Gamma_2$ of two A-automata Γ_1 and Γ_2 . Then,

- (i) if Γ_1 and Γ_2 are deterministic then so is $\Gamma_1 \times \Gamma_2$;
- (ii) $\langle \Gamma_1 \times \Gamma_2 \rangle = \langle \Gamma_1 \rangle \cap \langle \Gamma_2 \rangle$;
- (iii) even with Γ_1 and Γ_2 being connected, $\Gamma_1 \times \Gamma_2$ may not be so;
- (iv) even with Γ_1 and Γ_2 being core, $\Gamma_1 \times \Gamma_2$ may not be so;
- (v) If Γ_1 and Γ_2 are deterministic, then for every $(p,q) \in \Gamma_1 \times \Gamma_2$,

 $0 \leqslant \text{deg}(p,q) \leqslant \min\{\text{deg}(p),\,\text{deg}(q)\}.$

Corollary

The Stallings automaton of the intersection $H \cap K$ is

```
St(H \cap K) = core (St(H) \times St(K)).
```

Two immediate applications follow ...

HOWSON PROPERTY AND THE INTERSECTION PROBLEM

Theorem (Howson, 1954)

In a free group, the intersetion of two (and so, finitely many) finitely generated subgroups is, again, finitely generated.
Theorem (Howson, 1954)

In a free group, the intersetion of two (and so, finitely many) finitely generated subgroups is, again, finitely generated.

Proof: *H*, *K* are finitely generated \Rightarrow St(*H*) and St(*K*) are finite \Rightarrow St(*H*) \times St(*K*) is finite \Rightarrow *H* \cap *K* is finitely generated. \Box

Theorem (Howson, 1954)

In a free group, the intersetion of two (and so, finitely many) finitely generated subgroups is, again, finitely generated.

Proof: *H*, *K* are finitely generated \Rightarrow St(*H*) and St(*K*) are finite \Rightarrow St(*H*) \times St(*K*) is finite \Rightarrow *H* \cap *K* is finitely generated. \Box

Theorem

The intersection problem for a free group is solvable.

Theorem (Howson, 1954)

In a free group, the intersetion of two (and so, finitely many) finitely generated subgroups is, again, finitely generated.

Proof: *H*, *K* are finitely generated \Rightarrow St(*H*) and St(*K*) are finite \Rightarrow St(*H*) \times St(*K*) is finite \Rightarrow *H* \cap *K* is finitely generated. \Box

Theorem

The intersection problem for a free group is solvable.

Proof: The decision part is trivial.

Theorem (Howson, 1954)

In a free group, the intersetion of two (and so, finitely many) finitely generated subgroups is, again, finitely generated.

Proof: *H*, *K* are finitely generated \Rightarrow St(*H*) and St(*K*) are finite \Rightarrow St(*H*) \times St(*K*) is finite \Rightarrow *H* \cap *K* is finitely generated. \Box

Theorem

The intersection problem for a free group is solvable.

Theorem (Howson, 1954)

In a free group, the intersetion of two (and so, finitely many) finitely generated subgroups is, again, finitely generated.

Proof: *H*, *K* are finitely generated \Rightarrow St(*H*) and St(*K*) are finite \Rightarrow St(*H*) \times St(*K*) is finite \Rightarrow *H* \cap *K* is finitely generated. \Box

Theorem

The intersection problem for a free group is solvable.

Proof: The decision part is trivial. To compute a basis:

(i) Draw the Stallings A-automaton St(H) for $H = \langle u_1, \dots, u_k \rangle$;

Theorem (Howson, 1954)

In a free group, the intersetion of two (and so, finitely many) finitely generated subgroups is, again, finitely generated.

Proof: *H*, *K* are finitely generated \Rightarrow St(*H*) and St(*K*) are finite \Rightarrow St(*H*) \times St(*K*) is finite \Rightarrow *H* \cap *K* is finitely generated. \Box

Theorem

The intersection problem for a free group is solvable.

- (i) Draw the Stallings A-automaton St(H) for $H = \langle u_1, \dots, u_k \rangle$;
- (ii) draw the Stallings A-automaton St(K) for $K = \langle v_1, \dots, v_l \rangle$;

Theorem (Howson, 1954)

In a free group, the intersetion of two (and so, finitely many) finitely generated subgroups is, again, finitely generated.

Proof: *H*, *K* are finitely generated \Rightarrow St(*H*) and St(*K*) are finite \Rightarrow St(*H*) \times St(*K*) is finite \Rightarrow *H* \cap *K* is finitely generated. \Box

Theorem

The intersection problem for a free group is solvable.

- (i) Draw the Stallings A-automaton St(H) for $H = \langle u_1, \ldots, u_k \rangle$;
- (ii) draw the Stallings A-automaton St(K) for $K = \langle v_1, \dots, v_l \rangle$;
- (iii) compute the product $St(H) \times St(K)$;

Theorem (Howson, 1954)

In a free group, the intersetion of two (and so, finitely many) finitely generated subgroups is, again, finitely generated.

Proof: *H*, *K* are finitely generated \Rightarrow St(*H*) and St(*K*) are finite \Rightarrow St(*H*) \times St(*K*) is finite \Rightarrow *H* \cap *K* is finitely generated. \Box

Theorem

The intersection problem for a free group is solvable.

- (i) Draw the Stallings A-automaton St(H) for $H = \langle u_1, \ldots, u_k \rangle$;
- (ii) draw the Stallings A-automaton St(K) for $K = \langle v_1, \dots, v_l \rangle$;
- (iii) compute the product $St(H) \times St(K)$;
- (iv) take the connected component containing

 and compute its core;

Theorem (Howson, 1954)

In a free group, the intersetion of two (and so, finitely many) finitely generated subgroups is, again, finitely generated.

Proof: *H*, *K* are finitely generated \Rightarrow St(*H*) and St(*K*) are finite \Rightarrow St(*H*) \times St(*K*) is finite \Rightarrow *H* \cap *K* is finitely generated. \Box

Theorem

The intersection problem for a free group is solvable.

- (i) Draw the Stallings A-automaton St(H) for $H = \langle u_1, \dots, u_k \rangle$;
- (ii) draw the Stallings A-automaton St(K) for $K = \langle v_1, \dots, v_l \rangle$;
- (iii) compute the product $St(H) \times St(K)$;
- (iv) take the connected component containing

 and compute its core;
- (v) choose a spanning tree and read a free basis for $H \cap K$. \Box

Example

To compute $H \cap K$ with $H = \langle b, a^3, a^{-1}bab^{-1}a \rangle$, $K = \langle ab, a^3, a^{-1}ba \rangle$...

Example

To compute $H \cap K$ with $H = \langle b, a^3, a^{-1}bab^{-1}a \rangle$, $K = \langle ab, a^3, a^{-1}ba \rangle$...

Example

To compute $H \cap K$ with $H = \langle b, a^3, a^{-1}bab^{-1}a \rangle$, $K = \langle ab, a^3, a^{-1}ba \rangle$...

Example

To compute $H \cap K$ with $H = \langle b, a^3, a^{-1}bab^{-1}a \rangle$, $K = \langle ab, a^3, a^{-1}ba \rangle$...

Taking the boldfaced spanning tree, we get the free basis

Example

To compute $H \cap K$ with $H = \langle b, a^3, a^{-1}bab^{-1}a \rangle$, $K = \langle ab, a^3, a^{-1}ba \rangle$...

Taking the boldfaced spanning tree, we get the free basis

 $H \cap K =$

Example

To compute $H \cap K$ with $H = \langle b, a^3, a^{-1}bab^{-1}a \rangle$, $K = \langle ab, a^3, a^{-1}ba \rangle$...

Taking the boldfaced spanning tree, we get the free basis

 $H \cap K = \langle b^{-1}a^3b,$

Example

To compute $H \cap K$ with $H = \langle b, a^3, a^{-1}bab^{-1}a \rangle$, $K = \langle ab, a^3, a^{-1}ba \rangle$...

Taking the boldfaced spanning tree, we get the free basis

$$H \cap K = \langle b^{-1}a^3b, a^3,$$

Example

To compute $H \cap K$ with $H = \langle b, a^3, a^{-1}bab^{-1}a \rangle$, $K = \langle ab, a^3, a^{-1}ba \rangle$...

Taking the boldfaced spanning tree, we get the free basis

$$H \cap K = \langle b^{-1}a^{3}b, a^{3}, a^{-1}ba^{3}b^{-1}a, \rangle$$

Example

To compute $H \cap K$ with $H = \langle b, a^3, a^{-1}bab^{-1}a \rangle$, $K = \langle ab, a^3, a^{-1}ba \rangle$...

Taking the boldfaced spanning tree, we get the free basis

 $H \cap K = \langle b^{-1}a^{3}b, a^{3}, a^{-1}ba^{3}b^{-1}a, a^{-1}bab^{-1}a^{3}ba^{-1}b^{-1}a, a^{-1}bab^{-1}a^{3}ba^{-1}b^{-1}a, a^{-1}bab^{-1}a^{3}ba^{-1}b^{-1}a, a^{-1}bab^{-1}a^{3}ba^{-1}b^{-1}a, a^{-1}bab^{-1}a^{3}b^{-1}a^{-1}b^{-1}a, a^{-1}bab^{-1}a^{-1}b^{-$

Example

To compute $H \cap K$ with $H = \langle b, a^3, a^{-1}bab^{-1}a \rangle$, $K = \langle ab, a^3, a^{-1}ba \rangle$...

Taking the boldfaced spanning tree, we get the free basis

$$H \cap K = \langle b^{-1}a^{3}b, a^{3}, a^{-1}ba^{3}b^{-1}a, a^{-1}bab^{-1}a^{3}ba^{-1}b^{-1}a, a^{-1}bab^{-1}aba^{-1}ba^{-1}b^{-1}a \rangle.$$

Hence, the intersection $H \cap K$ has rank equal to 5.

Moreover, projecting paths in $\Gamma_1 \times \Gamma_2$ to the components, and lifting through the tower of foldings, we get expressions in terms of the original generators:

Moreover, projecting paths in $\Gamma_1 \times \Gamma_2$ to the components, and lifting through the tower of foldings, we get expressions in terms of the original generators:

 $H \ni u_1^{-1}u_2u_1 = b^{-1}a^3b = v_1^{-1}v_2v_1 \in K$

Moreover, projecting paths in $\Gamma_1 \times \Gamma_2$ to the components, and lifting through the tower of foldings, we get expressions in terms of the original generators:

$H \ni u_1^{-1}u_2u_1 =$	$b^{-1}a^{3}b$	$= v_1^{-1}v_2v_1 \in K$
$H \ni u_2 =$	a ³	$= v_2 \in K$

Moreover, projecting paths in $\Gamma_1 \times \Gamma_2$ to the components, and lifting through the tower of foldings, we get expressions in terms of the original generators:

 $\begin{array}{ll} H \ni u_1^{-1} u_2 u_1 = & b^{-1} a^3 b & = v_1^{-1} v_2 v_1 \in K \\ \\ H \ni u_2 = & a^3 & = v_2 \in K \\ \\ H \ni u_3^3 = & a^{-1} b a^3 b^{-1} a & = v_3 v_2 v_3^{-1} \in K \end{array}$

Moreover, projecting paths in $\Gamma_1 \times \Gamma_2$ to the components, and lifting through the tower of foldings, we get expressions in terms of the original generators:

$H \ni u_1^{-1}u_2u_1 =$	$b^{-1}a^{3}b$	$= V_1^{-1}V_2V_1 \in K$
$H \ni u_2 =$	a ³	$= v_2 \in K$
$H \ni u_3^3 =$	$a^{-1}ba^{3}b^{-1}a$	$= v_3 v_2 v_3^{-1} \in K$
$H \ni u_3 u_2 u_3^{-1} =$	a ⁻¹ bab ⁻¹ a ³ ba ⁻¹ b ⁻¹ a	$= v_3 v_1^{-1} v_2 v_1 v_3^{-1} \in K$

Moreover, projecting paths in $\Gamma_1 \times \Gamma_2$ to the components, and lifting through the tower of foldings, we get expressions in terms of the original generators:

$H \ni u_1^{-1}u_2u_1 =$	$b^{-1}a^{3}b$	$= v_1^{-1} v_2 v_1 \in K$
$H \ni u_2 =$	a ³	$= v_2 \in K$
$H \ni u_3^3 =$	$a^{-1}ba^{3}b^{-1}a$	$= v_3 v_2 v_3^{-1} \in K$
$H \ni u_3 u_2 u_3^{-1} =$	a ⁻¹ bab ⁻¹ a ³ ba ⁻¹ b ⁻¹ a	$= v_3 v_1^{-1} v_2 v_1 v_3^{-1} \in K$
$H \ni u_3 u_1 u_3^{-1} =$	a ⁻¹ bab ⁻¹ aba ⁻¹ ba ⁻¹ b ⁻¹ a	$= v_3 v_1^{-1} v_2 v_3 v_2^{-1} v_1 v_3^{-1} \in K.$

Given $u, u_1, \ldots, u_k; v, v_1, \ldots, v_l \in \mathbb{F}_A$, decide whether the coset intersection $\langle u_1, \ldots, u_k \rangle u \cap \langle v_1, \ldots, v_l \rangle v$ is empty and, if not, compute a coset representative.

Given $u, u_1, \ldots, u_k; v, v_1, \ldots, v_l \in \mathbb{F}_A$, decide whether the coset intersection $\langle u_1, \ldots, u_k \rangle u \cap \langle v_1, \ldots, v_l \rangle v$ is empty and, if not, compute a coset representative.

Remark

For the other variants, use

• $uH \cap vK = (Hu^{-1} \cap Kv^{-1})^{-1};$

Given $u, u_1, \ldots, u_k; v, v_1, \ldots, v_l \in \mathbb{F}_A$, decide whether the coset intersection $\langle u_1, \ldots, u_k \rangle u \cap \langle v_1, \ldots, v_l \rangle v$ is empty and, if not, compute a coset representative.

Remark

For the other variants, use

- $uH \cap vK = (Hu^{-1} \cap Kv^{-1})^{-1};$
- $uH \cap Kv = (uHu^{-1})u \cap Kv = H^{u^{-1}}u \cap Kv;$

Given $u, u_1, \ldots, u_k; v, v_1, \ldots, v_l \in \mathbb{F}_A$, decide whether the coset intersection $\langle u_1, \ldots, u_k \rangle u \cap \langle v_1, \ldots, v_l \rangle v$ is empty and, if not, compute a coset representative.

Remark

For the other variants, use

- $uH \cap vK = (Hu^{-1} \cap Kv^{-1})^{-1};$
- $uH \cap Kv = (uHu^{-1})u \cap Kv = H^{u^{-1}}u \cap Kv;$
- $uHu' \cap vKv' = H^{u^{-1}}(uu') \cap K^{v^{-1}}(vv').$

Given $u, u_1, \ldots, u_k; v, v_1, \ldots, v_l \in \mathbb{F}_A$, decide whether the coset intersection $\langle u_1, \ldots, u_k \rangle u \cap \langle v_1, \ldots, v_l \rangle v$ is empty and, if not, compute a coset representative.

Remark

For the other variants, use

- $uH \cap vK = (Hu^{-1} \cap Kv^{-1})^{-1};$
- $uH \cap Kv = (uHu^{-1})u \cap Kv = H^{u^{-1}}u \cap Kv;$
- $uHu' \cap vKv' = H^{u^{-1}}(uu') \cap K^{v^{-1}}(vv').$

Observation

If
$$\Gamma = \mathsf{St}(H)$$
 and $\gamma = \bullet \stackrel{^{u}}{\leadsto} p$, then $\overline{\mathcal{L}}_{\bullet,p}(\Gamma) = Hu$.

Theorem

The coset intersection problem is solvable for free groups.

Theorem

The coset intersection problem is solvable for free groups.

Proof: Let $H = \langle u_1, \ldots, u_k \rangle$, $K = \langle v_1, \ldots, v_l \rangle \leqslant \mathbb{F}_A$, and $u, v \in \mathbb{F}_A$,

(i) Draw the A-automaton Γ_1 being the Stallings automaton for H with an extra hair added (if necessary) to read u from \bullet (to vertex, say, p);

Theorem

The coset intersection problem is solvable for free groups.

- (i) Draw the A-automaton Γ_1 being the Stallings automaton for H with an extra hair added (if necessary) to read u from \bullet (to vertex, say, p);
- (ii) Draw the A-automaton Γ_2 being the Stallings automaton for K with an extra hair added (if necessary) to read v from \bullet (to vertex, say, q);

Theorem

The coset intersection problem is solvable for free groups.

- (i) Draw the A-automaton Γ₁ being the Stallings automaton for H with an extra hair added (if necessary) to read u from (to vertex, say, p);
- (ii) Draw the A-automaton Γ_2 being the Stallings automaton for K with an extra hair added (if necessary) to read v from \bullet (to vertex, say, q);
- (iii) Compute the product $\Gamma_1 \times \Gamma_2$;

Theorem

The coset intersection problem is solvable for free groups.

- (i) Draw the A-automaton Γ_1 being the Stallings automaton for H with an extra hair added (if necessary) to read u from \bullet (to vertex, say, p);
- (ii) Draw the A-automaton Γ_2 being the Stallings automaton for K with an extra hair added (if necessary) to read v from \bullet (to vertex, say, q);
- (iii) Compute the product $\Gamma_1 \times \Gamma_2$;
- (iv) $Hu \cap Kv = \emptyset$ if and only if (\bullet , \bullet) and (p, q) belong to different connected components of $\Gamma_1 \times \Gamma_2$;

Theorem

The coset intersection problem is solvable for free groups.

- (i) Draw the A-automaton Γ_1 being the Stallings automaton for H with an extra hair added (if necessary) to read u from \bullet (to vertex, say, p);
- (ii) Draw the A-automaton Γ_2 being the Stallings automaton for K with an extra hair added (if necessary) to read v from \bullet (to vertex, say, q);
- (iii) Compute the product $\Gamma_1 \times \Gamma_2$;
- (iv) $Hu \cap Kv = \emptyset$ if and only if (\bullet , \bullet) and (p, q) belong to different connected components of $\Gamma_1 \times \Gamma_2$;
- (v) if this is not the case, then any path $\gamma = (\bullet, \bullet) \xrightarrow{w} (p, q)$ spells a word $w \in Hu \cap Kv$.
Definition

A subgroup $H \leq G$ is *malnormal* (resp. *cyclonormal*) if, for all $w \notin H$, $H^w \cap H$ is trivial (resp. cyclic).

Definition

A subgroup $H \leq G$ is *malnormal* (resp. *cyclonormal*) if, for all $w \notin H$, $H^w \cap H$ is trivial (resp. cyclic).

Theorem

There is an algorithm to decide, given $u_1, \ldots, u_k \in (\widetilde{A})^*$, whether the subgroup $H = \langle u_1, \ldots, u_k \rangle$ is malnormal (resp., cyclonormal).

Definition

A subgroup $H \leq G$ is *malnormal* (resp. *cyclonormal*) if, for all $w \notin H$, $H^w \cap H$ is trivial (resp. cyclic).

Theorem

There is an algorithm to decide, given $u_1, \ldots, u_k \in (\widetilde{A})^*$, whether the subgroup $H = \langle u_1, \ldots, u_k \rangle$ is malnormal (resp., cyclonormal).

Proof:

(i) Draw the Stallings A-automaton St(H);

Definition

A subgroup $H \leq G$ is *malnormal* (resp. *cyclonormal*) if, for all $w \notin H$, $H^w \cap H$ is trivial (resp. cyclic).

Theorem

There is an algorithm to decide, given $u_1, \ldots, u_k \in (\widetilde{A})^*$, whether the subgroup $H = \langle u_1, \ldots, u_k \rangle$ is malnormal (resp., cyclonormal).

- (i) Draw the Stallings A-automaton St(H);
- (ii) compute the pull-back with itself $St(H) \times St(H)$;

Definition

A subgroup $H \leq G$ is *malnormal* (resp. *cyclonormal*) if, for all $w \notin H$, $H^w \cap H$ is trivial (resp. cyclic).

Theorem

There is an algorithm to decide, given $u_1, \ldots, u_k \in (\widetilde{A})^*$, whether the subgroup $H = \langle u_1, \ldots, u_k \rangle$ is malnormal (resp., cyclonormal).

- (i) Draw the Stallings A-automaton St(H);
- (ii) compute the pull-back with itself $St(H) \times St(H)$;
- (iii) ignore the diagonal component $\Delta \simeq St(H)$ (just meaning that $H \cap H = H$);

Definition

A subgroup $H \leq G$ is *malnormal* (resp. *cyclonormal*) if, for all $w \notin H$, $H^w \cap H$ is trivial (resp. cyclic).

Theorem

There is an algorithm to decide, given $u_1, \ldots, u_k \in (\widetilde{A})^*$, whether the subgroup $H = \langle u_1, \ldots, u_k \rangle$ is malnormal (resp., cyclonormal).

- (i) Draw the Stallings A-automaton St(H);
- (ii) compute the pull-back with itself $St(H) \times St(H)$;
- (iii) ignore the diagonal component $\Delta \simeq St(H)$ (just meaning that $H \cap H = H$);
- (iv) *H* is malnormal \Leftrightarrow all other components of $St(H) \times St(H)$ are trees;

Definition

A subgroup $H \leq G$ is *malnormal* (resp. *cyclonormal*) if, for all $w \notin H$, $H^w \cap H$ is trivial (resp. cyclic).

Theorem

There is an algorithm to decide, given $u_1, \ldots, u_k \in (\widetilde{A})^*$, whether the subgroup $H = \langle u_1, \ldots, u_k \rangle$ is malnormal (resp., cyclonormal).

- (i) Draw the Stallings A-automaton St(H);
- (ii) compute the pull-back with itself $St(H) \times St(H)$;
- (iii) ignore the diagonal component $\Delta \simeq St(H)$ (just meaning that $H \cap H = H$);
- (iv) *H* is malnormal \Leftrightarrow all other components of $St(H) \times St(H)$ are trees;
- (v) *H* is cyclonormal \Leftrightarrow all other components of $St(H) \times St(H)$ have graphical rank 0 or 1.

MALNORMALITY (EXAMPLE)

Does there exist a malnormal subgroup of \mathbb{F}_2 with infinite rank?

MALNORMALITY (EXAMPLE)

Does there exist a malnormal subgroup of \mathbb{F}_2 with infinite rank? Yes!

MALNORMALITY (EXAMPLE)

Does there exist a malnormal subgroup of \mathbb{F}_2 with infinite rank? Yes!

Proposition

Let G be a group and H, K, H', K' \leq G subgrups. If H $\leq_{\text{f.f.}}$ K and H' $\leq_{\text{f.f.}}$ K', then H \cap H' $\leq_{\text{f.f.}}$ K \cap K'.

Proposition

Let G be a group and H, K, H', K' \leq G subgrups. If H $\leq_{\text{f.f.}}$ K and H' $\leq_{\text{f.f.}}$ K', then H \cap H' $\leq_{\text{f.f.}}$ K \cap K'.

Proof (for G = F(A)):

Proposition

Let G be a group and H, K, H', K' \leq G subgrups. If H $\leq_{\text{f.f.}}$ K and H' $\leq_{\text{f.f.}}$ K', then H \cap H' $\leq_{\text{f.f.}}$ K \cap K'.

Proof (for G = F(A)):

Let us see first that $H \leq_{\text{f.f.}} K \leq \mathbb{F}_A$ and $L \leq \mathbb{F}_A \Rightarrow H \cap L \leq_{\text{f.f.}} K \cap L$:

• Take a basis $B \supseteq A$ for K, extending a basis A for H;

Proposition

Let G be a group and H, K, H', K' \leq G subgrups. If H $\leq_{\text{f.f.}}$ K and H' $\leq_{\text{f.f.}}$ K', then H \cap H' $\leq_{\text{f.f.}}$ K \cap K'.

Proof (for G = F(A)):

- Take a basis $B \supseteq A$ for K, extending a basis A for H;
- observe that, w.r.t. B, St(H) is, simply, a bouquet with petals in bijection with A ⊆ B;

Proposition

Let G be a group and H, K, H', K' \leq G subgrups. If H $\leq_{\text{f.f.}}$ K and H' $\leq_{\text{f.f.}}$ K', then H \cap H' $\leq_{\text{f.f.}}$ K \cap K'.

Proof (for G = F(A)):

- Take a basis $B \supseteq A$ for K, extending a basis A for H;
- observe that, w.r.t. B, St(H) is, simply, a bouquet with petals in bijection with A ⊆ B;
- consider $St(K \cap L)$ and compute $H \cap L = H \cap (K \cap L)$ by looking at the pull-back $St(H) \times St(K \cap L)$: it is just the subautomaton of $St(K \cap L)$ determined by the A-labelled arcs;

Proposition

Let G be a group and H, K, H', K' \leq G subgrups. If H $\leq_{\text{f.f.}}$ K and H' $\leq_{\text{f.f.}}$ K', then H \cap H' $\leq_{\text{f.f.}}$ K \cap K'.

Proof (for G = F(A)):

- Take a basis $B \supseteq A$ for K, extending a basis A for H;
- observe that, w.r.t. B, St(H) is, simply, a bouquet with petals in bijection with A ⊆ B;
- consider $St(K \cap L)$ and compute $H \cap L = H \cap (K \cap L)$ by looking at the pull-back $St(H) \times St(K \cap L)$: it is just the subautomaton of $St(K \cap L)$ determined by the A-labelled arcs;
- hence, $H \cap L \leq_{\text{f.f.}} K \cap L$.

Proposition

Let G be a group and H, K, H', K' \leq G subgrups. If H $\leq_{\text{f.f.}}$ K and H' $\leq_{\text{f.f.}}$ K', then H \cap H' $\leq_{\text{f.f.}}$ K \cap K'.

Proof (for G = F(A)):

Let us see first that $H \leq_{\text{f.f.}} K \leq \mathbb{F}_A$ and $L \leq \mathbb{F}_A \Rightarrow H \cap L \leq_{\text{f.f.}} K \cap L$:

- Take a basis $B \supseteq A$ for K, extending a basis A for H;
- observe that, w.r.t. B, St(H) is, simply, a bouquet with petals in bijection with A ⊆ B;
- consider $St(K \cap L)$ and compute $H \cap L = H \cap (K \cap L)$ by looking at the pull-back $St(H) \times St(K \cap L)$: it is just the subautomaton of $St(K \cap L)$ determined by the A-labelled arcs;
- hence, $H \cap L \leq_{\text{f.f.}} K \cap L$.

Applying this fact twice, $H \cap H' \leq_{\text{f.f.}} K \cap H' \leq_{\text{f.f.}} K \cap K'$. \Box

Definition

The *reduced rank* of a group G is $\tilde{rk}(G) = \max\{rk(G) - 1, 0\}$, i.e., $\tilde{rk}(G) = rk(G) - 1$ except for the trivial group, for which $\tilde{rk}(\{1\}) = 0$.

Definition

The *reduced rank* of a group G is $\tilde{rk}(G) = \max\{rk(G) - 1, 0\}$, i.e., $\tilde{rk}(G) = rk(G) - 1$ except for the trivial group, for which $\tilde{rk}(\{1\}) = 0$.

Theorem (H. Neumann, 1956)

For $H, K \leq \mathbb{F}_A$, $\widetilde{\mathsf{rk}}(H \cap K) \leq 2 \, \widetilde{\mathsf{rk}}(H) \, \widetilde{\mathsf{rk}}(K)$.

Definition

The **reduced rank** of a group G is $\tilde{\mathsf{rk}}(G) = \max\{\mathsf{rk}(G) - 1, 0\}$, i.e., $\tilde{\mathsf{rk}}(G) = \mathsf{rk}(G) - 1$ except for the trivial group, for which $\tilde{\mathsf{rk}}(\{1\}) = 0$.

Theorem (H. Neumann, 1956)

For $H, K \leq \mathbb{F}_A$, $\widetilde{\mathsf{rk}}(H \cap K) \leq 2 \, \widetilde{\mathsf{rk}}(H) \, \widetilde{\mathsf{rk}}(K)$.

Theorem (W. Neumann, 1990)

For $H, K \leq \mathbb{F}_A$, $\sum_{HwK \in H \setminus \mathbb{F}_A/K} \widetilde{\mathsf{rk}}(H^w \cap K) \leq 2 \widetilde{\mathsf{rk}}(H) \widetilde{\mathsf{rk}}(K)$, where $H^w = w^{-1}Hw$, and the sum runs over the set of double cosets $H \setminus \mathbb{F}_A/K = \{HwK \mid w \in \mathbb{F}_A\}$.

Definition

The **reduced rank** of a group G is $\tilde{\mathsf{rk}}(G) = \max\{\mathsf{rk}(G) - 1, 0\}$, i.e., $\tilde{\mathsf{rk}}(G) = \mathsf{rk}(G) - 1$ except for the trivial group, for which $\tilde{\mathsf{rk}}(\{1\}) = 0$.

Theorem (H. Neumann, 1956)

For $H, K \leq \mathbb{F}_A$, $\widetilde{\mathsf{rk}}(H \cap K) \leq 2 \, \widetilde{\mathsf{rk}}(H) \, \widetilde{\mathsf{rk}}(K)$.

Theorem (W. Neumann, 1990)

For $H, K \leq \mathbb{F}_A$, $\sum_{HwK \in H \setminus \mathbb{F}_A/K} \widetilde{\mathsf{rk}}(H^w \cap K) \leq 2 \widetilde{\mathsf{rk}}(H) \widetilde{\mathsf{rk}}(K)$, where $H^w = w^{-1}Hw$, and the sum runs over the set of double cosets $H \setminus \mathbb{F}_A/K = \{HwK \mid w \in \mathbb{F}_A\}.$

(Strenghtened) Hanna Neumann conjecture: the same is true without the factor 2.

Definition

The **reduced rank** of a group G is $\tilde{\mathsf{rk}}(G) = \max\{\mathsf{rk}(G) - 1, 0\}$, i.e., $\tilde{\mathsf{rk}}(G) = \mathsf{rk}(G) - 1$ except for the trivial group, for which $\tilde{\mathsf{rk}}(\{1\}) = 0$.

Theorem (H. Neumann, 1956)

For $H, K \leq \mathbb{F}_A$, $\widetilde{\mathsf{rk}}(H \cap K) \leq 2 \, \widetilde{\mathsf{rk}}(H) \, \widetilde{\mathsf{rk}}(K)$.

Theorem (W. Neumann, 1990)

For $H, K \leq \mathbb{F}_A$, $\sum_{HwK \in H \setminus \mathbb{F}_A/K} \widetilde{\mathsf{rk}}(H^w \cap K) \leq 2 \widetilde{\mathsf{rk}}(H) \widetilde{\mathsf{rk}}(K)$, where $H^w = w^{-1}Hw$, and the sum runs over the set of double cosets $H \setminus \mathbb{F}_A/K = \{HwK \mid w \in \mathbb{F}_A\}.$

(Strenghtened) Hanna Neumann conjecture: the same is true without the factor 2.

Theorem (J. Friedman, 2015; I. Mineyev, 2012)

The factor 2 can be removed in both theorems.

Lets us show that $\sum_{HwK \in H \setminus \mathbb{F}_A/K} \widetilde{\mathsf{rk}}(H^{\mathsf{w}} \cap K) \leq 2 \, \widetilde{\mathsf{rk}}(H) \, \widetilde{\mathsf{rk}}(K).$

Lets us show that $\sum_{H \le K \in H \setminus \mathbb{F}_A/K} \widetilde{\mathsf{rk}}(H^{w} \cap K) \leq 2 \widetilde{\mathsf{rk}}(H) \widetilde{\mathsf{rk}}(K)$.

• It makes sense, since $H^{hwk} \cap K = H^{wk} \cap K^k = (H^w \cap K)^k$ has the same rank as $H^w \cap K$;

Lets us show that $\sum_{HwK \in H \setminus \mathbb{F}_A/K} \widetilde{\mathsf{rk}}(H^w \cap K) \leqslant 2 \, \widetilde{\mathsf{rk}}(H) \, \widetilde{\mathsf{rk}}(K).$

- It makes sense, since $H^{hwk} \cap K = H^{wk} \cap K^k = (H^w \cap K)^k$ has the same rank as $H^w \cap K$;
- we can assume $H, K \neq 1$, i.e., St(H) and St(K) are not single vertices;

Lets us show that $\sum_{HwK \in H \setminus \mathbb{F}_A/K} \widetilde{\mathsf{rk}}(H^w \cap K) \leq 2 \, \widetilde{\mathsf{rk}}(H) \, \widetilde{\mathsf{rk}}(K).$

- It makes sense, since $H^{hwk} \cap K = H^{wk} \cap K^k = (H^w \cap K)^k$ has the same rank as $H^w \cap K$;
- we can assume *H*, *K* ≠ 1, i.e., St(*H*) and St(*K*) are not single vertices;
- conjugating appropriately, we can assume that St(H) and St(K) have no vertices of degree 1;

Lets us show that $\sum_{H \le K \in H \setminus \mathbb{F}_A/K} \widetilde{\mathsf{rk}}(H^{w} \cap K) \leq 2 \widetilde{\mathsf{rk}}(H) \widetilde{\mathsf{rk}}(K)$.

- It makes sense, since $H^{hwk} \cap K = H^{wk} \cap K^k = (H^w \cap K)^k$ has the same rank as $H^w \cap K$;
- we can assume *H*, *K* ≠ 1, i.e., St(*H*) and St(*K*) are not single vertices;
- conjugating appropriately, we can assume that St(H) and St(K) have no vertices of degree 1;
- forget about the double cosets (till the end of proof) and let us show $\widetilde{rk}(W) \leq 2 \widetilde{rk}(St(H)) \widetilde{rk}(St(K))$, where $W = St(H) \times St(K)$ and

$$\widetilde{\mathsf{rk}}(W) = \sum_{C \text{ c.c. } W} \widetilde{\mathsf{rk}}(C) = \sum_{C \text{ c.c. } W} \max\{|EC| - |VC|, 0\}.$$

Lemma

Let X be a finite connected graph. Then,

(i) if X is not a tree then
$$\sum_{p \in VX} (d(p) - 2) = 2 \widetilde{\mathsf{rk}}(X)$$
;

Let X be a finite connected graph. Then,

(i) if X is not a tree then
$$\sum_{p \in VX} (d(p) - 2) = 2 \widetilde{\mathsf{rk}}(X)$$
;

(ii) if X is a tree then $\sum_{p \in VX} (d(p) - 2) = -2$.

Let X be a finite connected graph. Then,

(i) if X is not a tree then
$$\sum_{p \in VX} (d(p) - 2) = 2 \widetilde{\mathsf{rk}}(X)$$
;

(ii) if X is a tree then $\sum_{p \in VX} (d(p) - 2) = -2$.

Lemma

Let X, Y be two deterministic A-automata without vertices of degree 0 or 1, and let W be their product. Then,

(i) $\forall (p,q) \in VW$, we have $(d(p,q)-2) \leq (d(p)-2)(d(q)-2)$;

Let X be a finite connected graph. Then,

(i) if X is not a tree then
$$\sum_{p \in VX} (d(p) - 2) = 2 \widetilde{\mathsf{rk}}(X)$$
;

(ii) if X is a tree then $\sum_{p \in VX} (d(p) - 2) = -2$.

Lemma

Let X, Y be two deterministic A-automata without vertices of degree 0 or 1, and let W be their product. Then,

(i)
$$\forall (p,q) \in VW$$
, we have $(d(p,q)-2) \leq (d(p)-2)(d(q)-2)$;

(ii) if (p,q) is isolated in W, then

 $(d(p,q)-2)+2 \leq (d(p)-2)(d(q)-2);$

Let X be a finite connected graph. Then,

(i) if X is not a tree then
$$\sum_{p \in VX} (d(p) - 2) = 2 \widetilde{\mathsf{rk}}(X)$$
;

(ii) if X is a tree then $\sum_{p \in VX} (d(p) - 2) = -2$.

Lemma

Let X, Y be two deterministic A-automata without vertices of degree 0 or 1, and let W be their product. Then,

(i)
$$\forall (p,q) \in VW$$
, we have $(d(p,q)-2) \leq (d(p)-2)(d(q)-2)$;

(ii) if (p,q) is isolated in W, then

 $(d(p,q)-2)+2 \leq (d(p)-2)(d(q)-2);$

(iii) if (p, q) is of degree 1 in W, then $(d(p, q) - 2) + 1 \leq (d(p) - 2)(d(q) - 2).$

Now,

 $2 \, \widetilde{rk}(W) = \sum 2 \, \widetilde{rk}(C)$ C c.c. W not tree

Now,

 $2 \, \widetilde{rk}(W) = \sum 2 \, \widetilde{rk}(C)$ C c.c. W not tree

Now,

$$2 \widetilde{\mathsf{rk}}(W) = \sum_{C \in C, W \atop \text{not tree}} 2 \widetilde{\mathsf{rk}}(C) = \sum_{C \in C, W \atop \text{not tree}} \sum_{(p,q) \in VC} (d(p,q) - 2)$$
$$2 \widetilde{\mathsf{rk}}(W) = \sum_{\substack{C \in C, W \\ \text{not tree}}} 2 \widetilde{\mathsf{rk}}(C) = \sum_{\substack{C \in C, W \\ \text{not tree}}} \sum_{(p,q) \in VC} (d(p,q)-2)$$
$$= \sum_{(p,q) \in VW} (d(p,q)-2) - \sum_{\substack{C \in C, W \\ \text{tree}}} (-2)$$

$$2 \widetilde{\mathsf{rk}}(W) = \sum_{\substack{C \text{ c.c. W} \\ \text{not tree}}} 2 \widetilde{\mathsf{rk}}(C) = \sum_{\substack{C \text{ c.c. W} \\ \text{not tree}}} \sum_{(p,q) \in VC} (d(p,q)-2)$$
$$= \sum_{\substack{(p,q) \in VW}} (d(p,q)-2) - \sum_{\substack{C \text{ c.c. W} \\ \text{tree}}} (-2)$$
$$= \sum_{\substack{(p,q) \in VW}} (d(p,q)-2) + 2\#\text{c.c. tree}$$

$$2 \widetilde{\mathsf{rk}}(W) = \sum_{\substack{C \text{ c.c. W} \\ \text{not tree}}} 2 \widetilde{\mathsf{rk}}(C) = \sum_{\substack{C \text{ c.c. W} \\ \text{not tree}}} \sum_{\substack{(p,q) \in VC}} (d(p,q)-2)$$
$$= \sum_{\substack{(p,q) \in VW}} (d(p,q)-2) - \sum_{\substack{C \text{ c.c. W} \\ \text{tree}}} (-2)$$
$$= \sum_{\substack{(p,q) \in VW}} (d(p,q)-2) + 2\#\text{c.c. tree}$$
$$\leqslant \sum_{\substack{(p,q) \in VW}} (d(p)-2) (d(q)-2)$$

Now,

2

$$\widetilde{\mathsf{rk}}(W) = \sum_{\substack{C \in C, W\\\text{not tree}}} 2\,\widetilde{\mathsf{rk}}(C) = \sum_{\substack{C \in C, W\\\text{not tree}}} \sum_{\substack{(p,q) \in VC}} (d(p,q)-2)$$
$$= \sum_{\substack{(p,q) \in VW}} (d(p,q)-2) - \sum_{\substack{C \in C, W\\\text{tree}}} (-2)$$
$$= \sum_{\substack{(p,q) \in VW}} (d(p,q)-2) + 2\#\text{c.c. tree}$$
$$\leqslant \sum_{\substack{(p,q) \in VW}} (d(p)-2) (d(q)-2)$$
$$= \Big(\sum_{\substack{p \in VSt(H)}} (d(p)-2) \Big) \Big(\sum_{\substack{q \in VSt(K)}} (d(q)-2) \Big)$$

$$2 \widetilde{\mathsf{rk}}(W) = \sum_{\substack{C \in C, W \\ \text{not tree}}} 2 \widetilde{\mathsf{rk}}(C) = \sum_{\substack{C \in C, W \\ \text{not tree}}} \sum_{\substack{(p,q) \in VC}} (d(p,q)-2)$$
$$= \sum_{\substack{(p,q) \in VW \\ (p,q) \in VW}} (d(p,q)-2) - \sum_{\substack{C \in C, W \\ \text{tree}}} (-2)$$
$$= \sum_{\substack{(p,q) \in VW \\ (p,q) \in VW}} (d(p,q)-2) + 2\#\text{c.c. tree}$$
$$\leq \sum_{\substack{(p,q) \in VW \\ (p,q) \in VW}} (d(p)-2) (d(q)-2)$$
$$= \left(\sum_{\substack{p \in VSt(H) \\ (p \in VSt(H))}} (d(p)-2)\right) \left(\sum_{\substack{q \in VSt(K) \\ (p \in VSt(K))}} (d(q)-2)\right)$$
$$= 2 \widetilde{\mathsf{rk}}(\mathsf{St}(H)) \cdot 2 \widetilde{\mathsf{rk}}(\mathsf{St}(K)).$$

Now,

$$2 \widetilde{\mathsf{rk}}(W) = \sum_{\substack{C \in C, W \\ \text{not tree}}} 2 \widetilde{\mathsf{rk}}(C) = \sum_{\substack{C \in C, W \\ \text{not tree}}} \sum_{\substack{(p,q) \in VC}} (d(p,q)-2)$$
$$= \sum_{\substack{(p,q) \in VW \\ (p,q) \in VW}} (d(p,q)-2) - \sum_{\substack{C \in C, W \\ \text{tree}}} (-2)$$
$$= \sum_{\substack{(p,q) \in VW \\ (p,q) \in VW}} (d(p,q)-2) + 2\#\text{c.c. tree}$$
$$\leq \sum_{\substack{(p,q) \in VW \\ (p,q) \in VW}} (d(p)-2) (d(q)-2)$$
$$= \left(\sum_{\substack{p \in VSt(H) \\ (p \in VSt(H))}} (d(p)-2)\right) \left(\sum_{\substack{q \in VSt(K) \\ (p \in VSt(K))}} (d(q)-2)\right)$$
$$= 2 \widetilde{\mathsf{rk}}(\mathsf{St}(H)) \cdot 2 \widetilde{\mathsf{rk}}(\mathsf{St}(K)).$$

Finally, let us link the connected components of W with the double cosets $H \backslash \mathbb{F}_A/K, \ldots$

Lemma

Let (p, \bullet) , (p', \bullet) be two vertices in W, and let $\bullet \xrightarrow{X} p$ and $\bullet \xrightarrow{X'} p'$ be walks in St(H). Then, (p, \bullet) and (p', \bullet) belong to the same c.c. of W \Leftrightarrow HxK = Hx'K.

Lemma

Let $(p, \bullet), (p', \bullet)$ be two vertices in W, and let $\bullet \xrightarrow{X} p$ and $\bullet \xrightarrow{X'} p'$ be walks in St(H). Then, (p, \bullet) and (p', \bullet) belong to the same c.c. of W \Leftrightarrow HxK = Hx'K.

Corollary

The following map is a bijection

$$\begin{array}{rcl} \alpha \colon H \setminus \mathbb{F}_A / K & \to & \{c.c. \ of \ W \} \\ & HxK & \mapsto & the \ c.c. \ containing \ (p, \bullet), \ where \ \bullet \stackrel{x}{\leadsto} p \\ H \overline{\ell} (\bullet \leadsto p) K & \leftarrow & C \ , \ where \ (p, \bullet) \in VC \end{array}$$

further satisfying that, for every $x \in \mathbb{F}_A$, $\langle \alpha(HxK) \rangle_{(p, \bullet)} = H^x \cap K$.

QUOTIENTS OF AUTOMATA

• In basic linear algebra:

$$U \leqslant V \leqslant K^n \quad \Rightarrow \quad V = U \oplus L.$$

• In basic linear algebra:

$$U \leqslant V \leqslant K^n \quad \Rightarrow \quad V = U \oplus L.$$

• In \mathbb{Z}^n , the analog is almost true:

 $U \leqslant V \leqslant \mathbb{Z}^n \quad \Rightarrow \quad \exists \ U \leqslant_{fi} U' \leqslant V \text{ s.t. } V = U' \oplus L.$

• In basic linear algebra:

$$U \leqslant V \leqslant K^n \quad \Rightarrow \quad V = U \oplus L.$$

• In \mathbb{Z}^n , the analog is almost true:

$$U \leqslant V \leqslant \mathbb{Z}^n \quad \Rightarrow \quad \exists \ U \leqslant_{fi} U' \leqslant V \text{ s.t. } V = U' \oplus L.$$

• In \mathbb{F}_A , the analog is ...

far from true because $H \leq K \neq r(H) \leq r(K) \dots$

• In basic linear algebra:

$$U \leqslant V \leqslant K^n \quad \Rightarrow \quad V = U \oplus L.$$

• In \mathbb{Z}^n , the analog is almost true:

$$U \leqslant V \leqslant \mathbb{Z}^n \quad \Rightarrow \quad \exists \ U \leqslant_{fi} U' \leqslant V \text{ s.t. } V = U' \oplus L.$$

• In \mathbb{F}_A , the analog is ...

far from true because $H \leq K \Rightarrow r(H) \leq r(K)$... almost true again, ... in the sense of Takahasi.

Let $H \leq K \leq \mathbb{F}_A$. We say that $H \leq K$ is an *algebraic extension*, denoted by $H \leq_{alg} K$, if H is not contained in any proper free factor of K, i.e., if

$$H \leqslant K_1 \leqslant K_1 \ast K_2 = K \quad \Rightarrow \quad K_2 = 1.$$

Let $H \leq K \leq \mathbb{F}_A$. We say that $H \leq K$ is an *algebraic extension*, denoted by $H \leq_{alg} K$, if H is not contained in any proper free factor of K, i.e., if

$$H \leqslant K_1 \leqslant K_1 * K_2 = K \quad \Rightarrow \quad K_2 = 1.$$

We say that $H \leq K$ is a *free extension*, denoted by $H \leq_{\text{ff}} K$, if $H \leq H * L = K$ for some $L \leq \mathbb{F}_A$.

Let $H \leq K \leq \mathbb{F}_A$. We say that $H \leq K$ is an *algebraic extension*, denoted by $H \leq_{alg} K$, if H is not contained in any proper free factor of K, i.e., if

 $H \leqslant K_1 \leqslant K_1 \ast K_2 = K \quad \Rightarrow \quad K_2 = 1.$

We say that $H \leq K$ is a *free extension*, denoted by $H \leq_{\text{ff}} K$, if $H \leq H * L = K$ for some $L \leq \mathbb{F}_A$.

Examples

• $\langle a \rangle \leqslant_{\rm ff} \langle a, b \rangle \leqslant_{\rm ff} \langle a, b, c \rangle;$

Let $H \leq K \leq \mathbb{F}_A$. We say that $H \leq K$ is an *algebraic extension*, denoted by $H \leq_{alg} K$, if H is not contained in any proper free factor of K, i.e., if

$$H \leqslant K_1 \leqslant K_1 \ast K_2 = K \quad \Rightarrow \quad K_2 = 1.$$

We say that $H \leq K$ is a *free extension*, denoted by $H \leq_{\text{ff}} K$, if $H \leq H * L = K$ for some $L \leq \mathbb{F}_A$.

- $\langle a \rangle \leqslant_{\mathrm{ff}} \langle a, b \rangle \leqslant_{\mathrm{ff}} \langle a, b, c \rangle;$
- $\langle w^r \rangle \leqslant_{\mathsf{alg}} \langle w \rangle$, $\forall w \in \mathbb{F}_A$, $\forall r \in \mathbb{Z} \setminus \{0\}$;

Let $H \leq K \leq \mathbb{F}_A$. We say that $H \leq K$ is an *algebraic extension*, denoted by $H \leq_{alg} K$, if H is not contained in any proper free factor of K, i.e., if

$$H \leqslant K_1 \leqslant K_1 \ast K_2 = K \quad \Rightarrow \quad K_2 = 1.$$

We say that $H \leq K$ is a *free extension*, denoted by $H \leq_{\text{ff}} K$, if $H \leq H * L = K$ for some $L \leq \mathbb{F}_A$.

- $\langle a \rangle \leq_{\rm ff} \langle a, b \rangle \leq_{\rm ff} \langle a, b, c \rangle;$
- $\langle w^r \rangle \leqslant_{\mathsf{alg}} \langle w \rangle$, $\forall w \in \mathbb{F}_A$, $\forall r \in \mathbb{Z} \setminus \{0\}$;
- $\langle a^{-1}b^{-1}ab \rangle \leqslant_{\mathsf{alg}} \langle a, b \rangle;$

Let $H \leq K \leq \mathbb{F}_A$. We say that $H \leq K$ is an *algebraic extension*, denoted by $H \leq_{alg} K$, if H is not contained in any proper free factor of K, i.e., if

$$H \leqslant K_1 \leqslant K_1 \ast K_2 = K \quad \Rightarrow \quad K_2 = 1.$$

We say that $H \leq K$ is a *free extension*, denoted by $H \leq_{\text{ff}} K$, if $H \leq H * L = K$ for some $L \leq \mathbb{F}_A$.

- $\langle a \rangle \leqslant_{\mathrm{ff}} \langle a, b \rangle \leqslant_{\mathrm{ff}} \langle a, b, c \rangle;$
- $\langle w^r \rangle \leqslant_{\mathsf{alg}} \langle w \rangle$, $\forall w \in \mathbb{F}_A$, $\forall r \in \mathbb{Z} \setminus \{0\}$;
- $\langle a^{-1}b^{-1}ab\rangle \leqslant_{\mathsf{alg}} \langle a,b\rangle;$
- $\langle a^{-1}b^{-1}ab \rangle \leqslant_{\mathrm{ff}} \langle a, b^{-1}ab \rangle \leqslant_{\mathrm{alg}} \langle a, b \rangle;$

Let $H \leq K \leq \mathbb{F}_A$. We say that $H \leq K$ is an *algebraic extension*, denoted by $H \leq_{alg} K$, if H is not contained in any proper free factor of K, i.e., if

$$H \leqslant K_1 \leqslant K_1 \ast K_2 = K \quad \Rightarrow \quad K_2 = 1.$$

We say that $H \leq K$ is a *free extension*, denoted by $H \leq_{\text{ff}} K$, if $H \leq H * L = K$ for some $L \leq \mathbb{F}_A$.

- $\langle a \rangle \leqslant_{\mathrm{ff}} \langle a, b \rangle \leqslant_{\mathrm{ff}} \langle a, b, c \rangle;$
- $\langle w^r \rangle \leqslant_{\mathsf{alg}} \langle w \rangle$, $\forall w \in \mathbb{F}_A$, $\forall r \in \mathbb{Z} \setminus \{0\}$;
- $\langle a^{-1}b^{-1}ab\rangle \leqslant_{\mathsf{alg}} \langle a, b \rangle;$
- $\langle a^{-1}b^{-1}ab \rangle \leqslant_{\mathrm{ff}} \langle a, b^{-1}ab \rangle \leqslant_{\mathrm{alg}} \langle a, b \rangle;$
- if $r(H) \ge 2$ and $r(K) \le 2$ then $H \le_{alg} K$;

Let $H \leq K \leq \mathbb{F}_A$. We say that $H \leq K$ is an *algebraic extension*, denoted by $H \leq_{alg} K$, if H is not contained in any proper free factor of K, i.e., if

$$H \leqslant K_1 \leqslant K_1 \ast K_2 = K \quad \Rightarrow \quad K_2 = 1.$$

We say that $H \leq K$ is a *free extension*, denoted by $H \leq_{\text{ff}} K$, if $H \leq H * L = K$ for some $L \leq \mathbb{F}_A$.

- $\langle a \rangle \leqslant_{\mathrm{ff}} \langle a, b \rangle \leqslant_{\mathrm{ff}} \langle a, b, c \rangle;$
- $\langle w^r \rangle \leqslant_{\mathsf{alg}} \langle w \rangle$, $\forall w \in \mathbb{F}_A$, $\forall r \in \mathbb{Z} \setminus \{0\}$;
- $\langle a^{-1}b^{-1}ab\rangle \leqslant_{\mathsf{alg}} \langle a, b \rangle;$
- $\langle a^{-1}b^{-1}ab \rangle \leqslant_{\mathrm{ff}} \langle a, b^{-1}ab \rangle \leqslant_{\mathrm{alg}} \langle a, b \rangle;$
- if $r(H) \ge 2$ and $r(K) \le 2$ then $H \le_{alg} K$;
- if $H \leq_{alg} K$ and $H \leq_{ff} K$ then H = K.

Proposition (Miasnikov–V.–Weil, 2007)

Let $H \leq M_i \leq K \leq \mathbb{F}_A$, for i = 1, 2. Then,

i) if $H \leq_{alg} M_1 \leq_{alg} K$, then $H \leq_{alg} K$;

Proposition (Miasnikov–V.–Weil, 2007)

Let $H \leq M_i \leq K \leq \mathbb{F}_A$, for i = 1, 2. Then,

i) if $H \leq_{alg} M_1 \leq_{alg} K$, then $H \leq_{alg} K$; i') if $H \leq_{ff} M_1 \leq_{ff} K$, then $H \leq_{ff} K$;

Proposition (Miasnikov-V.-Weil, 2007)

- i) if $H \leq_{alg} M_1 \leq_{alg} K$, then $H \leq_{alg} K$;
- i') if $H \leq_{\text{ff}} M_1 \leq_{\text{ff}} K$, then $H \leq_{\text{ff}} K$;
- ii) if $H \leq_{alg} K$, then $M_1 \leq_{alg} K$, while $H \not\leq_{alg} M_1$, in general;

Proposition (Miasnikov-V.-Weil, 2007)

- i) if $H \leq_{alg} M_1 \leq_{alg} K$, then $H \leq_{alg} K$;
- i') if $H \leq_{\text{ff}} M_1 \leq_{\text{ff}} K$, then $H \leq_{\text{ff}} K$;
- ii) if $H \leq_{alg} K$, then $M_1 \leq_{alg} K$, while $H \not\leq_{alg} M_1$, in general;
- ii') if $H \leq_{ff} K$, then $H \leq_{ff} M_1$, while $M_1 \nleq_{ff} K$, in general;

- i) if $H \leq_{alg} M_1 \leq_{alg} K$, then $H \leq_{alg} K$;
- i') if $H \leq_{\text{ff}} M_1 \leq_{\text{ff}} K$, then $H \leq_{\text{ff}} K$;
- ii) if $H \leq_{alg} K$, then $M_1 \leq_{alg} K$, while $H \not\leq_{alg} M_1$, in general;
- ii') if $H \leq_{ff} K$, then $H \leq_{ff} M_1$, while $M_1 \nleq_{ff} K$, in general;
- iii) if $H \leq_{alg} M_1$ and $H \leq_{alg} M_2$, then $H \leq_{alg} \langle M_1 \cup M_2 \rangle$, while $H \not\leq_{alg} M_1 \cap M_2$, in general;

- i) if $H \leq_{alg} M_1 \leq_{alg} K$, then $H \leq_{alg} K$;
- i') if $H \leq_{\text{ff}} M_1 \leq_{\text{ff}} K$, then $H \leq_{\text{ff}} K$;
- ii) if $H \leq_{alg} K$, then $M_1 \leq_{alg} K$, while $H \not\leq_{alg} M_1$, in general;
- ii') if $H \leq_{ff} K$, then $H \leq_{ff} M_1$, while $M_1 \nleq_{ff} K$, in general;
- iii) if $H \leq_{alg} M_1$ and $H \leq_{alg} M_2$, then $H \leq_{alg} \langle M_1 \cup M_2 \rangle$, while $H \not\leq_{alg} M_1 \cap M_2$, in general;
- iii') if $H \leq_{\text{ff}} M_1$ and $H \leq_{\text{ff}} M_2$, then $H \leq_{\text{ff}} M_1 \cap M_2$, while $H \leq_{\text{ff}} \langle M_1 \cup M_2 \rangle$, in general;

- i) if $H \leq_{alg} M_1 \leq_{alg} K$, then $H \leq_{alg} K$;
- i') if $H \leq_{\text{ff}} M_1 \leq_{\text{ff}} K$, then $H \leq_{\text{ff}} K$;
- ii) if $H \leq_{alg} K$, then $M_1 \leq_{alg} K$, while $H \not\leq_{alg} M_1$, in general;
- ii') if $H \leq_{ff} K$, then $H \leq_{ff} M_1$, while $M_1 \not\leq_{ff} K$, in general;
- iii) if $H \leq_{alg} M_1$ and $H \leq_{alg} M_2$, then $H \leq_{alg} \langle M_1 \cup M_2 \rangle$, while $H \not\leq_{alg} M_1 \cap M_2$, in general;
- iii') if $H \leq_{\text{ff}} M_1$ and $H \leq_{\text{ff}} M_2$, then $H \leq_{\text{ff}} M_1 \cap M_2$, while $H \leq_{\text{ff}} \langle M_1 \cup M_2 \rangle$, in general;
- iv) $H_i \leq_{\mathrm{ff}} K_i, \forall i \in I \Rightarrow \bigcap_{i \in I} H_i \leq_{\mathrm{ff}} \bigcap_{i \in I} K_i;$

- i) if $H \leq_{alg} M_1 \leq_{alg} K$, then $H \leq_{alg} K$;
- i') if $H \leq_{\text{ff}} M_1 \leq_{\text{ff}} K$, then $H \leq_{\text{ff}} K$;
- ii) if $H \leq_{alg} K$, then $M_1 \leq_{alg} K$, while $H \not\leq_{alg} M_1$, in general;
- ii') if $H \leq_{ff} K$, then $H \leq_{ff} M_1$, while $M_1 \not\leq_{ff} K$, in general;
- iii) if $H \leq_{alg} M_1$ and $H \leq_{alg} M_2$, then $H \leq_{alg} \langle M_1 \cup M_2 \rangle$, while $H \not\leq_{alg} M_1 \cap M_2$, in general;
- iii') if $H \leq_{\text{ff}} M_1$ and $H \leq_{\text{ff}} M_2$, then $H \leq_{\text{ff}} M_1 \cap M_2$, while $H \leq_{\text{ff}} \langle M_1 \cup M_2 \rangle$, in general;
- iv) $H_i \leq_{\text{ff}} K_i, \forall i \in I \Rightarrow \bigcap_{i \in I} H_i \leq_{\text{ff}} \bigcap_{i \in I} K_i;$
- iv') $H_i \leq_{\mathsf{alg}} K_i, \forall i \in I \Rightarrow \langle H_i, i \in I \rangle \leq_{\mathsf{alg}} \langle K_i, i \in I \rangle.$

TAKAHASI'S THEOREM

Definition

For $H \leq \mathbb{F}_A$, we define $\mathcal{AE}(H) = \{K \leq \mathbb{F}_A \mid H \leq_{\mathsf{alg}} K\}$.

TAKAHASI'S THEOREM

Definition

For $H \leq \mathbb{F}_A$, we define $\mathcal{AE}(H) = \{K \leq \mathbb{F}_A \mid H \leq_{\mathsf{alg}} K\}$.

Question

How many algebraic extensions does a given $H \leq \mathbb{F}_A$ have ? Can we compute them all, at least when H is f.g.?

TAKAHASI'S THEOREM

Definition

For $H \leq \mathbb{F}_A$, we define $\mathcal{AE}(H) = \{K \leq \mathbb{F}_A \mid H \leq_{\mathsf{alg}} K\}$.

Question

How many algebraic extensions does a given $H \leq \mathbb{F}_A$ have ? Can we compute them all, at least when H is f.g.?

Theorem (Takahasi, 1951)

For every $H \leq_{fg} \mathbb{F}_A$, we have $\# \mathcal{AE}(H) < \infty$.

takahasi's theorem

Definition

For $H \leq \mathbb{F}_A$, we define $\mathcal{AE}(H) = \{K \leq \mathbb{F}_A \mid H \leq_{\mathsf{alg}} K\}$.

Question

How many algebraic extensions does a given $H \leq \mathbb{F}_A$ have ? Can we compute them all, at least when H is f.g.?

Theorem (Takahasi, 1951)

For every $H \leq_{fg} \mathbb{F}_A$, we have $\# \mathcal{AE}(H) < \infty$.

• Original proof by Takahasi was combinatorial and technical.

takahasi's theorem

Definition

For $H \leq \mathbb{F}_A$, we define $\mathcal{AE}(H) = \{K \leq \mathbb{F}_A \mid H \leq_{\mathsf{alg}} K\}$.

Question

How many algebraic extensions does a given $H \leq \mathbb{F}_A$ have ? Can we compute them all, at least when H is f.g.?

Theorem (Takahasi, 1951)

For every $H \leq_{fg} \mathbb{F}_A$, we have $\# \mathcal{AE}(H) < \infty$.

- Original proof by Takahasi was combinatorial and technical.
- Modern proof, using Stallings automata, is much simpler, and due independently to V. (1997), Margolis–Sapir–Weil (2001) and Kapovich–Miasnikov (2002).

takahasi's theorem

Definition

For $H \leq \mathbb{F}_A$, we define $\mathcal{AE}(H) = \{K \leq \mathbb{F}_A \mid H \leq_{\mathsf{alg}} K\}$.

Question

How many algebraic extensions does a given $H \leq \mathbb{F}_A$ have ? Can we compute them all, at least when H is f.g.?

Theorem (Takahasi, 1951)

For every $H \leq_{fg} \mathbb{F}_A$, we have $\# \mathcal{AE}(H) < \infty$.

- Original proof by Takahasi was combinatorial and technical.
- Modern proof, using Stallings automata, is much simpler, and due independently to V. (1997), Margolis–Sapir–Weil (2001) and Kapovich–Miasnikov (2002).
- Additionally, $\mathcal{AE}(H)$ will be computable...

QUOTIENTS AND FRINGE

Definition

A morphism of reduced A-automata $f: \Gamma_1 \to \Gamma_2$ is called **onto** if every edge in Γ_2 is the image of at least one edge from Γ_1 . Then, we say that Γ_2 is a **quotient** of Γ_1 , and write $f: \Gamma_1 \twoheadrightarrow \Gamma_2$.
QUOTIENTS AND FRINGE

Definition

A morphism of reduced A-automata $f: \Gamma_1 \to \Gamma_2$ is called **onto** if every edge in Γ_2 is the image of at least one edge from Γ_1 . Then, we say that Γ_2 is a **quotient** of Γ_1 , and write $f: \Gamma_1 \to \Gamma_2$.

Example

Let Γ be a finite reduced A-automata, and let ~ be an equivalence relation on V Γ . We denote by Γ /~ the new reduced A-automata resulting from identifying the vertices according to ~, plus reduction.

QUOTIENTS AND FRINGE

Definition

A morphism of reduced A-automata $f: \Gamma_1 \to \Gamma_2$ is called **onto** if every edge in Γ_2 is the image of at least one edge from Γ_1 . Then, we say that Γ_2 is a **quotient** of Γ_1 , and write $f: \Gamma_1 \to \Gamma_2$.

Example

Let Γ be a finite reduced A-automata, and let ~ be an equivalence relation on V Γ . We denote by Γ /~ the new reduced A-automata resulting from identifying the vertices according to ~, plus reduction.

Clearly, the projection $\pi: \Gamma \longrightarrow \Gamma/\sim$ is onto, Γ/\sim is a reduced quotient of Γ , and every reduced quotient of Γ is of this form.

QUOTIENTS AND FRINGE

Definition

A morphism of reduced A-automata $f: \Gamma_1 \to \Gamma_2$ is called **onto** if every edge in Γ_2 is the image of at least one edge from Γ_1 . Then, we say that Γ_2 is a **quotient** of Γ_1 , and write $f: \Gamma_1 \to \Gamma_2$.

Example

Let Γ be a finite reduced A-automata, and let ~ be an equivalence relation on V Γ . We denote by Γ /~ the new reduced A-automata resulting from identifying the vertices according to ~, plus reduction.

Clearly, the projection $\pi: \Gamma \longrightarrow \Gamma/\sim$ is onto, Γ/\sim is a reduced quotient of Γ , and every reduced quotient of Γ is of this form.

Definition

The *fringe* of a finite reduced A-automaton Γ , denoted by $O(\Gamma)$, is the (finite) collection of all its reduced quotients:

 $\mathcal{O}(\Gamma) = \{\Gamma/\sim \mid \sim \text{ eq. rel. on } V\Gamma\}.$

Definition

Let $H \leq_{fg} \mathbb{F}_A$. The *fringe* of H is $\mathcal{O}(H) = \{ \langle \Gamma \rangle \mid \Gamma \in \mathcal{O}(\mathsf{St}(H)) \}$ $= \{ \langle \mathsf{St}(H) / \sim \rangle \mid \sim \text{ eq. rel. on } V\mathsf{St}(H) \},$

a finite and computable collection of f.g. extensions of H.

Definition

Let $H \leq_{fg} \mathbb{F}_A$. The *fringe* of H is $\mathcal{O}(H) = \{ \langle \Gamma \rangle \mid \Gamma \in \mathcal{O}(St(H)) \}$ $= \{ \langle St(H)/\sim \rangle \mid \sim \text{ eq. rel. on } VSt(H) \},$

a finite and computable collection of f.g. extensions of H.

Example:

Definition

Let $H \leq_{fg} \mathbb{F}_A$. The *fringe* of H is $\mathcal{O}(H) = \{ \langle \Gamma \rangle \mid \Gamma \in \mathcal{O}(\mathsf{St}(H)) \}$ $= \{ \langle \mathsf{St}(H) / \sim \rangle \mid \sim \text{ eq. rel. on } V\mathsf{St}(H) \},$

a finite and computable collection of f.g. extensions of H.

Example:

For $H = \langle a^{-1}b^{-1}ab \rangle$, $O(H) = \{H_0, H_1, H_2, H_3, H_4, H_5, H_6\}$, where:

 $H_0 = H = \langle a^{-1}b^{-1}ab \rangle,$

Definition

Let $H \leq_{fg} \mathbb{F}_A$. The *fringe* of H is $\mathcal{O}(H) = \{ \langle \Gamma \rangle \mid \Gamma \in \mathcal{O}(St(H)) \}$ $= \{ \langle St(H)/\sim \rangle \mid \sim \text{ eq. rel. on } VSt(H) \},$

a finite and computable collection of f.g. extensions of H.

Example:

$$H_0 = H = \langle a^{-1}b^{-1}ab \rangle, \qquad \qquad H_1 = \langle a, b^{-1}ab \rangle,$$

Definition

Let $H \leq_{fg} \mathbb{F}_A$. The *fringe* of H is $\mathcal{O}(H) = \{ \langle \Gamma \rangle \mid \Gamma \in \mathcal{O}(St(H)) \}$ $= \{ \langle St(H)/\sim \rangle \mid \sim \text{ eq. rel. on } VSt(H) \},$

a finite and computable collection of f.g. extensions of H.

Example:

$$\begin{aligned} H_0 &= H = \langle a^{-1}b^{-1}ab \rangle, & H_1 &= \langle a, b^{-1}ab \rangle, \\ H_2 &= \langle b, a^{-1}ba \rangle, \end{aligned}$$

Definition

Let $H \leq_{fg} \mathbb{F}_A$. The *fringe* of H is $\mathcal{O}(H) = \{ \langle \Gamma \rangle \mid \Gamma \in \mathcal{O}(St(H)) \}$ $= \{ \langle St(H)/\sim \rangle \mid \sim \text{ eq. rel. on } VSt(H) \},$

a finite and computable collection of f.g. extensions of H.

Example:

$H_0 = H = \langle a^{-1}b^{-1}ab \rangle,$	$H_1 = \langle a, b^{-1}ab \rangle,$
$H_2 = \langle b, a^{-1}ba \rangle,$	$H_3 = \langle ab, ba \rangle$,

Definition

Let $H \leq_{fg} \mathbb{F}_A$. The *fringe* of H is $\mathcal{O}(H) = \{ \langle \Gamma \rangle \mid \Gamma \in \mathcal{O}(St(H)) \}$ $= \{ \langle St(H)/\sim \rangle \mid \sim \text{ eq. rel. on } VSt(H) \},$

a finite and computable collection of f.g. extensions of H.

Example:

$H_0 = H = \langle a^{-1}b^{-1}ab \rangle,$	$H_1 = \langle a, b^{-1}ab \rangle,$
$H_2 = \langle b, a^{-1}ba \rangle$,	$H_3 = \langle ab, ba \rangle$,
$H_4 = \langle a^{-1}b, a^{-2}b^2 \rangle,$	

Definition

Let $H \leq_{fg} \mathbb{F}_A$. The *fringe* of H is $\mathcal{O}(H) = \{ \langle \Gamma \rangle \mid \Gamma \in \mathcal{O}(St(H)) \}$ $= \{ \langle St(H)/\sim \rangle \mid \sim \text{ eq. rel. on } VSt(H) \},$

a finite and computable collection of f.g. extensions of H.

Example:

$H_0 = H = \langle a^{-1}b^{-1}ab \rangle,$	$H_1 = \langle a, b^{-1}ab \rangle,$
$H_2 = \langle b, a^{-1}ba \rangle,$	$H_3 = \langle ab, ba \rangle$,
$H_4 = \langle a^{-1}b, a^{-2}b^2 \rangle,$	$H_5 = \langle a^2, b^2, ab \rangle$

Definition

Let $H \leq_{fg} \mathbb{F}_A$. The *fringe* of H is $\mathcal{O}(H) = \{ \langle \Gamma \rangle \mid \Gamma \in \mathcal{O}(\mathsf{St}(H)) \}$ $= \{ \langle \mathsf{St}(H) / \sim \rangle \mid \sim \text{ eq. rel. on } V\mathsf{St}(H) \},$

a finite and computable collection of f.g. extensions of H.

Example:

$H_0 = H = \langle a^{-1}b^{-1}ab \rangle,$	$H_1 = \langle a, b^{-1}ab \rangle,$
$H_2 = \langle b, a^{-1}ba \rangle$,	$H_3 = \langle ab, ba \rangle$,
$H_4 = \langle a^{-1}b, a^{-2}b^2 \rangle,$	$H_5 = \langle a^2, b^2, ab \rangle,$
$H_6 = \langle a, b \rangle.$	

For $H \leq_{fg} \mathbb{F}_A$, we have $\mathcal{O}(H) = \{H_0, H_1, \dots, H_k\}$, all f.g., computable, and with minimum and maximum, $H = H_0 \leq H_i \leq H_k = \langle A' \rangle \leq_{ff} \mathbb{F}_A$, where $A' \subseteq A$ is the set of letters in use.

For $H \leq_{fg} \mathbb{F}_A$, we have $\mathcal{O}(H) = \{H_0, H_1, \dots, H_k\}$, all f.g., computable, and with minimum and maximum, $H = H_0 \leq H_i \leq H_k = \langle A' \rangle \leq_{ff} \mathbb{F}_A$, where $A' \subseteq A$ is the set of letters in use.

Proposition

For $H \leq_{fg} \mathbb{F}_A$, we have $\mathcal{AE}(H) \subseteq \mathcal{O}(H)$. In particular, $\#\mathcal{AE}(H) < \infty$.

For $H \leq_{fg} \mathbb{F}_A$, we have $\mathcal{O}(H) = \{H_0, H_1, \dots, H_k\}$, all f.g., computable, and with minimum and maximum, $H = H_0 \leq H_i \leq H_k = \langle A' \rangle \leq_{ff} \mathbb{F}_A$, where $A' \subseteq A$ is the set of letters in use.

Proposition

For $H \leq_{fg} \mathbb{F}_A$, we have $\mathcal{AE}(H) \subseteq \mathcal{O}(H)$. In particular, $\#\mathcal{AE}(H) < \infty$.

Theorem

 $\mathcal{AE}(H)$ is computable from a set of generators for $H \leq_{fg} \mathbb{F}_A$.

For $H \leq_{fg} \mathbb{F}_A$, we have $\mathcal{O}(H) = \{H_0, H_1, \dots, H_k\}$, all f.g., computable, and with minimum and maximum, $H = H_0 \leq H_i \leq H_k = \langle A' \rangle \leq_{ff} \mathbb{F}_A$, where $A' \subseteq A$ is the set of letters in use.

Proposition

For $H \leq_{fg} \mathbb{F}_A$, we have $\mathcal{AE}(H) \subseteq \mathcal{O}(H)$. In particular, $\#\mathcal{AE}(H) < \infty$.

Theorem

 $\mathcal{AE}(H)$ is computable from a set of generators for $H \leqslant_{\mathsf{fg}} \mathbb{F}_A.$

Proof.

• Compute St(H);

For $H \leq_{fg} \mathbb{F}_A$, we have $\mathcal{O}(H) = \{H_0, H_1, \dots, H_k\}$, all f.g., computable, and with minimum and maximum, $H = H_0 \leq H_i \leq H_k = \langle A' \rangle \leq_{ff} \mathbb{F}_A$, where $A' \subseteq A$ is the set of letters in use.

Proposition

For $H \leq_{fg} \mathbb{F}_A$, we have $\mathcal{AE}(H) \subseteq \mathcal{O}(H)$. In particular, $\#\mathcal{AE}(H) < \infty$.

Theorem

 $\mathcal{AE}(H)$ is computable from a set of generators for $H \leqslant_{\mathsf{fg}} \mathbb{F}_A.$

- Compute St(H);
- compute $St(H)/\sim$ for all equivalence relation \sim on VSt(H);

For $H \leq_{fg} \mathbb{F}_A$, we have $\mathcal{O}(H) = \{H_0, H_1, \dots, H_k\}$, all f.g., computable, and with minimum and maximum, $H = H_0 \leq H_i \leq H_k = \langle A' \rangle \leq_{ff} \mathbb{F}_A$, where $A' \subseteq A$ is the set of letters in use.

Proposition

For $H \leq_{fg} \mathbb{F}_A$, we have $\mathcal{AE}(H) \subseteq \mathcal{O}(H)$. In particular, $\#\mathcal{AE}(H) < \infty$.

Theorem

 $\mathcal{AE}(H)$ is computable from a set of generators for $H \leqslant_{\mathsf{fg}} \mathbb{F}_A.$

- Compute St(H);
- compute $St(H)/\sim$ for all equivalence relation \sim on VSt(H);
- compute $\mathcal{O}(H)$;

For $H \leq_{fg} \mathbb{F}_A$, we have $\mathcal{O}(H) = \{H_0, H_1, \dots, H_k\}$, all f.g., computable, and with minimum and maximum, $H = H_0 \leq H_i \leq H_k = \langle A' \rangle \leq_{ff} \mathbb{F}_A$, where $A' \subseteq A$ is the set of letters in use.

Proposition

For $H \leq_{fg} \mathbb{F}_A$, we have $\mathcal{AE}(H) \subseteq \mathcal{O}(H)$. In particular, $\#\mathcal{AE}(H) < \infty$.

Theorem

 $\mathcal{AE}(H)$ is computable from a set of generators for $H \leqslant_{\mathsf{fg}} \mathbb{F}_A.$

- Compute St(H);
- compute $St(H)/\sim$ for all equivalence relation \sim on VSt(H);
- compute $\mathcal{O}(H)$;
- clean $\mathcal{O}(H)$ by deleting L whenever K, $L \in \mathcal{O}(H)$ with $K \leq_{\text{ff}} L$;

For $H \leq_{fg} \mathbb{F}_A$, we have $\mathcal{O}(H) = \{H_0, H_1, \dots, H_k\}$, all f.g., computable, and with minimum and maximum, $H = H_0 \leq H_i \leq H_k = \langle A' \rangle \leq_{ff} \mathbb{F}_A$, where $A' \subseteq A$ is the set of letters in use.

Proposition

For $H \leq_{fg} \mathbb{F}_A$, we have $\mathcal{AE}(H) \subseteq \mathcal{O}(H)$. In particular, $\#\mathcal{AE}(H) < \infty$.

Theorem

 $\mathcal{AE}(H)$ is computable from a set of generators for $H \leqslant_{\mathsf{fg}} \mathbb{F}_A.$

- Compute St(H);
- compute $St(H)/\sim$ for all equivalence relation \sim on VSt(H);
- compute $\mathcal{O}(H)$;
- clean $\mathcal{O}(H)$ by deleting *L* whenever *K*, $L \in \mathcal{O}(H)$ with $K \leq_{\text{ff}} L$;
- the resulting set is $\mathcal{AE}(H)$.

Theorem

Given H, K $\leq_{fg} \mathbb{F}_A$, it is algorithmically decidable whether H \leq_{ff} K.

Theorem

Given H, K $\leq_{fg} \mathbb{F}_A$, it is algorithmically decidable whether H \leq_{ff} K.

Proved by:

• Whitehead 1930's (classical; exponential time);

Theorem

Given H, K $\leq_{fg} \mathbb{F}_A$, it is algorithmically decidable whether H \leq_{ff} K.

Proved by:

- Whitehead 1930's (classical; exponential time);
- · Silva-Weil 2006 (using Stallings graphs; exponential time);

Theorem

Given H, K $\leq_{fg} \mathbb{F}_A$, it is algorithmically decidable whether H \leq_{ff} K.

Proved by:

- Whitehead 1930's (classical; exponential time);
- Silva-Weil 2006 (using Stallings graphs; exponential time);
- Roig-V.-Weil 2007 (an improvement of Whitehead algorithm working in polynomial time);

Theorem

Given H, K $\leq_{fg} \mathbb{F}_A$, it is algorithmically decidable whether H \leq_{ff} K.

Proved by:

- Whitehead 1930's (classical; exponential time);
- Silva-Weil 2006 (using Stallings graphs; exponential time);
- Roig-V.-Weil 2007 (an improvement of Whitehead algorithm working in polynomial time);
- Puder 2011 (using Stallings graphs; exponential time).

Theorem

Given H, K $\leq_{fg} \mathbb{F}_A$, it is algorithmically decidable whether H \leq_{ff} K.

Proved by:

- Whitehead 1930's (classical; exponential time);
- Silva-Weil 2006 (using Stallings graphs; exponential time);
- Roig-V.-Weil 2007 (an improvement of Whitehead algorithm working in polynomial time);
- Puder 2011 (using Stallings graphs; exponential time).

Example

For $H = \langle a^{-1}b^{-1}ab \rangle \leq \mathbb{F}_2$, we have $\mathcal{AE}(H) = \{H, \mathbb{F}_2\}$. In particular, $a^{-1}b^{-1}ab$ is almost primitive.

Theorem

Given H, K $\leq_{fg} \mathbb{F}_A$, it is algorithmically decidable whether H \leq_{ff} K.

Proved by:

- Whitehead 1930's (classical; exponential time);
- Silva-Weil 2006 (using Stallings graphs; exponential time);
- Roig-V.-Weil 2007 (an improvement of Whitehead algorithm working in polynomial time);
- Puder 2011 (using Stallings graphs; exponential time).

Example

For $H = \langle a^{-1}b^{-1}ab \rangle \leq \mathbb{F}_2$, we have $\mathcal{AE}(H) = \{H, \mathbb{F}_2\}$. In particular, $a^{-1}b^{-1}ab$ is almost primitive.

• $H \leq_{alg} K_1$ and $H \leq_{alg} K_2$ then $H \leq_{alg} \langle K_1 \cup K_2 \rangle$;

THE ALGEBRAIC CLOSURE

Observation

- $H \leq_{alg} K_1$ and $H \leq_{alg} K_2$ then $H \leq_{alg} \langle K_1 \cup K_2 \rangle$;
- $H \leq_{\text{ff}} K_1$ and $H \leq_{\text{ff}} K_2$ then $H \leq_{\text{ff}} K_1 \cap K_2$.

THE ALGEBRAIC CLOSURE

Observation

- $H \leq_{alg} K_1$ and $H \leq_{alg} K_2$ then $H \leq_{alg} \langle K_1 \cup K_2 \rangle$;
- $H \leq_{\text{ff}} K_1$ and $H \leq_{\text{ff}} K_2$ then $H \leq_{\text{ff}} K_1 \cap K_2$.

Theorem

For every extension $H \leq_{fg} K \leq_{fg} \mathbb{F}_A$ of f.g. subgroups, there exists a unique L such that $H \leq_{alg} L \leq_{ff} K$; it is called the *K*-algebraic closure of *H* and denoted $L = Cl_K(H)$.

THE ALGEBRAIC CLOSURE

Observation

- $H \leq_{alg} K_1$ and $H \leq_{alg} K_2$ then $H \leq_{alg} \langle K_1 \cup K_2 \rangle$;
- $H \leq_{\text{ff}} K_1$ and $H \leq_{\text{ff}} K_2$ then $H \leq_{\text{ff}} K_1 \cap K_2$.

Theorem

For every extension $H \leq_{fg} K \leq_{fg} \mathbb{F}_A$ of f.g. subgroups, there exists a unique L such that $H \leq_{alg} L \leq_{ff} K$; it is called the *K*-algebraic closure of *H* and denoted $L = Cl_K(H)$.

Observation

For $H \leq K$, $Cl_K(H)$ is the maximal algebraic extension of H contained in K; in particular, it is computable from given generators of H and K.

 $Cl_{K}(H)$ depends on K, a very different behaviour from classical field extensions.

 $Cl_{K}(H)$ depends on *K*, a very different behaviour from classical field extensions.

Example

Let $H_1 = \langle a^{-1}b^{-1}ab \rangle$, $H_2 = \langle a, b^{-1}ab \rangle$, and $H_3 = \mathbb{F}_2 = \langle a, b \rangle$.

 $Cl_{K}(H)$ depends on K, a very different behaviour from classical field extensions.

Example

Let $H_1 = \langle a^{-1}b^{-1}ab \rangle$, $H_2 = \langle a, b^{-1}ab \rangle$, and $H_3 = \mathbb{F}_2 = \langle a, b \rangle$.

We have $H_1 \leq_{\text{ff}} H_2 \leq_{\text{alg}} H_3$, and $H_1 \leq_{\text{alg}} H_3$.

 $Cl_{K}(H)$ depends on K, a very different behaviour from classical field extensions.

Example

Let $H_1 = \langle a^{-1}b^{-1}ab \rangle$, $H_2 = \langle a, b^{-1}ab \rangle$, and $H_3 = \mathbb{F}_2 = \langle a, b \rangle$.

We have $H_1 \leq_{\text{ff}} H_2 \leq_{\text{alg}} H_3$, and $H_1 \leq_{\text{alg}} H_3$.

So $Cl_{H_2}(H_1) = H_1$, while $Cl_{H_3}(H_1) = H_3$.

 $Cl_{K}(H)$ depends on *K*, a very different behaviour from classical field extensions.

Example

Let $H_1 = \langle a^{-1}b^{-1}ab \rangle$, $H_2 = \langle a, b^{-1}ab \rangle$, and $H_3 = \mathbb{F}_2 = \langle a, b \rangle$.

We have $H_1 \leq_{\text{ff}} H_2 \leq_{\text{alg}} H_3$, and $H_1 \leq_{\text{alg}} H_3$.

So $Cl_{H_2}(H_1) = H_1$, while $Cl_{H_3}(H_1) = H_3$.

Remark

Compare with M. Hall's Theorem.
PSEUDO-VARIETIES

Definition

A **pseudo-variety** of groups \mathcal{V} is a class of finite groups closed under taking subgroups, quotients and finite direct products.

PSEUDO-VARIETIES

Definition

A **pseudo-variety** of groups \mathcal{V} is a class of finite groups closed under taking subgroups, quotients and finite direct products.

Examples

i) $\mathcal{G} =$ all finite groups;

PSEUDO-VARIETIES

Definition

A **pseudo-variety** of groups \mathcal{V} is a class of finite groups closed under taking subgroups, quotients and finite direct products.

- i) G = all finite groups;
- ii) $\mathfrak{G}_p =$ all finite *p*-groups, for *p* prime;

A **pseudo-variety** of groups \mathcal{V} is a class of finite groups closed under taking subgroups, quotients and finite direct products.

- i) G = all finite groups;
- ii) $\mathfrak{G}_p =$ all finite *p*-groups, for *p* prime;
- iii) $\mathfrak{G}_{nil} =$ all finite nilpotent groups;

A **pseudo-variety** of groups \mathcal{V} is a class of finite groups closed under taking subgroups, quotients and finite direct products.

- i) G = all finite groups;
- ii) $\mathfrak{G}_p =$ all finite *p*-groups, for *p* prime;
- iii) $\mathfrak{G}_{nil} =$ all finite nilpotent groups;
- iv) $\mathfrak{G}_{sol} = all finite soluble groups;$

A **pseudo-variety** of groups \mathcal{V} is a class of finite groups closed under taking subgroups, quotients and finite direct products.

- i) G = all finite groups;
- ii) $\mathfrak{G}_p =$ all finite *p*-groups, for *p* prime;
- iii) $G_{nil} = all finite nilpotent groups;$
- iv) $\mathfrak{G}_{sol} = all finite soluble groups;$
- v) $\mathcal{G}_{ab} = all finite abelian groups;$

A **pseudo-variety** of groups \mathcal{V} is a class of finite groups closed under taking subgroups, quotients and finite direct products.

- i) G = all finite groups;
- ii) $\mathfrak{G}_p =$ all finite *p*-groups, for *p* prime;
- iii) $\mathfrak{G}_{nil} =$ all finite nilpotent groups;
- iv) $g_{sol} = all finite soluble groups;$
- v) $g_{ab} = all finite abelian groups;$
- vi) for a finite group V, $[V] = \{$ quotients of subgroups of V^k , $k \ge 1 \}$. vii) ...

A **pseudo-variety** of groups \mathcal{V} is a class of finite groups closed under taking subgroups, quotients and finite direct products.

Examples

- i) G = all finite groups;
- ii) $\mathfrak{G}_p =$ all finite *p*-groups, for *p* prime;
- iii) $\mathfrak{G}_{nil} =$ all finite nilpotent groups;
- iv) $g_{sol} = all finite soluble groups;$
- v) $g_{ab} = all finite abelian groups;$
- vi) for a finite group V, $[V] = \{$ quotients of subgroups of V^k , $k \ge 1 \}$. vii) ...

Definition

 \mathcal{V} is **extension-closed** if $V \triangleleft W$ with $V, W/V \in \mathcal{V} \Rightarrow W \in \mathcal{V}$.

Definition

Let *G* be a group, and \mathcal{V} be a pseudo-variety of finite groups. The *pro-V* topology on *G* can be defined in several equivalent ways:

Definition

Let G be a group, and \mathcal{V} be a pseudo-variety of finite groups. The **pro-\mathcal{V} topology on G** can be defined in several equivalent ways:

i) it is the smallest topology making all the morphisms from G into all $V \in \mathcal{V}$ (with the discrete topology) continuous;

Definition

Let G be a group, and \mathcal{V} be a pseudo-variety of finite groups. The **pro-\mathcal{V} topology on G** can be defined in several equivalent ways:

- i) it is the smallest topology making all the morphisms from G into all $V \in \mathcal{V}$ (with the discrete topology) continuous;
- ii) a basis of open sets is given by $\varphi^{-1}(x)$, for all group morphism $\varphi: G \to V \in \mathcal{V}$;

Definition

Let G be a group, and \mathcal{V} be a pseudo-variety of finite groups. The **pro-\mathcal{V} topology on G** can be defined in several equivalent ways:

- i) it is the smallest topology making all the morphisms from G into all $V \in \mathcal{V}$ (with the discrete topology) continuous;
- ii) a basis of open sets is given by $\varphi^{-1}(x)$, for all group morphism $\varphi: G \to V \in \mathcal{V}$;
- iii) the normal (finite index) subgroups $K \trianglelefteq G$ such that $G/K \in \mathcal{V}$ form a basis of neighborhoods of 1;

Definition

Let G be a group, and \mathcal{V} be a pseudo-variety of finite groups. The **pro-\mathcal{V} topology on G** can be defined in several equivalent ways:

- i) it is the smallest topology making all the morphisms from G into all $V \in \mathcal{V}$ (with the discrete topology) continuous;
- ii) a basis of open sets is given by $\varphi^{-1}(x)$, for all group morphism $\varphi: G \to V \in \mathcal{V}$;
- iii) the normal (finite index) subgroups $K \trianglelefteq G$ such that $G/K \in \mathcal{V}$ form a basis of neighborhoods of 1;
- iv) it is the topology given by the pseudo-ultra-metric

$$d(x,y)=2^{-r(x,y)},$$

where $r(x, y) = \min\{|V| \mid V \in \mathcal{V}, \text{ and separates } x \text{ and } y\}.$

Definition

Let G be a group, and \mathcal{V} be a pseudo-variety of finite groups. The **pro-\mathcal{V} topology on G** can be defined in several equivalent ways:

- i) it is the smallest topology making all the morphisms from G into all $V \in \mathcal{V}$ (with the discrete topology) continuous;
- ii) a basis of open sets is given by $\varphi^{-1}(x)$, for all group morphism $\varphi: G \to V \in \mathcal{V}$;
- iii) the normal (finite index) subgroups $K \trianglelefteq G$ such that $G/K \in \mathcal{V}$ form a basis of neighborhoods of 1;
- iv) it is the topology given by the pseudo-ultra-metric

$$d(x,y)=2^{-r(x,y)},$$

where $r(x, y) = \min\{|V| \mid V \in \mathcal{V}, \text{ and separates } x \text{ and } y\}.$

Observation:

The pro- \mathcal{V} top. is Hausdorff \Leftrightarrow *d* is a metric \Leftrightarrow *G* is residually- \mathcal{V} .

Let \mathcal{V} be an extension-closed pseudo-variety, and consider \mathbb{F}_A with the pro- \mathcal{V} topology. For a given $H \leq_{fg} \mathbb{F}_A$,

H is \mathcal{V} -closed \iff H is a free factor of a clopen subgroup.

In particular, free factors of \mathcal{V} -closed subgroups are \mathcal{V} -closed.

Let \mathcal{V} be an extension-closed pseudo-variety, and consider \mathbb{F}_A with the pro- \mathcal{V} topology. For a given $H \leq_{fg} \mathbb{F}_A$,

H is \mathcal{V} -closed \iff *H* is a free factor of a clopen subgroup.

In particular, free factors of \mathcal{V} -closed subgroups are \mathcal{V} -closed.

Corollary

For an extension-closed \mathcal{V} , and $H \leq_{fg} \mathbb{F}_A$, we have $H \leq_{alg} Cl_{\mathcal{V}}(H)$.

Let \mathcal{V} be an extension-closed pseudo-variety, and consider \mathbb{F}_A with the pro- \mathcal{V} topology. For a given $H \leq_{fg} \mathbb{F}_A$,

H is \mathcal{V} -closed \iff H is a free factor of a clopen subgroup.

In particular, free factors of \mathcal{V} -closed subgroups are \mathcal{V} -closed.

Corollary

For an extension-closed \mathcal{V} , and $H \leq_{fg} \mathbb{F}_A$, we have $H \leq_{alg} Cl_{\mathcal{V}}(H)$.

So, in the extension-closed case, we always have $Cl_{\mathcal{V}}(H) \in \mathcal{AE}(H)$.

Let \mathcal{V} be an extension-closed pseudo-variety, and consider \mathbb{F}_A with the pro- \mathcal{V} topology. For a given $H \leq_{fg} \mathbb{F}_A$,

H is \mathcal{V} -closed \iff H is a free factor of a clopen subgroup.

In particular, free factors of \mathcal{V} -closed subgroups are \mathcal{V} -closed.

Corollary

For an extension-closed \mathcal{V} , and $H \leq_{fg} \mathbb{F}_A$, we have $H \leq_{alg} Cl_{\mathcal{V}}(H)$.

So, in the extension-closed case, we always have $Cl_{\mathcal{V}}(H) \in \mathcal{AE}(H)$.

Proposition (Ribes, Zaleskiĭ)

For an extension-closed \mathcal{V} , and $H \leq_{fg} \mathbb{F}_A$, we have $\mathsf{rk}(Cl_{\mathcal{V}}(H)) \leq \mathsf{rk}(H)$.

The p-closure of $H \leq_{fg} \mathbb{F}_A$ is effectively computable, for every prime p.

The p-closure of $H \leqslant_{fg} \mathbb{F}_A$ is effectively computable, for every prime p.

And using the fact that $Cl_{nil}(H) = \bigcap_{p} Cl_{p}(H)$,

The p-closure of $H \leq_{fg} \mathbb{F}_A$ is effectively computable, for every prime p.

And using the fact that $Cl_{nil}(H) = \bigcap_{p} Cl_{p}(H)$,

Theorem (Margolis-Sapir-Weil)

The nil-closure $Cl_{nil}(H)$ of $H \leq_{fg} \mathbb{F}_A$ is effectively computable.

The p-closure of $H \leq_{fg} \mathbb{F}_A$ is effectively computable, for every prime p.

And using the fact that $Cl_{nil}(H) = \bigcap_{p} Cl_{p}(H)$,

Theorem (Margolis-Sapir-Weil)

The nil-closure $Cl_{nil}(H)$ of $H \leq_{fg} \mathbb{F}_A$ is effectively computable.

Problem

Find an algorithm to compute the solvable closure $Cl_{sol}(H)$ of a given $H \leqslant_{fg} \mathbb{F}_A.$

FIXED SUBGROUPS ARE COMPLICATED

$$\begin{aligned} \varphi \colon F_3 &\to F_3 \\ a &\mapsto a \\ b &\mapsto ba \\ c &\mapsto ca^2 \end{aligned}$$

$$\begin{aligned} \varphi \colon F_3 &\to F_3 \\ a &\mapsto a \\ b &\mapsto ba \\ c &\mapsto ca^2 \end{aligned}$$

 $Fix(\phi) = \langle a, bab^{-1}, cac^{-1} \rangle$

FIXED SUBGROUPS ARE COMPLICATED

$$\begin{array}{rccc} \varphi \colon F_3 & \to & F_3 \\ a & \mapsto & a \\ b & \mapsto & ba \\ c & \mapsto & ca^2 \end{array}$$

$$\begin{aligned} \varphi \colon F_4 & \to & F_4 \\ a & \mapsto & dac \\ b & \mapsto & c^{-1}a^{-1}d^{-1}ac \\ c & \mapsto & c^{-1}a^{-1}b^{-1}ac \\ d & \mapsto & c^{-1}a^{-1}bc \end{aligned}$$

 $Fix(\phi) = \langle a, bab^{-1}, cac^{-1} \rangle$

$$\begin{array}{rcccc} \varphi \colon F_3 & \to & F_3 \\ a & \mapsto & a \\ b & \mapsto & ba \\ c & \mapsto & ca^2 \end{array}$$

 $Fix(\phi) = \langle a, bab^{-1}, cac^{-1} \rangle$

$$\varphi: F_4 \rightarrow F_4$$

$$a \mapsto dac$$

$$b \mapsto c^{-1}a^{-1}d^{-1}ac$$

$$c \mapsto c^{-1}a^{-1}b^{-1}ac$$

$$d \mapsto c^{-1}a^{-1}bc$$

 $Fix(\varphi) = \langle w \rangle$, where...

 $w = c^{-1}a^{-1}bd^{-1}c^{-1}a^{-1}d^{-1}ad^{-1}c^{-1}b^{-1}acdadacdcdbcda^{-1}a^{-1}d^{-1}a^{-1}d^{-1}a^{-1}d^{-1}c^{-1}d^{-1}c^{-1}d^{-1}c^{-1}d^{-1}c^{-1}d^{-1}a^{-1}a^{-1}d^{-1}a^{-1}d^{-1}a^{-1}a^{-1}d^{-1}a^{-1}a^{-1}d^{-1}a^{-1}a^{-1}d^{-1}a^{-1}a^{-1}d^{-1}a^{-1}a^{-1}d^{-1}a^{-1}a^{-1}d^{-1}a^{$

Theorem (Dyer-Scott, 75)

Let $\phi \in Aut(\mathbb{F}_n)$ be of finite order. Then, $Fix(\phi) \leq_{ff} \mathbb{F}_n$.

Theorem (Dyer-Scott, 75)

Let $\phi \in Aut(\mathbb{F}_n)$ be of finite order. Then, $Fix(\phi) \leq_{ff} \mathbb{F}_n$.

Theorem (Gersten, 83 (published 87))

Let $\phi \in Aut(\mathbb{F}_n)$. Then, $\mathsf{rk}(\mathsf{Fix}(\phi)) < \infty$.

Theorem (Dyer-Scott, 75)

Let $\phi \in Aut(\mathbb{F}_n)$ be of finite order. Then, $Fix(\phi) \leq_{ff} \mathbb{F}_n$.

Theorem (Gersten, 83 (published 87))

Let $\phi \in Aut(\mathbb{F}_n)$. Then, $\mathsf{rk}(\mathsf{Fix}(\phi)) < \infty$.

Theorem (Bestvina–Handel, 88 (published 92)) Let $\phi \in Aut(\mathbb{F}_n)$. Then, $\mathsf{rk}(\mathsf{Fix}(\phi)) \leq n$.

Theorem (Dyer-Scott, 75)

Let $\phi \in Aut(\mathbb{F}_n)$ be of finite order. Then, $Fix(\phi) \leq_{ff} \mathbb{F}_n$.

Theorem (Gersten, 83 (published 87))

Let $\phi \in Aut(\mathbb{F}_n)$. Then, $\mathsf{rk}(\mathsf{Fix}(\phi)) < \infty$.

Theorem (Bestvina–Handel, 88 (published 92)) Let $\phi \in Aut(\mathbb{F}_n)$. Then, $rk(Fix(\phi)) \leq n$.

Theorem (Imrich–Turner, 89)

Let $\phi \in \text{End}(\mathbb{F}_n)$. Then, $\text{rk}(\text{Fix}(\phi)) \leq n$.

Theorem (Dyer-Scott, 75)

Let $\phi \in Aut(\mathbb{F}_n)$ be of finite order. Then, $Fix(\phi) \leq_{ff} \mathbb{F}_n$.

Theorem (Gersten, 83 (published 87))

Let $\phi \in Aut(\mathbb{F}_n)$. Then, $\mathsf{rk}(\mathsf{Fix}(\phi)) < \infty$.

Theorem (Bestvina–Handel, 88 (published 92)) Let $\phi \in Aut(\mathbb{F}_n)$. Then, $rk(Fix(\phi)) \leq n$.

Theorem (Imrich–Turner, 89)

Let $\phi \in \text{End}(\mathbb{F}_n)$. Then, $\mathsf{rk}(\mathsf{Fix}(\phi)) \leqslant n$.

Theorem (Bogopolski–Maslakova, 2016; Feighn–Handel, 2018) A free basis for $Fix(\phi)$ is computable, for $\phi \in Aut(\mathbb{F}_n)$.

Theorem (Dyer-Scott, 75)

Let $\phi \in Aut(\mathbb{F}_n)$ be of finite order. Then, $Fix(\phi) \leq_{ff} \mathbb{F}_n$.

Theorem (Gersten, 83 (published 87))

Let $\phi \in Aut(\mathbb{F}_n)$. Then, $\mathsf{rk}(\mathsf{Fix}(\phi)) < \infty$.

Theorem (Bestvina–Handel, 88 (published 92)) Let $\phi \in Aut(\mathbb{F}_n)$. Then, $rk(Fix(\phi)) \leq n$.

Theorem (Imrich–Turner, 89)

Let $\phi \in \text{End}(\mathbb{F}_n)$. Then, $\mathsf{rk}(\mathsf{Fix}(\phi)) \leqslant n$.

Theorem (Bogopolski–Maslakova, 2016; Feighn–Handel, 2018) A free basis for $Fix(\varphi)$ is computable, for $\varphi \in Aut(\mathbb{F}_n)$.

Theorem (Mutanguha, 2022)

A free basis for $Fix(\varphi)$ is computable, for $\varphi \in End(\mathbb{F}_n)$.

INERTIA

Definition

A subgroup $H \leq \mathbb{F}_n$ is *inert* if $rk(H \cap K) \leq rk(K)$, for every $K \leq \mathbb{F}_n$. And *H* is *compressed* if $rk(H) \leq rk(K)$, for every $H \leq K \leq \mathbb{F}_n$.

INERTIA

Definition

A subgroup $H \leq \mathbb{F}_n$ is *inert* if $rk(H \cap K) \leq rk(K)$, for every $K \leq \mathbb{F}_n$. And H is *compressed* if $rk(H) \leq rk(K)$, for every $H \leq K \leq \mathbb{F}_n$.

Observation

There is an algorithm which, on input $u_1, \ldots, u_k \in \mathbb{F}_A$ decides whether $H = \langle u_1, \ldots, u_k \rangle$ is compressed: check the members in $\mathcal{AE}(H)$.

INERTIA

Definition

A subgroup $H \leq \mathbb{F}_n$ is *inert* if $rk(H \cap K) \leq rk(K)$, for every $K \leq \mathbb{F}_n$. And H is *compressed* if $rk(H) \leq rk(K)$, for every $H \leq K \leq \mathbb{F}_n$.

Observation

There is an algorithm which, on input $u_1, \ldots, u_k \in \mathbb{F}_A$ decides whether $H = \langle u_1, \ldots, u_k \rangle$ is compressed: check the members in $\mathcal{AE}(H)$.

We write $Fix(S) = \bigcap_{\phi \in S} Fix(\phi)$.
INERTIA

Definition

A subgroup $H \leq \mathbb{F}_n$ is *inert* if $rk(H \cap K) \leq rk(K)$, for every $K \leq \mathbb{F}_n$. And H is *compressed* if $rk(H) \leq rk(K)$, for every $H \leq K \leq \mathbb{F}_n$.

Observation

There is an algorithm which, on input $u_1, \ldots, u_k \in \mathbb{F}_A$ decides whether $H = \langle u_1, \ldots, u_k \rangle$ is compressed: check the members in $\mathcal{AE}(H)$.

We write $Fix(S) = \bigcap_{\phi \in S} Fix(\phi)$.

Theorem (Dicks-V., 96)

Let $S \subseteq Mon(\mathbb{F}_n)$ be a set of monomorphisms. Then, Fix(S) is inert.

INERTIA

Definition

A subgroup $H \leq \mathbb{F}_n$ is *inert* if $rk(H \cap K) \leq rk(K)$, for every $K \leq \mathbb{F}_n$. And H is *compressed* if $rk(H) \leq rk(K)$, for every $H \leq K \leq \mathbb{F}_n$.

Observation

There is an algorithm which, on input $u_1, \ldots, u_k \in \mathbb{F}_A$ decides whether $H = \langle u_1, \ldots, u_k \rangle$ is compressed: check the members in $\mathcal{AE}(H)$.

We write $Fix(S) = \bigcap_{\phi \in S} Fix(\phi)$.

Theorem (Dicks-V., 96)

Let $S \subseteq Mon(\mathbb{F}_n)$ be a set of monomorphisms. Then, Fix(S) is inert.

Theorem (Antolin–Jaikin-Zapirain, 2021) Let $S \subseteq \text{End}(G)$, where $G = \mathbb{F}_n$ or $G = \mathbb{S}_n$. Then, Fix(S) is inert.

The subgroup $\langle b, cacbab^{-1}c^{-1} \rangle \leq \mathbb{F}_3 = \mathbb{F}_{\{a,b,c\}}$ is the fixed subgroup of $\varphi \colon \mathbb{F}_3 \to \mathbb{F}_3$, $a \mapsto 1$, $b \mapsto b$, $c \mapsto cacbab^{-1}c^{-1}$, but it is not the fixed subgroup of any set of automorphisms of \mathbb{F}_3 .

The subgroup $\langle b, cacbab^{-1}c^{-1} \rangle \leq \mathbb{F}_3 = \mathbb{F}_{\{a,b,c\}}$ is the fixed subgroup of $\varphi \colon \mathbb{F}_3 \to \mathbb{F}_3$, $a \mapsto 1$, $b \mapsto b$, $c \mapsto cacbab^{-1}c^{-1}$, but it is not the fixed subgroup of any set of automorphisms of \mathbb{F}_3 .

Question

Is the lattice of fixed subgroups of \mathbb{F}_n (by autos or endos) closed under intersections?

The subgroup $\langle b, cacbab^{-1}c^{-1} \rangle \leq \mathbb{F}_3 = \mathbb{F}_{\{a,b,c\}}$ is the fixed subgroup of $\varphi \colon \mathbb{F}_3 \to \mathbb{F}_3$, $a \mapsto 1$, $b \mapsto b$, $c \mapsto cacbab^{-1}c^{-1}$, but it is not the fixed subgroup of any set of automorphisms of \mathbb{F}_3 .

Question

Is the lattice of fixed subgroups of \mathbb{F}_n (by autos or endos) closed under intersections? i.e., is it true that $\forall S \subseteq \operatorname{End}(\mathbb{F}_n) \quad \exists \varphi \in \operatorname{End}(\mathbb{F}_n) \quad \text{s. t.} \quad \operatorname{Fix}(S) = \operatorname{Fix}(\varphi)$?

The subgroup $\langle b, cacbab^{-1}c^{-1} \rangle \leq \mathbb{F}_3 = \mathbb{F}_{\{a,b,c\}}$ is the fixed subgroup of $\varphi \colon \mathbb{F}_3 \to \mathbb{F}_3$, $a \mapsto 1$, $b \mapsto b$, $c \mapsto cacbab^{-1}c^{-1}$, but it is not the fixed subgroup of any set of automorphisms of \mathbb{F}_3 .

Question

Is the lattice of fixed subgroups of \mathbb{F}_n (by autos or endos) closed under intersections? i.e., is it true that $\forall S \subseteq \operatorname{End}(\mathbb{F}_n) \quad \exists \varphi \in \operatorname{End}(\mathbb{F}_n) \quad \text{s. t.} \quad \operatorname{Fix}(S) = \operatorname{Fix}(\varphi)$?

Theorem (Martino–V., 2000) $\forall S \subseteq \operatorname{End}(\mathbb{F}_n) \quad \exists \varphi \in \operatorname{End}(\mathbb{F}_n) \quad \text{s.t.} \quad \operatorname{Fix}(S) \leq_{\mathrm{ff}} \operatorname{Fix}(\varphi)$

Theorem (Martino-V., 2000)

 $\forall S \subseteq \mathsf{End}(\mathbb{F}_n) \quad \exists \phi \in \mathsf{End}(\mathbb{F}_n) \quad s.t. \quad \mathsf{Fix}(S) \leqslant_{\mathsf{ff}} \mathsf{Fix}(\phi)$

Theorem (Martino-V., 2000)

 $\forall S \subseteq \mathsf{End}(\mathbb{F}_n) \quad \exists \phi \in \mathsf{End}(\mathbb{F}_n) \quad s.t. \quad \mathsf{Fix}(S) \leqslant_{\mathsf{ff}} \mathsf{Fix}(\phi)$

Sketch of proof:

• Technical argument: reduce to autos.

Theorem (Martino-V., 2000)

 $\forall S \subseteq \mathsf{End}(\mathbb{F}_n) \quad \exists \phi \in \mathsf{End}(\mathbb{F}_n) \quad s.t. \quad \mathsf{Fix}(S) \leqslant_{\mathsf{ff}} \mathsf{Fix}(\phi)$

- Technical argument: reduce to autos.
- Technical argument: reduce to proving that $\forall \varphi, \varphi \in \operatorname{Aut}(\mathbb{F}_n)$ $\exists k \ge 0 \text{ s.t } \operatorname{Fix}(\varphi) \cap \operatorname{Fix}(\varphi) \leqslant_{\mathrm{ff}} \operatorname{Fix}(\varphi \varphi^k).$

Theorem (Martino-V., 2000)

 $\forall S \subseteq \mathsf{End}(\mathbb{F}_n) \quad \exists \phi \in \mathsf{End}(\mathbb{F}_n) \quad s.t. \quad \mathsf{Fix}(S) \leqslant_{\mathsf{ff}} \mathsf{Fix}(\phi)$

- Technical argument: reduce to autos.
- Technical argument: reduce to proving that $\forall \varphi, \varphi \in \operatorname{Aut}(\mathbb{F}_n)$ $\exists k \ge 0 \text{ s.t } \operatorname{Fix}(\varphi) \cap \operatorname{Fix}(\varphi) \leqslant_{\mathrm{ff}} \operatorname{Fix}(\varphi \varphi^k).$
- Technical argument: can assume $Per(\phi) = Fix(\phi)$.

Theorem (Martino-V., 2000)

 $\forall S \subseteq \mathsf{End}(\mathbb{F}_n) \quad \exists \phi \in \mathsf{End}(\mathbb{F}_n) \quad s.t. \quad \mathsf{Fix}(S) \leqslant_{\mathsf{ff}} \mathsf{Fix}(\phi)$

- Technical argument: reduce to autos.
- Technical argument: reduce to proving that $\forall \varphi, \varphi \in \operatorname{Aut}(\mathbb{F}_n)$ $\exists k \ge 0 \text{ s.t } \operatorname{Fix}(\varphi) \cap \operatorname{Fix}(\varphi) \leqslant_{\mathrm{ff}} \operatorname{Fix}(\varphi \varphi^k).$
- Technical argument: can assume $Per(\phi) = Fix(\phi)$.
- Let $H = \mathsf{Fix}(\phi) \cap \mathsf{Fix}(\varphi) \leqslant_{\mathsf{fg}} \mathbb{F}_n$.

Theorem (Martino-V., 2000)

 $\forall S \subseteq \mathsf{End}(\mathbb{F}_n) \quad \exists \phi \in \mathsf{End}(\mathbb{F}_n) \quad s.t. \quad \mathsf{Fix}(S) \leqslant_{\mathsf{ff}} \mathsf{Fix}(\phi)$

- Technical argument: reduce to autos.
- Technical argument: reduce to proving that $\forall \varphi, \varphi \in \operatorname{Aut}(\mathbb{F}_n)$ $\exists k \ge 0 \text{ s.t } \operatorname{Fix}(\varphi) \cap \operatorname{Fix}(\varphi) \leqslant_{\mathrm{ff}} \operatorname{Fix}(\varphi \varphi^k).$
- Technical argument: can assume $Per(\phi) = Fix(\phi)$.
- Let $H = \mathsf{Fix}(\phi) \cap \mathsf{Fix}(\phi) \leqslant_{\mathsf{fg}} \mathbb{F}_n$.
- For every $k \ge 0$: since $H \le \operatorname{Fix}(\varphi \varphi^k)$, there exists $M_k \in \mathcal{AE}(H)$ such that $H \le_{\operatorname{alg}} M_k \le_{\operatorname{ff}} \operatorname{Fix}(\varphi \varphi^k)$.

Theorem (Martino-V., 2000)

 $\forall S \subseteq \mathsf{End}(\mathbb{F}_n) \quad \exists \phi \in \mathsf{End}(\mathbb{F}_n) \quad s.t. \quad \mathsf{Fix}(S) \leqslant_{\mathsf{ff}} \mathsf{Fix}(\phi)$

- Technical argument: reduce to autos.
- Technical argument: reduce to proving that $\forall \varphi, \varphi \in \operatorname{Aut}(\mathbb{F}_n)$ $\exists k \ge 0 \text{ s.t } \operatorname{Fix}(\varphi) \cap \operatorname{Fix}(\varphi) \leqslant_{\mathrm{ff}} \operatorname{Fix}(\varphi \varphi^k).$
- Technical argument: can assume $Per(\phi) = Fix(\phi)$.
- Let $H = \mathsf{Fix}(\phi) \cap \mathsf{Fix}(\phi) \leqslant_{\mathsf{fg}} \mathbb{F}_n$.
- For every $k \ge 0$: since $H \le \operatorname{Fix}(\varphi \varphi^k)$, there exists $M_k \in \mathcal{AE}(H)$ such that $H \le_{\operatorname{alg}} M_k \le_{\operatorname{ff}} \operatorname{Fix}(\varphi \varphi^k)$.
- By finiteness of $\mathcal{AE}(H)$, there are $0 \leq r < s$ such that $M_r = M_s$.

Theorem (Martino-V., 2000)

 $\forall S \subseteq \mathsf{End}(\mathbb{F}_n) \quad \exists \phi \in \mathsf{End}(\mathbb{F}_n) \quad s.t. \quad \mathsf{Fix}(S) \leqslant_{\mathsf{ff}} \mathsf{Fix}(\phi)$

- Technical argument: reduce to autos.
- Technical argument: reduce to proving that $\forall \varphi, \varphi \in \operatorname{Aut}(\mathbb{F}_n)$ $\exists k \ge 0 \text{ s.t } \operatorname{Fix}(\varphi) \cap \operatorname{Fix}(\varphi) \leqslant_{\mathrm{ff}} \operatorname{Fix}(\varphi \varphi^k).$
- Technical argument: can assume $Per(\phi) = Fix(\phi)$.
- Let $H = \mathsf{Fix}(\phi) \cap \mathsf{Fix}(\phi) \leqslant_{\mathsf{fg}} \mathbb{F}_n$.
- For every $k \ge 0$: since $H \le \text{Fix}(\varphi \varphi^k)$, there exists $M_k \in \mathcal{AE}(H)$ such that $H \le_{\text{alg}} M_k \le_{\text{ff}} \text{Fix}(\varphi \varphi^k)$.
- By finiteness of $\mathcal{AE}(H)$, there are $0 \leq r < s$ such that $M_r = M_s$.
- Then, $H \leqslant M_r = M_s \leqslant \mathsf{Fix}(\phi \varphi^r) \cap \mathsf{Fix}(\phi \varphi^s) = \mathsf{Fix}(\phi) \cap \mathsf{Fix}(\varphi) = H$.

Theorem (Martino-V., 2000)

 $\forall S \subseteq \mathsf{End}(\mathbb{F}_n) \quad \exists \phi \in \mathsf{End}(\mathbb{F}_n) \quad s.t. \quad \mathsf{Fix}(S) \leqslant_{\mathsf{ff}} \mathsf{Fix}(\phi)$

- Technical argument: reduce to autos.
- Technical argument: reduce to proving that $\forall \varphi, \varphi \in \operatorname{Aut}(\mathbb{F}_n)$ $\exists k \ge 0 \text{ s.t } \operatorname{Fix}(\varphi) \cap \operatorname{Fix}(\varphi) \leqslant_{\mathrm{ff}} \operatorname{Fix}(\varphi \varphi^k).$
- Technical argument: can assume $Per(\phi) = Fix(\phi)$.
- Let $H = \mathsf{Fix}(\phi) \cap \mathsf{Fix}(\phi) \leqslant_{\mathsf{fg}} \mathbb{F}_n$.
- For every $k \ge 0$: since $H \le \text{Fix}(\varphi \varphi^k)$, there exists $M_k \in \mathcal{AE}(H)$ such that $H \le_{\text{alg}} M_k \le_{\text{ff}} \text{Fix}(\varphi \varphi^k)$.
- By finiteness of $\mathcal{AE}(H)$, there are $0 \leq r < s$ such that $M_r = M_s$.
- Then, $H \leqslant M_r = M_s \leqslant \mathsf{Fix}(\phi \varphi^r) \cap \mathsf{Fix}(\phi \varphi^s) = \mathsf{Fix}(\phi) \cap \mathsf{Fix}(\varphi) = H$.
- Hence, $H = M_r \leq_{ff} Fix(\phi \phi^r)$.

ASYMPTOTIC BEHAVIOR

- Objective: what does a "typical" subgroup of \mathbb{F}_{A} look like?

- Objective: what does a "typical" subgroup of \mathbb{F}_{A} look like?
- Asymptotic properties: how likely is it that a subgroup has finite index? is malnormal? What is the expected rank of a subgroup?

- Objective: what does a "typical" subgroup of \mathbb{F}_{A} look like?
- Asymptotic properties: how likely is it that a subgroup has finite index? is malnormal? What is the expected rank of a subgroup?
- Three levels of questions:

- Objective: what does a "typical" subgroup of \mathbb{F}_{A} look like?
- Asymptotic properties: how likely is it that a subgroup has finite index? is malnormal? What is the expected rank of a subgroup?
- Three levels of questions:
 - Counting subgroups (with a given property)

- Objective: what does a "typical" subgroup of \mathbb{F}_A look like?
- Asymptotic properties: how likely is it that a subgroup has finite index? is malnormal? What is the expected rank of a subgroup?
- Three levels of questions:
 - Counting subgroups (with a given property)
 - (efficiently) generating subgroups uniformly at random

- Objective: what does a "typical" subgroup of \mathbb{F}_{A} look like?
- Asymptotic properties: how likely is it that a subgroup has finite index? is malnormal? What is the expected rank of a subgroup?
- Three levels of questions:
 - Counting subgroups (with a given property)
 - (efficiently) generating subgroups uniformly at random
 - establishing asymptotic properties, e.g. probability of having finite index, of being malnormal; expected rank

WE CAN COUNT ONLY FINITE QUANTITIES

• Counting requires finite sets: choose parameters which guarantee finiteness

WE CAN COUNT ONLY FINITE QUANTITIES

- Counting requires finite sets: choose parameters which guarantee finiteness
- In the literature (but not here!):

- Counting requires finite sets: choose parameters which guarantee finiteness
- In the literature (but not here!):
 - fix k, draw uniformly at random a k-tuple \vec{w} of reduced words of length at most n, consider $H = \langle \vec{w} \rangle$

- Counting requires finite sets: choose parameters which guarantee finiteness
- In the literature (but not here!):
 - fix k, draw uniformly at random a k-tuple \vec{w} of reduced words of length at most n, consider $H = \langle \vec{w} \rangle$
 - same thing, but let *k* be a function of *n*; includes Gromov's density model

- Counting requires finite sets: choose parameters which guarantee finiteness
- In the literature (but not here!):
 - fix k, draw uniformly at random a k-tuple \vec{w} of reduced words of length at most n, consider $H = \langle \vec{w} \rangle$
 - same thing, but let *k* be a function of *n*; includes Gromov's density model
- Gromov, Arjantseva, Ol'shanskii, Kapovich, Miasnikov, Schupp, Shpilrain, Ollivier, Jitsukawa, Bassino, Nicaud, W. ...

• Here: we exploit the bijection between finitely generated subgroups of \mathbb{F}_A and Stallings automata; the parameter is the size n of the Stallings automaton (the number of vertices)

- Here: we exploit the bijection between finitely generated subgroups of \mathbb{F}_A and Stallings automata; the parameter is the size n of the Stallings automaton (the number of vertices)
- What does a size *n* subgroup look like?

- Here: we exploit the bijection between finitely generated subgroups of \mathbb{F}_A and Stallings automata; the parameter is the size n of the Stallings automaton (the number of vertices)
- What does a size *n* subgroup look like?
- A (simplified) picture with n = 200 and |A| = 2

- Here: we exploit the bijection between finitely generated subgroups of \mathbb{F}_A and Stallings automata; the parameter is the size n of the Stallings automaton (the number of vertices)
- What does a size *n* subgroup look like?
- A (simplified) picture with n = 200 and |A| = 2

• Work by Bassino, Martino, Nicaud, V., W.

- Instead of counting or randomly generating subgroups of $\mathbb{F}_{A},$ we count or generate Stallings automata

- Instead of counting or randomly generating subgroups of $\mathbb{F}_{A},$ we count or generate Stallings automata
- These are discrete objects: finite pointed connected core A-automata

- Instead of counting or randomly generating subgroups of $\mathbb{F}_{A},$ we count or generate Stallings automata
- These are discrete objects: finite pointed connected core A-automata
- Consider a size *n* Stallings automaton: each letter *a* defines a *partial injection* f_a on the vertex set of Γ

- Instead of counting or randomly generating subgroups of $\mathbb{F}_{A},$ we count or generate Stallings automata
- These are discrete objects: finite pointed connected core A-automata
- Consider a size *n* Stallings automaton: each letter *a* defines a *partial injection* f_a on the vertex set of Γ
- Γ is determined by the A-tuple $(f_a)_{a\in A}$ and the selection of a basepoint

- Instead of counting or randomly generating subgroups of $\mathbb{F}_{A},$ we count or generate Stallings automata
- These are discrete objects: finite pointed connected core A-automata
- Consider a size *n* Stallings automaton: each letter *a* defines a *partial injection* f_a on the vertex set of Γ
- Γ is determined by the A-tuple $(f_a)_{a \in A}$ and the selection of a basepoint
- Counting strategy: determine the number PI_n of partial injections on *n* elements. Unfortunately, the number of size *n* subgroups is not $n PI_n^{|A|}$. Why?
STRATEGY

- Instead of counting or randomly generating subgroups of $\mathbb{F}_{A},$ we count or generate Stallings automata
- These are discrete objects: finite pointed connected core A-automata
- Consider a size *n* Stallings automaton: each letter *a* defines a *partial injection* f_a on the vertex set of Γ
- Γ is determined by the A-tuple $(f_a)_{a\in A}$ and the selection of a basepoint
- Counting strategy: determine the number PI_n of partial injections on *n* elements. Unfortunately, the number of size *n* subgroups is not $n PI_n^{|A|}$. Why?
- Random generation strategy: draw independently, uniformly at random, |A| partial injections, select randomly a base point. This *almost* works...

• Counting is highly sensitive to the presence of non-trivial automorphisms

- Counting is highly sensitive to the presence of non-trivial automorphisms
- Example: up to isomorphism, there is only one A-automaton consisting of a circuit labeled a^3 (resp. a^2b) with 3 vertices

- Counting is highly sensitive to the presence of non-trivial automorphisms
- Example: up to isomorphism, there is only one A-automaton consisting of a circuit labeled a^3 (resp. a^2b) with 3 vertices
- If the vertex set is $V = \{p, q, r\}$, we have in fact 2 graphs for a^3 , and 6 for a^2b

- Counting is highly sensitive to the presence of non-trivial automorphisms
- Example: up to isomorphism, there is only one A-automaton consisting of a circuit labeled a^3 (resp. a^2b) with 3 vertices
- If the vertex set is $V = \{p, q, r\}$, we have in fact 2 graphs for a^3 , and 6 for a^2b
- In general, the number of A-automaton (on a fixed set of vertices) consisting of a circuit labeled *u* depends on the length of *u* and on whether *u* is a non-trivial power

- Counting is highly sensitive to the presence of non-trivial automorphisms
- Example: up to isomorphism, there is only one A-automaton consisting of a circuit labeled a^3 (resp. a^2b) with 3 vertices
- If the vertex set is $V = \{p, q, r\}$, we have in fact 2 graphs for a^3 , and 6 for a^2b
- In general, the number of A-automaton (on a fixed set of vertices) consisting of a circuit labeled *u* depends on the length of *u* and on whether *u* is a non-trivial power
- Symmetries mess up counting

• a solution to break symmetries: consider labeled structures (graphs)

- a solution to break symmetries: consider labeled structures (graphs)
- if $\Gamma = (V, E)$ and |V| = n, a *labeling* of Γ is a bijection from V to [n]

- a solution to break symmetries: consider labeled structures (graphs)
- if $\Gamma = (V, E)$ and |V| = n, a *labeling* of Γ is a bijection from V to [n]

Proposition

If Γ is a Stallings automaton (pointed connected reduced A-automaton), then Γ admits n! labelings.

- a solution to break symmetries: consider labeled structures (graphs)
- if $\Gamma = (V, E)$ and |V| = n, a *labeling* of Γ is a bijection from V to [n]

Proposition

If Γ is a Stallings automaton (pointed connected reduced *A*-automaton), then Γ admits *n*! labelings.

• Proof: Fix a spanning tree *T*, totally order vertices using the *T*-path from the basepoint to each vertex: $v_1 < v_2 < \cdots < v_n$. A labeling is a permutation of [n]

- a solution to break symmetries: consider labeled structures (graphs)
- if $\Gamma = (V, E)$ and |V| = n, a *labeling* of Γ is a bijection from V to [n]

Proposition

If Γ is a Stallings automaton (pointed connected reduced *A*-automaton), then Γ admits *n*! labelings.

- Proof: Fix a spanning tree *T*, totally order vertices using the *T*-path from the basepoint to each vertex: $v_1 < v_2 < \cdots < v_n$. A labeling is a permutation of [n]
- Counting labeled Stallings automata gives us *n*! times the number of Stallings automata (of subgroups)

- a solution to break symmetries: consider labeled structures (graphs)
- if $\Gamma = (V, E)$ and |V| = n, a *labeling* of Γ is a bijection from V to [n]

Proposition

If Γ is a Stallings automaton (pointed connected reduced *A*-automaton), then Γ admits *n*! labelings.

- Proof: Fix a spanning tree *T*, totally order vertices using the *T*-path from the basepoint to each vertex: $v_1 < v_2 < \cdots < v_n$. A labeling is a permutation of [n]
- Counting labeled Stallings automata gives us *n*! times the number of Stallings automata (of subgroups)
- Forgetting the labeling of a random labeled Stallings automaton, yields a random Stallings automaton

• *A*, a class of *finite* combinatorial structures: e.g. graphs, pointed graphs, labeled graphs, permutations, partial injections, words, etc

- *A*, a class of *finite* combinatorial structures: e.g. graphs, pointed graphs, labeled graphs, permutations, partial injections, words, etc
- Let a_n be the number of A-structures of size n

- *A*, a class of *finite* combinatorial structures: e.g. graphs, pointed graphs, labeled graphs, permutations, partial injections, words, etc
- Let a_n be the number of A-structures of size n
- Generating series: $\sum_{n} a_n z^n$, where z is a formal variable. Formal power series: we don't care about convergence

- *A*, a class of *finite* combinatorial structures: e.g. graphs, pointed graphs, labeled graphs, permutations, partial injections, words, etc
- Let a_n be the number of A-structures of size n
- Generating series: $\sum_{n} a_n z^n$, where z is a formal variable. Formal power series: we don't care about convergence
- Example: permutations, $\sum n! z^n$

- *A*, a class of *finite* combinatorial structures: e.g. graphs, pointed graphs, labeled graphs, permutations, partial injections, words, etc
- Let a_n be the number of A-structures of size n
- Generating series: $\sum_{n} a_n z^n$, where z is a formal variable. Formal power series: we don't care about convergence
- Example: permutations, $\sum n! z^n$
- Exponential generating series (EGS): $\sum_{n} \frac{a_n}{n!} z^n$

- *A*, a class of *finite* combinatorial structures: e.g. graphs, pointed graphs, labeled graphs, permutations, partial injections, words, etc
- Let a_n be the number of A-structures of size n
- Generating series: $\sum_{n} a_n z^n$, where z is a formal variable. Formal power series: we don't care about convergence
- Example: permutations, $\sum n! z^n$
- Exponential generating series (EGS): $\sum_{n} \frac{a_n}{n!} z^n$
- better for labeled structures; and better for convergence, so we can use analysis

- *A*, a class of *finite* combinatorial structures: e.g. graphs, pointed graphs, labeled graphs, permutations, partial injections, words, etc
- Let a_n be the number of A-structures of size n
- Generating series: $\sum_{n} a_n z^n$, where z is a formal variable. Formal power series: we don't care about convergence
- Example: permutations, $\sum n! z^n$
- Exponential generating series (EGS): $\sum_{n} \frac{a_n}{n!} z^n$
- better for labeled structures; and better for convergence, so we can use analysis
- Permutations: $\sum Z^n = \frac{1}{1-z}$

- *A*, a class of *finite* combinatorial structures: e.g. graphs, pointed graphs, labeled graphs, permutations, partial injections, words, etc
- Let a_n be the number of A-structures of size n
- Generating series: $\sum_{n} a_n z^n$, where z is a formal variable. Formal power series: we don't care about convergence
- Example: permutations, $\sum n! z^n$
- Exponential generating series (EGS): $\sum_{n} \frac{a_n}{n!} z^n$
- better for labeled structures; and better for convergence, so we can use analysis
- Permutations: $\sum Z^n = \frac{1}{1-z}$
- Refer to the Bible: Ph. Flajolet, R. Sedgewick, *Analytic combinatorics*, Cambridge University Press, 2009

• A and B disjoint families of labeled structures (think: graphs), with EGS A(z), B(z)

- A and B disjoint families of labeled structures (think: graphs), with EGS A(z), B(z)
- C = structures that are either A or B: C(z) = A(z) + B(z)

- A and B disjoint families of labeled structures (think: graphs), with EGS A(z), B(z)
- C = structures that are either A or B: C(z) = A(z) + B(z)
- C = pairs (X, Y), of an A-structure X and a B-structure Y

- A and B disjoint families of labeled structures (think: graphs), with EGS A(z), B(z)
- C = structures that are either A or B: C(z) = A(z) + B(z)
- C = pairs (X, Y), of an A-structure X and a B-structure Y
- ...with *appropriate* labeling (the size is the sum of the sizes of *X* and *Y*)

- A and B disjoint families of labeled structures (think: graphs), with EGS A(z), B(z)
- C = structures that are either A or B: C(z) = A(z) + B(z)
- $\mathcal{C} = \text{pairs}(X, Y)$, of an \mathcal{A} -structure X and a \mathcal{B} -structure Y
- ...with *appropriate* labeling (the size is the sum of the sizes of *X* and *Y*)
- C(z) = A(z)B(z)

• C = pairs of two A-structures: $C(z) = A^2(z)$

- C = pairs of two A-structures: $C(z) = A^2(z)$
- C = k-tuple of A-structures: $C(z) = A^k(z)$

- C = pairs of two A-structures: $C(z) = A^2(z)$
- C = k-tuple of A-structures: $C(z) = A^k(z)$
- C = sequences of A-structures: $C(z) = \sum_{k} A^{k}(z) = \frac{1}{1-A(z)}$

- C = pairs of two A-structures: $C(z) = A^2(z)$
- $\mathcal{C} = k$ -tuple of \mathcal{A} -structures: $C(z) = A^k(z)$
- C = sequences of A-structures: $C(z) = \sum_{k} A^{k}(z) = \frac{1}{1-A(z)}$
- Example. The EGS of 1 point is z. A permutation is a labeled sequence of points: its EGS is $\frac{1}{1-z} = \sum \frac{n!}{n!} z^n$

• set of *k* A-structures = a sequence where we forget the order: $\frac{A^k(z)}{k!}$

- set of *k* A-structures = a sequence where we forget the order: $\frac{A^k(z)}{k!}$
- set of A-structures: $\sum_{k} \frac{A^{k}(z)}{k!} = \exp(A(z))$

- set of k A-structures = a sequence where we forget the order: $\frac{A^k(z)}{k!}$
- set of A-structures: $\sum_{k} \frac{A^{k}(z)}{k!} = \exp(A(z))$
- Example: set of points. There is exactly one of each size: the EGS is

$$\sum \frac{1}{n!} z^n = \exp(z)$$

- set of k A-structures = a sequence where we forget the order: $\frac{A^k(z)}{k!}$
- set of A-structures: $\sum_{k} \frac{A^{k}(z)}{k!} = \exp(A(z))$
- Example: set of points. There is exactly one of each size: the EGS is

$$\sum \frac{1}{n!} z^n = \exp(z)$$

• cycle of k A-structures = a sequence up to cyclic shift: $\frac{A^{R}(Z)}{k}$

- set of k A-structures = a sequence where we forget the order: $\frac{A^k(z)}{k!}$
- set of A-structures: $\sum_{k} \frac{A^{k}(z)}{k!} = \exp(A(z))$
- Example: set of points. There is exactly one of each size: the EGS is

$$\sum \frac{1}{n!} z^n = \exp(z)$$

- cycle of k A-structures = a sequence up to cyclic shift: $\frac{A^{R}(z)}{k}$
- cycle of size \geq 1 of A-structures:

$$\sum_{k \ge 1} \frac{A^k(z)}{k} = -\log(1 - A(z)) = \log\left(\frac{1}{1 - A(z)}\right)$$

• direct computation of PI_n : for each $k \leq n$, choose a domain and a range (both k-subsets of [n]), and a permutation of k elements.

• direct computation of PI_n : for each $k \leq n$, choose a domain and a range (both k-subsets of [n]), and a permutation of k elements.

•
$$PI_n = \sum_{k=0}^n \binom{n}{k}^2 k!$$
- direct computation of PI_n: for each k ≤ n, choose a domain and a range (both k-subsets of [n]), and a permutation of k elements.
- $PI_n = \sum_{k=0}^n \binom{n}{k}^2 k!$
- shortcomings of this elementary computation:

- direct computation of PI_n: for each k ≤ n, choose a domain and a range (both k-subsets of [n]), and a permutation of k elements.
- $PI_n = \sum_{k=0}^n \binom{n}{k}^2 k!$
- shortcomings of this elementary computation:
 - very long to compute (quadratic time + multiplication of large numbers.

- direct computation of PI_n: for each k ≤ n, choose a domain and a range (both k-subsets of [n]), and a permutation of k elements.
- $PI_n = \sum_{k=0}^n \binom{n}{k}^2 k!$
- shortcomings of this elementary computation:
 - very long to compute (quadratic time + multiplication of large numbers.
 - difficult to analyze when the time comes to discuss connectivity.

• What is a partial injection? Think of its functional graphs (the *a*-edges in a Stallings automaton)

- What is a partial injection? Think of its functional graphs (the *a*-edges in a Stallings automaton)
- The connected components (orbits) are isolated points, sequences and cycles

- What is a partial injection? Think of its functional graphs (the *a*-edges in a Stallings automaton)
- The connected components (orbits) are isolated points, sequences and cycles
- Seen differently: a labeled set of structures that are either sequences of ≥ 1 points, or cycles of ≥ 1 points

- What is a partial injection? Think of its functional graphs (the *a*-edges in a Stallings automaton)
- The connected components (orbits) are isolated points, sequences and cycles
- Seen differently: a labeled set of structures that are either sequences of ≥ 1 points, or cycles of ≥ 1 points
- The EGS of a point is z, of a non-empty sequence of points $\frac{1}{1-z} 1 = \frac{z}{1-z}$

- What is a partial injection? Think of its functional graphs (the *a*-edges in a Stallings automaton)
- The connected components (orbits) are isolated points, sequences and cycles
- Seen differently: a labeled set of structures that are either sequences of ≥ 1 points, or cycles of ≥ 1 points
- The EGS of a point is z, of a non-empty sequence of points $\frac{1}{1-z} 1 = \frac{z}{1-z}$
- The EGS of a cycle of ≥ 1 points is $\log\left(\frac{1}{1-z}\right)$

- What is a partial injection? Think of its functional graphs (the *a*-edges in a Stallings automaton)
- The connected components (orbits) are isolated points, sequences and cycles
- Seen differently: a labeled set of structures that are either sequences of \geqslant 1 points, or cycles of \geqslant 1 points
- The EGS of a point is z, of a non-empty sequence of points $\frac{1}{1-z} 1 = \frac{z}{1-z}$
- The EGS of a cycle of ≥ 1 points is $\log\left(\frac{1}{1-z}\right)$
- The EGS PInj is $\exp\left(\frac{z}{1-z} + \log\left(\frac{1}{1-z}\right)\right) = \frac{1}{1-z}\exp\left(\frac{z}{1-z}\right)$

•
$$\operatorname{Plnj}(z) = \frac{1}{1-z} \exp\left(\frac{z}{1-z}\right)$$

- $\operatorname{Plnj}(z) = \frac{1}{1-z} \exp\left(\frac{z}{1-z}\right)$
- $\frac{d}{dz}$ PInj $(z) = \frac{2-z}{(1-z)^2}$ PInj(z)

- $\operatorname{Plnj}(z) = \frac{1}{1-z} \exp\left(\frac{z}{1-z}\right)$
- $\frac{d}{dz}$ PInj $(z) = \frac{2-z}{(1-z)^2}$ PInj(z)
- $(1-z)^2 \sum n \frac{p_{l_n}}{n!} z^{n-1} = (2-z) \sum \frac{p_{l_n}}{n!} z^n$

- $\operatorname{Plnj}(z) = \frac{1}{1-z} \exp\left(\frac{z}{1-z}\right)$
- $\frac{d}{dz}$ Plnj(z) = $\frac{2-z}{(1-z)^2}$ Plnj(z)
- $(1-z)^2 \sum n \frac{p_{l_n}}{n!} z^{n-1} = (2-z) \sum \frac{p_{l_n}}{n!} z^n$

Proposition

 $PI_0 = 1$, $PI_1 = 2$ and for $n \ge 2$, $PI_n = 2n PI_{n-1} - (n-1)^2 PI_{n-2}$

•
$$\operatorname{Plnj}(z) = \frac{1}{1-z} \exp\left(\frac{z}{1-z}\right)$$

- $\frac{d}{dz}$ Plnj(z) = $\frac{2-z}{(1-z)^2}$ Plnj(z)
- $(1-z)^2 \sum n \frac{p_{l_n}}{n!} z^{n-1} = (2-z) \sum \frac{p_{l_n}}{n!} z^n$

Proposition

 $PI_0 = 1$, $PI_1 = 2$ and for $n \ge 2$, $PI_n = 2n PI_{n-1} - (n-1)^2 PI_{n-2}$

• Verify the count for n = 2: $PI_2 = 7$

•
$$\operatorname{Plnj}(z) = \frac{1}{1-z} \exp\left(\frac{z}{1-z}\right)$$

- $\frac{d}{dz}$ Plnj(z) = $\frac{2-z}{(1-z)^2}$ Plnj(z)
- $(1-z)^2 \sum n \frac{p_{l_n}}{n!} z^{n-1} = (2-z) \sum \frac{p_{l_n}}{n!} z^n$

Proposition

 $PI_0 = 1$, $PI_1 = 2$ and for $n \ge 2$, $PI_n = 2n PI_{n-1} - (n-1)^2 PI_{n-2}$

- Verify the count for n = 2: $PI_2 = 7$
- Note: *PI_n* is computed in linear time (in the RAM model)

•
$$\operatorname{Plnj}(z) = \frac{1}{1-z} \exp\left(\frac{z}{1-z}\right)$$

- $\frac{d}{dz}$ Plnj(z) = $\frac{2-z}{(1-z)^2}$ Plnj(z)
- $(1-z)^2 \sum n \frac{PI_n}{n!} z^{n-1} = (2-z) \sum \frac{PI_n}{n!} z^n$

Proposition

 $PI_0 = 1$, $PI_1 = 2$ and for $n \ge 2$, $PI_n = 2n PI_{n-1} - (n-1)^2 PI_{n-2}$

- Verify the count for n = 2: $PI_2 = 7$
- Note: *PI_n* is computed in linear time (in the RAM model)

• Also:
$$\frac{PI_{n-1}}{PI_n} \leq \frac{1}{2n}$$

• We have computed the EGS of partial injections, $PInj(z) = \frac{1}{1-z} \exp(\frac{z}{1-z}).$

- We have computed the EGS of partial injections, $PInj(z) = \frac{1}{1-z} \exp\left(\frac{z}{1-z}\right).$
- If |A| = r, the EGS of |A|-tuples of partial injections of [n] is 1 + J(z), with $J(z) = \sum_{n \ge 1} \frac{P I_n^r}{n!} z^n$.

- We have computed the EGS of partial injections, $PInj(z) = \frac{1}{1-z} \exp(\frac{z}{1-z}).$
- If |A| = r, the EGS of |A|-tuples of partial injections of [n] is 1 + J(z), with $J(z) = \sum_{n \ge 1} \frac{Pl'_n}{n!} z^n$.
- We only want *connected* |A|*-tuples*: that is, which define a connected A-automaton.

- We have computed the EGS of partial injections, $PInj(z) = \frac{1}{1-z} \exp(\frac{z}{1-z}).$
- If |A| = r, the EGS of |A|-tuples of partial injections of [n] is 1 + J(z), with $J(z) = \sum_{n \ge 1} \frac{Pl'_n}{n!} z^n$.
- We only want *connected* |A|*-tuples*: that is, which define a connected A-automaton.
- Let C(z) be the EGS of connected |A|-tuples: then $1 + J(z) = \exp(C(z))$

- We have computed the EGS of partial injections, $PInj(z) = \frac{1}{1-z} \exp(\frac{z}{1-z}).$
- If |A| = r, the EGS of |A|-tuples of partial injections of [n] is 1 + J(z), with $J(z) = \sum_{n \ge 1} \frac{Pl'_n}{n!} z^n$.
- We only want *connected* |A|*-tuples*: that is, which define a connected A-automaton.
- Let C(z) be the EGS of connected |A|-tuples: then $1 + J(z) = \exp(C(z))$
- so $C(z) = \log(1 + J(z)) = \sum_{n} \frac{C_n}{n!} z^n$

- We have computed the EGS of partial injections, $PInj(z) = \frac{1}{1-z} \exp(\frac{z}{1-z}).$
- If |A| = r, the EGS of |A|-tuples of partial injections of [n] is 1 + J(z), with $J(z) = \sum_{n \ge 1} \frac{Pl'_n}{n!} z^n$.
- We only want *connected* |A|*-tuples*: that is, which define a connected A-automaton.
- Let C(z) be the EGS of connected |A|-tuples: then $1 + J(z) = \exp(C(z))$
- so $C(z) = \log(1 + J(z)) = \sum_{n} \frac{C_n}{n!} z^n$
- Take the derivative: $\frac{d}{dz}J(z) = \frac{d}{dz}C(z) (1 + J(z))$

- We have computed the EGS of partial injections, $PInj(z) = \frac{1}{1-z} \exp(\frac{z}{1-z}).$
- If |A| = r, the EGS of |A|-tuples of partial injections of [n] is 1 + J(z), with $J(z) = \sum_{n \ge 1} \frac{Pl'_n}{n!} z^n$.
- We only want *connected* |A|*-tuples*: that is, which define a connected A-automaton.
- Let C(z) be the EGS of connected |A|-tuples: then $1 + J(z) = \exp(C(z))$
- so $C(z) = \log(1 + J(z)) = \sum_{n} \frac{C_n}{n!} z^n$
- Take the derivative: $\frac{d}{dz}J(z) = \frac{d}{dz}C(z) (1 + J(z))$
- Yields a formula for the coefficients C_n , in terms of the PI_n

• Now the probability that an |A|-tuple is connected is $\frac{C_n}{Pl_n^r}$. What does that look like?

- Now the probability that an |A|-tuple is connected is $\frac{C_n}{Pl'_n}$. What does that look like?
- Dive into real analysis!...

- Now the probability that an |A|-tuple is connected is $\frac{C_n}{Pl'_n}$. What does that look like?
- Dive into real analysis!...

Theorem (Bender)

Let F(z, y) is a real function, analytic at (0, 0). Let $J(z) = \sum_{n>0} j_n z^n$, $C(z) = \sum_{n>0} c_n z^n$ and $D(z) = \sum_{n>0} d_n z^n$ with C(z) = F(z, J(z)) and $D(z) = \frac{\partial F}{\partial y}(z, J(z))$. If $j_{n-1} = o(j_n)$ and there exists $s \ge 1$ such that $\sum_{k=s}^{n-s} |j_k j_{n-k}| = O(j_{n-s})$, then $c_n = \sum_{k=0}^{s-1} d_k j_{n-k} + O(j_{n-s})$.

- Now the probability that an |A|-tuple is connected is $\frac{C_n}{Pl'_n}$. What does that look like?
- Dive into real analysis!...

Theorem (Bender)

Let F(z, y) is a real function, analytic at (0, 0). Let $J(z) = \sum_{n>0} j_n z^n$, $C(z) = \sum_{n>0} c_n z^n$ and $D(z) = \sum_{n>0} d_n z^n$ with C(z) = F(z, J(z)) and $D(z) = \frac{\partial F}{\partial y}(z, J(z))$. If $j_{n-1} = o(j_n)$ and there exists $s \ge 1$ such that $\sum_{k=s}^{n-s} |j_k j_{n-k}| = O(j_{n-s})$, then $c_n = \sum_{k=0}^{s-1} d_k j_{n-k} + O(j_{n-s})$.

• Recall that $C(z) = \log(1 + J(z))$. Use $F(z, y) = \log(1 + y)$

- Now the probability that an |A|-tuple is connected is $\frac{C_n}{Pl'_n}$. What does that look like?
- Dive into real analysis!...

Theorem (Bender)

Let F(z, y) is a real function, analytic at (0, 0). Let $J(z) = \sum_{n>0} j_n z^n$, $C(z) = \sum_{n>0} c_n z^n$ and $D(z) = \sum_{n>0} d_n z^n$ with C(z) = F(z, J(z)) and $D(z) = \frac{\partial F}{\partial y}(z, J(z))$. If $j_{n-1} = o(j_n)$ and there exists $s \ge 1$ such that $\sum_{k=s}^{n-s} |j_k j_{n-k}| = O(j_{n-s})$, then $c_n = \sum_{k=0}^{s-1} d_k j_{n-k} + O(j_{n-s})$.

• Recall that $C(z) = \log(1 + J(z))$. Use $F(z, y) = \log(1 + y)$

Proposition

The probability that a size *n* tuple of partial injections is connected is $1 - \frac{2^r}{n^{r-1}} + o(\frac{1}{n^{r-1}})$: connectedness holds with probability tending to 1

• We also want tuples of partial injections where every vertex that is not the basepoint, is adjacent to at least two edges.

- We also want tuples of partial injections where every vertex that is not the basepoint, is adjacent to at least two edges.
- We show that the probablility that this holds also tends to 1. Enough to consider $A = \{a, b\}$.

- We also want tuples of partial injections where every vertex that is not the basepoint, is adjacent to at least two edges.
- We show that the probablility that this holds also tends to 1. Enough to consider $A = \{a, b\}$.
- For a given partial injection *f*, a point in [*n*] is either isolated (a sequence of length 1), or an extremity of a sequence, or has arity 2 in the graph of *f*.

- We also want tuples of partial injections where every vertex that is not the basepoint, is adjacent to at least two edges.
- We show that the probablility that this holds also tends to 1. Enough to consider $A = \{a, b\}$.
- For a given partial injection *f*, a point in [*n*] is either isolated (a sequence of length 1), or an extremity of a sequence, or has arity 2 in the graph of *f*.
- A vertex has arity 1 if it is an extremity for one letter and isolated for the other letter.

- We also want tuples of partial injections where every vertex that is not the basepoint, is adjacent to at least two edges.
- We show that the probablility that this holds also tends to 1. Enough to consider $A = \{a, b\}$.
- For a given partial injection *f*, a point in [*n*] is either isolated (a sequence of length 1), or an extremity of a sequence, or has arity 2 in the graph of *f*.
- A vertex has arity 1 if it is an extremity for one letter and isolated for the other letter.
- The number of extremities, and of isolated points can be bounded above and under in terms of the number of sequences in the partial injection.

- We also want tuples of partial injections where every vertex that is not the basepoint, is adjacent to at least two edges.
- We show that the probablility that this holds also tends to 1. Enough to consider $A = \{a, b\}$.
- For a given partial injection *f*, a point in [*n*] is either isolated (a sequence of length 1), or an extremity of a sequence, or has arity 2 in the graph of *f*.
- A vertex has arity 1 if it is an extremity for one letter and isolated for the other letter.
- The number of extremities, and of isolated points can be bounded above and under in terms of the number of sequences in the partial injection.
- Let X_n be the random variable which counts the number of sequences in a partial injection of size *n*.

• Again EGS and powerful real analysis theorems help

- Again EGS and powerful real analysis theorems help
- Let $PI_{n,k}$ is the number of partial injections of size *n* with *k* sequences and SPInj $(z, u) = \sum_{n,k} \frac{PI_{n,k}}{n!} z^n u^k$
- $\cdot\,$ Again EGS and powerful real analysis theorems help
- Let $PI_{n,k}$ is the number of partial injections of size *n* with *k* sequences and SPInj(*z*, *u*) = $\sum_{n,k} \frac{PI_{n,k}}{n!} z^n u^k$
- Similar calculus: cycles are $\log(\frac{1}{1-z})$ and non-empty sequences are $\frac{zu}{1-z}$, so SPInj $(z, u) = \frac{1}{1-z} \exp(\frac{zu}{1-z})$

- $\cdot\,$ Again EGS and powerful real analysis theorems help
- Let $PI_{n,k}$ is the number of partial injections of size *n* with *k* sequences and SPInj(*z*, *u*) = $\sum_{n,k} \frac{PI_{n,k}}{n!} z^n u^k$
- Similar calculus: cycles are $\log \left(\frac{1}{1-z}\right)$ and non-empty sequences are $\frac{zu}{1-z}$, so SPInj $(z, u) = \frac{1}{1-z} \exp \left(\frac{zu}{1-z}\right)$

• Expected value of
$$X_n$$
: $\mathbb{E}(X_n) = \frac{\sum_k k P I_{n,k}}{P I_n}$

- $\cdot\,$ Again EGS and powerful real analysis theorems help
- Let $PI_{n,k}$ is the number of partial injections of size *n* with *k* sequences and SPInj(*z*, *u*) = $\sum_{n,k} \frac{PI_{n,k}}{n!} z^n u^k$
- Similar calculus: cycles are $\log(\frac{1}{1-z})$ and non-empty sequences are $\frac{zu}{1-z}$, so SPInj $(z, u) = \frac{1}{1-z} \exp(\frac{zu}{1-z})$
- Expected value of X_n : $\mathbb{E}(X_n) = \frac{\sum_k k P I_{n,k}}{P I_n}$
- Variance of X_n : $\sigma^2(X_n) = \mathbb{E}(X_n^2) \mathbb{E}(X_n)^2$

- $\cdot\,$ Again EGS and powerful real analysis theorems help
- Let $PI_{n,k}$ is the number of partial injections of size *n* with *k* sequences and SPInj(*z*, *u*) = $\sum_{n,k} \frac{PI_{n,k}}{n!} z^n u^k$
- Similar calculus: cycles are $\log(\frac{1}{1-z})$ and non-empty sequences are $\frac{zu}{1-z}$, so SPInj $(z, u) = \frac{1}{1-z} \exp(\frac{zu}{1-z})$
- Expected value of X_n : $\mathbb{E}(X_n) = \frac{\sum_k k P I_{n,k}}{P I_n}$
- Variance of X_n : $\sigma^2(X_n) = \mathbb{E}(X_n^2) \mathbb{E}(X_n)^2$
- Using saddlepoint asymptotics

- $\cdot\,$ Again EGS and powerful real analysis theorems help
- Let $PI_{n,k}$ is the number of partial injections of size *n* with *k* sequences and SPInj(*z*, *u*) = $\sum_{n,k} \frac{PI_{n,k}}{n!} z^n u^k$
- Similar calculus: cycles are $\log(\frac{1}{1-z})$ and non-empty sequences are $\frac{zu}{1-z}$, so SPInj $(z, u) = \frac{1}{1-z} \exp(\frac{zu}{1-z})$
- Expected value of X_n : $\mathbb{E}(X_n) = \frac{\sum_k k P I_{n,k}}{P I_n}$
- Variance of X_n : $\sigma^2(X_n) = \mathbb{E}(X_n^2) \mathbb{E}(X_n)^2$
- Using saddlepoint asymptotics

Proposition (statistics on the number of sequences) $\mathbb{E}(X_n) = \sqrt{n}(1 + o(1))$ and $\sigma^2(X_n) = n(1 + o(1))$

• Chebyshev's inequality: $\mathbb{P}(|X_n - \mathbb{E}(X_n)| > \alpha) < \frac{\sigma^2(X_n)}{\alpha^2}$

- Chebyshev's inequality: $\mathbb{P}(|X_n \mathbb{E}(X_n)| > \alpha) < \frac{\sigma^2(X_n)}{\alpha^2}$
- Take $\alpha = \sqrt{n}$: $\mathbb{P}(X_n > 3\sqrt{n}) < \frac{o(n)}{n} = o(1)$

- Chebyshev's inequality: $\mathbb{P}(|X_n \mathbb{E}(X_n)| > \alpha) < \frac{\sigma^2(X_n)}{\alpha^2}$
- Take $\alpha = \sqrt{n}$: $\mathbb{P}(X_n > 3\sqrt{n}) < \frac{o(n)}{n} = o(1)$
- Pick f_a : with probability tending to 1, it has $\leq 3\sqrt{n}$ sequences, $\leq 6\sqrt{n}$ extremities

- Chebyshev's inequality: $\mathbb{P}(|X_n \mathbb{E}(X_n)| > \alpha) < \frac{\sigma^2(X_n)}{\alpha^2}$
- Take $\alpha = \sqrt{n}$: $\mathbb{P}(X_n > 3\sqrt{n}) < \frac{o(n)}{n} = o(1)$
- Pick f_a : with probability tending to 1, it has $\leq 3\sqrt{n}$ sequences, $\leq 6\sqrt{n}$ extremities
- The number of partial injections f_b for which a given vertex is isolated is PI_{n-1}

- Chebyshev's inequality: $\mathbb{P}(|X_n \mathbb{E}(X_n)| > \alpha) < \frac{\sigma^2(X_n)}{\alpha^2}$
- Take $\alpha = \sqrt{n}$: $\mathbb{P}(X_n > 3\sqrt{n}) < \frac{o(n)}{n} = o(1)$
- Pick f_a : with probability tending to 1, it has $\leq 3\sqrt{n}$ sequences, $\leq 6\sqrt{n}$ extremities
- The number of partial injections f_b for which a given vertex is isolated is PI_{n-1}
- There are $\leq 6\sqrt{n} PI_{n-1} PI_n$ pairs (f_a, f_b) where an extremity of a sequence of f_a is isolated in f_b :

- Chebyshev's inequality: $\mathbb{P}(|X_n \mathbb{E}(X_n)| > \alpha) < \frac{\sigma^2(X_n)}{\alpha^2}$
- Take $\alpha = \sqrt{n}$: $\mathbb{P}(X_n > 3\sqrt{n}) < \frac{o(n)}{n} = o(1)$
- Pick f_a : with probability tending to 1, it has $\leq 3\sqrt{n}$ sequences, $\leq 6\sqrt{n}$ extremities
- The number of partial injections f_b for which a given vertex is isolated is PI_{n-1}
- There are $\leq 6\sqrt{n} PI_{n-1} PI_n$ pairs (f_a, f_b) where an extremity of a sequence of f_a is isolated in f_b :
- the corresponding probability is at most

$$\frac{6\sqrt{n}\,\mathsf{PI}_{n-1}\,\mathsf{PI}_n}{\mathsf{PI}_n^2} \leqslant 6\sqrt{n}\frac{\mathsf{PI}_{n-1}}{\mathsf{PI}_n} \leqslant \frac{6}{\sqrt{n}}$$

WHERE DOES THAT TAKE US?

• The probability that an A-tuple of size *n* partial injections does not define a Stallings automaton (non-connectedness, non-coreness) tends to 0 as *n* grows to infinity

Algorithm

A rejection algorithm to randomly generate a subgroup of \mathbb{F}_r :

Draw a random partial injection f_a of [n], independently for each $a \in A$; if the $(f_a)_{a \in A}$ do not induce a Stallings automaton (with base vertex 1), reject and repeat.

Algorithm

A rejection algorithm to randomly generate a subgroup of \mathbb{F}_r :

Draw a random partial injection f_a of [n], independently for each $a \in A$; if the $(f_a)_{a \in A}$ do not induce a Stallings automaton (with base vertex 1), reject and repeat.

• The expected number of steps is at most 2

Algorithm

A rejection algorithm to randomly generate a subgroup of \mathbb{F}_r :

Draw a random partial injection f_a of [n], independently for each $a \in A$; if the $(f_a)_{a \in A}$ do not induce a Stallings automaton (with base vertex 1), reject and repeat.

- The expected number of steps is at most 2
- (Forget the labeling of the graph)

Algorithm

A rejection algorithm to randomly generate a subgroup of \mathbb{F}_r :

Draw a random partial injection f_a of [n], independently for each $a \in A$; if the $(f_a)_{a \in A}$ do not induce a Stallings automaton (with base vertex 1), reject and repeat.

- The *expected* number of steps is at most 2
- (Forget the labeling of the graph)
- Still needed: an efficient random generation algorithm for partial injections

ANOTHER BY-PRODUCT: EXPECTED RANK OF A SIZE *n* SUBGROUP

• The expected number of sequences of f_a is \sqrt{n} , so the expected number of *a*-labeled edge is $n - \sqrt{n}$

• The expected number of sequences of f_a is \sqrt{n} , so the expected number of *a*-labeled edge is $n - \sqrt{n}$

Proposition

The expected rank of a random subgroup of size *n* is E - V + 1, that is: $(|A| - 1)n - |A|\sqrt{n} + 1$

• The expected number of sequences of f_a is \sqrt{n} , so the expected number of *a*-labeled edge is $n - \sqrt{n}$

Proposition

The expected rank of a random subgroup of size *n* is E - V + 1, that is: $(|A| - 1)n - |A|\sqrt{n} + 1$

• Also: $\frac{l_n}{n!} \sim \frac{1}{\sqrt{2e\pi}} n^{-\frac{1}{4}} e^{2\sqrt{n}}$ [more saddlepoint asymptotics!]

• The expected number of sequences of f_a is \sqrt{n} , so the expected number of *a*-labeled edge is $n - \sqrt{n}$

Proposition

The expected rank of a random subgroup of size *n* is E - V + 1, that is: $(|A| - 1)n - |A|\sqrt{n} + 1$

• Also: $\frac{l_n}{n!} \sim \frac{1}{\sqrt{2e\pi}} n^{-\frac{1}{4}} e^{2\sqrt{n}}$ [more saddlepoint asymptotics!]

Proposition

The number of size *n* subgroups in \mathbb{F}_r is

$$\frac{1}{n!} P l_n^r (1 + o(1)) \sim n!^{r-1} \frac{n^{1-r/4} e^{2r\sqrt{n}}}{(2\sqrt{e\pi})^r}$$

• A size *n* partial injection is a disjoint union of orbits that are either cycles, or sequences

STRATEGY TO DRAW A RANDOM INJECTION

- A size *n* partial injection is a disjoint union of orbits that are either cycles, or sequences
- Compute the distribution of sizes of orbits (cycles and sequences), and the distribution of cycles vs. sequences for each size of orbits

- A size *n* partial injection is a disjoint union of orbits that are either cycles, or sequences
- Compute the distribution of sizes of orbits (cycles and sequences), and the distribution of cycles vs. sequences for each size of orbits
- Draw a size m of an orbit, decide whether it is a cycle or a sequence; and draw another random partial injection of size n-m

• Pointing operator: selecting a vertex in a partial injection. The corresponding EGS is $\Theta PInj(z) = \sum_{n} \frac{nPl_n}{n!} z^n = z \frac{d}{dz} PInj(z)$

- Pointing operator: selecting a vertex in a partial injection. The corresponding EGS is $\Theta PInj(z) = \sum_{n} \frac{nPl_n}{n!} z^n = z \frac{d}{dz} PInj(z)$
- We have Plnj(z) = exp(D(z)), with $D(z) = \frac{z}{1-z} + log(\frac{1}{1-z})$ (sequences + cycles)

- Pointing operator: selecting a vertex in a partial injection. The corresponding EGS is $\Theta PInj(z) = \sum_{n} \frac{nPl_n}{n!} z^n = z \frac{d}{dz} PInj(z)$
- We have Plnj(z) = exp(D(z)), with $D(z) = \frac{z}{1-z} + log(\frac{1}{1-z})$ (sequences + cycles)
- Θ PInj(z) = $z \frac{d}{dz} D(z)$ PInj(z) = $\Theta D(z)$ PInj(z)

- Pointing operator: selecting a vertex in a partial injection. The corresponding EGS is $\Theta PInj(z) = \sum_{n} \frac{nPl_n}{n!} z^n = z \frac{d}{dz} PInj(z)$
- We have Plnj(z) = exp(D(z)), with $D(z) = \frac{z}{1-z} + log(\frac{1}{1-z})$ (sequences + cycles)
- Θ PInj(z) = $z \frac{d}{dz} D(z)$ PInj(z) = $\Theta D(z)$ PInj(z)
- That is: pointing a vertex in a partial injection = pointing a vertex in one component (say, of size k) and the remaining part is just a partial injection of size n - k

- Pointing operator: selecting a vertex in a partial injection. The corresponding EGS is $\Theta PInj(z) = \sum_{n} \frac{nPl_n}{n!} z^n = z \frac{d}{dz} PInj(z)$
- We have Plnj(z) = exp(D(z)), with $D(z) = \frac{z}{1-z} + log(\frac{1}{1-z})$ (sequences + cycles)
- Θ PInj(z) = $z \frac{d}{dz} D(z)$ PInj(z) = $\Theta D(z)$ PInj(z)
- That is: pointing a vertex in a partial injection = pointing a vertex in one component (say, of size k) and the remaining part is just a partial injection of size n - k
- Computationally:

- Pointing operator: selecting a vertex in a partial injection. The corresponding EGS is $\Theta PInj(z) = \sum_{n} \frac{nPl_n}{n!} z^n = z \frac{d}{dz} PInj(z)$
- We have Plnj(z) = exp(D(z)), with $D(z) = \frac{z}{1-z} + log(\frac{1}{1-z})$ (sequences + cycles)
- Θ PInj(z) = $z \frac{d}{dz} D(z)$ PInj(z) = $\Theta D(z)$ PInj(z)
- That is: pointing a vertex in a partial injection = pointing a vertex in one component (say, of size k) and the remaining part is just a partial injection of size n - k
- Computationally:

$$\cdot \left(\frac{z}{(1-z)^2} + \frac{z}{1-z}\right) \operatorname{Plnj}(z) = \left(\sum_k k z^k + \sum_k z^k\right) \operatorname{Plnj}(z)$$

$$\cdot \left(\frac{z}{(1-z)^2} + \frac{z}{1-z}\right) \operatorname{Plnj}(z) = \left(\sum_k k z^k + \sum_k z^k\right) \operatorname{Plnj}(z)$$

$$\cdot \left(\frac{z}{(1-z)^2} + \frac{z}{1-z}\right) \operatorname{Plnj}(z) = \left(\sum_k k z^k + \sum_k z^k\right) \operatorname{Plnj}(z)$$

• $\frac{n P I_n}{n!} = \sum_{k} (k + 1) \frac{P I_{n-k}}{(n-k)!}$

•
$$\left(\frac{z}{(1-z)^2} + \frac{z}{1-z}\right)$$
 PInj $(z) = \left(\sum_k k z^k + \sum_k z^k\right)$ PInj (z)

- $\frac{n P I_n}{n!} = \sum_k (k + 1) \frac{P I_{n-k}}{(n-k)!}$
- The probability that the pointed vertex is in a size *k* component is $\frac{(k+1)\frac{p_{ln-k}}{(n-k)!}}{\frac{p_{ln}}{p_{l}}}$

$$\cdot \left(\frac{z}{(1-z)^2} + \frac{z}{1-z}\right) \operatorname{PInj}(z) = \left(\sum_k k z^k + \sum_k z^k\right) \operatorname{PInj}(z)$$

- $\frac{n P I_n}{n!} = \sum_k (k + 1) \frac{P I_{n-k}}{(n-k)!}$
- The probability that the pointed vertex is in a size *k* component is $\frac{(k+1)\frac{P_{ln-k}}{(n-k)!}}{\frac{P_{ln}}{p_{ln}}}$
- and the probability that a size k component is a sequence (resp. a cycle) is $\frac{k}{k+1}$ (resp. $\frac{1}{k+1}$)

•
$$\left(\frac{z}{(1-z)^2} + \frac{z}{1-z}\right)$$
 Plnj(z) = $\left(\sum_k kz^k + \sum_k z^k\right)$ Plnj(z)

- $\frac{n P I_n}{n!} = \sum_k (k + 1) \frac{P I_{n-k}}{(n-k)!}$
- The probability that the pointed vertex is in a size *k* component is $\frac{(k+1)\frac{P_{ln-k}}{(n-k)!}}{\frac{P_{ln}}{p_{ln}}}$
- and the probability that a size k component is a sequence (resp. a cycle) is $\frac{k}{k+1}$ (resp. $\frac{1}{k+1}$)
- Now we can randomly generate a partial injection

• The pre-computation of the PI_k ($k \leq n$) takes linear time in n

COMPLEXITY ISSUES

- The pre-computation of the PI_k ($k \leq n$) takes linear time in n
- The random generation of a partial injection as above takes linear time
- The pre-computation of the PI_k ($k \leq n$) takes linear time in n
- The random generation of a partial injection as above takes linear time
- Checking connectedness and coreness takes linear time

- The pre-computation of the PI_k ($k \leq n$) takes linear time in n
- The random generation of a partial injection as above takes linear time
- Checking connectedness and coreness takes linear time
- The expected number of rejects is $\leqslant 2$

- The pre-computation of the PI_k ($k \leq n$) takes linear time in n
- The random generation of a partial injection as above takes linear time
- Checking connectedness and coreness takes linear time
- The expected number of rejects is $\leqslant 2$
- This is in the RAM model, where arithmetic operations on integers take unit time

- The pre-computation of the PI_k ($k \leq n$) takes linear time in n
- The random generation of a partial injection as above takes linear time
- Checking connectedness and coreness takes linear time
- The expected number of rejects is $\leqslant 2$
- This is in the RAM model, where arithmetic operations on integers take unit time
- It looks complicated...but it is fast!

- The pre-computation of the PI_k ($k \leq n$) takes linear time in n
- The random generation of a partial injection as above takes linear time
- Checking connectedness and coreness takes linear time
- The expected number of rejects is $\leqslant 2$
- This is in the RAM model, where arithmetic operations on integers take unit time
- It looks complicated...but it is fast!
- We are dealing with very large numbers: $PI_n \ge (n + 1)!$ has size $O(n \log n)$: in the bitcost model, the precomputation is in $O(n^2 \log n)$ and the cost of one generation is $O(n^2 \log^2 n)$

• Stallings automata are saturated: made of permutations, not partial injections

- Stallings automata are saturated: made of permutations, not partial injections
- Follow the same reasoning. Number of permutations of size *n*: *n*!. Exact computation follows as in the general case (see *subgroup growth*)

- Stallings automata are saturated: made of permutations, not partial injections
- Follow the same reasoning. Number of permutations of size *n*: *n*!. Exact computation follows as in the general case (see *subgroup growth*)
- Randomly generating a size n permutation takes time O(n)

- Stallings automata are saturated: made of permutations, not partial injections
- Follow the same reasoning. Number of permutations of size *n*: *n*!. Exact computation follows as in the general case (see *subgroup growth*)
- Randomly generating a size n permutation takes time O(n)
- Bender's theorem shows that connectedness holds with probability tending to 1

- Stallings automata are saturated: made of permutations, not partial injections
- Follow the same reasoning. Number of permutations of size *n*: *n*!. Exact computation follows as in the general case (see *subgroup growth*)
- Randomly generating a size n permutation takes time O(n)
- Bender's theorem shows that connectedness holds with probability tending to 1
- Core-ness is guaranteed

- Stallings automata are saturated: made of permutations, not partial injections
- Follow the same reasoning. Number of permutations of size *n*: *n*!. Exact computation follows as in the general case (see *subgroup growth*)
- Randomly generating a size n permutation takes time O(n)
- Bender's theorem shows that connectedness holds with probability tending to 1
- Core-ness is guaranteed
- Comparing the number of size *n* saturated Stallings automata with the number of general Stallings automata yields the following probability: $O(n^{r/4}e^{-2r\sqrt{n}}) = o(n^{-k})$

The probability that a size *n* subgroup is malnormal tends to 0.

The probability that a size *n* subgroup is malnormal tends to 0.

• A subgroup is Whitehead minimal if no automorphism of \mathbb{F}_r reduces its size.

The probability that a size *n* subgroup is malnormal tends to 0.

• A subgroup is Whitehead minimal if no automorphism of \mathbb{F}_r reduces its size.

Theorem (Bassino, Nicaud, W.)

The probability that a size *n* subgroup is Whitehead minimal tends to 1.

The probability that a size *n* subgroup is malnormal tends to 0.

• A subgroup is Whitehead minimal if no automorphism of \mathbb{F}_r reduces its size.

Theorem (Bassino, Nicaud, W.)

The probability that a size *n* subgroup is Whitehead minimal tends to 1.

Theorem (Bassino, Martino, Nicaud, V., W.)

With probablility tending to e^{-r} , *H* fails to contain a conjugate of a letter.

• Draw a tuple \vec{h} of generators at random. Parameters: size of the tuple, length of the words, distribution on words.

- Draw a tuple \vec{h} of generators at random. Parameters: size of the tuple, length of the words, distribution on words.
- Few-generator model: fix k ≥ 2, pick uniformly at random a k-tuple of words of length at most n, and let n tend to infinity.

- Draw a tuple \vec{h} of generators at random. Parameters: size of the tuple, length of the words, distribution on words.
- Few-generator model: fix k ≥ 2, pick uniformly at random a k-tuple of words of length at most n, and let n tend to infinity.
- Gromov's density model: let B_n be the ball of radius n in \mathbb{F}_A $(|B_n| = \Theta((2r - 1)^n)$. Fix 0 < d < 1. Pick uniformly at random a $|B_n|^d$ -tuple of words of length at most n, and let n tend to infinity.

- Draw a tuple \vec{h} of generators at random. Parameters: size of the tuple, length of the words, distribution on words.
- Few-generator model: fix k ≥ 2, pick uniformly at random a k-tuple of words of length at most n, and let n tend to infinity.
- Gromov's density model: let B_n be the ball of radius n in \mathbb{F}_A $(|B_n| = \Theta((2r - 1)^n)$. Fix 0 < d < 1. Pick uniformly at random a $|B_n|^d$ -tuple of words of length at most n, and let n tend to infinity.
- Variant: use the sphere rather than the ball.

- Draw a tuple \vec{h} of generators at random. Parameters: size of the tuple, length of the words, distribution on words.
- Few-generator model: fix k ≥ 2, pick uniformly at random a k-tuple of words of length at most n, and let n tend to infinity.
- Gromov's density model: let B_n be the ball of radius n in \mathbb{F}_A $(|B_n| = \Theta((2r - 1)^n)$. Fix 0 < d < 1. Pick uniformly at random a $|B_n|^d$ -tuple of words of length at most n, and let n tend to infinity.
- Variant: use the sphere rather than the ball.
- Easy to implement, and questionable (uniqueness).

• The central tree property for $\vec{h} = (h_1, \dots, h_k)$: small initial cancellation = St (*H*) consists of a central tree, and of one loop for each h_i connecting leaves of the tree.

- The central tree property for $\vec{h} = (h_1, \dots, h_k)$: small initial cancellation = St (*H*) consists of a central tree, and of one loop for each h_i connecting leaves of the tree.
- guaranteed if $lcp(\vec{h}) < \frac{1}{2} \min \vec{h}$, where $lcp(\vec{h})$ is the length of the least common prefix of the elements of \vec{h} and \vec{h}^{-1} and $\min \vec{h} = \min |h_i|$.

- The central tree property for $\vec{h} = (h_1, \dots, h_k)$: small initial cancellation = St (*H*) consists of a central tree, and of one loop for each h_i connecting leaves of the tree.
- guaranteed if $lcp(\vec{h}) < \frac{1}{2} \min \vec{h}$, where $lcp(\vec{h})$ is the length of the least common prefix of the elements of \vec{h} and \vec{h}^{-1} and $\min \vec{h} = \min |h_i|$.
- If the central tree property holds, then \vec{h} freely generates *H*.

- The central tree property for $\vec{h} = (h_1, \dots, h_k)$: small initial cancellation = St (*H*) consists of a central tree, and of one loop for each h_i connecting leaves of the tree.
- guaranteed if $lcp(\vec{h}) < \frac{1}{2} \min \vec{h}$, where $lcp(\vec{h})$ is the length of the least common prefix of the elements of \vec{h} and \vec{h}^{-1} and $\min \vec{h} = \min |h_i|$.
- If the central tree property holds, then \vec{h} freely generates *H*.
- Also note: the central tree is usually very small: fix f(n) an unbounded, non-decreasing function. In the few-generator model, generically (only), $lcp(\vec{h}) < f(n)$.

• Recall: *H* is malnormal if $H^x \cap H = 1$ for every $x \notin H$. Equivalently, no word labels a closed walk at two different vertices of St (*H*).

- Recall: *H* is malnormal if $H^x \cap H = 1$ for every $x \notin H$. Equivalently, no word labels a closed walk at two different vertices of St (*H*).
- Assume that the central tree property holds. A sufficient condition for *malnormality* can be expressed in terms of common factors occurring in the *h_i*:

- Recall: *H* is malnormal if $H^x \cap H = 1$ for every $x \notin H$. Equivalently, no word labels a closed walk at two different vertices of St (*H*).
- Assume that the central tree property holds. A sufficient condition for *malnormality* can be expressed in terms of common factors occurring in the *h_i*:
- if $lcp(\vec{h}) < \frac{1}{4} \min \vec{h}$ and no word of length $\frac{1}{8} \min \vec{h}$ occurs twice as a factor of the elements of \vec{h} and \vec{h}^{-1} , then *H* is malnormal.

• Rigidity: if \vec{g} and \vec{h} have the central tree property and $H(\vec{g}) = H(\vec{h})$, then \vec{g} and \vec{h} coincide up to the order of their elements and replacing a word by its inverse.

THE CENTRAL TREE PROPERTY: RIGIDITY

- Rigidity: if \vec{g} and \vec{h} have the central tree property and $H(\vec{g}) = H(\vec{h})$, then \vec{g} and \vec{h} coincide up to the order of their elements and replacing a word by its inverse.
- So: picking a tuple of generators at random is in practice a method to randomly generate a subgroup in the sense that collisions are exponentially rare.

- Rigidity: if \vec{g} and \vec{h} have the central tree property and $H(\vec{g}) = H(\vec{h})$, then \vec{g} and \vec{h} coincide up to the order of their elements and replacing a word by its inverse.
- So: picking a tuple of generators at random is in practice a method to randomly generate a subgroup in the sense that collisions are exponentially rare.
- The distribution of subgroups induced is radically different from the distribution based on drawing Stallings automata.

- Rigidity: if \vec{g} and \vec{h} have the central tree property and $H(\vec{g}) = H(\vec{h})$, then \vec{g} and \vec{h} coincide up to the order of their elements and replacing a word by its inverse.
- So: picking a tuple of generators at random is in practice a method to randomly generate a subgroup in the sense that collisions are exponentially rare.
- The distribution of subgroups induced is radically different from the distribution based on drawing Stallings automata.
- Malnormality is generic in the word-based model, and negligible in the graph-based model.

 Recall: H is Whitehead minimal if it has the smallest size in its orbit under Aut(F).

- Recall: H is Whitehead minimal if it has the smallest size in its orbit under Aut(F).
- [Bassino, Nicaud, W.] Whitehead minimality is exponentially generic in the few-generator model (Kapovich, Schupp, Shpilrain for cyclic subgroups)

and it is also exponentially generic in the graph-based model.

• Classically: $G = \langle A \mid \vec{h} \rangle = \mathbb{F}_A / \langle \langle \vec{h} \rangle \rangle.$

GROUP PRESENTATIONS: AN ODD RESULT

- Classically: $G = \langle A \mid \vec{h} \rangle = \mathbb{F}_A / \langle \langle \vec{h} \rangle \rangle.$
- Why not $G = \langle A \mid H \rangle = \mathbb{F}_A / \langle \langle H \rangle \rangle$?

- Classically: $G = \langle A \mid \vec{h} \rangle = \mathbb{F}_A / \langle \langle \vec{h} \rangle \rangle$.
- Why not $G = \langle A \mid H \rangle = \mathbb{F}_A / \langle \langle H \rangle \rangle$?
- Up to density 1/2, $\langle A \mid \vec{h} \rangle$ is generically infinite, hyperbolic (Gromov, Ol'shanskii, Ollivier).
- Classically: $G = \langle A \mid \vec{h} \rangle = \mathbb{F}_A / \langle \langle \vec{h} \rangle \rangle.$
- Why not $G = \langle A \mid H \rangle = \mathbb{F}_A / \langle \langle H \rangle \rangle$?
- Up to density 1/2, $\langle A \mid \vec{h} \rangle$ is generically infinite, hyperbolic (Gromov, Ol'shanskii, Ollivier).
- But the probability that $\mathbb{F}_A/\langle\!\langle H \rangle\!\rangle$ is trivial tends to 1 as the size of *n* grows to infinity.

• [Gilman, Miasnikov, Osin, 2010] Let *G* be hyperbolic, *A*-generated and let $k \ge 1$. Exponentially generically, a random *k*-tuple $\vec{h} = (h_1, \dots, h_k)$ of elements of *G* freely generates the subgroup $H(\vec{h}) = \langle \vec{h} \rangle$ of *G*, and $H(\vec{h})$ is quasi-convex.

• [Kharlampovich, Miasnikov, W., 2017] Let $G = \langle A \mid R \rangle$, finite presentation. Assume that *L* is a language of representatives. Let $H \leq G$ and $\Gamma_L(H)$ be the fragment of the Schreier graph S(G, H)spanned by the loops at *H* labeled by the *L*-representatives of the elements of *H*.

- [Kharlampovich, Miasnikov, W., 2017] Let $G = \langle A \mid R \rangle$, finite presentation. Assume that *L* is a language of representatives. Let $H \leq G$ and $\Gamma_L(H)$ be the fragment of the Schreier graph S(G, H)spanned by the loops at *H* labeled by the *L*-representatives of the elements of *H*.
- A good analogue of Stallings automata: finite if and only if *H* is *L*-quasi-convex; membership problem, computation of intersections, decision of finiteness; under reasonable additional hypotheses on *G*: decision of conjugacy, almost malnormality.

- [Kharlampovich, Miasnikov, W., 2017] Let $G = \langle A \mid R \rangle$, finite presentation. Assume that *L* is a language of representatives. Let $H \leq G$ and $\Gamma_L(H)$ be the fragment of the Schreier graph S(G, H)spanned by the loops at *H* labeled by the *L*-representatives of the elements of *H*.
- A good analogue of Stallings automata: finite if and only if *H* is *L*-quasi-convex; membership problem, computation of intersections, decision of finiteness; under reasonable additional hypotheses on *G*: decision of conjugacy, almost malnormality.
- Computable if *H* is *L*-quasi-convex (semi-algorithm)

- [Kharlampovich, Miasnikov, W., 2017] Let $G = \langle A \mid R \rangle$, finite presentation. Assume that *L* is a language of representatives. Let $H \leq G$ and $\Gamma_L(H)$ be the fragment of the Schreier graph S(G, H)spanned by the loops at *H* labeled by the *L*-representatives of the elements of *H*.
- A good analogue of Stallings automata: finite if and only if *H* is *L*-quasi-convex; membership problem, computation of intersections, decision of finiteness; under reasonable additional hypotheses on *G*: decision of conjugacy, almost malnormality.
- Computable if *H* is *L*-quasi-convex (semi-algorithm)
- Examples: quasi-convex subgroups of hyperbolic groups, all subgroups of virtually free subgroups.

- [Kharlampovich, Miasnikov, W., 2017] Let $G = \langle A \mid R \rangle$, finite presentation. Assume that *L* is a language of representatives. Let $H \leq G$ and $\Gamma_L(H)$ be the fragment of the Schreier graph S(G, H)spanned by the loops at *H* labeled by the *L*-representatives of the elements of *H*.
- A good analogue of Stallings automata: finite if and only if *H* is *L*-quasi-convex; membership problem, computation of intersections, decision of finiteness; under reasonable additional hypotheses on *G*: decision of conjugacy, almost malnormality.
- Computable if *H* is *L*-quasi-convex (semi-algorithm)
- Examples: quasi-convex subgroups of hyperbolic groups, all subgroups of virtually free subgroups.
- Generalizes work by Short, Gersten, Kapovich, Gitik, Markus-Epstein, Silva, Soler-Escriva, V.

THE MODULAR GROUP

• [Bassino, Nicaud, W.] The particular case of subgroups of $PSL_2(\mathbb{Z}) = \mathbb{Z}_2 * \mathbb{Z}_3 = \langle a, b \mid a^2 = b^3 = 1 \rangle$: the Stallings automata are combinatorially nice enough and can be counted: statistics, random generation.

THE MODULAR GROUP

- [Bassino, Nicaud, W.] The particular case of subgroups of $PSL_2(\mathbb{Z}) = \mathbb{Z}_2 * \mathbb{Z}_3 = \langle a, b \mid a^2 = b^3 = 1 \rangle$: the Stallings automata are combinatorially nice enough and can be counted: statistics, random generation.
- E.g., the expected isomorphism type of a subgroup of $\mathsf{PSL}_2(\mathbb{Z})$ of size n is

$$\left(n^{\frac{1}{2}}+o(n^{\frac{1}{2}}),n^{\frac{1}{3}}+o(n^{\frac{1}{3}}),\frac{n}{6}-\frac{1}{3}n^{\frac{2}{3}}+o(n^{\frac{2}{3}})\right),$$

and there is strong concentration around these values.

THE MODULAR GROUP

- [Bassino, Nicaud, W.] The particular case of subgroups of $PSL_2(\mathbb{Z}) = \mathbb{Z}_2 * \mathbb{Z}_3 = \langle a, b \mid a^2 = b^3 = 1 \rangle$: the Stallings automata are combinatorially nice enough and can be counted: statistics, random generation.
- E.g., the expected isomorphism type of a subgroup of $\mathsf{PSL}_2(\mathbb{Z})$ of size n is

$$\left(n^{\frac{1}{2}}+o(n^{\frac{1}{2}}),n^{\frac{1}{3}}+o(n^{\frac{1}{3}}),\frac{n}{6}-\frac{1}{3}n^{\frac{2}{3}}+o(n^{\frac{2}{3}})\right),$$

and there is strong concentration around these values.

• Also: counting and random generation of finite index subgroups (Stothers, 1970s), free subgroups, subgroups of a fixed isomorphism type.

ENRICHED STALLINGS AUTOMATA

A group is free-abelian by free (FABF) if it is of the form

$$G_{\alpha} = \mathbb{F}_{n} \ltimes_{\alpha} \mathbb{Z}^{m} = \left\langle \begin{array}{cc} x_{1}, \dots, x_{n} \\ t_{1}, \dots, t_{m} \end{array} \middle| \begin{array}{c} t_{i} t_{k} = t_{k} t_{i} \\ x_{j}^{-1} t_{i} x_{j} = t_{i} \alpha_{j} \end{array} \right\rangle \forall i \in [1, m], \forall j \in [1, n] \right\rangle,$$

A group is free-abelian by free (FABF) if it is of the form

$$G_{\alpha} = \mathbb{F}_{n} \ltimes_{\alpha} \mathbb{Z}^{m} = \left\langle \begin{array}{cc} x_{1}, \dots, x_{n} \\ t_{1}, \dots, t_{m} \end{array} \middle| \begin{array}{c} t_{i} t_{k} = t_{k} t_{i} \\ x_{j}^{-1} t_{i} x_{j} = t_{i} \alpha_{j} \end{array} \right\rangle \forall i \in [1, m], \forall j \in [1, n] \right\rangle,$$

A group is free-abelian by free (FABF) if it is of the form

$$G_{\alpha} = \mathbb{F}_{n} \ltimes_{\alpha} \mathbb{Z}^{m} = \left\langle \begin{array}{cc} x_{1}, \dots, x_{n} \\ t_{1}, \dots, t_{m} \end{array} \middle| \begin{array}{c} t_{i} t_{k} = t_{k} t_{i} \\ x_{j}^{-1} t_{i} x_{j} = t_{i} \alpha_{j} \end{array} \forall i \in [1, m], \forall j \in [1, n] \right\rangle,$$

where

• $T = \{t_1, \ldots, t_m\}$ is a free-abelian basis for $\langle T \rangle \simeq \mathbb{Z}^m$,

A group is free-abelian by free (FABF) if it is of the form

$$G_{\alpha} = \mathbb{F}_{n} \ltimes_{\alpha} \mathbb{Z}^{m} = \left\langle \begin{array}{cc} x_{1}, \dots, x_{n} \\ t_{1}, \dots, t_{m} \end{array} \middle| \begin{array}{c} t_{i} t_{k} = t_{k} t_{i} & \forall i, k \in [1, m] \\ x_{j}^{-1} t_{i} x_{j} = t_{i} \alpha_{j} & \forall i \in [1, m], \forall j \in [1, n] \end{array} \right\rangle,$$

- $T = \{t_1, \ldots, t_m\}$ is a free-abelian basis for $\langle T \rangle \simeq \mathbb{Z}^m$,
- $X = \{x_1, \ldots, x_n\}$ is a free basis for $\langle X \rangle \simeq \mathbb{F}_n$,

A group is free-abelian by free (FABF) if it is of the form

$$G_{\alpha} = \mathbb{F}_{n} \ltimes_{\alpha} \mathbb{Z}^{m} = \left\langle \begin{array}{cc} x_{1}, \dots, x_{n} \\ t_{1}, \dots, t_{m} \end{array} \middle| \begin{array}{c} t_{i} t_{k} = t_{k} t_{i} & \forall i, k \in [1, m] \\ x_{j}^{-1} t_{i} x_{j} = t_{i} \alpha_{j} & \forall i \in [1, m], \forall j \in [1, n] \end{array} \right\rangle,$$

- $T = \{t_1, \ldots, t_m\}$ is a free-abelian basis for $\langle T \rangle \simeq \mathbb{Z}^m$,
- $X = \{x_1, \ldots, x_n\}$ is a free basis for $\langle X \rangle \simeq \mathbb{F}_n$,

A group is free-abelian by free (FABF) if it is of the form

$$G_{\alpha} = \mathbb{F}_{n} \ltimes_{\alpha} \mathbb{Z}^{m} = \left\langle \begin{array}{cc} x_{1}, \dots, x_{n} \\ t_{1}, \dots, t_{m} \end{array} \middle| \begin{array}{c} t_{i} t_{k} = t_{k} t_{i} \\ x_{j}^{-1} t_{i} x_{j} = t_{i} \alpha_{j} \end{array} \right\rangle \forall i \in [1, m], \forall j \in [1, n] \right\rangle,$$

- $T = \{t_1, \ldots, t_m\}$ is a free-abelian basis for $\langle T \rangle \simeq \mathbb{Z}^m$,
- $X = \{x_1, \ldots, x_n\}$ is a free basis for $\langle X \rangle \simeq \mathbb{F}_n$,
- · $\alpha_1, \alpha_2, \ldots, \alpha_n \in Aut(\mathbb{Z}^m) = GL_m(\mathbb{Z})$, defining a homomorphism

$$\begin{array}{rcl} \alpha \colon \mathbb{F}_n & \to & \operatorname{Aut}(\mathbb{Z}^m) = \operatorname{GL}_m(\mathbb{Z}) \\ & x_j & \mapsto & \alpha_j \end{array}$$

A group is free-abelian by free (FABF) if it is of the form

$$G_{\alpha} = \mathbb{F}_{n} \ltimes_{\alpha} \mathbb{Z}^{m} = \left\langle \begin{array}{cc} x_{1}, \dots, x_{n} \\ t_{1}, \dots, t_{m} \end{array} \middle| \begin{array}{c} t_{i} t_{k} = t_{k} t_{i} \\ x_{j}^{-1} t_{i} x_{j} = t_{i} \alpha_{j} \end{array} \right\rangle \forall i \in [1, m], \forall j \in [1, n] \right\rangle,$$

- $T = \{t_1, \ldots, t_m\}$ is a free-abelian basis for $\langle T \rangle \simeq \mathbb{Z}^m$,
- $X = \{x_1, \ldots, x_n\}$ is a free basis for $\langle X \rangle \simeq \mathbb{F}_n$,
- · $\alpha_1, \alpha_2, \ldots, \alpha_n \in Aut(\mathbb{Z}^m) = GL_m(\mathbb{Z})$, defining a homomorphism

$$\begin{array}{rcl} \alpha \colon \mathbb{F}_n & \to & \operatorname{Aut}(\mathbb{Z}^m) = \operatorname{GL}_m(\mathbb{Z}) \\ x_j & \mapsto & \alpha_j = \operatorname{A}_j \end{array}$$

A group is free-abelian by free (FABF) if it is of the form

$$G_{\alpha} = \mathbb{F}_{n} \ltimes_{\alpha} \mathbb{Z}^{m} = \left\langle \begin{array}{cc} x_{1}, \dots, x_{n} \\ t_{1}, \dots, t_{m} \end{array} \middle| \begin{array}{c} t_{i} t_{k} = t_{k} t_{i} \\ x_{j}^{-1} t_{i} x_{j} = t_{i} \alpha_{j} \end{array} \right\rangle \forall i \in [1, m], \forall j \in [1, n] \right\rangle,$$

- $T = \{t_1, \ldots, t_m\}$ is a free-abelian basis for $\langle T \rangle \simeq \mathbb{Z}^m$,
- $X = \{x_1, \ldots, x_n\}$ is a free basis for $\langle X \rangle \simeq \mathbb{F}_n$,
- · $\alpha_1, \alpha_2, \ldots, \alpha_n \in Aut(\mathbb{Z}^m) = GL_m(\mathbb{Z})$, defining a homomorphism

$$\begin{array}{rcl} \alpha \colon \mathbb{F}_n & \to & \mathsf{Aut}(\mathbb{Z}^m) = \mathsf{GL}_m(\mathbb{Z}) \\ w & \mapsto & \alpha_w = \mathsf{A}_w \end{array}$$

A group is free-abelian by free (FABF) if it is of the form

$$G_{\alpha} = \mathbb{F}_{n} \ltimes_{\alpha} \mathbb{Z}^{m} = \left\langle \begin{array}{cc} x_{1}, \dots, x_{n} \\ t_{1}, \dots, t_{m} \end{array} \middle| \begin{array}{c} t_{i} t_{k} = t_{k} t_{i} \\ x_{j}^{-1} t_{i} x_{j} = t_{i} \alpha_{j} \end{array} \right\rangle \forall i \in [1, m], \forall j \in [1, n] \right\rangle,$$

where

- $T = \{t_1, \ldots, t_m\}$ is a free-abelian basis for $\langle T \rangle \simeq \mathbb{Z}^m$,
- $X = \{x_1, \ldots, x_n\}$ is a free basis for $\langle X \rangle \simeq \mathbb{F}_n$,
- · $\alpha_1, \alpha_2, \ldots, \alpha_n \in Aut(\mathbb{Z}^m) = GL_m(\mathbb{Z})$, defining a homomorphism

$$\begin{array}{rcl} \alpha \colon \mathbb{F}_n & \to & \mathsf{Aut}(\mathbb{Z}^m) = \mathsf{GL}_m(\mathbb{Z}) \\ w & \mapsto & \alpha_w = \mathsf{A}_w \end{array}$$

Remarks

A group is free-abelian by free (FABF) if it is of the form

$$G_{\alpha} = \mathbb{F}_{n} \ltimes_{\alpha} \mathbb{Z}^{m} = \left\langle \begin{array}{cc} x_{1}, \dots, x_{n} \\ t_{1}, \dots, t_{m} \end{array} \middle| \begin{array}{c} t_{i} t_{k} = t_{k} t_{i} & \forall i, k \in [1, m] \\ x_{j}^{-1} t_{i} x_{j} = t_{i} \alpha_{j} & \forall i \in [1, m], \forall j \in [1, n] \end{array} \right\rangle,$$

where

- $T = \{t_1, \ldots, t_m\}$ is a free-abelian basis for $\langle T \rangle \simeq \mathbb{Z}^m$,
- $X = \{x_1, \ldots, x_n\}$ is a free basis for $\langle X \rangle \simeq \mathbb{F}_n$,
- · $\alpha_1, \alpha_2, \ldots, \alpha_n \in Aut(\mathbb{Z}^m) = GL_m(\mathbb{Z})$, defining a homomorphism

$$\begin{array}{rcl} \alpha \colon \mathbb{F}_n & \to & \mathsf{Aut}(\mathbb{Z}^m) = \mathsf{GL}_m(\mathbb{Z}) \\ w & \mapsto & \alpha_w = \mathsf{A}_w \end{array}$$

Remarks

• Normal form: $w t_1^{a_1} \cdots t_m^{a_m} = w t^a \quad (w \in \mathbb{F}_n, \mathbf{a} = (a_1, \dots, a_m) \in \mathbb{Z}^m).$

A group is free-abelian by free (FABF) if it is of the form

$$G_{\alpha} = \mathbb{F}_{n} \ltimes_{\alpha} \mathbb{Z}^{m} = \left\langle \begin{array}{cc} x_{1}, \dots, x_{n} \\ t_{1}, \dots, t_{m} \end{array} \middle| \begin{array}{c} t_{i} t_{k} = t_{k} t_{i} & \forall i, k \in [1, m] \\ x_{j}^{-1} t_{i} x_{j} = t_{i} \alpha_{j} & \forall i \in [1, m], \forall j \in [1, n] \end{array} \right\rangle,$$

where

- $T = \{t_1, \ldots, t_m\}$ is a free-abelian basis for $\langle T \rangle \simeq \mathbb{Z}^m$,
- $X = \{x_1, \ldots, x_n\}$ is a free basis for $\langle X \rangle \simeq \mathbb{F}_n$,
- $\alpha_1, \alpha_2, \ldots, \alpha_n \in Aut(\mathbb{Z}^m) = GL_m(\mathbb{Z})$, defining a homomorphism

$$\begin{array}{rcl} \alpha \colon \mathbb{F}_n & \to & \mathsf{Aut}(\mathbb{Z}^m) = \mathsf{GL}_m(\mathbb{Z}) \\ w & \mapsto & \alpha_w = \mathsf{A}_w \end{array}$$

Remarks

- Normal form: $w t_1^{a_1} \cdots t_m^{a_m} = w t^a \quad (w \in \mathbb{F}_n, a = (a_1, \dots, a_m) \in \mathbb{Z}^m).$
- Multiplication rules: $t^{a} w = w t^{aA_{w}}$ and $w t^{a} = t^{aA_{w}^{-1}} w$.

A group is free-abelian by free (FABF) if it is of the form

$$G_{\alpha} = \mathbb{F}_{n} \ltimes_{\alpha} \mathbb{Z}^{m} = \left\langle \begin{array}{cc} x_{1}, \dots, x_{n} \\ t_{1}, \dots, t_{m} \end{array} \middle| \begin{array}{c} t_{i} t_{k} = t_{k} t_{i} & \forall i, k \in [1, m] \\ x_{j}^{-1} t_{i} x_{j} = t_{i} \alpha_{j} & \forall i \in [1, m], \forall j \in [1, n] \end{array} \right\rangle,$$

where

- $T = \{t_1, \ldots, t_m\}$ is a free-abelian basis for $\langle T \rangle \simeq \mathbb{Z}^m$,
- $X = \{x_1, \ldots, x_n\}$ is a free basis for $\langle X \rangle \simeq \mathbb{F}_n$,
- $\alpha_1, \alpha_2, \ldots, \alpha_n \in Aut(\mathbb{Z}^m) = GL_m(\mathbb{Z})$, defining a homomorphism

$$\begin{array}{rcl} \alpha \colon \mathbb{F}_n & \to & \mathsf{Aut}(\mathbb{Z}^m) = \mathsf{GL}_m(\mathbb{Z}) \\ w & \mapsto & \alpha_w = \mathsf{A}_w \end{array}$$

Remarks

- Normal form: $w t_1^{a_1} \cdots t_m^{a_m} = w t^a \quad (w \in \mathbb{F}_n, a = (a_1, \dots, a_m) \in \mathbb{Z}^m).$
- Multiplication rules: $t^{a} w = w t^{aA_{w}}$ and $w t^{a} = t^{aA_{w}^{-1}} w$.
- $\cdot \ \mbox{If} \ A_1, A_2, \ldots, A_n = I_m, \mbox{then}$

 $G_{\alpha} = \mathbb{F}_n \times \mathbb{Z}^m$ is a *free-abelian times free (FATF)* group.

Let $H \leq G_{\alpha} = \mathbb{F}_n \ltimes_{\alpha} \mathbb{Z}^m$ and consider the short exact sequence associated to G_{α} and its restriction to H:

Let $H \leq G_{\alpha} = \mathbb{F}_n \ltimes_{\alpha} \mathbb{Z}^m$ and consider the short exact sequence associated to G_{α} and its restriction to H:

Proposition

Let $H \leq G_{\alpha} = \mathbb{F}_{n} \ltimes_{\alpha} \mathbb{Z}^{m}$. Then, $H \simeq H\pi \ltimes_{\alpha_{H}} (H \cap \mathbb{Z}^{m}) \simeq \mathbb{F}_{n'} \ltimes \mathbb{Z}^{m'}$ where $n' \in [0, \infty], m' \in [0, m]$, and $(u)_{\alpha_{H}} = \alpha_{u|H \cap \mathbb{Z}^{m}} \in \mathsf{GL}(H \cap \mathbb{Z}^{m})$.

Let $H \leq G_{\alpha} = \mathbb{F}_n \ltimes_{\alpha} \mathbb{Z}^m$ and consider the short exact sequence associated to G_{α} and its restriction to H:

Proposition

Let $H \leq G_{\alpha} = \mathbb{F}_n \ltimes_{\alpha} \mathbb{Z}^m$. Then, $H \simeq H\pi \ltimes_{\alpha_H} (H \cap \mathbb{Z}^m) \simeq \mathbb{F}_{n'} \ltimes \mathbb{Z}^{m'}$ where $n' \in [0, \infty], m' \in [0, m]$, and $(u)\alpha_H = \alpha_{u|H \cap \mathbb{Z}^m} \in \mathsf{GL}(H \cap \mathbb{Z}^m)$.

Definition. $L_H = H \cap \mathbb{Z}^m$ is called the **base subgroup** of H.

Let $H \leq G_{\alpha} = \mathbb{F}_n \ltimes_{\alpha} \mathbb{Z}^m$ and consider the short exact sequence associated to G_{α} and its restriction to H:

Proposition

Let $H \leq G_{\alpha} = \mathbb{F}_n \ltimes_{\alpha} \mathbb{Z}^m$. Then,

$$H \simeq H\pi \ltimes_{\alpha_H} (H \cap \mathbb{Z}^m) \simeq \mathbb{F}_{n'} \ltimes \mathbb{Z}^{m'}$$

where $n' \in [0, \infty]$, $m' \in [0, m]$, and $(u)\alpha_H = \alpha_{u|H \cap \mathbb{Z}^m} \in GL(H \cap \mathbb{Z}^m)$.

Definition. $L_H = H \cap \mathbb{Z}^m$ is called the **base subgroup** of H.

Corollary

Subgroups of FABF (resp., FATF) groups are again FABF (resp FATF).

Recall that every subgroup $H \leq G_{\alpha}$ splits as: $H = H\pi\sigma \ltimes (H \cap \mathbb{Z}^m),$ where $\sigma: H\pi \to G_{\alpha}$ is a section of $\pi_H: H \to H\pi$

(1)

Recall that every subgroup $H \leq G_{\alpha}$ splits as:

$$H = H\pi\sigma \ltimes (H \cap \mathbb{Z}^m),$$

(1)

where $\sigma \colon {\it H}\pi \to {\it G}_{\alpha}$ is a section of $\pi_{\it H} \colon {\it H} \to {\it H}\pi$

Definition

A **'basis'** of a subgroup $H \leq G_{\alpha}$ is a pair

$$(V\sigma; B) = (v_1 t^{c_1}, v_2 t^{c_2}, \dots, v_{n'} t^{c_{n'}}; t^{b_1}, t^{b_2}, \dots, t^{b_{m'}})$$

such that:

- $B = (\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_{m'})$ is a *free-abelian basis* of $L_H = H \cap \mathbb{Z}^m \simeq \mathbb{Z}^{m'}$,
- $V = (v_1, v_2, \dots, v_{n'})$ is a *free basis* of $H\pi \simeq \mathbb{F}_{n'}$,
- σ is a section of $\pi_{|H}$.

Recall that every subgroup $H \leq G_{\alpha}$ splits as:

$$H = H\pi\sigma \ltimes (H \cap \mathbb{Z}^m),$$

(1)

where $\sigma \colon {\it H}\pi \to {\it G}_{\alpha}$ is a section of $\pi_{\it H} \colon {\it H} \to {\it H}\pi$

Definition

A **'basis'** of a subgroup $H \leq G_{\alpha}$ is a pair

$$(V\sigma; B) = (v_1 t^{c_1}, v_2 t^{c_2}, \dots, v_{n'} t^{c_{n'}}; t^{b_1}, t^{b_2}, \dots, t^{b_{m'}})$$

such that:

- $B = (\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_{m'})$ is a *free-abelian basis* of $L_H = H \cap \mathbb{Z}^m \simeq \mathbb{Z}^{m'}$,
- $V = (v_1, v_2, \dots, v_{n'})$ is a *free basis* of $H\pi \simeq \mathbb{F}_{n'}$,
- σ is a section of $\pi_{|H}$.

Remark. Note that $V\sigma$ is a free basis of the subgroup $H\pi\sigma$, hence:

• A *basis* of *H* is the result of joining a basis of each factor in (1).

Let
$$H \leq G_{\alpha} = \mathbb{F}_n \ltimes \mathbb{Z}^m$$
 and let $w \in \mathbb{F}_n$.

Definition

The completion of w in H is $c_H(w) = \{ c \in \mathbb{Z}^m : wt^c \in H \} = (w)\pi^{\leftarrow}\tau$.

Let
$$H \leq G_{\alpha} = \mathbb{F}_n \ltimes \mathbb{Z}^m$$
 and let $w \in \mathbb{F}_n$.

Definition

The completion of w in H is $c_H(w) = \{ c \in \mathbb{Z}^m : wt^c \in H \} = (w)\pi^{\leftarrow}\tau$.

Lemma

 $\mathbf{c}_{H}(w)$ is either empty or a coset of $L_{H} = H \cap \mathbb{Z}^{m}$.

Let
$$H \leq G_{\alpha} = \mathbb{F}_n \ltimes \mathbb{Z}^m$$
 and let $w \in \mathbb{F}_n$.

Definition

The completion of w in H is $c_H(w) = \{ c \in \mathbb{Z}^m : wt^c \in H \} = (w)\pi^{\leftarrow}\tau$.

Lemma

 $\mathbf{c}_{H}(w)$ is either empty or a coset of $L_{H} = H \cap \mathbb{Z}^{m}$.

In $\mathbb{F}_n \times \mathbb{Z}^m$ completions are well behaved...

Let
$$H \leq G_{\alpha} = \mathbb{F}_n \ltimes \mathbb{Z}^m$$
 and let $w \in \mathbb{F}_n$.

Definition

The completion of w in H is $c_H(w) = \{ c \in \mathbb{Z}^m : wt^c \in H \} = (w)\pi^{\leftarrow}\tau$.

Lemma

 $\mathbf{c}_{H}(w)$ is either empty or a coset of $L_{H} = H \cap \mathbb{Z}^{m}$.

In $\mathbb{F}_n \times \mathbb{Z}^m$ completions are well behaved...

Lemma

If
$$\{v_1 t^{c_1}, \dots, v_{n'} t^{c_{n'}}; t^{b_1}, \dots, t^{b_{m'}}\}$$
 is a basis of $\mathbb{F}_n \times \mathbb{Z}^m$ and $w \in \mathbb{F}_n$,
then
 $\mathbf{c}_H(w) = \begin{cases} \varnothing & \text{if } w \notin H\pi \\ w \phi \rho \mathbf{C} + L_H & \text{if } w \in H\pi \end{cases}$,

where $\phi : H\pi \to \mathbb{F}_{n'}$ is the change of basis $x_i \mapsto x_i(v_j)$, $\rho : \mathbb{F}_{n'} \twoheadrightarrow \mathbb{Z}^{n'}$ is the abelianization map, **C** is the $n' \times m$ integer matrix having **c**_i as *i*th row.

ENRICHED FLOWER AUTOMATA
Let $S = \{u_1 t^{a_1}, ..., u_k t^{a_k}\}$

Let
$$S = \{u_1 t^{a_1}, ..., u_k t^{a_k}\}$$

Let
$$S = \{u_1 t^{\mathbf{a}_1}, \dots, u_k t^{\mathbf{a}_k}\}$$

$$\mathcal{F}_S \equiv u_1 \underbrace{a_2}_{\mathbf{a}_2} \underbrace{\cdots}_{\mathbf{a}_k} u_k$$

Let
$$S = \{u_1 t^{a_1}, \dots, u_k t^{a_k}\} = \{u_1 t^{a_1}, \dots, u_s t^{a_s}, t^{b_1}, \dots, t^{b_r}\}$$

 $\mathcal{F}_S \equiv u_1 \underbrace{a_2}_{a_1} \underbrace{a_2}_{a_1} \underbrace{a_k}_{a_k} u_k$

Let
$$S = \{u_1 t^{a_1}, \dots, u_k t^{a_k}\} = \{u_1 t^{a_1}, \dots, u_s t^{a_s}, t^{b_1}, \dots, t^{b_r}\}$$

 $\mathcal{F}_s \equiv u_1 \underbrace{a_s}_{a_1} \underbrace{b_1}_{b_1} \underbrace{b_r}_{b_r} 1$

Let
$$S = \{u_1 t^{a_1}, \dots, u_k t^{a_k}\} = \{u_1 t^{a_1}, \dots, u_s t^{a_s}, t^{b_1}, \dots, t^{b_r}\}$$

 $\mathcal{F}_S \equiv u_1 \underbrace{a_s}_{a_1} \underbrace{(b_1, \dots, b_r)}_{a_1}$

Let
$$S = \{u_1 t^{\mathbf{a}_1}, \dots, u_k t^{\mathbf{a}_k}\} = \{u_1 t^{\mathbf{a}_1}, \dots, u_s t^{\mathbf{a}_s}, t^{\mathbf{b}_1}, \dots, t^{\mathbf{b}_r}\}$$

$$\mathcal{F}_S \equiv u_1 \underbrace{a_s}_{u_1 \ldots u_s} \langle \mathbf{b}_1, \dots, \mathbf{b}_r \rangle \leqslant \mathbb{Z}^m$$

Let
$$S = \{u_1 t^{\mathbf{a}_1}, \dots, u_k t^{\mathbf{a}_k}\} = \{u_1 t^{\mathbf{a}_1}, \dots, u_s t^{\mathbf{a}_s}, t^{\mathbf{b}_1}, \dots, t^{\mathbf{b}_r}\}$$

$$\mathcal{F}_S \equiv u_1 \underbrace{a_s}_{u_1 \ldots u_s} \mathcal{L} = \langle \mathbf{b}_1, \dots, \mathbf{b}_r \rangle \leqslant \mathbb{Z}^m$$

Let
$$S = \{u_1 t^{\mathbf{a}_1}, \dots, u_k t^{\mathbf{a}_k}\} = \{u_1 t^{\mathbf{a}_1}, \dots, u_s t^{\mathbf{a}_s}, t^{\mathbf{b}_1}, \dots, t^{\mathbf{b}_r}\}$$

$$\mathcal{F}_S \equiv u_1 \underbrace{a_s}_{\mathbf{a}_1} \mathcal{L} = \langle \mathbf{b}_1, \dots, \mathbf{b}_r \rangle \leqslant \mathbb{Z}^m$$

• We add the **basepoint subgroup** $L \leq \mathbb{Z}^m$ as a label for **•**.

Let
$$S = \{u_1 t^{\mathbf{a}_1}, \dots, u_k t^{\mathbf{a}_k}\} = \{u_1 t^{\mathbf{a}_1}, \dots, u_s t^{\mathbf{a}_s}, t^{\mathbf{b}_1}, \dots, t^{\mathbf{b}_r}\}$$

$$\mathcal{F}_S \equiv u_1 \underbrace{a_s}_{\mathbf{a}_s} L = \langle \mathbf{b}_1, \dots, \mathbf{b}_r \rangle \leqslant \mathbb{Z}^m$$

- We add the **basepoint subgroup** $L \leq \mathbb{Z}^m$ as a label for \bullet .
- We add two labels $\mathbf{a}, \mathbf{b} \in \mathbb{Z}^m$ to the head and tail of every arc:

Let
$$S = \{u_1 t^{\mathbf{a}_1}, \dots, u_k t^{\mathbf{a}_k}\} = \{u_1 t^{\mathbf{a}_1}, \dots, u_s t^{\mathbf{a}_s}, t^{\mathbf{b}_1}, \dots, t^{\mathbf{b}_r}\}$$

$$\mathcal{F}_S \equiv u_1 \underbrace{a_s}_{\mathbf{a}_1} \mathcal{L} = \langle \mathbf{b}_1, \dots, \mathbf{b}_r \rangle \leqslant \mathbb{Z}^m$$

- We add the *basepoint subgroup* $L \leq \mathbb{Z}^m$ as a label for \bullet .
- We add two labels $\mathbf{a}, \mathbf{b} \in \mathbb{Z}^m$ to the head and tail of every arc:

Let
$$S = \{u_1 t^{\mathbf{a}_1}, \dots, u_k t^{\mathbf{a}_k}\} = \{u_1 t^{\mathbf{a}_1}, \dots, u_s t^{\mathbf{a}_s}, t^{\mathbf{b}_1}, \dots, t^{\mathbf{b}_r}\}$$

$$\mathcal{F}_S \equiv u_1 \underbrace{a_s}_{\mathbf{a}_1} \mathcal{L} = \langle \mathbf{b}_1, \dots, \mathbf{b}_r \rangle \leq \mathbb{Z}^m$$

- We add the *basepoint subgroup* $L \leq \mathbb{Z}^m$ as a label for \bullet .
- We add two labels $\mathbf{a}, \mathbf{b} \in \mathbb{Z}^m$ to the head and tail of every arc:

Let
$$S = \{u_1 t^{\mathbf{a}_1}, \dots, u_k t^{\mathbf{a}_k}\} = \{u_1 t^{\mathbf{a}_1}, \dots, u_s t^{\mathbf{a}_s}, t^{\mathbf{b}_1}, \dots, t^{\mathbf{b}_r}\}$$

$$\mathcal{F}_S \equiv u_1 \underbrace{a_s}_{\mathbf{a}_1} \mathcal{L} = \langle \mathbf{b}_1, \dots, \mathbf{b}_r \rangle \leq \mathbb{Z}^m$$

- We add the *basepoint subgroup* $L \leq \mathbb{Z}^m$ as a label for \bullet .
- We add two labels $\mathbf{a}, \mathbf{b} \in \mathbb{Z}^m$ to the head and tail of every arc:

Let
$$S = \{u_1 t^{\mathbf{a}_1}, \dots, u_k t^{\mathbf{a}_k}\} = \{u_1 t^{\mathbf{a}_1}, \dots, u_s t^{\mathbf{a}_s}, t^{\mathbf{b}_1}, \dots, t^{\mathbf{b}_r}\}$$

$$\mathcal{F}_S \equiv u_1 \underbrace{a_s}_{\mathbf{a}_1} \mathcal{L} = \langle \mathbf{b}_1, \dots, \mathbf{b}_r \rangle \leq \mathbb{Z}^m$$

- We add the *basepoint subgroup* $L \leq \mathbb{Z}^m$ as a label for \bullet .
- We add two labels $\mathbf{a}, \mathbf{b} \in \mathbb{Z}^m$ to the head and tail of every arc:

Let
$$S = \{u_1 t^{\mathbf{a}_1}, \dots, u_k t^{\mathbf{a}_k}\} = \{u_1 t^{\mathbf{a}_1}, \dots, u_s t^{\mathbf{a}_s}, t^{\mathbf{b}_1}, \dots, t^{\mathbf{b}_r}\}$$

$$\mathcal{F}_S \equiv u_1 \underbrace{a_s}_{\mathbf{a}_1} \mathcal{L} = \langle \mathbf{b}_1, \dots, \mathbf{b}_r \rangle \leq \mathbb{Z}^m$$

- We add the *basepoint subgroup* $L \leq \mathbb{Z}^m$ as a label for **•**.
- We add two labels $\mathbf{a}, \mathbf{b} \in \mathbb{Z}^m$ to the head and tail of every arc:

s.t. the abelian contribution of the *j*-th petal adds up to \mathbf{a}_{j} ,

Let
$$S = \{u_1 t^{\mathbf{a}_1}, \dots, u_k t^{\mathbf{a}_k}\} = \{u_1 t^{\mathbf{a}_1}, \dots, u_s t^{\mathbf{a}_s}, t^{\mathbf{b}_1}, \dots, t^{\mathbf{b}_r}\}$$

$$\mathcal{F}_S \equiv u_1 \underbrace{a_s}_{\mathbf{a}_1} \mathcal{L} = \langle \mathbf{b}_1, \dots, \mathbf{b}_r \rangle \leq \mathbb{Z}^m$$

- We add the *basepoint subgroup* $L \leq \mathbb{Z}^m$ as a label for \bullet .
- We add two labels $\mathbf{a}, \mathbf{b} \in \mathbb{Z}^m$ to the head and tail of every arc:

s.t. the abelian contribution of the *j*-th petal adds up to \mathbf{a}_{i} , e.g.

$$\underbrace{ \mathbf{0} \quad \mathbf{0$$

Let
$$S = \{u_1 t^{\mathbf{a}_1}, \dots, u_k t^{\mathbf{a}_k}\} = \{u_1 t^{\mathbf{a}_1}, \dots, u_s t^{\mathbf{a}_s}, t^{\mathbf{b}_1}, \dots, t^{\mathbf{b}_r}\}$$

$$\mathcal{F}_S \equiv u_1 \underbrace{a_s}_{L = \langle \mathbf{b}_1, \dots, \mathbf{b}_r \rangle \leq \mathbb{Z}^m}$$

- We add the *basepoint subgroup* $L \leq \mathbb{Z}^m$ as a label for \bullet .
- We add two labels $\mathbf{a}, \mathbf{b} \in \mathbb{Z}^m$ to the head and tail of every arc:

s.t. the abelian contribution of the *j*-th petal adds up to \mathbf{a}_{j} , e.g.

$$\underbrace{\bullet}^{0}_{X_{i_1}} \underbrace{\bullet}^{0}_{X_{i_2}} \underbrace{\bullet}_{X_{i_2}} \underbrace{\bullet}_{X_{i_j}} \underbrace{\bullet}_{X_{i$$

where $u_j = x_{i_1} x_{i_2} \cdots x_{i_l}$.

Let
$$S = \{u_1 t^{\mathbf{a}_1}, \dots, u_k t^{\mathbf{a}_k}\} = \{u_1 t^{\mathbf{a}_1}, \dots, u_s t^{\mathbf{a}_s}, t^{\mathbf{b}_1}, \dots, t^{\mathbf{b}_r}\}$$

$$\mathcal{F}_S \equiv u_1 \underbrace{a_s}_{\mathbf{a}_1} \mathcal{L} = \langle \mathbf{b}_1, \dots, \mathbf{b}_r \rangle \leq \mathbb{Z}^m$$

- We add the *basepoint subgroup* $L \leq \mathbb{Z}^m$ as a label for \bullet .
- We add two labels $\mathbf{a}, \mathbf{b} \in \mathbb{Z}^m$ to the head and tail of every arc:

s.t. the abelian contribution of the *j*-th petal adds up to \mathbf{a}_{j} , e.g.

where $u_j = x_{i_1} x_{i_2} \cdots x_{i_l}$.

Let
$$S = \{u_1 t^{\mathbf{a}_1}, \dots, u_k t^{\mathbf{a}_k}\} = \{u_1 t^{\mathbf{a}_1}, \dots, u_s t^{\mathbf{a}_s}, t^{\mathbf{b}_1}, \dots, t^{\mathbf{b}_r}\}$$

$$\mathcal{F}_S \equiv u_1 \underbrace{\overset{u_s}}}}{\overset{u_s}{\overset{u_$$

- We add the *basepoint subgroup* $L \leq \mathbb{Z}^m$ as a label for **•**.
- We add two labels $\mathbf{a}, \mathbf{b} \in \mathbb{Z}^m$ to the head and tail of every arc:

s.t. the abelian contribution of the *j*-th petal adds up to \mathbf{a}_{i} , e.g.

where $u_j = x_{i_1} x_{i_2} \cdots x_{i_l}$.

Let
$$S = \{u_1 t^{\mathbf{a}_1}, \dots, u_k t^{\mathbf{a}_k}\} = \{u_1 t^{\mathbf{a}_1}, \dots, u_s t^{\mathbf{a}_s}, t^{\mathbf{b}_1}, \dots, t^{\mathbf{b}_r}\}$$

$$\mathcal{F}_S \equiv u_1 \underbrace{\overset{u_s}}}}{\overset{u_s}{\overset{u_$$

- We add the *basepoint subgroup* $L \leq \mathbb{Z}^m$ as a label for **•**.
- We add two labels $\mathbf{a}, \mathbf{b} \in \mathbb{Z}^m$ to the head and tail of every arc:

s.t. the abelian contribution of the *j*-th petal adds up to **a**_i, e.g.

where $u_i = x_{i_1} x_{i_2} \cdots x_{i_l}$.

• \mathcal{F}_S is called the *(enriched) flower automaton of S*.

Definition

A \mathbb{Z}^m -enriched X-automaton $\widehat{\Gamma}_L = (\widehat{\Gamma}, L)$ is a pointed involutive automaton $\widehat{\Gamma}$ with:

1. the basepoint \bullet labelled by a subgroup $L \leq \mathbb{Z}^m$.

and every arc having:

Definition

A \mathbb{Z}^{m} -enriched X-automaton $\widehat{\Gamma}_{L} = (\widehat{\Gamma}, L)$ is a pointed involutive automaton $\widehat{\Gamma}$ with:

1. the basepoint \bullet labelled by a subgroup $L \leq \mathbb{Z}^m$.

and every arc having:

2. a middle "free label" $x_i \in X$.

Definition

A \mathbb{Z}^m -enriched X-automaton $\widehat{\Gamma}_L = (\widehat{\Gamma}, L)$ is a pointed involutive automaton $\widehat{\Gamma}$ with:

1. the basepoint \bullet labelled by a subgroup $L \leq \mathbb{Z}^m$.

and every arc having:

2. a middle "free label" $x_i \in X$.

Definition

A \mathbb{Z}^m -enriched X-automaton $\widehat{\Gamma}_L = (\widehat{\Gamma}, L)$ is a pointed involutive automaton $\widehat{\Gamma}$ with:

1. the basepoint \bullet labelled by a subgroup $L \leq \mathbb{Z}^m$.

and every arc having:

- 2. a middle "free label" $x_i \in X$.
- 3. two "abelian labels" $\mathbf{a}, \mathbf{b} \in \mathbb{Z}^m$ in the head and tail respectively,

Definition

A \mathbb{Z}^m -enriched X-automaton $\widehat{\Gamma}_L = (\widehat{\Gamma}, L)$ is a pointed involutive automaton $\widehat{\Gamma}$ with:

1. the basepoint \bullet labelled by a subgroup $L \leq \mathbb{Z}^m$.

and every arc having:

- 2. a middle "free label" $x_i \in X$.
- 3. two "abelian labels" $\mathbf{a}, \mathbf{b} \in \mathbb{Z}^m$ in the head and tail respectively,

Definition

A \mathbb{Z}^m -enriched X-automaton $\widehat{\Gamma}_L = (\widehat{\Gamma}, L)$ is a pointed involutive automaton $\widehat{\Gamma}$ with:

1. the basepoint \bullet labelled by a subgroup $L \leq \mathbb{Z}^m$.

and every arc having:

2. a middle "free label" $x_i \in X$.

3. two "abelian labels" $\textbf{a}, \textbf{b} \in \mathbb{Z}^m$ in the head and tail respectively, meant to be read

Definition

A \mathbb{Z}^{m} -enriched X-automaton $\widehat{\Gamma}_{L} = (\widehat{\Gamma}, L)$ is a pointed involutive automaton $\widehat{\Gamma}$ with:

1. the basepoint \bullet labelled by a subgroup $L \leq \mathbb{Z}^m$.

and every arc having:

2. a middle "free label" $x_i \in X$.

3. two "abelian labels" $\mathbf{a},\mathbf{b}\in\mathbb{Z}^m$ in the head and tail respectively, meant to be read

Definition

A \mathbb{Z}^m -enriched X-automaton $\widehat{\Gamma}_L = (\widehat{\Gamma}, L)$ is a pointed involutive automaton $\widehat{\Gamma}$ with:

1. the basepoint \bullet labelled by a subgroup $L \leq \mathbb{Z}^m$.

and every arc having:

2. a middle "free label" $x_i \in X$.

3. two "abelian labels" $\textbf{a}, \textbf{b} \in \mathbb{Z}^m$ in the head and tail respectively, meant to be read

Definition

A \mathbb{Z}^m -enriched X-automaton $\widehat{\Gamma}_L = (\widehat{\Gamma}, L)$ is a pointed involutive automaton $\widehat{\Gamma}$ with:

1. the basepoint \bullet labelled by a subgroup $L \leq \mathbb{Z}^m$.

and every arc having:

2. a middle "free label" $x_i \in X$.

3. two "abelian labels" $\mathbf{a}, \mathbf{b} \in \mathbb{Z}^m$ in the head and tail respectively, meant to be read (for a given action $\alpha = (\mathbf{A}_i)_i \colon \mathbb{F}_X \to \mathsf{GL}_m(\mathbb{Z})$):

Definition

A \mathbb{Z}^m -enriched X-automaton $\widehat{\Gamma}_L = (\widehat{\Gamma}, L)$ is a pointed involutive automaton $\widehat{\Gamma}$ with:

1. the basepoint \bullet labelled by a subgroup $L \leq \mathbb{Z}^m$.

and every arc having:

2. a middle "free label" $x_i \in X$.

3. two "abelian labels" $\mathbf{a}, \mathbf{b} \in \mathbb{Z}^m$ in the head and tail respectively, meant to be read (for a given action $\alpha = (\mathbf{A}_i)_i \colon \mathbb{F}_X \to \mathsf{GL}_m(\mathbb{Z})$):

Definition

A \mathbb{Z}^m -enriched X-automaton $\widehat{\Gamma}_L = (\widehat{\Gamma}, L)$ is a pointed involutive automaton $\widehat{\Gamma}$ with:

1. the basepoint \bullet labelled by a subgroup $L \leq \mathbb{Z}^m$.

and every arc having:

2. a middle "free label" $x_i \in X$.

3. two "abelian labels" $\mathbf{a}, \mathbf{b} \in \mathbb{Z}^m$ in the head and tail respectively, meant to be read (for a given action $\alpha = (\mathbf{A}_i)_i \colon \mathbb{F}_X \to \mathsf{GL}_m(\mathbb{Z})$):

Definition

A \mathbb{Z}^m -enriched X-automaton $\widehat{\Gamma}_L = (\widehat{\Gamma}, L)$ is a pointed involutive automaton $\widehat{\Gamma}$ with:

1. the basepoint \bullet labelled by a subgroup $L \leq \mathbb{Z}^m$.

and every arc having:

2. a middle "free label" $x_i \in X$.

3. two "abelian labels" $\mathbf{a}, \mathbf{b} \in \mathbb{Z}^m$ in the head and tail respectively, meant to be read (for a given action $\alpha = (\mathbf{A}_i)_i \colon \mathbb{F}_X \to \mathsf{GL}_m(\mathbb{Z})$):

Definition.

The *subgroup recognized* by $\widehat{\Gamma}_L$ in G_{α} , denoted by $\langle \widehat{\Gamma}_L \rangle_{\alpha}$ is the set of α -enriched labels of \mathfrak{S} -walks in $\widehat{\Gamma}$.

SKELETON

Definition:

The **skeleton** of $\widehat{\Gamma}_L$, denoted by $\mathsf{sk}(\widehat{\Gamma}_L)$ is the X-automaton obtained after removing from $\widehat{\Gamma}$ all the abelian labels.

SKELETON

Definition:

The *skeleton* of $\widehat{\Gamma}_L$, denoted by $sk(\widehat{\Gamma}_L)$ is the X-automaton obtained after removing from $\widehat{\Gamma}$ all the abelian labels.

It is clear that $\langle \mathsf{sk}(\widehat{\Gamma}_L) \rangle = (\langle \widehat{\Gamma}_L \rangle) \pi \leqslant \mathbb{F}_{X}.$

SKELETON

Definition:

The *skeleton* of $\widehat{\Gamma}_L$, denoted by $sk(\widehat{\Gamma}_L)$ is the X-automaton obtained after removing from $\widehat{\Gamma}$ all the abelian labels.

It is clear that $\langle \mathsf{sk}(\widehat{\Gamma}_L) \rangle = (\langle \widehat{\Gamma}_L \rangle) \pi \leqslant \mathbb{F}_X.$

Example: A \mathbb{Z}^2 -enriched {*x*, *y*}-automaton and its skeleton

SKELETON

Definition:

The *skeleton* of $\widehat{\Gamma}_L$, denoted by $sk(\widehat{\Gamma}_L)$ is the X-automaton obtained after removing from $\widehat{\Gamma}$ all the abelian labels.

It is clear that $\langle \mathsf{sk}(\widehat{\Gamma}_L) \rangle = (\langle \widehat{\Gamma}_L \rangle) \pi \leqslant \mathbb{F}_{X}.$

Example: A \mathbb{Z}^2 -enriched {*x*, *y*}-automaton and its skeleton

As it happens in the free group, it is clear that $\sqrt{\mathbb{Z}^m}$ -enriched X-automata $\rightarrow \sqrt{\mathbb{Z}^m}$

 $\begin{array}{rcl} \{\mathbb{Z}^m \text{-enriched X-automata}\} & \to & \{\text{subgroups of } G_\alpha\} \\ & \widehat{\Gamma} & \mapsto & \langle \widehat{\Gamma} \rangle_\alpha \end{array}$

is well-defined and onto (why?),

As it happens in the free group, it is clear that $\{\mathbb{Z}^m\text{-enriched }X\text{-automata}\} \rightarrow \{\text{subgroups of }G_{\alpha}\}$

is well-defined and onto (why?), but very far from injective...

 $\widehat{\Gamma} \mapsto \langle \widehat{\Gamma} \rangle_{\alpha}$

As it happens in the free group, it is clear that

 $\begin{array}{rcl} \{\mathbb{Z}^m \text{-enriched X-automata}\} & \to & \{\text{subgroups of } G_\alpha\} \\ & \widehat{\Gamma} & \mapsto & \langle \widehat{\Gamma} \rangle_\alpha \end{array}$

is well-defined and onto (why?), but very far from injective...

There is a lot of redundancy in an enriched automaton $\widehat{\Gamma}$:

• In the skeleton $\mathsf{sk}(\widehat{\Gamma})$

(coming from non-determinism and non-coreness),

As it happens in the free group, it is clear that

 $\begin{array}{rcl} \{\mathbb{Z}^m \text{-enriched X-automata}\} & \to & \{\text{subgroups of } G_\alpha\} \\ & \widehat{\Gamma} & \mapsto & \langle \widehat{\Gamma} \rangle_\alpha \end{array}$

is well-defined and onto (why?), but very far from injective...

There is a lot of redundancy in an enriched automaton $\widehat{\Gamma}$:

- In the skeleton sk($\widehat{\Gamma})$ (coming from non-determinism and non-coreness),
- In the basepoint subgroup L

(by conjugation w.r.t. the free part or closed foldings),

As it happens in the free group, it is clear that

 $\begin{array}{rcl} \{\mathbb{Z}^m \text{-enriched X-automata}\} & \to & \{\text{subgroups of } G_\alpha\} \\ & \widehat{\Gamma} & \mapsto & \langle \widehat{\Gamma} \rangle_\alpha \end{array}$

is well-defined and onto (why?), but very far from injective...

There is a lot of redundancy in an enriched automaton $\widehat{\Gamma}$:

- In the skeleton $\mathsf{sk}(\widehat{\Gamma})$ (coming from non-determinism and non-coreness),
- In the basepoint subgroup L
 (by conjugation w.r.t. the free part or closed foldings),
- In the arc-labelling

(by the multiplication rules in G_{α} + the action of *L*).

As it happens in the free group, it is clear that

 $\begin{array}{rcl} \{\mathbb{Z}^m \text{-enriched X-automata}\} & \to & \{\text{subgroups of } G_\alpha\} \\ & \widehat{\Gamma} & \mapsto & \langle \widehat{\Gamma} \rangle_\alpha \end{array}$

is well-defined and onto (why?), but very far from injective...

There is a lot of redundancy in an enriched automaton $\widehat{\Gamma}$:

- In the skeleton $\mathsf{sk}(\widehat{\Gamma})$ (coming from non-determinism and non-coreness),
- In the basepoint subgroup L
 (by conjugation w.r.t. the free part or closed foldings),
- In the arc-labelling

(by the multiplication rules in G_{α} + the action of *L*).

In order to get rid of these redundancy we introduce different kinds of transformations ...

Lemma

The following transformations do not change the subgroup $H = \langle \widehat{\Gamma}_L \rangle$:

Lemma

The following transformations do not change the subgroup $H = \langle \widehat{\Gamma}_L \rangle$:

A0 Replacing the base subgroup $L \longrightarrow \overline{L} = L^{H\pi} = (L)A_{H\pi}$.

Lemma

The following transformations do not change the subgroup $H = \langle \widehat{\Gamma}_L \rangle$:

- A0 Replacing the base subgroup $L \longrightarrow \overline{L} = L^{H\pi} = (L)\mathbf{A}_{H\pi}$.
- A1 Adding any $l \in L$ to any abelian label in the neighborhood of \bullet :

Lemma

The following transformations do not change the subgroup $H = \langle \widehat{\Gamma}_L \rangle$:

- A0 Replacing the base subgroup $L \longrightarrow \overline{L} = L^{H\pi} = (L)\mathbf{A}_{H\pi}$.
- A1 Adding any $l \in L$ to any abelian label in the neighborhood of \bullet :

$$\underbrace{a \qquad b}_{L} \underbrace{\bullet}_{X_{i}} \xrightarrow{X_{i}} \underbrace{\bullet}_{L} \underbrace{\bullet}_{L} \underbrace{\bullet}_{X_{i}} \xrightarrow{X_{i}} \underbrace{\bullet}_{L} \underbrace{\bullet}_{X_{i}} \underbrace{\bullet}_{X_{$$

Lemma

The following transformations do not change the subgroup $H = \langle \widehat{\Gamma}_L \rangle$:

- A0 Replacing the base subgroup $L \longrightarrow \overline{L} = L^{H\pi} = (L)\mathbf{A}_{H\pi}$.
- A1 Adding any $l \in L$ to any abelian label in the neighborhood of \bullet :

A2 Adding **c** and **c** A_i to the tail and head of an arc with free label x_i :

Lemma

The following transformations do not change the subgroup $H = \langle \widehat{\Gamma}_L \rangle$:

- A0 Replacing the base subgroup $L \longrightarrow \overline{L} = L^{H\pi} = (L)\mathbf{A}_{H\pi}$.
- A1 Adding any $l \in L$ to any abelian label in the neighborhood of \bullet :

A2 Adding **c** and **c** A_i to the tail and head of an arc with free label x_i :

Lemma

The following transformations do not change the subgroup $H = \langle \widehat{\Gamma}_L \rangle$:

- A0 Replacing the base subgroup $L \longrightarrow \overline{L} = L^{H\pi} = (L)\mathbf{A}_{H\pi}$.
- A1 Adding any $l \in L$ to any abelian label in the neighborhood of \bullet :

A2 Adding **c** and **c** A_i to the tail and head of an arc with free label x_i :

A3 Adding any $\mathbf{c} \in \mathbb{Z}^m$ to every abelian label in the neighborhood of a *nonbase* vertex:

Lemma

The following transformations do not change the subgroup $H = \langle \widehat{\Gamma}_L \rangle$:

- A0 Replacing the base subgroup $L \longrightarrow \overline{L} = L^{H\pi} = (L)\mathbf{A}_{H\pi}$.
- A1 Adding any $l \in L$ to any abelian label in the neighborhood of \bullet :

A2 Adding **c** and **c** A_i to the tail and head of an arc with free label x_i :

A3 Adding any $\mathbf{c} \in \mathbb{Z}^m$ to every abelian label in the neighborhood of a *nonbase* vertex:

Lemma

The following transformations do not change the subgroup $H = \langle \widehat{\Gamma}_L \rangle$:

- A0 Replacing the base subgroup $L \longrightarrow \overline{L} = L^{H\pi} = (L)\mathbf{A}_{H\pi}$.
- A1 Adding any $l \in L$ to any abelian label in the neighborhood of \bullet :

A2 Adding **c** and **c** A_i to the tail and head of an arc with free label x_i :

A3 Adding any $\mathbf{c} \in \mathbb{Z}^m$ to every abelian label in the neighborhood of a *nonbase* vertex:

Lemma

The following transformations do not change the subgroup recognized by an enriched automaton:

Lemma

The following transformations do not change the subgroup recognized by an enriched automaton:

F1 Identify two nonparallel incident arcs with the same labels:

Lemma

The following transformations do not change the subgroup recognized by an enriched automaton:

F1 Identify two nonparallel incident arcs with the same labels:

Lemma

The following transformations do not change the subgroup recognized by an enriched automaton:

F1 Identify two nonparallel incident arcs with the same labels:

Lemma

The following transformations do not change the subgroup recognized by an enriched automaton:

F1 Identify two nonparallel incident arcs with the same labels:

Lemma

The following transformations do not change the subgroup recognized by an enriched automaton:

F1 Identify two nonparallel incident arcs with the same labels:

Lemma

The following transformations do not change the subgroup recognized by an enriched automaton:

F1 Identify two nonparallel incident arcs with the same labels:

Lemma

The following transformations do not change the subgroup recognized by an enriched automaton:

F1 Identify two nonparallel incident arcs with the same labels:

Lemma

The following transformations do not change the subgroup recognized by an enriched automaton:

F1 Identify two nonparallel incident arcs with the same labels:

Lemma

If $\widehat{\Gamma}_L$ is finite then a basis for $\overline{L} = L^{H\pi}$ is computable.

Lemma

If $\widehat{\Gamma}_{L}$ is finite then a basis for $\overline{L} = L^{H\pi}$ is computable.

Proof. Given $\widehat{\Gamma}_L$ a finite enriched automaton,

1. Compute a free-abelian basis *B* of *L*;

Lemma

If $\widehat{\Gamma}_L$ is finite then a basis for $\overline{L} = L^{H\pi}$ is computable.

Proof. Given $\widehat{\Gamma}_L$ a finite enriched automaton,

- 1. Compute a free-abelian basis B of L;
- 2. compute a basis *W* of $H\pi = \langle \mathsf{sk}(\widehat{\Gamma}_L) \rangle$;

Lemma

If $\widehat{\Gamma}_L$ is finite then a basis for $\overline{L} = L^{H\pi}$ is computable.

Proof. Given $\widehat{\Gamma}_L$ a finite enriched automaton,

- 1. Compute a free-abelian basis B of L;
- 2. compute a basis *W* of $H\pi = \langle \mathsf{sk}(\widehat{\Gamma}_L) \rangle$;
- 3. check whether $L = \langle B \rangle$ is invariant by conjugation by $H\pi$, i.e., check whether

$$(B)\mathbf{A}_W \subseteq B$$

Lemma

If $\widehat{\Gamma}_L$ is finite then a basis for $\overline{L} = L^{H\pi}$ is computable.

Proof. Given $\widehat{\Gamma}_L$ a finite enriched automaton,

- 1. Compute a free-abelian basis B of L;
- 2. compute a basis *W* of $H\pi = \langle \mathsf{sk}(\widehat{\Gamma}_L) \rangle$;
- 3. check whether $L = \langle B \rangle$ is invariant by conjugation by $H\pi$, i.e., check whether

$$(B)\mathbf{A}_W \subseteq B$$

(decidable since both *B* and *W* are finite)

Lemma

If $\widehat{\Gamma}_L$ is finite then a basis for $\overline{L} = L^{H\pi}$ is computable.

Proof. Given $\widehat{\Gamma}_L$ a finite enriched automaton,

- 1. Compute a free-abelian basis B of L;
- 2. compute a basis *W* of $H\pi = \langle \mathsf{sk}(\widehat{\Gamma}_L) \rangle$;
- 3. check whether $L = \langle B \rangle$ is invariant by conjugation by $H\pi$, i.e., check whether

$$(B)\mathbf{A}_W\subseteq B$$

(decidable since both *B* and *W* are finite)

4. if YES then return B;

Lemma

If $\widehat{\Gamma}_L$ is finite then a basis for $\overline{L} = L^{H\pi}$ is computable.

Proof. Given $\widehat{\Gamma}_L$ a finite enriched automaton,

- 1. Compute a free-abelian basis B of L;
- 2. compute a basis *W* of $H\pi = \langle \mathsf{sk}(\widehat{\Gamma}_L) \rangle$;
- 3. check whether $L = \langle B \rangle$ is invariant by conjugation by $H\pi$, i.e., check whether

$$(B) \mathbf{A}_W \subseteq B$$

(decidable since both *B* and *W* are finite)

- 4. if YES then return B;
- 5. otherwise compute a basis for B' for $\langle B \cup (B) \mathbf{A}_W \rangle$;

Lemma

If $\widehat{\Gamma}_L$ is finite then a basis for $\overline{L} = L^{H\pi}$ is computable.

Proof. Given $\widehat{\Gamma}_L$ a finite enriched automaton,

- 1. Compute a free-abelian basis B of L;
- 2. compute a basis *W* of $H\pi = \langle \mathsf{sk}(\widehat{\Gamma}_L) \rangle$;
- 3. check whether $L = \langle B \rangle$ is invariant by conjugation by $H\pi$, i.e., check whether

$$(B) \mathbf{A}_W \subseteq B$$

(decidable since both *B* and *W* are finite)

- 4. if YES then return B;
- 5. otherwise compute a basis for B' for $\langle B \cup (B) \mathbf{A}_W \rangle$;
- 6. update $B \leftarrow B'$ and repeat step 3.
Lemma

If $\widehat{\Gamma}_L$ is finite then a basis for $\overline{L} = L^{H\pi}$ is computable.

Proof. Given $\hat{\Gamma}_L$ a finite enriched automaton, the previous algorithm always ends because every updating of *B* either:

- increases the rank of $\langle B \rangle$, or
- decreases the index of $\langle B \rangle$ in its direct sum completion C: $\langle B \rangle \leq_{fi} C \leq_{\oplus} \mathbb{Z}^m$.

Lemma

If $\widehat{\Gamma}_L$ is finite then a basis for $\overline{L} = L^{H\pi}$ is computable.

Proof. Given $\hat{\Gamma}_L$ a finite enriched automaton, the previous algorithm always ends because every updating of *B* either:

- increases the rank of $\langle B \rangle$, or
- decreases the index of $\langle B \rangle$ in its direct sum completion C:

 $\langle B \rangle \leqslant_{\mathsf{fi}} C \leqslant_{\oplus} \mathbb{Z}^m.$

Since the $rk(\langle B \rangle) \leq m$ and $|C: \langle B \rangle| \leq \infty$, the algorithm is guaranteed to terminate in finite time with output $\overline{L} = L^{H\pi}$.

Lemma

If $\widehat{\Gamma}_L$ is finite then a basis for $\overline{L} = L^{H\pi}$ is computable.

Proof. Given $\hat{\Gamma}_L$ a finite enriched automaton, the previous algorithm always ends because every updating of *B* either:

- increases the rank of $\langle B \rangle$, or
- decreases the index of $\langle B \rangle$ in its direct sum completion C:

 $\langle B \rangle \leqslant_{\mathsf{fi}} C \leqslant_{\oplus} \mathbb{Z}^m.$

Since the $rk(\langle B \rangle) \leq m$ and $|C: \langle B \rangle| \leq \infty$, the algorithm is guaranteed to terminate in finite time with output $\overline{L} = L^{H\pi}$.

Lemma

A pair of enriched arcs \hat{e}_1 , \hat{e}_2 in $\hat{\Gamma}_L$ admit an open (resp. closed) folding if and only if the corresponding arcs e_1 , e_2 admit an open (resp. closed) folding in $sk(\hat{\Gamma}_L)$.

Lemma

If $\widehat{\Gamma}_L$ is finite then a basis for $\overline{L} = L^{H\pi}$ is computable.

Proof. Given $\hat{\Gamma}_L$ a finite enriched automaton, the previous algorithm always ends because every updating of *B* either:

- increases the rank of $\langle B \rangle$, or
- decreases the index of $\langle B \rangle$ in its direct sum completion C:

 $\langle B \rangle \leqslant_{\mathsf{fi}} C \leqslant_{\oplus} \mathbb{Z}^m.$

Since the $rk(\langle B \rangle) \leq m$ and $|C: \langle B \rangle| \leq \infty$, the algorithm is guaranteed to terminate in finite time with output $\overline{L} = L^{H\pi}$.

Lemma

A pair of enriched arcs \hat{e}_1 , \hat{e}_2 in $\hat{\Gamma}_L$ admit an open (resp. closed) folding if and only if the corresponding arcs e_1 , e_2 admit an open (resp. closed) folding in $sk(\hat{\Gamma}_L)$.

Proof. Play with abelian transformations.

Definition.

An enriched automaton is said to be *deterministic* (resp., *core*) if its skeleton is so.

Definition.

An enriched automaton is said to be *deterministic* (resp., *core*) if its skeleton is so.

An enriched automaton is said to be **reduced** if it is deterministic, core, and basepoint closed (i.e., $L = \overline{L}$).

Definition.

An enriched automaton is said to be *deterministic* (resp., *core*) if its skeleton is so.

An enriched automaton is said to be *reduced* if it is deterministic, core, and basepoint closed (i.e., $L = \overline{L}$).

Proposition Let $\widehat{\Gamma}_{L}$ be a reduced automaton recognizing $H \leq G_{\alpha}$. Then, 1. $L = H \cap \mathbb{Z}^{m}$; 2. $\langle \widehat{\Gamma}_{0} \rangle = H\pi\sigma$, where σ is given by *T*-petals in $sk(\widehat{\Gamma}_{L})$; 3. $sk(\widehat{\Gamma}_{L}) = St(H\pi)$.

Definition.

An enriched automaton is said to be *deterministic* (resp., *core*) if its skeleton is so.

An enriched automaton is said to be *reduced* if it is deterministic, core, and basepoint closed (i.e., $L = \overline{L}$).

Proposition Let $\widehat{\Gamma}_L$ be a reduced automaton recognizing $H \leq G_{\alpha}$. Then, 1. $L = H \cap \mathbb{Z}^m$; 2. $\langle \widehat{\Gamma}_0 \rangle = H\pi \sigma$, where σ is given by *T*-petals in sk($\widehat{\Gamma}_L$); 3. sk($\widehat{\Gamma}_L$) = St($H\pi$).

Hence, a reduced enriched automaton recognizing *H* properly encodes a splitting:

 $H = H\pi\sigma \ltimes (H \cap \mathbb{Z}^m)$

Definition.

An enriched automaton is said to be *deterministic* (resp., *core*) if its skeleton is so.

An enriched automaton is said to be *reduced* if it is deterministic, core, and basepoint closed (i.e., $L = \overline{L}$).

Proposition Let $\widehat{\Gamma}_L$ be a reduced automaton recognizing $H \leq G_{\alpha}$. Then, 1. $L = H \cap \mathbb{Z}^m$; 2. $\langle \widehat{\Gamma}_0 \rangle = H\pi \sigma$, where σ is given by *T*-petals in $\mathsf{sk}(\widehat{\Gamma}_L)$; 3. $\mathsf{sk}(\widehat{\Gamma}_L) = \mathsf{St}(H\pi)$.

Hence, a reduced enriched automaton recognizing *H* properly encodes a splitting:

 $H = H\pi\sigma \ltimes (H \cap \mathbb{Z}^m)$

But it is still not unique...

The sources of redundancy of a reduced enriched automaton $\hat{\Gamma}_L$ are:

 the dependence of the abelian labels in the arcs "modulo the basepoint subgroup";

The sources of redundancy of a reduced enriched automaton $\hat{\Gamma}_L$ are:

- the dependence of the abelian labels in the arcs "modulo the basepoint subgroup";
- II. the dependence of the abelian labels in the arcs "modulo the multiplication rules in G_{α} ".

The sources of redundancy of a reduced enriched automaton $\hat{\Gamma}_{L}$ are:

- the dependence of the abelian labels in the arcs "modulo the basepoint subgroup";
- II. the dependence of the abelian labels in the arcs "modulo the multiplication rules in G_{α} ".

Redundancy of type I is intrinsic and there is not much that we can do about it, other than considering the enriched automaton $\widehat{\Gamma}_{L}$ modulo L.

The sources of redundancy of a reduced enriched automaton $\hat{\Gamma}_{L}$ are:

- the dependence of the abelian labels in the arcs "modulo the basepoint subgroup";
- II. the dependence of the abelian labels in the arcs "modulo the multiplication rules in G_{α} ".

Redundancy of type I is intrinsic and there is not much that we can do about it, other than considering the enriched automaton $\widehat{\Gamma}_{L}$ modulo L.

In order to fix redundancy of type II, we choose a spanning tree T in $\widehat{\Gamma}_L$ and we use abelian transformations to obtain an equivalent automaton $\widehat{\Delta}_L$ with zeros at every abelian arc-label except at the end of the arcs outside T.

The sources of redundancy of a reduced enriched automaton $\hat{\Gamma}_L$ are:

- the dependence of the abelian labels in the arcs "modulo the basepoint subgroup";
- II. the dependence of the abelian labels in the arcs "modulo the multiplication rules in G_{α} ".

Redundancy of type I is intrinsic and there is not much that we can do about it, other than considering the enriched automaton $\widehat{\Gamma}_L$ modulo L.

In order to fix redundancy of type II, we choose a spanning tree T in $\widehat{\Gamma}_L$ and we use abelian transformations to obtain an equivalent automaton $\widehat{\Delta}_L$ with zeros at every abelian arc-label except at the end of the arcs outside T.

Lemma

For every reduced automata $\widehat{\Gamma}_L$ and every spanning tree T in $\widehat{\Gamma}_L$ there exists a unique equivalent T-normalized automaton (modulo L).

The sources of redundancy of a reduced enriched automaton $\hat{\Gamma}_L$ are:

- the dependence of the abelian labels in the arcs "modulo the basepoint subgroup";
- II. the dependence of the abelian labels in the arcs "modulo the multiplication rules in G_{α} ".

Redundancy of type I is intrinsic and there is not much that we can do about it, other than considering the enriched automaton $\widehat{\Gamma}_L$ modulo L.

In order to fix redundancy of type II, we choose a spanning tree T in $\widehat{\Gamma}_L$ and we use abelian transformations to obtain an equivalent automaton $\widehat{\Delta}_L$ with zeros at every abelian arc-label except at the end of the arcs outside T.

Lemma

For every reduced automata $\widehat{\Gamma}_L$ and every spanning tree T in $\widehat{\Gamma}_L$ there exists a unique equivalent T-normalized automaton (modulo L).

Definition

Given $H \leq G_{\alpha}$, a *(enriched) Stallings automaton* of *H* is a normalized reduced automaton recognizing *H*.

Definition

Given $H \leq G_{\alpha}$, a **(enriched) Stallings automaton** of H is a normalized reduced automaton recognizing H. For a chosen spanning tree T, it is denoted by $St_T(H)$.

Definition

Given $H \leq G_{\alpha}$, a **(enriched)** Stallings automaton of H is a normalized reduced automaton recognizing H. For a chosen spanning tree T, it is denoted by $St_T(H)$.

Proposition

Given S a finite subset of $G_{\alpha},$ a Stallings automaton for $\langle S \rangle$ is computable.

Definition

Given $H \leq G_{\alpha}$, a **(enriched)** Stallings automaton of H is a normalized reduced automaton recognizing H. For a chosen spanning tree T, it is denoted by $St_T(H)$.

Proposition

Given S a finite subset of G_{α} , a Stallings automaton for $\langle S \rangle$ is computable.

Proof. Given $S \subseteq \mathbb{F}_n \ltimes \mathbb{Z}^m$ finite generating *H*:

 $S \, \rightsquigarrow \, ({\mathcal F}_S, L) \, \rightsquigarrow \, (\Gamma', L')$

Definition

Given $H \leq G_{\alpha}$, a **(enriched)** Stallings automaton of H is a normalized reduced automaton recognizing H. For a chosen spanning tree T, it is denoted by $St_T(H)$.

Proposition

Given S a finite subset of G_{α} , a Stallings automaton for $\langle S \rangle$ is computable.

Proof. Given $S \subseteq \mathbb{F}_n \ltimes \mathbb{Z}^m$ finite generating *H*:

 $S \rightsquigarrow (\mathcal{F}_S, L) \rightsquigarrow (\Gamma', L') \rightsquigarrow \cdots \rightsquigarrow (\Gamma^{(p)}, L^{(p)})$

Definition

Given $H \leq G_{\alpha}$, a **(enriched)** Stallings automaton of H is a normalized reduced automaton recognizing H. For a chosen spanning tree T, it is denoted by $St_T(H)$.

Proposition

Given S a finite subset of G_{α} , a Stallings automaton for $\langle S \rangle$ is computable.

Proof. Given $S \subseteq \mathbb{F}_n \ltimes \mathbb{Z}^m$ finite generating *H*:

 $S \rightsquigarrow (\mathcal{F}_{S}, L) \rightsquigarrow (\Gamma', L') \rightsquigarrow \cdots \rightsquigarrow (\Gamma^{(p)}, L^{(p)}) \rightarrow (\overline{\Gamma^{(p)}}, \overline{L^{(p)}}).$

Definition

Given $H \leq G_{\alpha}$, a **(enriched)** Stallings automaton of H is a normalized reduced automaton recognizing H. For a chosen spanning tree T, it is denoted by $St_T(H)$.

Proposition

Given S a finite subset of G_{α} , a Stallings automaton for $\langle S \rangle$ is computable.

Proof. Given $S \subseteq \mathbb{F}_n \ltimes \mathbb{Z}^m$ finite generating *H*:

 $S \rightsquigarrow (\mathcal{F}_{S}, L) \rightsquigarrow (\Gamma', L') \rightsquigarrow \cdots \rightsquigarrow (\Gamma^{(p)}, L^{(p)}) \rightarrow (\overline{\Gamma^{(p)}}, \overline{L^{(p)}}).$

After fixing a uniform way of choosing spanning trees...

Definition

Given $H \leq G_{\alpha}$, a **(enriched)** Stallings automaton of H is a normalized reduced automaton recognizing H. For a chosen spanning tree T, it is denoted by $St_T(H)$.

Proposition

Given S a finite subset of G_{α} , a Stallings automaton for $\langle S \rangle$ is computable.

Proof. Given $S \subseteq \mathbb{F}_n \ltimes \mathbb{Z}^m$ finite generating *H*:

$$S \rightsquigarrow (\mathcal{F}_{S}, L) \rightsquigarrow (\Gamma', L') \rightsquigarrow \cdots \rightsquigarrow (\Gamma^{(p)}, L^{(p)}) \rightarrow (\overline{\Gamma^{(p)}}, \overline{L^{(p)}}).$$

After fixing a uniform way of choosing spanning trees...

Theorem (D.-V.)

There exists a (computable) bijection

{(f.g.) subgroups of $\mathbb{F}_n \ltimes \mathbb{Z}^m$ } $\rightarrow \mathfrak{S} \subseteq$ {(finite) enriched automata} $H \mapsto \operatorname{St}(H)$

Corollary

A basis for a finitely generated subgroup $H\leqslant G_{\alpha}$ is computable from any finite set of generators.

Corollary

A basis for a finitely generated subgroup $H\leqslant G_{\alpha}$ is computable from any finite set of generators.

Membership Problem for $G = \langle X | R \rangle$, MP(G)

Given $u, v_1, \ldots, v_k \in \mathbb{F}_X$, decide whether $u \in H = \langle v_1, \ldots, v_k \rangle_G$; if yes, express u as a word in v_1, \ldots, v_k .

Corollary

A basis for a finitely generated subgroup $H\leqslant G_{\alpha}$ is computable from any finite set of generators.

Membership Problem for $G = \langle X | R \rangle$, MP(G)

Given $u, v_1, \ldots, v_k \in \mathbb{F}_X$, decide whether $u \in H = \langle v_1, \ldots, v_k \rangle_G$; if yes, express u as a word in v_1, \ldots, v_k .

Theorem (D.-V.)

The membership problem $MP(G_{\alpha})$ is computable.

Corollary

A basis for a finitely generated subgroup $H\leqslant G_{\alpha}$ is computable from any finite set of generators.

Membership Problem for $G = \langle X | R \rangle$, MP(G)

Given $u, v_1, \ldots, v_k \in \mathbb{F}_X$, decide whether $u \in H = \langle v_1, \ldots, v_k \rangle_G$; if yes, express u as a word in v_1, \ldots, v_k .

Theorem (D.-V.)

The membership problem $MP(G_{\alpha})$ is computable.

Proof. Let $ut^a \in G_{\alpha}$ and $S = \{v_1t^{b_1}, \dots, v_kt^{b_k}\} \subseteq G_{\alpha}$ 1. Build an Stallings automaton $\widehat{\Gamma}_L = St(\langle S \rangle)$;

Corollary

A basis for a finitely generated subgroup $H\leqslant G_{\alpha}$ is computable from any finite set of generators.

Membership Problem for $G = \langle X | R \rangle$, MP(G)

Given $u, v_1, \ldots, v_k \in \mathbb{F}_X$, decide whether $u \in H = \langle v_1, \ldots, v_k \rangle_G$; if yes, express u as a word in v_1, \ldots, v_k .

Theorem (D.-V.)

The membership problem $MP(G_{\alpha})$ is computable.

Proof. Let $ut^a \in G_{\alpha}$ and $S = \{v_1t^{b_1}, \dots, v_kt^{b_k}\} \subseteq G_{\alpha}$

- 1. Build an Stallings automaton $\widehat{\Gamma}_L = St(\langle S \rangle)$;
- 2. try to read *u* as a label of a \bullet -walk in $\widehat{\Gamma}_L$;

Corollary

A basis for a finitely generated subgroup $H\leqslant G_{\alpha}$ is computable from any finite set of generators.

Membership Problem for $G = \langle X | R \rangle$, MP(G)

Given $u, v_1, \ldots, v_k \in \mathbb{F}_X$, decide whether $u \in H = \langle v_1, \ldots, v_k \rangle_G$; if yes, express u as a word in v_1, \ldots, v_k .

Theorem (D.-V.)

The membership problem $MP(G_{\alpha})$ is computable.

Proof. Let $ut^a \in G_{\alpha}$ and $S = \{v_1t^{b_1}, \dots, v_kt^{b_k}\} \subseteq G_{\alpha}$

- 1. Build an Stallings automaton $\widehat{\Gamma}_L = St(\langle S \rangle)$;
- 2. try to read *u* as a label of a \bullet -walk in $\widehat{\Gamma}_{L}$; if not possible, return NO;

Corollary

A basis for a finitely generated subgroup $H\leqslant G_{\alpha}$ is computable from any finite set of generators.

Membership Problem for $G = \langle X | R \rangle$, MP(G)

Given $u, v_1, \ldots, v_k \in \mathbb{F}_X$, decide whether $u \in H = \langle v_1, \ldots, v_k \rangle_G$; if yes, express u as a word in v_1, \ldots, v_k .

Theorem (D.-V.)

The membership problem $MP(G_{\alpha})$ is computable.

Proof. Let $ut^a \in G_\alpha$ and $S = \{v_1t^{b_1}, \dots, v_kt^{b_k}\} \subseteq G_\alpha$

- 1. Build an Stallings automaton $\widehat{\Gamma}_L = St(\langle S \rangle)$;
- 2. try to read u as a label of a \bullet -walk in $\widehat{\Gamma}_L$; if not possible, return NO;
- 3. if the final vertex is not return NO;

Corollary

A basis for a finitely generated subgroup $H\leqslant G_{\alpha}$ is computable from any finite set of generators.

Membership Problem for $G = \langle X | R \rangle$, MP(G)

Given $u, v_1, \ldots, v_k \in \mathbb{F}_X$, decide whether $u \in H = \langle v_1, \ldots, v_k \rangle_G$; if yes, express u as a word in v_1, \ldots, v_k .

Theorem (D.-V.)

The membership problem $MP(G_{\alpha})$ is computable.

Proof. Let $ut^a \in G_{\alpha}$ and $S = \{v_1t^{b_1}, \dots, v_kt^{b_k}\} \subseteq G_{\alpha}$

- 1. Build an Stallings automaton $\widehat{\Gamma}_L = St(\langle S \rangle)$;
- 2. try to read *u* as a label of a \bullet -walk in $\widehat{\Gamma}_{L}$; if not possible, return NO;
- 3. if the final vertex is not return NO;
- 4. compute the completion \mathbf{c}_w of w in $\widehat{\Gamma}_L$ and check whether

 $\mathbf{a} - \mathbf{c}_{w} \in L$. If so return YES, otherwise return NO.

INTERSECTIONS IN $\mathbb{F}_n \times \mathbb{Z}^m$

A group is *free-abelian times free (FATF)* if it is of the form

$$\mathbb{F}_n \times \mathbb{Z}^m = \begin{pmatrix} x_1, \dots, x_n \\ t_1, \dots, t_m \end{pmatrix} \begin{vmatrix} t_i t_k = t_k t_i & \forall i, k \in [1, m] \\ x_j^{-1} t_i x_j = t_i & \forall i \in [1, m], \forall j \in [1, n] \end{pmatrix}$$

A group is *free-abelian times free (FATF)* if it is of the form

$$\mathbb{F}_n \times \mathbb{Z}^m = \begin{pmatrix} x_1, \dots, x_n \\ t_1, \dots, t_m \end{pmatrix} \begin{vmatrix} t_i t_k = t_k t_i & \forall i, k \in [1, m] \\ x_j^{-1} t_i x_j = t_i & \forall i \in [1, m], \forall j \in [1, n] \end{pmatrix}$$

A group is *free-abelian times free (FATF)* if it is of the form

$$\mathbb{F}_n \times \mathbb{Z}^m = \left\langle \begin{array}{cc} x_1, \dots, x_n \\ t_1, \dots, t_m \end{array} \middle| \begin{array}{cc} t_i t_k = t_k t_i & \forall i, k \in [1, m] \\ x_j^{-1} t_i x_j = t_i & \forall i \in [1, m], \forall j \in [1, n] \end{array} \right\rangle$$

where

•
$$T = \{t_1, \ldots, t_m\}$$
 is a free-abelian basis for $\langle T \rangle \simeq \mathbb{Z}^m$.
A group is *free-abelian times free (FATF)* if it is of the form

$$\mathbb{F}_n \times \mathbb{Z}^m = \left\langle \begin{array}{cc} x_1, \dots, x_n \\ t_1, \dots, t_m \end{array} \middle| \begin{array}{cc} t_i t_k = t_k t_i & \forall i, k \in [1, m] \\ x_j^{-1} t_i x_j = t_i & \forall i \in [1, m], \forall j \in [1, n] \end{array} \right\rangle$$

where

- $T = \{t_1, \ldots, t_m\}$ is a free-abelian basis for $\langle T \rangle \simeq \mathbb{Z}^m$.
- $X = \{x_1, \ldots, x_n\}$ is a free basis for $\langle X \rangle \simeq \mathbb{F}_n$.

A group is *free-abelian times free (FATF)* if it is of the form

$$\mathbb{F}_n \times \mathbb{Z}^m = \left\langle \begin{array}{cc} x_1, \dots, x_n \\ t_1, \dots, t_m \end{array} \middle| \begin{array}{cc} t_i t_k = t_k t_i & \forall i, k \in [1, m] \\ x_j^{-1} t_i x_j = t_i & \forall i \in [1, m], \forall j \in [1, n] \end{array} \right\rangle$$

where

•
$$T = \{t_1, \ldots, t_m\}$$
 is a free-abelian basis for $\langle T \rangle \simeq \mathbb{Z}^m$.

• $X = \{x_1, \ldots, x_n\}$ is a free basis for $\langle X \rangle \simeq \mathbb{F}_n$.

Normal form: $w t_1^{a_1} \cdots t_m^{a_m} = w t^a$ $(w \in \mathbb{F}_n, \mathbf{a} = (a_1, \dots, a_m) \in \mathbb{Z}^m).$

A group is *free-abelian times free (FATF)* if it is of the form

$$\mathbb{F}_n \times \mathbb{Z}^m = \left\langle \begin{array}{cc} x_1, \dots, x_n \\ t_1, \dots, t_m \end{array} \middle| \begin{array}{cc} t_i t_k = t_k t_i & \forall i, k \in [1, m] \\ x_j^{-1} t_i x_j = t_i & \forall i \in [1, m], \forall j \in [1, n] \end{array} \right\rangle$$

where

•
$$T = \{t_1, \ldots, t_m\}$$
 is a free-abelian basis for $\langle T \rangle \simeq \mathbb{Z}^m$.

• $X = \{x_1, \ldots, x_n\}$ is a free basis for $\langle X \rangle \simeq \mathbb{F}_n$.

Normal form: $w t_1^{a_1} \cdots t_m^{a_m} = w t^a$ $(w \in \mathbb{F}_n, \mathbf{a} = (a_1, \dots, a_m) \in \mathbb{Z}^m).$

Lemma

Let $H \leq \mathbb{F}_n \times \mathbb{Z}^m$. Then,

 $H \simeq H\pi \times (H \cap \mathbb{Z}^m) \simeq \mathbb{F}_{n'} \times \mathbb{Z}^{m'}$

where $n' \in [0, \infty]$, $m' \in [0, m]$.

A group is *free-abelian times free (FATF)* if it is of the form

$$\mathbb{F}_n \times \mathbb{Z}^m = \left\langle \begin{array}{cc} x_1, \dots, x_n \\ t_1, \dots, t_m \end{array} \middle| \begin{array}{cc} t_i t_k = t_k t_i & \forall i, k \in [1, m] \\ x_j^{-1} t_i x_j = t_i & \forall i \in [1, m], \forall j \in [1, n] \end{array} \right\rangle$$

where

•
$$T = \{t_1, \ldots, t_m\}$$
 is a free-abelian basis for $\langle T \rangle \simeq \mathbb{Z}^m$.

• $X = \{x_1, \ldots, x_n\}$ is a free basis for $\langle X \rangle \simeq \mathbb{F}_n$.

Normal form: $w t_1^{a_1} \cdots t_m^{a_m} = w t^a$ $(w \in \mathbb{F}_n, \mathbf{a} = (a_1, \dots, a_m) \in \mathbb{Z}^m).$

Lemma

Let $H \leq \mathbb{F}_n \times \mathbb{Z}^m$. Then,

 $H \simeq H\pi \times (H \cap \mathbb{Z}^m) \simeq \mathbb{F}_{n'} \times \mathbb{Z}^{m'}$

where $n' \in [0, \infty]$, $m' \in [0, m]$. Hence,

H is finitely generated \Leftrightarrow H π is finitely generated

A basis for $H \leq \mathbb{F}_n \times \mathbb{Z}^m$ has the form:

$$V_1 t^{a_1}, \ldots, V_n t^{a_{n'}}; t^{b_1}, \ldots, t^{b_{m'}}$$

where:

- $\{v_1, \ldots, v_{n'}\}$ is a basis of $H\pi$
- $\{\mathbf{b}_1, \ldots, \mathbf{b}_m\}$ is a free-abelian basis of $L = H \cap \mathbb{Z}^m$.

A basis for $H \leq \mathbb{F}_n \times \mathbb{Z}^m$ has the form:

$$v_1 t^{a_1}, \ldots, v_n t^{a_{n'}}; t^{b_1}, \ldots, t^{b_{m'}}$$

where:

- $\{v_1, \ldots, v_{n'}\}$ is a basis of $H\pi$
- { $\mathbf{b}_1, \ldots, \mathbf{b}_m$ } is a free-abelian basis of $L = H \cap \mathbb{Z}^m$.

Lemma

If
$$\{v_1t^{\mathbf{a}_1}, \dots, v_{n'}t^{\mathbf{a}_{n'}}; t^{\mathbf{b}_1}, \dots, t^{\mathbf{b}_{m'}}\}$$
 is a basis of H and $w \in \mathbb{F}_n$,
then
$$\mathbf{c}_H(w) = \begin{cases} \varnothing & \text{if } w \notin H\pi\\ w \phi \rho \mathbf{A} + L & \text{if } w \in H\pi \end{cases},$$

where $\phi : H\pi \to \mathbb{F}_{n'}$ is the change of basis $x_i \mapsto x_i(v_j)$ $\rho \colon \mathbb{F}_{n'} \twoheadrightarrow \mathbb{Z}^{n'}$ is the abelianization map, $\mathbf{A} = (\mathbf{a}_i)_{i \in [1,n']}$ is an integral $n' \times m$ matrix.

Let $H_1, H_2 \leq_{fg} \mathbb{F}_n \times \mathbb{Z}^m$ and respective bases for them, then $H_1 = \{wt^{\mathbf{a}} \in \mathbb{F}_n \times \mathbb{Z}^m \mid w \in H_1\pi \text{ and } \mathbf{a} \in w\phi_1\rho_1\mathbf{A}_1 + L_1\},\$ $H_2 = \{wt^{\mathbf{a}} \in \mathbb{F}_n \times \mathbb{Z}^m \mid w \in H_2\pi \text{ and } \mathbf{a} \in w\phi_2\rho_2\mathbf{A}_2 + L_2\}$

Let $H_1, H_2 \leq_{fg} \mathbb{F}_n \times \mathbb{Z}^m$ and respective bases for them, then $H_1 = \{wt^{\mathbf{a}} \in \mathbb{F}_n \times \mathbb{Z}^m \mid w \in H_1\pi \text{ and } \mathbf{a} \in w\phi_1\rho_1\mathbf{A}_1 + L_1\},\$ $H_2 = \{wt^{\mathbf{a}} \in \mathbb{F}_n \times \mathbb{Z}^m \mid w \in H_2\pi \text{ and } \mathbf{a} \in w\phi_2\rho_2\mathbf{A}_2 + L_2\}$

Hence,

$$H_1 \cap H_2 = \left\{ wt^{\mathbf{a}} \in \mathbb{F}_n \times \mathbb{Z}^m \mid \begin{array}{l} w \in H_1 \pi \cap H_2 \pi \\ \mathbf{a} \in (w \phi_1 \rho_1 \mathbf{A}_1 + L_1) \cap (w \phi_2 \rho_2 \mathbf{A}_2 + L_2) \end{array} \right\}$$

Let $H_1, H_2 \leq_{fg} \mathbb{F}_n \times \mathbb{Z}^m$ and respective bases for them, then $H_1 = \{wt^{\mathbf{a}} \in \mathbb{F}_n \times \mathbb{Z}^m \mid w \in H_1\pi \text{ and } \mathbf{a} \in w\phi_1\rho_1\mathbf{A}_1 + L_1\},\$ $H_2 = \{wt^{\mathbf{a}} \in \mathbb{F}_n \times \mathbb{Z}^m \mid w \in H_2\pi \text{ and } \mathbf{a} \in w\phi_2\rho_2\mathbf{A}_2 + L_2\}$

Hence,

$$H_1 \cap H_2 = \left\{ wt^{\mathbf{a}} \in \mathbb{F}_n \times \mathbb{Z}^m \mid \begin{array}{l} w \in H_1 \pi \cap H_2 \pi \\ \mathbf{a} \in (w\phi_1 \rho_1 \mathbf{A}_1 + L_1) \cap (w\phi_2 \rho_2 \mathbf{A}_2 + L_2) \end{array} \right\}$$

Therefore,

 $(H_1 \cap H_2)\pi = \left\{ w \in H_1\pi \cap H_2\pi \mid (w\varphi_1\rho_1A_1 + L_1) \cap (w\varphi_2\rho_2A_2 + L_2) \neq \varnothing \right\}$

Let $H_1, H_2 \leq_{fg} \mathbb{F}_n \times \mathbb{Z}^m$ and respective bases for them, then $H_1 = \{wt^a \in \mathbb{F}_n \times \mathbb{Z}^m \mid w \in H_1\pi \text{ and } a \in w\phi_1\rho_1A_1 + L_1\},\$ $H_2 = \{wt^a \in \mathbb{F}_n \times \mathbb{Z}^m \mid w \in H_2\pi \text{ and } a \in w\phi_2\rho_2A_2 + L_2\}$

Hence,

$$H_1 \cap H_2 = \left\{ wt^{\mathbf{a}} \in \mathbb{F}_n \times \mathbb{Z}^m \mid \begin{array}{l} w \in H_1 \pi \cap H_2 \pi \\ \mathbf{a} \in (w \phi_1 \rho_1 \mathbf{A}_1 + L_1) \cap (w \phi_2 \rho_2 \mathbf{A}_2 + L_2) \end{array} \right\}$$

Therefore,

 $(H_1 \cap H_2)\pi = \left\{ w \in H_1\pi \cap H_2\pi \mid (w\varphi_1\rho_1A_1 + L_1) \cap (w\varphi_2\rho_2A_2 + L_2) \neq \varnothing \right\}$

Remark

$$(H_1 \cap H_2)\pi \leqslant H_1\pi \cap H_2\pi \leqslant_{\rm fg} \mathbb{F}_n$$

Let $H_1, H_2 \leq_{fg} \mathbb{F}_n \times \mathbb{Z}^m$ and respective bases for them, then $H_1 = \{wt^a \in \mathbb{F}_n \times \mathbb{Z}^m \mid w \in H_1\pi \text{ and } a \in w\phi_1\rho_1A_1 + L_1\},\$ $H_2 = \{wt^a \in \mathbb{F}_n \times \mathbb{Z}^m \mid w \in H_2\pi \text{ and } a \in w\phi_2\rho_2A_2 + L_2\}$

Hence,

$$H_1 \cap H_2 = \left\{ wt^{\mathbf{a}} \in \mathbb{F}_n \times \mathbb{Z}^m \mid \begin{array}{l} w \in H_1 \pi \cap H_2 \pi \\ \mathbf{a} \in (w \phi_1 \rho_1 \mathbf{A}_1 + L_1) \cap (w \phi_2 \rho_2 \mathbf{A}_2 + L_2) \end{array} \right\}$$

Therefore,

 $(H_1 \cap H_2)\pi = \left\{ w \in H_1\pi \cap H_2\pi \mid (w\varphi_1\rho_1A_1 + L_1) \cap (w\varphi_2\rho_2A_2 + L_2) \neq \varnothing \right\}$

Remark

$$(H_1 \cap H_2)\pi \leqslant H_1\pi \cap H_2\pi \leqslant_{\rm fg} \mathbb{F}_n$$

Let $H, H_1, H_2 \leq \mathbb{F}_n \times \mathbb{Z}^m$, and $\pi: \mathbb{F}_n \times \mathbb{Z}^m \to \mathbb{F}_n$ $u t^a \mapsto u$

Let
$$H, H_1, H_2 \leq \mathbb{F}_n \times \mathbb{Z}^m$$
, and $\pi: \mathbb{F}_n \times \mathbb{Z}^m \to \mathbb{F}_n$
 $u t^a \mapsto u$

Remarks:

1. $H \simeq H\pi \times (H \cap \mathbb{Z}^m)$.

Let
$$H, H_1, H_2 \leq \mathbb{F}_n \times \mathbb{Z}^m$$
, and $\pi: \mathbb{F}_n \times \mathbb{Z}^m \to \mathbb{F}_n$
 $u t^a \mapsto u$

Remarks:

- 1. $H \simeq H\pi \times (H \cap \mathbb{Z}^m)$.
- 2. *H* is f.g. \Leftrightarrow $H\pi$ is f.g.

Let
$$H, H_1, H_2 \leq \mathbb{F}_n \times \mathbb{Z}^m$$
, and $\pi: \mathbb{F}_n \times \mathbb{Z}^m \to \mathbb{F}_n$
 $u t^a \mapsto u$

Remarks:

- 1. $H \simeq H\pi \times (H \cap \mathbb{Z}^m)$.
- 2. *H* is f.g. \Leftrightarrow $H\pi$ is f.g.
- 3. $(H_1 \cap H_2)\pi \leqslant H_1\pi \cap H_2\pi$.

Let
$$H, H_1, H_2 \leq \mathbb{F}_n \times \mathbb{Z}^m$$
, and $\pi: \mathbb{F}_n \times \mathbb{Z}^m \to \mathbb{F}_n$
 $u t^a \mapsto u$

Remarks:

- 1. $H \simeq H\pi \times (H \cap \mathbb{Z}^m)$.
- 2. *H* is f.g. \Leftrightarrow $H\pi$ is f.g.
- 3. $(H_1 \cap H_2)\pi \leqslant H_1\pi \cap H_2\pi$.

So,

 $(H_1 \cap H_2)\pi \leqslant H_1\pi \cap H_2\pi \leqslant \mathbb{F}_n$

Let
$$H, H_1, H_2 \leq \mathbb{F}_n \times \mathbb{Z}^m$$
, and $\pi: \mathbb{F}_n \times \mathbb{Z}^m \to \mathbb{F}_n$
 $u t^a \mapsto u$

Remarks:

- 1. $H \simeq H\pi \times (H \cap \mathbb{Z}^m)$.
- 2. *H* is f.g. \Leftrightarrow $H\pi$ is f.g.
- 3. $(H_1 \cap H_2)\pi \leqslant H_1\pi \cap H_2\pi$.

So, if H_1 , H_2 are finitely generated:

 $(H_1 \cap H_2)\pi \leqslant H_1\pi \cap H_2\pi \leqslant \mathbb{F}_n$

Let
$$H, H_1, H_2 \leq \mathbb{F}_n \times \mathbb{Z}^m$$
, and $\pi: \mathbb{F}_n \times \mathbb{Z}^m \to \mathbb{F}_n$
 $u t^a \mapsto u$

Remarks:

- 1. $H \simeq H\pi \times (H \cap \mathbb{Z}^m)$.
- 2. *H* is f.g. \Leftrightarrow $H\pi$ is f.g.
- 3. $(H_1 \cap H_2)\pi \leqslant H_1\pi \cap H_2\pi$.

So, if H_1 , H_2 are finitely generated:

 $(H_1 \cap H_2)\pi \leqslant H_1\pi \cap H_2\pi \leqslant_{fg} \mathbb{F}_n$

Let
$$H, H_1, H_2 \leq \mathbb{F}_n \times \mathbb{Z}^m$$
, and $\pi: \mathbb{F}_n \times \mathbb{Z}^m \to \mathbb{F}_n$
 $u t^a \mapsto u$

Remarks:

- 1. $H \simeq H\pi \times (H \cap \mathbb{Z}^m)$.
- 2. *H* is f.g. \Leftrightarrow $H\pi$ is f.g.
- 3. $(H_1 \cap H_2)\pi \leqslant H_1\pi \cap H_2\pi$.

So, if H_1 , H_2 are finitely generated:

 $(H_1 \cap H_2)\pi \lt H_1\pi \cap H_2\pi \leqslant_{fg} \mathbb{F}_n$

Let
$$H, H_1, H_2 \leq \mathbb{F}_n \times \mathbb{Z}^m$$
, and $\pi: \mathbb{F}_n \times \mathbb{Z}^m \to \mathbb{F}_n$
 $u t^a \mapsto u$

Remarks:

- 1. $H \simeq H\pi \times (H \cap \mathbb{Z}^m)$.
- 2. *H* is f.g. \Leftrightarrow $H\pi$ is f.g.
- 3. $(H_1 \cap H_2)\pi \leqslant H_1\pi \cap H_2\pi$.

So, if H_1 , H_2 are finitely generated:

 $(H_1 \cap H_2)\pi < H_1\pi \cap H_2\pi \leq_{fg} \mathbb{F}_n$

Example: $\mathbb{F}_2 \times \mathbb{Z}$ is not Howson

Let
$$H, H_1, H_2 \leq \mathbb{F}_n \times \mathbb{Z}^m$$
, and $\pi: \mathbb{F}_n \times \mathbb{Z}^m \to \mathbb{F}_n$
 $u t^a \mapsto u$

Remarks:

- 1. $H \simeq H\pi \times (H \cap \mathbb{Z}^m)$.
- 2. *H* is f.g. \Leftrightarrow $H\pi$ is f.g.
- 3. $(H_1 \cap H_2)\pi \leqslant H_1\pi \cap H_2\pi$.

So, if H_1 , H_2 are finitely generated:

 $(H_1 \cap H_2)\pi < H_1\pi \cap H_2\pi \leq_{fg} \mathbb{F}_n$

Example: $\mathbb{F}_2 \times \mathbb{Z}$ is not Howson

Subgroup Intersection Problem for $G = \langle X | R \rangle$, SIP(G)

```
Input: u_1, \ldots, u_k, v_1, \ldots, v_l \in (X^{\pm})^*
Decide: \langle u_1, \ldots, u_k \rangle \cap \langle v_1, \ldots, v_l \rangle is f.g.,
and if so, compute generators.
```

Lemma

The group $\mathbb{F}_2 \times \mathbb{Z}$ is not Howson.

Lemma

The group $\mathbb{F}_2 \times \mathbb{Z}$ is not Howson.

Example

Let $\mathbb{F}_2 \times \mathbb{Z} = \langle x, y | - \rangle \times \langle t | - \rangle$, and consider the subgroups: $H = \langle x, y \rangle$ and $K = \langle tx, y \rangle$

Lemma

The group $\mathbb{F}_2 \times \mathbb{Z}$ is not Howson.

Example

Let $\mathbb{F}_2 \times \mathbb{Z} = \langle x, y | - \rangle \times \langle t | - \rangle$, and consider the subgroups: $H = \langle x, y \rangle$ and $K = \langle tx, y \rangle$ Then:

Then:

$$\begin{split} H \cap K &= \{w(x, y) \mid w \in \mathbb{F}_2\} \cap \{w(xt, y) \mid w \in \mathbb{F}_2\} \\ &= \{w(x, y) \mid w \in \mathbb{F}_2\} \cap \{w(x, y)t^{|w|_x} \mid w \in \mathbb{F}_2\} \\ &= \{w(x, y)t^0 \mid w \in \mathbb{F}_2, \ |w|_x = 0\} \\ &= \langle x^{-k}yx^k, \ k \in \mathbb{Z} \rangle = \langle \langle y \rangle \rangle_{\mathbb{F}_2} \end{split}$$

Lemma

The group $\mathbb{F}_2 \times \mathbb{Z}$ is not Howson.

Example

Let $\mathbb{F}_2 \times \mathbb{Z} = \langle x, y | - \rangle \times \langle t | - \rangle$, and consider the subgroups: $H = \langle x, y \rangle$ and $K = \langle tx, y \rangle$ Then:

$$H \cap K = \{w(x, y) \mid w \in \mathbb{F}_2\} \cap \{w(xt, y) \mid w \in \mathbb{F}_2\}$$
$$= \{w(x, y) \mid w \in \mathbb{F}_2\} \cap \{w(x, y)t^{|w|_x} \mid w \in \mathbb{F}_2\}$$
$$= \{w(x, y)t^0 \mid w \in \mathbb{F}_2, \ |w|_x = 0\}$$
$$= \langle x^{-k}yx^k, \ k \in \mathbb{Z} \rangle = \langle \langle y \rangle \rangle_{\mathbb{F}_2}$$

is not finitely generated, since its Stallings automaton is infinite:

Lemma

The group $\mathbb{F}_2 \times \mathbb{Z}$ is not Howson.

Example

Let $\mathbb{F}_2 \times \mathbb{Z} = \langle x, y | - \rangle \times \langle t | - \rangle$, and consider the subgroups: $H = \langle x, y \rangle$ and $K = \langle tx, y \rangle$ Then:

$$H \cap K = \{w(x, y) \mid w \in \mathbb{F}_2\} \cap \{w(xt, y) \mid w \in \mathbb{F}_2\}$$
$$= \{w(x, y) \mid w \in \mathbb{F}_2\} \cap \{w(x, y)t^{|w|_x} \mid w \in \mathbb{F}_2\}$$
$$= \{w(x, y)t^0 \mid w \in \mathbb{F}_2, \ |w|_x = 0\}$$
$$= \langle x^{-k}yx^k, \ k \in \mathbb{Z} \rangle = \langle \langle y \rangle \rangle_{\mathbb{F}_2}$$

is not finitely generated, since its Stallings automaton is infinite:

Remark: *H* and *K* are free groups with non-f.g. intersection... doesn't this contradict Howson's property for free groups?

 $(H_1 \cap H_2)\pi = \{ w \in H_1\pi \cap H_2\pi : \mathbf{c}_{H_1}(w) \cap \mathbf{c}_{H_2}(w) \neq \emptyset \}$ $= \{ w \in H_1\pi \cap H_2\pi : (w\varphi_1\rho_1\mathbf{A}_1 + L_1) \cap (w\varphi_2\rho_2\mathbf{A}_2 + L_2) \neq \emptyset \}$

 $(H_1 \cap H_2)\pi = \{ w \in H_1\pi \cap H_2\pi : \mathbf{c}_{H_1}(w) \cap \mathbf{c}_{H_2}(w) \neq \emptyset \}$ = $\{ w \in H_1\pi \cap H_2\pi : (w\phi_1\rho_1\mathbf{A}_1 + L_1) \cap (w\phi_2\rho_2\mathbf{A}_2 + L_2) \neq \emptyset \}$ = $\{ w \in H_1\pi \cap H_2\pi : (w\rho\mathbf{P}_1\mathbf{A}_1 + L_1) \cap (w\rho\mathbf{P}_2\mathbf{A}_2 + L_2) \neq \emptyset \}$

 $(H_1 \cap H_2)\pi = \{ w \in H_1\pi \cap H_2\pi : \mathbf{C}_{H_1}(w) \cap \mathbf{C}_{H_2}(w) \neq \emptyset \}$

- $= \{ w \in H_1 \pi \cap H_2 \pi : (w \varphi_1 \rho_1 \mathbf{A}_1 + L_1) \cap (w \varphi_2 \rho_2 \mathbf{A}_2 + L_2) \neq \emptyset \}$
- $= \{ w \in H_1 \pi \cap H_2 \pi : (w \rho \mathbf{P}_1 \mathbf{A}_1 + L_1) \cap (w \rho \mathbf{P}_2 \mathbf{A}_2 + L_2) \neq \emptyset \}$

 $= \{ w \in H_1 \pi \cap H_2 \pi : w \rho(\mathbf{P_1 A_1} - \mathbf{P_2 A_2}) \in L_1 + L_2 \}$

 $(H_1 \cap H_2)\pi = \{ w \in H_1\pi \cap H_2\pi : \mathbf{C}_{H_1}(w) \cap \mathbf{C}_{H_2}(w) \neq \emptyset \}$

- $= \{ w \in H_1 \pi \cap H_2 \pi : (w \varphi_1 \rho_1 \mathbf{A}_1 + L_1) \cap (w \varphi_2 \rho_2 \mathbf{A}_2 + L_2) \neq \emptyset \}$
- $= \{ w \in H_1 \pi \cap H_2 \pi : (w \rho \mathbf{P_1} \mathbf{A_1} + L_1) \cap (w \rho \mathbf{P_2} \mathbf{A_2} + L_2) \neq \emptyset \}$
- $= \{ w \in H_1 \pi \cap H_2 \pi : w \rho(\mathbf{P_1 A_1} \mathbf{P_2 A_2}) \in L_1 + L_2 \}$
- $= (L_1 + L_2)(\mathbf{P}_1\mathbf{A}_1 \mathbf{P}_2\mathbf{A}_2)^{\leftarrow}\rho^{\leftarrow}$

 $(H_1 \cap H_2)\pi = \{ w \in H_1\pi \cap H_2\pi : \mathbf{C}_{H_1}(w) \cap \mathbf{C}_{H_2}(w) \neq \emptyset \}$

- $= \{ w \in H_1 \pi \cap H_2 \pi : (w \varphi_1 \rho_1 \mathbf{A}_1 + L_1) \cap (w \varphi_2 \rho_2 \mathbf{A}_2 + L_2) \neq \emptyset \}$
- $= \{ w \in H_1 \pi \cap H_2 \pi : (w \rho \mathbf{P}_1 \mathbf{A}_1 + L_1) \cap (w \rho \mathbf{P}_2 \mathbf{A}_2 + L_2) \neq \emptyset \}$
- $= \{ w \in H_1 \pi \cap H_2 \pi : w \rho(\mathbf{P_1 A_1} \mathbf{P_2 A_2}) \in L_1 + L_2 \}$
- $= (L_1 + L_2)(\mathbf{P}_1\mathbf{A}_1 \mathbf{P}_2\mathbf{A}_2)^{\leftarrow}\rho^{\leftarrow} = (L_1 + L_2)\mathbf{R}^{\leftarrow}\rho^{\leftarrow}.$

DECIDING INTERSECTIONS

We have:

$$\mathbb{F}_{n} \geq H_{1}\pi \cap H_{2}\pi \simeq \mathbb{F}_{r} \xrightarrow{\rho} \mathbb{Z}^{r} \xrightarrow{R} \mathbb{Z}^{m}$$
$$(H_{1} \cap H_{2})\pi \simeq \underbrace{(L_{1} + L_{2})R^{\leftarrow}\rho^{\leftarrow}}_{M\rho^{\leftarrow}} \xleftarrow{(L_{1} + L_{2})R^{\leftarrow}}_{M} \xleftarrow{L_{1} + L_{2}}$$

DECIDING INTERSECTIONS

We have:

$$\mathbb{F}_{n} \geq H_{1}\pi \cap H_{2}\pi \simeq \mathbb{F}_{r} \xrightarrow{\rho} \mathbb{Z}^{r} \xrightarrow{R} \mathbb{Z}^{m}$$
$$(H_{1} \cap H_{2})\pi \simeq \underbrace{(L_{1} + L_{2})R^{\leftarrow}\rho^{\leftarrow}}_{M\rho^{\leftarrow}} \xleftarrow{(L_{1} + L_{2})R^{\leftarrow}}_{M} \xleftarrow{L_{1} + L_{2}}$$

Theorem

Let $H_1, H_2 \leq_{fe} \mathbb{F}_n \times \mathbb{Z}^m$. Then, TFAE:

- 1. the intersection $H_1 \cap H_2$ is finitely generated;
- 2. the projection $(H_1 \cap H_2)\pi$ is finitely generated;
- 3. $(H_1 \cap H_2)\pi$ is either trivial, or has finite index in $H_1\pi \cap H_2\pi$,
- 4. either r = 0, 1 and M is trivial, or $|\mathbb{Z}^r: M| < \infty$.

DECIDING INTERSECTIONS

We have:

$$\mathbb{F}_{n} \geq H_{1}\pi \cap H_{2}\pi \simeq \mathbb{F}_{r} \xrightarrow{\rho} \mathbb{Z}^{r} \xrightarrow{R} \mathbb{Z}^{m}$$
$$(H_{1} \cap H_{2})\pi \simeq \underbrace{(L_{1} + L_{2})R^{\leftarrow}\rho^{\leftarrow}}_{M\rho^{\leftarrow}} \xleftarrow{(L_{1} + L_{2})R^{\leftarrow}}_{M} \xleftarrow{L_{1} + L_{2}}$$

Theorem

Let $H_1, H_2 \leq_{fe} \mathbb{F}_n \times \mathbb{Z}^m$. Then, TFAE:

- 1. the intersection $H_1 \cap H_2$ is finitely generated;
- 2. the projection $(H_1 \cap H_2)\pi$ is finitely generated;
- 3. $(H_1 \cap H_2)\pi$ is either trivial, or has finite index in $H_1\pi \cap H_2\pi$,
- 4. either r = 0, 1 and M is trivial, or $|\mathbb{Z}^r: M| < \infty$.

Corollary

The subgroup intersection problem SIP($\mathbb{F}_n \times \mathbb{Z}^m$) is decidable.

INTERSECTION EXAMPLE
Let $H_1 = \langle t^{L_1}, \mathbf{x}^3 t^a, \mathbf{y} \mathbf{x} \rangle$,

Let $H_1 = \langle t^{L_1}, \mathbf{x}^3 t^{\mathbf{a}}, \mathbf{y}\mathbf{x} \rangle$, $H_2 = \langle t^{L_2}, \mathbf{x}^2 t^{\mathbf{d}}, \mathbf{y}\mathbf{x}\mathbf{y}^{-1} \rangle$

Let
$$H_1 = \langle t^{L_1}, \mathbf{x}^3 t^{\mathbf{a}}, y\mathbf{x} \rangle$$
, $H_2 = \langle t^{L_2}, \mathbf{x}^2 t^{\mathbf{d}}, y\mathbf{x}\mathbf{y}^{-1} \rangle \leqslant \mathbb{F}_2 \times \mathbb{Z}^2$

Let
$$H_1 = \langle t^{L_1}, \mathbf{x}^3 t^{\mathbf{a}}, y\mathbf{x} \rangle$$
, $H_2 = \langle t^{L_2}, \mathbf{x}^2 t^{\mathbf{d}}, y\mathbf{x}\mathbf{y}^{-1} \rangle \leqslant \mathbb{F}_2 \times \mathbb{Z}^2$

Let
$$H_1 = \langle t^{L_1}, \mathbf{x}^3 t^{\mathbf{a}}, y\mathbf{x} \rangle$$
, $H_2 = \langle t^{L_2}, \mathbf{x}^2 t^{\mathbf{d}}, y\mathbf{x}\mathbf{y}^{-1} \rangle \leqslant \mathbb{F}_2 \times \mathbb{Z}^2$

Let
$$H_1 = \langle t^{L_1}, \mathbf{x}^3 t^{\mathbf{a}}, y\mathbf{x} \rangle$$
, $H_2 = \langle t^{L_2}, \mathbf{x}^2 t^{\mathbf{d}}, y\mathbf{x}\mathbf{y}^{-1} \rangle \leqslant \mathbb{F}_2 \times \mathbb{Z}^2$

Let
$$H_1 = \langle t^{L_1}, \mathbf{x}^3 t^{\mathbf{a}}, y\mathbf{x} \rangle$$
, $H_2 = \langle t^{L_2}, \mathbf{x}^2 t^{\mathbf{d}}, y\mathbf{x}\mathbf{y}^{-1} \rangle \leqslant \mathbb{F}_2 \times \mathbb{Z}^2$

Let
$$H_1 = \langle t^{L_1}, \mathbf{x}^3 t^{\mathbf{a}}, y\mathbf{x} \rangle$$
, $H_2 = \langle t^{L_2}, \mathbf{x}^2 t^{\mathbf{d}}, y\mathbf{x}\mathbf{y}^{-1} \rangle \leqslant \mathbb{F}_2 \times \mathbb{Z}^2$

Let
$$H_1 = \langle t^{L_1}, \mathbf{x}^3 t^{\mathbf{a}}, y\mathbf{x} \rangle$$
, $H_2 = \langle t^{L_2}, \mathbf{x}^2 t^{\mathbf{d}}, y\mathbf{x}\mathbf{y}^{-1} \rangle \leqslant \mathbb{F}_2 \times \mathbb{Z}^2$

Let
$$H_1 = \langle t^{L_1}, \mathbf{x}^3 t^{\mathbf{a}}, y\mathbf{x} \rangle$$
, $H_2 = \langle t^{L_2}, \mathbf{x}^2 t^{\mathbf{d}}, y\mathbf{x}\mathbf{y}^{-1} \rangle \leqslant \mathbb{F}_2 \times \mathbb{Z}^2$

Let
$$H_1 = \langle t^{L_1}, \mathbf{x}^3 t^{\mathbf{a}}, y\mathbf{x} \rangle$$
, $H_2 = \langle t^{L_2}, \mathbf{x}^2 t^{\mathbf{d}}, y\mathbf{x}\mathbf{y}^{-1} \rangle \leqslant \mathbb{F}_2 \times \mathbb{Z}^2$

Let
$$H_1 = \langle t^{L_1}, \mathbf{x}^3 t^{\mathbf{a}}, y\mathbf{x} \rangle$$
, $H_2 = \langle t^{L_2}, \mathbf{x}^2 t^{\mathbf{d}}, y\mathbf{x}\mathbf{y}^{-1} \rangle \leqslant \mathbb{F}_2 \times \mathbb{Z}^2$

Let
$$H_1 = \langle t^{L_1}, \mathbf{x}^3 t^{\mathbf{a}}, y\mathbf{x} \rangle$$
, $H_2 = \langle t^{L_2}, \mathbf{x}^2 t^{\mathbf{d}}, y\mathbf{x}\mathbf{y}^{-1} \rangle \leqslant \mathbb{F}_2 \times \mathbb{Z}^2$

Let
$$H_1 = \langle t^{L_1}, \mathbf{x}^3 t^{\mathfrak{a}}, y\mathbf{x} \rangle$$
, $H_2 = \langle t^{L_2}, \mathbf{x}^2 t^{\mathfrak{d}}, y\mathbf{x}\mathbf{y}^{-1} \rangle \leqslant \mathbb{F}_2 \times \mathbb{Z}^2$

Let
$$H_1 = \langle t^{L_1}, \mathbf{x}^3 t^{\mathbf{a}}, y\mathbf{x} \rangle$$
, $H_2 = \langle t^{L_2}, \mathbf{x}^2 t^{\mathbf{d}}, y\mathbf{x}\mathbf{y}^{-1} \rangle \leqslant \mathbb{F}_2 \times \mathbb{Z}^2$

Let
$$H_1 = \langle t^{L_1}, \mathbf{x}^3 t^{\mathbf{a}}, y\mathbf{x} \rangle$$
, $H_2 = \langle t^{L_2}, \mathbf{x}^2 t^{\mathbf{d}}, y\mathbf{x}\mathbf{y}^{-1} \rangle \leqslant \mathbb{F}_2 \times \mathbb{Z}^2$

Let
$$H_1 = \langle t^{L_1}, x^3 t^a, yx \rangle$$
, $H_2 = \langle t^{L_2}, x^2 t^d, yxy^{-1} \rangle \leqslant \mathbb{F}_2 \times \mathbb{Z}^2$

Claim:

 $H_1 \cap H_2 = \{ u t^a : u t^a \text{ is componentwise-readable in St}(H_1) \times \text{St}(H_2) \}$

Let
$$H_1 = \langle t^{L_1}, x^3 t^a, yx \rangle$$
, $H_2 = \langle t^{L_2}, x^2 t^d, yxy^{-1} \rangle \leqslant \mathbb{F}_2 \times \mathbb{Z}^2$

Claim:

 $H_{1} \cap H_{2} = \{ u t^{a} : u t^{a} \text{ is componentwise-readable in St}(H_{1}) \times \text{St}(H_{2}) \}$ $(H_{1} \cap H_{2})\pi = \left\{ w \in \mathbb{F}_{w_{1},w_{2}} : w(w_{1}t^{2a}, w_{2}t^{a}) t^{L_{1}} \cap w(w_{1}t^{3d}, w_{2}t^{0}) t^{L_{2}} \neq \varnothing \right\}$

Let
$$H_1 = \langle t^{L_1}, \mathbf{x}^3 t^{\mathbf{a}}, y\mathbf{x} \rangle$$
, $H_2 = \langle t^{L_2}, \mathbf{x}^2 t^{\mathbf{d}}, y\mathbf{x}\mathbf{y}^{-1} \rangle \leqslant \mathbb{F}_2 \times \mathbb{Z}^2$

Claim:

 $\begin{aligned} H_1 \cap H_2 &= \{ u \, t^{\mathbf{a}} : u \, t^{\mathbf{a}} \text{ is componentwise-readable in St}(H_1) \times \text{St}(H_2) \} \\ (H_1 \cap H_2) \pi &= \left\{ w \in \mathbb{F}_{w_1, w_2} : w(w_1 t^{2\mathbf{a}}, w_2 t^{\mathbf{a}}) \, t^{L_1} \cap w(w_1 t^{3\mathbf{d}}, w_2 t^{\mathbf{0}}) \, t^{L_2} \neq \varnothing \right\} \\ &= \left\{ w \in \mathbb{F}_{w_1, w_2} : \, w^{\mathbf{ab}} \left[\begin{smallmatrix} 2\mathbf{a} - 3\mathbf{d} \\ \mathbf{a} - \mathbf{0} \end{smallmatrix} \right] \in L_1 + L_2 \right\} \end{aligned}$

Let
$$H_1 = \langle t^{L_1}, \mathbf{x}^3 t^{\mathbf{a}}, y\mathbf{x} \rangle$$
, $H_2 = \langle t^{L_2}, \mathbf{x}^2 t^{\mathbf{d}}, y\mathbf{x}\mathbf{y}^{-1} \rangle \leqslant \mathbb{F}_2 \times \mathbb{Z}^2$

Claim:

 $H_1 \cap H_2 = \{ u t^{\mathbf{a}} : u t^{\mathbf{a}} \text{ is componentwise-readable in St}(H_1) \times \text{St}(H_2) \}$ $(H_1 \cap H_2)\pi = \left\{ w \in \mathbb{F}_{w_1,w_2} : w(w_1t^{2\mathbf{a}}, w_2t^{\mathbf{a}}) t^{L_1} \cap w(w_1t^{3\mathbf{d}}, w_2t^{\mathbf{0}}) t^{L_2} \neq \varnothing \right\}$ $= \left\{ w \in \mathbb{F}_{w_1,w_2} : w^{\mathbf{ab}} \begin{bmatrix} 2\mathbf{a}-3\mathbf{d} \\ \mathbf{a}-\mathbf{0} \end{bmatrix} \in L_1 + L_2 \right\}$ $= (L_1 + L_2)\mathbf{R}^{\leftarrow}\rho^{\leftarrow}, \text{ where } \mathbf{R} = \begin{bmatrix} 2\mathbf{a}-3\mathbf{d} \\ \mathbf{a}-\mathbf{0} \end{bmatrix} \text{ and } \rho = \mathbf{ab}.$

We have that $(H_1 \cap H_2)\pi = (L_1 + L_2)\mathbf{R}^{-1}\rho^{-1} = M\rho^{-1}$, i.e.,

2a,3d

$$w_1=x^6$$

 $w_2=yx^3y^{-1}$
 $M = (L_1 + L_2)R^4$

We have that $(H_1 \cap H_2)\pi = (L_1 + L_2)\mathbf{R}^{-1}\rho^{-1} = M\rho^{-1}$, i.e.,

2a,3d

$$w_1=x^6$$

 $w_2=yx^3y^{-1}$
 $M = (L_1 + L_2)R^4$

We have that $(H_1 \cap H_2)\pi = (L_1 + L_2)\mathbf{R}^{-1}\rho^{-1} = M\rho^{-1}$, i.e.,

Then, $\operatorname{St}((H_1 \cap H_2)\pi, \{w_i\}_i) \simeq \operatorname{St}(M\rho^{-1}, \{w_i\}_i)$

2a,3d

$$w_1=x^6$$

 $w_2=yx^3y^{-1}$
 $M = (L_1 + L_2)R^4$

We have that $(H_1 \cap H_2)\pi = (L_1 + L_2)\mathbf{R}^{-1}\rho^{-1} = M\rho^{-1}$, i.e.,

$$\mathbb{F}_{\{x,y\}} \geq H_1 \pi \cap H_2 \pi \simeq \mathbb{F}_{w_1,w_2} \xrightarrow{\rho} \mathbb{Z}^2 \xrightarrow{\mathbb{R}} \mathbb{Z}^m$$

$$\overrightarrow{\bigvee} \qquad \overrightarrow{\bigvee} \qquad \overrightarrow{\bigvee} \qquad \overrightarrow{\bigvee} \qquad \overrightarrow{\bigvee} \qquad (H_1 \cap H_2) \pi \simeq M \rho^{-1} \longleftrightarrow M \longleftrightarrow L_1 + L_2$$

Then, St $((H_1 \cap H_2)\pi, \{w_i\}_i) \simeq$ St $(M\rho^{-1}, \{w_i\}_i)$ \simeq Sch $(M\rho^{-1}, \{w_i\}_i)$

2a,3d

$$w_1=x^6$$

 $w_2=yx^3y^{-1}$
 $M = (L_1 + L_2)R^4$

We have that $(H_1 \cap H_2)\pi = (L_1 + L_2)\mathbf{R}^{-1}\rho^{-1} = M\rho^{-1}$, i.e.,

Then, St($(H_1 \cap H_2)\pi, \{w_i\}_i$) \simeq St($M\rho^{-1}, \{w_i\}_i$) \simeq Sch($M\rho^{-1}, \{w_i\}_i$) \simeq Cay($\mathbb{F}_{w_1,w_2}/M\rho^{-1}, \{[w_i]\}_i$)

$$R = \begin{bmatrix} 2a - 3d \\ a - 0 \end{bmatrix}$$

$$M = (L_1 + L_2) R^{4}$$

We have that $(H_1 \cap H_2)\pi = (L_1 + L_2)\mathbf{R}^{-1}\rho^{-1} = M\rho^{-1}$, i.e.,

Then, St($(H_1 \cap H_2)\pi, \{w_i\}_i$) \simeq St($M\rho^{-1}, \{w_i\}_i$) \simeq Sch($M\rho^{-1}, \{w_i\}_i$) \simeq Cay($\mathbb{F}_{w_1,w_2}/M\rho^{-1}, \{[w_i]\}_i$) \simeq Cay($\mathbb{Z}^2/M, \{\mathbf{e}_i\}_i$)

$$R = \begin{bmatrix} 2a - 3d \\ a - 0 \end{bmatrix}$$

$$W_1 = x^6$$

$$W_2 = yx^3y^{-1}$$

$$M > = M = (L_1 + L_2)R^4$$

We have that $(H_1 \cap H_2)\pi = (L_1 + L_2)\mathbf{R}^{-1}\rho^{-1} = M\rho^{-1}$, i.e.,

Then, St($(H_1 \cap H_2)\pi, \{w_i\}_i$) \simeq St($M\rho^{-1}, \{w_i\}_i$) \simeq Sch($M\rho^{-1}, \{w_i\}_i$) \simeq Cay($\mathbb{F}_{w_1,w_2}/M\rho^{-1}, \{[w_i]\}_i$) \simeq Cay($\mathbb{Z}^2/M, \{\mathbf{e}_i\}_i$)

2a,3d

$$w_1=x^6$$

 $w_2=yx^3y^{-1}$
 $M = \begin{bmatrix} 2a-3d \\ a-0 \end{bmatrix}$
 $M = (L_1 + L_2)R^4$

We have that $(H_1 \cap H_2)\pi = (L_1 + L_2)\mathbf{R}^{-1}\rho^{-1} = M\rho^{-1}$, i.e.,

Then, St $((H_1 \cap H_2)\pi, \{w_i\}_i) \simeq$ St $(M\rho^{-1}, \{w_i\}_i)$ \simeq Sch $(M\rho^{-1}, \{w_i\}_i)$ \simeq Cay $(\mathbb{F}_{w_1, w_2}/M\rho^{-1}, \{[w_i]\}_i)$ \simeq Cay $(\mathbb{Z}^2/\langle \mathbf{M} \rangle, \{\mathbf{e}_i\}_i)$

We have that $(H_1 \cap H_2)\pi = (L_1 + L_2)\mathbf{R}^{-1}\rho^{-1} = M\rho^{-1}$, i.e.,

Then, St $((H_1 \cap H_2)\pi, \{w_i\}_i) \simeq$ St $(M\rho^{-1}, \{w_i\}_i)$ \simeq Sch $(M\rho^{-1}, \{w_i\}_i)$ \simeq Cay $(\mathbb{F}_{w_1, w_2}/M\rho^{-1}, \{[w_i]\}_i)$ \simeq Cay $(\mathbb{Z}^2/\langle \mathbf{M} \rangle, \{\mathbf{e}_i\}_i)$ \simeq Cay $(\mathbb{Z}^2/\langle \mathbf{D} \rangle, \{\mathbf{e}_i\mathbf{Q}\}_i)$

We have that $(H_1 \cap H_2)\pi = (L_1 + L_2)\mathbf{R}^{-1}\rho^{-1} = M\rho^{-1}$, i.e.,

Then, St $((H_1 \cap H_2)\pi, \{w_i\}_i) \simeq$ St $(M\rho^{-1}, \{w_i\}_i)$ \simeq Sch $(M\rho^{-1}, \{w_i\}_i)$ \simeq Cay $(\mathbb{F}_{w_1,w_2}/M\rho^{-1}, \{[w_i]\}_i)$ \simeq Cay $(\mathbb{Z}^2/\langle \mathbf{M} \rangle, \{\mathbf{e}_i\}_i)$ \simeq Cay $(\mathbb{Z}^2/\langle \mathbf{D} \rangle, \{\mathbf{e}_i\mathbf{Q}\}_i)$ \simeq Cay $(\mathbb{Z}/\langle \mathbf{D} \rangle, \{\mathbf{e}_i\mathbf{Q}\}_i)$

INTERSECTION AUTOMATON

Theorem (D.–V.) Let $H_1, H_2 \leq \mathbb{F}_n \times \mathbb{Z}^m$. Then St $((H_1 \cap H_2)\pi, \{w_i(X)\}_i) = \operatorname{Cay}(\bigoplus_{i=1}^r \mathbb{Z}/\delta_i\mathbb{Z}, \{\mathbf{e}_i\mathbf{Q}\}_i)$, where $r = \operatorname{rk}(H_1\pi \cap H_2\pi)$.
INTERSECTION AUTOMATON

Theorem (D.-V.)

Let $H_1, H_2 \leq \mathbb{F}_n \times \mathbb{Z}^m$. Then

```
St ((H_1 \cap H_2)\pi, \{w_i(X)\}_i) = \operatorname{Cay}(\bigoplus_{i=1}^r \mathbb{Z}/\delta_i\mathbb{Z}, \{\mathbf{e}_i\mathbf{Q}\}_i),
```

where $r = \mathbf{rk}(H_1\pi \cap H_2\pi)$.

Corollary

```
Let H_1, H_2 \leq \mathbb{F}_n \times \mathbb{Z}^m. Then,
H_1 \cap H_2 is f.g. \Leftrightarrow \delta_i \neq 0, for all i = 1, ..., r
```

INTERSECTION AUTOMATON

Theorem (D.-V.)

Let $H_1, H_2 \leq \mathbb{F}_n \times \mathbb{Z}^m$. Then

```
St ((H_1 \cap H_2)\pi, \{w_i(X)\}_i) = \operatorname{Cay}(\bigoplus_{i=1}^r \mathbb{Z}/\delta_i\mathbb{Z}, \{\mathbf{e}_i\mathbf{Q}\}_i),
```

where $r = \mathbf{rk}(H_1\pi \cap H_2\pi)$.

Corollary

```
Let H_1, H_2 \leq \mathbb{F}_n \times \mathbb{Z}^m. Then,

H_1 \cap H_2 \text{ is f.g. } \Leftrightarrow \delta_i \neq 0, \text{ for all } i = 1, \dots, r

\Leftrightarrow |(H_1 \cap H_2)\pi : H_1\pi \cap H_2\pi| < \infty.
```

INTERSECTION AUTOMATON

Theorem (D.-V.)

Let $H_1, H_2 \leq \mathbb{F}_n \times \mathbb{Z}^m$. Then

```
St ((H_1 \cap H_2)\pi, \{w_i(X)\}_i) = \operatorname{Cay}(\bigoplus_{i=1}^r \mathbb{Z}/\delta_i\mathbb{Z}, \{\mathbf{e}_i\mathbf{Q}\}_i),
```

where $r = \mathbf{rk}(H_1\pi \cap H_2\pi)$.

Corollary

```
Let H_1, H_2 \leq \mathbb{F}_n \times \mathbb{Z}^m. Then,
H_1 \cap H_2 \text{ is f.g. } \Leftrightarrow \delta_i \neq 0, for all i = 1, ..., r
```

 $\Leftrightarrow |(H_1 \cap H_2)\pi: H_1\pi \cap H_2\pi| < \infty.$

Theorem (D.-V.)

Let $H_1, H_2 \leq \mathbb{F}_n \times \mathbb{Z}^m$. Then,

- 1. we can algorithmically decide whether $H_1 \cap H_2$ is f.g.
- 2. if so, $St(H_1 \cap H_2)$ is computable.

In particular, SIP($\mathbb{F}_n \times \mathbb{Z}^m$) is solvable.

$$H_1 = \langle t^{L_1}, \mathbf{x}^3 t^{\mathbf{a}}, \mathbf{y} \mathbf{x} \rangle, H_2 = \langle t^{L_2}, \mathbf{x}^2 t^{\mathbf{d}}, \mathbf{y} \mathbf{x} \mathbf{y}^{-1} \rangle \leqslant \mathbb{F}_2 \times \mathbb{Z}^2$$

$$H_1 = \langle t^{L_1}, \mathbf{x}^3 t^{a}, \mathbf{y} \mathbf{x} \rangle, H_2 = \langle t^{L_2}, \mathbf{x}^2 t^{d}, \mathbf{y} \mathbf{x} \mathbf{y}^{-1} \rangle \leqslant \mathbb{F}_2 \times \mathbb{Z}^2$$

Case 1: $\mathbf{a} = (1, 0), \mathbf{d} = (0, 1), L_1 = \langle (0, 6) \rangle, L_2 = \langle (3, -3) \rangle$

$$H_1 = \langle t^{L_1}, \mathbf{x}^3 t^{\mathbf{a}}, \mathbf{y}\mathbf{x} \rangle, H_2 = \langle t^{L_2}, \mathbf{x}^2 t^{\mathbf{d}}, \mathbf{y}\mathbf{x}\mathbf{y}^{-1} \rangle \leqslant \mathbb{F}_2 \times \mathbb{Z}^2$$

Case 1: $\mathbf{a} = (1, 0), \mathbf{d} = (0, 1), L_1 = \langle (0, 6) \rangle, L_2 = \langle (3, -3) \rangle$
Then, $\mathbf{R} = \begin{bmatrix} 2 & -3 \\ 1 & 0 \end{bmatrix}, \mathbf{M} = \begin{bmatrix} -2 & 4 \\ 1 & 1 \end{bmatrix}, \mathbf{Q} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}, \mathbf{D} = \begin{bmatrix} 1 & 0 \\ 0 & 6 \end{bmatrix}.$

$$H_{1} = \langle t^{L_{1}}, x^{3} t^{a}, yx \rangle, H_{2} = \langle t^{L_{2}}, x^{2} t^{d}, yxy^{-1} \rangle \leq \mathbb{F}_{2} \times \mathbb{Z}^{2}$$

Case 1: $\mathbf{a} = (1, 0), \mathbf{d} = (0, 1), L_{1} = \langle (0, 6) \rangle, L_{2} = \langle (3, -3) \rangle$
Then, $\mathbf{R} = \begin{bmatrix} 2 & -3 \\ 1 & 0 \end{bmatrix}, \mathbf{M} = \begin{bmatrix} -2 & 4 \\ 1 & 1 \end{bmatrix}, \mathbf{Q} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}, \mathbf{D} = \begin{bmatrix} 1 & 0 \\ 0 & 6 \end{bmatrix}.$
Hence: St $((H_{1} \cap H_{2})\pi, \{w_{1}, w_{2}\}) = \text{Cay} (\mathbb{Z}/6\mathbb{Z}, \{-1, 1\})$

$$H_{1} = \langle t^{L_{1}}, \mathbf{x}^{3} t^{a}, \mathbf{y}\mathbf{x} \rangle, H_{2} = \langle t^{L_{2}}, \mathbf{x}^{2} t^{d}, \mathbf{y}\mathbf{x}\mathbf{y}^{-1} \rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{2}$$

Case 1: $\mathbf{a} = (1, 0), \mathbf{d} = (0, 1), L_{1} = \langle (0, 6) \rangle, L_{2} = \langle (3, -3) \rangle$
Then, $\mathbf{R} = \begin{bmatrix} 2 & -3 \\ 1 & 0 \end{bmatrix}, \mathbf{M} = \begin{bmatrix} -2 & 4 \\ 1 & 1 \end{bmatrix}, \mathbf{Q} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}, \mathbf{D} = \begin{bmatrix} 1 & 0 \\ 0 & 6 \end{bmatrix}.$
Hence: St $((H_{1} \cap H_{2})\pi, \{w_{1}, w_{2}\}) = \text{Cay} (\mathbb{Z}/6\mathbb{Z}, \{-1, 1\})$

$$H_{1} = \langle t^{L_{1}}, \mathbf{x}^{3} t^{a}, y\mathbf{x} \rangle, H_{2} = \langle t^{L_{2}}, \mathbf{x}^{2} t^{d}, y\mathbf{x}\mathbf{y}^{-1} \rangle \leq \mathbb{F}_{2} \times \mathbb{Z}^{2}$$

Case 1: $\mathbf{a} = (1, 0), \mathbf{d} = (0, 1), L_{1} = \langle (0, 6) \rangle, L_{2} = \langle (3, -3) \rangle$
Then, $\mathbf{R} = \begin{bmatrix} 2 & -3 \\ 1 & 0 \end{bmatrix}, \mathbf{M} = \begin{bmatrix} -2 & 4 \\ 1 & 1 \end{bmatrix}, \mathbf{Q} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}, \mathbf{D} = \begin{bmatrix} 1 & 0 \\ 0 & 6 \end{bmatrix}.$
After replacing $w_{1} \to \mathbf{x}^{6} t^{(2,0),(0,3)}, w_{2} \to \mathbf{y} \mathbf{x}^{3} \mathbf{y}^{-1} t^{(1,0),(0,0)}$ and folding:

$$H_{1} = \langle t^{L_{1}}, x^{3} t^{a}, yx \rangle, H_{2} = \langle t^{L_{2}}, x^{2} t^{d}, yxy^{-1} \rangle \leq \mathbb{F}_{2} \times \mathbb{Z}^{2}$$

Case 1: $\mathbf{a} = (1, 0), \mathbf{d} = (0, 1), L_{1} = \langle (0, 6) \rangle, L_{2} = \langle (3, -3) \rangle$
Then, $\mathbf{R} = \begin{bmatrix} 2 & -3 \\ 1 & 0 \end{bmatrix}, \mathbf{M} = \begin{bmatrix} -2 & 4 \\ 1 & 1 \end{bmatrix}, \mathbf{Q} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}, \mathbf{D} = \begin{bmatrix} 1 & 0 \\ 0 & 6 \end{bmatrix}.$
After replacing $w_{1} \to x^{6}t^{(2,0),(0,3)}, w_{2} \to yx^{3}y^{-1}t^{(1,0),(0,0)}$ and folding:

$$H_1 = \langle t^{L_1}, \mathbf{x}^3 t^{\mathbf{a}}, \mathbf{y}\mathbf{x} \rangle, H_2 = \langle t^{L_2}, \mathbf{x}^2 t^{\mathbf{d}}, \mathbf{y}\mathbf{x}\mathbf{y}^{-1} \rangle \leqslant \mathbb{F}_2 \times \mathbb{Z}^2$$

Case 1: $\mathbf{a} = (1, 0), \mathbf{d} = (0, 1), L_1 = \langle (0, 6) \rangle, L_2 = \langle (3, -3) \rangle$
Then, $\mathbf{R} = \begin{bmatrix} 2 & -3 \\ 1 & 0 \end{bmatrix}, \mathbf{M} = \begin{bmatrix} -2 & 4 \\ 1 & 1 \end{bmatrix}, \mathbf{Q} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}, \mathbf{D} = \begin{bmatrix} 1 & 0 \\ 0 & 6 \end{bmatrix}.$

After normalizing w.r.t. an spanning tree:

$$H_1 = \langle t^{L_1}, \mathbf{x}^3 t^{\mathbf{a}}, \mathbf{y}\mathbf{x} \rangle, H_2 = \langle t^{L_2}, \mathbf{x}^2 t^{\mathbf{d}}, \mathbf{y}\mathbf{x}\mathbf{y}^{-1} \rangle \leqslant \mathbb{F}_2 \times \mathbb{Z}^2$$

Case 1: $\mathbf{a} = (1, 0), \mathbf{d} = (0, 1), L_1 = \langle (0, 6) \rangle, L_2 = \langle (3, -3) \rangle$
Then, $\mathbf{R} = \begin{bmatrix} 2 & -3 \\ 1 & 0 \end{bmatrix}, \mathbf{M} = \begin{bmatrix} -2 & 4 \\ 1 & 1 \end{bmatrix}, \mathbf{Q} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}, \mathbf{D} = \begin{bmatrix} 1 & 0 \\ 0 & 6 \end{bmatrix}.$

After normalizing w.r.t. an spanning tree:

$$H_1 = \langle t^{L_1}, \mathbf{X}^3 t^{\mathbf{a}}, \mathbf{y} \mathbf{X} \rangle, H_2 = \langle t^{L_2}, \mathbf{X}^2 t^{\mathbf{d}}, \mathbf{y} \mathbf{X} \mathbf{y}^{-1} \rangle \leqslant \mathbb{F}_2 \times \mathbb{Z}^2$$

Case 1: $\mathbf{a} = (1, 0), \mathbf{d} = (0, 1), L_1 = \langle (0, 6) \rangle, L_2 = \langle (3, -3) \rangle$
Then, $\mathbf{R} = \begin{bmatrix} 2 & -3 \\ 1 & 0 \end{bmatrix}, \mathbf{M} = \begin{bmatrix} -2 & 4 \\ 1 & 1 \end{bmatrix}, \mathbf{Q} = \begin{bmatrix} 1 & -1 \\ 0 & -1 \end{bmatrix}, \mathbf{D} = \begin{bmatrix} 1 & 0 \\ 0 & 6 \end{bmatrix}.$

Finally, after equalizing the abelian labels we obtain $St(H_1 \cap H_2)$:

$$H_1 = \langle t^{L_1}, \mathbf{X}^3 t^{\mathbf{a}}, \mathbf{y} \mathbf{X} \rangle, H_2 = \langle t^{L_2}, \mathbf{X}^2 t^{\mathbf{d}}, \mathbf{y} \mathbf{X} \mathbf{y}^{-1} \rangle \leqslant \mathbb{F}_2 \times \mathbb{Z}^2$$

Case 1: $\mathbf{a} = (1, 0), \mathbf{d} = (0, 1), L_1 = \langle (0, 6) \rangle, L_2 = \langle (3, -3) \rangle$
Then, $\mathbf{R} = \begin{bmatrix} 2 & -3 \\ 1 & 0 \end{bmatrix}, \mathbf{M} = \begin{bmatrix} -2 & 4 \\ 1 & 1 \end{bmatrix}, \mathbf{Q} = \begin{bmatrix} 1 & -1 \\ 0 & -1 \end{bmatrix}, \mathbf{D} = \begin{bmatrix} 1 & 0 \\ 0 & 6 \end{bmatrix}.$

Finally, after equalizing the abelian labels we obtain $St(H_1 \cap H_2)$:

$$H_1 = \langle t^{L_1}, \mathbf{x}^3 t^{\mathbf{a}}, \mathbf{y} \mathbf{x} \rangle, H_2 = \langle t^{L_2}, \mathbf{x}^2 t^{\mathbf{d}}, \mathbf{y} \mathbf{x} \mathbf{y}^{-1} \rangle \leqslant \mathbb{F}_2 \times \mathbb{Z}^2$$

$$H_1 = \langle t^{L_1}, x^3 t^a, yx \rangle, H_2 = \langle t^{L_2}, x^2 t^d, yxy^{-1} \rangle \leq \mathbb{F}_2 \times \mathbb{Z}^2$$

Case 2: $a = (3, 3), d = (2, 2), L_1 = \langle (1, 2) \rangle, L_2 = \langle (0, 0) \rangle.$

 $H_1 = \langle t^{L_1}, \mathbf{x}^3 t^{\mathbf{a}}, y\mathbf{x} \rangle, H_2 = \langle t^{L_2}, \mathbf{x}^2 t^{\mathbf{d}}, y\mathbf{x}\mathbf{y}^{-1} \rangle \leqslant \mathbb{F}_2 \times \mathbb{Z}^2$

Case 2: $\mathbf{a} = (3,3), \mathbf{d} = (2,2), L_1 = \langle (1,2) \rangle, L_2 = \langle (0,0) \rangle.$

Then, St $((H_1 \cap H_2)\pi, \{w_1, w_2\}) = Cay(\mathbb{Z}, \{0, 1\})$

 $H_1 = \langle t^{L_1}, \mathbf{x}^3 t^{\mathbf{a}}, \mathbf{y} \mathbf{x} \rangle, H_2 = \langle t^{L_2}, \mathbf{x}^2 t^{\mathbf{d}}, \mathbf{y} \mathbf{x} \mathbf{y}^{-1} \rangle \leqslant \mathbb{F}_2 \times \mathbb{Z}^2$

Case 2: $\mathbf{a} = (3,3), \mathbf{d} = (2,2), L_1 = \langle (1,2) \rangle, L_2 = \langle (0,0) \rangle.$

Then, St $((H_1 \cap H_2)\pi, \{w_1, w_2\}) = Cay(\mathbb{Z}, \{0, 1\})$

 $H_{1} = \langle t^{L_{1}}, \mathbf{x}^{3} t^{a}, y\mathbf{x} \rangle, H_{2} = \langle t^{L_{2}}, \mathbf{x}^{2} t^{d}, y\mathbf{x}\mathbf{y}^{-1} \rangle \leq \mathbb{F}_{2} \times \mathbb{Z}^{2}$ **Case 2:** $\mathbf{a} = (3, 3), \mathbf{d} = (2, 2), L_{1} = \langle (1, 2) \rangle, L_{2} = \langle (0, 0) \rangle.$ Then, St $((H_{1} \cap H_{2})\pi, \{w_{1}, w_{2}\}) = \text{Cay}(\mathbb{Z}, \{0, 1\})$

After replacing, folding, normalizing, and equalizing, we obtain $St(H_1 \cap H_2)$:

 $H_{1} = \langle t^{L_{1}}, \mathbf{x}^{3} t^{a}, y\mathbf{x} \rangle, H_{2} = \langle t^{L_{2}}, \mathbf{x}^{2} t^{d}, y\mathbf{x}\mathbf{y}^{-1} \rangle \leq \mathbb{F}_{2} \times \mathbb{Z}^{2}$ **Case 2:** $\mathbf{a} = (3, 3), \mathbf{d} = (2, 2), L_{1} = \langle (1, 2) \rangle, L_{2} = \langle (0, 0) \rangle.$ Then, St $((H_{1} \cap H_{2})\pi, \{w_{1}, w_{2}\}) = \text{Cay}(\mathbb{Z}, \{0, 1\})$

After replacing, folding, normalizing, and equalizing, we obtain $St(H_1 \cap H_2)$:

$$H_1 = \langle t^{L_1}, \mathbf{x}^3 t^{\mathbf{a}}, \mathbf{y}\mathbf{x} \rangle, H_2 = \langle t^{L_2}, \mathbf{x}^2 t^{\mathbf{d}}, \mathbf{y}\mathbf{x}\mathbf{y}^{-1} \rangle \leqslant \mathbb{F}_2 \times \mathbb{Z}^2$$

$$H_1 = \langle t^{L_1}, x^3 t^{a}, yx \rangle, H_2 = \langle t^{L_2}, x^2 t^{d}, yxy^{-1} \rangle \leq \mathbb{F}_2 \times \mathbb{Z}^2$$

Case 3: $a = (3, 3), d = (2, 2), L_1 = \langle (2, 2) \rangle, L_2 = \langle (0, 0) \rangle.$

 $H_1 = \langle t^{L_1}, \mathbf{X}^3 t^{\mathsf{a}}, y \mathbf{X} \rangle, H_2 = \langle t^{L_2}, \mathbf{X}^2 t^{\mathsf{d}}, y \mathbf{X} y^{-1} \rangle \leqslant \mathbb{F}_2 \times \mathbb{Z}^2$

Case 3: $a = (3,3), d = (2,2), L_1 = \langle (2,2) \rangle, L_2 = \langle (0,0) \rangle.$

Then, St $((H_1 \cap H_2)\pi, \{w_1, w_2\}) = Cay(\mathbb{Z}/2\mathbb{Z}, \{0, 1\})$

 $H_1 = \langle t^{L_1}, \mathbf{x}^3 t^{\mathbf{a}}, \mathbf{y}\mathbf{x} \rangle, H_2 = \langle t^{L_2}, \mathbf{x}^2 t^{\mathbf{d}}, \mathbf{y}\mathbf{x}\mathbf{y}^{-1} \rangle \leqslant \mathbb{F}_2 \times \mathbb{Z}^2$ **Case 3:** $\mathbf{a} = (3, 3), \mathbf{d} = (2, 2), L_1 = \langle (2, 2) \rangle, L_2 = \langle (0, 0) \rangle.$ Then, St $((H_1 \cap H_2)\pi, \{w_1, w_2\}) = \text{Cay} (\mathbb{Z}/2\mathbb{Z}, \{0, 1\})$

 $H_1 = \langle t^{L_1}, x^3 t^a, yx \rangle, H_2 = \langle t^{L_2}, x^2 t^d, yxy^{-1} \rangle \leq \mathbb{F}_2 \times \mathbb{Z}^2$ Case 3: **a** = (3, 3), **d** = (2, 2), $L_1 = \langle (2, 2) \rangle, L_2 = \langle (0, 0) \rangle.$ Then, St (($H_1 \cap H_2$) π , { w_1 , w_2 }) = Cay ($\mathbb{Z}/2\mathbb{Z}$, {0, 1})

After replacing, folding, normalizing, and equalizing, we obtain $St(H_1 \cap H_2)$:

 $H_1 = \langle t^{L_1}, x^3 t^a, yx \rangle, H_2 = \langle t^{L_2}, x^2 t^d, yxy^{-1} \rangle \leq \mathbb{F}_2 \times \mathbb{Z}^2$ Case 3: **a** = (3, 3), **d** = (2, 2), $L_1 = \langle (2, 2) \rangle, L_2 = \langle (0, 0) \rangle.$ Then, St (($H_1 \cap H_2$) π , { w_1 , w_2 }) = Cay ($\mathbb{Z}/2\mathbb{Z}$, {0, 1})

After replacing, folding, normalizing, and equalizing, we obtain $St(H_1 \cap H_2)$:

$$H_1 = \langle t^{L_1}, \mathbf{x}^3 t^{\mathbf{a}}, \mathbf{y}\mathbf{x} \rangle, H_2 = \langle t^{L_2}, \mathbf{x}^2 t^{\mathbf{d}}, \mathbf{y}\mathbf{x}\mathbf{y}^{-1} \rangle \leqslant \mathbb{F}_2 \times \mathbb{Z}^2$$

$$H_1 = \langle t^{L_1}, x^3 t^a, yx \rangle, H_2 = \langle t^{L_2}, x^2 t^a, yxy^{-1} \rangle \leq \mathbb{F}_2 \times \mathbb{Z}^2$$

Case 4: $\mathbf{a} = (3, 3), \mathbf{d} = (2, 2) \in \mathbb{Z}^2$, and $L_2 = \langle (1, 1) \rangle, L_2 = \langle (0, 0) \rangle.$

 $H_1 = \langle t^{L_1}, \mathbf{x}^3 t^{\mathbf{a}}, y\mathbf{x} \rangle, H_2 = \langle t^{L_2}, \mathbf{x}^2 t^{\mathbf{d}}, y\mathbf{x}\mathbf{y}^{-1} \rangle \leq \mathbb{F}_2 \times \mathbb{Z}^2$ Case 4: $\mathbf{a} = (3, 3), \mathbf{d} = (2, 2) \in \mathbb{Z}^2, \text{ and } L_2 = \langle (1, 1) \rangle, L_2 = \langle (0, 0) \rangle.$ Then, St $((H_1 \cap H_2)\pi, \{w_1, w_2\}) = \text{Cay} (\{0\}, \{0, 0\})$

 $H_1 = \langle t^{L_1}, x^3 t^{a}, yx \rangle, H_2 = \langle t^{L_2}, x^2 t^{d}, yxy^{-1} \rangle \leq \mathbb{F}_2 \times \mathbb{Z}^2$ Case 4: $\mathbf{a} = (3, 3), \mathbf{d} = (2, 2) \in \mathbb{Z}^2, \text{ and } L_2 = \langle (1, 1) \rangle, L_2 = \langle (0, 0) \rangle.$ Then, St $((H_1 \cap H_2)\pi, \{w_1, w_2\}) = \text{Cay} (\{0\}, \{0, 0\})$

 $H_1 = \langle t^{L_1}, \mathbf{x}^3 t^{\mathbf{a}}, y\mathbf{x} \rangle, H_2 = \langle t^{L_2}, \mathbf{x}^2 t^{\mathbf{d}}, y\mathbf{x}\mathbf{y}^{-1} \rangle \leqslant \mathbb{F}_2 \times \mathbb{Z}^2$ Case 4: $\mathbf{a} = (3, 3), \mathbf{d} = (2, 2) \in \mathbb{Z}^2, \text{ and } L_2 = \langle (1, 1) \rangle, L_2 = \langle (0, 0) \rangle.$ Then, St $((H_1 \cap H_2)\pi, \{w_1, w_2\}) = \text{Cay} (\{0\}, \{0, 0\})$

After replacing, folding, normalizing, and equalizing, we obtain $St(H_1 \cap H_2)$:

 $H_1 = \langle t^{L_1}, \mathbf{x}^3 t^{\mathbf{a}}, y\mathbf{x} \rangle, H_2 = \langle t^{L_2}, \mathbf{x}^2 t^{\mathbf{d}}, y\mathbf{x}\mathbf{y}^{-1} \rangle \leqslant \mathbb{F}_2 \times \mathbb{Z}^2$ **Case 4:** $\mathbf{a} = (3, 3), \mathbf{d} = (2, 2) \in \mathbb{Z}^2, \text{ and } L_2 = \langle (1, 1) \rangle, L_2 = \langle (0, 0) \rangle.$ Then, St $((H_1 \cap H_2)\pi, \{w_1, w_2\}) = \text{Cay} (\{0\}, \{0, 0\})$

After replacing, folding, normalizing, and equalizing, we obtain $St(H_1 \cap H_2)$:

$$H_1 = \langle t^{L_1}, \mathbf{x}^3 t^{\mathbf{a}}, \mathbf{y}\mathbf{x} \rangle, H_2 = \langle t^{L_2}, \mathbf{x}^2 t^{\mathbf{d}}, \mathbf{y}\mathbf{x}\mathbf{y}^{-1} \rangle \leqslant \mathbb{F}_2 \times \mathbb{Z}^2$$

 $H_1 = \langle t^{L_1}, x^3 t^a, yx \rangle, H_2 = \langle t^{L_2}, x^2 t^d, yxy^{-1} \rangle \leq \mathbb{F}_2 \times \mathbb{Z}^2$ Case 5: $\mathbf{a} = (6, 6), \mathbf{d} = (4, 4) \in \mathbb{Z}^2, L_1 = \langle (6p, 6p) \rangle, L_2 = \langle (0, 0) \rangle, \text{ for some } p \in \mathbb{Z}.$ $H_1 = \langle t^{L_1}, \mathbf{x}^3 t^{\mathbf{a}}, y \mathbf{x} \rangle, H_2 = \langle t^{L_2}, \mathbf{x}^2 t^{\mathbf{d}}, y \mathbf{x} y^{-1} \rangle \leqslant \mathbb{F}_2 \times \mathbb{Z}^2$

Case 5: $\mathbf{a} = (6, 6), \ \mathbf{d} = (4, 4) \in \mathbb{Z}^2, \ L_1 = \langle (6p, 6p) \rangle, \ L_2 = \langle (0, 0) \rangle, \ \text{for some } p \in \mathbb{Z}.$

Then, St $((H_1 \cap H_2)\pi, \{w_1, w_2\}) = Cay(\mathbb{Z}/p\mathbb{Z}, \{0, 1\})$

$$H_1 = \langle t^{L_1}, \mathbf{x}^3 t^{a}, \mathbf{y} \mathbf{x} \rangle, H_2 = \langle t^{L_2}, \mathbf{x}^2 t^{d}, \mathbf{y} \mathbf{x} \mathbf{y}^{-1} \rangle \leqslant \mathbb{F}_2 \times \mathbb{Z}^2$$

Case 5: $\mathbf{a} = (6, 6), \ \mathbf{d} = (4, 4) \in \mathbb{Z}^2, \ L_1 = \langle (6p, 6p) \rangle, \ L_2 = \langle (0, 0) \rangle, \ \text{for some } p \in \mathbb{Z}.$

Then, St $((H_1 \cap H_2)\pi, \{w_1, w_2\}) = Cay(\mathbb{Z}/p\mathbb{Z}, \{0, 1\})$

INTERSECTION SHOWCASE

After replacing, folding, normalizing, and equalizing, we obtain $St(H_1 \cap H_2)$:

INTERSECTION SHOWCASE

After replacing, folding, normalizing, and equalizing, we obtain $St(H_1 \cap H_2)$:

Multiple intersections in $\mathbb{F}_n \times \mathbb{Z}^m$

Given $H_1, H_2 \leq_{fg} G$ (by finite sets of generators), decide whether $H_1 \cap H_2$ is finitely generated; if yes, compute generators for $H_1 \cap H_2$.

Given $H_1, H_2 \leq_{fg} G$ (by finite sets of generators), decide whether $H_1 \cap H_2$ is finitely generated; if yes, compute generators for $H_1 \cap H_2$.

Multiple Subgroup Intersection Problem in G, MSIP(G)

Given $H_1, \ldots, H_k \leq_{fg} G$ (by finite sets of generators), decide whether $H_1 \cap \cdots \cap H_k$ is finitely generated; if yes, compute generators for $H_1 \cap \cdots \cap H_k$.

Given $H_1, H_2 \leq_{fg} G$ (by finite sets of generators), decide whether $H_1 \cap H_2$ is finitely generated; if yes, compute generators for $H_1 \cap H_2$.

Multiple Subgroup Intersection Problem in G, MSIP(G)

Given $H_1, \ldots, H_k \leq_{fg} G$ (by finite sets of generators), decide whether $H_1 \cap \cdots \cap H_k$ is finitely generated; if yes, compute generators for $H_1 \cap \cdots \cap H_k$.

Remark:

If G is not Howson one cannot just apply induction ...

$$H_1 \cap \cdots \cap H_k = (H_1 \cap \cdots \cap H_{k-1}) \cap H_k$$

Given $H_1, H_2 \leq_{fg} G$ (by finite sets of generators), decide whether $H_1 \cap H_2$ is finitely generated; if yes, compute generators for $H_1 \cap H_2$.

Multiple Subgroup Intersection Problem in G, MSIP(G)

Given $H_1, \ldots, H_k \leq_{fg} G$ (by finite sets of generators), decide whether $H_1 \cap \cdots \cap H_k$ is finitely generated; if yes, compute generators for $H_1 \cap \cdots \cap H_k$.

Remark:

If G is not Howson one cannot just apply induction ...

$$H_1 \cap \cdots \cap H_k = (H_1 \cap \cdots \cap H_{k-1}) \cap H_k$$

There are subgroups $H_1, H_2, H_3 \leq \mathbb{F}_n \times \mathbb{Z}^m$ such that H_1, H_2, H_3 and $H_1 \cap H_2 \cap H_3$ are finitely generated, but $H_1 \cap H_2, H_1 \cap H_3, H_2 \cap H_3$ are not ...

MULTIPLE INTERSECTIONS

Let $H_1, H_2 \leq G$. There are $2^3 = 8$ possibilities for the finite/infinite generation of $H_1, H_2, H_1 \cap H_2$:

MULTIPLE INTERSECTIONS

Let $H_1, H_2 \leq G$. There are $2^3 = 8$ possibilities for the finite/infinite generation of $H_1, H_2, H_1 \cap H_2$:

Observation

G is Howson \Leftrightarrow the highlighted 2-configuration is not realizable.

Is non-Howsonity the only obstruction to the realizability of *k*-intersection configurations in a free group?

Is non-Howsonity the only obstruction to the realizability of *k*-intersection configurations in a free group?

Definition

A *k*-configuration is a map $\chi: \mathcal{P}([k]) \setminus \{\varnothing\} \rightarrow \{0, 1\}$. (0 indicates f.g., and 1 non-f.g.).

Is non-Howsonity the only obstruction to the realizability of *k*-intersection configurations in a free group?

Definition

A *k*-configuration is a map $\chi: \mathcal{P}([k]) \setminus \{\varnothing\} \to \{0, 1\}$. (0 indicates f.g., and 1 non-f.g.).

Its *support* is $\mathcal{I} = \{ \emptyset \neq I \subseteq [k] \mid (I)\chi = 1 \}$. We write $\chi = \chi_{\mathcal{I}}$.

Is non-Howsonity the **only** obstruction to the realizability of *k*-intersection configurations in a free group?

Definition

A *k*-configuration is a map $\chi: \mathcal{P}([k]) \setminus \{\emptyset\} \to \{0, 1\}$. (0 indicates f.g., and 1 non-f.g.).

Its *support* is $\mathcal{I} = \{ \emptyset \neq I \subseteq [k] \mid (I)\chi = 1 \}$. We write $\chi = \chi_{\mathcal{I}}$.

Examples:

• $\mathbf{0} = \chi_{\varnothing}$ is the *zero k*-configuration,

Is non-Howsonity the only obstruction to the realizability of *k*-intersection configurations in a free group?

Definition

A *k*-configuration is a map $\chi: \mathcal{P}([k]) \setminus \{\emptyset\} \to \{0, 1\}$. (0 indicates f.g., and 1 non-f.g.).

Its *support* is $\mathcal{I} = \{ \emptyset \neq I \subseteq [k] \mid (I)\chi = 1 \}$. We write $\chi = \chi_{\mathcal{I}}$.

Examples:

- · $\mathbf{0} = \chi_{\varnothing}$ is the *zero k*-configuration,
- $1 = \chi_{\mathcal{P}([k])}$ is the **one** k-configuration.

Is non-Howsonity the only obstruction to the realizability of *k*-intersection configurations in a free group?

Definition

A *k*-configuration is a map $\chi: \mathcal{P}([k]) \setminus \{\emptyset\} \to \{0, 1\}$. (0 indicates f.g., and 1 non-f.g.).

Its *support* is $\mathcal{I} = \{ \emptyset \neq I \subseteq [k] \mid (I)\chi = 1 \}$. We write $\chi = \chi_{\mathcal{I}}$.

Examples:

- $\mathbf{0} = \chi_{\varnothing}$ is the *zero k*-configuration,
- $1 = \chi_{\mathcal{P}([k])}$ is the **one** k-configuration.
- $\chi_{\{l\}}$ is an *almost-0 k*-configuration.

 $\chi_{\{\{2\},\{3\},\{1,2\},\{1,2,3\}\}}$

 $\chi_{\{2\},\{3\},\{1,2\},\{1,2,3\}\}}$

 $\chi_{\varnothing}=0$

 $\chi_{\{1\}}$

Let G be a group, and $k \ge 1$.

Definition

A *k*-configuration $\chi: \mathcal{P}([k]) \setminus \{\emptyset\} \to \{0, 1\}$ is *realizable in G* if there exist *k* subgroups $\mathcal{H} = \{H_1, \ldots, H_k\}$ of *G* (with possible repetitions) such that, for every $\emptyset \neq I \subseteq [k]$,

$$H_I = \bigcap_{i \in I} H_i$$
 is finitely generated $\Leftrightarrow (I)\chi = 0$.

Let G be a group, and $k \ge 1$.

Definition

A *k*-configuration $\chi: \mathcal{P}([k]) \setminus \{\emptyset\} \to \{0, 1\}$ is *realizable in G* if there exist *k* subgroups $\mathcal{H} = \{H_1, \ldots, H_k\}$ of *G* (with possible repetitions) such that, for every $\emptyset \neq I \subseteq [k]$,

$$H_I = \bigcap_{i \in I} H_i$$
 is finitely generated $\Leftrightarrow (I)\chi = 0.$

Remarks:

• The *k*-configuration **0** is always realizable in any group *G*;

Let G be a group, and $k \ge 1$.

Definition

A *k*-configuration $\chi: \mathcal{P}([k]) \setminus \{\emptyset\} \to \{0, 1\}$ is *realizable in G* if there exist *k* subgroups $\mathcal{H} = \{H_1, \ldots, H_k\}$ of *G* (with possible repetitions) such that, for every $\emptyset \neq I \subseteq [k]$,

$$H_I = \bigcap_{i \in I} H_i$$
 is finitely generated $\Leftrightarrow (I)\chi = 0$.

Remarks:

- The *k*-configuration **0** is always realizable in any group *G*;
- the k-configuration 1 is realizable in a group G if and only if G contains a non-finitely-generated subgroup H ≤ G;

Let G be a group, and $k \ge 1$.

Definition

A *k*-configuration $\chi: \mathcal{P}([k]) \setminus \{\emptyset\} \to \{0, 1\}$ is *realizable in G* if there exist *k* subgroups $\mathcal{H} = \{H_1, \ldots, H_k\}$ of *G* (with possible repetitions) such that, for every $\emptyset \neq I \subseteq [k]$,

$$H_I = \bigcap_{i \in I} H_i$$
 is finitely generated $\Leftrightarrow (I)\chi = 0$.

Remarks:

- The *k*-configuration **0** is always realizable in any group *G*;
- the k-configuration 1 is realizable in a group G if and only if G contains a non-finitely-generated subgroup H ≤ G;
- if a *k*-configuration χ is realizable in a free group \mathbb{F}_n , $n \ge 2$, then χ satisfies the Howson property:

 $\forall \ \varnothing \neq I, J \subseteq [k], \ (I)\chi = (J)\chi = 0 \ \Rightarrow \ (I \cup J)\chi = 0.$

Question

Is it true that a *k*-configuration χ is realizable in a free group \mathbb{F}_n , $n \ge 2$ $\Leftrightarrow \chi$ respects the Howson property?

Question

Is it true that a *k*-configuration χ is realizable in a free group \mathbb{F}_n , $n \ge 2$ $\Leftrightarrow \chi$ respects the Howson property?

Definition

A group G is said to be *intersection-saturated* if every k-configuration (for every finite $k \ge 1$) is realizable in G.

Question

Is it true that a *k*-configuration χ is realizable in a free group \mathbb{F}_n , $n \ge 2$ $\Leftrightarrow \chi$ respects the Howson property?

Definition

A group G is said to be *intersection-saturated* if every k-configuration (for every finite $k \ge 1$) is realizable in G.

Question

Does there exists a finitely presented intersection-saturated group?

THE MULTIPLE INTERSECTION PROBLEM IS COMPUTABLE

Theorem (D.-Roy-V.)

 $MSIP(\mathbb{F}_n \times \mathbb{Z}^m)$ is computable.

Theorem (D.–Roy–V.)

MSIP($\mathbb{F}_n \times \mathbb{Z}^m$) is computable. That is, there exists an algorithm which, given $k \ge 2$ f.g. subgroups $H_1, \ldots, H_k \leq_{fg} \mathbb{F}_n \times \mathbb{Z}^m$ (by finite sets of generators), decides whether $H_1 \cap \cdots \cap H_k$ is finitely generated and, in the affirmative case, computes a basis for it.

Theorem (D.–Roy–V.)

MSIP($\mathbb{F}_n \times \mathbb{Z}^m$) is computable. That is, there exists an algorithm which, given $k \ge 2$ f.g. subgroups $H_1, \ldots, H_k \leq_{fg} \mathbb{F}_n \times \mathbb{Z}^m$ (by finite sets of generators), decides whether $H_1 \cap \cdots \cap H_k$ is finitely generated and, in the affirmative case, computes a basis for it.

To understand realizability of configurations in $\mathbb{F}_n \times \mathbb{Z}^m$ we need a couple more results:

Theorem (D.-Roy-V.)

 $MSIP(\mathbb{F}_n \times \mathbb{Z}^m)$ is computable. That is, there exists an algorithm which, given $k \ge 2$ f.g. subgroups $H_1, \ldots, H_k \leq_{fg} \mathbb{F}_n \times \mathbb{Z}^m$ (by finite sets of generators), decides whether $H_1 \cap \cdots \cap H_k$ is finitely generated and, in the affirmative case, computes a basis for it.

To understand realizability of configurations in $\mathbb{F}_n \times \mathbb{Z}^m$ we need a couple more results:

Proposition

Let $M', M'' \leq \mathbb{F}_n$ be two subgroups of \mathbb{F}_n in free factor position, i.e., such that $\langle M', M'' \rangle = M' * M''$. Then, for any $H'_1, \ldots, H'_k \leq M' \leq \mathbb{F}_n$ and $H''_1, \ldots, H''_k \leq M'' \leq \mathbb{F}_n$, then

$$\bigcap_{i=1}^{k} \langle H'_{i}, H''_{i} \rangle = \left\langle \bigcap_{i=1}^{k} H'_{i}, \bigcap_{i=1}^{k} H''_{i} \right\rangle$$

Theorem (D.-Roy-V.)

 $MSIP(\mathbb{F}_n \times \mathbb{Z}^m)$ is computable. That is, there exists an algorithm which, given $k \ge 2$ f.g. subgroups $H_1, \ldots, H_k \leq_{fg} \mathbb{F}_n \times \mathbb{Z}^m$ (by finite sets of generators), decides whether $H_1 \cap \cdots \cap H_k$ is finitely generated and, in the affirmative case, computes a basis for it.

To understand realizability of configurations in $\mathbb{F}_n \times \mathbb{Z}^m$ we need a couple more results:

Proposition

Let $M', M'' \leq \mathbb{F}_n$ be two subgroups of \mathbb{F}_n in free factor position, i.e., such that $\langle M', M'' \rangle = M' * M''$. Then, for any $H'_1, \ldots, H'_k \leq M' \leq \mathbb{F}_n$ and $H''_1, \ldots, H''_k \leq M'' \leq \mathbb{F}_n$, then

$$\bigcap_{i=1}^{k} \langle H'_{i}, H''_{i} \rangle = \left\langle \bigcap_{i=1}^{k} H'_{i}, \bigcap_{i=1}^{k} H''_{i} \right\rangle.$$

Remark: The same equality is not true, in general, in $\mathbb{F}_n \times \mathbb{Z}^m$.

STRONG COMPLEMENTARITY

Definition

Two subgroups $M', M'' \leq \mathbb{F}_n \times \mathbb{Z}^m$ are *strongly complementary*, denoted by $\langle M', M'' \rangle = M' \circledast M''$, if

 $\langle M'\pi, M''\pi \rangle = M'\pi * M''\pi$ and $\langle M'\tau, M''\tau \rangle = M'\tau \oplus M''\tau$.

Definition

Two subgroups $M', M'' \leq \mathbb{F}_n \times \mathbb{Z}^m$ are *strongly complementary*, denoted by $\langle M', M'' \rangle = M' \circledast M''$, if

 $\langle M'\pi, M''\pi \rangle = M'\pi * M''\pi$ and $\langle M'\tau, M''\tau \rangle = M'\tau \oplus M''\tau$.

A basis for $M' \otimes M''$ can be obtained by joining bases for M' and M''.

Definition

Two subgroups $M', M'' \leq \mathbb{F}_n \times \mathbb{Z}^m$ are *strongly complementary*, denoted by $\langle M', M'' \rangle = M' \circledast M''$, if

 $\langle M'\pi, M''\pi \rangle = M'\pi * M''\pi$ and $\langle M'\tau, M''\tau \rangle = M'\tau \oplus M''\tau$.

A basis for $M' \otimes M''$ can be obtained by joining bases for M' and M''.

Theorem (D.-Roy-V.)

Let $M', M'' \leq \mathbb{F}_n \times \mathbb{Z}^m$ be strongly complementary. Then, for any $H'_1, \ldots, H'_k \leq M' \leq \mathbb{F}_n \times \mathbb{Z}^m$ satisfying $r' = \operatorname{rk} \left(\bigcap_{i=1}^k H'_i \pi \right) \geq 2$, and any $H''_1, \ldots, H''_k \leq M'' \leq \mathbb{F}_n \times \mathbb{Z}^m$ satisfying $r'' = \operatorname{rk} \left(\bigcap_{i=1}^k H''_i \pi \right) \geq 2$, $\bigcap_{i=1}^k \langle H'_i, H''_i \rangle$ is f.g. $\Leftrightarrow \bigcap_{i=1}^k H'_i$ and $\bigcap_{i=1}^k H''_i$ are both f.g.

Definition

Two subgroups $M', M'' \leq \mathbb{F}_n \times \mathbb{Z}^m$ are *strongly complementary*, denoted by $\langle M', M'' \rangle = M' \circledast M''$, if

 $\langle M'\pi, M''\pi \rangle = M'\pi * M''\pi$ and $\langle M'\tau, M''\tau \rangle = M'\tau \oplus M''\tau$.

A basis for $M' \otimes M''$ can be obtained by joining bases for M' and M''.

Theorem (D.-Roy-V.)

Let $M', M'' \leq \mathbb{F}_n \times \mathbb{Z}^m$ be strongly complementary. Then, for any $H'_1, \ldots, H'_k \leq M' \leq \mathbb{F}_n \times \mathbb{Z}^m$ satisfying $r' = \operatorname{rk} \left(\bigcap_{i=1}^k H'_i \pi \right) \geq 2$, and any $H''_1, \ldots, H''_k \leq M'' \leq \mathbb{F}_n \times \mathbb{Z}^m$ satisfying $r'' = \operatorname{rk} \left(\bigcap_{i=1}^k H''_i \pi \right) \geq 2$, $\bigcap_{i=1}^k \langle H'_i, H''_i \rangle$ is f.g. $\Leftrightarrow \bigcap_{i=1}^k H'_i$ and $\bigcap_{i=1}^k H''_i$ are both f.g.

Remark: It is not true without the hypotheses.
Lemma

Let $H_1, \ldots, H_k \leq \mathbb{F}_n \times \mathbb{Z}^m$. If, for some $\emptyset \neq I, J \subseteq [k]$, H_I and H_J are f.g. whereas $H_{I\cup J} = H_I \cap H_J$ is not, then $\exists i \in I, \exists j \in J$ s.t. both $L_i, L_j \leq \mathbb{Z}^m$ have rank strictly smaller than m.

Lemma

Let $H_1, \ldots, H_k \leq \mathbb{F}_n \times \mathbb{Z}^m$. If, for some $\emptyset \neq I, J \subseteq [k]$, H_I and H_J are f.g. whereas $H_{I\cup J} = H_I \cap H_J$ is not, then $\exists i \in I, \exists j \in J$ s.t. both $L_i, L_j \leq \mathbb{Z}^m$ have rank strictly smaller than m.

Proposition

Let χ be a k-configuration for which $\exists r \ge 2$ non-empty subsets $I_1, \ldots, I_r \subseteq [k]$ s.t. $\forall j \in \{1, \ldots, r\}, (I_1 \cup \cdots \cup \widehat{I_j} \cup \cdots \cup I_r)\chi = 0$ but $(I_1 \cup \cdots \cup I_r)\chi = 1$. Then χ is not realizable in $\mathbb{F}_n \times \mathbb{Z}^{r-2}$.

Lemma

Let $H_1, \ldots, H_k \leq \mathbb{F}_n \times \mathbb{Z}^m$. If, for some $\emptyset \neq I, J \subseteq [k]$, H_I and H_J are f.g. whereas $H_{I\cup J} = H_I \cap H_J$ is not, then $\exists i \in I, \exists j \in J$ s.t. both $L_i, L_j \leq \mathbb{Z}^m$ have rank strictly smaller than m.

Proposition

Let χ be a k-configuration for which $\exists r \ge 2$ non-empty subsets $l_1, \ldots, l_r \subseteq [k]$ s.t. $\forall j \in \{1, \ldots, r\}, (l_1 \cup \cdots \cup \widehat{l_j} \cup \cdots \cup l_r)\chi = 0$ but $(l_1 \cup \cdots \cup l_r)\chi = 1$. Then χ is not realizable in $\mathbb{F}_n \times \mathbb{Z}^{r-2}$.

Example: An unrealizable configuration in $\mathbb{F}_2 \times \mathbb{Z}$:

Proposition (D.-Roy-V.)

The k-config. $\chi_{[k]}$ is realizable in $\mathbb{F}_2 \times \mathbb{Z}^{k-1}$, but not in $\mathbb{F}_2 \times \mathbb{Z}^{k-2}$.

Proposition (D.-Roy-V.)

The k-config. $\chi_{[k]}$ is realizable in $\mathbb{F}_2 \times \mathbb{Z}^{k-1}$, but not in $\mathbb{F}_2 \times \mathbb{Z}^{k-2}$.

Proof: The second claim follows from previous proposition.

Proposition (D.-Roy-V.)

The k-config. $\chi_{[k]}$ is realizable in $\mathbb{F}_2 \times \mathbb{Z}^{k-1}$, but not in $\mathbb{F}_2 \times \mathbb{Z}^{k-2}$.

Proof: The second claim follows from previous proposition.

For k = 1 the statement is clear. Assume $k \ge 2$.

Proposition (D.-Roy-V.)

The k-config. $\chi_{[k]}$ is realizable in $\mathbb{F}_2 \times \mathbb{Z}^{k-1}$, but not in $\mathbb{F}_2 \times \mathbb{Z}^{k-2}$.

Proof: The second claim follows from previous proposition.

For k = 1 the statement is clear. Assume $k \ge 2$.

Let $\{x, y\}$ be two free letters generating \mathbb{F}_2 , and let $\{\mathbf{e}_1, \dots, \mathbf{e}_{k-1}\}$ be the canonical free-abelian basis for \mathbb{Z}^{k-1} . Consider:

$$H_1 = \langle x, y; t^{\mathbf{e}_2}, \ldots, t^{\mathbf{e}_{k-1}} \rangle \leqslant \mathbb{F}_2 \times \mathbb{Z}^{k-1},$$

Proposition (D.-Roy-V.)

The k-config. $\chi_{[k]}$ is realizable in $\mathbb{F}_2 \times \mathbb{Z}^{k-1}$, but not in $\mathbb{F}_2 \times \mathbb{Z}^{k-2}$.

Proof: The second claim follows from previous proposition.

For k = 1 the statement is clear. Assume $k \ge 2$.

Let $\{x, y\}$ be two free letters generating \mathbb{F}_2 , and let $\{e_1, \ldots, e_{k-1}\}$ be the canonical free-abelian basis for \mathbb{Z}^{k-1} . Consider:

$$\begin{aligned} H_1 &= \langle x, y; t^{\mathbf{e}_2}, \dots, t^{\mathbf{e}_{k-1}} \rangle \leqslant \mathbb{F}_2 \times \mathbb{Z}^{k-1}, \\ H_2 &= \langle x, y; t^{\mathbf{e}_1}, t^{\mathbf{e}_3}, \dots, t^{\mathbf{e}_{k-1}} \rangle \leqslant \mathbb{F}_2 \times \mathbb{Z}^{k-1}, \end{aligned}$$

Proposition (D.-Roy-V.)

The k-config. $\chi_{[k]}$ is realizable in $\mathbb{F}_2 \times \mathbb{Z}^{k-1}$, but not in $\mathbb{F}_2 \times \mathbb{Z}^{k-2}$.

Proof: The second claim follows from previous proposition.

For k = 1 the statement is clear. Assume $k \ge 2$.

Let $\{x, y\}$ be two free letters generating \mathbb{F}_2 , and let $\{e_1, \ldots, e_{k-1}\}$ be the canonical free-abelian basis for \mathbb{Z}^{k-1} . Consider:

$$H_{1} = \langle x, y; t^{\mathbf{e}_{2}}, \dots, t^{\mathbf{e}_{k-1}} \rangle \leq \mathbb{F}_{2} \times \mathbb{Z}^{k-1},$$

$$H_{2} = \langle x, y; t^{\mathbf{e}_{1}}, t^{\mathbf{e}_{3}}, \dots, t^{\mathbf{e}_{k-1}} \rangle \leq \mathbb{F}_{2} \times \mathbb{Z}^{k-1},$$

$$\vdots$$

$$H_{k-1} = \langle x, y; t^{\mathbf{e}_{1}}, \dots, t^{\mathbf{e}_{k-2}} \rangle \leq \mathbb{F}_{2} \times \mathbb{Z}^{k-1},$$

Proposition (D.-Roy-V.)

The k-config. $\chi_{[k]}$ is realizable in $\mathbb{F}_2 \times \mathbb{Z}^{k-1}$, but not in $\mathbb{F}_2 \times \mathbb{Z}^{k-2}$.

Proof: The second claim follows from previous proposition.

For k = 1 the statement is clear. Assume $k \ge 2$.

Let $\{x, y\}$ be two free letters generating \mathbb{F}_2 , and let $\{e_1, \ldots, e_{k-1}\}$ be the canonical free-abelian basis for \mathbb{Z}^{k-1} . Consider:

$$H_{1} = \langle x, y; t^{\mathbf{e}_{2}}, \dots, t^{\mathbf{e}_{k-1}} \rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{k-1},$$

$$H_{2} = \langle x, y; t^{\mathbf{e}_{1}}, t^{\mathbf{e}_{3}}, \dots, t^{\mathbf{e}_{k-1}} \rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{k-1},$$

$$\vdots$$

$$H_{k-1} = \langle x, y; t^{\mathbf{e}_{1}}, \dots, t^{\mathbf{e}_{k-2}} \rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{k-1},$$

$$H_{k} = \langle x, yt^{\mathbf{e}_{1}}; t^{\mathbf{e}_{2}-\mathbf{e}_{1}}, \dots, t^{\mathbf{e}_{k-1}-\mathbf{e}_{1}} \rangle$$

$$= \langle x, yt^{\mathbf{e}_{1}}, \dots, yt^{\mathbf{e}_{k-1}} \rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{k-1}.$$

For a given set of indices $\emptyset \neq I \subseteq [k]$, let us compute H_I :

• Case 1: $k \notin I \subsetneq [k]$. In this case, clearly, $H_I = \langle x, y; t^{e_j} \text{ for } j \notin I \rangle$ is f.g.

For a given set of indices $\emptyset \neq I \subseteq [k]$, let us compute H_I :

- Case 1: $k \notin I \subsetneq [k]$. In this case, clearly, $H_I = \langle x, y; t^{e_j} \text{ for } j \notin I \rangle$ is f.g.
- Case 2: $k \in I \subsetneq [k]$. In this case, wlog. assume $1 \notin I$, and the intersection $H_I = H_{I \setminus \{k\}} \cap H_k$ is:

For a given set of indices $\emptyset \neq I \subseteq [k]$, let us compute H_I :

- Case 1: $k \notin I \subsetneq [k]$. In this case, clearly, $H_I = \langle x, y; t^{e_j} \text{ for } j \notin I \rangle$ is f.g.
- Case 2: $k \in I \subsetneq [k]$. In this case, wlog. assume $1 \notin I$, and the intersection $H_I = H_{I \setminus \{k\}} \cap H_k$ is:

 $= \langle x, y; t^{e_1}, t^{e_j} \text{ for } j \notin I \rangle \cap \langle x, yt^{e_1}, yt^{e_2}, \dots, yt^{e_{k-1}} \rangle$

For a given set of indices $\emptyset \neq I \subseteq [k]$, let us compute H_I :

- Case 1: $k \notin I \subsetneq [k]$. In this case, clearly, $H_I = \langle x, y; t^{e_j} \text{ for } j \notin I \rangle$ is f.g.
- Case 2: $k \in I \subsetneq [k]$. In this case, wlog. assume $1 \notin I$, and the intersection $H_I = H_{I \setminus \{k\}} \cap H_k$ is:

 $= \langle x, y; t^{e_1}, t^{e_j} \text{ for } j \notin I \rangle \cap \langle x, yt^{e_1}, yt^{e_2}, \dots, yt^{e_{k-1}} \rangle$

 $= \{ w(x, y)t^{a} \mid a_{j} = 0, \forall j \in I \} \cap \{ w(x, y)t^{a} \mid a_{1} + \dots + a_{k-1} = |w|_{y} \}$

For a given set of indices $\emptyset \neq I \subseteq [k]$, let us compute H_I :

- Case 1: $k \notin I \subsetneq [k]$. In this case, clearly, $H_I = \langle x, y; t^{\mathbf{e}_j} \text{ for } j \notin I \rangle$ is f.g.
- Case 2: $k \in I \subsetneq [k]$. In this case, wlog. assume $1 \notin I$, and the intersection $H_I = H_{I \setminus \{k\}} \cap H_k$ is:

$$= \langle x, y; t^{e_1}, t^{e_j} \text{ for } j \notin I \rangle \cap \langle x, yt^{e_1}, yt^{e_2}, \dots, yt^{e_{k-1}} \rangle$$

$$= \{ w(x, y)t^{\mathbf{a}} \mid a_{j} = 0, \forall j \in I \} \cap \{ w(x, y)t^{\mathbf{a}} \mid a_{1} + \dots + a_{k-1} = |w|_{y} \}$$

$$= \{ w(x, y)t^{a} \mid a_{1} + \dots + a_{k-1} = |w|_{y}, a_{j} = 0 \ \forall j \in I \}$$

$$=\langle x, yt^{e_1}, yt^{e_j} \text{ for } j \notin I \rangle$$

For a given set of indices $\emptyset \neq I \subseteq [k]$, let us compute H_I :

- Case 1: $k \notin I \subsetneq [k]$. In this case, clearly, $H_I = \langle x, y; t^{e_j} \text{ for } j \notin I \rangle$ is f.g.
- Case 2: $k \in I \subsetneq [k]$. In this case, wlog. assume $1 \notin I$, and the intersection $H_I = H_{I \setminus \{k\}} \cap H_k$ is:

$$= \langle x, y; t^{e_1}, t^{e_j} \text{ for } j \notin l \rangle \cap \langle x, yt^{e_1}, yt^{e_2}, \dots, yt^{e_{k-1}} \rangle$$

= {w(x, y)t^a | a_j = 0, $\forall j \in l$ } \cap {w(x, y)t^a | a₁ + · · · + a_{k-1} = |w|_y]
= {w(x, y)t^a | a₁ + · · · + a_{k-1} = |w|_y, a_j = 0 $\forall j \in l$ }

$$=\langle x, yt^{\mathbf{e}_1}, yt^{\mathbf{e}_j} \text{ for } j \notin I \rangle$$

$$=\langle x, yt^{\mathbf{e}_1}; t^{\mathbf{e}_j-\mathbf{e}_1} \text{ for } j \notin I \rangle$$

which is again finitely generated.

For a given set of indices $\emptyset \neq I \subseteq [k]$, let us compute H_I :

- Case 1: $k \notin I \subsetneq [k]$. In this case, clearly, $H_I = \langle x, y; t^{e_j} \text{ for } j \notin I \rangle$ is f.g.
- Case 2: $k \in I \subsetneq [k]$. In this case, wlog. assume $1 \notin I$, and the intersection $H_I = H_{I \setminus \{k\}} \cap H_k$ is:

$$= \langle x, y; t^{\mathbf{e}_1}, t^{\mathbf{e}_j} \text{ for } j \notin l \rangle \cap \langle x, yt^{\mathbf{e}_1}, yt^{\mathbf{e}_2}, \dots, yt^{\mathbf{e}_{k-1}} \rangle$$

= {w(x, y)t^a | a_j = 0, $\forall j \in l$ } \cap {w(x, y)t^a | a₁ + · · · + a_{k-1} =

 $|W|_{v}$

$$= \{ w(x, y)t^{a} \mid a_{1} + \dots + a_{k-1} = |w|_{y}, a_{j} = 0 \ \forall j \in I \}$$

$$=\langle x, yt^{\mathbf{e}_1}, yt^{\mathbf{e}_j} \text{ for } j \notin I \rangle$$

$$=\langle x, yt^{\mathbf{e}_1}; t^{\mathbf{e}_j-\mathbf{e}_1} \text{ for } j \notin I \rangle$$

which is again finitely generated.

• *Case 3: I* = *[k*]. In this case,

 $H_{l} = (H_{1} \cap \cdots \cap H_{k-1}) \cap H_{k} = \langle x, y \rangle \cap \langle x, yt^{\mathbf{e}_{1}}; t^{\mathbf{e}_{2}-\mathbf{e}_{1}}, \dots, t^{\mathbf{e}_{k-1}-\mathbf{e}_{1}} \rangle = \langle \langle x \rangle \rangle_{\mathbb{F}_{2}}$ is not finitely generated.

Lemma

Any almost-**0** k-configuration $\chi[I_0]$ is realizable in $\mathbb{F}_2 \times \mathbb{Z}^{|I_0|-1}$.

Lemma

Any almost-**0** k-configuration $\chi[I_0]$ is realizable in $\mathbb{F}_2 \times \mathbb{Z}^{|I_0|-1}$.

Proposition

Let χ , χ' be two k-configurations, and suppose that χ is realizable in $\mathbb{F}_n \times \mathbb{Z}^m$, and χ' is realizable in $\mathbb{F}_{n'} \times \mathbb{Z}^{m'}$. Then, $\chi \vee \chi' = \max\{\chi, \chi'\}$ is realizable in $\mathbb{F}_2 \times \mathbb{Z}^{m+m'}$.

Lemma

Any almost-**0** k-configuration $\chi[I_0]$ is realizable in $\mathbb{F}_2 \times \mathbb{Z}^{|I_0|-1}$.

Proposition

Let χ , χ' be two k-configurations, and suppose that χ is realizable in $\mathbb{F}_n \times \mathbb{Z}^m$, and χ' is realizable in $\mathbb{F}_{n'} \times \mathbb{Z}^{m'}$. Then, $\chi \vee \chi' = \max\{\chi, \chi'\}$ is realizable in $\mathbb{F}_2 \times \mathbb{Z}^{m+m'}$.

Theorem (D.-Roy-V.)

For $k \ge 1$, every k-configuration χ is realizable in $\mathbb{F}_n \times \mathbb{Z}^m$, for every $n \ge 2$ and $m \gg 0$; more precisely, for $m = \sum_{(I)\chi=1} (|I| - 1)$.

Lemma

Any almost-**0** k-configuration $\chi[I_0]$ is realizable in $\mathbb{F}_2 \times \mathbb{Z}^{|I_0|-1}$.

Proposition

Let χ , χ' be two k-configurations, and suppose that χ is realizable in $\mathbb{F}_n \times \mathbb{Z}^m$, and χ' is realizable in $\mathbb{F}_{n'} \times \mathbb{Z}^{m'}$. Then, $\chi \vee \chi' = \max\{\chi, \chi'\}$ is realizable in $\mathbb{F}_2 \times \mathbb{Z}^{m+m'}$.

Theorem (D.-Roy-V.)

For $k \ge 1$, every k-configuration χ is realizable in $\mathbb{F}_n \times \mathbb{Z}^m$, for every $n \ge 2$ and $m \gg 0$; more precisely, for $m = \sum_{(I)\chi=1} (|I| - 1)$.

Corollary

 $\mathbb{F}_n \times \bigoplus_{i=1}^{\infty} \mathbb{Z}$ is intersection-saturated.

Lemma

Any almost-**0** k-configuration $\chi[I_0]$ is realizable in $\mathbb{F}_2 \times \mathbb{Z}^{|I_0|-1}$.

Proposition

Let χ , χ' be two k-configurations, and suppose that χ is realizable in $\mathbb{F}_n \times \mathbb{Z}^m$, and χ' is realizable in $\mathbb{F}_{n'} \times \mathbb{Z}^{m'}$. Then, $\chi \vee \chi' = \max\{\chi, \chi'\}$ is realizable in $\mathbb{F}_2 \times \mathbb{Z}^{m+m'}$.

Theorem (D.-Roy-V.)

For $k \ge 1$, every k-configuration χ is realizable in $\mathbb{F}_n \times \mathbb{Z}^m$, for every $n \ge 2$ and $m \gg 0$; more precisely, for $m = \sum_{(I)\chi=1} (|I| - 1)$.

Corollary

 $\mathbb{F}_n \times \bigoplus_{i=1}^{\infty} \mathbb{Z}$ is intersection-saturated.

Theorem (D.-Roy-V.)

There exist finitely presented intersection-saturated groups G.

Theorem (D.-Roy-V.)

A k-configuration χ is realizable in a free group \mathbb{F}_n , $n \ge 2$ if and only if χ satisfies the Howson property; i.e., if and only if

$$\forall \varnothing \neq I, J \subseteq [k], (I)\chi = (J)\chi = 0 \implies (I \cup J)\chi = 0.$$

REFERENCES I

- L. Bartholdi and P. Silva. "Rational Subsets of Groups". In: Handbook of Automata Theory. Volume II. Automata in Mathematics and Selected Applications. Berlin: European Mathematical Society (EMS), 2021, pp. 841–869.
- [2] F. Bassino, A. Martino, et al. "Statistical Properties of Subgroups of Free Groups". Random Structures & Algorithms 42.3 (May 2013), pp. 349–373.
- [3] F. Bassino, C. Nicaud, and P. Weil. "Random Generation of Finitely Generated Subgroups of a Free Group". International Journal of Algebra and Computation 18.02 (Mar. 1, 2008), pp. 375–405.
- [4] J. Delgado. "Extensions of Free Groups: Algebraic, Geometric, and Algorithmic Aspects". PhD thesis. Universitat Politècnica de Catalunya, Sept. 15, 2017.
- [5] J. Delgado, M. Roy, and E. Ventura. "Intersection Configurations in Free and Free Times Free-Abelian Groups". 2022. arXiv: 2107.12426 [math].

REFERENCES II

- [6] J. Delgado and E. Ventura. "A List of Applications of Stallings Automata". Transactions on Combinatorics 11.3 (June 15, 2022), pp. 181–235.
- J. Delgado and E. Ventura. "Stallings Automata for Free-Times-Abelian Groups: Intersections and Index". *Publicacions Matemàtiques* 66.2 (2022), pp. 789–830.
- [8] I. Kapovich and A. Myasnikov. "Stallings Foldings and Subgroups of Free Groups". Journal of Algebra 248.2 (Feb. 15, 2002), pp. 608–668.
- [9] A. Miasnikov, E. Ventura, and P. Weil. "Algebraic Extensions in Free Groups". In: Geometric Group Theory. Ed. by G. N. Arzhantseva, J. Burillo, et al. Trends in Mathematics. Birkhäuser Basel, Jan. 1, 2007, pp. 225–253.
- [10] P. V. Silva and P. Weil. "On an Algorithm to Decide Whether a Free Group Is a Free Factor of Another". RAIRO. Theoretical Informatics and Applications 42.2 (2008), pp. 395–414.
- J. R. Stallings. "Topology of Finite Graphs". Inventiones Mathematicae 71 (Mar. 1983), pp. 551–565.

THANKS!

View publication stats