STALLINGS AUTOMATA AND APPLICATIONS
BGSMATH GRADUATE COURSE

Jordi Delgado \& Enric Ventura
(Universitat Politècnica de Catalunya)
with the collaboration of Pascal Weil (LABRI \& Université Bordeaux I)

Centre de Recerca Matemàtica
 January - February 2023

TABLE OF CONTENTS

Free groups

Digraphs and automata
Stallings bijection
First applications
Cosets and index
Intersections
Quotients of automata
Asymptotic behavior
Enriched Stallings automata
Intersections in $\mathbb{F}_{n} \times \mathbb{Z}^{m}$
Multiple intersections in $\mathbb{F}_{n} \times \mathbb{Z}^{m}$

Free groups

UNIVERSAL PROPERTY

UNIVERSAL PROPERTY

Definition

Let F be a group and $A \subseteq F$. Then,
F is free over $A \subseteq F($ or A is a free basis for $F) \Leftrightarrow$
$\forall G$ group and $\forall \varphi \in \operatorname{Map}(A, G) \exists!\widetilde{\varphi} \in \operatorname{Hom}(F, G)$ such that $\iota \widetilde{\varphi}=\varphi$.

UNIVERSAL PROPERTY

Definition

Let F be a group and $A \subseteq F$. Then,
F is free over $A \subseteq F($ or A is a free basis for $F) \Leftrightarrow$
$\forall G$ group and $\forall \varphi \in \operatorname{Map}(A, G) \exists!\widetilde{\varphi} \in \operatorname{Hom}(F, G)$ such that $\iota \widetilde{\varphi}=\varphi$.

Example

- $(\mathbb{Z},+)$ is free over $A=\{1\}$ (i.e., $\{1\}$ is a free basis for $(\mathbb{Z},+)$);

UNIVERSAL PROPERTY

Definition

Let F be a group and $A \subseteq F$. Then,
F is free over $A \subseteq F($ or A is a free basis for $F) \Leftrightarrow$
$\forall G$ group and $\forall \varphi \in \operatorname{Map}(A, G) \exists!\widetilde{\varphi} \in \operatorname{Hom}(F, G)$ such that $\iota \widetilde{\varphi}=\varphi$.

Example

$\cdot(\mathbb{Z},+)$ is free over $A=\{1\}$ (i.e., $\{1\}$ is a free basis for $(\mathbb{Z},+)$);
$\cdot(\mathbb{Z},+)$ is not free over $A=\{2\}$ (i.e., $\{2\}$ is not a free basis for $(\mathbb{Z},+)$);

UNIVERSAL PROPERTY

Definition

Let F be a group and $A \subseteq F$. Then,
F is free over $A \subseteq F($ or A is a free basis for $F) \Leftrightarrow$

Example

$\cdot(\mathbb{Z},+)$ is free over $A=\{1\}$ (i.e., $\{1\}$ is a free basis for $(\mathbb{Z},+)$);

- $(\mathbb{Z},+)$ is not free over $A=\{2\}$ (i.e., $\{2\}$ is not a free basis for $(\mathbb{Z},+)$);
- $(\mathbb{Z} / n \mathbb{Z},+)$ is not free (i.e., it has no free basis);

UNIVERSAL PROPERTY

Definition

Let F be a group and $A \subseteq F$. Then,
F is free over $A \subseteq F($ or A is a free basis for $F) \Leftrightarrow$

Example

$\cdot(\mathbb{Z},+)$ is free over $A=\{1\}$ (i.e., $\{1\}$ is a free basis for $(\mathbb{Z},+)$);

- $(\mathbb{Z},+)$ is not free over $A=\{2\}$ (i.e., $\{2\}$ is not a free basis for $(\mathbb{Z},+)$);
- $(\mathbb{Z} / n \mathbb{Z},+)$ is not free (i.e., it has no free basis);
- $\left(\mathbb{Z}^{2},+\right)$ is not free (i.e., it has no free basis).

UNIVERSAL PROPERTY

Definition

Let F be a group and $A \subseteq F$. Then,
F is free over $A \subseteq F($ or A is a free basis for $F) \Leftrightarrow$

Example

$\cdot(\mathbb{Z},+)$ is free over $A=\{1\}$ (i.e., $\{1\}$ is a free basis for $(\mathbb{Z},+)$);

- $(\mathbb{Z},+)$ is not free over $A=\{2\}$ (i.e., $\{2\}$ is not a free basis for $(\mathbb{Z},+)$);
- $(\mathbb{Z} / n \mathbb{Z},+)$ is not free (i.e., it has no free basis);
- $\left(\mathbb{Z}^{2},+\right)$ is not free (i.e., it has no free basis).

Question

Which groups are free?

UNIVERSAL PROPERTY

Definition

Let F be a group and $A \subseteq F$. Then,
F is free over $A \subseteq F($ or A is a free basis for $F) \Leftrightarrow$
$\forall G$ group and $\forall \varphi \in \operatorname{Map}(A, G) \exists!\widetilde{\varphi} \in \operatorname{Hom}(F, G)$ such that $\iota \widetilde{\varphi}=\varphi$.

Example

$\cdot(\mathbb{Z},+)$ is free over $A=\{1\}$ (i.e., $\{1\}$ is a free basis for $(\mathbb{Z},+)$);

- $(\mathbb{Z},+)$ is not free over $A=\{2\}$ (i.e., $\{2\}$ is not a free basis for $(\mathbb{Z},+))$;
- $(\mathbb{Z} / n \mathbb{Z},+)$ is not free (i.e., it has no free basis);
- $\left(\mathbb{Z}^{2},+\right)$ is not free (i.e., it has no free basis).

Question

Which groups are free? Does there exist a free group over any set A?

THE RANK OF A FREE GROUP

THE RANK OF A FREE GROUP

Proposition

Let F_{A} be free over A and F_{B} be free over B. Then,

$$
F_{A} \simeq F_{B} \Leftrightarrow \# A=\# B
$$

THE RANK OF A FREE GROUP

Proposition

Let F_{A} be free over A and F_{B} be free over B. Then,

$$
F_{A} \simeq F_{B} \Leftrightarrow \# A=\# B
$$

Definition

The rank of a free group F_{A} is the cardinal of a (any) free basis of F_{A}, i.e., $\operatorname{rk}\left(F_{A}\right)=\# A$. If $\# A=r$ we write $\mathbb{F}_{r} \simeq F_{A}$.

THE RANK OF A FREE GROUP

Proposition

Let F_{A} be free over A and F_{B} be free over B. Then,

$$
F_{A} \simeq F_{B} \Leftrightarrow \# A=\# B
$$

Definition

The rank of a free group F_{A} is the cardinal of a (any) free basis of F_{A}, i.e., $\operatorname{rk}\left(F_{A}\right)=\# A$. If $\# A=r$ we write $\mathbb{F}_{r} \simeq F_{A}$.

Remark

It is clear that $\mathbb{F}_{1} \simeq \mathbb{Z}$, but we still do not know whether free groups of higher ranks

$$
\mathbb{F}_{2}, F_{3}, \ldots, F_{x_{0}}, F_{x_{1}}, \ldots
$$

do exist. Let us construct them combinatorially ...

CONSTRUCTION OF FREE GROUPS (I)

Let $A=\left\{a_{1}, \ldots, a_{r}\right\}$ be a (possibly infinite) set called alphabet. Then, $\widetilde{A}=\left\{a_{1}, \ldots, a_{r}, a_{1}^{-1}, \ldots, a_{r}^{-1}\right\}$ is an involutive alphabet $(\# \widetilde{A}=2 \# A)$. Convention: $\left(a_{i}^{-1}\right)^{-1}=a_{i}$.

CONSTRUCTION OF FREE GROUPS (I)

Let $A=\left\{a_{1}, \ldots, a_{r}\right\}$ be a (possibly infinite) set called alphabet. Then, $\widetilde{A}=\left\{a_{1}, \ldots, a_{r}, a_{1}^{-1}, \ldots, a_{r}^{-1}\right\}$ is an involutive alphabet $(\# \widetilde{A}=2 \# A)$. Convention: $\left(a_{i}^{-1}\right)^{-1}=a_{i}$.

A word on A is a finite sequence of letters from $A, w=a_{i_{1}} a_{i_{2}} \cdots a_{i_{n}}$, $n \geqslant 0$. For $n=0$ we have the empty word, denoted by 1 .
The length of w is $|w|=n$. Note that $|1|=0$ and $|u v|=|u|+|v|$.

CONSTRUCTION OF FREE GROUPS (I)

Let $A=\left\{a_{1}, \ldots, a_{r}\right\}$ be a (possibly infinite) set called alphabet. Then, $\widetilde{A}=\left\{a_{1}, \ldots, a_{r}, a_{1}^{-1}, \ldots, a_{r}^{-1}\right\}$ is an involutive alphabet $(\# \widetilde{A}=2 \# A)$. Convention: $\left(a_{i}^{-1}\right)^{-1}=a_{i}$.

A word on A is a finite sequence of letters from $A, w=a_{i_{1}} a_{i_{2}} \cdots a_{i_{n}}$, $n \geqslant 0$. For $n=0$ we have the empty word, denoted by 1 .
The length of w is $|w|=n$. Note that $|1|=0$ and $|u v|=|u|+|v|$.

Observation

The set $A^{*}=\left\{a_{i_{1}} a_{i_{2}} \cdots a_{i_{n}} \mid n \geqslant 0\right\}$ with the operation of concatenation, $u \cdot v=u v$, is a monoid. Any subset $L \subseteq A^{*}$ is called a language.

CONSTRUCTION OF FREE GROUPS (I)

Let $A=\left\{a_{1}, \ldots, a_{r}\right\}$ be a (possibly infinite) set called alphabet.
Then, $\widetilde{A}=\left\{a_{1}, \ldots, a_{r}, a_{1}^{-1}, \ldots, a_{r}^{-1}\right\}$ is an involutive alphabet $(\# \widetilde{A}=2 \# A)$. Convention: $\left(a_{i}^{-1}\right)^{-1}=a_{i}$.

A word on A is a finite sequence of letters from $A, w=a_{i_{1}} a_{i_{2}} \cdots a_{i_{n}}$, $n \geqslant 0$. For $n=0$ we have the empty word, denoted by 1 .
The length of w is $|w|=n$. Note that $|1|=0$ and $|u v|=|u|+|v|$.

Observation

The set $A^{*}=\left\{a_{i_{1}} a_{i_{2}} \cdots a_{i_{n}} \mid n \geqslant 0\right\}$ with the operation of concatenation, $u \cdot v=u v$, is a monoid. Any subset $L \subseteq A^{*}$ is called a language.

Definition

Elementary reductions/insertions: $u a a^{-1} v \sim u v$, for $u, v \in \widetilde{A}^{*}, a \in \widetilde{A}$.

CONSTRUCTION OF FREE GROUPS (I)

Let $A=\left\{a_{1}, \ldots, a_{r}\right\}$ be a (possibly infinite) set called alphabet.
Then, $\widetilde{A}=\left\{a_{1}, \ldots, a_{r}, a_{1}^{-1}, \ldots, a_{r}^{-1}\right\}$ is an involutive alphabet $(\# \widetilde{A}=2 \# A)$. Convention: $\left(a_{i}^{-1}\right)^{-1}=a_{i}$.
A word on A is a finite sequence of letters from $A, w=a_{i_{1}} a_{i_{2}} \cdots a_{i_{n}}$, $n \geqslant 0$. For $n=0$ we have the empty word, denoted by 1 .
The length of w is $|w|=n$. Note that $|1|=0$ and $|u v|=|u|+|v|$.

Observation

The set $A^{*}=\left\{a_{i_{1}} a_{i_{2}} \cdots a_{i_{n}} \mid n \geqslant 0\right\}$ with the operation of concatenation, $u \cdot v=u v$, is a monoid. Any subset $L \subseteq A^{*}$ is called a language.

Definition

Elementary reductions/insertions: $u a a^{-1} v \sim u v$, for $u, v \in \widetilde{A}^{*}, a \in \widetilde{A}$.
Free equivalence: For $u, v \in \widetilde{A}^{*}$, define $u \sim^{*} v \Leftrightarrow \exists$ a finite chain of elementary reductions/insertions $u=u_{1} \sim u_{2} \sim \cdots \sim u_{n}=v$.

CONSTRUCTION OF FREE GROUPS (II)

Observation
The relation \sim^{*} (or simply \sim) is an equivalence in \widetilde{A}^{*}. We denote the quotient by $\mathbb{F}_{A}=\widetilde{A}^{*} / \sim=\left\{[u] \mid u \in \widetilde{A}^{*}\right\}$ and $\widetilde{A}^{*} \rightarrow \mathbb{F}_{A}, u \mapsto[u]$.

CONSTRUCTION OF FREE GROUPS (II)

Observation
The relation \sim^{*} (or simply \sim) is an equivalence in \widetilde{A}^{*}. We denote the quotient by $\mathbb{F}_{A}=\widetilde{A}^{*} / \sim=\left\{[u] \mid u \in \widetilde{A}^{*}\right\}$ and $\widetilde{A}^{*} \rightarrow \mathbb{F}_{A}, u \mapsto[u]$.

Proposition

\mathbb{F}_{A} is a group with the operation $[u][v]=[u v]$. The trivial element is [1], and $\left[a_{i_{1}}^{\epsilon_{1}} \cdots a_{i_{n}}^{\epsilon_{n}}\right]-1=\left[a_{i_{n}}^{-\epsilon_{n}} \cdots a_{i_{1}}^{-\epsilon_{1}}\right]$.

CONSTRUCTION OF FREE GROUPS (II)

Observation

The relation \sim^{*} (or simply \sim) is an equivalence in \widetilde{A}^{*}. We denote the quotient by $\mathbb{F}_{A}=\widetilde{A}^{*} / \sim=\left\{[u] \mid u \in \widetilde{A}^{*}\right\}$ and $\widetilde{A}^{*} \rightarrow \mathbb{F}_{A}, u \mapsto[u]$.

Proposition

\mathbb{F}_{A} is a group with the operation $[u][v]=[u v]$. The trivial element is [1], and $\left[a_{i_{1}}^{\epsilon_{1}} \cdots a_{i_{n}}^{\epsilon_{n}}\right]^{-1}=\left[a_{i_{n}}^{-\epsilon_{n}} \cdots a_{i_{1}}^{-\epsilon_{1}}\right]$.

Definition

A word $w \in \widetilde{A}^{*}$ is reduced if it contains no consecutive letters inverse of each other. We denote by $R(A) \subseteq \widetilde{A}^{*}$ the set of reduced words.

CONSTRUCTION OF FREE GROUPS (II)

Observation

The relation \sim^{*} (or simply \sim) is an equivalence in \widetilde{A}^{*}. We denote the quotient by $\mathbb{F}_{A}=\widetilde{A}^{*} / \sim=\left\{[u] \mid u \in \widetilde{A}^{*}\right\}$ and $\widetilde{A}^{*} \rightarrow \mathbb{F}_{A}, u \mapsto[u]$.

Proposition

\mathbb{F}_{A} is a group with the operation $[u][v]=[u v]$. The trivial element is [1], and $\left[a_{i_{1}}^{\epsilon_{1}} \cdots a_{i_{n}}^{\epsilon_{n}}\right]^{-1}=\left[a_{i_{n}}^{-\epsilon_{n}} \cdots a_{i_{1}}^{-\epsilon_{1}}\right]$.

Definition

A word $w \in \widetilde{A}^{*}$ is reduced if it contains no consecutive letters inverse of each other. We denote by $R(A) \subseteq \widetilde{A}^{*}$ the set of reduced words.

Lemma

Every class $[u] \in \mathbb{F}_{A}$ contains a unique reduced word, $\bar{u} \in R(A)$.

CONSTRUCTION OF FREE GROUPS (II)

Observation

The relation \sim^{*} (or simply \sim) is an equivalence in \widetilde{A}^{*}. We denote the quotient by $\mathbb{F}_{A}=\widetilde{A}^{*} / \sim=\left\{[u] \mid u \in \widetilde{A}^{*}\right\}$ and $\widetilde{A}^{*} \rightarrow \mathbb{F}_{A}, u \mapsto[u]$.

Proposition

\mathbb{F}_{A} is a group with the operation $[u][v]=[u v]$. The trivial element is [1], and $\left[a_{i_{1}}^{\epsilon_{1}} \cdots a_{i_{n}}^{\epsilon_{n}}\right]-1=\left[a_{i_{n}}^{-\epsilon_{n}} \cdots a_{i_{1}}^{-\epsilon_{1}}\right]$.

Definition

A word $w \in \widetilde{A}^{*}$ is reduced if it contains no consecutive letters inverse of each other. We denote by $R(A) \subseteq \widetilde{A}^{*}$ the set of reduced words.

Lemma

Every class $[u] \in \mathbb{F}_{A}$ contains a unique reduced word, $\bar{u} \in R(A)$.
So, we can think \mathbb{F}_{A} as $R(A)$ with the operation $u \cdot v=\overline{u v}, u, v \in R(A)$.

CONSTRUCTION OF FREE GROUPS (AND III)

Corollary
The map $A \hookrightarrow \mathbb{F}_{A}, a \mapsto[a]$ is injective.

CONSTRUCTION OF FREE GROUPS (AND III)

Corollary
The map $A \hookrightarrow \mathbb{F}_{A}, a \mapsto[a]$ is injective.

Proposition

\mathbb{F}_{A} is free over A.

CONSTRUCTION OF FREE GROUPS (AND III)

Corollary
The map $A \hookrightarrow \mathbb{F}_{A}, a \mapsto[a]$ is injective.

Proposition

\mathbb{F}_{A} is free over A.
Theorem
Every group G is a quotient of a free group. In particular, every finitely generated group G is a quotient of \mathbb{F}_{r} for some $r \in \mathbb{N}$.

CONSTRUCTION OF FREE GROUPS (AND III)

Corollary
The map $A \hookrightarrow \mathbb{F}_{A}, a \mapsto[a]$ is injective.

Proposition

\mathbb{F}_{A} is free over A.

Theorem

Every group G is a quotient of a free group. In particular, every finitely generated group G is a quotient of \mathbb{F}_{r} for some $r \in \mathbb{N}$.

Definition
Given $S \subseteq G$ with $\langle S\rangle=G$, let $\pi_{S}: F(S)>\rightarrow G$ be the natural projection.
Then,

CONSTRUCTION OF FREE GROUPS (AND III)

Corollary
The map $A \hookrightarrow \mathbb{F}_{A}, a \mapsto[a]$ is injective.

Proposition

\mathbb{F}_{A} is free over A.

Theorem

Every group G is a quotient of a free group. In particular, every finitely generated group G is a quotient of \mathbb{F}_{r} for some $r \in \mathbb{N}$.

Definition
Given $S \subseteq G$ with $\langle S\rangle=G$, let $\pi_{S}: F(S)>\rightarrow G$ be the natural projection.
Then,

- S is a generating set of $G \Leftrightarrow \pi_{S}$ is surjective,

CONSTRUCTION OF FREE GROUPS (AND III)

Corollary
The map $A \hookrightarrow \mathbb{F}_{A}, a \mapsto[a]$ is injective.

Proposition

\mathbb{F}_{A} is free over A.

Theorem

Every group G is a quotient of a free group. In particular, every finitely generated group G is a quotient of \mathbb{F}_{r} for some $r \in \mathbb{N}$.

Definition
Given $S \subseteq G$ with $\langle S\rangle=G$, let $\pi_{S}: F(S)>\rightarrow G$ be the natural projection.
Then,

- S is a generating set of $G \Leftrightarrow \pi_{S}$ is surjective,
- S is a free family in $G \Leftrightarrow \pi_{S}$ is injective,

CONSTRUCTION OF FREE GROUPS (AND III)

Corollary
The map $A \hookrightarrow \mathbb{F}_{A}, a \mapsto[a]$ is injective.

Proposition

\mathbb{F}_{A} is free over A.

Theorem

Every group G is a quotient of a free group. In particular, every finitely generated group G is a quotient of \mathbb{F}_{r} for some $r \in \mathbb{N}$.

Definition
Given $S \subseteq G$ with $\langle S\rangle=G$, let $\pi_{S}: F(S)>\rightarrow G$ be the natural projection.
Then,

- S is a generating set of $G \Leftrightarrow \pi_{S}$ is surjective,
- S is a free family in $G \Leftrightarrow \pi_{S}$ is injective,
- S is a (free) basis of $G \Leftrightarrow \pi_{S}$ is bijective.

THE MEMBERSHIP PROBLEM

(Subgroup) Membership Problem, $\operatorname{MP}\left(\mathbb{F}_{A}\right)$
Given $u, v_{1}, \ldots, v_{n} \in \mathbb{F}_{A}$, decide whether $u \in H=\left\langle v_{1}, \ldots, v_{n}\right\rangle$; if yes, express u as a word in v_{1}, \ldots, v_{n}.

THE MEMBERSHIP PROBLEM

(Subgroup) Membership Problem, $\operatorname{MP}\left(\mathbb{F}_{A}\right)$
Given $u, v_{1}, \ldots, v_{n} \in \mathbb{F}_{A}$, decide whether $u \in H=\left\langle v_{1}, \ldots, v_{n}\right\rangle$; if yes, express u as a word in v_{1}, \ldots, v_{n}.

Example

Consider $\mathbb{F F}_{2}=\langle a, b\rangle$ and the subgroup $H=\left\langle v_{1}, v_{2}, v_{3}\right\rangle \leqslant \mathbb{F F}_{2}$, where $v_{1}=b a b a^{-1}, v_{2}=a b a^{-1}$, and $v_{3}=a b a^{2}$.
Is it true that $a \in H$?
is it true that $u=b^{2} a b a^{-1} b^{7} a^{-2} b^{-1} a^{2} \in H$?
If yes, express them as a (unique?) word on $\left\{v_{1}^{ \pm 1}, v_{2}^{ \pm 1}, v_{3}^{ \pm 1}\right\}$.

THE MEMBERSHIP PROBLEM

(Subgroup) Membership Problem, $\operatorname{MP}\left(\mathbb{F}_{A}\right)$

Given $u, v_{1}, \ldots, v_{n} \in \mathbb{F}_{A}$, decide whether $u \in H=\left\langle v_{1}, \ldots, v_{n}\right\rangle$; if yes, express u as a word in v_{1}, \ldots, v_{n}.

Example

Consider $\mathbb{F F}_{2}=\langle a, b\rangle$ and the subgroup $H=\left\langle v_{1}, v_{2}, v_{3}\right\rangle \leqslant \mathbb{F F}_{2}$, where $v_{1}=b a b a^{-1}, v_{2}=a b a^{-1}$, and $v_{3}=a b a^{2}$.
Is it true that $a \in H$?
is it true that $u=b^{2} a b a^{-1} b^{7} a^{-2} b^{-1} a^{2} \in H$?
If yes, express them as a (unique?) word on $\left\{v_{1}^{ \pm 1}, v_{2}^{ \pm 1}, v_{3}^{ \pm 1}\right\}$.

$$
\left.\begin{array}{r}
\left|v_{1}\right|_{a}=\left|b a b a^{-1}\right|_{a}=0 \\
\left|v_{2}\right|_{a}=\left|a b a^{-1}\right|_{a}=0 \\
\left|v_{3}\right|_{a}=\left|a b a^{2}\right|_{a}=3
\end{array}\right\} \Rightarrow a \notin H .
$$

THE MEMBERSHIP PROBLEM

(Subgroup) Membership Problem, $\operatorname{MP}\left(\mathbb{F}_{A}\right)$

Given $u, v_{1}, \ldots, v_{n} \in \mathbb{F}_{A}$, decide whether $u \in H=\left\langle v_{1}, \ldots, v_{n}\right\rangle$; if yes, express u as a word in v_{1}, \ldots, v_{n}.

Example

Consider $\mathbb{F F}_{2}=\langle a, b\rangle$ and the subgroup $H=\left\langle v_{1}, v_{2}, v_{3}\right\rangle \leqslant \mathbb{F F}_{2}$, where $v_{1}=b a b a^{-1}, v_{2}=a b a^{-1}$, and $v_{3}=a b a^{2}$.
Is it true that $a \in H$?
is it true that $u=b^{2} a b a^{-1} b^{7} a^{-2} b^{-1} a^{2} \in H$?
If yes, express them as a (unique?) word on $\left\{v_{1}^{ \pm 1}, v_{2}^{ \pm 1}, v_{3}^{ \pm 1}\right\}$.

$$
\left.\begin{array}{r}
\left|v_{1}\right|_{a}=\left|b a b a^{-1}\right|_{a}=0 \\
\left|v_{2}\right|_{a}=\left|a b a^{-1}\right|_{a}=0 \\
\left|v_{3}\right|_{a}=\left|a b a^{2}\right|_{a}=3
\end{array}\right\} \Rightarrow a \notin H .
$$

But $|u|_{a}=\left|b^{2} a b a^{-1} b^{7} a^{-2} b^{-1} a^{2}\right|_{a}=1-1-2+2=0 ;$ so, $u \in H$?

THE MEMBERSHIP PROBLEM

After some calculations...

THE MEMBERSHIP PROBLEM

After some calculations ...

$$
v_{1} v_{2}^{-1} v_{1}\left(v_{1} v_{2}^{-1}\right)^{7} v_{3}^{-1} v_{2}^{-1} v_{3}=
$$

THE MEMBERSHIP PROBLEM

After some calculations ...

$$
\begin{aligned}
& v_{1} v_{2}^{-1} v_{1}\left(v_{1} v_{2}^{-1}\right)^{7} v_{3}^{-1} v_{2}^{-1} v_{3}= \\
= & b a b a^{-1}\left(a b a^{-1}\right)^{-1} b a b a^{-1}\left(\left(b a b a^{-1}\right)\left(a b^{-1} a^{-1}\right)\right)^{7}\left(a b a^{2}\right)^{-1}\left(a b a^{-1}\right)^{-1} a b a^{2}
\end{aligned}
$$

THE MEMBERSHIP PROBLEM

After some calculations ...

$$
\begin{aligned}
& v_{1} v_{2}^{-1} v_{1}\left(v_{1} v_{2}^{-1}\right)^{7} v_{3}^{-1} v_{2}^{-1} v_{3}= \\
= & b a b a^{-1}\left(a b a^{-1}\right)^{-1} b a b a^{-1}\left(\left(b a b a^{-1}\right)\left(a b^{-1} a^{-1}\right)\right)^{7}\left(a b a^{2}\right)^{-1}\left(a b a^{-1}\right)^{-1} a b a^{2} \\
= & b a b a^{-1} \cdot a b^{-1} a^{-1} \cdot b a b a^{-1} \cdot b^{7} \cdot a^{-2} b^{-1} a^{-1} \cdot a b^{-1} a^{-1} \cdot a b a^{2}
\end{aligned}
$$

THE MEMBERSHIP PROBLEM

After some calculations...

$$
\begin{aligned}
& v_{1} v_{2}^{-1} v_{1}\left(v_{1} v_{2}^{-1}\right)^{7} v_{3}^{-1} v_{2}^{-1} v_{3}= \\
= & b a b a^{-1}\left(a b a^{-1}\right)^{-1} b a b a^{-1}\left(\left(b a b a^{-1}\right)\left(a b^{-1} a^{-1}\right)\right)^{7}\left(a b a^{2}\right)^{-1}\left(a b a^{-1}\right)^{-1} a b a^{2} \\
= & b a b a^{-1} \cdot a b^{-1} a^{-1} \cdot b a b a^{-1} \cdot b^{7} \cdot a^{-2} b^{-1} a^{-1} \cdot a b^{-1} a^{-1} \cdot a b a^{2} \\
= & b b a b a^{-1} b^{7} a^{-2} b^{-1} a^{2}=b^{2} a b a^{-1} b^{7} a^{-2} b^{-1} a^{2}=u .
\end{aligned}
$$

THE MEMBERSHIP PROBLEM

After some calculations ...

$$
\begin{aligned}
& v_{1} v_{2}^{-1} v_{1}\left(v_{1} v_{2}^{-1}\right)^{7} v_{3}^{-1} v_{2}^{-1} v_{3}= \\
= & b a b a^{-1}\left(a b a^{-1}\right)^{-1} b a b a^{-1}\left(\left(b a b a^{-1}\right)\left(a b^{-1} a^{-1}\right)\right)^{7}\left(a b a^{2}\right)^{-1}\left(a b a^{-1}\right)^{-1} a b a^{2} \\
= & b a b a^{-1} \cdot a b^{-1} a^{-1} \cdot b a b a^{-1} \cdot b^{7} \cdot a^{-2} b^{-1} a^{-1} \cdot a b^{-1} a^{-1} \cdot a b a^{2} \\
= & b b a b a^{-1} b^{7} a^{-2} b^{-1} a^{2}=b^{2} a b a^{-1} b^{7} a^{-2} b^{-1} a^{2}=u .
\end{aligned}
$$

So, YES, $u \in H$!!!

THE MEMBERSHIP PROBLEM

After some calculations ...

$$
\begin{aligned}
& v_{1} v_{2}^{-1} v_{1}\left(v_{1} v_{2}^{-1}\right)^{7} v_{3}^{-1} v_{2}^{-1} v_{3}= \\
= & b a b a^{-1}\left(a b a^{-1}\right)^{-1} b a b a^{-1}\left(\left(b a b a^{-1}\right)\left(a b^{-1} a^{-1}\right)\right)^{7}\left(a b a^{2}\right)^{-1}\left(a b a^{-1}\right)^{-1} a b a^{2} \\
= & b a b a^{-1} \cdot a b^{-1} a^{-1} \cdot b a b a^{-1} \cdot b^{7} \cdot a^{-2} b^{-1} a^{-1} \cdot a b^{-1} a^{-1} \cdot a b a^{2} \\
= & b b a b a^{-1} b^{7} a^{-2} b^{-1} a^{2}=b^{2} a b a^{-1} b^{7} a^{-2} b^{-1} a^{2}=u .
\end{aligned}
$$

So, YES, $u \in H$!!!

Question

Is this expression unique?

THE MEMBERSHIP PROBLEM

After some calculations ...

$$
\begin{aligned}
& v_{1} v_{2}^{-1} v_{1}\left(v_{1} v_{2}^{-1}\right)^{7} v_{3}^{-1} v_{2}^{-1} v_{3}= \\
= & b a b a^{-1}\left(a b a^{-1}\right)^{-1} b a b a^{-1}\left(\left(b a b a^{-1}\right)\left(a b^{-1} a^{-1}\right)\right)^{7}\left(a b a^{2}\right)^{-1}\left(a b a^{-1}\right)^{-1} a b a^{2} \\
= & b a b a^{-1} \cdot a b^{-1} a^{-1} \cdot b a b a^{-1} \cdot b^{7} \cdot a^{-2} b^{-1} a^{-1} \cdot a b^{-1} a^{-1} \cdot a b a^{2} \\
= & b b a b a^{-1} b^{7} a^{-2} b^{-1} a^{2}=b^{2} a b a^{-1} b^{7} a^{-2} b^{-1} a^{2}=u .
\end{aligned}
$$

So, YES, $u \in H!!!$

Question

Is this expression unique? How to find it/them systematically?

THE INTERSECTION PROBLEM

Subgroup Intersection Problem, $\operatorname{SIP}\left(\mathbb{F}_{A}\right)$
Given $u_{1}, \ldots, u_{n} ; v_{1}, \ldots, v_{m} \in \mathbb{F}_{A}$, decide whether the intersection of $H=\left\langle u_{1}, \ldots, u_{n}\right\rangle$ and $K=\left\langle v_{1}, \ldots, v_{m}\right\rangle$ is finitely generated; if yes, compute generators for $H \cap K$.

THE INTERSECTION PROBLEM

Subgroup Intersection Problem, $\operatorname{SIP}\left(\mathbb{F}_{A}\right)$

Given $u_{1}, \ldots, u_{n} ; v_{1}, \ldots, v_{m} \in \mathbb{F}_{A}$, decide whether the intersection of $H=\left\langle u_{1}, \ldots, u_{n}\right\rangle$ and $K=\left\langle v_{1}, \ldots, v_{m}\right\rangle$ is finitely generated; if yes, compute generators for $H \cap K$.

Example

Consider $\mathbb{F}_{2}=\langle a, b\rangle$ and the subgroups

$$
\begin{array}{rll}
H=\left\langle u_{1}, u_{2}, u_{3}\right\rangle \leqslant \mathbb{F}_{2}, & \text { and } & K=\left\langle v_{1}, v_{2}, v_{3}\right\rangle \leqslant \mathbb{F}_{2} \\
u_{1}=b, & v_{1}=a b, \\
u_{2}=a^{3}, & v_{2}=a^{3}, \\
u_{3}=a^{-1} b a b^{-1} a ; & v_{3}=a^{-1} b a .
\end{array}
$$

How to find generators (or just elements!) for $H \cap K$?

THE INTERSECTION PROBLEM

Subgroup Intersection Problem, $\operatorname{SIP}\left(\mathbb{F}_{A}\right)$

Given $u_{1}, \ldots, u_{n} ; v_{1}, \ldots, v_{m} \in \mathbb{F}_{A}$, decide whether the intersection of $H=\left\langle u_{1}, \ldots, u_{n}\right\rangle$ and $K=\left\langle v_{1}, \ldots, v_{m}\right\rangle$ is finitely generated; if yes, compute generators for $H \cap K$.

Example

Consider $\mathbb{F}_{2}=\langle a, b\rangle$ and the subgroups

$$
\begin{array}{rll}
H=\left\langle u_{1}, u_{2}, u_{3}\right\rangle \leqslant \mathbb{F}_{2}, & \text { and } & K=\left\langle v_{1}, v_{2}, v_{3}\right\rangle \leqslant \mathbb{F}_{2} \\
u_{1}=b, & v_{1}=a b, \\
u_{2}=a^{3}, & v_{2}=a^{3}, \\
u_{3}=a^{-1} b a b^{-1} a ; & v_{3}=a^{-1} b a .
\end{array}
$$

How to find generators (or just elements!) for $H \cap K$?
Clearly, $H \ni u_{2}=a^{3}=v_{2} \in K$. What else?

THE INTERSECTION PROBLEM

$$
\begin{array}{r}
H=\left\langle u_{1}, u_{2}, u_{3}\right\rangle \leqslant \mathbb{F}_{2}, \\
u_{1}=b \\
u_{2}=a^{3} \\
u_{3}=a^{-1} b a b^{-1} a
\end{array}
$$

$$
\begin{aligned}
& K=\left\langle v_{1}, v_{2}, v_{3}\right\rangle \leqslant \mathbb{F}_{2} \\
& v_{1}=a b \\
& v_{2}=a^{3} \\
& v_{3}=a^{-1} b a .
\end{aligned}
$$

THE INTERSECTION PROBLEM

$$
\begin{array}{r}
H=\left\langle u_{1}, u_{2}, u_{3}\right\rangle \leqslant \mathbb{F}_{2} \\
u_{1}=b \\
u_{2}=a^{3} \\
u_{3}=a^{-1} b a b^{-1} a
\end{array}
$$

$$
\begin{aligned}
& K=\left\langle v_{1}, v_{2}, v_{3}\right\rangle \leqslant \mathbb{F}_{2} \\
& v_{1}=a b \\
& v_{2}=a^{3} \\
& v_{3}=a^{-1} b a
\end{aligned}
$$

$$
H \ni u_{2}=\quad a^{3} \quad=v_{2} \in K
$$

THE INTERSECTION PROBLEM

$$
\begin{array}{r}
H=\left\langle u_{1}, u_{2}, u_{3}\right\rangle \leqslant \mathbb{F}_{2} \\
u_{1}=b \\
u_{2}=a^{3} \\
u_{3}=a^{-1} b a b^{-1} a
\end{array}
$$

$$
\begin{aligned}
& K=\left\langle v_{1}, v_{2}, v_{3}\right\rangle \leqslant \mathbb{F}_{2} \\
& v_{1}=a b \\
& v_{2}=a^{3} \\
& v_{3}=a^{-1} b a
\end{aligned}
$$

$$
\begin{aligned}
H \ni u_{2}= & a^{3} & & =v_{2} \in K \\
H \ni u_{1}^{-1} u_{2} u_{1}= & b^{-1} a^{3} b & & =v_{1}^{-1} v_{2} v_{1} \in K
\end{aligned}
$$

THE INTERSECTION PROBLEM

$$
\begin{aligned}
H=\left\langle u_{1}, u_{2}, u_{3}\right\rangle \leqslant \mathbb{F}_{2}, & K=\left\langle v_{1}, v_{2}, v_{3}\right\rangle \leqslant \mathbb{F}_{2} \\
u_{1}=b, & v_{1}=a b, \\
u_{2}=a^{3}, & v_{2}=a^{3}, \\
u_{3}=a^{-1} b a b^{-1} a ; & v_{3}=a^{-1} b a .
\end{aligned}
$$

$$
\begin{array}{rll}
H \ni u_{2}= & a^{3} & =v_{2} \in K, \\
H \ni u_{1}^{-1} u_{2} u_{1} & =b^{-1} a^{3} b & =v_{1}^{-1} v_{2} v_{1} \in K, \\
H \ni u_{3}^{3}= & a^{-1} b a^{3} b^{-1} a & =v_{3} v_{2} v_{3}^{-1} \in K,
\end{array}
$$

THE INTERSECTION PROBLEM

$$
\begin{aligned}
H=\left\langle u_{1}, u_{2}, u_{3}\right\rangle \leqslant \mathbb{F}_{2}, & K=\left\langle v_{1}, v_{2}, v_{3}\right\rangle \leqslant \mathbb{F}_{2} \\
u_{1}=b, & v_{1}=a b, \\
u_{2}=a^{3}, & v_{2}=a^{3}, \\
u_{3}=a^{-1} b a b^{-1} a ; & v_{3}=a^{-1} b a .
\end{aligned}
$$

$$
\begin{array}{rlll}
H \ni u_{2} & = & a^{3} & =v_{2} \in K, \\
H \ni u_{1}^{-1} u_{2} u_{1} & = & b^{-1} a^{3} b & \\
H \ni v_{1}^{-1} v_{2} v_{1} \in K, \\
H \ni u_{3}^{3} & = & a^{-1} b a^{3} b^{-1} a & \\
=v_{3} v_{2} v_{3}^{-1} \in K,
\end{array}
$$

Anything else?

THE INTERSECTION PROBLEM

$$
\begin{aligned}
H=\left\langle u_{1}, u_{2}, u_{3}\right\rangle \leqslant \mathbb{F}_{2}, & K=\left\langle v_{1}, v_{2}, v_{3}\right\rangle \leqslant \mathbb{F}_{2} \\
u_{1}=b, & v_{1}=a b, \\
u_{2}=a^{3}, & v_{2}=a^{3}, \\
u_{3}=a^{-1} b a b^{-1} a ; & v_{3}=a^{-1} b a .
\end{aligned}
$$

$$
\begin{array}{rll}
H \ni u_{2}= & a^{3} & =v_{2} \in K, \\
H \ni u_{1}^{-1} u_{2} u_{1} & = & b^{-1} a^{3} b \\
H \ni v_{1}^{-1} v_{2} v_{1} \in K, \\
H \ni u_{3}^{3}= & a^{-1} b a^{3} b^{-1} a & \\
=v_{3} v_{2} v_{3}^{-1} \in K,
\end{array}
$$

Anything else?

Is $H=\left\langle a^{3}, b^{-1} a^{3} b, a^{-1} b a^{3} b^{-1} a\right\rangle$?

THE INTERSECTION PROBLEM

$$
\begin{aligned}
H=\left\langle u_{1}, u_{2}, u_{3}\right\rangle \leqslant \mathbb{F}_{2}, & K=\left\langle v_{1}, v_{2}, v_{3}\right\rangle \leqslant \mathbb{F}_{2} \\
u_{1}=b, & v_{1}=a b, \\
u_{2}=a^{3}, & v_{2}=a^{3}, \\
u_{3}=a^{-1} b a b^{-1} a ; & v_{3}=a^{-1} b a .
\end{aligned}
$$

Anything else?

Is $H=\left\langle a^{3}, b^{-1} a^{3} b, a^{-1} b a^{3} b^{-1} a\right\rangle$? Do we need more generators?

DIGRAPHS AND AUTOMATA

GOAL AND SEMINAL EXAMPLE

Let $A=\left\{a_{1}, \ldots, a_{n}\right\}$ and let $\mathbb{F}_{n} \simeq \mathbb{F}_{A}=\langle A \mid-\rangle$

GOAL AND SEMINAL EXAMPLE

Let $A=\left\{a_{1}, \ldots, a_{n}\right\}$ and let $\mathbb{F}_{n} \simeq \mathbb{F}_{A}=\langle A \mid-\rangle$
Goal
A bijection: \quad 'nice' drawings\} \leftrightarrow \{subgroups of $\left.\mathbb{F}_{A}\right\}$.

GOAL AND SEMINAL EXAMPLE

Let $A=\left\{a_{1}, \ldots, a_{n}\right\}$ and let $\mathbb{F}_{n} \simeq \mathbb{F}_{A}=\langle A \mid-\rangle$
Goal
A bijection: \quad 'nice' drawings\} \leftrightarrow \{subgroups of $\left.\mathbb{F}_{A}\right\}$.
Example: Let $H=\langle\underbrace{a^{-1} b a b^{-1}}_{u_{1}}, \underbrace{a^{3}}_{u_{2}}, \underbrace{a b a b^{-1}}_{u_{3}}\rangle \leqslant \mathbb{F}_{\{a, b\}}$.

GOAL AND SEMINAL EXAMPLE

Let $A=\left\{a_{1}, \ldots, a_{n}\right\}$ and let $\mathbb{F}_{n} \simeq \mathbb{F}_{A}=\langle A \mid-\rangle$
Goal
A bijection: \quad 'nice' drawings $\} \leftrightarrow\left\{\right.$ subgroups of $\left.\mathbb{F}_{A}\right\}$.
Example: Let $H=\langle\underbrace{a^{-1} b a b^{-1}}_{u_{1}}, \underbrace{a^{3}}_{u_{2}}, \underbrace{a b a b^{-1}}_{u_{3}}\rangle \leqslant \mathbb{F}_{\{a, b\}}$.
Consider the petal automata associated to the given generators,

GOAL AND SEMINAL EXAMPLE

Let $A=\left\{a_{1}, \ldots, a_{n}\right\}$ and let $\mathbb{F}_{n} \simeq \mathbb{F}_{A}=\langle A \mid-\rangle$

Goal

A bijection: \quad 'nice' drawings\} \leftrightarrow \{subgroups of $\left.\mathbb{F}_{A}\right\}$.
Example: Let $H=\langle\underbrace{a^{-1} b a b^{-1}}_{u_{1}}, \underbrace{a^{3}}_{u_{2}}, \underbrace{a b a b^{-1}}_{u_{3}}\rangle \leqslant \mathbb{F}_{\{a, b\}}$.
Consider the petal automata associated to the given generators,

GOAL AND SEMINAL EXAMPLE

Let $A=\left\{a_{1}, \ldots, a_{n}\right\}$ and let $\mathbb{F}_{n} \simeq \mathbb{F}_{A}=\langle A \mid-\rangle$

Goal

A bijection: \quad 'nice' drawings\} \leftrightarrow \{subgroups of $\left.\mathbb{F}_{A}\right\}$.
Example: Let $H=\langle\underbrace{a^{-1} b a b^{-1}}_{u_{1}}, \underbrace{a^{3}}_{u_{2}}, \underbrace{a b a b^{-1}}_{u_{3}}\rangle \leqslant \mathbb{F}_{\{a, b\}}$.
Consider the petal automata associated to the given generators,

GOAL AND SEMINAL EXAMPLE

Let $A=\left\{a_{1}, \ldots, a_{n}\right\}$ and let $\mathbb{F}_{n} \simeq \mathbb{F}_{A}=\langle A \mid-\rangle$

Goal

A bijection: \quad 'nice' drawings\} \leftrightarrow \{subgroups of $\left.\mathbb{F}_{A}\right\}$.
Example: Let $H=\langle\underbrace{a^{-1} b a b^{-1}}_{u_{1}}, \underbrace{a^{3}}_{u_{2}}, \underbrace{a b a b^{-1}}_{u_{3}}\rangle \leqslant \mathbb{F}_{\{a, b\}}$.
Consider the petal automata associated to the given generators,

GOAL AND SEMINAL EXAMPLE

Let $A=\left\{a_{1}, \ldots, a_{n}\right\}$ and let $\mathbb{F}_{n} \simeq \mathbb{F}_{A}=\langle A \mid-\rangle$

Goal

A bijection: \quad 'nice' drawings\} \leftrightarrow \{subgroups of $\left.\mathbb{F}_{A}\right\}$.
Example: Let $H=\langle\underbrace{a^{-1} b a b^{-1}}_{u_{1}}, \underbrace{a^{3}}_{u_{2}}, \underbrace{a b a b^{-1}}_{u_{3}}\rangle \leqslant \mathbb{F}_{\{a, b\}}$.
Consider the petal automata associated to the given generators,

GOAL AND SEMINAL EXAMPLE

Let $A=\left\{a_{1}, \ldots, a_{n}\right\}$ and let $\mathbb{F}_{n} \simeq \mathbb{F}_{A}=\langle A \mid-\rangle$

Goal

A bijection: \quad 'nice' drawings\} $\leftrightarrow\left\{\right.$ subgroups of $\left.\mathbb{F}_{A}\right\}$.
Example: Let $H=\langle\underbrace{a^{-1} b a b^{-1}}_{u_{1}}, \underbrace{a^{3}}_{u_{2}}, \underbrace{a b a b^{-1}}_{u_{3}}\rangle \leqslant \mathbb{F}_{\{a, b\}}$.
Consider the petal automata associated to the given generators, and identify the basepoints \bullet to obtain the flower automaton $\mathrm{Fl}\left(u_{1}, u_{2}, u_{3}\right)$:

GOAL AND SEMINAL EXAMPLE

Let $A=\left\{a_{1}, \ldots, a_{n}\right\}$ and let $\mathbb{F}_{n} \simeq \mathbb{F}_{A}=\langle A \mid-\rangle$

Goal

A bijection: \quad 'nice' drawings\} \leftrightarrow \{subgroups of $\left.\mathbb{F}_{A}\right\}$.
Example: Let $H=\langle\underbrace{a^{-1} b a b^{-1}}_{u_{1}}, \underbrace{a^{3}}_{u_{2}}, \underbrace{a b a b^{-1}}_{u_{3}}\rangle \leqslant \mathbb{F}_{\{a, b\}}$.
Consider the petal automata associated to the given generators, and identify the basepoints \bullet to obtain the flower automaton $\mathrm{Fl}\left(u_{1}, u_{2}, u_{3}\right)$:

Fact:
H is described by the (reduced) labels of walks $\bullet \longrightarrow$ in $\mathrm{Fl}\left(u_{1}, u_{2}, u_{3}\right)$.

GOAL AND SEMINAL EXAMPLE

Let $A=\left\{a_{1}, \ldots, a_{n}\right\}$ and let $\mathbb{F}_{n} \simeq \mathbb{F}_{A}=\langle A \mid-\rangle$

Goal

```
A bijection: {'nice' drawings}}\leftrightarrow{\mathrm{ {subgroups of }\mp@subsup{\mathbb{F}}{A}{}}
```

Example: Let $H=\langle\underbrace{a^{-1} b a b^{-1}}_{u_{1}}, \underbrace{a^{3}}_{u_{2}}, \underbrace{a b a b^{-1}}_{u_{3}}\rangle \leqslant \mathbb{F}_{\{a, b\}}$.
Consider the petal automata associated to the given generators, and identify the basepoints © to obtain the flower automaton $\mathrm{Fl}\left(u_{1}, u_{2}, u_{3}\right)$:

Fact:
H is described by the (reduced) labels of walks $\bullet \longrightarrow$ o in $\mathrm{Fl}\left(u_{1}, u_{2}, u_{3}\right)$.
Flower automata are natural 'drawings' associated to every subgroup of \mathbb{F}_{A},

GOAL AND SEMINAL EXAMPLE

Let $A=\left\{a_{1}, \ldots, a_{n}\right\}$ and let $\mathbb{F}_{n} \simeq \mathbb{F}_{A}=\langle A \mid-\rangle$

Goal

```
A bijection: {'nice' drawings}}\leftrightarrow{\mathrm{ {subgroups of }\mp@subsup{\mathbb{F}}{A}{}}
```

Example: Let $H=\langle\underbrace{a^{-1} b a b^{-1}}_{u_{1}}, \underbrace{a^{3}}_{u_{2}}, \underbrace{a b a b^{-1}}_{u_{3}}\rangle \leqslant \mathbb{F}_{\{a, b\}}$.
Consider the petal automata associated to the given generators, and identify the basepoints © to obtain the flower automaton $\mathrm{Fl}\left(u_{1}, u_{2}, u_{3}\right)$:

Fact:
H is described by the (reduced) labels of walks $\bullet \longrightarrow$ in $\mathrm{Fl}\left(u_{1}, u_{2}, u_{3}\right)$.
Flower automata are natural 'drawings' associated to every subgroup of \mathbb{F}_{A}, are they 'nice'?

DIRECTED GRAPHS AND WALKS

DIRECTED GRAPHS AND WALKS

A directed graph (digraph) is a tuple $\Delta=(\mathrm{V}, \mathrm{E}, \mathrm{l}, \tau)$, where:

- V and E are disjoint sets (of vertices and arcs, respectively)
$\cdot \iota, \tau: E \rightarrow V$ are maps (sending each arc to its origin and end)

DIRECTED GRAPHS AND WALKS

A directed graph (digraph) is a tuple $\Delta=(\mathrm{V}, \mathrm{E}, \mathrm{l}, \tau)$, where:

- V and E are disjoint sets (of vertices and arcs, respectively)
$\cdot \iota, \tau: E \rightarrow V$ are maps (sending each arc to its origin and end)
We write $\mathrm{V}=\mathrm{V} \Delta$ and $\mathrm{E}=\mathrm{E} \Delta$.

DIRECTED GRAPHS AND WALKS

A directed graph (digraph) is a tuple $\Delta=(\mathrm{V}, \mathrm{E}, \mathrm{l}, \tau)$, where:

- V and E are disjoint sets (of vertices and arcs, respectively)
$\cdot \iota, \tau: E \rightarrow V$ are maps (sending each arc to its origin and end)
We write $\mathrm{V}=\mathrm{V} \Delta$ and $\mathrm{E}=\mathrm{E} \Delta$.
Remark: Loops and parallel arcs are allowed.

DIRECTED GRAPHS AND WALKS

A directed graph (digraph) is a tuple $\Delta=(\mathrm{V}, \mathrm{E}, \mathrm{\iota}, \tau)$, where:

- V and E are disjoint sets (of vertices and arcs, respectively)
$\cdot \iota, \tau: E \rightarrow V$ are maps (sending each arc to its origin and end)
We write $\mathrm{V}=\mathrm{V} \Delta$ and $\mathrm{E}=\mathrm{E} \Delta$.
Remark: Loops and parallel arcs are allowed.
A walk in a digraph Δ is a finite sequence $\gamma=p_{0} e_{1} p_{1} \cdots e_{l} p_{l}$ where $\mathrm{p}_{i} \in \mathrm{~V} \Delta, \mathrm{e}_{i} \in \mathrm{E} \Delta, \mathrm{e}_{i}=\mathrm{p}_{\mathrm{i}-1}$ and $\tau \mathrm{e}_{i}=\mathrm{p}_{\mathrm{i}}$ for $i=1, \ldots, \mathrm{l}$.

DIRECTED GRAPHS AND WALKS

A directed graph (digraph) is a tuple $\Delta=(\mathrm{V}, \mathrm{E}, \mathrm{\iota}, \tau)$, where:

- V and E are disjoint sets (of vertices and arcs, respectively)
$\cdot \iota, \tau: E \rightarrow V$ are maps (sending each arc to its origin and end)
We write $\mathrm{V}=\mathrm{V} \Delta$ and $\mathrm{E}=\mathrm{E} \Delta$.
Remark: Loops and parallel arcs are allowed.
A walk in a digraph Δ is a finite sequence $\gamma=p_{0} e_{1} p_{1} \cdots e_{l} p_{l}$ where $p_{i} \in V \Delta, e_{i} \in E \Delta, e_{i}=p_{i-1}$ and $\tau e_{i}=p_{i}$ for $i=1, \ldots, l$.
Then,
- $p_{0}=\imath(\gamma)$ and $p_{l}=\tau(\gamma)$ are the origin and end of γ, respectively

DIRECTED GRAPHS AND WALKS

A directed graph (digraph) is a tuple $\Delta=(\mathrm{V}, \mathrm{E}, \mathrm{\iota}, \tau)$, where:

- V and E are disjoint sets (of vertices and arcs, respectively)
$\cdot \iota, \tau: E \rightarrow V$ are maps (sending each arc to its origin and end)
We write $\mathrm{V}=\mathrm{V} \Delta$ and $\mathrm{E}=\mathrm{E} \Delta$.
Remark: Loops and parallel arcs are allowed.
A walk in a digraph Δ is a finite sequence $\gamma=p_{0} e_{1} p_{1} \cdots e_{l} p_{l}$ where $p_{i} \in V \Delta, e_{i} \in E \Delta, e_{i}=p_{i-1}$ and $\tau e_{i}=p_{i}$ for $i=1, \ldots, l$.
Then,
- $p_{0}=\iota(\gamma)$ and $p_{l}=\tau(\gamma)$ are the origin and end of γ, respectively
- γ is a walk from p_{0} to p_{l}

$$
\left(\gamma \equiv p_{0} \leadsto p_{l}\right)
$$

DIRECTED GRAPHS AND WALKS

A directed graph (digraph) is a tuple $\Delta=(\mathrm{V}, \mathrm{E}, \mathrm{\iota}, \tau)$, where:

- V and E are disjoint sets (of vertices and arcs, respectively)
$\cdot \iota, \tau: E \rightarrow V$ are maps (sending each arc to its origin and end)
We write $\mathrm{V}=\mathrm{V} \Delta$ and $\mathrm{E}=\mathrm{E} \Delta$.
Remark: Loops and parallel arcs are allowed.
A walk in a digraph Δ is a finite sequence $\gamma=p_{0} e_{1} p_{1} \cdots e_{l} p_{l}$ where $p_{i} \in V \Delta, e_{i} \in E \Delta, e_{i}=p_{i-1}$ and $\tau e_{i}=p_{i}$ for $i=1, \ldots, l$.
Then,
- $p_{0}=\imath(\gamma)$ and $p_{l}=\tau(\gamma)$ are the origin and end of γ, respectively
- γ is a walk from p_{0} to p_{l}

$$
\left(\gamma \equiv \mathrm{p}_{0} \leadsto \mathrm{p}_{l}\right)
$$

- $p_{0} \leadsto p_{l} \Leftrightarrow \exists \gamma \equiv p_{0} \leadsto p_{l}$

DIRECTED GRAPHS AND WALKS

A directed graph (digraph) is a tuple $\Delta=(\mathrm{V}, \mathrm{E}, \mathrm{l}, \tau)$, where:

- V and E are disjoint sets (of vertices and arcs, respectively)
$\cdot \iota, \tau: E \rightarrow V$ are maps (sending each arc to its origin and end)
We write $\mathrm{V}=\mathrm{V} \Delta$ and $\mathrm{E}=\mathrm{E} \Delta$.
Remark: Loops and parallel arcs are allowed.
A walk in a digraph Δ is a finite sequence $\gamma=p_{0} e_{1} p_{1} \cdots e_{l} p_{l}$ where $p_{i} \in V \Delta, e_{i} \in E \Delta, e_{i}=p_{i-1}$ and $\tau e_{i}=p_{i}$ for $i=1, \ldots, l$.
Then,
- $p_{0}=\imath(\gamma)$ and $p_{l}=\tau(\gamma)$ are the origin and end of γ, respectively
- γ is a walk from p_{0} to p_{l} $\left(\gamma \equiv \mathrm{p}_{0} \leadsto \mathrm{p}_{l}\right)$
- $p_{0} \leadsto p_{l} \Leftrightarrow \exists \gamma \equiv p_{0} \leadsto p_{l}$
- γ is closed if $p_{0}=p_{l}$
(γ is a p_{0}-walk)

DIRECTED GRAPHS AND WALKS

A directed graph (digraph) is a tuple $\Delta=(\mathrm{V}, \mathrm{E}, \mathrm{\iota}, \tau)$, where:

- V and E are disjoint sets (of vertices and arcs, respectively)
$\cdot \iota, \tau: E \rightarrow V$ are maps (sending each arc to its origin and end)
We write $\mathrm{V}=\mathrm{V} \Delta$ and $\mathrm{E}=\mathrm{E} \Delta$.
Remark: Loops and parallel arcs are allowed.
A walk in a digraph Δ is a finite sequence $\gamma=p_{0} e_{1} p_{1} \cdots e_{l} p_{l}$ where $p_{i} \in \mathrm{~V} \Delta, \mathrm{e}_{i} \in \mathrm{E} \Delta, \mathrm{e}_{i}=\mathrm{p}_{i-1}$ and $\tau \mathrm{e}_{i}=\mathrm{p}_{i}$ for $i=1, \ldots, l$.
Then,
- $p_{0}=\imath(\gamma)$ and $p_{l}=\tau(\gamma)$ are the origin and end of γ, respectively
- γ is a walk from p_{0} to p_{l}
$\left(\gamma \equiv p_{0} \leadsto p_{l}\right)$
- $p_{0} \leadsto p_{l} \Leftrightarrow \exists \gamma \equiv p_{0} \leadsto p_{l}$
- γ is closed if $p_{0}=p_{l}$
(γ is a p_{0}-walk)
- The length of γ is the number of arcs in γ

DIRECTED GRAPHS AND WALKS

A directed graph (digraph) is a tuple $\Delta=(\mathrm{V}, \mathrm{E}, \mathrm{\iota}, \tau)$, where:

- V and E are disjoint sets (of vertices and arcs, respectively)
$\cdot \iota, \tau: E \rightarrow V$ are maps (sending each arc to its origin and end)
We write $\mathrm{V}=\mathrm{V} \Delta$ and $\mathrm{E}=\mathrm{E} \Delta$.
Remark: Loops and parallel arcs are allowed.
A walk in a digraph Δ is a finite sequence $\gamma=p_{0} e_{1} p_{1} \cdots e_{l} p_{l}$ where $p_{i} \in V \Delta, e_{i} \in E \Delta, \mathrm{e}_{i}=\mathrm{p}_{i-1}$ and $\tau e_{i}=\mathrm{p}_{i}$ for $i=1, \ldots, l$.
Then,
- $p_{0}=\imath(\gamma)$ and $p_{l}=\tau(\gamma)$ are the origin and end of γ, respectively
- γ is a walk from p_{0} to p_{l} $\left(\gamma \equiv \mathrm{p}_{0} \leadsto \mathrm{p}_{l}\right)$
- $p_{0} \leadsto p_{l} \Leftrightarrow \exists \gamma \equiv p_{0} \leadsto p_{l}$
- γ is closed if $p_{0}=p_{l}$
- The length of γ is the number of arcs in γ
(γ is a p_{0}-walk)
$(|\gamma|=l)$

We denote by $W \Delta$ the set of walks in Δ.

LABELLED DIGRAPHS AND LANGUAGES

LABELLED DIGRAPHS AND LANGUAGES

Definition

Let A be an alphabet. An A-digraph is a pair $\Gamma=(\Delta, \ell)$, where Δ is a digraph, and $\ell: E \Delta \rightarrow A$ is the labelling of Γ.

LABELLED DIGRAPHS AND LANGUAGES

Definition

Let A be an alphabet. An A-digraph is a pair $\Gamma=(\Delta, \ell)$, where Δ is a digraph, and $\ell: E \Delta \rightarrow A$ is the labelling of Γ.

If $\mathrm{e} \equiv \mathrm{p} \longrightarrow \mathrm{q}$ and $\ell(\mathrm{e})=a$, we write $\mathrm{p} \xrightarrow{a} \mathrm{q}$.
(e is an a-arc).

LABELLED DIGRAPHS AND LANGUAGES

Definition

Let A be an alphabet. An A-digraph is a pair $\Gamma=(\Delta, \ell)$, where Δ is a digraph, and $\ell: E \Delta \rightarrow A$ is the labelling of Γ.

If $\mathrm{e} \equiv \mathrm{p} \longrightarrow \mathrm{q}$ and $\ell(\mathrm{e})=a$, we write $\mathrm{p} \xrightarrow{a} \mathrm{q}$.
(e is an a-arc).
We extend ℓ to $\ell^{*}: W \Gamma \rightarrow A^{*}$ in the natural way.
(we write $\ell^{*}=\ell$)

LABELLED DIGRAPHS AND LANGUAGES

Definition

Let A be an alphabet. An A-digraph is a pair $\Gamma=(\Delta, \ell)$, where Δ is a digraph, and $\ell: E \Delta \rightarrow A$ is the labelling of Γ.

If $\mathrm{e} \equiv \mathrm{p} \longrightarrow \mathrm{q}$ and $\ell(\mathrm{e})=a$, we write $\mathrm{p} \xrightarrow{a} \mathrm{q}$.
(e is an a-arc).
We extend ℓ to $\ell^{*}: W \Gamma \rightarrow A^{*}$ in the natural way.
(we write $\ell^{*}=\ell$)
If $\exists \gamma \equiv \mathrm{p} \leadsto \mathrm{q}$ such that $\ell^{*}(\gamma)=w$, we write $\mathrm{p} \xrightarrow{w} \mathrm{q}$.

LABELLED DIGRAPHS AND LANGUAGES

Definition

Let A be an alphabet. An A-digraph is a pair $\Gamma=(\Delta, \ell)$, where Δ is a digraph, and $\ell: E \Delta \rightarrow A$ is the labelling of Γ.

If $\mathrm{e} \equiv \mathrm{p} \longrightarrow \mathrm{q}$ and $\ell(\mathrm{e})=a$, we write $\mathrm{p} \xrightarrow{a} \mathrm{q}$.
(e is an a-arc).
We extend ℓ to $\ell^{*}: W \Gamma \rightarrow A^{*}$ in the natural way. (we write $\ell^{*}=\ell$) If $\exists \gamma \equiv \mathrm{p} \leadsto \mathrm{q}$ such that $\ell^{*}(\gamma)=w$, we write $\mathrm{p} \leadsto \stackrel{w}{\leadsto}$.

Definition

Let Γ be an A-digraph and let $P, Q \in \vee \Gamma$. Then,

$$
\mathcal{L}_{P, Q}(\Gamma)=\left\{w \in A^{*}: \exists p \in P, \exists q \in Q, p \leadsto \sim q\right\}
$$

is the language from P to Q (in Γ).

LABELLED DIGRAPHS AND LANGUAGES

Definition

Let A be an alphabet. An A-digraph is a pair $\Gamma=(\Delta, \ell)$, where Δ is a digraph, and $\ell: E \Delta \rightarrow A$ is the labelling of Γ.

If $\mathrm{e} \equiv \mathrm{p} \longrightarrow \mathrm{q}$ and $\ell(\mathrm{e})=a$, we write $\mathrm{p} \xrightarrow{a} \mathrm{q}$.
(e is an a-arc).
We extend ℓ to $\ell^{*}: W \Gamma \rightarrow A^{*}$ in the natural way. (we write $\ell^{*}=\ell$) If $\exists \gamma \equiv \mathrm{p} \leadsto \mathrm{q}$ such that $\ell^{*}(\gamma)=w$, we write $\mathrm{p} \xrightarrow{w} \mathrm{q}$.

Definition

Let Γ be an A-digraph and let $P, Q \in \vee \Gamma$. Then,

$$
\mathcal{L}_{P, Q}(\Gamma)=\left\{w \in A^{*}: \exists p \in P, \exists q \in Q, p \leadsto \sim q\right\}
$$

is the language from P to Q (in Γ).
If $\mathrm{p}, \mathrm{q} \in \mathrm{V} \Gamma$, then $\mathcal{L}_{\{p\},\{q\}}(\Gamma)=\mathcal{L}_{\mathrm{p}, \mathrm{q}}(\Gamma)$ and $\mathcal{L}_{\{p\},\{p\}}(\Gamma)=\mathcal{L}_{\mathrm{p}}(\Gamma)$.

AUTOMATA

AUTOMATA

Definition

Let A be an alphabet. An A-automaton is an A-digraph with two distinguished sets of vertices; formally, a triple $\Gamma=(\Delta, P, Q)$ where Δ is an A-digraph, and $P, Q \subseteq \vee \Delta$.

AUTOMATA

Definition

Let A be an alphabet. An A-automaton is an A-digraph with two distinguished sets of vertices; formally, a triple $\Gamma=(\Delta, P, Q)$ where Δ is an A-digraph, and $P, Q \subseteq V \Delta$.

In this context:

- vertices are called the states of Γ.

AUTOMATA

Definition

Let A be an alphabet. An A-automaton is an A-digraph with two distinguished sets of vertices; formally, a triple $\Gamma=(\Delta, P, Q)$ where Δ is an A-digraph, and $P, Q \subseteq V \Delta$.

In this context:

- vertices are called the states of Γ.
- arcs are called the transitions of Γ.

AUTOMATA

Definition

Let A be an alphabet. An A-automaton is an A-digraph with two distinguished sets of vertices; formally, a triple $\Gamma=(\Delta, P, Q)$ where Δ is an A-digraph, and $P, Q \subseteq V \Delta$.

In this context:

- vertices are called the states of Γ.
- arcs are called the transitions of Γ.
- P is the set of initial states of Γ.

AUTOMATA

Definition

Let A be an alphabet. An A-automaton is an A-digraph with two distinguished sets of vertices; formally, a triple $\Gamma=(\Delta, P, Q)$ where Δ is an A-digraph, and $P, Q \subseteq V \Delta$.

In this context:

- vertices are called the states of Γ.
- arcs are called the transitions of Γ.
- P is the set of initial states of Γ.
- Q is the set of terminal (or accepting) states of Γ.

AUTOMATA

Definition

Let A be an alphabet. An A-automaton is an A-digraph with two distinguished sets of vertices; formally, a triple $\Gamma=(\Delta, P, Q)$ where Δ is an A-digraph, and $P, Q \subseteq \vee \Delta$.

In this context:

- vertices are called the states of Γ.
- arcs are called the transitions of Γ.
- P is the set of initial states of Γ.
- Q is the set of terminal (or accepting) states of Γ.

Since P and Q are assumed, we write $\mathcal{L}(\Gamma)=\mathcal{L}_{P, Q}(\Gamma)$.

AUTOMATA

Definition

Let A be an alphabet. An A-automaton is an A-digraph with two distinguished sets of vertices; formally, a triple $\Gamma=(\Delta, P, Q)$ where Δ is an A-digraph, and $P, Q \subseteq \vee \Delta$.

In this context:

- vertices are called the states of Γ.
- arcs are called the transitions of Γ.
- P is the set of initial states of Γ.
- Q is the set of terminal (or accepting) states of Γ.

Since P and Q are assumed, we write $\mathcal{L}(\Gamma)=\mathcal{L}_{P, Q}(\Gamma)$.

Definition

An automaton $\Gamma=(\Delta, P, Q)$ is pointed if it has a unique common initial and terminal state (i.e., if $P=Q=\{\bullet\}$).

INVOLUTIVE AUTOMATA

Definition

An A-involutive automaton is an $A^{ \pm}$-automaton with a labelled involution on its arcs; i.e., to every arc $\mathrm{e} \equiv \mathrm{p} \xrightarrow{a} \mathrm{q}$ we associate a unique arc $e^{-1} \equiv p \gtrless^{a^{-1}} q$ (the inverse of e) such that $e^{\prime} \neq e$ and $\left(e^{-1}\right)^{-1}=e$.

INVOLUTIVE AUTOMATA

Definition

An A-involutive automaton is an $A^{ \pm}$-automaton with a labelled involution on its arcs; i.e., to every arc $\mathrm{e} \equiv \mathrm{p} \xrightarrow{a} \mathrm{q}$ we associate a unique arc $e^{-1} \equiv p \gtrless^{a^{-1}} q$ (the inverse of e) such that $e^{\prime} \neq e$ and $\left(e^{-1}\right)^{-1}=e$.

That is, labelled arcs appear by (mutually inverse) pairs.

$$
\bullet \frac{a}{\bullet--\frac{a}{a-1^{-}-\rightarrow}}
$$

INVOLUTIVE AUTOMATA

Definition

An A-involutive automaton is an $A^{ \pm}$-automaton with a labelled involution on its arcs; i.e., to every arc $\mathrm{e} \equiv \mathrm{p} \xrightarrow{a} \mathrm{q}$ we associate a unique arc $e^{-1} \equiv p \gtrless^{a^{-1}} q$ (the inverse of e) such that $e^{\prime} \neq e$ and $\left(e^{-1}\right)^{-1}=e$.

That is, labelled arcs appear by (mutually inverse) pairs.

$\mathrm{E}^{+}(\Gamma)=\{\mathrm{e} \in \mathrm{E} \Gamma: \ell(\mathrm{e}) \in A\}$ is the set of positive arcs of Γ.

INVOLUTIVE AUTOMATA

Definition

An A-involutive automaton is an $A^{ \pm}$-automaton with a labelled involution on its arcs; i.e., to every arc $\mathrm{e} \equiv \mathrm{p} \xrightarrow{a} \mathrm{q}$ we associate a unique arc $e^{-1} \equiv p \gtrless^{a^{-1}} q$ (the inverse of e) such that $e^{\prime} \neq e$ and $\left(e^{-1}\right)^{-1}=e$.

That is, labelled arcs appear by (mutually inverse) pairs.

$\mathrm{E}^{+}(\Gamma)=\{\mathrm{e} \in \mathrm{E} \Gamma: \ell(\mathrm{e}) \in A\}$ is the set of positive arcs of Γ.
$E^{-}(\Gamma)=\left\{e \in E \Gamma: \ell(e) \in A^{-1}\right\}$ is the set of negative arcs of Γ.

INVOLUTIVE AUTOMATA

Definition

An A-involutive automaton is an $A^{ \pm}$-automaton with a labelled involution on its arcs; i.e., to every arc $\mathrm{e} \equiv \mathrm{p} \xrightarrow{a} \mathrm{q}$ we associate a unique arc $e^{-1} \equiv p \gtrless^{a^{-1}} q$ (the inverse of e) such that $e^{\prime} \neq e$ and $\left(e^{-1}\right)^{-1}=e$.

That is, labelled arcs appear by (mutually inverse) pairs.

$\mathrm{E}^{+}(\Gamma)=\{\mathrm{e} \in \mathrm{E} \Gamma: \ell(\mathrm{e}) \in A\}$ is the set of positive arcs of Γ.
$E^{-}(\Gamma)=\left\{e \in E \Gamma: \ell(e) \in A^{-1}\right\}$ is the set of negative arcs of Γ.
The positive part of an involutive automaton Γ is the automaton Γ^{+} obtained after removing all the negative arcs from Γ.

INVOLUTIVE AUTOMATA

Definition

An A-involutive automaton is an $A^{ \pm}$-automaton with a labelled involution on its arcs; i.e., to every arc $\mathrm{e} \equiv \mathrm{p} \xrightarrow{a} \mathrm{q}$ we associate a unique arc $e^{-1} \equiv p \gtrless^{a^{-1}} q$ (the inverse of e) such that $e^{\prime} \neq e$ and $\left(e^{-1}\right)^{-1}=e$.

That is, labelled arcs appear by (mutually inverse) pairs.

$\mathrm{E}^{+}(\Gamma)=\{\mathrm{e} \in \mathrm{E} \Gamma: \ell(\mathrm{e}) \in A\}$ is the set of positive arcs of Γ.
$E^{-}(\Gamma)=\left\{e \in E \Gamma: \ell(e) \in A^{-1}\right\}$ is the set of negative arcs of Γ.
The positive part of an involutive automaton Γ is the automaton Γ^{+} obtained after removing all the negative arcs from Γ.

Convention: we represent involutive automata Γ through Γ^{+} (an arc $\mathrm{p} \xrightarrow{a} \mathrm{q}$ reads the inverse label a^{-1} when crossed backwards).

INVOLUTIVE AUTOMATA

Definition

An A-involutive automaton is an $A^{ \pm}$-automaton with a labelled involution on its arcs; i.e., to every arc $\mathrm{e} \equiv \mathrm{p} \xrightarrow{a} \mathrm{q}$ we associate a unique arc $e^{-1} \equiv p \gtrless^{a^{-1}} q$ (the inverse of e) such that $e^{\prime} \neq e$ and $\left(e^{-1}\right)^{-1}=e$.

That is, labelled arcs appear by (mutually inverse) pairs.

$E^{+}(\Gamma)=\{e \in E \Gamma: \ell(e) \in A\}$ is the set of positive arcs of Γ.
$\mathrm{E}^{-}(\Gamma)=\left\{\mathrm{e} \in \mathrm{E} \Gamma: \ell(\mathrm{e}) \in A^{-1}\right\}$ is the set of negative arcs of Γ.
The positive part of an involutive automaton Γ is the automaton Γ^{+} obtained after removing all the negative arcs from Γ.

Convention: we represent involutive automata Γ through Γ^{+} (an arc $\mathrm{p} \xrightarrow{a} \mathrm{q}$ reads the inverse label a^{-1} when crossed backwards).

From now on, automata = pointed involutive automata .

UNDERLYING GRAPH AND RANK

UNDERLYING GRAPH AND RANK

Let Γ be and involutive automaton.

UNDERLYING GRAPH AND RANK

Let Γ be and involutive automaton.
The underlying graph of $\Gamma(\widetilde{\Gamma})$ is the undirected graph obtained if we ignore the labelling and identify all the mutually inverse pairs in Γ.

UNDERLYING GRAPH AND RANK

Let Γ be and involutive automaton.
The underlying graph of $\Gamma(\widetilde{\Gamma})$ is the undirected graph obtained if we ignore the labelling and identify all the mutually inverse pairs in Γ.

Remark: Every undirected graph can be obtained in this way.

UNDERLYING GRAPH AND RANK

Let Γ be and involutive automaton.
The underlying graph of $\Gamma(\widetilde{\Gamma})$ is the undirected graph obtained if we ignore the labelling and identify all the mutually inverse pairs in Γ.

Remark: Every undirected graph can be obtained in this way.

Definition

The rank of a finite undirected graph $\Lambda, r k(\Lambda)$, is the number of arcs outside a spanning forest.

UNDERLYING GRAPH AND RANK

Let Γ be and involutive automaton.
The underlying graph of $\Gamma(\widetilde{\Gamma})$ is the undirected graph obtained if we ignore the labelling and identify all the mutually inverse pairs in Γ.

Remark: Every undirected graph can be obtained in this way.

Definition

The rank of a finite undirected graph $\Lambda, r k(\Lambda)$, is the number of arcs outside a spanning forest.

Lemma
If Λ is finite, then $\mathrm{rk}(\Lambda)=\# \mathrm{E}(\Lambda)-\# \mathrm{~V}(\Lambda)+\# \mathrm{CC}(\Lambda)$.

UNDERLYING GRAPH AND RANK

Let Γ be and involutive automaton.
The underlying graph of $\Gamma(\widetilde{\Gamma})$ is the undirected graph obtained if we ignore the labelling and identify all the mutually inverse pairs in Γ.

Remark: Every undirected graph can be obtained in this way.

Definition

The rank of a finite undirected graph $\Lambda, r k(\Lambda)$, is the number of arcs outside a spanning forest.

Lemma

If Λ is finite, then $\operatorname{rk}(\Lambda)=\# E(\Lambda)-\# V(\Lambda)+\# C C(\Lambda)$.
We extend graph-theoretical notions to involutive automata:
$\cdot \Gamma$ is a tree (cycle, path, ...) $\Leftrightarrow \widetilde{\Gamma}$ is a tree (cycle, path, ...)

UNDERLYING GRAPH AND RANK

Let Γ be and involutive automaton.
The underlying graph of $\Gamma(\widetilde{\Gamma})$ is the undirected graph obtained if we ignore the labelling and identify all the mutually inverse pairs in Γ.

Remark: Every undirected graph can be obtained in this way.

Definition

The rank of a finite undirected graph $\Lambda, r k(\Lambda)$, is the number of arcs outside a spanning forest.

Lemma

If Λ is finite, then $\mathrm{rk}(\Lambda)=\# \mathrm{E}(\Lambda)-\# \mathrm{~V}(\Lambda)+\# \mathrm{CC}(\Lambda)$.
We extend graph-theoretical notions to involutive automata:
$\cdot \Gamma$ is a tree (cycle, path, ...) $\Leftrightarrow \widetilde{\Gamma}$ is a tree (cycle, path, ...)

- Γ is connected $\Leftrightarrow \widetilde{\Gamma}$ is connected

UNDERLYING GRAPH AND RANK

Let Γ be and involutive automaton.
The underlying graph of $\Gamma(\widetilde{\Gamma})$ is the undirected graph obtained if we ignore the labelling and identify all the mutually inverse pairs in Γ.

Remark: Every undirected graph can be obtained in this way.

Definition

The rank of a finite undirected graph $\Lambda, r k(\Lambda)$, is the number of arcs outside a spanning forest.

Lemma

If Λ is finite, then $\operatorname{rk}(\Lambda)=\# \mathrm{E}(\Lambda)-\# \mathrm{~V}(\Lambda)+\# \mathrm{CC}(\Lambda)$.
We extend graph-theoretical notions to involutive automata:
$\cdot \Gamma$ is a tree (cycle, path, ...) $\Leftrightarrow \widetilde{\Gamma}$ is a tree (cycle, path, ...)

- Γ is connected $\Leftrightarrow \widetilde{\Gamma}$ is connected
- Γ is vertex-transitive $\Leftrightarrow \widetilde{\Gamma}$ is vertex-transitive

UNDERLYING GRAPH AND RANK

Let Γ be and involutive automaton.
The underlying graph of $\Gamma(\widetilde{\Gamma})$ is the undirected graph obtained if we ignore the labelling and identify all the mutually inverse pairs in Γ.

Remark: Every undirected graph can be obtained in this way.

Definition

The rank of a finite undirected graph $\Lambda, r k(\Lambda)$, is the number of arcs outside a spanning forest.

Lemma

If Λ is finite, then $\operatorname{rk}(\Lambda)=\# \mathrm{E}(\Lambda)-\# \mathrm{~V}(\Lambda)+\# \mathrm{CC}(\Lambda)$.
We extend graph-theoretical notions to involutive automata:
$\cdot \Gamma$ is a tree (cycle, path, ...) $\Leftrightarrow \widetilde{\Gamma}$ is a tree (cycle, path, ...)

- Γ is connected $\Leftrightarrow \widetilde{\Gamma}$ is connected
- Γ is vertex-transitive $\Leftrightarrow \widetilde{\Gamma}$ is vertex-transitive
- the rank of Γ is $\mathrm{rk}(\Gamma)=\mathrm{rk}(\widetilde{\Gamma})$

WALKS IN INVOLUTIVE AUTOMATA AND RECOGNIZED SUBGROUP

Let Γ be an A-involutive automaton, and let $\gamma=p_{0} e_{1} p_{1} \cdots e_{l} p_{l}$ be a walk in Γ. Then,

WALKS IN INVOLUTIVE AUTOMATA AND RECOGNIZED SUBGROUP

Let Γ be an A-involutive automaton, and let $\gamma=p_{0} e_{1} p_{1} \ldots e_{l} p_{l}$ be a walk in Γ. Then,

- the inverse walk of γ is $\gamma^{-1}=p_{l} e_{l}^{-1} p_{l-1} \cdots e_{1}^{-1} p_{0}$ (note that $\ell\left(\gamma^{-1}\right)=\ell(\gamma)^{-1}$),

WALKS IN INVOLUTIVE AUTOMATA AND RECOGNIZED SUBGROUP

Let Γ be an A-involutive automaton, and let $\gamma=p_{0} e_{1} p_{1} \cdots e_{l} p_{l}$ be a walk in Γ. Then,

- the inverse walk of γ is $\gamma^{-1}=p_{l} e_{l}^{-1} p_{l-1} \cdots e_{1}^{-1} p_{0}$ (note that $\ell\left(\gamma^{-1}\right)=\ell(\gamma)^{-1}$),
- γ presents backtracking if it has two successive arcs inverse of each other,

WALKS IN INVOLUTIVE AUTOMATA AND RECOGNIZED SUBGROUP

Let Γ be an A-involutive automaton, and let $\gamma=p_{0} e_{1} p_{1} \cdots e_{l} p_{l}$ be a walk in Γ. Then,

- the inverse walk of γ is $\gamma^{-1}=p_{l} e_{l}^{-1} p_{l-1} \cdots e_{1}^{-1} p_{0}$ (note that $\ell\left(\gamma^{-1}\right)=\ell(\gamma)^{-1}$),
- γ presents backtracking if it has two successive arcs inverse of each other,
- γ is reduced if it presents no backtracking,

WALKS IN INVOLUTIVE AUTOMATA AND RECOGNIZED SUBGROUP

Let Γ be an A-involutive automaton, and let $\gamma=p_{0} e_{1} p_{1} \ldots e_{l} p_{l}$ be a walk in Γ. Then,

- the inverse walk of γ is $\gamma^{-1}=p_{l} e_{l}^{-1} p_{l-1} \cdots e_{1}^{-1} p_{0}$ (note that $\ell\left(\gamma^{-1}\right)=\ell(\gamma)^{-1}$),
- γ presents backtracking if it has two successive arcs inverse of each other,
- γ is reduced if it presents no backtracking,
- the reduced label of γ is $\bar{\ell}(\gamma)=\overline{\ell(\gamma)}$.

WALKS IN INVOLUTIVE AUTOMATA AND RECOGNIZED SUBGROUP

Let Γ be an A-involutive automaton, and let $\gamma=p_{0} e_{1} p_{1} \cdots e_{l} p_{l}$ be a walk in Γ. Then,

- the inverse walk of γ is $\gamma^{-1}=p_{l} e_{l}^{-1} p_{l-1} \cdots e_{1}^{-1} p_{0}$ (note that $\ell\left(\gamma^{-1}\right)=\ell(\gamma)^{-1}$),
- γ presents backtracking if it has two successive arcs inverse of each other,
- γ is reduced if it presents no backtracking,
- the reduced label of γ is $\bar{\ell}(\gamma)=\overline{\ell(\gamma)}$.

Remark: $\ell(\gamma)$ is reduced $\Rightarrow \gamma$ is reduced.

WALKS IN INVOLUTIVE AUTOMATA AND RECOGNIZED SUBGROUP

Let Γ be an A-involutive automaton, and let $\gamma=p_{0} e_{1} p_{1} \cdots e_{l} p_{l}$ be a walk in Γ. Then,

- the inverse walk of γ is $\gamma^{-1}=p_{l} e_{l}^{-1} p_{l-1} \cdots e_{1}^{-1} p_{0}$ (note that $\ell\left(\gamma^{-1}\right)=\ell(\gamma)^{-1}$),
- γ presents backtracking if it has two successive arcs inverse of each other,
- γ is reduced if it presents no backtracking,
- the reduced label of γ is $\bar{\ell}(\gamma)=\overline{\ell(\gamma)}$.

Remark: $\ell(\gamma)$ is reduced $\Rightarrow \gamma$ is reduced. (is the converse true?)

Lemma

Let Γ be A-involutive and let $p, q \in V \Gamma$ such that $p \leadsto q$. Then,
i) $\overline{\mathcal{L}}_{p}(\Gamma)=\left\{\bar{w} \in \mathbb{F}_{A}: p \xrightarrow{w} p\right\}$ is a subgroup of \mathbb{F}_{A},
ii) $\overline{\mathcal{L}}_{p, q}(\Gamma)=\left\{\bar{w} \in \mathbb{F}_{A}: p \xrightarrow{w} q\right\}$ is a coset of $\overline{\mathcal{L}}_{p}(\Gamma)$ in \mathbb{F}_{A}.

WALKS IN INVOLUTIVE AUTOMATA AND RECOGNIZED SUBGROUP

Let Γ be an A-involutive automaton, and let $\gamma=p_{0} e_{1} p_{1} \cdots e_{l} p_{l}$ be a walk in Γ. Then,

- the inverse walk of γ is $\gamma^{-1}=\mathrm{p}_{\ell} \mathrm{e}_{l}^{-1} \mathrm{p}_{l-1} \cdots \mathrm{e}_{1}^{-1} \mathrm{p}_{0}$ (note that $\ell\left(\gamma^{-1}\right)=\ell(\gamma)^{-1}$),
- γ presents backtracking if it has two successive arcs inverse of each other,
- γ is reduced if it presents no backtracking,
- the reduced label of γ is $\bar{\ell}(\gamma)=\overline{\ell(\gamma)}$.

Remark: $\ell(\gamma)$ is reduced $\Rightarrow \gamma$ is reduced.

Lemma

Let Γ be A-involutive and let $p, q \in V \Gamma$ such that $p \leadsto q$. Then,
i) $\overline{\mathcal{L}}_{p}(\Gamma)=\left\{\bar{w} \in \mathbb{F}_{A}: p \xrightarrow{w} p\right\}$ is a subgroup of \mathbb{F}_{A},
ii) $\overline{\mathcal{L}}_{p, q}(\Gamma)=\left\{\bar{w} \in \mathbb{F}_{A}: p \xrightarrow{w} q\right\}$ is a coset of $\overline{\mathcal{L}}_{p}(\Gamma)$ in \mathbb{F}_{A}.

If Γ is pointed then we say that $\overline{\mathcal{L}}_{\odot}(\Gamma)$ is the subgroup recognized by Γ, and we write $\overline{\mathcal{L}}_{\odot}(\Gamma)=\langle\Gamma\rangle$.

SOURCES OF REDUNDANCY

SOURCES OF REDUNDANCY

Remark

Since for every (pointed \& involutive) A-automaton Γ we have that $\langle\Gamma\rangle$ is a subgroup of \mathbb{F}_{A}, this is a reasonable candidate family of drawings representing subgroups of \mathbb{F}_{A}.

SOURCES OF REDUNDANCY

Remark

Since for every (pointed \& involutive) A-automaton Γ we have that $\langle\Gamma\rangle$ is a subgroup of \mathbb{F}_{A}, this is a reasonable candidate family of drawings representing subgroups of \mathbb{F}_{A}. Then,
\{pointed \& involutive A-automata \} \rightarrow \{subgroups of $\left.\mathbb{F}_{A}\right\}$
$\Gamma \mapsto\langle\Gamma\rangle$

SOURCES OF REDUNDANCY

Remark

Since for every (pointed \& involutive) A-automaton Γ we have that $\langle\Gamma\rangle$ is a subgroup of \mathbb{F}_{A}, this is a reasonable candidate family of drawings representing subgroups of \mathbb{F}_{A}. Then,

$$
\begin{aligned}
\{\text { pointed \& involutive A-automata }\} & \rightarrow\left\{\text { subgroups of } \mathbb{F}_{A}\right\} \\
\Gamma & \mapsto\langle\Gamma\rangle
\end{aligned}
$$

- is well defined,

SOURCES OF REDUNDANCY

Remark

Since for every (pointed \& involutive) A-automaton Γ we have that $\langle\Gamma\rangle$ is a subgroup of \mathbb{F}_{A}, this is a reasonable candidate family of drawings representing subgroups of \mathbb{F}_{A}. Then,

$$
\begin{aligned}
\{\text { pointed \& involutive A-automata }\} & \rightarrow\left\{\text { subgroups of } \mathbb{F}_{A}\right\} \\
\Gamma & \mapsto\langle\Gamma\rangle
\end{aligned}
$$

- is well defined,
- is surjective,

SOURCES OF REDUNDANCY

Remark

Since for every (pointed \& involutive) A-automaton Γ we have that $\langle\Gamma\rangle$ is a subgroup of \mathbb{F}_{A}, this is a reasonable candidate family of drawings representing subgroups of \mathbb{F}_{A}. Then,
\{pointed \& involutive A-automata \} \rightarrow \{subgroups of $\left.\mathbb{F}_{A}\right\}$

$$
\Gamma \mapsto\langle\Gamma\rangle
$$

- is well defined,
- is surjective,
- is not injective.

SOURCES OF REDUNDANCY

Remark

Since for every (pointed \& involutive) A-automaton Γ we have that $\langle\Gamma\rangle$ is a subgroup of \mathbb{F}_{A}, this is a reasonable candidate family of drawings representing subgroups of \mathbb{F}_{A}. Then,

$$
\begin{aligned}
\{\text { pointed \& involutive A-automata \}} & \rightarrow\left\{\text { subgroups of } \mathbb{F}_{A}\right\} \\
\Gamma & \mapsto\langle\Gamma\rangle
\end{aligned}
$$

- is well defined,
- is surjective,
- is not injective.

Sources of redundancy:

SOURCES OF REDUNDANCY

Remark

Since for every (pointed \& involutive) A-automaton Γ we have that $\langle\Gamma\rangle$ is a subgroup of \mathbb{F}_{A}, this is a reasonable candidate family of drawings representing subgroups of \mathbb{F}_{A}. Then,

$$
\begin{aligned}
\{\text { pointed \& involutive A-automata \}} & \rightarrow\left\{\text { subgroups of } \mathbb{F}_{A}\right\} \\
\Gamma & \mapsto\langle\Gamma\rangle
\end{aligned}
$$

- is well defined,
- is surjective,
- is not injective.

Sources of redundancy:
i) Γ can be disconnected,

SOURCES OF REDUNDANCY

Remark

Since for every (pointed \& involutive) A-automaton Γ we have that $\langle\Gamma\rangle$ is a subgroup of \mathbb{F}_{A}, this is a reasonable candidate family of drawings representing subgroups of \mathbb{F}_{A}. Then,

$$
\begin{aligned}
\{\text { pointed \& involutive A-automata \}} & \rightarrow\left\{\text { subgroups of } \mathbb{F}_{A}\right\} \\
\Gamma & \mapsto\langle\Gamma\rangle
\end{aligned}
$$

- is well defined,
- is surjective,
- is not injective.

Sources of redundancy:
i) Γ can be disconnected,
ii) 'hanging trees' not containing the basepoint,

SOURCES OF REDUNDANCY

Remark

Since for every (pointed \& involutive) A-automaton Γ we have that $\langle\Gamma\rangle$ is a subgroup of \mathbb{F}_{A}, this is a reasonable candidate family of drawings representing subgroups of \mathbb{F}_{A}. Then,

$$
\begin{aligned}
\{\text { pointed \& involutive A-automata \}} & \rightarrow\left\{\text { subgroups of } \mathbb{F}_{A}\right\} \\
\Gamma & \mapsto\langle\Gamma\rangle
\end{aligned}
$$

- is well defined,
- is surjective,
- is not injective.

Sources of redundancy:
i) Γ can be disconnected,
ii) 'hanging trees' not containing the basepoint,
iii) non-determinism.

DETERMINISM

DETERMINISM

An A-automaton Γ is deterministic at $p \in \vee \Gamma$ if no two arcs with the same label depart from p.

DETERMINISM

An A-automaton Γ is deterministic at $p \in V \Gamma$ if no two arcs with the same label depart from $p . \quad\left(\iota(e)=\imath\left(e^{\prime}\right)\right.$ and $\left.\ell(e)=\ell\left(e^{\prime}\right) \Rightarrow e=e^{\prime}\right)$

DETERMINISM

An A-automaton Γ is deterministic at $p \in V \Gamma$ if no two arcs with the same label depart from $p . \quad\left(\iota(e)=\iota\left(e^{\prime}\right)\right.$ and $\left.\ell(e)=\ell\left(e^{\prime}\right) \Rightarrow e=e^{\prime}\right)$

Definition

An A-automaton Γ is deterministic if it is deterministic at every vertex.

DETERMINISM

An A-automaton Γ is deterministic at $p \in V \Gamma$ if no two arcs with the same label depart from $p . \quad\left(\iota(e)=\imath\left(e^{\prime}\right)\right.$ and $\left.\ell(e)=\ell\left(e^{\prime}\right) \Rightarrow e=e^{\prime}\right)$

Definition

An A-automaton Γ is deterministic if it is deterministic at every vertex.

Then, $\forall \gamma_{1}, \gamma_{2}$ walks in Γ,

$$
\mathfrak{l}\left(\gamma_{1}\right)=\mathfrak{l}\left(\gamma_{2}\right) \text { and } \ell\left(\gamma_{1}\right)=\ell\left(\gamma_{2}\right) \Rightarrow \gamma_{1}=\gamma_{2}
$$

DETERMINISM

An A-automaton Γ is deterministic at $p \in \vee \Gamma$ if no two arcs with the same label depart from $p . \quad\left(\iota(e)=\iota\left(e^{\prime}\right)\right.$ and $\left.\ell(e)=\ell\left(e^{\prime}\right) \Rightarrow e=e^{\prime}\right)$

Definition

An A-automaton Γ is deterministic if it is deterministic at every vertex.

Then, $\forall \gamma_{1}, \gamma_{2}$ walks in Γ,

$$
\mathfrak{l}\left(\gamma_{1}\right)=\mathfrak{l}\left(\gamma_{2}\right) \text { and } \ell\left(\gamma_{1}\right)=\ell\left(\gamma_{2}\right) \Rightarrow \gamma_{1}=\gamma_{2}
$$

Remark: An involutive A-automaton is non-deterministic if for some $a \in A$ there are two a-arcs leaving or arriving to some vertex.

DETERMINISM

An A-automaton Γ is deterministic at $p \in \vee \Gamma$ if no two arcs with the same label depart from p. ($(e)=\imath\left(e^{\prime}\right)$ and $\left.\ell(e)=\ell\left(e^{\prime}\right) \Rightarrow e=e^{\prime}\right)$

Definition

An A-automaton Γ is deterministic if it is deterministic at every vertex.

Then, $\forall \gamma_{1}, \gamma_{2}$ walks in Γ,

$$
\mathfrak{l}\left(\gamma_{1}\right)=\mathfrak{l}\left(\gamma_{2}\right) \text { and } \ell\left(\gamma_{1}\right)=\ell\left(\gamma_{2}\right) \Rightarrow \gamma_{1}=\gamma_{2}
$$

Remark: An involutive A-automaton is non-deterministic if for some $a \in A$ there are two a-arcs leaving or arriving to some vertex.

Lemma

If Γ is involutive and deterministic and γ is a walk in Γ, then:

$$
\gamma \text { is reduced } \Leftrightarrow \ell(\gamma) \text { is reduced }
$$

and

$$
\langle\Gamma\rangle=\{\ell(\gamma): \gamma \equiv \bullet \leadsto \text { oreduced }\}
$$

CORE AND REDUCED AUTOMATA

CORE AND REDUCED AUTOMATA

A vertex (resp., arc) in Γ is alive if it belongs to some reduced o-walk, otherwise it is dead.

CORE AND REDUCED AUTOMATA

A vertex (resp., arc) in Γ is alive if it belongs to some reduced o-walk, otherwise it is dead.
Definition
Γ is core if it has no dead vertices (equivalently, no dead arcs).

CORE AND REDUCED AUTOMATA

A vertex (resp., arc) in Γ is alive if it belongs to some reduced o-walk, otherwise it is dead.

Definition

Γ is core if it has no dead vertices (equivalently, no dead arcs).
The core of Γ, core (Γ), is the maximal core subautomaton of Γ (containing the basepoint).

CORE AND REDUCED AUTOMATA

A vertex (resp., arc) in Γ is alive if it belongs to some reduced o-walk, otherwise it is dead.

Definition

Γ is core if it has no dead vertices (equivalently, no dead arcs).
The core of Γ, core (Γ), is the maximal core subautomaton of Γ (containing the basepoint).

Remarks:

- core (Γ) is what remains after taking the $C C$ of Γ containing o and removing from it all the 'hanging trees' not containing \bullet,

CORE AND REDUCED AUTOMATA

A vertex (resp., arc) in Γ is alive if it belongs to some reduced o-walk, otherwise it is dead.

Definition

Γ is core if it has no dead vertices (equivalently, no dead arcs).
The core of Γ, core (Γ), is the maximal core subautomaton of Γ (containing the basepoint).

Remarks:

- core (Γ) is what remains after taking the CC of Γ containing \bullet and removing from it all the 'hanging trees' not containing \bullet,
- core (Γ) is connected,

CORE AND REDUCED AUTOMATA

A vertex (resp., arc) in Γ is alive if it belongs to some reduced o-walk, otherwise it is dead.

Definition

Γ is core if it has no dead vertices (equivalently, no dead arcs).
The core of Γ, core (Γ), is the maximal core subautomaton of Γ (containing the basepoint).

Remarks:

- core (Γ) is what remains after taking the CC of Γ containing \bullet and removing from it all the 'hanging trees' not containing \bullet,
- core (Γ) is connected,
- $\langle\operatorname{core}(\Gamma)\rangle=\langle\Gamma\rangle$,

CORE AND REDUCED AUTOMATA

A vertex (resp., arc) in Γ is alive if it belongs to some reduced o-walk, otherwise it is dead.

Definition

Γ is core if it has no dead vertices (equivalently, no dead arcs).
The core of Γ, core (Γ), is the maximal core subautomaton of Γ (containing the basepoint).

Remarks:

- core (Γ) is what remains after taking the CC of Γ containing \bullet and removing from it all the 'hanging trees' not containing \bullet,
- core (Γ) is connected,
- \langle core $(\Gamma)\rangle=\langle\Gamma\rangle$,
- if Γ is finite, then Γ is core $\Leftrightarrow \Gamma$ has no non- \odot vertices of degree 1 .

CORE AND REDUCED AUTOMATA

A vertex (resp., arc) in Γ is alive if it belongs to some reduced o-walk, otherwise it is dead.

Definition

Γ is core if it has no dead vertices (equivalently, no dead arcs).
The core of Γ, core (Γ), is the maximal core subautomaton of Γ (containing the basepoint).

Remarks:

- core (Γ) is what remains after taking the CC of Γ containing \bullet and removing from it all the 'hanging trees' not containing \bullet,
- core (Γ) is connected,
- \langle core $(\Gamma)\rangle=\langle\Gamma\rangle$,
- if Γ is finite, then Γ is core $\Leftrightarrow \Gamma$ has no non- \odot vertices of degree 1 .

Definition

An automaton Γ is reduced if it is deterministic and core.

SCHREIER AUTOMATON

Let $G=\langle S\rangle$ be a group and let H be a subgroup of G.

SCHREIER AUTOMATON

Let $G=\langle S\rangle$ be a group and let H be a subgroup of G.
Definition
The (right) Schreier automaton of H w.r.t. S, denoted by $\operatorname{Sch}(H, S)$, is the (involutive and pointed) S-automata with:

SCHREIER AUTOMATON

Let $G=\langle S\rangle$ be a group and let H be a subgroup of G.

Definition

The (right) Schreier automaton of H w.r.t. S, denoted by $\operatorname{Sch}(H, S)$, is the (involutive and pointed) S-automata with:

- set of vertices $H \backslash G$ (right cosets of H in G),

SCHREIER AUTOMATON

Let $G=\langle S\rangle$ be a group and let H be a subgroup of G.

Definition

The (right) Schreier automaton of H w.r.t. S, denoted by $\operatorname{Sch}(H, S)$, is the (involutive and pointed) S-automata with:

- set of vertices $H \backslash G$ (right cosets of H in G),
- an arc $\mathrm{Hg} \xrightarrow{s} \mathrm{Hgs}, \forall \mathrm{Hg} \in \mathrm{H} \backslash \mathrm{G}, \forall \mathrm{s} \in \mathrm{S}^{ \pm}$,

SCHREIER AUTOMATON

Let $G=\langle S\rangle$ be a group and let H be a subgroup of G.

Definition

The (right) Schreier automaton of H w.r.t. S, denoted by $\operatorname{Sch}(H, S)$, is the (involutive and pointed) S-automata with:

- set of vertices $H \backslash G$ (right cosets of H in G),
- an arc $\mathrm{Hg} \xrightarrow{s} \mathrm{Hgs}, \forall H g \in H \backslash G, \forall s \in S^{ \pm}$,
- H as basepoint.

SCHREIER AUTOMATON

Let $G=\langle S\rangle$ be a group and let H be a subgroup of G.

Definition

The (right) Schreier automaton of H w.r.t. S, denoted by $\operatorname{Sch}(H, S)$, is the (involutive and pointed) S-automata with:

- set of vertices $H \backslash G$ (right cosets of H in G),
- an arc $\mathrm{Hg} \xrightarrow{s} \mathrm{Hgs}, \forall H g \in H \backslash G, \forall s \in S^{ \pm}$,
- H as basepoint.

SCHREIER AUTOMATON

Let $G=\langle S\rangle$ be a group and let H be a subgroup of G.

Definition

The (right) Schreier automaton of H w.r.t. S, denoted by Sch(H, S), is the (involutive and pointed) S-automata with:

- set of vertices $H \backslash G$ (right cosets of H in G),
- an arc $\mathrm{Hg} \xrightarrow{s} \mathrm{Hgs}, \forall H g \in H \backslash G, \forall s \in S^{ \pm}$,
- H as basepoint.

Proposition

Let H be a subgroup of \mathbb{F}_{A}. Then, $\operatorname{Sch}(H, A)$ is deterministic, saturated, connected, and $\langle\operatorname{Sch}(H, A)\rangle=H$.

SCHREIER AUTOMATON

Let $G=\langle S\rangle$ be a group and let H be a subgroup of G.

Definition

The (right) Schreier automaton of H w.r.t. S, denoted by $\operatorname{Sch}(H, S)$, is the (involutive and pointed) S-automata with:

- set of vertices $H \backslash G$ (right cosets of H in G),
- an arc $\mathrm{Hg} \xrightarrow{\mathrm{s}} \mathrm{Hgs}, \forall \mathrm{Hg} \in H \backslash G, \forall s \in S^{ \pm}$,
- H as basepoint.

Proposition

Let H be a subgroup of \mathbb{F}_{A}. Then, $\operatorname{Sch}(H, A)$ is deterministic, saturated, connected, and $\langle\operatorname{Sch}(H, A)\rangle=H$.

Remark: The Schreier automaton depends on the chosen generating set for G.

CAYLEY AUTOMATON OF \mathbb{F}_{2}

The Cayley automaton $\operatorname{Cay}\left(\mathbb{F}_{\{a, b\}},\{a, b\}\right)$
(consisting in four Cayley branches adjacent to the basepoint ©).

STALLINGS AUTOMATON

Let H be a subgroup of \mathbb{F}_{A}.

STALLINGS AUTOMATON

Let H be a subgroup of \mathbb{F}_{A}.
Definition
The Stallings automaton of H w.r.t. A is $\operatorname{St}(H, A)=\operatorname{core}(\operatorname{Sch}(H, A))$.

STALLINGS AUTOMATON

Let H be a subgroup of \mathbb{F}_{A}.

Definition

The Stallings automaton of H w.r.t. A is $\operatorname{St}(H, A)=\operatorname{core}(S c h(H, A))$.
Remark. The following statements are equivalent:

- $\operatorname{Sch}(H, A)$ is core,
- $\operatorname{St}(H, A)$ is saturated,
- $\operatorname{Sch}(H, A)=\operatorname{St}(H, A)$.

STALLINGS AUTOMATON

Let H be a subgroup of \mathbb{F}_{A}.

Definition

The Stallings automaton of H w.r.t. A is $\operatorname{St}(H, A)=\operatorname{core}(S c h(H, A))$.
Remark. The following statements are equivalent:

- $\operatorname{Sch}(H, A)$ is core,
- $\operatorname{St}(H, A)$ is saturated,
- $\operatorname{Sch}(H, A)=\operatorname{St}(H, A)$.

Proposition

The Stallings automaton $\operatorname{St}(H, A)$ is reduced and $\langle\operatorname{St}(H, A)\rangle=H$.

STALLINGS AUTOMATON

Let H be a subgroup of \mathbb{F}_{A}.

Definition
 The Stallings automaton of H w.r.t. A is $\operatorname{St}(H, A)=\operatorname{core}(\operatorname{Sch}(H, A))$.

Remark. The following statements are equivalent:

- $\operatorname{Sch}(H, A)$ is core,
- $\operatorname{St}(H, A)$ is saturated,
- $\operatorname{Sch}(H, A)=\operatorname{St}(H, A)$.

Proposition

The Stallings automaton $\operatorname{St}(H, A)$ is reduced and $\langle\operatorname{St}(H, A)\rangle=H$.
Remark: The Stallings automaton $\operatorname{St}(H, A)$ depends on the chosen basis A for the ambient free group.

HOMOMORPHISMS OF AUTOMATA

Let Γ and Γ^{\prime} be pointed A-automata.

HOMOMORPHISMS OF AUTOMATA

Let Γ and Γ^{\prime} be pointed A-automata.

Definition

A homomorphism (of automata) between Γ and Γ^{\prime} is a function $\phi: \vee \Gamma \rightarrow \vee \Gamma^{\prime}$ such that:
i) $\phi(\bullet)=\bullet^{\prime}$,
ii) $\forall p, q \in V \Gamma, \forall a \in A$, if $p \xrightarrow{a} q$ then $\phi(p) \xrightarrow{a} \phi(q)$.

HOMOMORPHISMS OF AUTOMATA

Let Γ and Γ^{\prime} be pointed A-automata.

Definition

A homomorphism (of automata) between Γ and Γ^{\prime} is a function $\phi: \vee \Gamma \rightarrow \vee \Gamma^{\prime}$ such that:
i) $\phi(\odot)=\bullet^{\prime}$,
ii) $\forall p, q \in V \Gamma, \forall a \in A$, if $p \xrightarrow{a} q$ then $\phi(p) \xrightarrow{a} \phi(q)$.

Lemma
If $\phi: \Gamma \rightarrow \Gamma^{\prime}$ is a homomorphism of automata, then

$$
\forall p, q \in \vee \Gamma, \forall w \in A^{*}, \quad p \xrightarrow{w} q q \Rightarrow \phi(p) \xrightarrow{w} \phi(q) .
$$

HOMOMORPHISMS OF AUTOMATA

Let Γ and Γ^{\prime} be pointed A-automata.

Definition

A homomorphism (of automata) between Γ and Γ^{\prime} is a function $\phi: \vee \Gamma \rightarrow \vee \Gamma^{\prime}$ such that:
i) $\phi(\odot)=\bullet^{\prime}$,
ii) $\forall \mathrm{p}, \mathrm{q} \in \mathrm{V} \Gamma, \forall a \in A$, if $\mathrm{p} \xrightarrow{a} \mathrm{q}$ then $\phi(\mathrm{p}) \xrightarrow{a} \phi(\mathrm{q})$.

Lemma
If $\phi: \Gamma \rightarrow \Gamma^{\prime}$ is a homomorphism of automata, then

$$
\forall p, q \in \vee \Gamma, \forall w \in A^{*}, \quad p \xrightarrow{w} q q \Rightarrow \phi(p) \xrightarrow{w} \phi(q) .
$$

Corollary
If $\phi: \Gamma \rightarrow \Gamma^{\prime}$ is a homomorphism of automata, then $\mathcal{L}(\Gamma) \subseteq \mathcal{L}\left(\Gamma^{\prime}\right)$.

Stallings bijection

A CRUCIAL RESULT

A CRUCIAL RESULT

Theorem
Let Γ, Γ^{\prime} be reduced (pointed and involutive) A-automata. Then,

$$
\langle\Gamma\rangle \leqslant\left\langle\Gamma^{\prime}\right\rangle \Leftrightarrow \exists \phi: \Gamma \rightarrow \Gamma^{\prime} \text { homomorphism }
$$

and, if so, the homomorphism is unique.

A CRUCIAL RESULT

Theorem

Let Γ, Γ^{\prime} be reduced (pointed and involutive) A-automata. Then,

$$
\langle\Gamma\rangle \leqslant\left\langle\Gamma^{\prime}\right\rangle \Leftrightarrow \exists \phi: \Gamma \rightarrow \Gamma^{\prime} \text { homomorphism }
$$

and, if so, the homomorphism is unique.
Sketch of proof.

A CRUCIAL RESULT

Theorem

Let Γ, Γ^{\prime} be reduced (pointed and involutive) A-automata. Then,

$$
\langle\Gamma\rangle \leqslant\left\langle\Gamma^{\prime}\right\rangle \Leftrightarrow \exists \phi: \Gamma \rightarrow \Gamma^{\prime} \text { homomorphism }
$$

and, if so, the homomorphism is unique.
Sketch of proof. [Unicity] Follows from the determinism of Γ^{\prime}.
$[\Leftarrow]$

A CRUCIAL RESULT

Theorem

Let Γ, Γ^{\prime} be reduced (pointed and involutive) A-automata. Then,

$$
\langle\Gamma\rangle \leqslant\left\langle\Gamma^{\prime}\right\rangle \Leftrightarrow \exists \phi: \Gamma \rightarrow \Gamma^{\prime} \text { homomorphism }
$$

and, if so, the homomorphism is unique.
Sketch of proof. [Unicity] Follows from the determinism of Γ^{\prime}.
$[\Leftarrow] \exists \phi: \Gamma \rightarrow \Gamma^{\prime}$ homomorphism $\Rightarrow \mathcal{L}(\Gamma) \leqslant \mathcal{L}(\Gamma)$

A CRUCIAL RESULT

Theorem

Let Γ, Γ^{\prime} be reduced (pointed and involutive) A-automata. Then,

$$
\langle\Gamma\rangle \leqslant\left\langle\Gamma^{\prime}\right\rangle \Leftrightarrow \exists \phi: \Gamma \rightarrow \Gamma^{\prime} \text { homomorphism }
$$

and, if so, the homomorphism is unique.
Sketch of proof. [Unicity] Follows from the determinism of Γ^{\prime}.
$[\Leftarrow] \exists \phi: \Gamma \rightarrow \Gamma^{\prime}$ homomorphism $\Rightarrow \mathcal{L}(\Gamma) \leqslant \mathcal{L}(\Gamma) \Rightarrow\langle\Gamma\rangle \leqslant\langle\Gamma\rangle$.

A CRUCIAL RESULT

Theorem

Let Γ, Γ^{\prime} be reduced (pointed and involutive) A-automata. Then,

$$
\langle\Gamma\rangle \leqslant\left\langle\Gamma^{\prime}\right\rangle \Leftrightarrow \exists \phi: \Gamma \rightarrow \Gamma^{\prime} \text { homomorphism }
$$

and, if so, the homomorphism is unique.
Sketch of proof. [Unicity] Follows from the determinism of Γ^{\prime}.
$[\Leftarrow] \exists \phi: \Gamma \rightarrow \Gamma^{\prime}$ homomorphism $\Rightarrow \mathcal{L}(\Gamma) \leqslant \mathcal{L}(\Gamma) \Rightarrow\langle\Gamma\rangle \leqslant\langle\Gamma\rangle$.
$[\Rightarrow]$

A CRUCIAL RESULT

Theorem

Let Γ, Γ^{\prime} be reduced (pointed and involutive) A-automata. Then,

$$
\langle\Gamma\rangle \leqslant\left\langle\Gamma^{\prime}\right\rangle \Leftrightarrow \exists \phi: \Gamma \rightarrow \Gamma^{\prime} \text { homomorphism }
$$

and, if so, the homomorphism is unique.
Sketch of proof. [Unicity] Follows from the determinism of Γ^{\prime}.
$[\Leftarrow] \exists \phi: \Gamma \rightarrow \Gamma^{\prime}$ homomorphism $\Rightarrow \mathcal{L}(\Gamma) \leqslant \mathcal{L}(\Gamma) \Rightarrow\langle\Gamma\rangle \leqslant\langle\Gamma\rangle$.
$[\Rightarrow]$ Take $\phi(\bullet)=\bullet^{\prime}$,

A CRUCIAL RESULT

Theorem

Let Γ, Γ^{\prime} be reduced (pointed and involutive) A-automata. Then,

$$
\langle\Gamma\rangle \leqslant\left\langle\Gamma^{\prime}\right\rangle \Leftrightarrow \exists \phi: \Gamma \rightarrow \Gamma^{\prime} \text { homomorphism }
$$

and, if so, the homomorphism is unique.
Sketch of proof. [Unicity] Follows from the determinism of Γ^{\prime}.
$[\Leftarrow] \exists \phi: \Gamma \rightarrow \Gamma^{\prime}$ homomorphism $\Rightarrow \mathcal{L}(\Gamma) \leqslant \mathcal{L}(\Gamma) \Rightarrow\langle\Gamma\rangle \leqslant\langle\Gamma\rangle$.
$[\Rightarrow]$ Take $\phi(\bullet)=\bullet^{\prime}$, and for $\bullet \neq p \in V(\Gamma)$ let $\bullet \stackrel{u}{\leadsto} p \stackrel{\vee}{\leadsto} \oplus$ be reduced.

A CRUCIAL RESULT

Theorem

Let Γ, Γ^{\prime} be reduced (pointed and involutive) A-automata. Then,

$$
\langle\Gamma\rangle \leqslant\left\langle\Gamma^{\prime}\right\rangle \Leftrightarrow \exists \phi: \Gamma \rightarrow \Gamma^{\prime} \text { homomorphism }
$$

and, if so, the homomorphism is unique.
Sketch of proof. [Unicity] Follows from the determinism of Γ^{\prime}.
$[\Leftarrow] \exists \phi: \Gamma \rightarrow \Gamma^{\prime}$ homomorphism $\Rightarrow \mathcal{L}(\Gamma) \leqslant \mathcal{L}(\Gamma) \Rightarrow\langle\Gamma\rangle \leqslant\langle\Gamma\rangle$.
$\left[\Rightarrow\right.$] Take $\phi(\bullet)=\bullet^{\prime}$, and for $\bullet \neq p \in V(\Gamma)$ let $\bullet \stackrel{u}{\leadsto} p \stackrel{\vee}{\leadsto} \bullet$ be reduced.
Then $u v$ is reduced (no cancellation) and $u v \in\langle\Gamma\rangle \Rightarrow u v \in\left\langle\Gamma^{\prime}\right\rangle$.

A CRUCIAL RESULT

Theorem

Let Γ, Γ^{\prime} be reduced (pointed and involutive) A-automata. Then,

$$
\langle\Gamma\rangle \leqslant\left\langle\Gamma^{\prime}\right\rangle \Leftrightarrow \exists \phi: \Gamma \rightarrow \Gamma^{\prime} \text { homomorphism }
$$

and, if so, the homomorphism is unique.
Sketch of proof. [Unicity] Follows from the determinism of Γ^{\prime}.
$[\Leftarrow] \exists \phi: \Gamma \rightarrow \Gamma^{\prime}$ homomorphism $\Rightarrow \mathcal{L}(\Gamma) \leqslant \mathcal{L}(\Gamma) \Rightarrow\langle\Gamma\rangle \leqslant\langle\Gamma\rangle$.
$\left[\Rightarrow\right.$] Take $\phi(\bullet)=\bullet^{\prime}$, and for $\bullet \neq p \in V(\Gamma)$ let $\bullet \stackrel{u}{\leadsto} p \xrightarrow{\vee}$ o be reduced.
Then $u v$ is reduced (no cancellation) and $u v \in\langle\Gamma\rangle \Rightarrow u v \in\left\langle\Gamma^{\prime}\right\rangle$. Let $\bullet^{\prime} \stackrel{u}{\longrightarrow} p^{\prime} \xrightarrow{v}{o^{\prime}}^{\prime}$ be reduced.

A CRUCIAL RESULT

Theorem

Let Γ, Γ^{\prime} be reduced (pointed and involutive) A-automata. Then,

$$
\langle\Gamma\rangle \leqslant\left\langle\Gamma^{\prime}\right\rangle \Leftrightarrow \exists \phi: \Gamma \rightarrow \Gamma^{\prime} \text { homomorphism }
$$

and, if so, the homomorphism is unique.
Sketch of proof. [Unicity] Follows from the determinism of Γ^{\prime}.
$[\Leftarrow] \exists \phi: \Gamma \rightarrow \Gamma^{\prime}$ homomorphism $\Rightarrow \mathcal{L}(\Gamma) \leqslant \mathcal{L}(\Gamma) \Rightarrow\langle\Gamma\rangle \leqslant\langle\Gamma\rangle$.
$\left[\Rightarrow\right.$] Take $\phi(\bullet)=\bullet^{\prime}$, and for $\bullet \neq p \in V(\Gamma)$ let $\bullet \stackrel{u}{\leadsto} p \xrightarrow{\vee}$ o be reduced.
Then $u v$ is reduced (no cancellation) and $u v \in\langle\Gamma\rangle \Rightarrow u v \in\left\langle\Gamma^{\prime}\right\rangle$. Let $0^{\prime} \stackrel{u}{u} p^{\prime} \stackrel{v}{\leadsto} 0^{\prime}$ be reduced. We define $\phi(p)=p^{\prime}$.

A CRUCIAL RESULT

Theorem

Let Γ, Γ^{\prime} be reduced (pointed and involutive) A-automata. Then,

$$
\langle\Gamma\rangle \leqslant\left\langle\Gamma^{\prime}\right\rangle \Leftrightarrow \exists \phi: \Gamma \rightarrow \Gamma^{\prime} \text { homomorphism }
$$

and, if so, the homomorphism is unique.

Sketch of proof. [Unicity] Follows from the determinism of Γ^{\prime}.
$[\Leftarrow] \exists \phi: \Gamma \rightarrow \Gamma^{\prime}$ homomorphism $\Rightarrow \mathcal{L}(\Gamma) \leqslant \mathcal{L}(\Gamma) \Rightarrow\langle\Gamma\rangle \leqslant\langle\Gamma\rangle$. $\left[\Rightarrow\right.$] Take $\phi(\bullet)=\bullet^{\prime}$, and for $\bullet \neq p \in V(\Gamma)$ let $\bullet \stackrel{u}{\sim} p \xrightarrow{\vee} \bullet$ be reduced. Then $u v$ is reduced (no cancellation) and $u v \in\langle\Gamma\rangle \Rightarrow u v \in\left\langle\Gamma^{\prime}\right\rangle$. Let ${o^{\prime}}^{\prime} \xrightarrow{u} \rightarrow p^{\prime} \stackrel{v}{\leadsto} 0^{\prime}$ be reduced. We define $\phi(p)=p^{\prime}$.
(i) $\phi: \Gamma \rightarrow \Gamma^{\prime}$ is well defined by the determinism of Γ^{\prime} (why?).

A CRUCIAL RESULT

Theorem

Let Γ, Γ^{\prime} be reduced (pointed and involutive) A-automata. Then,

$$
\langle\Gamma\rangle \leqslant\left\langle\Gamma^{\prime}\right\rangle \Leftrightarrow \exists \phi: \Gamma \rightarrow \Gamma^{\prime} \text { homomorphism }
$$

and, if so, the homomorphism is unique.
Sketch of proof. [Unicity] Follows from the determinism of Γ^{\prime}.
$[\Leftarrow] \exists \phi: \Gamma \rightarrow \Gamma^{\prime}$ homomorphism $\Rightarrow \mathcal{L}(\Gamma) \leqslant \mathcal{L}(\Gamma) \Rightarrow\langle\Gamma\rangle \leqslant\langle\Gamma\rangle$. $\left[\Rightarrow\right.$] Take $\phi(\bullet)=\bullet^{\prime}$, and for $\bullet \neq p \in V(\Gamma)$ let $\bullet \stackrel{u}{\leadsto} p \xrightarrow{\vee}$ o be reduced. Then $u v$ is reduced (no cancellation) and $u v \in\langle\Gamma\rangle \Rightarrow u v \in\left\langle\Gamma^{\prime}\right\rangle$. Let $0^{\prime} \stackrel{u}{\sim} p^{\prime} \stackrel{v}{\leadsto} 0^{\prime}$ be reduced. We define $\phi(p)=p^{\prime}$.
(i) $\phi: \Gamma \rightarrow \Gamma^{\prime}$ is well defined by the determinism of Γ^{\prime} (why?).
(ii) $\phi: \Gamma \rightarrow \Gamma^{\prime}$ is a homomorphism:

A CRUCIAL RESULT

Theorem

Let Γ, Γ^{\prime} be reduced (pointed and involutive) A-automata. Then,

$$
\langle\Gamma\rangle \leqslant\left\langle\Gamma^{\prime}\right\rangle \Leftrightarrow \exists \phi: \Gamma \rightarrow \Gamma^{\prime} \text { homomorphism }
$$

and, if so, the homomorphism is unique.

Sketch of proof. [Unicity] Follows from the determinism of Γ^{\prime}. $[\Leftarrow] \exists \phi: \Gamma \rightarrow \Gamma^{\prime}$ homomorphism $\Rightarrow \mathcal{L}(\Gamma) \leqslant \mathcal{L}(\Gamma) \Rightarrow\langle\Gamma\rangle \leqslant\langle\Gamma\rangle$. $\left[\Rightarrow\right.$] Take $\phi(\bullet)=\bullet^{\prime}$, and for $\bullet \neq p \in V(\Gamma)$ let $\bullet \stackrel{u}{\sim} p \stackrel{\vee}{\leadsto} \bullet$ be reduced. Then $u v$ is reduced (no cancellation) and $u v \in\langle\Gamma\rangle \Rightarrow u v \in\left\langle\Gamma^{\prime}\right\rangle$. Let ${o^{\prime}}^{\prime} \xrightarrow{u} p^{\prime} \stackrel{v}{\leadsto} 0^{\prime}$ be reduced. We define $\phi(p)=p^{\prime}$.
(i) $\phi: \Gamma \rightarrow \Gamma^{\prime}$ is well defined by the determinism of Γ^{\prime} (why?).
(ii) $\phi: \Gamma \rightarrow \Gamma^{\prime}$ is a homomorphism: given $\mathrm{e} \equiv \mathrm{p} \xrightarrow{a} \mathrm{q}$, let

- $\xrightarrow{u} p \xrightarrow{a} q \xrightarrow{v}$ o be reduced,

A CRUCIAL RESULT

Theorem

Let Γ, Γ^{\prime} be reduced (pointed and involutive) A-automata. Then,

$$
\langle\Gamma\rangle \leqslant\left\langle\Gamma^{\prime}\right\rangle \Leftrightarrow \exists \phi: \Gamma \rightarrow \Gamma^{\prime} \text { homomorphism }
$$

and, if so, the homomorphism is unique.
Sketch of proof. [Unicity] Follows from the determinism of Γ^{\prime}. $[\Leftarrow] \exists \phi: \Gamma \rightarrow \Gamma^{\prime}$ homomorphism $\Rightarrow \mathcal{L}(\Gamma) \leqslant \mathcal{L}(\Gamma) \Rightarrow\langle\Gamma\rangle \leqslant\langle\Gamma\rangle$. $\left[\Rightarrow\right.$] Take $\phi(\odot)=\bullet^{\prime}$, and for $\bullet \neq p \in V(\Gamma)$ let $\bullet \stackrel{u}{\leadsto} p \stackrel{\vee}{\leadsto} \odot$ be reduced. Then $u v$ is reduced (no cancellation) and $u v \in\langle\Gamma\rangle \Rightarrow u v \in\left\langle\Gamma^{\prime}\right\rangle$. Let $0^{\prime} \stackrel{u}{\sim} p^{\prime} \stackrel{v}{\imath} 0^{\prime}$ be reduced. We define $\phi(p)=p^{\prime}$.
(i) $\phi: \Gamma \rightarrow \Gamma^{\prime}$ is well defined by the determinism of Γ^{\prime} (why?).
(ii) $\phi: \Gamma \rightarrow \Gamma^{\prime}$ is a homomorphism: given $\mathrm{e} \equiv \mathrm{p} \xrightarrow{a} q$, let

- $\xrightarrow{u} p \xrightarrow{a} q \xrightarrow{v}$ o be reduced, hence uav $\in\langle\Gamma\rangle \leqslant\left\langle\Gamma^{\prime}\right\rangle$ (no cancellation),

A CRUCIAL RESULT

Theorem

Let Γ, Γ^{\prime} be reduced (pointed and involutive) A-automata. Then,

$$
\langle\Gamma\rangle \leqslant\left\langle\Gamma^{\prime}\right\rangle \Leftrightarrow \exists \phi: \Gamma \rightarrow \Gamma^{\prime} \text { homomorphism }
$$

and, if so, the homomorphism is unique.
Sketch of proof. [Unicity] Follows from the determinism of Γ^{\prime}. $[\Leftarrow] \exists \phi: \Gamma \rightarrow \Gamma^{\prime}$ homomorphism $\Rightarrow \mathcal{L}(\Gamma) \leqslant \mathcal{L}(\Gamma) \Rightarrow\langle\Gamma\rangle \leqslant\langle\Gamma\rangle$. $[\Rightarrow]$ Take $\phi(\bullet)=\bullet^{\prime}$, and for $\bullet \neq p \in V(\Gamma)$ let $\bullet \stackrel{u}{\sim} p \stackrel{\vee}{\leadsto} \bullet$ be reduced. Then $u v$ is reduced (no cancellation) and $u v \in\langle\Gamma\rangle \Rightarrow u v \in\left\langle\Gamma^{\prime}\right\rangle$. Let $0^{\prime} \stackrel{u}{\sim} p^{\prime} \stackrel{v}{\imath} 0^{\prime}$ be reduced. We define $\phi(p)=p^{\prime}$.
(i) $\phi: \Gamma \rightarrow \Gamma^{\prime}$ is well defined by the determinism of Γ^{\prime} (why?).
(ii) $\phi: \Gamma \rightarrow \Gamma^{\prime}$ is a homomorphism: given $e \equiv p \xrightarrow{a} q$, let

- $\xrightarrow{u} p \xrightarrow{a} q \xrightarrow{v}$ o be reduced,
hence uav $\in\langle\Gamma\rangle \leqslant\left\langle\Gamma^{\prime}\right\rangle$ (no cancellation), and therefore there exists ${o^{\prime}}^{\prime} \xrightarrow{u} \phi(p) \xrightarrow{a} \phi(q) \stackrel{v}{\longrightarrow} 0^{\prime}$ reduced.

A CRUCIAL RESULT

Theorem

Let Γ, Γ^{\prime} be reduced (pointed and involutive) A-automata. Then,

$$
\langle\Gamma\rangle \leqslant\left\langle\Gamma^{\prime}\right\rangle \Leftrightarrow \exists \phi: \Gamma \rightarrow \Gamma^{\prime} \text { homomorphism }
$$

and, if so, the homomorphism is unique.

Sketch of proof. [Unicity] Follows from the determinism of Γ^{\prime}. $[\Leftarrow] \exists \phi: \Gamma \rightarrow \Gamma^{\prime}$ homomorphism $\Rightarrow \mathcal{L}(\Gamma) \leqslant \mathcal{L}(\Gamma) \Rightarrow\langle\Gamma\rangle \leqslant\langle\Gamma\rangle$. $\left[\Rightarrow\right.$] Take $\phi(\bullet)=\bullet^{\prime}$, and for $\bullet \neq p \in V(\Gamma)$ let $\bullet \stackrel{u}{\leadsto} p \stackrel{\vee}{\leadsto} \bullet$ be reduced. Then $u v$ is reduced (no cancellation) and $u v \in\langle\Gamma\rangle \Rightarrow u v \in\left\langle\Gamma^{\prime}\right\rangle$. Let $0^{\prime} \stackrel{u}{\sim} p^{\prime} \stackrel{v}{\imath} 0^{\prime}$ be reduced. We define $\phi(p)=p^{\prime}$.
(i) $\phi: \Gamma \rightarrow \Gamma^{\prime}$ is well defined by the determinism of Γ^{\prime} (why?).
(ii) $\phi: \Gamma \rightarrow \Gamma^{\prime}$ is a homomorphism: given $e \equiv p \xrightarrow{a} q$, let

- $\xrightarrow{u} p \xrightarrow{a} q \xrightarrow{v}$ o be reduced,
hence uav $\in\langle\Gamma\rangle \leqslant\left\langle\Gamma^{\prime}\right\rangle$ (no cancellation), and therefore there exists ${o^{\prime}}^{u} \xrightarrow{u} \phi(p) \xrightarrow{a} \phi(q) \xrightarrow{\vee}{o^{\prime}}^{\prime}$ reduced. So $\phi(p) \xrightarrow{a} \phi(q)$.

STALLINGS BIJECTION

Corollary

If Γ is a reduced A-automata, then the only homomorphism $\Gamma \rightarrow \Gamma$ is the identity.

STALLINGS BIJECTION

Corollary

If Γ is a reduced A-automata, then the only homomorphism $\Gamma \rightarrow \Gamma$ is the identity.

Corollary
If Γ, Γ^{\prime} are reduced A-automata, then

$$
\langle\Gamma\rangle=\left\langle\Gamma^{\prime}\right\rangle \Leftrightarrow \Gamma \simeq \Gamma^{\prime}
$$

STALLINGS BIJECTION

Corollary

If Γ is a reduced A-automata, then the only homomorphism $\Gamma \rightarrow \Gamma$ is the identity.

Corollary If Γ, Γ^{\prime} are reduced A-automata, then

$$
\langle\Gamma\rangle=\left\langle\Gamma^{\prime}\right\rangle \Leftrightarrow \Gamma \simeq \Gamma^{\prime}
$$

Theorem (Stallings, 1983)

Let \mathbb{F}_{A} be a free group with basis A. Then,

$$
\begin{aligned}
\left\{\text { subgroups of } \mathbb{F}_{A}\right\} & \leftrightarrow\{(\text { isom. classes of }) \text { reduced A-automata }\} \\
H & \mapsto S t(H, A) \\
\langle\Gamma\rangle & \leftrightarrow \Gamma
\end{aligned}
$$

is a bijection.

STALLINGS FOLDING PROCESS

Given a finite generating set $S=\left\{w_{1}, \ldots, w_{k}\right\}$ of $H \leqslant \mathbb{F}_{A}=\mathbb{F}_{\left\{a_{1}, \ldots, a_{n}\right\}}$,

STALLINGS FOLDING PROCESS

Given a finite generating set $S=\left\{w_{1}, \ldots, w_{k}\right\}$ of $H \leqslant \mathbb{F}_{A}=\mathbb{F}_{\left\{a_{1}, \ldots, a_{n}\right\}}$,

STALLINGS FOLDING PROCESS

Given a finite generating set $S=\left\{w_{1}, \ldots, w_{k}\right\}$ of $H \leqslant \mathbb{F}_{A}=\mathbb{F}_{\left\{a_{1}, \ldots, a_{n}\right\}}$,

1. Represent every $w_{i}=a_{i_{1}} a_{i_{2}} a_{i_{3}} \cdots a_{i_{\rho}}$ as a petal automaton

STALLINGS FOLDING PROCESS

Given a finite generating set $S=\left\{w_{1}, \ldots, w_{k}\right\}$ of $H \leqslant \mathbb{F}_{A}=\mathbb{F}_{\left\{a_{1}, \ldots, a_{n}\right\}}$,

1. Represent every $w_{i}=a_{i_{1}} a_{i_{2}} a_{i_{3}} \cdots a_{i_{\rho}}$ as a petal automaton

STALLINGS FOLDING PROCESS

Given a finite generating set $S=\left\{w_{1}, \ldots, w_{k}\right\}$ of $H \leqslant \mathbb{F}_{A}=\mathbb{F}_{\left\{a_{1}, \ldots, a_{n}\right\}}$,

1. Represent every $w_{i}=a_{i_{1}} a_{i_{2}} a_{i_{3}} \cdots a_{i_{\rho}}$ as a petal automaton

2. Identify the basepoints to obtain the flower automaton $\mathcal{F}(S)$.

STALLINGS FOLDING PROCESS

Given a finite generating set $S=\left\{w_{1}, \ldots, w_{k}\right\}$ of $H \leqslant \mathbb{F}_{A}=\mathbb{F}_{\left\{a_{1}, \ldots, a_{n}\right\}}$,

1. Represent every $w_{i}=a_{i_{1}} a_{i_{2}} a_{i_{3}} \cdots a_{i_{\rho}}$ as a petal automaton

2. Identify the basepoints to obtain the flower automaton $\mathcal{F}(S)$.

STALLINGS FOLDING PROCESS

Given a finite generating set $S=\left\{w_{1}, \ldots, w_{k}\right\}$ of $H \leqslant \mathbb{F}_{A}=\mathbb{F}_{\left\{a_{1}, \ldots, a_{n}\right\}}$,

1. Represent every $w_{i}=a_{i_{1}} a_{i_{2}} a_{i_{3}} \cdots a_{i_{\rho}}$ as a petal automaton

2. Identify the basepoints to obtain the flower automaton $\mathcal{F}(S)$.

3. Identify (fold) incident arcs with the same labels:

STALLINGS FOLDING PROCESS

Given a finite generating set $S=\left\{w_{1}, \ldots, w_{k}\right\}$ of $H \leqslant \mathbb{F}_{A}=\mathbb{F}_{\left\{a_{1}, \ldots, a_{n}\right\}}$,

1. Represent every $w_{i}=a_{i_{1}} a_{i_{2}} a_{i_{3}} \cdots a_{i_{\rho}}$ as a petal automaton

2. Identify the basepoints to obtain the flower automaton $\mathcal{F}(S)$.

3. Identify (fold) incident arcs with the same labels:

STALLINGS FOLDING PROCESS

Given a finite generating set $S=\left\{w_{1}, \ldots, w_{k}\right\}$ of $H \leqslant \mathbb{F}_{A}=\mathbb{F}_{\left\{a_{1}, \ldots, a_{n}\right\}}$,

1. Represent every $w_{i}=a_{i_{1}} a_{i_{2}} a_{i_{3}} \cdots a_{i_{\rho}}$ as a petal automaton

2. Identify the basepoints to obtain the flower automaton $\mathcal{F}(S)$.

3. Identify (fold) incident arcs with the same labels:

4. Keep folding until (necessarily) reaching St(H).

COMPUTABILITY OF THE STALLINGS AUTOMATON (\mapsto)

COMPUTABILITY OF THE STALLINGS AUTOMATON (\mapsto)

Let $S=\left\{w_{1}, \ldots, w_{k}\right\}$ be a generating set of $H \leqslant \mathbb{F}_{A}$

COMPUTABILITY OF THE STALLINGS AUTOMATON (\mapsto)

Let $S=\left\{w_{1}, \ldots, w_{k}\right\}$ be a generating set of $H \leqslant \mathbb{F}_{A}$
Remark: The folding sequence on $\mathrm{Fl}(\mathrm{S})$ is not necessarily unique.

COMPUTABILITY OF THE STALLINGS AUTOMATON (\mapsto)

Let $S=\left\{w_{1}, \ldots, w_{k}\right\}$ be a generating set of $H \leqslant \mathbb{F}_{A}$
Remark: The folding sequence on $\mathrm{Fl}(\mathrm{S})$ is not necessarily unique.

Proposition

If S is finite then any folding sequence on $\mathrm{Fl}(\mathrm{S})$ ends at $\mathrm{St}(\mathrm{H})$.

COMPUTABILITY OF THE STALLINGS AUTOMATON (\mapsto)

Let $S=\left\{w_{1}, \ldots, w_{k}\right\}$ be a generating set of $H \leqslant \mathbb{F}_{A}$
Remark: The folding sequence on $\mathrm{Fl}(\mathrm{S})$ is not necessarily unique.

Proposition

If S is finite then any folding sequence on $\mathrm{Fl}(S)$ ends at $\mathrm{St}(H)$.
Proof. Recall:

COMPUTABILITY OF THE STALLINGS AUTOMATON (\mapsto)

Let $S=\left\{w_{1}, \ldots, w_{k}\right\}$ be a generating set of $H \leqslant \mathbb{F}_{A}$
Remark: The folding sequence on $\mathrm{Fl}(S)$ is not necessarily unique.

Proposition

If S is finite then any folding sequence on $\mathrm{Fl}(\mathrm{S})$ ends at $\mathrm{St}(\mathrm{H})$.
Proof. Recall:

- $\mathrm{Fl}(\mathrm{S})$ recognizes H and is core,

COMPUTABILITY OF THE STALLINGS AUTOMATON (\mapsto)

Let $S=\left\{w_{1}, \ldots, w_{k}\right\}$ be a generating set of $H \leqslant \mathbb{F}_{A}$
Remark: The folding sequence on $\mathrm{Fl}(S)$ is not necessarily unique.

Proposition

If S is finite then any folding sequence on $\mathrm{Fl}(\mathrm{S})$ ends at $\mathrm{St}(\mathrm{H})$.
Proof. Recall:

- $\mathrm{Fl}(\mathrm{S})$ recognizes H and is core,
- foldings do not break coreness*,

COMPUTABILITY OF THE STALLINGS AUTOMATON (\mapsto)

Let $S=\left\{w_{1}, \ldots, w_{k}\right\}$ be a generating set of $H \leqslant \mathbb{F}_{A}$
Remark: The folding sequence on $\mathrm{Fl}(\mathrm{S})$ is not necessarily unique.

Proposition

If S is finite then any folding sequence on $\mathrm{Fl}(\mathrm{S})$ ends at $\mathrm{St}(\mathrm{H})$.
Proof. Recall:

- $\mathrm{Fl}(\mathrm{S})$ recognizes H and is core,
- foldings do not break coreness*,
- foldings do not change the recognized subgroup,

COMPUTABILITY OF THE STALLINGS AUTOMATON (\mapsto)

Let $S=\left\{w_{1}, \ldots, w_{k}\right\}$ be a generating set of $H \leqslant \mathbb{F}_{A}$
Remark: The folding sequence on $\mathrm{Fl}(\mathrm{S})$ is not necessarily unique.

Proposition

If S is finite then any folding sequence on $\mathrm{Fl}(\mathrm{S})$ ends at $\mathrm{St}(\mathrm{H})$.

Proof. Recall:

- $\mathrm{Fl}(\mathrm{S})$ recognizes H and is core,
- foldings do not break coreness*,
- foldings do not change the recognized subgroup,
- every folding reduces the number of arcs by one.

COMPUTABILITY OF THE STALLINGS AUTOMATON (\mapsto)

Let $S=\left\{w_{1}, \ldots, w_{k}\right\}$ be a generating set of $H \leqslant \mathbb{F}_{A}$
Remark: The folding sequence on $\mathrm{Fl}(S)$ is not necessarily unique.

Proposition

If S is finite then any folding sequence on $\mathrm{Fl}(\mathrm{S})$ ends at $\mathrm{St}(H)$.

Proof. Recall:

- $\mathrm{Fl}(\mathrm{S})$ recognizes H and is core,
- foldings do not break coreness*,
- foldings do not change the recognized subgroup,
- every folding reduces the number of arcs by one.

If $\mathrm{Fl}(\mathrm{S})$ is finite, after a finite number of foldings, no more foldings are available: the resulting object is deterministic \& core (i.e., reduced) and recognizes H. Since such an object is unique, it must be $\operatorname{St}(H)$. \square

COMPUTABILITY OF THE STALLINGS AUTOMATON (\mapsto)

Let $S=\left\{w_{1}, \ldots, w_{k}\right\}$ be a generating set of $H \leqslant \mathbb{F}_{A}$
Remark: The folding sequence on $\mathrm{Fl}(S)$ is not necessarily unique.

Proposition

If S is finite then any folding sequence on $\mathrm{Fl}(\mathrm{S})$ ends at $\mathrm{St}(\mathrm{H})$.

Proof. Recall:

- $\mathrm{Fl}(\mathrm{S})$ recognizes H and is core,
- foldings do not break coreness*,
- foldings do not change the recognized subgroup,
- every folding reduces the number of arcs by one.

If $\mathrm{Fl}(\mathrm{S})$ is finite, after a finite number of foldings, no more foldings are available: the resulting object is deterministic \& core (i.e., reduced) and recognizes H . Since such an object is unique, it must be $\mathrm{St}(\mathrm{H})$. \square

Remark: the result of the folding process depends neither on the folding sequence nor on the starting (finite) generating set for H.

EXAMPLE

EXAMPLE
Let $H=\langle\underbrace{a^{-1} b a b^{-1}}_{u_{1}}, \underbrace{a^{3}}_{u_{2}}, \underbrace{a b a b^{-1}}_{u_{3}}\rangle \leqslant \mathbb{F}_{\{a, b\}}$.

EXAMPLE

$$
\text { Let } H=\langle\underbrace{a^{-1} b a b^{-1}}_{u_{1}}, \underbrace{a^{3}}_{u_{2}}, \underbrace{a b a b^{-1}}_{u_{3}}\rangle \leqslant \mathbb{F}_{\{a, b\}} .
$$

Then, we start by drawing the flower automaton $\mathrm{Fl}\left(u_{1}, u_{2}, u_{3}\right)$:

EXAMPLE

$$
\text { Let } H=\langle\underbrace{a^{-1} b a b^{-1}}_{u_{1}}, \underbrace{a^{3}}_{u_{2}}, \underbrace{a b a b^{-1}}_{u_{3}}\rangle \leqslant \mathbb{F}_{\{a, b\}} .
$$

Then, we start by drawing the flower automaton $\mathrm{Fl}\left(u_{1}, u_{2}, u_{3}\right)$:

$$
\Gamma_{0}=\mathrm{Fl}(S)
$$

EXAMPLE

$$
\text { Let } H=\langle\underbrace{a^{-1} b a b^{-1}}_{u_{1}}, \underbrace{a^{3}}_{u_{2}}, \underbrace{a b a b^{-1}}_{u_{3}}\rangle \leqslant \mathbb{F}_{\{a, b\}} .
$$

Then, we start by drawing the flower automaton $\mathrm{Fl}\left(u_{1}, u_{2}, u_{3}\right)$:

$$
\Gamma_{0}=\mathrm{Fl}(S)
$$

EXAMPLE

$$
\text { Let } H=\langle\underbrace{a^{-1} b a b^{-1}}_{u_{1}}, \underbrace{a^{3}}_{u_{2}}, \underbrace{a b a b^{-1}}_{u_{3}}\rangle \leqslant \mathbb{F}_{\{a, b\}} .
$$

Then, we start by drawing the flower automaton $\mathrm{Fl}\left(u_{1}, u_{2}, u_{3}\right)$:

$$
\Gamma_{0}=\mathrm{Fl}(S)
$$

EXAMPLE

$$
\text { Let } H=\langle\underbrace{a^{-1} b a b^{-1}}_{u_{1}}, \underbrace{a^{3}}_{u_{2}}, \underbrace{a b a b^{-1}}_{u_{3}}\rangle \leqslant \mathbb{F}_{\{a, b\}} .
$$

Then, we start by drawing the flower automaton $\mathrm{Fl}\left(u_{1}, u_{2}, u_{3}\right)$:

EXAMPLE

$$
\text { Let } H=\langle\underbrace{a^{-1} b a b^{-1}}_{u_{1}}, \underbrace{a^{3}}_{u_{2}}, \underbrace{a b a b^{-1}}_{u_{3}}\rangle \leqslant \mathbb{F}_{\{a, b\}} .
$$

Then, we start by drawing the flower automaton $\mathrm{Fl}\left(u_{1}, u_{2}, u_{3}\right)$:

EXAMPLE

$$
\text { Let } H=\langle\underbrace{a^{-1} b a b^{-1}}_{u_{1}}, \underbrace{a^{3}}_{u_{2}}, \underbrace{a b a b^{-1}}_{u_{3}}\rangle \leqslant \mathbb{F}_{\{a, b\}} .
$$

Then, we start by drawing the flower automaton $\mathrm{Fl}\left(u_{1}, u_{2}, u_{3}\right)$:

EXAMPLE

$$
\text { Let } H=\langle\underbrace{a^{-1} b a b^{-1}}_{u_{1}}, \underbrace{a^{3}}_{u_{2}}, \underbrace{a b a b^{-1}}_{u_{3}}\rangle \leqslant \mathbb{F}_{\{a, b\}} .
$$

Then, we start by drawing the flower automaton $\mathrm{Fl}\left(u_{1}, u_{2}, u_{3}\right)$:

COMPUTABILITY OF GENERATORS (\leftarrow). FREENESS

COMPUTABILITY OF GENERATORS ($\leftarrow)$. FREENESS

Theorem

Let Γ be a connected A-automaton, let T be an spanning tree of Γ, and let

$$
S_{T}=\left\{\bar{\ell}\left(\bullet \xrightarrow{\top} \bullet \bullet \xrightarrow{e} \xrightarrow{\top}_{\longrightarrow} \text {) }: \mathrm{e} \in \mathrm{E}^{+} \Gamma \backslash \mathrm{ET}\right\}\right.
$$

Then,

COMPUTABILITY OF GENERATORS ($\leftarrow)$. FREENESS

Theorem

Let Γ be a connected A-automaton, let T be an spanning tree of Γ, and let

$$
S_{T}=\left\{\bar{\ell}\left(\bullet \xrightarrow{\top} \bullet \bullet \xrightarrow{e} \xrightarrow{\top}_{\longrightarrow} \text {) }: \mathrm{e} \in \mathrm{E}^{+} \Gamma \backslash \mathrm{ET}\right\}\right.
$$

Then,
i) S_{T} is a generating set for $\langle\Gamma\rangle$,

COMPUTABILITY OF GENERATORS ($\leftarrow)$. FREENESS

Theorem

Let Γ be a connected A-automaton, let T be an spanning tree of Γ, and let

$$
S_{T}=\left\{\bar{\ell}\left(\odot \xrightarrow{\top} \bullet \bullet \xrightarrow{e} \stackrel{\sim}{\top}^{\top}\right): \mathrm{e} \in \mathrm{E}^{+} \Gamma \backslash \mathrm{ET}\right\}
$$

Then,
i) S_{T} is a generating set for $\langle\Gamma\rangle$,

Sketch of proof. i) Let $w=\bar{\ell}(\gamma) \in\langle\Gamma\rangle$, where γ is reduced. Write:

where $e_{1}, \ldots, e_{l} \in \mathrm{E}^{+} \Gamma \backslash E T$ and $\epsilon_{j}= \pm 1$.

COMPUTABILITY OF GENERATORS ($\leftarrow)$. FREENESS

Theorem

Let Γ be a connected A-automaton, let T be an spanning tree of Γ, and let

$$
S_{T}=\left\{\bar{\ell}(\odot \xrightarrow{\top} \bullet \bullet \xrightarrow{\mathrm{e}} \stackrel{\sim}{\top} \odot): \mathrm{e} \in \mathrm{E}^{+} \Gamma \backslash \mathrm{ET}\right\}
$$

Then,
i) S_{T} is a generating set for $\langle\Gamma\rangle$,

Sketch of proof. i) Let $w=\bar{\ell}(\gamma) \in\langle\Gamma\rangle$, where γ is reduced. Write:
where $\mathrm{e}_{1}, \ldots, \mathrm{e}_{l} \in \mathrm{E}^{+} \Gamma \backslash E T$ and $\epsilon_{j}= \pm 1$. Now consider

It is clear that $w=\bar{\ell}(\gamma)=\bar{\ell}\left(\gamma^{\prime}\right)=w_{\mathrm{e}_{1}}^{\epsilon_{1}} w_{\mathrm{e}_{2}}^{\epsilon_{2}} \cdots w_{\mathrm{e}_{l}}^{\epsilon_{l}} \in\left\langle S_{T}\right\rangle$.

COMPUTABILITY OF GENERATORS ($\leftarrow)$. FREENESS

Theorem

Let Γ be a connected A-automaton, let T be an spanning tree of Γ, and let

$$
S_{T}=\left\{\bar{\ell}\left(\bullet \xrightarrow{\top} \bullet \bullet \xrightarrow{e} \xrightarrow{\top}_{\longrightarrow} \text {) }: \mathrm{e} \in \mathrm{E}^{+} \Gamma \backslash \mathrm{ET}\right\}\right.
$$

Then,
i) S_{T} is a generating set for $\langle\Gamma\rangle$,
ii) if Γ is deterministic, then $\langle\Gamma\rangle$ is free with basis $S_{T}, \quad(r k\langle\Gamma\rangle=\mathrm{rk} \Gamma)$

Sketch of proof.

COMPUTABILITY OF GENERATORS ($\leftarrow)$. FREENESS

Theorem

Let Γ be a connected A-automaton, let T be an spanning tree of Γ, and let

$$
S_{T}=\left\{\bar{\ell}\left(\odot \xrightarrow{\top} \bullet \bullet \xrightarrow{e} \xrightarrow{\top}_{\longrightarrow} 0\right): \mathrm{e} \in \mathrm{E}^{+} \Gamma \backslash E T\right\}
$$

Then,
i) S_{T} is a generating set for $\langle\Gamma\rangle$,
ii) if Γ is deterministic, then $\langle\Gamma\rangle$ is free with basis $S_{T}, \quad(r k\langle\Gamma\rangle=\mathrm{rk} \Gamma)$

Sketch of proof. ii) Let $1 \neq w=w_{\mathrm{e}_{1}}^{\epsilon_{1}} w_{\mathrm{e}_{2}}^{\epsilon_{2}} \cdots w_{\mathrm{e}_{l}}^{\epsilon_{l}}$ reduced in $S_{T}=\left\{w_{\mathrm{e}_{i}}\right\} j$.
Then,

The last walk is nontrivial and reduced. Since Γ is deterministic, $\bar{w} \neq 1$.

COMPUTABILITY OF GENERATORS ($\leftarrow)$. FREENESS

Theorem

Let Γ be a connected A-automaton, let T be an spanning tree of Γ, and let

$$
S_{T}=\left\{\bar{\ell}\left(\odot \xrightarrow{\top} \bullet \bullet \xrightarrow{e} \xrightarrow{\top}_{\longrightarrow} 0\right): \mathrm{e} \in \mathrm{E}^{+} \Gamma \backslash E T\right\}
$$

Then,
i) S_{T} is a generating set for $\langle\Gamma\rangle$,
ii) if Γ is deterministic, then $\langle\Gamma\rangle$ is free with basis $S_{T}, \quad(r k\langle\Gamma\rangle=\mathrm{rk} \Gamma)$

Sketch of proof. ii) Let $1 \neq w=w_{\mathrm{e}_{1}}^{\epsilon_{1}} w_{\mathrm{e}_{2}}^{\epsilon_{2}} \cdots w_{\mathrm{e}_{l}}^{\epsilon_{l}}$ reduced in $S_{T}=\left\{w_{\mathrm{e}_{i}}\right\} j$.
Then,

The last walk is nontrivial and reduced. Since Γ is deterministic, $\bar{w} \neq 1$.

COMPUTABILITY OF GENERATORS ($\leftarrow)$. FREENESS

Theorem

Let Γ be a connected A-automaton, let T be an spanning tree of Γ, and let

$$
S_{T}=\left\{\bar{\ell}\left(\odot \xrightarrow{\top} \bullet \bullet \xrightarrow{e} \xrightarrow{\top}_{\longrightarrow} \text {) }: \mathrm{e} \in \mathrm{E}^{+} \Gamma \backslash \mathrm{ET}\right\}\right.
$$

Then,
i) S_{T} is a generating set for $\langle\Gamma\rangle$,
ii) if Γ is deterministic, then $\langle\Gamma\rangle$ is free with basis $S_{T}, \quad(\mathrm{rk}\langle\Gamma\rangle=\mathrm{rk} \Gamma)$
iii) if Γ is reduced, then $\langle\Gamma\rangle$ is f.g. if and only if Γ is finite, and then

$$
\mathrm{rk}\langle\Gamma\rangle=1-\# \mathrm{~V} \Gamma+\# \mathrm{E}^{+} \Gamma
$$

Sketch of proof.

COMPUTABILITY OF GENERATORS ($\leftarrow)$. FREENESS

Theorem

Let Γ be a connected A-automaton, let T be an spanning tree of Γ, and let

$$
S_{T}=\left\{\bar{\ell}\left(\odot \xrightarrow{\top} \bullet \bullet \xrightarrow{e} \xrightarrow{\top}_{\longrightarrow} 0\right): \mathrm{e} \in \mathrm{E}^{+} \Gamma \backslash E T\right\}
$$

Then,
i) S_{T} is a generating set for $\langle\Gamma\rangle$,
ii) if Γ is deterministic, then $\langle\Gamma\rangle$ is free with basis $S_{T}, \quad(\mathrm{rk}\langle\Gamma\rangle=\mathrm{rk} \Gamma)$
iii) if Γ is reduced, then $\langle\Gamma\rangle$ is $f . g$. if and only if Γ is finite, and then

$$
\operatorname{rk}\langle\Gamma\rangle=1-\# \mathrm{~V} \Gamma+\# \mathrm{E}^{+} \Gamma
$$

Sketch of proof. iii) Assume that Γ is reduced.
If Γ is finite, then $r k\langle\Gamma\rangle=\#\left(E^{+} \backslash E T\right)<\infty$.
If $\mathrm{rk} \Gamma=\mathrm{rk}(\operatorname{core}(\Gamma))<\infty$ then Γ is finite (why?).
Then, $\mathrm{rk}\langle\Gamma\rangle=\mathrm{rk} \Gamma=\# \mathrm{E} \Gamma^{+}-\# \mathrm{~V} \Gamma+1$.

EXAMPLE

$$
\text { Let } H=\langle\underbrace{a^{-1} b a b^{-1}}_{u_{1}}, \underbrace{a^{3}}_{u_{2}}, \underbrace{a b a b^{-1}}_{u_{3}}\rangle \leqslant \mathbb{F}_{\{a, b\}} .
$$

Then, we start by drawing the flower automaton $\mathrm{Fl}\left(u_{1}, u_{2}, u_{3}\right)$:

EXAMPLE

$$
\text { Let } H=\langle\underbrace{a^{-1} b a b^{-1}}_{u_{1}}, \underbrace{a^{3}}_{u_{2}}, \underbrace{a b a b^{-1}}_{u_{3}}\rangle \leqslant \mathbb{F}_{\{a, b\}} .
$$

Then, we start by drawing the flower automaton $\mathrm{Fl}\left(u_{1}, u_{2}, u_{3}\right)$:

EXAMPLE

$$
\text { Let } H=\langle\underbrace{a^{-1} b a b^{-1}}_{u_{1}}, \underbrace{a^{3}}_{u_{2}}, \underbrace{a b a b^{-1}}_{u_{3}}\rangle \leqslant \mathbb{F}_{\{a, b\}} .
$$

Then, we start by drawing the flower automaton $\mathrm{Fl}\left(u_{1}, u_{2}, u_{3}\right)$:

EXAMPLE

$$
\text { Let } H=\langle\underbrace{a^{-1} b a b^{-1}}_{u_{1}}, \underbrace{a^{3}}_{u_{2}}, \underbrace{a b a b^{-1}}_{u_{3}}\rangle \leqslant \mathbb{F}_{\{a, b\}} .
$$

Then, we start by drawing the flower automaton $\mathrm{Fl}\left(u_{1}, u_{2}, u_{3}\right)$:

$$
\Gamma_{0}=\operatorname{Fl}(S)
$$

Hence, $\left\{a, b a b^{-1}\right\}$ is a free basis of H, which is free of rank 2.

STALLINGS BIJECTION (FULL RESULT)

Let \mathbb{F}_{A} be the free group with basis A.

STALLINGS BIJECTION (FULL RESULT)

Let \mathbb{F}_{A} be the free group with basis A.

Theorem

There exists a (computable) bijection:

$$
\begin{aligned}
\left\{(f . g .) \text { subgroups of } \mathbb{F}_{A}\right\} & \longrightarrow \mathbb{S}=\{(\text { finite }) \text { reduced A-automata }\} \\
H & \longmapsto \operatorname{St}(H, A) \\
\langle\Gamma\rangle & \longleftrightarrow \Gamma
\end{aligned}
$$

STALLINGS BIJECTION (FULL RESULT)

Let \mathbb{F}_{A} be the free group with basis A.

Theorem

There exists a (computable) bijection:

$$
\begin{aligned}
\left\{(f . g .) \text { subgroups of } \mathbb{F}_{A}\right\} & \longrightarrow \mathfrak{S}=\{(\text { finite }) \text { reduced A-automata }\} \\
H & \longmapsto \operatorname{St}(H, A) \\
\langle\Gamma\rangle & \longleftrightarrow \Gamma
\end{aligned}
$$

Sketch of computability:
$[\mapsto]$ Let $S=\left\{w_{1}, \ldots, w_{k}\right\} \subseteq \mathbb{F}_{A}$ such that $\langle S\rangle=H$,

STALLINGS BIJECTION (FULL RESULT)

Let \mathbb{F}_{A} be the free group with basis A.

Theorem

There exists a (computable) bijection:

$$
\begin{aligned}
\left\{(f . g .) \text { subgroups of } \mathbb{F}_{A}\right\} & \longrightarrow \mathfrak{S}=\{(\text { finite }) \text { reduced A-automata }\} \\
H & \longmapsto \operatorname{St}(H, A) \\
\langle\Gamma\rangle & \longleftrightarrow \Gamma
\end{aligned}
$$

Sketch of computability:
$[\mapsto]$ Let $S=\left\{w_{1}, \ldots, w_{k}\right\} \subseteq \mathbb{F}_{A}$ such that $\langle S\rangle=H$,

STALLINGS BIJECTION (FULL RESULT)

Let \mathbb{F}_{A} be the free group with basis A.

Theorem

There exists a (computable) bijection:

$$
\begin{aligned}
\left\{(f . g .) \text { subgroups of } \mathbb{F}_{A}\right\} & \longrightarrow \mathfrak{S}=\{(\text { finite }) \text { reduced A-automata }\} \\
H & \longmapsto \operatorname{St}(H, A) \\
\langle\Gamma\rangle & \longleftrightarrow \Gamma
\end{aligned}
$$

Sketch of computability:
$[\mapsto]$ Let $S=\left\{w_{1}, \ldots, w_{k}\right\} \subseteq \mathbb{F}_{A}$ such that $\langle S\rangle=H$,

STALLINGS BIJECTION (FULL RESULT)

Let \mathbb{F}_{A} be the free group with basis A.

Theorem

There exists a (computable) bijection:

$$
\begin{aligned}
\left\{(f . g .) \text { subgroups of } \mathbb{F}_{A}\right\} & \longrightarrow \mathfrak{S}=\{(\text { finite }) \text { reduced A-automata }\} \\
H & \longmapsto \operatorname{St}(H, A) \\
\langle\Gamma\rangle & \longleftrightarrow \Gamma
\end{aligned}
$$

Sketch of computability:
$[\mapsto]$ Let $S=\left\{w_{1}, \ldots, w_{k}\right\} \subseteq \mathbb{F}_{A}$ such that $\langle S\rangle=H$,

STALLINGS BIJECTION (FULL RESULT)

Let \mathbb{F}_{A} be the free group with basis A.

Theorem

There exists a (computable) bijection:

$$
\begin{aligned}
\left\{(f . g .) \text { subgroups of } \mathbb{F}_{A}\right\} & \longrightarrow \mathfrak{S}=\{(\text { finite }) \text { reduced A-automata }\} \\
H & \longmapsto \operatorname{St}(H, A) \\
\langle\Gamma\rangle & \longleftrightarrow \Gamma
\end{aligned}
$$

Sketch of computability:
$[\mapsto]$ Let $S=\left\{w_{1}, \ldots, w_{k}\right\} \subseteq \mathbb{F}_{A}$ such that $\langle S\rangle=H$,

STALLINGS BIJECTION (FULL RESULT)

Let \mathbb{F}_{A} be the free group with basis A.

Theorem

There exists a (computable) bijection:

$$
\begin{aligned}
\left\{(f . g .) \text { subgroups of } \mathbb{F}_{A}\right\} & \longrightarrow \mathfrak{S}=\{(\text { finite }) \text { reduced A-automata }\} \\
H & \longmapsto \operatorname{St}(H, A) \\
\langle\Gamma\rangle & \longleftrightarrow \Gamma
\end{aligned}
$$

Sketch of computability:
$[\mapsto]$ Let $S=\left\{w_{1}, \ldots, w_{k}\right\} \subseteq \mathbb{F}_{A}$ such that $\langle S\rangle=H$,

STALLINGS BIJECTION (FULL RESULT)

Let \mathbb{F}_{A} be the free group with basis A.

Theorem

There exists a (computable) bijection:

$$
\begin{aligned}
\left\{(f . g .) \text { subgroups of } \mathbb{F}_{A}\right\} & \longrightarrow \mathfrak{S}=\{(\text { finite }) \text { reduced A-automata }\} \\
H & \longmapsto S t(H, A) \quad \text { (Stallings automaton of } H \text {) } \\
\langle\Gamma\rangle & \longleftrightarrow \Gamma
\end{aligned}
$$

Sketch of computability:
$[\mapsto]$ Let $S=\left\{w_{1}, \ldots, w_{k}\right\} \subseteq \mathbb{F}_{A}$ such that $\langle S\rangle=H$,

$$
{ }_{w_{1}}^{w_{2}} \because \overbrace{w_{k}}=\mathcal{F}_{S} \stackrel{\varphi_{1}}{\curvearrowright} \Gamma^{(1)} \stackrel{\varphi_{2}}{\curvearrowright} \cdots \stackrel{\varphi_{p}}{\curvearrowright} \Gamma^{(\rho)}=\operatorname{St}(H, A) .
$$

STALLINGS BIJECTION (FULL RESULT)

Let \mathbb{F}_{A} be the free group with basis A.

Theorem

There exists a (computable) bijection:

$$
\begin{aligned}
\left\{(f . g .) \text { subgroups of } \mathbb{F}_{A}\right\} & \longrightarrow S=\{(\text { finite }) \text { reduced A-automata }\} \\
H & \longmapsto S t(H, A) \quad \text { (Stallings automaton of } H \text {) } \\
\langle\Gamma\rangle & \longleftrightarrow \Gamma
\end{aligned}
$$

Sketch of computability:
$[\mapsto]$ Let $S=\left\{w_{1}, \ldots, w_{k}\right\} \subseteq \mathbb{F}_{A}$ such that $\langle S\rangle=H$,

$$
{ }_{w_{1}}^{w_{2}} \because \overbrace{w_{k}}=\mathcal{F}_{S} \stackrel{\varphi_{1}}{\curvearrowright} \Gamma^{(1)} \stackrel{\varphi_{2}}{\curvearrowright} \cdots \stackrel{\varphi_{p}}{\curvearrowright} \Gamma^{(p)}=\operatorname{St}(H, A) .
$$

$[\leftrightarrow]$

STALLINGS BIJECTION (FULL RESULT)

Let \mathbb{F}_{A} be the free group with basis A.

Theorem

There exists a (computable) bijection:

$$
\begin{aligned}
\left\{(f . g .) \text { subgroups of } \mathbb{F}_{A}\right\} & \longrightarrow \mathfrak{S}=\{(\text { finite }) \text { reduced A-automata }\} \\
H & \longmapsto S t(H, A) \quad \text { (Stallings automaton of } H \text {) } \\
\langle\Gamma\rangle & \longleftrightarrow \Gamma
\end{aligned}
$$

Sketch of computability:
$[\mapsto]$ Let $S=\left\{w_{1}, \ldots, w_{k}\right\} \subseteq \mathbb{F}_{A}$ such that $\langle S\rangle=H$,

$[\leftrightarrow]$ Given $\Gamma \in \mathfrak{S}$, take T a spanning tree of Γ,

STALLINGS BIJECTION (FULL RESULT)

Let \mathbb{F}_{A} be the free group with basis A.

Theorem

There exists a (computable) bijection:

$$
\begin{aligned}
\left\{(f . g .) \text { subgroups of } \mathbb{F}_{A}\right\} & \longrightarrow \mathfrak{S}=\{(\text { finite }) \text { reduced A-automata }\} \\
H & \longmapsto S t(H, A) \quad \text { (Stallings automaton of } H \text {) } \\
\langle\Gamma\rangle & \longleftrightarrow \Gamma
\end{aligned}
$$

Sketch of computability:
$[\mapsto]$ Let $S=\left\{w_{1}, \ldots, w_{k}\right\} \subseteq \mathbb{F}_{A}$ such that $\langle S\rangle=H$,

$[\leftrightarrow]$ Given $\Gamma \in \mathfrak{S}$, take T a spanning tree of Γ,

$$
\left\{\bar{\ell}\left(\odot \sim^{\top} \xrightarrow{\bullet} \xrightarrow{e_{i}} \bullet \sim^{\top} \leadsto \bullet\right): e_{i} \in E^{+} \Gamma \backslash E T\right\}
$$

is a basis for the subgroup $H=\langle\Gamma\rangle$.

KINDS OF FOLDINGS

Let Γ be a pointed involutive A-automaton.

KINDS OF FOLDINGS

Let Γ be a pointed involutive A-automaton.
We distinguish two folding situations:

KINDS OF FOLDINGS

Let Γ be a pointed involutive A-automaton.
We distinguish two folding situations:
(1) Identify two nonparallel incident arcs with the same label:

KINDS OF FOLDINGS

Let Γ be a pointed involutive A-automaton.
We distinguish two folding situations:
(1) Identify two nonparallel incident arcs with the same label:

KINDS OF FOLDINGS

Let Γ be a pointed involutive A-automaton.
We distinguish two folding situations:
(1) Identify two nonparallel incident arcs with the same label:

KINDS OF FOLDINGS

Let Γ be a pointed involutive A-automaton.
We distinguish two folding situations:
(1) Identify two nonparallel incident arcs with the same label:

KINDS OF FOLDINGS

Let Γ be a pointed involutive A-automaton.
We distinguish two folding situations:
(1) Identify two nonparallel incident arcs with the same label:

(open folding)
(2) Identify two parallel arcs with the same label:

KINDS OF FOLDINGS

Let Γ be a pointed involutive A-automaton.
We distinguish two folding situations:
(1) Identify two nonparallel incident arcs with the same label:

(open folding)
(2) Identify two parallel arcs with the same label:

KINDS OF FOLDINGS

Let Γ be a pointed involutive A-automaton.
We distinguish two folding situations:
(1) Identify two nonparallel incident arcs with the same label:

(open folding)
(2) Identify two parallel arcs with the same label:

KINDS OF FOLDINGS

Let Γ be a pointed involutive A-automaton.
We distinguish two folding situations:
(1) Identify two nonparallel incident arcs with the same label:

(open folding)
(2) Identify two parallel arcs with the same label:

(closed folding)

KINDS OF FOLDINGS

Let Γ be a pointed involutive A-automaton.
We distinguish two folding situations:
(1) Identify two nonparallel incident arcs with the same label:

(open folding)
(2) Identify two parallel arcs with the same label:

(closed folding)

Remark: If Γ is finite and $\Gamma \curvearrowright \Gamma^{\prime}$ is a Stallings folding, then:

$$
\operatorname{rk}\left(\Gamma^{\prime}\right)= \begin{cases}\operatorname{rk}(\Gamma) & \text { if } \Gamma \curvearrowright \Gamma^{\prime} \text { is open, } \\ \operatorname{rk}(\Gamma)-1 & \text { if } \Gamma \curvearrowright \Gamma^{\prime} \text { is closed. }\end{cases}
$$

FUNDAMENTAL GROUP AND LOSS

FUNDAMENTAL GROUP AND LOSS

Corollary

Let Γ be a connected A-automaton, let T be an spanning tree of Γ, and let S_{T} be the set of T-petals of Γ. Then,

$$
\pi_{\odot}(\widetilde{\Gamma}) \simeq \mathbb{F}_{S_{T}}
$$

FUNDAMENTAL GROUP AND LOSS

Corollary

Let Γ be a connected A-automaton, let T be an spanning tree of Γ, and let S_{T} be the set of T-petals of Γ. Then,

$$
\pi_{\odot}(\widetilde{\Gamma}) \simeq \mathbb{F}_{S_{T}}
$$

and

$$
\begin{aligned}
\mu_{T}: \mathbb{F}_{S_{T}} & \rightarrow\langle\Gamma\rangle \\
w\left(S_{t}\right) & \mapsto \overline{\ell\left(w\left(S_{T}\right)\right)}
\end{aligned}
$$

is a surjective homomorphism of (free) groups.

FUNDAMENTAL GROUP AND LOSS

Corollary

Let Γ be a connected A-automaton, let T be an spanning tree of Γ, and let S_{T} be the set of T-petals of Γ. Then,

$$
\pi_{\odot}(\widetilde{\Gamma}) \simeq \mathbb{F}_{S_{T}}
$$

and

$$
\begin{aligned}
\mu_{T}: \mathbb{F}_{S_{T}} & \rightarrow\langle\Gamma\rangle \\
w\left(S_{t}\right) & \mapsto \overline{\ell\left(w\left(S_{T}\right)\right)}
\end{aligned}
$$

is a surjective homomorphism of (free) groups.

Definition

If Γ is finite and $\Gamma \stackrel{\phi_{1}}{\curvearrowright} \Gamma_{1} \xrightarrow[\nmid]{\phi_{2}} \ldots \xrightarrow{\phi_{p}} \Gamma_{p}=\bar{\Gamma}$ is a folding sequence, then the loss of Γ is:

$$
\operatorname{loss}(\Gamma)=\operatorname{rk}(\Gamma)-\mathrm{rk}\langle\Gamma\rangle
$$

FUNDAMENTAL GROUP AND LOSS

Corollary

Let Γ be a connected A-automaton, let T be an spanning tree of Γ, and let S_{T} be the set of T-petals of Γ. Then,

$$
\pi_{\odot}(\widetilde{\Gamma}) \simeq \mathbb{F}_{S_{T}}
$$

and

$$
\begin{aligned}
\mu_{T}: \mathbb{F}_{S_{T}} & \rightarrow\langle\Gamma\rangle \\
w\left(S_{t}\right) & \mapsto \overline{\ell\left(w\left(S_{T}\right)\right)}
\end{aligned}
$$

is a surjective homomorphism of (free) groups.

Definition

If Γ is finite and $\Gamma \stackrel{\phi_{1}}{\curvearrowright} \Gamma_{1} \xrightarrow[\nmid]{\phi_{2}} \ldots \xrightarrow{\phi_{p}}, \Gamma_{p}=\bar{\Gamma}$ is a folding sequence, then the loss of Γ is:

$$
\begin{aligned}
\operatorname{loss}(\Gamma) & =\operatorname{rk}(\Gamma)-\mathrm{rk}\langle\Gamma\rangle \\
& =\operatorname{rk}(\Gamma)-\mathrm{rk} \bar{\Gamma}
\end{aligned}
$$

FUNDAMENTAL GROUP AND LOSS

Corollary

Let Γ be a connected A-automaton, let T be an spanning tree of Γ, and let S_{T} be the set of T-petals of Γ. Then,

$$
\pi_{\odot}(\widetilde{\Gamma}) \simeq \mathbb{F}_{S_{T}}
$$

and

$$
\begin{aligned}
\mu_{T}: \mathbb{F}_{S_{T}} & \rightarrow\langle\Gamma\rangle \\
w\left(S_{t}\right) & \mapsto \overline{\ell\left(w\left(S_{T}\right)\right)}
\end{aligned}
$$

is a surjective homomorphism of (free) groups.

Definition

If Γ is finite and $\Gamma \stackrel{\phi_{1}}{\curvearrowright} \Gamma_{1} \xrightarrow[\nmid]{\phi_{2}} \ldots \xrightarrow{\phi_{p}}, \Gamma_{p}=\bar{\Gamma}$ is a folding sequence, then the loss of Γ is:

$$
\begin{aligned}
\operatorname{loss}(\Gamma) & =\operatorname{rk}(\Gamma)-\operatorname{rk}\langle\Gamma\rangle \\
& =\operatorname{rk}(\Gamma)-\operatorname{rk} \bar{\Gamma} \\
& =\# \text { closed foldings in }\left(\phi_{1}, \ldots, \phi_{p}\right)
\end{aligned}
$$

FIRST APPLICATIONS

FIRST APPLICATIONS

Theorem (Nielsen-Schreier)
Subgroups of free groups are again free.

FIRST APPLICATIONS

Theorem (Nielsen-Schreier)
 Subgroups of free groups are again free.

Proposition

Given a finite subset $S \subseteq \mathbb{F}_{n}$, a basis for (and hence the rank of) the subgroup $H=\langle S\rangle \leqslant \mathbb{F}_{n}$ is computable.

FIRST APPLICATIONS

Theorem (Nielsen-Schreier)
 Subgroups of free groups are again free.

Proposition

Given a finite subset $S \subseteq \mathbb{F}_{n}$, a basis for (and hence the rank of) the subgroup $H=\langle S\rangle \leqslant \mathbb{F}_{n}$ is computable.

Proposition

For every $\mathrm{k} \in\left[0, \mathbb{X}_{0}\right]$ there exists $H \leqslant \mathbb{F}_{2}$ such that $H \simeq \mathbb{F} \kappa\left(\mathbb{F} \kappa \rightarrow \mathbb{F}_{2}\right)$.
Proof: Draw it!

FIRST APPLICATIONS

Theorem (Nielsen-Schreier)

Subgroups of free groups are again free.

Proposition

Given a finite subset $S \subseteq \mathbb{F}_{n}$, a basis for (and hence the rank of) the subgroup $H=\langle S\rangle \leqslant \mathbb{F}_{n}$ is computable.

Proposition

For every $\mathrm{k} \in\left[0, \mathbb{X}_{0}\right]$ there exists $H \leqslant \mathbb{F}_{2}$ such that $H \simeq \mathbb{F} \kappa\left(\mathbb{F} \kappa \rightarrow \mathbb{F}_{2}\right)$.
Proof: Draw it! For example take:

FIRST APPLICATIONS

Theorem (Nielsen-Schreier)

Subgroups of free groups are again free.

Proposition

Given a finite subset $S \subseteq \mathbb{F}_{n}$, a basis for (and hence the rank of) the subgroup $H=\langle S\rangle \leqslant \mathbb{F}_{n}$ is computable.

Proposition

For every $\mathrm{k} \in\left[0, \mathbb{X}_{0}\right]$ there exists $H \leqslant \mathbb{F}_{2}$ such that $H \simeq \mathbb{F} \kappa\left(\mathbb{F} \kappa \rightarrow \mathbb{F}_{2}\right)$.
Proof: Draw it! For example take:

...and remove all but a finite segment containing 0 .

FIRST APPLICATIONS

Theorem (Nielsen-Schreier)

Subgroups of free groups are again free.

Proposition

Given a finite subset $S \subseteq \mathbb{F}_{n}$, a basis for (and hence the rank of) the subgroup $H=\langle S\rangle \leqslant \mathbb{F}_{n}$ is computable.

Proposition

For every $\mathrm{k} \in\left[0, \mathbb{X}_{0}\right]$ there exists $H \leqslant \mathbb{F}_{2}$ such that $H \simeq \mathbb{F} \kappa\left(\mathbb{F} \kappa \rightarrow \mathbb{F}_{2}\right)$.
Proof: Draw it! For example take:

...and remove all but a finite segment containing o.
How many different subgroups of \mathbb{F}_{2} are there?

GENERATING SETS, BASES, AND HOPFIANITY

generating sets, BASES, AND HOPFIANITY

Remark

Let $S \subseteq \mathbb{F}_{A}$. Then,
i) $\langle S\rangle=\mathbb{F}_{A} \Leftrightarrow \operatorname{St}(\langle S\rangle)=F I(A)$,
ii) S is free $\left(\right.$ in $\left.\mathbb{F}_{A}\right) \Leftrightarrow \operatorname{loss}(F l(S))=0$.

Both conditions are algorithmically decidable if S is finite.

GENERATING SETS, BASES, AND HOPFIANITY

Remark

Let $S \subseteq \mathbb{F}_{A}$. Then,
i) $\langle S\rangle=\mathbb{F}_{A} \Leftrightarrow \operatorname{St}(\langle S\rangle)=F l(A)$,
ii) S is free $\left(\right.$ in $\left.\mathbb{F}_{A}\right) \Leftrightarrow \operatorname{loss}(F l(S))=0$.

Both conditions are algorithmically decidable if S is finite.

Theorem

$$
\mathbb{F}_{A} \simeq \mathbb{F}_{B} \Leftrightarrow \# A=\# B .
$$

generating sets, BASES, AND HOPFIANITY

Remark

Let $S \subseteq \mathbb{F}_{A}$. Then,
i) $\langle S\rangle=\mathbb{F}_{A} \Leftrightarrow \operatorname{St}(\langle S\rangle)=F l(A)$,
ii) S is free $\left(\right.$ in $\left.\mathbb{F}_{A}\right) \Leftrightarrow \operatorname{loss}(F l(S))=0$.

Both conditions are algorithmically decidable if S is finite.

Theorem

$$
\mathbb{F}_{A} \simeq \mathbb{F}_{B} \Leftrightarrow \# A=\# B .
$$

Definition

A group is called Hopfian if every surjective endomorphism is injective.

generating sets, BASES, AND HOPFIANITY

Remark

Let $S \subseteq \mathbb{F}_{A}$. Then,
i) $\langle S\rangle=\mathbb{F}_{A} \Leftrightarrow \operatorname{St}(\langle S\rangle)=F I(A)$,
ii) S is free $\left(\right.$ in $\left.\mathbb{F}_{A}\right) \Leftrightarrow \operatorname{loss}(F l(S))=0$.

Both conditions are algorithmically decidable if S is finite.

Theorem

$$
\mathbb{F}_{A} \simeq \mathbb{F}_{B} \Leftrightarrow \# A=\# B .
$$

Definition
A group is called Hopfian if every surjective endomorphism is injective.

Theorem

Finitely generated free groups are Hopfian.

THE MEMBERSHIP PROBLEM

Theorem

The subgroup membership problem is solvable in $\mathbb{F}_{A}=\langle A \mid-\rangle$: given $v, u_{1}, \ldots, u_{n} \in(\widetilde{A})^{*}$, it is decidable whether $v \in H=\left\langle u_{1}, \ldots, u_{n}\right\rangle$. In this case, we can compute v as a word in $\left\{u_{1}, \ldots, u_{n}\right\}$.

THE MEMBERSHIP PROBLEM

Theorem

The subgroup membership problem is solvable in $\mathbb{F}_{A}=\langle A \mid-\rangle$: given $v, u_{1}, \ldots, u_{n} \in(\widetilde{A})^{*}$, it is decidable whether $v \in H=\left\langle u_{1}, \ldots, u_{n}\right\rangle$. In this case, we can compute v as a word in $\left\{u_{1}, \ldots, u_{n}\right\}$.

Proof of decidability

(1) reducing, we can assume $U=\left\{u_{1}, \ldots, u_{n}\right\} \subseteq R(A)$;

THE MEMBERSHIP PROBLEM

Theorem

The subgroup membership problem is solvable in $\mathbb{F}_{A}=\langle A \mid-\rangle$: given $v, u_{1}, \ldots, u_{n} \in(\widetilde{A})^{*}$, it is decidable whether $v \in H=\left\langle u_{1}, \ldots, u_{n}\right\rangle$. In this case, we can compute v as a word in $\left\{u_{1}, \ldots, u_{n}\right\}$.

Proof of decidability

(1) reducing, we can assume $U=\left\{u_{1}, \ldots, u_{n}\right\} \subseteq R(A)$;
(2) draw the flower automaton $\mathrm{Fl}(\mathrm{U})$;

THE MEMBERSHIP PROBLEM

Theorem
The subgroup membership problem is solvable in $\mathbb{F}_{A}=\langle A \mid-\rangle$: given $v, u_{1}, \ldots, u_{n} \in(\widetilde{A})^{*}$, it is decidable whether $v \in H=\left\langle u_{1}, \ldots, u_{n}\right\rangle$. In this case, we can compute v as a word in $\left\{u_{1}, \ldots, u_{n}\right\}$.

Proof of decidability

(1) reducing, we can assume $U=\left\{u_{1}, \ldots, u_{n}\right\} \subseteq R(A)$;
(2) draw the flower automaton $\mathrm{Fl}(\mathrm{U})$;
(3) apply an arbitrary sequence of foldings until getting a reduced automaton $\operatorname{Fl}(U) \curvearrowright \cdots \curvearrowright$ St (H);

THE MEMBERSHIP PROBLEM

Theorem

The subgroup membership problem is solvable in $\mathbb{F}_{A}=\langle A \mid-\rangle$: given $v, u_{1}, \ldots, u_{n} \in(\widetilde{A})^{*}$, it is decidable whether $v \in H=\left\langle u_{1}, \ldots, u_{n}\right\rangle$. In this case, we can compute v as a word in $\left\{u_{1}, \ldots, u_{n}\right\}$.

Proof of decidability

(1) reducing, we can assume $U=\left\{u_{1}, \ldots, u_{n}\right\} \subseteq R(A)$;
(2) draw the flower automaton $\mathrm{Fl}(\mathrm{U})$;
(3) apply an arbitrary sequence of foldings until getting a reduced automaton $\operatorname{Fl}(U) \curvearrowright \cdots \curvearrowright$ St (H);
(4) try to read \bar{v} as (the label of) a walk in St (H), starting from ©;

THE MEMBERSHIP PROBLEM

Theorem

The subgroup membership problem is solvable in $\mathbb{F}_{A}=\langle A \mid-\rangle$: given $v, u_{1}, \ldots, u_{n} \in(\widetilde{A})^{*}$, it is decidable whether $v \in H=\left\langle u_{1}, \ldots, u_{n}\right\rangle$. In this case, we can compute v as a word in $\left\{u_{1}, \ldots, u_{n}\right\}$.

Proof of decidability

(1) reducing, we can assume $U=\left\{u_{1}, \ldots, u_{n}\right\} \subseteq R(A)$;
(2) draw the flower automaton $\mathrm{Fl}(\mathrm{U})$;
(3) apply an arbitrary sequence of foldings until getting a reduced automaton $\operatorname{Fl}(U) \curvearrowright \cdots \curvearrowright$ St (H);
(4) try to read \bar{v} as (the label of) a walk in St (H), starting from ©;
(5) if it not possible then $v \notin H$;

THE MEMBERSHIP PROBLEM

Theorem

The subgroup membership problem is solvable in $\mathbb{F}_{A}=\langle A \mid-\rangle$: given $v, u_{1}, \ldots, u_{n} \in(\widetilde{A})^{*}$, it is decidable whether $v \in H=\left\langle u_{1}, \ldots, u_{n}\right\rangle$. In this case, we can compute v as a word in $\left\{u_{1}, \ldots, u_{n}\right\}$.

Proof of decidability

(1) reducing, we can assume $U=\left\{u_{1}, \ldots, u_{n}\right\} \subseteq R(A)$;
(2) draw the flower automaton $\mathrm{Fl}(\mathrm{U})$;
(3) apply an arbitrary sequence of foldings until getting a reduced automaton $\mathrm{Fl}(U) \curvearrowright \cdots \curvearrowright \mathrm{St}(H)$;
(4) try to read \bar{v} as (the label of) a walk in St (H), starting from ©;
(5) if it not possible then $v \notin H$;
(6) if it is possible (in a unique way) but as an open walk then $v \notin H$;

THE MEMBERSHIP PROBLEM

Theorem

The subgroup membership problem is solvable in $\mathbb{F}_{A}=\langle A \mid-\rangle$: given $v, u_{1}, \ldots, u_{n} \in(\widetilde{A})^{*}$, it is decidable whether $v \in H=\left\langle u_{1}, \ldots, u_{n}\right\rangle$. In this case, we can compute v as a word in $\left\{u_{1}, \ldots, u_{n}\right\}$.

Proof of decidability

(1) reducing, we can assume $U=\left\{u_{1}, \ldots, u_{n}\right\} \subseteq R(A)$;
(2) draw the flower automaton $\mathrm{Fl}(\mathrm{U})$;
(3) apply an arbitrary sequence of foldings until getting a reduced automaton $\mathrm{Fl}(U) \curvearrowright \cdots \curvearrowright \mathrm{St}(H)$;
(4) try to read \bar{v} as (the label of) a walk in St (H), starting from ©;
(5) if it not possible then $v \notin H$;
(6) if it is possible (in a unique way) but as an open walk then $v \notin H$;
(7) if it possible as a closed path (at ©), then $v \in H$.

THE MEMBERSHIP PROBLEM

Theorem

The subgroup membership problem is solvable in $\mathbb{F}_{A}=\langle A \mid-\rangle$: given $v, u_{1}, \ldots, u_{n} \in(\widetilde{A})^{*}$, it is decidable whether $v \in H=\left\langle u_{1}, \ldots, u_{n}\right\rangle$. In this case, we can compute v as a word in $\left\{u_{1}, \ldots, u_{n}\right\}$.

Proof of decidability

(1) reducing, we can assume $U=\left\{u_{1}, \ldots, u_{n}\right\} \subseteq R(A)$;
(2) draw the flower automaton $\mathrm{Fl}(\mathrm{U})$;
(3) apply an arbitrary sequence of foldings until getting a reduced automaton $\mathrm{Fl}(U) \curvearrowright \cdots \curvearrowright \mathrm{St}(H)$;
(4) try to read \bar{v} as (the label of) a walk in St (H), starting from ©;
(5) if it not possible then $v \notin H$;
(6) if it is possible (in a unique way) but as an open walk then $v \notin H$;
(7) if it possible as a closed path (at \bullet), then $v \in H$.

When $v \in H$, how to express it as a word in $\left\{u_{1}, \ldots, u_{n}\right\}$?

EXAMPLE

Consider $\mathbb{F}_{2}=\langle a, b\rangle$ and the subgroup $H=\left\langle u_{1}, u_{2}, u_{3}\right\rangle \leqslant \mathbb{F}_{2}$, where

$$
u_{1}=a^{-1} b a b^{-1}, \quad u_{2}=a^{3}, \quad u_{3}=a b a b^{-1} .
$$

EXAMPLE

Consider $\mathbb{F}_{2}=\langle a, b\rangle$ and the subgroup $H=\left\langle u_{1}, u_{2}, u_{3}\right\rangle \leqslant \mathbb{F}_{2}$, where

$$
u_{1}=a^{-1} b a b^{-1}, \quad u_{2}=a^{3}, \quad u_{3}=a b a b^{-1} .
$$

Is it true that $a \in H$?

EXAMPLE

Consider $\mathbb{F}_{2}=\langle a, b\rangle$ and the subgroup $H=\left\langle u_{1}, u_{2}, u_{3}\right\rangle \leqslant \mathbb{F}_{2}$, where

$$
u_{1}=a^{-1} b a b^{-1}, \quad u_{2}=a^{3}, \quad u_{3}=a b a b^{-1} .
$$

Is it true that $a \in H$?
Is it true that $a b a^{2} b^{-1} a^{-50} b a^{-30} b^{-1} \in H$?

EXAMPLE

Consider $\mathbb{F}_{2}=\langle a, b\rangle$ and the subgroup $H=\left\langle u_{1}, u_{2}, u_{3}\right\rangle \leqslant \mathbb{F}_{2}$, where

$$
u_{1}=a^{-1} b a b^{-1}, \quad u_{2}=a^{3}, \quad u_{3}=a b a b^{-1} .
$$

Is it true that $a \in H$?
Is it true that $a b a^{2} b^{-1} a^{-50} b a^{-30} b^{-1} \in H$?
Is it true that $a^{2} b \in H$?

EXAMPLE

Consider $\mathbb{F}_{2}=\langle a, b\rangle$ and the subgroup $H=\left\langle u_{1}, u_{2}, u_{3}\right\rangle \leqslant \mathbb{F}_{2}$, where

$$
u_{1}=a^{-1} b a b^{-1}, \quad u_{2}=a^{3}, \quad u_{3}=a b a b^{-1} .
$$

Is it true that $a \in H$?
Is it true that $a b a^{2} b^{-1} a^{-50} b a^{-30} b^{-1} \in H$?
Is it true that $a^{2} b \in H$?
Is it true that $a b^{20} a b^{-20} \in H$?

EXAMPLE

Consider $\mathbb{F}_{2}=\langle a, b\rangle$ and the subgroup $H=\left\langle u_{1}, u_{2}, u_{3}\right\rangle \leqslant \mathbb{F}_{2}$, where

$$
u_{1}=a^{-1} b a b^{-1}, \quad u_{2}=a^{3}, \quad u_{3}=a b a b^{-1} .
$$

Is it true that $a \in H$?
Is it true that $a b a^{2} b^{-1} a^{-50} b a^{-30} b^{-1} \in H$?
Is it true that $a^{2} b \in H$?
Is it true that $a b^{20} a b^{-20} \in H$?
If yes, express them as a (unique?) word on $\left\{u_{1}, u_{2}, u_{3}\right\}$.

EXAMPLE

Consider $\mathbb{F}_{2}=\langle a, b\rangle$ and the subgroup $H=\left\langle u_{1}, u_{2}, u_{3}\right\rangle \leqslant \mathbb{F}_{2}$, where

$$
u_{1}=a^{-1} b a b^{-1}, \quad u_{2}=a^{3}, \quad u_{3}=a b a b^{-1} .
$$

Is it true that $a \in H$?
Is it true that $a b a^{2} b^{-1} a^{-50} b a^{-30} b^{-1} \in H$?
Is it true that $a^{2} b \in H$?
Is it true that $a b^{20} a b^{-20} \in H$?
If yes, express them as a (unique?) word on $\left\{u_{1}, u_{2}, u_{3}\right\}$.
Let us recover the construction of the Stallings automaton $\operatorname{St}(H)$...

EXAMPLE

EXAMPLE
Let $H=\langle\underbrace{a^{-1} b a b^{-1}}_{u_{1}}, \underbrace{a^{3}}_{u_{2}}, \underbrace{a b a b^{-1}}_{u_{3}}\rangle \leqslant \mathbb{F}_{\{a, b\}}$.

EXAMPLE

Let $H=\langle\underbrace{a^{-1} b a b^{-1}}_{u_{1}}, \underbrace{a^{3}}_{u_{2}}, \underbrace{a b a b^{-1}}_{u_{3}}\rangle \leqslant \mathbb{F}_{\{a, b\}}$.
We start by drawing the flower automaton $\operatorname{Fl}\left(\left\{u_{1}, u_{2}, u_{3}\right\}\right)$:

EXAMPLE

$$
\text { Let } H=\langle\underbrace{a^{-1} b a b^{-1}}_{u_{1}}, \underbrace{a^{3}}_{u_{2}}, \underbrace{a b a b^{-1}}_{u_{3}}\rangle \leqslant \mathbb{F}_{\{a, b\}} \text {. }
$$

We start by drawing the flower automaton $\operatorname{Fl}\left(\left\{u_{1}, u_{2}, u_{3}\right\}\right)$:

$$
\Gamma_{0}=F l(U)
$$

EXAMPLE

$$
\text { Let } H=\langle\underbrace{a^{-1} b a b^{-1}}_{u_{1}}, \underbrace{a^{3}}_{u_{2}}, \underbrace{a b a b^{-1}}_{u_{3}}\rangle \leqslant \mathbb{F}_{\{a, b\}} \text {. }
$$

We start by drawing the flower automaton $\operatorname{Fl}\left(\left\{u_{1}, u_{2}, u_{3}\right\}\right)$:
$\Gamma_{0}=\mathrm{Fl}(\mathrm{U})$

EXAMPLE

$$
\text { Let } H=\langle\underbrace{a^{-1} b a b^{-1}}_{u_{1}}, \underbrace{a^{3}}_{u_{2}}, \underbrace{a b a b^{-1}}_{u_{3}}\rangle \leqslant \mathbb{F}_{\{a, b\}} .
$$

We start by drawing the flower automaton $\operatorname{Fl}\left(\left\{u_{1}, u_{2}, u_{3}\right\}\right)$:

EXAMPLE

$$
\text { Let } H=\langle\underbrace{a^{-1} b a b^{-1}}_{u_{1}}, \underbrace{a^{3}}_{u_{2}}, \underbrace{a b a b^{-1}}_{u_{3}}\rangle \leqslant \mathbb{F}_{\{a, b\}} .
$$

We start by drawing the flower automaton $\operatorname{Fl}\left(\left\{u_{1}, u_{2}, u_{3}\right\}\right)$:

EXAMPLE

$$
\text { Let } H=\langle\underbrace{a^{-1} b a b^{-1}}_{u_{1}}, \underbrace{a^{3}}_{u_{2}}, \underbrace{a b a b^{-1}}_{u_{3}}\rangle \leqslant \mathbb{F}_{\{a, b\}} .
$$

We start by drawing the flower automaton $\operatorname{Fl}\left(\left\{u_{1}, u_{2}, u_{3}\right\}\right)$:

EXAMPLE

$$
\text { Let } H=\langle\underbrace{a^{-1} b a b^{-1}}_{u_{1}}, \underbrace{a^{3}}_{u_{2}}, \underbrace{a b a b^{-1}}_{u_{3}}\rangle \leqslant \mathbb{F}_{\{a, b\}} .
$$

We start by drawing the flower automaton $\operatorname{Fl}\left(\left\{u_{1}, u_{2}, u_{3}\right\}\right)$:

EXAMPLE

$$
\text { Let } H=\langle\underbrace{a^{-1} b a b^{-1}}_{u_{1}}, \underbrace{a^{3}}_{u_{2}}, \underbrace{a b a b^{-1}}_{u_{3}}\rangle \leqslant \mathbb{F}_{\{a, b\}} .
$$

We start by drawing the flower automaton $\operatorname{Fl}\left(\left\{u_{1}, u_{2}, u_{3}\right\}\right)$:

EXAMPLE

We choose a (the unique) spanning tree, and read a free basis for H :

$$
H=\left\langle a, b a b^{-1}\right\rangle .
$$

EXAMPLE

We choose a (the unique) spanning tree, and read a free basis for H :

$$
H=\left\langle a, b a b^{-1}\right\rangle .
$$

So, it is clear that both a and $a b a^{2} b^{-1} a^{-50} b a^{-30} b^{-1}$ belong to H because they are labels of $\boldsymbol{\bullet}$-paths at $\mathrm{St}(\mathrm{H})$.

EXAMPLE

We choose a (the unique) spanning tree, and read a free basis for H :

$$
H=\left\langle a, b a b^{-1}\right\rangle .
$$

So, it is clear that both a and $a b a^{2} b^{-1} a^{-50} b a^{-30} b^{-1}$ belong to H because they are labels of \boldsymbol{o}-paths at $\mathrm{St}(H)$.
...while $a b^{20} a b^{-20}, a^{2} b$ do not.

EXAMPLE

We choose a (the unique) spanning tree, and read a free basis for H :

$$
H=\left\langle a, b a b^{-1}\right\rangle .
$$

So, it is clear that both a and $a b a^{2} b^{-1} a^{-50} b a^{-30} b^{-1}$ belong to H because they are labels of $\boldsymbol{\bullet}$-paths at $\mathrm{St}(\mathrm{H})$.
...while $a b^{20} a b^{-20}, a^{2} b$ do not.
Let us now express a as a word on $\left\{u_{1}, u_{2}, u_{3}\right\} \ldots$

THE MEMBERSHIP (SEARCH) PROBLEM

When $v \in H$, how to express v as a word in $\left\{u_{1}, \ldots, u_{n}\right\}$?
(8) Look at the computed tower of foldings

$$
\mathrm{Fl}(U)=\Gamma_{0} \curvearrowright \Gamma_{1} \frown \cdots \curvearrowright \Gamma_{n}=\operatorname{St}(H) ;
$$

THE MEMBERSHIP (SEARCH) PROBLEM

When $v \in H$, how to express v as a word in $\left\{u_{1}, \ldots, u_{n}\right\}$?
(8) Look at the computed tower of foldings

$$
\mathrm{Fl}(U)=\Gamma_{0} \curvearrowright \Gamma_{1} \frown \cdots \curvearrowright \Gamma_{n}=\operatorname{St}(H) ;
$$

(9) realize v as (the label of) a o-path γ in St (H);

THE MEMBERSHIP (SEARCH) PROBLEM

When $v \in H$, how to express v as a word in $\left\{u_{1}, \ldots, u_{n}\right\}$?
(8) Look at the computed tower of foldings

$$
\mathrm{Fl}(U)=\Gamma_{0} \curvearrowright \Gamma_{1} \frown \cdots \curvearrowright \Gamma_{n}=\operatorname{St}(H) ;
$$

(9) realize v as (the label of) a o-path γ in St (H);
(10) lift γ up the tower of foldings (keeping the label) until FI(U);

THE MEMBERSHIP (SEARCH) PROBLEM

When $v \in H$, how to express v as a word in $\left\{u_{1}, \ldots, u_{n}\right\}$?
(8) Look at the computed tower of foldings

$$
\mathrm{Fl}(U)=\Gamma_{0} \curvearrowright \Gamma_{1} \frown \cdots \curvearrowright \Gamma_{n}=\operatorname{St}(H) ;
$$

(9) realize v as (the label of) a o-path γ in St (H);
(10) lift γ up the tower of foldings (keeping the label) until FI(U);
(11) a ©-path is $\operatorname{Fl}(U)$ spelling v "is" a word on $\left\{u_{1}, \ldots, u_{n}\right\}$ equaling v : this is what we are looking for.

THE MEMBERSHIP (SEARCH) PROBLEM

When $v \in H$, how to express v as a word in $\left\{u_{1}, \ldots, u_{n}\right\}$?
(8) Look at the computed tower of foldings

$$
\mathrm{Fl}(U)=\Gamma_{0} \curvearrowright \Gamma_{1} \frown \cdots \curvearrowright \Gamma_{n}=\operatorname{St}(H) ;
$$

(9) realize v as (the label of) a o-path γ in St (H);
(10) lift γ up the tower of foldings (keeping the label) until FI(U);
(11) a ©-path is $\mathrm{Fl}(U)$ spelling v "is" a word on $\left\{u_{1}, \ldots, u_{n}\right\}$ equaling v : this is what we are looking for.

Lemma

Let $\mathcal{A} \curvearrowright \mathcal{A}^{\prime}$ be an elementary Stallings folding and $\varphi: \mathcal{A} \rightarrow \mathcal{A}^{\prime}$ be the natural morphism. Then,

THE MEMBERSHIP (SEARCH) PROBLEM

When $v \in H$, how to express v as a word in $\left\{u_{1}, \ldots, u_{n}\right\}$?
(8) Look at the computed tower of foldings

$$
\mathrm{Fl}(U)=\Gamma_{0} \curvearrowright \Gamma_{1} \frown \cdots \curvearrowright \Gamma_{n}=\operatorname{St}(H) ;
$$

(9) realize v as (the label of) a o-path γ in St (H);
(10) lift γ up the tower of foldings (keeping the label) until Fl(U);
(11) a ©-path is $\mathrm{Fl}(U)$ spelling v "is" a word on $\left\{u_{1}, \ldots, u_{n}\right\}$ equaling v : this is what we are looking for.

Lemma

Let $\mathcal{A} \curvearrowright \mathcal{A}^{\prime}$ be an elementary Stallings folding and $\varphi: \mathcal{A} \rightarrow \mathcal{A}^{\prime}$ be the natural morphism. Then,
(i) if γ is a reduced path in \mathcal{A}, then $\gamma \varphi$ is reduced except for consecutive visits to the folded edge;

THE MEMBERSHIP (SEARCH) PROBLEM

When $v \in H$, how to express v as a word in $\left\{u_{1}, \ldots, u_{n}\right\}$?
(8) Look at the computed tower of foldings

$$
\mathrm{Fl}(U)=\Gamma_{0} \curvearrowright \Gamma_{1} \frown \cdots \curvearrowright \Gamma_{n}=\operatorname{St}(H) ;
$$

(9) realize v as (the label of) a o-path γ in St (H);
(10) lift γ up the tower of foldings (keeping the label) until FI(U);
(11) a ©-path is $\mathrm{Fl}(U)$ spelling v "is" a word on $\left\{u_{1}, \ldots, u_{n}\right\}$ equaling v : this is what we are looking for.

Lemma

Let $\mathcal{A} \curvearrowright \mathcal{A}^{\prime}$ be an elementary Stallings folding and $\varphi: \mathcal{A} \rightarrow \mathcal{A}^{\prime}$ be the natural morphism. Then,
(i) if γ is a reduced path in \mathcal{A}, then $\gamma \varphi$ is reduced except for consecutive visits to the folded edge;
(ii) for every reduced o-path γ in \mathcal{A}^{\prime} there exists a reduced o-path $\widetilde{\gamma}$ in \mathcal{A} satisfying $\bar{\ell}(\widetilde{\gamma})=\bar{\ell}(\gamma) \in \mathbb{F}_{A}$ and $\bar{\gamma} \varphi=\gamma$ (called a lift of γ);

THE MEMBERSHIP PROBLEM

Lemma

(continuation)
(iii) if the folding $\mathcal{A} \curvearrowright \mathcal{A}^{\prime}$ is open, then $\widetilde{\gamma}$ is unique; (iv) if the folding $\mathcal{A} \curvearrowright \mathcal{A}^{\prime}$ is closed then $\widetilde{\gamma}$ is not unique.

THE MEMBERSHIP PROBLEM

Lemma
(continuation)
(iii) if the folding $\mathcal{A} \curvearrowright \mathcal{A}^{\prime}$ is open, then $\widetilde{\gamma}$ is unique; (iv) if the folding $\mathcal{A} \curvearrowright \mathcal{A}^{\prime}$ is closed then $\widetilde{\gamma}$ is not unique.

Back to the example ...

Clearly, $a \in H$ thanks to the walk $\gamma_{6}=a_{1}$:

THE MEMBERSHIP PROBLEM

Lemma
(continuation)
(iii) if the folding $\mathcal{A} \curvearrowright \mathcal{A}^{\prime}$ is open, then $\widetilde{\gamma}$ is unique; (iv) if the folding $\mathcal{A} \curvearrowright \mathcal{A}^{\prime}$ is closed then $\widetilde{\gamma}$ is not unique.

Back to the example ...
Clearly, $a \in H$ thanks to the walk $\gamma_{6}=a_{1}$:

Lifting to Γ_{5} (no interaction with the folded arcs), we get $\gamma_{5}=a_{1}$:

EXAMPLE

Lifting to Γ_{4}, we have multiple choices (since $\Gamma_{4} \rightsquigarrow \Gamma_{5}$ is a closed folding); we get $\gamma_{4}=a_{11}$:

EXAMPLE

Lifting to Γ_{4}, we have multiple choices (since $\Gamma_{4} \rightsquigarrow \Gamma_{5}$ is a closed folding); we get $\gamma_{4}=a_{11}$:

Lifting up to Γ_{3}, we get $\gamma_{3}=a_{11} a_{122}^{-1} a_{121}$:

EXAMPLE

Lifting to Γ_{2}, we get $\gamma_{2}=a_{11} a_{1211} a_{1212}^{-1} a_{122}^{-1} a_{1211}$:

EXAMPLE

Lifting to Γ_{2}, we get $\gamma_{2}=a_{11} a_{1211} a_{1212}^{-1} a_{122}^{-1} a_{1211}$:

Lifting up to Γ_{1}, we get $\gamma_{1}=a_{111} a_{1211} a_{1212}^{-1} a_{122}^{-1} a_{112}^{-1} a_{111} a_{1211}$:

EXAMPLE

Finally, lifting to $\Gamma_{0}=F l(U)$, we get:

$$
\gamma_{0}=a_{111} b_{21} a_{21} b_{11}^{-1} b_{12} a_{22}^{-1} b_{22}^{-1} a_{1211} a_{1212}^{-1} a_{122}^{-1} a_{112}^{-1} a_{111} b_{21} a_{21} b_{11}^{-1} b_{12} a_{22}^{-1} b_{22}^{-1} a_{1211}
$$

EXAMPLE

Finally, lifting to $\Gamma_{0}=F l(U)$, we get:

$$
\gamma_{0}=a_{111} b_{21} a_{21} b_{11}^{-1} b_{12} a_{22}^{-1} b_{22}^{-1} a_{1211} a_{1212}^{-1} a_{122}^{-1} a_{112}^{-1} a_{111} b_{21} a_{21} b_{11}^{-1} b_{12} a_{22}^{-1} b_{22}^{-1} a_{1211}
$$

Factorizing through the visits to $\boldsymbol{\bullet}$, we get the desired word:

$$
\begin{aligned}
a & =\left(a b a b^{-1}\right)\left(b a^{-1} b^{-1} a\right)\left(a^{-1} a^{-1} a^{-1}\right)\left(a b a b^{-1}\right)\left(b a^{-1} b^{-1} a\right) \\
& =u_{2} u_{3}^{-1} u_{1}^{-1} u_{2} u_{3}^{-1} .
\end{aligned}
$$

EXAMPLE

Taking $\gamma_{4}=a_{12}$ (instead of $\gamma_{4}=a_{11}$) at the closed folding, we get the alternative expression:

$$
a=\left(a^{-1} b a b^{-1}\right)\left(b a^{-1} b^{-1} a^{-1}\right)(a a a)=u_{3} u_{2}^{-1} u_{1} .
$$

EXAMPLE

Taking $\gamma_{4}=a_{12}$ (instead of $\gamma_{4}=a_{11}$) at the closed folding, we get the alternative expression:

$$
a=\left(a^{-1} b a b^{-1}\right)\left(b a^{-1} b^{-1} a^{-1}\right)(a a a)=u_{3} u_{2}^{-1} u_{1} .
$$

This non-uniqueness of the expression for a,

$$
u_{2} u_{3}^{-1} u_{1}^{-1} u_{2} u_{3}^{-1}=a=u_{3} u_{2}^{-1} u_{1}
$$

reveals a nontrivial relation between $\left\{u_{1}, u_{2}, u_{3}\right\}$:

$$
u_{2} u_{3}^{-1} u_{1}^{-1} u_{2} u_{3}^{-1} u_{1}^{-1} u_{2} u_{3}^{-1}=1 .
$$

EXAMPLE

Taking $\gamma_{4}=a_{12}$ (instead of $\gamma_{4}=a_{11}$) at the closed folding, we get the alternative expression:

$$
a=\left(a^{-1} b a b^{-1}\right)\left(b a^{-1} b^{-1} a^{-1}\right)(a a a)=u_{3} u_{2}^{-1} u_{1} .
$$

This non-uniqueness of the expression for a,

$$
u_{2} u_{3}^{-1} u_{1}^{-1} u_{2} u_{3}^{-1}=a=u_{3} u_{2}^{-1} u_{1}
$$

reveals a nontrivial relation between $\left\{u_{1}, u_{2}, u_{3}\right\}$:

$$
u_{2} u_{3}^{-1} u_{1}^{-1} u_{2} u_{3}^{-1} u_{1}^{-1} u_{2} u_{3}^{-1}=1 .
$$

The responsible for this is the closed folding ...

A PRESENTATION FOR THE SUBGROUP

In general,
At every closed folding $\Gamma_{i} \curvearrowright \Gamma_{i+1}$, take the reduced non-trivial walk

reading the trivial element, $\bar{\ell}(\gamma)=1$, and lift it up to $\mathrm{Fl}(U)$ getting a nontrivial relation $w_{i}\left(u_{1}, \ldots, u_{n}\right)=1$.

A PRESENTATION FOR THE SUBGROUP

In general,
At every closed folding $\Gamma_{i} \curvearrowright \Gamma_{i+1}$, take the reduced non-trivial walk

reading the trivial element, $\bar{\ell}(\gamma)=1$, and lift it up to $\mathrm{Fl}(U)$ getting a nontrivial relation $w_{i}\left(u_{1}, \ldots, u_{n}\right)=1$.

Proposition

Let $\left\{u_{1}, \ldots, u_{n}\right\}$ be a set of generators for the (free) subgroup $H=\left\langle u_{1}, \ldots, u_{n}\right\rangle \leqslant \mathbb{F}_{A}$. Then,

$$
\left.H=\left\langle u_{1}, \ldots, u_{n}\right| w_{i}=1 \text { for each closed folding }\right\rangle
$$

is a presentation for H with generators $\left\{u_{1}, \ldots, u_{n}\right\}$.

EQUATIONS OVER SUBGROUPS

Definition

Let G be a group, $H \leqslant G$ a subgroup. An equation over H is an expression of the form $w(X)=h_{0} X^{\epsilon_{1}} h_{1} \cdots X^{\epsilon_{n}} h_{n} \in H *\langle X\rangle=H * \mathbb{Z}$, where $h_{0}, \ldots, h_{n} \in H, \epsilon_{1}, \ldots \epsilon_{n}= \pm 1$, and $h_{i}=1 \Rightarrow \epsilon_{i}=\epsilon_{i+1}$, for $i=1, \ldots, n-1$. The degree is n (for $n=0$ it is a trivial equation).

EQUATIONS OVER SUBGROUPS

Definition

Let G be a group, $H \leqslant G$ a subgroup. An equation over H is an expression of the form $w(X)=h_{0} X^{\epsilon_{1}} h_{1} \cdots X^{\epsilon_{n}} h_{n} \in H *\langle X\rangle=H * \mathbb{Z}$, where $h_{0}, \ldots, h_{n} \in H, \epsilon_{1}, \ldots \epsilon_{n}= \pm 1$, and $h_{i}=1 \Rightarrow \epsilon_{i}=\epsilon_{i+1}$, for $i=1, \ldots, n-1$. The degree is n (for $n=0$ it is a trivial equation). We say that $g \in G$ satisfies (or is a root of) $w(X)$ if $w(g)=1$ in G.

EQUATIONS OVER SUBGROUPS

Definition

Let G be a group, $H \leqslant G$ a subgroup. An equation over H is an expression of the form $w(X)=h_{0} X^{\epsilon_{1}} h_{1} \cdots X^{\epsilon_{n}} h_{n} \in H *\langle X\rangle=H * \mathbb{Z}$, where $h_{0}, \ldots, h_{n} \in H, \epsilon_{1}, \ldots \epsilon_{n}= \pm 1$, and $h_{i}=1 \Rightarrow \epsilon_{i}=\epsilon_{i+1}$, for $i=1, \ldots, n-1$. The degree is n (for $n=0$ it is a trivial equation). We say that $g \in G$ satisfies (or is a root of) $w(X)$ if $w(g)=1$ in G. We also say that g is dependent on H if it satisfies some non-trivial equation over H.

EQUATIONS OVER SUBGROUPS

Definition

Let G be a group, $H \leqslant G$ a subgroup. An equation over H is an expression of the form $w(X)=h_{0} X^{\epsilon_{1}} h_{1} \cdots X^{\epsilon_{n}} h_{n} \in H *\langle X\rangle=H * \mathbb{Z}$, where $h_{0}, \ldots, h_{n} \in H, \epsilon_{1}, \ldots \epsilon_{n}= \pm 1$, and $h_{i}=1 \Rightarrow \epsilon_{i}=\epsilon_{i+1}$, for $i=1, \ldots, n-1$. The degree is n (for $n=0$ it is a trivial equation). We say that $g \in G$ satisfies (or is a root of) $w(X)$ if $w(g)=1$ in G. We also say that g is dependent on H if it satisfies some non-trivial equation over H.

Question:

Given $H \leqslant$ f.g. \mathbb{F}_{A} and $g \in \mathbb{F}_{A}$,

- can we decide whether g is dependent on H ?

EQUATIONS OVER SUBGROUPS

Definition

Let G be a group, $H \leqslant G$ a subgroup. An equation over H is an expression of the form $w(X)=h_{0} X^{\epsilon_{1}} h_{1} \cdots X^{\epsilon_{n}} h_{n} \in H *\langle X\rangle=H * \mathbb{Z}$, where $h_{0}, \ldots, h_{n} \in H, \epsilon_{1}, \ldots \epsilon_{n}= \pm 1$, and $h_{i}=1 \Rightarrow \epsilon_{i}=\epsilon_{i+1}$, for $i=1, \ldots, n-1$. The degree is n (for $n=0$ it is a trivial equation). We say that $g \in G$ satisfies (or is a root of) $w(X)$ if $w(g)=1$ in G. We also say that g is dependent on H if it satisfies some non-trivial equation over H.

Question:

Given $H \leqslant$ f.g. \mathbb{F}_{A} and $g \in \mathbb{F}_{A}$,

- can we decide whether g is dependent on H ?
- if yes, can we compute a nontrivial equation over H satisfied by g ?

EQUATIONS OVER SUBGROUPS

Definition

Let G be a group, $H \leqslant G$ a subgroup. An equation over H is an expression of the form $w(X)=h_{0} X^{\epsilon_{1}} h_{1} \cdots X^{\epsilon_{n}} h_{n} \in H *\langle X\rangle=H * \mathbb{Z}$, where $h_{0}, \ldots, h_{n} \in H, \epsilon_{1}, \ldots \epsilon_{n}= \pm 1$, and $h_{i}=1 \Rightarrow \epsilon_{i}=\epsilon_{i+1}$, for $i=1, \ldots, n-1$. The degree is n (for $n=0$ it is a trivial equation). We say that $g \in G$ satisfies (or is a root of) $w(X)$ if $w(g)=1$ in G. We also say that g is dependent on H if it satisfies some non-trivial equation over H.

Question:

Given $H \leqslant$ f.g. \mathbb{F}_{A} and $g \in \mathbb{F}_{A}$,

- can we decide whether g is dependent on H ?
- if yes, can we compute a nontrivial equation over H satisfied by g ?
- can we compute them all?

EQUATIONS OVER SUBGROUPS

Observation

Let $H \leqslant$ f.g. \mathbb{F}_{A} and $g \in \mathbb{F}_{A}$. Then,
(i) $\mathrm{rk}(\langle H, g\rangle) \leqslant \mathrm{rk}(H)+1$;
(ii) with strict inequality if and only if g is dependent on H.

EQUATIONS OVER SUBGROUPS

Observation

Let $H \leqslant$ f.g. \mathbb{F}_{A} and $g \in \mathbb{F}_{A}$. Then,
(i) $\mathrm{rk}(\langle H, g\rangle) \leqslant \mathrm{rk}(H)+1$;
(ii) with strict inequality if and only if g is dependent on H.

So, the decision is easy ...

EQUATIONS OVER SUBGROUPS

Observation

Let $H \leqslant$ f.g. \mathbb{F}_{A} and $g \in \mathbb{F}_{A}$. Then,
(i) $\mathrm{rk}(\langle H, g\rangle) \leqslant \mathrm{rk}(H)+1$;
(ii) with strict inequality if and only if g is dependent on H.

So, the decision is easy ...
(i) Take a basis for H, say $\left\{h_{1}, \ldots, h_{r}\right\}$;

EQUATIONS OVER SUBGROUPS

Observation

Let $H \leqslant$ f.g. \mathbb{F}_{A} and $g \in \mathbb{F}_{A}$. Then,
(i) $\mathrm{rk}(\langle H, g\rangle) \leqslant \mathrm{rk}(H)+1$;
(ii) with strict inequality if and only if g is dependent on H.

So, the decision is easy ...
(i) Take a basis for H, say $\left\{h_{1}, \ldots, h_{r}\right\}$;
(ii) construct the tower of foldings

$$
\operatorname{Fl}\left(\left\{h_{1}, \ldots, h_{r}\right\}\right)=\Gamma_{0} \curvearrowright \Gamma_{1} \frown \cdots \curvearrowright \Gamma_{n}=\operatorname{St}(H)
$$

(observe all these foldings are open);

EQUATIONS OVER SUBGROUPS

Observation

Let $H \leqslant$ f.g. \mathbb{F}_{A} and $g \in \mathbb{F}_{A}$. Then,
(i) $\mathrm{rk}(\langle H, g\rangle) \leqslant \mathrm{rk}(H)+1$;
(ii) with strict inequality if and only if g is dependent on H.

So, the decision is easy ...
(i) Take a basis for H, say $\left\{h_{1}, \ldots, h_{r}\right\}$;
(ii) construct the tower of foldings

$$
\operatorname{Fl}\left(\left\{h_{1}, \ldots, h_{r}\right\}\right)=\Gamma_{0} \curvearrowright \Gamma_{1} \curvearrowright \cdots \curvearrowright \Gamma_{n}=\operatorname{St}(H)
$$

(observe all these foldings are open);
(iii) attach an extra petal reading g at e everywhere in the tower;

EQUATIONS OVER SUBGROUPS

Observation

Let $H \leqslant$ f.g. \mathbb{F}_{A} and $g \in \mathbb{F}_{A}$. Then,
(i) $\mathrm{rk}(\langle H, g\rangle) \leqslant \mathrm{rk}(H)+1$;
(ii) with strict inequality if and only if g is dependent on H.

So, the decision is easy ...
(i) Take a basis for H, say $\left\{h_{1}, \ldots, h_{r}\right\}$;
(ii) construct the tower of foldings

$$
\operatorname{Fl}\left(\left\{h_{1}, \ldots, h_{r}\right\}\right)=\Gamma_{0} \curvearrowright \Gamma_{1} \curvearrowright \cdots \curvearrowright \Gamma_{n}=\operatorname{St}(H)
$$

(observe all these foldings are open);
(iii) attach an extra petal reading g at \bullet everywhere in the tower; (iv) continue folding down to $\operatorname{St}(\langle H, g\rangle)$;

EQUATIONS OVER SUBGROUPS

Observation

Let $H \leqslant$ f.g. \mathbb{F}_{A} and $g \in \mathbb{F}_{A}$. Then,
(i) $\mathrm{rk}(\langle H, g\rangle) \leqslant \mathrm{rk}(H)+1$;
(ii) with strict inequality if and only if g is dependent on H.

So, the decision is easy ...
(i) Take a basis for H, say $\left\{h_{1}, \ldots, h_{r}\right\}$;
(ii) construct the tower of foldings

$$
\operatorname{Fl}\left(\left\{h_{1}, \ldots, h_{r}\right\}\right)=\Gamma_{0} \curvearrowright \Gamma_{1} \frown \cdots \curvearrowright \Gamma_{n}=\operatorname{St}(H)
$$

(observe all these foldings are open);
(iii) attach an extra petal reading g at \bullet everywhere in the tower;
(iv) continue folding down to St ($\langle H, g\rangle$);
(v) g is dependent on H if and only if some folding is closed in this second part.

EQUATIONS OVER SUBGROUPS

Observation

Let $H \leqslant$ f.g. \mathbb{F}_{A} and $g \in \mathbb{F}_{A}$. Then,
(i) $\mathrm{rk}(\langle H, g\rangle) \leqslant \mathrm{rk}(H)+1$;
(ii) with strict inequality if and only if g is dependent on H.

So, the decision is easy ...
(i) Take a basis for H, say $\left\{h_{1}, \ldots, h_{r}\right\}$;
(ii) construct the tower of foldings

$$
\operatorname{Fl}\left(\left\{h_{1}, \ldots, h_{r}\right\}\right)=\Gamma_{0} \curvearrowright \Gamma_{1} \frown \cdots \curvearrowright \Gamma_{n}=\operatorname{St}(H)
$$

(observe all these foldings are open);
(iii) attach an extra petal reading g at \bullet everywhere in the tower;
(iv) continue folding down to St ($\langle H, g\rangle$);
(v) g is dependent on H if and only if some folding is closed in this second part.

EQUATIONS OVER SUBGROUPS

Constructing an explicit equation is easy as well ...

EQUATIONS OVER SUBGROUPS

Constructing an explicit equation is easy as well ...
(i) Assume there is some closed folding;

EQUATIONS OVER SUBGROUPS

Constructing an explicit equation is easy as well ...
(i) Assume there is some closed folding;
(ii) take a reduced non-trivial walk of the form

reading the trivial element, $\bar{\ell}(\gamma)=1$, and lift it up to $\operatorname{Fl}\left(\left\{h_{1}, \ldots, h_{r}, g\right\}\right)$.

EQUATIONS OVER SUBGROUPS

Constructing an explicit equation is easy as well ...
(i) Assume there is some closed folding;
(ii) take a reduced non-trivial walk of the form

reading the trivial element, $\bar{\ell}(\gamma)=1$, and lift it up to $\operatorname{Fl}\left(\left\{h_{1}, \ldots, h_{r}, g\right\}\right)$.
(iii) We obtain a non-trivial word $w\left(h_{1}, \ldots, h_{r}, g\right)$ with trivial label, $w\left(h_{1}, \ldots, h_{r}, g\right)=\mathbb{F}_{A} 1 \ldots$

EQUATIONS OVER SUBGROUPS

Constructing an explicit equation is easy as well ...
(i) Assume there is some closed folding;
(ii) take a reduced non-trivial walk of the form

reading the trivial element, $\bar{\ell}(\gamma)=1$, and lift it up to $\operatorname{Fl}\left(\left\{h_{1}, \ldots, h_{r}, g\right\}\right)$.
(iii) We obtain a non-trivial word $w\left(h_{1}, \ldots, h_{r}, g\right)$ with trivial label, $w\left(h_{1}, \ldots, h_{r}, g\right)=\mathbb{F}_{A} 1 \ldots$
(iv) ... which must mandatorily use g because $\left\{h_{1}, \ldots, h_{r}\right\}$ were freely independent.

EQUATIONS OVER SUBGROUPS

Constructing an explicit equation is easy as well ...
(i) Assume there is some closed folding;
(ii) take a reduced non-trivial walk of the form

reading the trivial element, $\bar{\ell}(\gamma)=1$, and lift it up to $\operatorname{Fl}\left(\left\{h_{1}, \ldots, h_{r}, g\right\}\right)$.
(iii) We obtain a non-trivial word $w\left(h_{1}, \ldots, h_{r}, g\right)$ with trivial label, $w\left(h_{1}, \ldots, h_{r}, g\right)=\mathbb{F}_{A} 1 \ldots$
(iv) ... which must mandatorily use g because $\left\{h_{1}, \ldots, h_{r}\right\}$ were freely independent.
(iv) This is already the equation $w(X)$ we are looking for.

EQUATIONS OVER SUBGROUPS

Constructing all such equations is also easy ...

Definition

Let G be a group, $H \leqslant G$, and $g \in G$. The anihilator of g over H is

$$
I_{H}(g)=\left\{W(X) \in H *\langle X\rangle \mid W(g)=_{G} 1\right\} 太 H *\langle X\rangle .
$$

EQUATIONS OVER SUBGROUPS

Constructing all such equations is also easy ...

Definition

Let G be a group, $H \leqslant G$, and $g \in G$. The anihilator of g over H is

$$
I_{H}(g)=\left\{w(X) \in H *\langle X\rangle \mid w(g)=_{G} 1\right\} \preccurlyeq H *\langle X\rangle .
$$

Theorem

Let $w_{1}(X), \ldots, w_{k}(X) \in H *\langle X\rangle$ be the equations computed from the $k \geqslant 0$ closed foldings in the tower. Then,

$$
I_{H}(g)=\left\langle\left\langle w_{1}(X), \ldots, w_{k}(X)\right\rangle\right\rangle \leqslant H *\langle X\rangle .
$$

EQUATIONS OVER SUBGROUPS

Constructing all such equations is also easy ...

Definition

Let G be a group, $H \leqslant G$, and $g \in G$. The anihilator of g over H is

$$
I_{H}(g)=\left\{w(X) \in H *\langle X\rangle \mid w(g)=_{G} 1\right\} \preccurlyeq H *\langle X\rangle .
$$

Theorem

Let $w_{1}(X), \ldots, w_{k}(X) \in H *\langle X\rangle$ be the equations computed from the $k \geqslant 0$ closed foldings in the tower. Then,

$$
I_{H}(g)=\left\langle\left\langle w_{1}(X), \ldots, w_{k}(X)\right\rangle\right\rangle \approx H *\langle X\rangle .
$$

Rosenmann, V. Dependence and algebraicity over subgroups of free groups, arXiv.2107.03154v1.

EQUATIONS OVER SUBGROUPS

Constructing all such equations is also easy ...

Definition

Let G be a group, $H \leqslant G$, and $g \in G$. The anihilator of g over H is

$$
I_{H}(g)=\{w(X) \in H *\langle X\rangle \mid w(g)=G 1\} \Vdash H *\langle X\rangle .
$$

Theorem

Let $w_{1}(X), \ldots, w_{k}(X) \in H *\langle X\rangle$ be the equations computed from the $k \geqslant 0$ closed foldings in the tower. Then,

$$
I_{H}(g)=\left\langle\left\langle w_{1}(X), \ldots, w_{k}(X)\right\rangle\right\rangle \approx H *\langle X\rangle .
$$

Rosenmann, V. Dependence and algebraicity over subgroups of free groups, arXiv.2107.03154v1.

Ascari. Ideals of equations for elements in a free group and Stallings folding, arXiv.2207.04759v1.

CoSets And index

DEFICIENCY AND SATURATION

Let Γ be a (pointed and involutive) A-automaton, and let $a \in A^{ \pm}$.

DEFICIENCY AND SATURATION

Let Γ be a (pointed and involutive) A-automaton, and let $a \in A^{ \pm}$.

Definition

A vertex $p \in V \Gamma$ is saturated if $\forall a \in A^{ \pm}$there is at least one a-arc leaving p.

DEFICIENCY AND SATURATION

Let Γ be a (pointed and involutive) A-automaton, and let $a \in A^{ \pm}$.

Definition

A vertex $p \in V \Gamma$ is saturated if $\forall a \in A^{ \pm}$there is at least one a-arc leaving p. Otherwise, we say that p is unsaturated (or a-deficient if there is no a-arc leaving p).

DEFICIENCY AND SATURATION

Let Γ be a (pointed and involutive) A-automaton, and let $a \in A^{ \pm}$.

Definition

A vertex $p \in V \Gamma$ is saturated if $\forall a \in A^{ \pm}$there is at least one a-arc leaving p. Otherwise, we say that p is unsaturated (or a-deficient if there is no a-arc leaving p).

The a-deficit of $\Gamma, \operatorname{def}_{a}(\Gamma)$, is the number of a-deficient vertices in Γ.

DEFICIENCY AND SATURATION

Let Γ be a (pointed and involutive) A-automaton, and let $a \in A^{ \pm}$.

Definition

A vertex $p \in V \Gamma$ is saturated if $\forall a \in A^{ \pm}$there is at least one a-arc leaving p. Otherwise, we say that p is unsaturated (or a-deficient if there is no a-arc leaving p).

The a-deficit of $\Gamma, \operatorname{def}_{a}(\Gamma)$, is the number of a-deficient vertices in Γ. Γ is saturated* if all its vertices are saturated.

DEFICIENCY AND SATURATION

Let Γ be a (pointed and involutive) A-automaton, and let $a \in A^{ \pm}$.

Definition

A vertex $p \in V \Gamma$ is saturated if $\forall a \in A^{ \pm}$there is at least one a-arc leaving p. Otherwise, we say that p is unsaturated (or a-deficient if there is no a-arc leaving p).

The a-deficit of $\Gamma, \operatorname{def}_{a}(\Gamma)$, is the number of a-deficient vertices in Γ.
Γ is saturated* if all its vertices are saturated.
Γ is unsaturated otherwise (Γ has at least one unsaturated vertex).

DEFICIENCY AND SATURATION

Let Γ be a (pointed and involutive) A-automaton, and let $a \in A^{ \pm}$.

Definition

A vertex $p \in V \Gamma$ is saturated if $\forall a \in A^{ \pm}$there is at least one a-arc leaving p. Otherwise, we say that p is unsaturated (or a-deficient if there is no a-arc leaving p).

The a-deficit of $\Gamma, \operatorname{def}_{a}(\Gamma)$, is the number of a-deficient vertices in Γ.
Γ is saturated* if all its vertices are saturated.
Γ is unsaturated otherwise (Γ has at least one unsaturated vertex).
Remark: If Γ is deterministic, then:

$$
\Gamma \text { is saturated } \Leftrightarrow \forall a \in A, \forall p \in \vee \Gamma, \exists!p \xrightarrow{a} \text { and } \exists!p \stackrel{a}{\leftarrow}
$$

DEFICIENCY AND SATURATION

Let Γ be a (pointed and involutive) A-automaton, and let $a \in A^{ \pm}$.

Definition

A vertex $p \in V \Gamma$ is saturated if $\forall a \in A^{ \pm}$there is at least one a-arc leaving p. Otherwise, we say that p is unsaturated (or a-deficient if there is no a-arc leaving p).

The a-deficit of $\Gamma, \operatorname{def}_{a}(\Gamma)$, is the number of a-deficient vertices in Γ.
Γ is saturated* if all its vertices are saturated.
Γ is unsaturated otherwise (Γ has at least one unsaturated vertex).
Remark: If Γ is deterministic, then:

$$
\begin{aligned}
\Gamma \text { is saturated } & \Leftrightarrow \forall a \in A, \forall p \in \vee \Gamma, \exists!\mathrm{p} \xrightarrow{a} \text { and } \exists!\mathrm{p} \gtrless^{a} \\
& \Rightarrow \Gamma \text { is }(2 \# A) \text {-regular. }
\end{aligned}
$$

DEFICIENCY AND SATURATION

Let Γ be a (pointed and involutive) A-automaton, and let $a \in A^{ \pm}$.

Definition

A vertex $p \in V \Gamma$ is saturated if $\forall a \in A^{ \pm}$there is at least one a-arc leaving p. Otherwise, we say that p is unsaturated (or a-deficient if there is no a-arc leaving p).

The a-deficit of $\Gamma, \operatorname{def}_{a}(\Gamma)$, is the number of a-deficient vertices in Γ.
Γ is saturated* if all its vertices are saturated.
Γ is unsaturated otherwise (Γ has at least one unsaturated vertex).
Remark: If Γ is deterministic, then:

$$
\begin{aligned}
\Gamma \text { is saturated } & \Leftrightarrow \forall a \in A, \forall p \in \vee \Gamma, \exists!p \xrightarrow{a} \text { and } \exists!p \gtrless^{a} \\
& \Rightarrow \Gamma \text { is }(2 \# A) \text {-regular. }
\end{aligned}
$$

Remark: $\operatorname{Sch}(H)$ is a connected, deterministic, and saturated (but not necessarily core) automaton recognizing H.

SCHREIER AND STALLINGS AUTOMATA. CAYLEY BRANCHES

SCHREIER AND STALLINGS AUTOMATA. CAYLEY BRANCHES

Recall: if $H \leqslant \mathbb{F}_{A}$, then $\operatorname{St}(H)=\operatorname{core}(\operatorname{Sch}(H))$.

SCHREIER AND STALLINGS AUTOMATA. CAYLEY BRANCHES

Recall: if $H \leqslant \mathbb{F}_{A}$, then $\operatorname{St}(H)=\operatorname{core}(\operatorname{Sch}(H))$.

- $\operatorname{St}(H)$ is what you obtain after removing from Sch (H) eventual 'hanging trees' not containing \bullet.

SCHREIER AND STALLINGS AUTOMATA. CAYLEY BRANCHES

Recall: if $H \leqslant \mathbb{F}_{A}$, then $\operatorname{St}(H)=\operatorname{core}(\operatorname{Sch}(H))$.

- $\operatorname{St}(H)$ is what you obtain after removing from $\operatorname{Sch}(H)$ eventual ‘hanging trees' not containing ©.
- How to obtain Sch(H) from $\operatorname{St}(H)$? what is $\operatorname{Sch}(H) \backslash \operatorname{St}(H)$?

SCHREIER AND STALLINGS AUTOMATA. CAYLEY BRANCHES

Recall: if $H \leqslant \mathbb{F}_{A}$, then $\operatorname{St}(H)=\operatorname{core}(\operatorname{Sch}(H))$.

- $\operatorname{St}(H)$ is what you obtain after removing from $\operatorname{Sch}(H)$ eventual 'hanging trees' not containing \bullet.
- How to obtain Sch(H) from $\operatorname{St}(H)$? what is $\operatorname{Sch}(H) \backslash \operatorname{St}(H)$?

Definition. A Cayley branch of \mathbb{F}_{A} is a connected component obtained after removing \bullet from Cay $\left(\mathbb{F}_{A}\right)$.

SCHREIER AND STALLINGS AUTOMATA. CAYLEY BRANCHES

Recall: if $H \leqslant \mathbb{F}_{A}$, then $\operatorname{St}(H)=\operatorname{core}(\operatorname{Sch}(H))$.

- $\operatorname{St}(H)$ is what you obtain after removing from $\operatorname{Sch}(H)$ eventual 'hanging trees' not containing \bullet.
- How to obtain Sch(H) from $\operatorname{St}(H)$? what is $\operatorname{Sch}(H) \backslash \operatorname{St}(H)$?

Definition. A Cayley branch of \mathbb{F}_{A} is a connected component obtained after removing \bullet from Cay $\left(\mathbb{F}_{A}\right)$. The a-Cayley branch of \mathbb{F}_{2} is:

SCHREIER AND STALLINGS AUTOMATA. CAYLEY BRANCHES

Recall: if $H \leqslant \mathbb{F}_{A}$, then $\operatorname{St}(H)=\operatorname{core}(\operatorname{Sch}(H))$.

- $\operatorname{St}(H)$ is what you obtain after removing from Sch (H) eventual ‘hanging trees’ not containing ©.
- How to obtain $\operatorname{Sch}(H)$ from $\operatorname{St}(H)$? what is $\operatorname{Sch}(H) \backslash \operatorname{St}(H)$?

Definition. A Cayley branch of \mathbb{F}_{A} is a connected component obtained after removing \bullet from Cay $\left(\mathbb{F}_{A}\right)$. The a-Cayley branch of \mathbb{F}_{2} is:

Lemma

Sch (H) is the automaton obtained after adjoining an a-Cayley branch to every a-deficient vertex in $\operatorname{St}(H)$.

FINITE INDEX

Remark:

$\operatorname{Sch}(H, A)$ is core $\Leftrightarrow \operatorname{Sch}(H, A)=\operatorname{St}(H, A) \Leftrightarrow \operatorname{St}(H, A)$ is saturated

FINITE INDEX

Remark:

$$
\operatorname{Sch}(H, A) \text { is core } \Leftrightarrow \operatorname{Sch}(H, A)=\operatorname{St}(H, A) \Leftrightarrow \operatorname{St}(H, A) \text { is saturated }
$$

Finite Index Problem for $G=\langle A \mid R\rangle$, $\operatorname{FIP}(G)$
Decide, given words $u_{1}, \ldots, u_{k} \in\left(A^{ \pm}\right)^{*}$, whether $\left\langle u_{1}, \ldots, u_{k}\right\rangle_{G}$ has finite index in G.

FINITE INDEX

Remark:

$$
\operatorname{Sch}(H, A) \text { is core } \Leftrightarrow \operatorname{Sch}(H, A)=\operatorname{St}(H, A) \Leftrightarrow \operatorname{St}(H, A) \text { is saturated }
$$

Finite Index Problem for $G=\langle A \mid R\rangle$, $\operatorname{FIP}(G)$
Decide, given words $u_{1}, \ldots, u_{k} \in\left(A^{ \pm}\right)^{*}$, whether $\left\langle u_{1}, \ldots, u_{k}\right\rangle_{G}$ has finite index in G.

FINITE INDEX

Remark:

$$
\operatorname{Sch}(H, A) \text { is core } \Leftrightarrow \operatorname{Sch}(H, A)=\operatorname{St}(H, A) \Leftrightarrow \operatorname{St}(H, A) \text { is saturated }
$$

Finite Index Problem for $G=\langle A \mid R\rangle$, $\operatorname{FIP}(G)$
Decide, given words $u_{1}, \ldots, u_{k} \in\left(A^{ \pm}\right)^{*}$, whether $\left\langle u_{1}, \ldots, u_{k}\right\rangle_{G}$ has finite index in G.

Proposition

Let $H \leqslant \mathbb{F}_{A}$. Then,

$$
\left|\mathbb{F}_{A}: H\right|<\infty \Leftrightarrow \operatorname{St}(H) \text { is saturated and } \# \mathrm{VSt}(H)<\infty
$$

FINITE INDEX

Remark:

$$
\operatorname{Sch}(H, A) \text { is core } \Leftrightarrow \operatorname{Sch}(H, A)=\operatorname{St}(H, A) \Leftrightarrow \operatorname{St}(H, A) \text { is saturated }
$$

Finite Index Problem for $G=\langle A \mid R\rangle, \operatorname{FIP}(G)$
Decide, given words $u_{1}, \ldots, u_{k} \in\left(A^{ \pm}\right)^{*}$, whether $\left\langle u_{1}, \ldots, u_{k}\right\rangle_{G}$ has finite index in G.

Proposition

Let $H \leqslant \mathbb{F}_{A}$. Then,

$$
\left|\mathbb{F}_{\mathrm{A}}: H\right|<\infty \Leftrightarrow \operatorname{St}(H) \text { is saturated and } \# \mathrm{VSt}(H)<\infty
$$

in particular if H is finitely generated (i.e., St (H) is finite):

$$
\left|\mathbb{F}_{A}: H\right|<\infty \Leftrightarrow \operatorname{St}(H) \text { is saturated }
$$

FINITE INDEX

Remark:

$$
\operatorname{Sch}(H, A) \text { is core } \Leftrightarrow \operatorname{Sch}(H, A)=\operatorname{St}(H, A) \Leftrightarrow \operatorname{St}(H, A) \text { is saturated }
$$

Finite Index Problem for $G=\langle A \mid R\rangle, \operatorname{FIP}(G)$
Decide, given words $u_{1}, \ldots, u_{k} \in\left(A^{ \pm}\right)^{*}$, whether $\left\langle u_{1}, \ldots, u_{k}\right\rangle_{G}$ has finite index in G.

Proposition

Let $H \leqslant \mathbb{F}_{A}$. Then,

$$
\left|\mathbb{F}_{\mathrm{A}}: H\right|<\infty \Leftrightarrow \operatorname{St}(H) \text { is saturated and } \# \mathrm{VSt}(H)<\infty
$$

in particular if H is finitely generated (i.e., St (H) is finite):

$$
\left|\mathbb{F}_{A}: H\right|<\infty \Leftrightarrow S t(H) \text { is saturated }
$$

Corollary

Given a finite $S \subseteq \mathbb{F}_{A}$, we can compute the index of $\langle H\rangle$ in \mathbb{F}_{A}. In particular, $\operatorname{FIP}\left(\mathbb{F}_{A}\right)$ is decidable.

SCHREIER INDEX FORMULA

\mathbb{F}_{n} denotes the free group of finite rank n.

SCHREIER INDEX FORMULA

\mathbb{F}_{n} denotes the free group of finite rank n.
Corollary
\mathbb{F}_{n} has finitely many subgroups of index $k \in \mathbb{N} \geqslant 1$.

SCHREIER INDEX FORMULA

\mathbb{F}_{n} denotes the free group of finite rank n.
Corollary
\mathbb{F}_{n} has finitely many subgroups of index $k \in \mathbb{N} \geqslant 1$.
Exercise: Find all the subgroups of \mathbb{F}_{2} of index 2.

SCHREIER INDEX FORMULA

\mathbb{F}_{n} denotes the free group of finite rank n.

Corollary

\mathbb{F}_{n} has finitely many subgroups of index $k \in \mathbb{N} \geqslant 1$.
Exercise: Find all the subgroups of \mathbb{F}_{2} of index 2.
Schreier index formula
If H is a subgroup of finite index in \mathbb{F}_{n}, then

$$
\operatorname{rk}(H)-1=(n-1)\left|\mathbb{F}_{n}: H\right|
$$

SCHREIER INDEX FORMULA

\mathbb{F}_{n} denotes the free group of finite rank n.

Corollary

\mathbb{F}_{n} has finitely many subgroups of index $k \in \mathbb{N} \geqslant 1$.
Exercise: Find all the subgroups of \mathbb{F}_{2} of index 2.
Schreier index formula
If H is a subgroup of finite index in \mathbb{F}_{n}, then

$$
\begin{aligned}
\mathrm{rk}(H)-1 & =(n-1)\left|\mathbb{F}_{n}: H\right| \\
\widetilde{\mathrm{rk}}(H) & =\widetilde{\mathrm{rk}}\left(\mathbb{F}_{n}\right)\left|\mathbb{F}_{n}: H\right|
\end{aligned}
$$

SCHREIER INDEX FORMULA

\mathbb{F}_{n} denotes the free group of finite rank n.

Corollary

\mathbb{F}_{n} has finitely many subgroups of index $k \in \mathbb{N} \geqslant 1$.
Exercise: Find all the subgroups of \mathbb{F}_{2} of index 2.
Schreier index formula
If H is a subgroup of finite index in \mathbb{F}_{n}, then

$$
\begin{aligned}
\mathrm{rk}(H)-1 & =(n-1)\left|\mathbb{F}_{n}: H\right| \\
\widetilde{\mathrm{rk}}(H) & =\widetilde{\mathrm{rk}}\left(\mathbb{F}_{n}\right)\left|\mathbb{F}_{n}: H\right|
\end{aligned}
$$

Proof: Let T be a spanning tree of $\Gamma=\operatorname{St}(H)$ (saturated and finite).

SCHREIER INDEX FORMULA

\mathbb{F}_{n} denotes the free group of finite rank n.

Corollary

\mathbb{F}_{n} has finitely many subgroups of index $k \in \mathbb{N} \geqslant 1$.
Exercise: Find all the subgroups of \mathbb{F}_{2} of index 2.
Schreier index formula
If H is a subgroup of finite index in \mathbb{F}_{n}, then

$$
\begin{aligned}
\mathrm{rk}(H)-1 & =(n-1)\left|\mathbb{F}_{n}: H\right| \\
\widetilde{\mathrm{rk}}(H) & =\widetilde{\mathrm{rk}}\left(\mathbb{F}_{n}\right)\left|\mathbb{F}_{n}: H\right|
\end{aligned}
$$

Proof: Let T be a spanning tree of $\Gamma=\operatorname{St}(H)$ (saturated and finite).
Then,

$$
\operatorname{rk}(H)-1=\operatorname{rk}(\Gamma)-1
$$

SCHREIER INDEX FORMULA

\mathbb{F}_{n} denotes the free group of finite rank n.

Corollary

\mathbb{F}_{n} has finitely many subgroups of index $k \in \mathbb{N} \geqslant 1$.
Exercise: Find all the subgroups of \mathbb{F}_{2} of index 2.
Schreier index formula
If H is a subgroup of finite index in \mathbb{F}_{n}, then

$$
\begin{aligned}
\mathrm{rk}(H)-1 & =(n-1)\left|\mathbb{F}_{n}: H\right| \\
\widetilde{\mathrm{rk}}(H) & =\widetilde{\mathrm{rk}}\left(\mathbb{F}_{n}\right)\left|\mathbb{F}_{n}: H\right|
\end{aligned}
$$

Proof: Let T be a spanning tree of $\Gamma=\operatorname{St}(H)$ (saturated and finite).
Then,

$$
\operatorname{rk}(H)-1=\operatorname{rk}(\Gamma)-1=\# \mathrm{E} \Gamma^{+}-\# \mathrm{E} T-1
$$

SCHREIER INDEX FORMULA

\mathbb{F}_{n} denotes the free group of finite rank n.

Corollary

\mathbb{F}_{n} has finitely many subgroups of index $k \in \mathbb{N} \geqslant 1$.
Exercise: Find all the subgroups of \mathbb{F}_{2} of index 2.
Schreier index formula
If H is a subgroup of finite index in \mathbb{F}_{n}, then

$$
\begin{aligned}
\mathrm{rk}(H)-1 & =(n-1)\left|\mathbb{F}_{n}: H\right| \\
\widetilde{\mathrm{rk}}(H) & =\widetilde{\mathrm{rk}}\left(\mathbb{F}_{n}\right)\left|\mathbb{F}_{n}: H\right|
\end{aligned}
$$

Proof: Let T be a spanning tree of $\Gamma=\operatorname{St}(H)$ (saturated and finite).
Then,

$$
\begin{aligned}
\operatorname{rk}(H)-1 & =\mathrm{rk}(\Gamma)-1=\# \mathrm{E} \Gamma^{+}-\# \mathrm{E} T-1 \\
& =\# \mathrm{E} \Gamma^{+}-\# \mathrm{~V} T
\end{aligned}
$$

SCHREIER INDEX FORMULA

\mathbb{F}_{n} denotes the free group of finite rank n.

Corollary

\mathbb{F}_{n} has finitely many subgroups of index $k \in \mathbb{N} \geqslant 1$.
Exercise: Find all the subgroups of \mathbb{F}_{2} of index 2.
Schreier index formula
If H is a subgroup of finite index in \mathbb{F}_{n}, then

$$
\begin{aligned}
\mathrm{rk}(H)-1 & =(n-1)\left|\mathbb{F}_{n}: H\right| \\
\widetilde{\mathrm{rk}}(H) & =\widetilde{\mathrm{rk}}\left(\mathbb{F}_{n}\right)\left|\mathbb{F}_{n}: H\right|
\end{aligned}
$$

Proof: Let T be a spanning tree of $\Gamma=\operatorname{St}(H)$ (saturated and finite).
Then,

$$
\begin{aligned}
\mathrm{rk}(\mathrm{H})-1 & =\mathrm{rk}(\Gamma)-1=\# \mathrm{E} \Gamma^{+}-\# \mathrm{E} T-1 \\
& =\# \mathrm{E} \Gamma^{+}-\# \mathrm{~V} T=n \# \mathrm{~V} \Gamma^{+}-\# \mathrm{~V} \Gamma^{+}
\end{aligned}
$$

SCHREIER INDEX FORMULA

\mathbb{F}_{n} denotes the free group of finite rank n.

Corollary

\mathbb{F}_{n} has finitely many subgroups of index $k \in \mathbb{N} \geqslant 1$.
Exercise: Find all the subgroups of \mathbb{F}_{2} of index 2.
Schreier index formula
If H is a subgroup of finite index in \mathbb{F}_{n}, then

$$
\begin{aligned}
\mathrm{rk}(H)-1 & =(n-1)\left|\mathbb{F}_{n}: H\right| \\
\widetilde{\mathrm{rk}}(H) & =\widetilde{\mathrm{rk}}\left(\mathbb{F}_{n}\right)\left|\mathbb{F}_{n}: H\right|
\end{aligned}
$$

Proof: Let T be a spanning tree of $\Gamma=\operatorname{St}(H)$ (saturated and finite).
Then,

$$
\begin{aligned}
\operatorname{rk}(H)-1 & =\mathrm{rk}(\Gamma)-1=\# \mathrm{E} \Gamma^{+}-\# \mathrm{E} T-1 \\
& =\# \mathrm{E} \Gamma^{+}-\# \mathrm{~V} T=n \# \mathrm{~V} \Gamma^{+}-\# \mathrm{~V} \Gamma^{+} \\
& =(n-1)\left|\mathbb{F}_{n}: H\right| . \quad \square
\end{aligned}
$$

FREE FACTORS AND HANDSHAKING LEMMA

FREE FACTORS AND HANDSHAKING LEMMA

Proposition

Let Γ be a reduced A-automaton, and let Δ be a connected subautomaton of Γ. Then $\langle\Delta\rangle$ is a free factor of $\langle\Gamma\rangle$.

FREE FACTORS AND HANDSHAKING LEMMA

Proposition
 Let Γ be a reduced A-automaton, and let Δ be a connected subautomaton of Γ. Then $\langle\Delta\rangle$ is a free factor of $\langle\Gamma\rangle$.
 $(\langle\Delta\rangle \leqslant *\langle\Gamma\rangle)$

Proof: Every spanning tree of Δ can be extended to an spanning tree of Γ.

FREE FACTORS AND HANDSHAKING LEMMA

Proposition
 Let Γ be a reduced A-automaton, and let Δ be a connected subautomaton of Γ. Then $\langle\Delta\rangle$ is a free factor of $\langle\Gamma\rangle$. $(\langle\Delta\rangle \leqslant *\langle\Gamma\rangle)$

Proof: Every spanning tree of Δ can be extended to an spanning tree of Γ.

Remark: not every free factor of Γ appears in this way, why?

FREE FACTORS AND HANDSHAKING LEMMA

Proposition
 Let Γ be a reduced A-automaton, and let Δ be a connected subautomaton of Γ. Then $\langle\Delta\rangle$ is a free factor of $\langle\Gamma\rangle . \quad(\langle\Delta\rangle \leqslant *\langle\Gamma\rangle)$

Proof: Every spanning tree of Δ can be extended to an spanning tree of Γ.

Remark: not every free factor of Γ appears in this way, why?
Lemma (Handshaking lemma)
If Γ is a finite reduced A-automaton. Then $\forall a \in A, \operatorname{def}_{a}(\Gamma)=\operatorname{def}_{a^{-1}}(\Gamma)$.

FREE FACTORS AND HANDSHAKING LEMMA

Proposition

Let Γ be a reduced A-automaton, and let Δ be a connected subautomaton of Γ. Then $\langle\Delta\rangle$ is a free factor of $\langle\Gamma\rangle . \quad(\langle\Delta\rangle \leqslant *\langle\Gamma\rangle)$

Proof: Every spanning tree of Δ can be extended to an spanning tree of Γ.

Remark: not every free factor of Γ appears in this way, why?
Lemma (Handshaking lemma)
If Γ is a finite reduced A-automaton. Then $\forall a \in A, \operatorname{def}_{a}(\Gamma)=\operatorname{def}_{a^{-1}}(\Gamma)$.
This property fails for infinite reduced automata:

MARSHALL-HALL THEOREM AND RESIDUAL FINITENESS

MARSHALL-HALL THEOREM AND RESIDUAL FINITENESS

Theorem (Marshall-Hall Jr.)
If H is a finitely generated subgroup of a free group \mathbb{F}, then H is a free factor of a finite-index subgroup of \mathbb{F}; i.e.,

$$
H \leqslant_{\mathrm{fg}} \mathbb{F} \Rightarrow \exists K: H \leqslant_{\mathrm{ff}} K \leqslant_{\mathrm{fi}} \mathbb{F} .
$$

MARSHALL-HALL THEOREM AND RESIDUAL FINITENESS

Theorem (Marshall-Hall Jr.)
If H is a finitely generated subgroup of a free group \mathbb{F}, then H is a free factor of a finite-index subgroup of \mathbb{F}; i.e.,

$$
H \leqslant_{\mathrm{fg}} \mathbb{F} \Rightarrow \exists K: H \leqslant_{\mathrm{ff}} K \leqslant_{\mathrm{fi}} \mathbb{F} .
$$

Proof (by example): Consider the subgroup recognized by the Stallings automaton:

MARSHALL-HALL THEOREM AND RESIDUAL FINITENESS

Theorem (Marshall-Hall Jr.)
If H is a finitely generated subgroup of a free group \mathbb{F}, then H is a free factor of a finite-index subgroup of \mathbb{F}; i.e.,

$$
H \leqslant_{\mathrm{fg}} \mathbb{F} \Rightarrow \exists K: H \leqslant_{\mathrm{ff}} K \leqslant_{\mathrm{fi}} \mathbb{F} .
$$

Proof (by example): Consider the subgroup recognized by the Stallings automaton:

MARSHALL-HALL THEOREM AND RESIDUAL FINITENESS

Theorem (Marshall-Hall Jr.)
If H is a finitely generated subgroup of a free group \mathbb{F}, then H is a free factor of a finite-index subgroup of \mathbb{F}; i.e.,

$$
H \leqslant_{\mathrm{fg}} \mathbb{F} \Rightarrow \exists K: H \leqslant_{\mathrm{ff}} K \leqslant_{\mathrm{fi}} \mathbb{F} .
$$

Proof (by example): Consider the subgroup recognized by the Stallings automaton:

MARSHALL-HALL THEOREM AND RESIDUAL FINITENESS

Theorem (Marshall-Hall Jr.)
If H is a finitely generated subgroup of a free group \mathbb{F}, then H is a free factor of a finite-index subgroup of \mathbb{F}; i.e.,

$$
H \leqslant_{\mathrm{fg}} \mathbb{F} \Rightarrow \exists K: H \leqslant_{\mathrm{ff}} K \leqslant_{\mathrm{fi}} \mathbb{F} .
$$

Proof (by example): Consider the subgroup recognized by the Stallings automaton:

MARSHALL-HALL THEOREM AND RESIDUAL FINITENESS

Theorem (Marshall-Hall Jr.)
If H is a finitely generated subgroup of a free group \mathbb{F}, then H is a free factor of a finite-index subgroup of \mathbb{F}; i.e.,

$$
H \leqslant_{\mathrm{fg}} \mathbb{F} \Rightarrow \exists K: H \leqslant_{\mathrm{ff}} K \leqslant_{\mathrm{fi}} \mathbb{F} .
$$

Proof (by example): Consider the subgroup recognized by the Stallings automaton:

Definition: G is residually finite if $\forall g \in G \backslash\{1\}, \exists N \leqslant_{f . i .} G$ s.t. $g \notin N$.

MARSHALL-HALL THEOREM AND RESIDUAL FINITENESS

Theorem (Marshall-Hall Jr.)
If H is a finitely generated subgroup of a free group \mathbb{F}, then H is a free factor of a finite-index subgroup of \mathbb{F}; i.e.,

$$
H \leqslant_{\mathrm{fg}} \mathbb{F} \Rightarrow \exists K: H \leqslant_{\mathrm{ff}} K \leqslant_{\mathrm{fi}} \mathbb{F} .
$$

Proof (by example): Consider the subgroup recognized by the Stallings automaton:

Definition: G is residually finite if $\forall g \in G \backslash\{1\}, \exists N \leqslant_{\text {f.i. }} G$ s.t. $g \notin N$.

Theorem

Finitely generated free groups are residually finite.

MARSHALL-HALL THEOREM AND RESIDUAL FINITENESS

Theorem (Marshall-Hall Jr.)
If H is a finitely generated subgroup of a free group \mathbb{F}, then H is a free factor of a finite-index subgroup of \mathbb{F}; i.e.,

$$
H \leqslant_{\mathrm{fg}} \mathbb{F} \Rightarrow \exists K: H \leqslant_{\mathrm{ff}} K \leqslant_{\mathrm{fi}} \mathbb{F} .
$$

Proof (by example): Consider the subgroup recognized by the Stallings automaton:

Definition: G is residually finite if $\forall g \in G \backslash\{1\}, \exists N \leqslant_{\text {f.i. }} G$ s.t. $g \notin N$.

Theorem

Finitely generated free groups are residually finite.
Prove it using Stallings automata!

CONJUGACY AND NORMALITY

Lemma

Let $H \leqslant \mathbb{F}_{A}$ and let $w \in \mathbb{F}_{A}$. Then, $\operatorname{St}\left(H^{w}\right)=\operatorname{core}\left(\operatorname{Sch}_{H w}(H)\right)$.

CONJUGACY AND NORMALITY

Lemma

Let $H \leqslant \mathbb{F}_{A}$ and let $w \in \mathbb{F}_{A}$. Then, $\operatorname{St}\left(H^{w}\right)=\operatorname{core}\left(\operatorname{Sch}_{H w}(H)\right)$.

Definition

Γ is vertex-transitive if $\forall p, q \in \Gamma, \exists \varphi: \Gamma \rightarrow \Gamma$ automorphism of A-digraphs, such that $\varphi(p)=q$.

CONJUGACY AND NORMALITY

Lemma

Let $H \leqslant \mathbb{F}_{A}$ and let $w \in \mathbb{F}_{A}$. Then, $\operatorname{St}\left(H^{w}\right)=\operatorname{core}\left(\operatorname{Sch}_{H w}(H)\right)$.

Definition

Γ is vertex-transitive if $\forall p, q \in \Gamma, \exists \varphi: \Gamma \rightarrow \Gamma$ automorphism of A-digraphs, such that $\varphi(p)=q$.

Proposition

Let $H \neq\{1\}$ be a subgroup of \mathbb{F}_{A}. Then:
H is normal in $\mathbb{F}_{A} \Leftrightarrow S t(H)$ is saturated and vertex-transitive

CONJUGACY AND NORMALITY

Lemma

Let $H \leqslant \mathbb{F}_{A}$ and let $w \in \mathbb{F}_{A}$. Then, $\operatorname{St}\left(H^{w}\right)=\operatorname{core}\left(\operatorname{Sch}_{H w}(H)\right)$.

Definition

Γ is vertex-transitive if $\forall p, q \in \Gamma, \exists \varphi: \Gamma \rightarrow \Gamma$ automorphism of A-digraphs, such that $\varphi(p)=q$.

Proposition

Let $H \neq\{1\}$ be a subgroup of \mathbb{F}_{A}. Then:
H is normal in $\mathbb{F}_{A} \Leftrightarrow \operatorname{St}(H)$ is saturated and vertex-transitive

Corollary: The normality problem is decidable for free groups.

CONJUGACY AND NORMALITY

Lemma

Let $H \leqslant \mathbb{F}_{A}$ and let $w \in \mathbb{F}_{A}$. Then, $\operatorname{St}\left(H^{w}\right)=\operatorname{core}\left(\operatorname{Sch}_{H w}(H)\right)$.

Definition

Γ is vertex-transitive if $\forall \mathrm{p}, \mathrm{q} \in \Gamma, \exists \varphi: \Gamma \rightarrow \Gamma$ automorphism of A-digraphs, such that $\varphi(p)=q$.

Proposition

Let $H \neq\{1\}$ be a subgroup of \mathbb{F}_{A}. Then:
H is normal in $\mathbb{F}_{A} \Leftrightarrow \operatorname{St}(H)$ is saturated and vertex-transitive

Corollary: The normality problem is decidable for free groups.

Corollary

Let $\{1\} \neq H \leqslant \mathbb{F}_{n}$, Then,

$$
H \text { is finitely generated } \Leftrightarrow H \leqslant_{\text {fi }} \mathbb{F}_{n}
$$

SUBGROUP CONJUGACY

Let Γ be a (pointed and involutive) A-automaton.

SUBGROUP CONJUGACY

Let Γ be a (pointed and involutive) A-automaton.

Lemma

Let $H \leqslant \mathbb{F}_{A}$ and let $w \in \mathbb{F}_{A}$. Then, $\operatorname{St}\left(H^{W}\right)=\operatorname{core}\left(\operatorname{Sch}_{H w}(H)\right)$.

SUBGROUP CONJUGACY

Let Γ be a (pointed and involutive) A-automaton.

Lemma

Let $H \leqslant \mathbb{F}_{A}$ and let $w \in \mathbb{F}_{A}$. Then, $\operatorname{St}\left(H^{w}\right)=\operatorname{core}\left(\operatorname{Sch}_{H w}(H)\right)$.

Definition

The restricted core of Γ, denoted by $\operatorname{core}^{*}(\Gamma)$, is the labelled digraph obtained after successively removing from core (Γ) all the (eventual) vertices of degree one and ignoring the basepoint.

We write $S^{*}(H)=\operatorname{core}^{*}(\operatorname{St}(H))$.
(restricted Stallings digraph)

SUBGROUP CONJUGACY

Let Γ be a (pointed and involutive) A-automaton.

Lemma

Let $H \leqslant \mathbb{F}_{A}$ and let $w \in \mathbb{F}_{A}$. Then, $\operatorname{St}\left(H^{w}\right)=\operatorname{core}\left(\operatorname{Sch}_{H w}(H)\right)$.

Definition

The restricted core of Γ, denoted by $\operatorname{core}^{*}(\Gamma)$, is the labelled digraph obtained after successively removing from core (Γ) all the (eventual) vertices of degree one and ignoring the basepoint.

We write $\mathrm{St}^{*}(H)=\operatorname{core}^{*}(S t(H)$). (restricted Stallings digraph)

Proposition

Two subgroups $H, K \leqslant \mathbb{F}_{A}$ are conjugate $\Leftrightarrow S t^{*}(H)=S t^{*}(K)$.

SUBGROUP CONJUGACY

Let Γ be a (pointed and involutive) A-automaton.

Lemma

Let $H \leqslant \mathbb{F}_{A}$ and let $w \in \mathbb{F}_{A}$. Then, $\operatorname{St}\left(H^{w}\right)=\operatorname{core}\left(\operatorname{Sch}_{H w}(H)\right)$.

Definition

The restricted core of Γ, denoted by $\operatorname{core}^{*}(\Gamma)$, is the labelled digraph obtained after successively removing from core (Γ) all the (eventual) vertices of degree one and ignoring the basepoint.
We write St ${ }^{*}(H)=\operatorname{core}^{*}(\operatorname{St}(H)) . \quad$ (restricted Stallings digraph)

Proposition

Two subgroups $H, K \leqslant \mathbb{F}_{A}$ are conjugate $\Leftrightarrow S t^{*}(H)=S t^{*}(K)$.

Theorem

The subgroup conjugacy problem $\operatorname{SCP}\left(\mathbb{F}_{n}\right)$ is decidable.

$$
\operatorname{SCP}(G) \equiv H \sim K ?_{H, K} \leqslant \mathrm{ff}_{\mathrm{g}} G
$$

INTERSECTIONS

THE SUBGROUP INTERSECTION PROBLEM

Subgroup Intersection Problem
Given $u_{1}, \ldots, u_{k} ; v_{1}, \ldots, v_{l} \in \mathbb{F}_{A}$, decide whether the intersection of $H=\left\langle u_{1}, \ldots, u_{k}\right\rangle$ and $K=\left\langle v_{1}, \ldots, v_{l}\right\rangle$ is finitely generated; when this is the case, compute generators for $H \cap K$.

THE SUBGROUP INTERSECTION PROBLEM

Subgroup Intersection Problem

Given $u_{1}, \ldots, u_{k} ; v_{1}, \ldots, v_{l} \in \mathbb{F}_{A}$, decide whether the intersection of $H=\left\langle u_{1}, \ldots, u_{k}\right\rangle$ and $K=\left\langle v_{1}, \ldots, v_{l}\right\rangle$ is finitely generated; when this is the case, compute generators for $H \cap K$.

Example

Consider $\mathbb{F}_{2}=\langle a, b\rangle$ and the subgroups

$$
\begin{array}{lll}
H=\left\langle u_{1}, u_{2}, u_{3}\right\rangle \leqslant \mathbb{F}_{2} & \text { and } & K=\left\langle v_{1}, v_{2}, v_{3}\right\rangle \leqslant \mathbb{F}_{2} \\
u_{1}=b, & v_{1}=a b \\
u_{2}=a^{3}, & v_{2}=a^{3} \\
u_{3}=a^{-1} b a b^{-1} a ; & v_{3}=a^{-1} b a .
\end{array}
$$

How to find generators for $\mathrm{H} \cap \mathrm{K}$?

THE SUBGROUP INTERSECTION PROBLEM

Subgroup Intersection Problem

Given $u_{1}, \ldots, u_{k} ; v_{1}, \ldots, v_{l} \in \mathbb{F}_{A}$, decide whether the intersection of $H=\left\langle u_{1}, \ldots, u_{k}\right\rangle$ and $K=\left\langle v_{1}, \ldots, v_{l}\right\rangle$ is finitely generated; when this is the case, compute generators for $H \cap K$.

Example

Consider $\mathbb{F}_{2}=\langle a, b\rangle$ and the subgroups

$$
\begin{array}{lll}
H=\left\langle u_{1}, u_{2}, u_{3}\right\rangle \leqslant \mathbb{F}_{2} & \text { and } & K=\left\langle v_{1}, v_{2}, v_{3}\right\rangle \leqslant \mathbb{F}_{2} \\
u_{1}=b, & v_{1}=a b, \\
u_{2}=a^{3}, & v_{2}=a^{3}, \\
u_{3}=a^{-1} b a b^{-1} a ; & v_{3}=a^{-1} b a .
\end{array}
$$

How to find generators for $H \cap K$?
Just playing, we realized that $a^{3}, b^{-1} a^{3} b, a^{-1} b a^{3} b^{-1} a \in H \cap K$. What else?

PRODUCT OF AUTOMATA

Definition

Let Γ_{1} and Γ_{2} be two A-automata. Their product (or pull-back) is the A-automaton $\Gamma_{1} \times \Gamma_{2}$ defined as:

- vertices: $\mathrm{V}\left(\Gamma_{1} \times \Gamma_{2}\right)=\mathrm{V}\left(\Gamma_{1}\right) \times \mathrm{V}\left(\Gamma_{2}\right)$;

PRODUCT OF AUTOMATA

Definition

Let Γ_{1} and Γ_{2} be two A-automata. Their product (or pull-back) is the A-automaton $\Gamma_{1} \times \Gamma_{2}$ defined as:

- vertices: $\mathrm{V}\left(\Gamma_{1} \times \Gamma_{2}\right)=\mathrm{V}\left(\Gamma_{1}\right) \times \mathrm{V}\left(\Gamma_{2}\right)$;
- arcs: $\left(p_{1}, p_{2}\right) \xrightarrow{a}\left(q_{1}, q_{2}\right)$ for every pair of arcs $p_{1} \xrightarrow{a} q_{1}$ in Γ_{1}, and $\mathrm{p}_{2} \xrightarrow{a} \mathrm{q}_{2}$ in $\Gamma_{2}, a \in A ;$

PRODUCT OF AUTOMATA

Definition

Let Γ_{1} and Γ_{2} be two A-automata. Their product (or pull-back) is the A-automaton $\Gamma_{1} \times \Gamma_{2}$ defined as:

- vertices: $\mathrm{V}\left(\Gamma_{1} \times \Gamma_{2}\right)=\mathrm{V}\left(\Gamma_{1}\right) \times \mathrm{V}\left(\Gamma_{2}\right)$;
- arcs: $\left(p_{1}, p_{2}\right) \xrightarrow{a}\left(q_{1}, q_{2}\right)$ for every pair of arcs $p_{1} \xrightarrow{a} q_{1}$ in Γ_{1}, and $\mathrm{p}_{2} \xrightarrow{a} \mathrm{q}_{2}$ in $\Gamma_{2}, a \in A$;
- basepoint: $\boldsymbol{\bullet}=\left(\boldsymbol{\oplus}_{1}, \boldsymbol{\bullet}_{2}\right)$.

PRODUCT OF AUTOMATA

Definition

Let Γ_{1} and Γ_{2} be two A-automata. Their product (or pull-back) is the A-automaton $\Gamma_{1} \times \Gamma_{2}$ defined as:

- vertices: $\mathrm{V}\left(\Gamma_{1} \times \Gamma_{2}\right)=\mathrm{V}\left(\Gamma_{1}\right) \times V\left(\Gamma_{2}\right)$;
- $\operatorname{arcs}:\left(p_{1}, p_{2}\right) \xrightarrow{a}\left(q_{1}, q_{2}\right)$ for every pair of arcs $p_{1} \xrightarrow{a} q_{1}$ in Γ_{1}, and $\mathrm{p}_{2} \xrightarrow{a} \mathrm{q}_{2}$ in $\Gamma_{2}, a \in A$;
- basepoint: $\boldsymbol{\bullet}=\left(\boldsymbol{o}_{1}, \boldsymbol{o}_{2}\right)$.

EXAMPLE OF PRODUCT OF AUTOMATA

Example

Consider $H=\left\langle b, a^{3}, a^{-1} b a b^{-1} a\right\rangle, K=\left\langle a b, a^{3}, a^{-1} b a\right\rangle \leqslant \mathbb{F}_{A}, A=\{a, b\}$. The A-automata $\operatorname{St}(H), \operatorname{St}(K)$, and $\operatorname{St}(H) \times \operatorname{St}(K)$ are:

EXAMPLE OF PRODUCT OF AUTOMATA

Example

Consider $H=\left\langle b, a^{3}, a^{-1} b a b^{-1} a\right\rangle, K=\left\langle a b, a^{3}, a^{-1} b a\right\rangle \leqslant \mathbb{F}_{A}, A=\{a, b\}$. The A-automata $\operatorname{St}(H), \operatorname{St}(K)$, and $\operatorname{St}(H) \times \operatorname{St}(K)$ are:

EXAMPLE OF PRODUCT OF AUTOMATA

Example

Consider $H=\left\langle b, a^{3}, a^{-1} b a b^{-1} a\right\rangle, K=\left\langle a b, a^{3}, a^{-1} b a\right\rangle \leqslant \mathbb{F}_{A}, A=\{a, b\}$. The A-automata $\operatorname{St}(H), \operatorname{St}(K)$, and $\operatorname{St}(H) \times \operatorname{St}(K)$ are:

EXAMPLE OF PRODUCT OF AUTOMATA

Example

Consider $H=\left\langle b, a^{3}, a^{-1} b a b^{-1} a\right\rangle, K=\left\langle a b, a^{3}, a^{-1} b a\right\rangle \leqslant \mathbb{F}_{A}, A=\{a, b\}$. The A-automata $\operatorname{St}(H), \operatorname{St}(K)$, and $\operatorname{St}(H) \times \operatorname{St}(K)$ are:

EXAMPLE OF PRODUCT OF AUTOMATA

Example

Consider $H=\left\langle b, a^{3}, a^{-1} b a b^{-1} a\right\rangle, K=\left\langle a b, a^{3}, a^{-1} b a\right\rangle \leqslant \mathbb{F}_{A}, A=\{a, b\}$. The A-automata $\operatorname{St}(H), \operatorname{St}(K)$, and $\operatorname{St}(H) \times \operatorname{St}(K)$ are:

EXAMPLE OF PRODUCT OF AUTOMATA

Example

Consider $H=\left\langle b, a^{3}, a^{-1} b a b^{-1} a\right\rangle, K=\left\langle a b, a^{3}, a^{-1} b a\right\rangle \leqslant \mathbb{F}_{A}, A=\{a, b\}$. The A-automata $\operatorname{St}(H), \operatorname{St}(K)$, and $\operatorname{St}(H) \times \operatorname{St}(K)$ are:

EXAMPLE OF PRODUCT OF AUTOMATA

Example

Consider $H=\left\langle b, a^{3}, a^{-1} b a b^{-1} a\right\rangle, K=\left\langle a b, a^{3}, a^{-1} b a\right\rangle \leqslant \mathbb{F}_{A}, A=\{a, b\}$. The A-automata $\operatorname{St}(H), \operatorname{St}(K)$, and $\operatorname{St}(H) \times \operatorname{St}(K)$ are:

PROPERTIES OF THE PRODUCT OF AUTOMATA

Proposition

Consider the product $\Gamma_{1} \times \Gamma_{2}$ of two A-automata Γ_{1} and Γ_{2}. Then,

PROPERTIES OF THE PRODUCT OF AUTOMATA

Proposition

Consider the product $\Gamma_{1} \times \Gamma_{2}$ of two A-automata Γ_{1} and Γ_{2}. Then,
(i) if Γ_{1} and Γ_{2} are deterministic then so is $\Gamma_{1} \times \Gamma_{2}$;

PROPERTIES OF THE PRODUCT OF AUTOMATA

Proposition

Consider the product $\Gamma_{1} \times \Gamma_{2}$ of two A-automata Γ_{1} and Γ_{2}. Then,
(i) if Γ_{1} and Γ_{2} are deterministic then so is $\Gamma_{1} \times \Gamma_{2}$;
(ii) $\left\langle\Gamma_{1} \times \Gamma_{2}\right\rangle=\left\langle\Gamma_{1}\right\rangle \cap\left\langle\Gamma_{2}\right\rangle$;

PROPERTIES OF THE PRODUCT OF AUTOMATA

Proposition

Consider the product $\Gamma_{1} \times \Gamma_{2}$ of two A-automata Γ_{1} and Γ_{2}. Then,
(i) if Γ_{1} and Γ_{2} are deterministic then so is $\Gamma_{1} \times \Gamma_{2}$;
(ii) $\left\langle\Gamma_{1} \times \Gamma_{2}\right\rangle=\left\langle\Gamma_{1}\right\rangle \cap\left\langle\Gamma_{2}\right\rangle$;
(iii) even with Γ_{1} and Γ_{2} being connected, $\Gamma_{1} \times \Gamma_{2}$ may not be so;

PROPERTIES OF THE PRODUCT OF AUTOMATA

Proposition

Consider the product $\Gamma_{1} \times \Gamma_{2}$ of two A-automata Γ_{1} and Γ_{2}. Then,
(i) if Γ_{1} and Γ_{2} are deterministic then so is $\Gamma_{1} \times \Gamma_{2}$;
(ii) $\left\langle\Gamma_{1} \times \Gamma_{2}\right\rangle=\left\langle\Gamma_{1}\right\rangle \cap\left\langle\Gamma_{2}\right\rangle$;
(iii) even with Γ_{1} and Γ_{2} being connected, $\Gamma_{1} \times \Gamma_{2}$ may not be so; (iv) even with Γ_{1} and Γ_{2} being core, $\Gamma_{1} \times \Gamma_{2}$ may not be so;

PROPERTIES OF THE PRODUCT OF AUTOMATA

Proposition

Consider the product $\Gamma_{1} \times \Gamma_{2}$ of two A-automata Γ_{1} and Γ_{2}. Then,
(i) if Γ_{1} and Γ_{2} are deterministic then so is $\Gamma_{1} \times \Gamma_{2}$;
(ii) $\left\langle\Gamma_{1} \times \Gamma_{2}\right\rangle=\left\langle\Gamma_{1}\right\rangle \cap\left\langle\Gamma_{2}\right\rangle$;
(iii) even with Γ_{1} and Γ_{2} being connected, $\Gamma_{1} \times \Gamma_{2}$ may not be so; (iv) even with Γ_{1} and Γ_{2} being core, $\Gamma_{1} \times \Gamma_{2}$ may not be so; (v) If Γ_{1} and Γ_{2} are deterministic, then for every (p, q) $\in \Gamma_{1} \times \Gamma_{2}$,

$$
0 \leqslant \operatorname{deg}(p, q) \leqslant \min \{\operatorname{deg}(p), \operatorname{deg}(q)\} .
$$

PROPERTIES OF THE PRODUCT OF AUTOMATA

Proposition

Consider the product $\Gamma_{1} \times \Gamma_{2}$ of two A-automata Γ_{1} and Γ_{2}. Then,
(i) if Γ_{1} and Γ_{2} are deterministic then so is $\Gamma_{1} \times \Gamma_{2}$;
(ii) $\left\langle\Gamma_{1} \times \Gamma_{2}\right\rangle=\left\langle\Gamma_{1}\right\rangle \cap\left\langle\Gamma_{2}\right\rangle$;
(iii) even with Γ_{1} and Γ_{2} being connected, $\Gamma_{1} \times \Gamma_{2}$ may not be so; (iv) even with Γ_{1} and Γ_{2} being core, $\Gamma_{1} \times \Gamma_{2}$ may not be so; (v) If Γ_{1} and Γ_{2} are deterministic, then for every (p, q) $\in \Gamma_{1} \times \Gamma_{2}$,

$$
0 \leqslant \operatorname{deg}(p, q) \leqslant \min \{\operatorname{deg}(p), \operatorname{deg}(q)\} .
$$

PROPERTIES OF THE PRODUCT OF AUTOMATA

Proposition

Consider the product $\Gamma_{1} \times \Gamma_{2}$ of two A-automata Γ_{1} and Γ_{2}. Then,
(i) if Γ_{1} and Γ_{2} are deterministic then so is $\Gamma_{1} \times \Gamma_{2}$;
(ii) $\left\langle\Gamma_{1} \times \Gamma_{2}\right\rangle=\left\langle\Gamma_{1}\right\rangle \cap\left\langle\Gamma_{2}\right\rangle$;
(iii) even with Γ_{1} and Γ_{2} being connected, $\Gamma_{1} \times \Gamma_{2}$ may not be so;
(iv) even with Γ_{1} and Γ_{2} being core, $\Gamma_{1} \times \Gamma_{2}$ may not be so;
(v) If Γ_{1} and Γ_{2} are deterministic, then for every (p, q) $\in \Gamma_{1} \times \Gamma_{2}$,

$$
0 \leqslant \operatorname{deg}(p, q) \leqslant \min \{\operatorname{deg}(p), \operatorname{deg}(q)\} .
$$

Corollary

The Stallings automaton of the intersection $H \cap K$ is

$$
\operatorname{St}(H \cap K)=\operatorname{core}(S t(H) \times \operatorname{St}(K)) .
$$

PROPERTIES OF THE PRODUCT OF AUTOMATA

Proposition

Consider the product $\Gamma_{1} \times \Gamma_{2}$ of two A-automata Γ_{1} and Γ_{2}. Then,
(i) if Γ_{1} and Γ_{2} are deterministic then so is $\Gamma_{1} \times \Gamma_{2}$;
(ii) $\left\langle\Gamma_{1} \times \Gamma_{2}\right\rangle=\left\langle\Gamma_{1}\right\rangle \cap\left\langle\Gamma_{2}\right\rangle$;
(iii) even with Γ_{1} and Γ_{2} being connected, $\Gamma_{1} \times \Gamma_{2}$ may not be so;
(iv) even with Γ_{1} and Γ_{2} being core, $\Gamma_{1} \times \Gamma_{2}$ may not be so;
(v) If Γ_{1} and Γ_{2} are deterministic, then for every (p, q) $\in \Gamma_{1} \times \Gamma_{2}$,

$$
0 \leqslant \operatorname{deg}(p, q) \leqslant \min \{\operatorname{deg}(p), \operatorname{deg}(q)\} .
$$

Corollary

The Stallings automaton of the intersection $H \cap K$ is

$$
\operatorname{St}(H \cap K)=\operatorname{core}(S t(H) \times \operatorname{St}(K)) .
$$

Two immediate applications follow ...

HOWSON PROPERTY AND THE INTERSECTION PROBLEM

Theorem (Howson, 1954)
In a free group, the intersetion of two (and so, finitely many) finitely generated subgroups is, again, finitely generated.

HOWSON PROPERTY AND THE INTERSECTION PROBLEM

Theorem (Howson, 1954)
In a free group, the intersetion of two (and so, finitely many) finitely generated subgroups is, again, finitely generated.

Proof: H, K are finitely generated $\Rightarrow \operatorname{St}(H)$ and $\operatorname{St}(K)$ are finite \Rightarrow $\operatorname{St}(H) \times \operatorname{St}(K)$ is finite $\Rightarrow H \cap K$ is finitely generated. \square

HOWSON PROPERTY AND THE INTERSECTION PROBLEM

Theorem (Howson, 1954)
In a free group, the intersetion of two (and so, finitely many) finitely generated subgroups is, again, finitely generated.

Proof: H, K are finitely generated $\Rightarrow \operatorname{St}(H)$ and $\operatorname{St}(K)$ are finite \Rightarrow $\operatorname{St}(H) \times \operatorname{St}(K)$ is finite $\Rightarrow H \cap K$ is finitely generated. \square

Theorem

The intersection problem for a free group is solvable.

HOWSON PROPERTY AND THE INTERSECTION PROBLEM

Theorem (Howson, 1954)
In a free group, the intersetion of two (and so, finitely many) finitely generated subgroups is, again, finitely generated.

Proof: H, K are finitely generated $\Rightarrow \operatorname{St}(H)$ and $\operatorname{St}(K)$ are finite \Rightarrow $\operatorname{St}(H) \times \operatorname{St}(K)$ is finite $\Rightarrow H \cap K$ is finitely generated. \square

Theorem

The intersection problem for a free group is solvable.
Proof: The decision part is trivial.

HOWSON PROPERTY AND THE INTERSECTION PROBLEM

Theorem (Howson, 1954)
In a free group, the intersetion of two (and so, finitely many) finitely generated subgroups is, again, finitely generated.

Proof: H, K are finitely generated $\Rightarrow \operatorname{St}(H)$ and $\operatorname{St}(K)$ are finite \Rightarrow $\operatorname{St}(H) \times \operatorname{St}(K)$ is finite $\Rightarrow H \cap K$ is finitely generated. \square

Theorem

The intersection problem for a free group is solvable.
Proof: The decision part is trivial. To compute a basis:

HOWSON PROPERTY AND THE INTERSECTION PROBLEM

Theorem (Howson, 1954)
In a free group, the intersetion of two (and so, finitely many) finitely generated subgroups is, again, finitely generated.

Proof: H, K are finitely generated $\Rightarrow \operatorname{St}(H)$ and $\operatorname{St}(K)$ are finite \Rightarrow $\operatorname{St}(H) \times \operatorname{St}(K)$ is finite $\Rightarrow H \cap K$ is finitely generated. \square

Theorem

The intersection problem for a free group is solvable.
Proof: The decision part is trivial. To compute a basis:
(i) Draw the Stallings A-automaton $\operatorname{St}(H)$ for $H=\left\langle u_{1}, \ldots, u_{k}\right\rangle$;

HOWSON PROPERTY AND THE INTERSECTION PROBLEM

Theorem (Howson, 1954)
In a free group, the intersetion of two (and so, finitely many) finitely generated subgroups is, again, finitely generated.

Proof: H, K are finitely generated $\Rightarrow \operatorname{St}(H)$ and $\operatorname{St}(K)$ are finite \Rightarrow $\operatorname{St}(H) \times \operatorname{St}(K)$ is finite $\Rightarrow H \cap K$ is finitely generated. \square

Theorem

The intersection problem for a free group is solvable.
Proof: The decision part is trivial. To compute a basis:
(i) Draw the Stallings A-automaton $\operatorname{St}(H)$ for $H=\left\langle u_{1}, \ldots, u_{k}\right\rangle$;
(ii) draw the Stallings A-automaton $\operatorname{St}(K)$ for $K=\left\langle v_{1}, \ldots, v_{l}\right\rangle$;

HOWSON PROPERTY AND THE INTERSECTION PROBLEM

Theorem (Howson, 1954)
In a free group, the intersetion of two (and so, finitely many) finitely generated subgroups is, again, finitely generated.

Proof: H, K are finitely generated $\Rightarrow \operatorname{St}(H)$ and $\operatorname{St}(K)$ are finite \Rightarrow $\operatorname{St}(H) \times \operatorname{St}(K)$ is finite $\Rightarrow H \cap K$ is finitely generated. \square

Theorem

The intersection problem for a free group is solvable.
Proof: The decision part is trivial. To compute a basis:
(i) Draw the Stallings A-automaton $\operatorname{St}(H)$ for $H=\left\langle u_{1}, \ldots, u_{k}\right\rangle$;
(ii) draw the Stallings A-automaton $\operatorname{St}(K)$ for $K=\left\langle v_{1}, \ldots, v_{l}\right\rangle$;
(iii) compute the product $\operatorname{St}(H) \times \operatorname{St}(\mathrm{K})$;

HOWSON PROPERTY AND THE INTERSECTION PROBLEM

Theorem (Howson, 1954)
In a free group, the intersetion of two (and so, finitely many) finitely generated subgroups is, again, finitely generated.

Proof: H, K are finitely generated $\Rightarrow \operatorname{St}(H)$ and $\operatorname{St}(K)$ are finite \Rightarrow $\operatorname{St}(H) \times \operatorname{St}(K)$ is finite $\Rightarrow H \cap K$ is finitely generated. \square

Theorem

The intersection problem for a free group is solvable.
Proof: The decision part is trivial. To compute a basis:
(i) Draw the Stallings A-automaton $\operatorname{St}(H)$ for $H=\left\langle u_{1}, \ldots, u_{k}\right\rangle$;
(ii) draw the Stallings A-automaton $\operatorname{St}(K)$ for $K=\left\langle v_{1}, \ldots, v_{l}\right\rangle$;
(iii) compute the product $\operatorname{St}(H) \times \operatorname{St}(K)$;
(iv) take the connected component containing \odot and compute its core;

HOWSON PROPERTY AND THE INTERSECTION PROBLEM

Theorem (Howson, 1954)
In a free group, the intersetion of two (and so, finitely many) finitely generated subgroups is, again, finitely generated.

Proof: H, K are finitely generated $\Rightarrow \operatorname{St}(H)$ and $\operatorname{St}(K)$ are finite \Rightarrow $\operatorname{St}(H) \times \operatorname{St}(K)$ is finite $\Rightarrow H \cap K$ is finitely generated. \square

Theorem

The intersection problem for a free group is solvable.
Proof: The decision part is trivial. To compute a basis:
(i) Draw the Stallings A-automaton $\operatorname{St}(H)$ for $H=\left\langle u_{1}, \ldots, u_{k}\right\rangle$;
(ii) draw the Stallings A-automaton $\operatorname{St}(K)$ for $K=\left\langle v_{1}, \ldots, v_{l}\right\rangle$;
(iii) compute the product $\operatorname{St}(H) \times \operatorname{St}(K)$;
(iv) take the connected component containing \bullet and compute its core;
(v) choose a spanning tree and read a free basis for $H \cap K . \square$

example (CONTINUATION)

Example

To compute $H \cap K$ with $H=\left\langle b, a^{3}, a^{-1} b a b^{-1} a\right\rangle, K=\left\langle a b, a^{3}, a^{-1} b a\right\rangle \ldots$

EXAMPLE (CONTINUATION)

Example

To compute $H \cap K$ with $H=\left\langle b, a^{3}, a^{-1} b a b^{-1} a\right\rangle, K=\left\langle a b, a^{3}, a^{-1} b a\right\rangle \ldots$

EXAMPLE (CONTINUATION)

Example

To compute $H \cap K$ with $H=\left\langle b, a^{3}, a^{-1} b a b^{-1} a\right\rangle, K=\left\langle a b, a^{3}, a^{-1} b a\right\rangle \ldots$

example (Continuation)

Example

To compute $H \cap K$ with $H=\left\langle b, a^{3}, a^{-1} b a b^{-1} a\right\rangle, K=\left\langle a b, a^{3}, a^{-1} b a\right\rangle \ldots$

Taking the boldfaced spanning tree, we get the free basis

example (Continuation)

Example

To compute $H \cap K$ with $H=\left\langle b, a^{3}, a^{-1} b a b^{-1} a\right\rangle, K=\left\langle a b, a^{3}, a^{-1} b a\right\rangle \ldots$

Taking the boldfaced spanning tree, we get the free basis
$H \cap K=$

example (Continuation)

Example

To compute $H \cap K$ with $H=\left\langle b, a^{3}, a^{-1} b a b^{-1} a\right\rangle, K=\left\langle a b, a^{3}, a^{-1} b a\right\rangle \ldots$

Taking the boldfaced spanning tree, we get the free basis

$$
H \cap K=\left\langle b^{-1} a^{3} b,\right.
$$

example (Continuation)

Example

To compute $H \cap K$ with $H=\left\langle b, a^{3}, a^{-1} b a b^{-1} a\right\rangle, K=\left\langle a b, a^{3}, a^{-1} b a\right\rangle \ldots$

Taking the boldfaced spanning tree, we get the free basis

$$
H \cap K=\left\langle b^{-1} a^{3} b, a^{3},\right.
$$

example (Continuation)

Example

To compute $H \cap K$ with $H=\left\langle b, a^{3}, a^{-1} b a b^{-1} a\right\rangle, K=\left\langle a b, a^{3}, a^{-1} b a\right\rangle \ldots$

Taking the boldfaced spanning tree, we get the free basis

$$
H \cap K=\left\langle b^{-1} a^{3} b, a^{3}, a^{-1} b a^{3} b^{-1} a,\right.
$$

EXAMPLE (CONTINUATION)

Example

To compute $H \cap K$ with $H=\left\langle b, a^{3}, a^{-1} b a b^{-1} a\right\rangle, K=\left\langle a b, a^{3}, a^{-1} b a\right\rangle \ldots$

Taking the boldfaced spanning tree, we get the free basis

$$
H \cap K=\left\langle b^{-1} a^{3} b, a^{3}, a^{-1} b a^{3} b^{-1} a, a^{-1} b a b^{-1} a^{3} b a^{-1} b^{-1} a,\right.
$$

EXAMPLE (CONTINUATION)

Example

To compute $H \cap K$ with $H=\left\langle b, a^{3}, a^{-1} b a b^{-1} a\right\rangle, K=\left\langle a b, a^{3}, a^{-1} b a\right\rangle \ldots$

Taking the boldfaced spanning tree, we get the free basis

$$
\begin{aligned}
H \cap K= & \left\langle b^{-1} a^{3} b, a^{3}, a^{-1} b a^{3} b^{-1} a, a^{-1} b a b^{-1} a^{3} b a^{-1} b^{-1} a,\right. \\
& \left.a^{-1} b a b^{-1} a b a^{-1} b a^{-1} b^{-1} a\right\rangle .
\end{aligned}
$$

Hence, the intersection $H \cap K$ has rank equal to 5 .

example (continuation)

Example

Moreover, projecting paths in $\Gamma_{1} \times \Gamma_{2}$ to the components, and lifting through the tower of foldings, we get expressions in terms of the original generators:

example (continuation)

Example

Moreover, projecting paths in $\Gamma_{1} \times \Gamma_{2}$ to the components, and lifting through the tower of foldings, we get expressions in terms of the original generators:

$$
H \ni u_{1}^{-1} u_{2} u_{1}=\quad b^{-1} a^{3} b \quad=v_{1}^{-1} v_{2} v_{1} \in K
$$

example (continuation)

Example

Moreover, projecting paths in $\Gamma_{1} \times \Gamma_{2}$ to the components, and lifting through the tower of foldings, we get expressions in terms of the original generators:

$$
\begin{array}{rlrl}
H \ni u_{1}^{-1} u_{2} u_{1} & = & b^{-1} a^{3} b & \\
H \ni u_{2} & = & a_{1}^{-1} v_{2} v_{1} \in K \\
& & =v_{2} \in K
\end{array}
$$

example (continuation)

Example

Moreover, projecting paths in $\Gamma_{1} \times \Gamma_{2}$ to the components, and lifting through the tower of foldings, we get expressions in terms of the original generators:

$$
\begin{array}{rlrl}
H \ni u_{1}^{-1} u_{2} u_{1} & = & b^{-1} a^{3} b & \\
H \ni u_{2} & = & v_{1}^{-1} v_{2} v_{1} \in K \\
H \ni u_{3}^{3} & = & a^{-1} b a^{3} b^{-1} a & \\
=v_{2} \in K \\
& =v_{3} v_{2} v_{3}^{-1} \in K
\end{array}
$$

EXAMPLE (CONTINUATION)

Example

Moreover, projecting paths in $\Gamma_{1} \times \Gamma_{2}$ to the components, and lifting through the tower of foldings, we get expressions in terms of the original generators:

$$
\begin{array}{rcl}
H \ni u_{1}^{-1} u_{2} u_{1}= & b^{-1} a^{3} b & =v_{1}^{-1} v_{2} v_{1} \in K \\
H \ni u_{2}= & a^{3} & =v_{2} \in K \\
H \ni u_{3}^{3}= & a^{-1} b a^{3} b^{-1} a & \\
H \ni v_{3} v_{2} v_{3}^{-1} \in K \\
H \ni u_{3} u_{2} u_{3}^{-1}= & a^{-1} b a b^{-1} a^{3} b a^{-1} b^{-1} a & =v_{3} v_{1}^{-1} v_{2} v_{1} v_{3}^{-1} \in K
\end{array}
$$

example (CONTINUATION)

Example

Moreover, projecting paths in $\Gamma_{1} \times \Gamma_{2}$ to the components, and lifting through the tower of foldings, we get expressions in terms of the original generators:

$$
\left.\begin{array}{rll}
H \ni u_{1}^{-1} u_{2} u_{1}= & b^{-1} a^{3} b & \\
H \ni u_{2}= & a_{1}^{-1} v_{2} v_{1} \in K \\
H \ni u_{3}^{3} & & a^{-1} b a^{3} b^{-1} a
\end{array}\right)=v_{2} \in K .
$$

COSET INTERSECTION PROBLEM

Coset Intersection Problem

Given $u, u_{1}, \ldots, u_{k} ; v, v_{1}, \ldots, v_{l} \in \mathbb{F}_{A}$, decide whether the coset intersection $\left\langle u_{1}, \ldots, u_{k}\right\rangle u \cap\left\langle v_{1}, \ldots, v_{l}\right\rangle v$ is empty and, if not, compute a coset representative.

COSET INTERSECTION PROBLEM

Coset Intersection Problem

Given $u, u_{1}, \ldots, u_{k} ; v, v_{1}, \ldots, v_{l} \in \mathbb{F}_{A}$, decide whether the coset intersection $\left\langle u_{1}, \ldots, u_{k}\right\rangle u \cap\left\langle v_{1}, \ldots, v_{l}\right\rangle v$ is empty and, if not, compute a coset representative.

Remark

For the other variants, use

- $u H \cap v K=\left(H u^{-1} \cap K v^{-1}\right)^{-1}$;

COSET INTERSECTION PROBLEM

Coset Intersection Problem

Given $u, u_{1}, \ldots, u_{k} ; v, v_{1}, \ldots, v_{l} \in \mathbb{F}_{A}$, decide whether the coset intersection $\left\langle u_{1}, \ldots, u_{k}\right\rangle u \cap\left\langle v_{1}, \ldots, v_{l}\right\rangle v$ is empty and, if not, compute a coset representative.

Remark

For the other variants, use

- $u H \cap v K=\left(H u^{-1} \cap K v^{-1}\right)^{-1}$;
- $u H \cap K v=\left(u H u^{-1}\right) u \cap K v=H^{u-1} u \cap K v$;

COSET INTERSECTION PROBLEM

Coset Intersection Problem

Given $u, u_{1}, \ldots, u_{k} ; v, v_{1}, \ldots, v_{l} \in \mathbb{F}_{A}$, decide whether the coset intersection $\left\langle u_{1}, \ldots, u_{k}\right\rangle u \cap\left\langle v_{1}, \ldots, v_{l}\right\rangle v$ is empty and, if not, compute a coset representative.

Remark

For the other variants, use

- $u H \cap v K=\left(H u^{-1} \cap K v^{-1}\right)^{-1}$;
- $u H \cap K v=\left(u H u^{-1}\right) u \cap K v=H^{u-1} u \cap K v$;
- $u H u^{\prime} \cap v K v^{\prime}=H^{u^{-1}}\left(u u^{\prime}\right) \cap K^{v^{-1}}\left(v v^{\prime}\right)$.

COSET INTERSECTION PROBLEM

Coset Intersection Problem

Given $u, u_{1}, \ldots, u_{k} ; v, v_{1}, \ldots, v_{l} \in \mathbb{F}_{A}$, decide whether the coset intersection $\left\langle u_{1}, \ldots, u_{k}\right\rangle u \cap\left\langle v_{1}, \ldots, v_{l}\right\rangle v$ is empty and, if not, compute a coset representative.

Remark

For the other variants, use

- $u H \cap v K=\left(H u^{-1} \cap K v^{-1}\right)^{-1}$;
- $u H \cap K v=\left(u H u^{-1}\right) u \cap K v=H^{u^{-1}} u \cap K v$;
- $u H u^{\prime} \cap v K v^{\prime}=H^{u^{-1}}\left(u u^{\prime}\right) \cap K^{v^{-1}}\left(v v^{\prime}\right)$.

Observation

If $\Gamma=\operatorname{St}(\mathrm{H})$ and $\gamma=\odot \xrightarrow{u} p$, then $\overline{\mathcal{L}}_{\odot, p}(\Gamma)=\mathrm{Hu}$.

THE COSET INTERSECTION PROBLEM FOR FREE GROUPS

Theorem

The coset intersection problem is solvable for free groups.

THE COSET INTERSECTION PROBLEM FOR FREE GROUPS

Theorem

The coset intersection problem is solvable for free groups.
Proof: Let $H=\left\langle u_{1}, \ldots, u_{k}\right\rangle, K=\left\langle v_{1}, \ldots, v_{l}\right\rangle \leqslant \mathbb{F}_{A}$, and $u, v \in \mathbb{F}_{A}$,
(i) Draw the A-automaton Γ_{1} being the Stallings automaton for H with an extra hair added (if necessary) to read u from © (to vertex, say, p);

THE COSET INTERSECTION PROBLEM FOR FREE GROUPS

Theorem

The coset intersection problem is solvable for free groups.
Proof: Let $H=\left\langle u_{1}, \ldots, u_{k}\right\rangle, K=\left\langle v_{1}, \ldots, v_{l}\right\rangle \leqslant \mathbb{F}_{A}$, and $u, v \in \mathbb{F}_{A}$,
(i) Draw the A-automaton Γ_{1} being the Stallings automaton for H with an extra hair added (if necessary) to read u from o (to vertex, say, p);
(ii) Draw the A-automaton Γ_{2} being the Stallings automaton for K with an extra hair added (if necessary) to read v from \odot (to vertex, say, q);

THE COSET INTERSECTION PROBLEM FOR FREE GROUPS

Theorem

The coset intersection problem is solvable for free groups.
Proof: Let $H=\left\langle u_{1}, \ldots, u_{k}\right\rangle, K=\left\langle v_{1}, \ldots, v_{l}\right\rangle \leqslant \mathbb{F}_{A}$, and $u, v \in \mathbb{F}_{A}$,
(i) Draw the A-automaton Γ_{1} being the Stallings automaton for H with an extra hair added (if necessary) to read u from © (to vertex, say, p);
(ii) Draw the A-automaton Γ_{2} being the Stallings automaton for K with an extra hair added (if necessary) to read v from © (to vertex, say, q);
(iii) Compute the product $\Gamma_{1} \times \Gamma_{2}$;

THE COSET INTERSECTION PROBLEM FOR FREE GROUPS

Theorem

The coset intersection problem is solvable for free groups.
Proof: Let $H=\left\langle u_{1}, \ldots, u_{k}\right\rangle, K=\left\langle v_{1}, \ldots, v_{l}\right\rangle \leqslant \mathbb{F}_{A}$, and $u, v \in \mathbb{F}_{A}$,
(i) Draw the A-automaton Γ_{1} being the Stallings automaton for H with an extra hair added (if necessary) to read u from \odot (to vertex, say, p);
(ii) Draw the A-automaton Γ_{2} being the Stallings automaton for K with an extra hair added (if necessary) to read v from © (to vertex, say, q);
(iii) Compute the product $\Gamma_{1} \times \Gamma_{2}$;
(iv) $H u \cap K v=\emptyset$ if and only if (\bullet, \odot) and (p, q) belong to different connected components of $\Gamma_{1} \times \Gamma_{2}$;

THE COSET INTERSECTION PROBLEM FOR FREE GROUPS

Theorem

The coset intersection problem is solvable for free groups.
Proof: Let $H=\left\langle u_{1}, \ldots, u_{k}\right\rangle, K=\left\langle v_{1}, \ldots, v_{l}\right\rangle \leqslant \mathbb{F}_{A}$, and $u, v \in \mathbb{F}_{A}$,
(i) Draw the A-automaton Γ_{1} being the Stallings automaton for H with an extra hair added (if necessary) to read u from © (to vertex, say, p);
(ii) Draw the A-automaton Γ_{2} being the Stallings automaton for K with an extra hair added (if necessary) to read v from © (to vertex, say, q);
(iii) Compute the product $\Gamma_{1} \times \Gamma_{2}$;
(iv) $H u \cap K v=\emptyset$ if and only if (\bullet, \odot) and (p, q) belong to different connected components of $\Gamma_{1} \times \Gamma_{2}$;
(v) if this is not the case, then any path $\gamma=(\odot, \odot) \stackrel{w}{\leadsto}(p, q)$ spells a word $w \in H u \cap K v$.

MALNORMALITY

Definition

A subgroup $H \leqslant G$ is malnormal (resp. cyclonormal) if, for all $w \notin H$, $H^{w} \cap H$ is trivial (resp. cyclic).

MALNORMALITY

Definition

A subgroup $H \leqslant G$ is malnormal (resp. cyclonormal) if, for all $w \notin H$, $H^{\mathrm{w}} \cap H$ is trivial (resp. cyclic).

Theorem

There is an algorithm to decide, given $u_{1}, \ldots, u_{k} \in(\widetilde{A})^{*}$, whether the subgroup $H=\left\langle u_{1}, \ldots, u_{k}\right\rangle$ is malnormal (resp., cyclonormal).

MALNORMALITY

Definition

A subgroup $H \leqslant G$ is malnormal (resp. cyclonormal) if, for all $w \notin H$, $H^{w} \cap H$ is trivial (resp. cyclic).

Theorem

There is an algorithm to decide, given $u_{1}, \ldots, u_{k} \in(\widetilde{A})^{*}$, whether the subgroup $H=\left\langle u_{1}, \ldots, u_{k}\right\rangle$ is malnormal (resp., cyclonormal).

Proof:

(i) Draw the Stallings A-automaton $\operatorname{St}(H)$;

MALNORMALITY

Definition

A subgroup $H \leqslant G$ is malnormal (resp. cyclonormal) if, for all $w \notin H$, $H^{w} \cap H$ is trivial (resp. cyclic).

Theorem

There is an algorithm to decide, given $u_{1}, \ldots, u_{k} \in(\widetilde{A})^{*}$, whether the subgroup $H=\left\langle u_{1}, \ldots, u_{k}\right\rangle$ is malnormal (resp., cyclonormal).

Proof:

(i) Draw the Stallings A-automaton St(H);
(ii) compute the pull-back with itself $\operatorname{St}(H) \times \operatorname{St}(H)$;

MALNORMALITY

Definition

A subgroup $H \leqslant G$ is malnormal (resp. cyclonormal) if, for all $w \notin H$, $H^{\mathrm{w}} \cap H$ is trivial (resp. cyclic).

Theorem

There is an algorithm to decide, given $u_{1}, \ldots, u_{k} \in(\widetilde{A})^{*}$, whether the subgroup $H=\left\langle u_{1}, \ldots, u_{k}\right\rangle$ is malnormal (resp., cyclonormal).

Proof:

(i) Draw the Stallings A-automaton $\operatorname{St}(\mathrm{H})$;
(ii) compute the pull-back with itself $\operatorname{St}(H) \times \operatorname{St}(H)$;
(iii) ignore the diagonal component $\Delta \simeq \operatorname{St}(H)$ (just meaning that $H \cap H=H)$;

MALNORMALITY

Definition

A subgroup $H \leqslant G$ is malnormal (resp. cyclonormal) if, for all $w \notin H$, $H^{\mathrm{w}} \cap H$ is trivial (resp. cyclic).

Theorem

There is an algorithm to decide, given $u_{1}, \ldots, u_{k} \in(\widetilde{A})^{*}$, whether the subgroup $H=\left\langle u_{1}, \ldots, u_{k}\right\rangle$ is malnormal (resp., cyclonormal).

Proof:

(i) Draw the Stallings A-automaton $\operatorname{St}(\mathrm{H})$;
(ii) compute the pull-back with itself $\operatorname{St}(H) \times \operatorname{St}(H)$;
(iii) ignore the diagonal component $\Delta \simeq \operatorname{St}(H)$ (just meaning that $H \cap H=H$;
(iv) H is malnormal \Leftrightarrow all other components of $\mathrm{St}(H) \times \operatorname{St}(H)$ are trees;

MALNORMALITY

Definition

A subgroup $H \leqslant G$ is malnormal (resp. cyclonormal) if, for all $w \notin H$, $H^{\mathrm{w}} \cap H$ is trivial (resp. cyclic).

Theorem

There is an algorithm to decide, given $u_{1}, \ldots, u_{k} \in(\widetilde{A})^{*}$, whether the subgroup $H=\left\langle u_{1}, \ldots, u_{k}\right\rangle$ is malnormal (resp., cyclonormal).

Proof:

(i) Draw the Stallings A-automaton $\operatorname{St}(\mathrm{H})$;
(ii) compute the pull-back with itself $\operatorname{St}(H) \times \operatorname{St}(H)$;
(iii) ignore the diagonal component $\Delta \simeq \operatorname{St}(H)$ (just meaning that $H \cap H=H$);
(iv) H is malnormal \Leftrightarrow all other components of $\mathrm{St}(H) \times \mathrm{St}(H)$ are trees;
(v) H is cyclonormal \Leftrightarrow all other components of $\operatorname{St}(H) \times \operatorname{St}(H)$ have graphical rank 0 or 1.

MALNORMALITY (EXAMPLE)

Does there exist a malnormal subgroup of \mathbb{F}_{2} with infinite rank?

MALNORMALITY (EXAMPLE)

Does there exist a malnormal subgroup of \mathbb{F}_{2} with infinite rank?
Yes!

MALNORMALITY (EXAMPLE)

Does there exist a malnormal subgroup of \mathbb{F}_{2} with infinite rank?
Yes!

INTERSECTION AND FREE FACTORS

The result below (whose general proof requires the Kurosh Subgroup Theorem) follows easily for free groups ...

INTERSECTION AND FREE FACTORS

The result below (whose general proof requires the Kurosh Subgroup Theorem) follows easily for free groups ...

Proposition

Let G be a group and $H, K, H^{\prime}, K^{\prime} \leqslant G$ subgrups. If $H \leqslant$ f.f. K and $H^{\prime} \leqslant$ f.f. K^{\prime}, then $H \cap H^{\prime} \leqslant$ f.f. $K \cap K^{\prime}$.

INTERSECTION AND FREE FACTORS

The result below (whose general proof requires the Kurosh Subgroup Theorem) follows easily for free groups ...

Proposition

Let G be a group and $H, K, H^{\prime}, K^{\prime} \leqslant G$ subgrups. If $H \leqslant$ f.f. K and $H^{\prime} \leqslant$ f.f. K^{\prime}, then $H \cap H^{\prime} \leqslant_{\text {f.f. }} K \cap K^{\prime}$.

Proof (for $G=F(A)$):
Let us see first that $H \leqslant_{\text {f.f. }} K \leqslant \mathbb{F}_{A}$ and $L \leqslant \mathbb{F}_{A} \Rightarrow H \cap L \leqslant_{\text {f.f. }} K \cap L$:

INTERSECTION AND FREE FACTORS

The result below (whose general proof requires the Kurosh Subgroup Theorem) follows easily for free groups ...

Proposition

Let G be a group and $H, K, H^{\prime}, K^{\prime} \leqslant G$ subgrups. If $H \leqslant$ f.f. K and $H^{\prime} \leqslant_{\text {f.f. }} K^{\prime}$, then $H \cap H^{\prime} \leqslant_{\text {f.f. }} K \cap K^{\prime}$.

Proof (for $G=F(A)$):
Let us see first that $H \leqslant_{\text {f.f. }} K \leqslant \mathbb{F}_{A}$ and $L \leqslant \mathbb{F}_{A} \Rightarrow H \cap L \leqslant_{\text {f.f. }} K \cap L$:

- Take a basis $B \supseteq A$ for K, extending a basis A for H;

INTERSECTION AND FREE FACTORS

The result below (whose general proof requires the Kurosh Subgroup Theorem) follows easily for free groups ...

Proposition

Let G be a group and $H, K, H^{\prime}, K^{\prime} \leqslant G$ subgrups. If $H \leqslant$ f.f. K and $H^{\prime} \leqslant_{\text {f.f. }} K^{\prime}$, then $H \cap H^{\prime} \leqslant_{\text {f.f. }} K \cap K^{\prime}$.

Proof (for $G=F(A)$):

Let us see first that $H \leqslant_{\text {f.f. }} K \leqslant \mathbb{F}_{A}$ and $L \leqslant \mathbb{F}_{A} \Rightarrow H \cap L \leqslant_{\text {f.f. }} K \cap L$:

- Take a basis $B \supseteq A$ for K, extending a basis A for H;
- observe that, w.r.t. B, St(H) is, simply, a bouquet with petals in bijection with $A \subseteq B$;

INTERSECTION AND FREE FACTORS

The result below (whose general proof requires the Kurosh Subgroup Theorem) follows easily for free groups ...

Proposition

Let G be a group and $H, K, H^{\prime}, K^{\prime} \leqslant G$ subgrups. If $H \leqslant$ f.f. K and $H^{\prime} \leqslant$ f.f. K^{\prime}, then $H \cap H^{\prime} \leqslant$ f.f. $K \cap K^{\prime}$.

Proof (for $G=F(A)$):
Let us see first that $H \leqslant_{\text {f.f. }} K \leqslant \mathbb{F}_{A}$ and $L \leqslant \mathbb{F}_{A} \Rightarrow H \cap L \leqslant_{\text {f.f. }} K \cap L$:

- Take a basis $B \supseteq A$ for K, extending a basis A for H;
- observe that, w.r.t. B, St(H) is, simply, a bouquet with petals in bijection with $A \subseteq B$;
- consider $\operatorname{St}(\mathrm{K} \cap \mathrm{L})$ and compute $H \cap L=H \cap(K \cap L)$ by looking at the pull-back $\operatorname{St}(H) \times \operatorname{St}(K \cap L)$: it is just the subautomaton of St $(K \cap L)$ determined by the A-labelled arcs;

INTERSECTION AND FREE FACTORS

The result below (whose general proof requires the Kurosh Subgroup Theorem) follows easily for free groups ...

Proposition

Let G be a group and $H, K, H^{\prime}, K^{\prime} \leqslant G$ subgrups. If $H \leqslant$ f.f. K and $H^{\prime} \leqslant$ f.f. K^{\prime}, then $H \cap H^{\prime} \leqslant$ f.f. $K \cap K^{\prime}$.

Proof (for $G=F(A)$):
Let us see first that $H \leqslant_{\text {f.f. }} K \leqslant \mathbb{F}_{A}$ and $L \leqslant \mathbb{F}_{A} \Rightarrow H \cap L \leqslant_{\text {f.f. }} K \cap L$:

- Take a basis $B \supseteq A$ for K, extending a basis A for H;
- observe that, w.r.t. B, St(H) is, simply, a bouquet with petals in bijection with $A \subseteq B$;
- consider $\operatorname{St}(\mathrm{K} \cap \mathrm{L})$ and compute $H \cap L=H \cap(K \cap L)$ by looking at the pull-back $\operatorname{St}(H) \times \operatorname{St}(K \cap L)$: it is just the subautomaton of $\operatorname{St}(K \cap L)$ determined by the A-labelled arcs;
- hence, $H \cap L \leqslant$ f.f. $K \cap L$.

INTERSECTION AND FREE FACTORS

The result below (whose general proof requires the Kurosh Subgroup Theorem) follows easily for free groups ...

Proposition

Let G be a group and $H, K, H^{\prime}, K^{\prime} \leqslant G$ subgrups. If $H \leqslant$ f.f. K and $H^{\prime} \leqslant$ f.f. K^{\prime}, then $H \cap H^{\prime} \leqslant$ f.f. $K \cap K^{\prime}$.

Proof (for $G=F(A)$):
Let us see first that $H \leqslant \begin{aligned} & \text { f.f. } K\end{aligned} \leqslant \mathbb{F}_{A}$ and $L \leqslant \mathbb{F}_{A} \Rightarrow H \cap L \leqslant$ f.f. $K \cap L$:

- Take a basis $B \supseteq A$ for K, extending a basis A for H;
- observe that, w.r.t. B, St(H) is, simply, a bouquet with petals in bijection with $A \subseteq B$;
- consider $\operatorname{St}(\mathrm{K} \cap \mathrm{L})$ and compute $H \cap L=H \cap(K \cap L)$ by looking at the pull-back $\operatorname{St}(H) \times \operatorname{St}(K \cap L)$: it is just the subautomaton of St $(K \cap L)$ determined by the A-labelled arcs;
- hence, $H \cap L \leqslant_{\text {f.f. }} K \cap L$.

Applying this fact twice, $H \cap H^{\prime} \leqslant_{\text {f.f. }} K \cap H^{\prime} \leqslant_{\text {f.f. }} K \cap K^{\prime} . \square$

BRIEF HISTORY OF THE HANNA NEUMANN INEQUALITY

Definition

The reduced rank of a group G is $\widetilde{r k}(G)=\max \{r k(G)-1,0\}$, i.e., $\widetilde{\mathrm{rk}}(G)=\operatorname{rk}(G)-1$ except for the trivial group, for which $\widetilde{\mathrm{rk}}(\{1\})=0$.

BRIEF HISTORY OF THE HANNA NEUMANN INEQUALITY

Definition
The reduced rank of a group G is $\widetilde{r k}(G)=\max \{\operatorname{rk}(G)-1,0\}$, i.e., $\widetilde{\mathrm{rk}}(G)=\operatorname{rk}(G)-1$ except for the trivial group, for which $\widetilde{\mathrm{rk}}(\{1\})=0$.

Theorem (H. Neumann, 1956)
For $H, K \leqslant \mathbb{F}_{A}, \widetilde{\mathrm{rk}}(H \cap K) \leqslant 2 \widetilde{\mathrm{rk}}(H) \widetilde{\mathrm{rk}}(K)$.

BRIEF HISTORY OF THE HANNA NEUMANN INEQUALITY

Definition

The reduced rank of a group G is $\tilde{r k}(G)=\max \{r k(G)-1,0\}$, i.e., $\widetilde{\mathrm{rk}}(G)=\operatorname{rk}(G)-1$ except for the trivial group, for which $\widetilde{\mathrm{rk}}(\{1\})=0$.

Theorem (H. Neumann, 1956)
For $H, K \leqslant \mathbb{F}_{A}, \widetilde{\mathrm{rk}}(H \cap K) \leqslant 2 \widetilde{\mathrm{rk}}(H) \widetilde{\mathrm{rk}}(K)$.
Theorem (W. Neumann, 1990)
For $H, K \leqslant \mathbb{F}_{A}, \quad \sum_{H w K \in H \backslash \mathbb{F}_{A} / K} \widetilde{\mathrm{rk}}\left(H^{w} \cap K\right) \leqslant 2 \widetilde{\mathrm{rk}}(H) \widetilde{\mathrm{rk}}(K)$, where $H^{w}=W^{-1} H w$, and the sum runs over the set of double cosets $H \backslash \mathbb{F}_{A} / K=\left\{H w K \mid w \in \mathbb{F}_{A}\right\}$.

BRIEF HISTORY OF THE HANNA NEUMANN INEQUALITY

Definition

The reduced rank of a group G is $\tilde{r k}(G)=\max \{r k(G)-1,0\}$, i.e., $\widetilde{\mathrm{rk}}(G)=\operatorname{rk}(G)-1$ except for the trivial group, for which $\widetilde{\mathrm{rk}}(\{1\})=0$.

Theorem (H. Neumann, 1956)

$$
\text { For } H, K \leqslant \mathbb{F}_{A}, \tilde{\mathrm{rk}}(H \cap K) \leqslant 2 \tilde{\mathrm{rk}}(H) \widetilde{\mathrm{rk}}(K) \text {. }
$$

Theorem (W. Neumann, 1990)
For $H, K \leqslant \mathbb{F}_{A}, \quad \sum_{H w K \in H \backslash \mathbb{F}_{A} / K} \widetilde{\mathrm{rk}}\left(H^{w} \cap K\right) \leqslant 2 \widetilde{\mathrm{rk}}(H) \widetilde{\mathrm{rk}}(K)$, where $H^{w}=w^{-1} H w$, and the sum runs over the set of double cosets $H \backslash \mathbb{F}_{A} / K=\left\{H w K \mid w \in \mathbb{F}_{A}\right\}$.
(Strenghtened) Hanna Neumann conjecture: the same is true without the factor 2.

BRIEF HISTORY OF THE HANNA NEUMANN INEQUALITY

Definition

The reduced rank of a group G is $\widetilde{\operatorname{rk}}(G)=\max \{r k(G)-1,0\}$, i.e., $\widetilde{\mathrm{rk}}(G)=\operatorname{rk}(G)-1$ except for the trivial group, for which $\widetilde{\mathrm{rk}}(\{1\})=0$.

Theorem (H. Neumann, 1956)
For $H, K \leqslant \mathbb{F}_{A}, \tilde{r k}(H \cap K) \leqslant 2 \tilde{r k}(H) \widetilde{r k}(K)$.
Theorem (W. Neumann, 1990)
For $H, K \leqslant \mathbb{F}_{A}, \quad \sum_{H w K \in H \backslash \mathbb{F}_{A} / K} \widetilde{\mathrm{rk}}\left(H^{W} \cap K\right) \leqslant 2 \widetilde{\mathrm{rk}}(H) \widetilde{\mathrm{rk}}(K)$, where $H^{w}=w^{-1} H w$, and the sum runs over the set of double cosets $H \backslash \mathbb{F}_{A} / K=\left\{H w K \mid w \in \mathbb{F}_{A}\right\}$.
(Strenghtened) Hanna Neumann conjecture: the same is true without the factor 2.
Theorem (J. Friedman, 2015; I. Mineyev, 2012)
The factor 2 can be removed in both theorems.

STRENGHTENED HANNA NEUMANN INEQUALITY

Lets us show that $\sum_{H w K \in H \backslash \mathbb{F}_{A} / K} \widetilde{\mathrm{rk}}\left(H^{w} \cap K\right) \leqslant 2 \widetilde{\mathrm{rk}}(H) \widetilde{\mathrm{rk}}(K)$.

STRENGHTENED HANNA NEUMANN INEQUALITY

Lets us show that $\sum_{H w K \in H \backslash \mathbb{F}_{A} / K} \widetilde{\mathrm{rk}}\left(H^{w} \cap K\right) \leqslant 2 \widetilde{\mathrm{rk}}(H) \widetilde{\mathrm{rk}}(K)$.

- It makes sense, since $H^{h w k} \cap K=H^{w k} \cap K^{k}=\left(H^{w} \cap K\right)^{k}$ has the same rank as $H^{w} \cap K$;

STRENGHTENED HANNA NEUMANN INEQUALITY

Lets us show that $\sum_{H w K \in H \backslash \mathbb{F}_{A} / K} \widetilde{\mathrm{rk}}\left(H^{w} \cap K\right) \leqslant 2 \widetilde{\mathrm{rk}}(H) \widetilde{\mathrm{rk}}(K)$.

- It makes sense, since $H^{h w k} \cap K=H^{w k} \cap K^{k}=\left(H^{w} \cap K\right)^{k}$ has the same rank as $H^{w} \cap K$;
- we can assume $H, K \neq 1$, i.e., $\operatorname{St}(H)$ and $\operatorname{St}(K)$ are not single vertices;

STRENGHTENED HANNA NEUMANN INEQUALITY

Lets us show that $\sum_{H w K \in H \backslash \mathbb{F}_{A} / K} \widetilde{\mathrm{rk}}\left(H^{w} \cap K\right) \leqslant 2 \widetilde{\mathrm{rk}}(H) \widetilde{\mathrm{rk}}(K)$.

- It makes sense, since $H^{h w k} \cap K=H^{w k} \cap K^{k}=\left(H^{w} \cap K\right)^{k}$ has the same rank as $H^{w} \cap K$;
- we can assume $H, K \neq 1$, i.e., $\operatorname{St}(H)$ and $\operatorname{St}(K)$ are not single vertices;
- conjugating appropriately, we can assume that $\operatorname{St}(H)$ and $\operatorname{St}(\mathrm{K})$ have no vertices of degree 1 ;

STRENGHTENED HANNA NEUMANN INEQUALITY

Lets us show that $\sum_{H w K \in H \backslash \mathbb{F}_{A} / K} \widetilde{\mathrm{rk}}\left(H^{w} \cap K\right) \leqslant 2 \widetilde{\mathrm{rk}}(H) \widetilde{\mathrm{rk}}(K)$.

- It makes sense, since $H^{h w k} \cap K=H^{w k} \cap K^{k}=\left(H^{w} \cap K\right)^{k}$ has the same rank as $H^{w} \cap K$;
- we can assume $H, K \neq 1$, i.e., $\operatorname{St}(H)$ and $\operatorname{St}(K)$ are not single vertices;
- conjugating appropriately, we can assume that $\operatorname{St}(H)$ and $\operatorname{St}(\mathrm{K})$ have no vertices of degree 1 ;
- forget about the double cosets (till the end of proof) and let us show $\widetilde{\mathrm{k}}(W) \leqslant 2 \tilde{\mathrm{rk}}(\mathrm{St}(H)) \widetilde{\mathrm{rk}}(\mathrm{St}(K))$, where $W=\operatorname{St}(H) \times \operatorname{St}(K)$ and

$$
\tilde{\mathrm{rk}}(W)=\sum_{C \text { c.c. } W} \tilde{\mathrm{rk}}(C)=\sum_{C \text { c.c. } W} \max \{|E C|-|V C|, 0\} .
$$

STRENGHTENED HANNA NEUMANN INEQUALITY

Lemma

Let X be a finite connected graph. Then,
(i) if X is not a tree then $\sum_{p \in V X}(d(p)-2)=2 \widetilde{\mathrm{rk}}(X)$;

STRENGHTENED HANNA NEUMANN INEQUALITY

Lemma

Let X be a finite connected graph. Then,
(i) if X is not a tree then $\sum_{p \in V X}(d(p)-2)=2 \widetilde{\mathrm{rk}}(X)$;
(ii) if X is a tree then $\sum_{p \in V X}(d(p)-2)=-2$.

STRENGHTENED HANNA NEUMANN INEQUALITY

Lemma

Let X be a finite connected graph. Then,
(i) if X is not a tree then $\sum_{p \in V X}(d(p)-2)=2 \widetilde{\mathrm{rk}}(X)$;
(ii) if X is a tree then $\sum_{p \in V X}(d(p)-2)=-2$.

Lemma

Let X, Y be two deterministic A-automata without vertices of degree 0 or 1, and let W be their product. Then,
(i) $\forall(p, q) \in V W$, we have $(d(p, q)-2) \leqslant(d(p)-2)(d(q)-2)$;

STRENGHTENED HANNA NEUMANN INEQUALITY

Lemma

Let X be a finite connected graph. Then,
(i) if X is not a tree then $\sum_{p \in V X}(d(p)-2)=2 \widetilde{\mathrm{rk}}(X)$;
(ii) if X is a tree then $\sum_{p \in V X}(d(p)-2)=-2$.

Lemma

Let X, Y be two deterministic A-automata without vertices of degree 0 or 1 , and let W be their product. Then,
(i) $\forall(p, q) \in V W$, we have $(d(p, q)-2) \leqslant(d(p)-2)(d(q)-2)$;
(ii) if (p, q) is isolated in W, then

$$
(d(p, q)-2)+2 \leqslant(d(p)-2)(d(q)-2) ;
$$

STRENGHTENED HANNA NEUMANN INEQUALITY

Lemma

Let X be a finite connected graph. Then,
(i) if X is not a tree then $\sum_{p \in V X}(d(p)-2)=2 \widetilde{\mathrm{rk}}(X)$;
(ii) if X is a tree then $\sum_{p \in V X}(d(p)-2)=-2$.

Lemma

Let X, Y be two deterministic A-automata without vertices of degree 0 or 1 , and let W be their product. Then,
(i) $\forall(p, q) \in V W$, we have $(d(p, q)-2) \leqslant(d(p)-2)(d(q)-2)$;
(ii) if (p, q) is isolated in W, then

$$
(d(p, q)-2)+2 \leqslant(d(p)-2)(d(q)-2) ;
$$

(iii) if (p, q) is of degree 1 in W, then

$$
(d(p, q)-2)+1 \leqslant(d(p)-2)(d(q)-2)
$$

STRENGHTENED HANNA NEUMANN INEQUALITY

Now,

$$
2 \tilde{\mathrm{k}}(W)=\sum_{\substack{C c \mathrm{cc} \cdot \mathrm{~W} \\ \text { notitee }}} 2 \tilde{\mathrm{rk}}(C)
$$

STRENGHTENED HANNA NEUMANN INEQUALITY

Now,

$$
2 \tilde{\mathrm{k}}(W)=\sum_{\substack{C c \mathrm{cc} \cdot \mathrm{~W} \\ \text { notitee }}} 2 \tilde{\mathrm{rk}}(C)
$$

STRENGHTENED HANNA NEUMANN INEQUALITY

Now,

$$
2 \widetilde{\mathrm{rk}}(W)=\sum_{\substack{c \subset c, w \\ \text { not tree }}} 2 \widetilde{\mathrm{k}}(C)=\sum_{\substack{c \subset c, w \\ \text { not tree }}} \sum_{(p, q) \in V C}(d(p, q)-2)
$$

STRENGHTENED HANNA NEUMANN INEQUALITY

Now,

$$
\begin{aligned}
2 \tilde{\mathrm{rk}}(W) & =\sum_{\substack{c \subset c, w \\
\text { not tree }}} 2 \tilde{\mathrm{rk}}(C)=\sum_{\substack{c \mathrm{ccc} w \\
\text { not tree }}} \sum_{(p, q) \in V C}(d(p, q)-2) \\
& =\sum_{(p, q) \in V W}(d(p, q)-2)-\sum_{\substack{c \mathrm{cc} w \\
\text { tree }}}(-2)
\end{aligned}
$$

STRENGHTENED HANNA NEUMANN INEQUALITY

Now,

$$
\begin{aligned}
2 \widetilde{\mathrm{rk}}(W) & =\sum_{\substack{c \subset c \cdot w \\
\text { not tree }}} 2 \tilde{\mathrm{rk}}(C)=\sum_{\substack{c \in c \cdot w \\
\text { not tree }}} \sum_{(p, q) \in V C}(d(p, q)-2) \\
& =\sum_{(p, q) \in V W}(d(p, q)-2)-\sum_{\substack{c \mathrm{cc}, w \\
\text { teve }}}(-2) \\
& =\sum_{(p, q) \in V W}(d(p, q)-2)+2 \# c . c . \text { tree }
\end{aligned}
$$

STRENGHTENED HANNA NEUMANN INEQUALITY

Now,

$$
\begin{aligned}
2 \widetilde{\mathrm{rk}}(W) & =\sum_{\substack{c \subset c \cdot W \\
\text { notitee }}} 2 \tilde{\mathrm{r}}(C)=\sum_{\substack{c \subset c \cdot w \\
\text { not } w e \\
(p, q) \in V C}}(d(p, q)-2) \\
& =\sum_{(p, q) \in V W}(d(p, q)-2)-\sum_{\substack{c c c, w \\
\text { tree }}}(-2) \\
& =\sum_{(p, q) \in V W}(d(p, q)-2)+2 \# c . c . \text { tree } \\
& \leqslant \sum_{(p, q) \in V W}(d(p)-2)(d(q)-2)
\end{aligned}
$$

STRENGHTENED HANNA NEUMANN INEQUALITY

Now,

$$
\begin{aligned}
& =\sum_{(p, q) \in V W}(d(p, q)-2)-\sum_{\substack{c \in c, w \\
\text { tre }}}(-2) \\
& =\sum_{(p, q) \in V W}(d(p, q)-2)+2 \# c . c \text {. tree } \\
& \leqslant \sum_{(p, q) \in V W}(d(p)-2)(d(q)-2) \\
& =\left(\sum_{p \in \operatorname{Vt}(H)}(d(p)-2)\right)\left(\sum_{q \in \operatorname{VSt}(K)}(d(q)-2)\right)
\end{aligned}
$$

STRENGHTENED HANNA NEUMANN INEQUALITY

Now,

$$
\begin{aligned}
& 2 \tilde{\mathrm{rk}}(W)=\sum_{\substack{c, . c . W \\
\text { not tree }}} 2 \tilde{\mathrm{rk}}(C)=\sum_{\substack{c \subset . .6 \\
\text { not tree }}} \sum_{(p, q) \in V C}(d(p, q)-2) \\
& =\sum_{(p, q) \in V W}(d(p, q)-2)-\sum_{\substack{c \mathrm{cc}, . W \\
\text { tree }}}(-2) \\
& =\sum_{(p, q) \in V W}(d(p, q)-2)+2 \# \text { c.c. tree } \\
& \leqslant \sum_{(p, q) \in V W}(d(p)-2)(d(q)-2) \\
& =\left(\sum_{p \in \operatorname{Vst}(H)}(d(p)-2)\right)\left(\sum_{q \in \operatorname{Vst}(K)}(d(q)-2)\right) \\
& =2 \widetilde{\mathrm{rk}}(\operatorname{St}(H)) \cdot 2 \widetilde{\mathrm{rk}}(\operatorname{St}(K)) \text {. }
\end{aligned}
$$

STRENGHTENED HANNA NEUMANN INEQUALITY

Now,

$$
\begin{aligned}
& 2 \widetilde{\mathrm{r}}(W)=\sum_{\substack{c \subset c \cdot w \\
\text { not tree }}} 2 \widetilde{\mathrm{r}}(C)=\sum_{\substack{c \subset c \cdot w \\
\text { not tree }}} \sum_{(p, q) \in \mathrm{VC}}(d(p, q)-2) \\
& =\sum_{(p, q) \in V W}(d(p, q)-2)-\sum_{\substack{c \in c, w \\
\text { tee }}}(-2) \\
& =\sum_{(p, q) \in V W}(d(p, q)-2)+2 \# \text { c.c. tree } \\
& \leqslant \sum_{(p, q) \in V W}(d(p)-2)(d(q)-2) \\
& =\left(\sum_{p \in V \operatorname{St}(H)}(d(p)-2)\right)\left(\sum_{q \in V S t(K)}(d(q)-2)\right) \\
& =2 \widetilde{\operatorname{rk}}(\operatorname{St}(H)) \cdot 2 \widetilde{\mathrm{rk}}(\operatorname{St}(K)) \text {. }
\end{aligned}
$$

Finally, let us link the connected components of W with the double cosets $H \backslash \mathbb{F}_{A} / K, \ldots$

STRENGHTENED HANNA NEUMANN INEQUALITY

Lemma

Let $(p, \odot),\left(p^{\prime}, \odot\right)$ be two vertices in W, and let $\bullet \stackrel{x}{\longrightarrow} p$ and $\bullet \stackrel{x^{\prime}}{\sim} p^{\prime}$ be walks in $\operatorname{St}(H)$. Then,
(p, \odot) and $\left(p^{\prime}, \odot\right)$ belong to the same c.c. of $W \Leftrightarrow H x K=H x^{\prime} K$.

STRENGHTENED HANNA NEUMANN INEQUALITY

Lemma

Let $(p, \odot),\left(p^{\prime}, \odot\right)$ be two vertices in W, and let $\bullet \stackrel{x}{\sim} p$ and $\bullet \stackrel{x^{\prime}}{\sim} \rightarrow p^{\prime}$ be walks in $\mathrm{St}(\mathrm{H})$. Then,
(p, \odot) and $\left(p^{\prime}, \odot\right)$ belong to the same c.c. of $W \Leftrightarrow H x K=H x^{\prime} K$.

Corollary

The following map is a bijection

$$
\begin{aligned}
& \alpha: H \backslash \mathbb{F}_{A} / K \rightarrow \quad\{c . c . \text { of } W\} \\
& \text { HxK } \mapsto \text { the c.c. containing (} p, \odot \text {), where } \bullet \xrightarrow{x} \rightarrow p \\
& H \bar{\ell}(\odot \sim p) K \leftrightarrow C \text {, where }(p, \odot) \in V C
\end{aligned}
$$

further satisfying that, for every $x \in \mathbb{F}_{A},\langle\alpha(H x K)\rangle_{(p, \odot)}=H^{\mathrm{x}} \cap K$.

Quotients of automata

MOTIVATION

- In basic linear algebra:

$$
U \leqslant V \leqslant K^{n} \quad \Rightarrow \quad V=U \oplus L .
$$

MOTIVATION

- In basic linear algebra:

$$
U \leqslant V \leqslant K^{n} \quad \Rightarrow \quad V=U \oplus L .
$$

- In \mathbb{Z}^{n}, the analog is almost true:

$$
U \leqslant V \leqslant \mathbb{Z}^{n} \quad \Rightarrow \quad \exists U \leqslant \text { fi } U^{\prime} \leqslant V \text { s.t. } V=U^{\prime} \oplus L .
$$

MOTIVATION

- In basic linear algebra:

$$
U \leqslant V \leqslant K^{n} \quad \Rightarrow \quad V=U \oplus L .
$$

- In \mathbb{Z}^{n}, the analog is almost true:

$$
U \leqslant V \leqslant \mathbb{Z}^{n} \quad \Rightarrow \quad \exists U \leqslant \text { fi } U^{\prime} \leqslant V \text { s.t. } V=U^{\prime} \oplus L .
$$

- In \mathbb{F}_{A}, the analog is ...
far from true because $H \leqslant K \nRightarrow r(H) \leqslant r(K) \ldots$

MOTIVATION

- In basic linear algebra:

$$
U \leqslant V \leqslant K^{n} \quad \Rightarrow \quad V=U \oplus L .
$$

- In \mathbb{Z}^{n}, the analog is almost true:

$$
U \leqslant V \leqslant \mathbb{Z}^{n} \quad \Rightarrow \quad \exists U \leqslant \text { fi } U^{\prime} \leqslant V \text { s.t. } V=U^{\prime} \oplus L .
$$

- In \mathbb{F}_{A}, the analog is ...
far from true because $H \leqslant K \nRightarrow r(H) \leqslant r(K) \ldots$ almost true again, ... in the sense of Takahasi.

ALGEBRAIC AND FREE EXTENSIONS

Definition

Let $H \leqslant K \leqslant \mathbb{F}_{A}$. We say that $H \leqslant K$ is an algebraic extension, denoted by $H \leqslant$ alg K, if H is not contained in any proper free factor of K, i.e., if

$$
H \leqslant K_{1} \leqslant K_{1} * K_{2}=K \Rightarrow K_{2}=1 .
$$

ALGEBRAIC AND FREE EXTENSIONS

Definition

Let $H \leqslant K \leqslant \mathbb{F}_{A}$. We say that $H \leqslant K$ is an algebraic extension, denoted by $H \leqslant$ alg K, if H is not contained in any proper free factor of K, i.e., if

$$
H \leqslant K_{1} \leqslant K_{1} * K_{2}=K \Rightarrow K_{2}=1 .
$$

We say that $H \leqslant K$ is a free extension, denoted by $H \leqslant$ ff K, if $H \leqslant H * L=K$ for some $L \leqslant \mathbb{F}_{A}$.

ALGEBRAIC AND FREE EXTENSIONS

Definition

Let $H \leqslant K \leqslant \mathbb{F}_{A}$. We say that $H \leqslant K$ is an algebraic extension, denoted by $H \leqslant$ alg K, if H is not contained in any proper free factor of K, i.e., if

$$
H \leqslant K_{1} \leqslant K_{1} * K_{2}=K \Rightarrow K_{2}=1 .
$$

We say that $H \leqslant K$ is a free extension, denoted by $H \leqslant_{\text {ff }} K$, if $H \leqslant H * L=K$ for some $L \leqslant \mathbb{F}_{A}$.

Examples

- $\langle a\rangle \leqslant_{\mathrm{ff}}\langle a, b\rangle \leqslant_{\mathrm{ff}}\langle a, b, c\rangle$;

ALGEBRAIC AND FREE EXTENSIONS

Definition

Let $H \leqslant K \leqslant \mathbb{F}_{A}$. We say that $H \leqslant K$ is an algebraic extension, denoted by $H \leqslant$ alg K, if H is not contained in any proper free factor of K, i.e., if

$$
H \leqslant K_{1} \leqslant K_{1} * K_{2}=K \Rightarrow K_{2}=1 .
$$

We say that $H \leqslant K$ is a free extension, denoted by $H \leqslant$ ff K, if $H \leqslant H * L=K$ for some $L \leqslant \mathbb{F}_{A}$.

Examples

- $\langle a\rangle \leqslant_{\text {ff }}\langle a, b\rangle \leqslant \mathrm{ff}\langle a, b, c\rangle$;
$\cdot\left\langle w^{r}\right\rangle \leqslant \operatorname{slg}\langle w\rangle, \forall w \in \mathbb{F}_{A}, \forall r \in \mathbb{Z} \backslash\{0\} ;$

ALGEBRAIC AND FREE EXTENSIONS

Definition

Let $H \leqslant K \leqslant \mathbb{F}_{A}$. We say that $H \leqslant K$ is an algebraic extension, denoted by $H \leqslant$ alg K, if H is not contained in any proper free factor of K, i.e., if

$$
H \leqslant K_{1} \leqslant K_{1} * K_{2}=K \Rightarrow K_{2}=1 .
$$

We say that $H \leqslant K$ is a free extension, denoted by $H \leqslant$ ff K, if $H \leqslant H * L=K$ for some $L \leqslant \mathbb{F}_{A}$.

Examples

- $\langle a\rangle \leqslant \mathrm{ff}\langle a, b\rangle \leqslant \mathrm{ff}\langle a, b, c\rangle$;
- $\left\langle w^{r}\right\rangle \leqslant \operatorname{salg}\langle w\rangle, \forall w \in \mathbb{F}_{A}, \forall r \in \mathbb{Z} \backslash\{0\} ;$
- $\left\langle a^{-1} b^{-1} a b\right\rangle \leqslant$ alg $\langle a, b\rangle$;

ALGEBRAIC AND FREE EXTENSIONS

Definition

Let $H \leqslant K \leqslant \mathbb{F}_{A}$. We say that $H \leqslant K$ is an algebraic extension, denoted by $H \leqslant$ alg K, if H is not contained in any proper free factor of K, i.e., if

$$
H \leqslant K_{1} \leqslant K_{1} * K_{2}=K \Rightarrow K_{2}=1 .
$$

We say that $H \leqslant K$ is a free extension, denoted by $H \leqslant$ ff K, if $H \leqslant H * L=K$ for some $L \leqslant \mathbb{F}_{A}$.

Examples

- $\langle a\rangle \leqslant_{\text {ff }}\langle a, b\rangle \leqslant \mathrm{ff}\langle a, b, c\rangle$;
- $\left\langle w^{r}\right\rangle \leqslant_{\text {alg }}\langle w\rangle, \forall w \in \mathbb{F}_{A}, \forall r \in \mathbb{Z} \backslash\{0\} ;$
- $\left\langle a^{-1} b^{-1} a b\right\rangle \leqslant$ alg $\langle a, b\rangle$;
- $\left\langle a^{-1} b^{-1} a b\right\rangle \leqslant$ ff $\left\langle a, b^{-1} a b\right\rangle \leqslant$ alg $\langle a, b\rangle ;$

ALGEBRAIC AND FREE EXTENSIONS

Definition

Let $H \leqslant K \leqslant \mathbb{F}_{A}$. We say that $H \leqslant K$ is an algebraic extension, denoted by $H \leqslant$ alg K, if H is not contained in any proper free factor of K, i.e., if

$$
H \leqslant K_{1} \leqslant K_{1} * K_{2}=K \Rightarrow K_{2}=1 .
$$

We say that $H \leqslant K$ is a free extension, denoted by $H \leqslant$ ff K, if $H \leqslant H * L=K$ for some $L \leqslant \mathbb{F}_{A}$.

Examples

- $\langle a\rangle \leqslant_{\text {ff }}\langle a, b\rangle \leqslant \mathrm{ff}\langle a, b, c\rangle$;
- $\left\langle w^{r}\right\rangle \leqslant_{\text {alg }}\langle w\rangle, \forall w \in \mathbb{F}_{A}, \forall r \in \mathbb{Z} \backslash\{0\} ;$
- $\left\langle a^{-1} b^{-1} a b\right\rangle \leqslant$ alg $\langle a, b\rangle$;
- $\left\langle a^{-1} b^{-1} a b\right\rangle \leqslant$ ff $\left\langle a, b^{-1} a b\right\rangle \leqslant$ alg $\langle a, b\rangle$;
- if $r(H) \geqslant 2$ and $r(K) \leqslant 2$ then $H \leqslant$ alg K;

ALGEBRAIC AND FREE EXTENSIONS

Definition

Let $H \leqslant K \leqslant \mathbb{F}_{A}$. We say that $H \leqslant K$ is an algebraic extension, denoted by $H \leqslant$ alg K, if H is not contained in any proper free factor of K, i.e., if

$$
H \leqslant K_{1} \leqslant K_{1} * K_{2}=K \Rightarrow K_{2}=1 .
$$

We say that $H \leqslant K$ is a free extension, denoted by $H \leqslant$ ff K, if $H \leqslant H * L=K$ for some $L \leqslant \mathbb{F}_{A}$.

Examples

- $\langle a\rangle \leqslant_{\text {ff }}\langle a, b\rangle \leqslant \mathrm{ff}\langle a, b, c\rangle$;
- $\left\langle w^{r}\right\rangle \leqslant_{\text {alg }}\langle w\rangle, \forall w \in \mathbb{F}_{A}, \forall r \in \mathbb{Z} \backslash\{0\} ;$
- $\left\langle a^{-1} b^{-1} a b\right\rangle \leqslant$ alg $\langle a, b\rangle$;
- $\left\langle a^{-1} b^{-1} a b\right\rangle \leqslant$ ff $\left\langle a, b^{-1} a b\right\rangle \leqslant$ alg $\langle a, b\rangle$;
- if $r(H) \geqslant 2$ and $r(K) \leqslant 2$ then $H \leqslant$ alg K;
- if $H \leqslant \begin{aligned} & \text { alg } \\ & K\end{aligned}$ and $H \leqslant$ ff K then $H=K$.

ALGEBRAIC AND FREE EXTENSIONS

Proposition (Miasnikov-V.-Weil, 2007)
Let $H \leqslant M_{i} \leqslant K \leqslant \mathbb{F}_{A}$, for $i=1$, 2. Then,
i) if $H \leqslant$ alg $M_{1} \leqslant$ alg K, then $H \leqslant$ alg K;

ALGEBRAIC AND FREE EXTENSIONS

Proposition (Miasnikov-V.-Weil, 2007)
Let $H \leqslant M_{i} \leqslant K \leqslant \mathbb{F}_{A}$, for $i=1$, 2. Then,
i) if $H \leqslant \begin{aligned} & \text { alg } \\ & M_{1}\end{aligned} \leqslant_{\text {alg }} K$, then $H \leqslant_{\text {alg }} K$;
i') if $H \leqslant_{\text {ff }} M_{1} \leqslant_{\text {ff }} K$, then $H \leqslant_{f f} K$;

ALGEBRAIC AND FREE EXTENSIONS

Proposition (Miasnikov-V.-Weil, 2007)

Let $H \leqslant M_{i} \leqslant K \leqslant \mathbb{F}_{A}$, for $i=1$, 2. Then,
i) if $H \leqslant \begin{aligned} & \text { alg } \\ & M_{1}\end{aligned} \leqslant_{\text {alg }} K$, then $H \leqslant_{\text {alg }} K$;
i') if $H \leqslant_{\text {ff }} M_{1} \leqslant_{\text {ff }} K$, then $H \leqslant_{\text {ff }} K$;
ii) if $H \leqslant_{\text {alg }} K$, then $M_{1} \leqslant_{\text {alg }} K$, while $H *_{\text {alg }} M_{1}$, in general;

ALGEBRAIC AND FREE EXTENSIONS

Proposition (Miasnikov-V.-Weil, 2007)

Let $H \leqslant M_{i} \leqslant K \leqslant \mathbb{F}_{A}$, for $i=1$, 2. Then,
i) if $H \leqslant \begin{aligned} & \text { alg } \\ & M_{1}\end{aligned} \leqslant_{\text {alg }} K$, then $H \leqslant_{\text {alg }} K$;
i') if $H \leqslant \begin{aligned} & \text { ff } \\ & M_{1}\end{aligned} \leqslant_{\text {ff }} K$, then $H \leqslant_{\text {ff }} K$;
ii) if $H \leqslant_{\text {alg }} K$, then $M_{1} \leqslant_{\text {alg }} K$, while $H \not \star_{\text {alg }} M_{1}$, in general;
ii') if $H \leqslant_{f f} K$, then $H \leqslant_{f f} M_{1}$, while $M_{1} \delta_{f f} K$, in general;

ALGEBRAIC AND FREE EXTENSIONS

Proposition (Miasnikov-V.-Weil, 2007)

Let $H \leqslant M_{i} \leqslant K \leqslant \mathbb{F}_{A}$, for $i=1$, 2. Then,
i) if $H \leqslant_{\text {alg }} M_{1} \leqslant_{\text {alg }} K$, then $H \leqslant_{\text {alg }} K$;
i') if $H \leqslant_{\text {ff }} M_{1} \leqslant_{\text {ff }} K$, then $H \leqslant_{f f} K$;
ii) if $H \leqslant \begin{aligned} & \text { alg }\end{aligned} K$, then $M_{1} \leqslant_{\text {alg }} K$, while $H \not \star_{\text {alg }} M_{1}$, in general;
ii') if $H \leqslant_{f f} K$, then $H \leqslant_{f f} M_{1}$, while $M_{1} 太_{f f} K$, in general;
iii) if $H \leqslant$ alg M_{1} and $H \leqslant$ alg M_{2}, then $H \leqslant$ alg $\left\langle M_{1} \cup M_{2}\right\rangle$, while $H \not \approx$ alg $M_{1} \cap M_{2}$, in general;

ALGEBRAIC AND FREE EXTENSIONS

Proposition (Miasnikov-V.-Weil, 2007)

Let $H \leqslant M_{i} \leqslant K \leqslant \mathbb{F}_{A}$, for $i=1$, 2. Then,
i) if $H \leqslant \begin{aligned} & \text { alg } \\ & M_{1}\end{aligned} \leqslant_{\text {alg }} K$, then $H \leqslant_{\text {alg }} K$;
i') if $H \leqslant \begin{aligned} & \text { ff } \\ & M_{1}\end{aligned} \leqslant_{\text {ff }} K$, then $H \leqslant_{\text {ff }} K$;
ii) if $H \leqslant \begin{aligned} & \text { alg }\end{aligned} K$, then $M_{1} \leqslant_{\text {alg }} K$, while $H \not \star_{\text {alg }} M_{1}$, in general;
ii') if $H \leqslant_{f f} K$, then $H \leqslant_{f f} M_{1}$, while $M_{1} 太_{f f} K$, in general;
iii) if $H \leqslant$ alg M_{1} and $H \leqslant$ alg M_{2}, then $H \leqslant$ alg $\left\langle M_{1} \cup M_{2}\right\rangle$, while $H \not \approx$ alg $M_{1} \cap M_{2}$, in general;
iii') if $H \leqslant$ ff M_{1} and $H \leqslant_{f f} M_{2}$, then $H \leqslant_{\text {ff }} M_{1} \cap M_{2}$, while $H \not \nless f f\left\langle M_{1} \cup M_{2}\right\rangle$, in general;

ALGEBRAIC AND FREE EXTENSIONS

Proposition (Miasnikov-V.-Weil, 2007)

Let $H \leqslant M_{i} \leqslant K \leqslant \mathbb{F}_{A}$, for $i=1$, 2. Then,
i) if $H \leqslant \begin{aligned} & \text { alg } \\ & M_{1}\end{aligned} \leqslant_{\text {alg }} K$, then $H \leqslant_{\text {alg }} K$;
i') if $H \leqslant \begin{aligned} & \text { ff } \\ & M_{1}\end{aligned} \leqslant_{\text {ff }} K$, then $H \leqslant_{\text {ff }} K$;
ii) if $H \leqslant_{\text {alg }} K$, then $M_{1} \leqslant_{\text {alg }} K$, while $H \not \star_{\text {alg }} M_{1}$, in general;
ii') if $H \leqslant_{f f} K$, then $H \leqslant_{f f} M_{1}$, while $M_{1} 太_{f f} K$, in general;
iii) if $H \leqslant$ alg M_{1} and $H \leqslant$ alg M_{2}, then $H \leqslant$ alg $\left\langle M_{1} \cup M_{2}\right\rangle$, while $H \nless$ alg $M_{1} \cap M_{2}$, in general;
iii') if $H \leqslant_{\text {ff }} M_{1}$ and $H \leqslant_{f f} M_{2}$, then $H \leqslant_{f f} M_{1} \cap M_{2}$, while $H \not \star_{f f}\left\langle M_{1} \cup M_{2}\right\rangle$, in general;
iv) $H_{i} \leqslant_{\text {ff }} K_{i}, \forall i \in I \Rightarrow \bigcap_{i \in 1} H_{i} \leqslant$ ff $\cap_{i \in I} K_{i}$;

ALGEBRAIC AND FREE EXTENSIONS

Proposition (Miasnikov-V.-Weil, 2007)

Let $H \leqslant M_{i} \leqslant K \leqslant \mathbb{F}_{A}$, for $i=1$, 2. Then,
i) if $H \leqslant_{\text {alg }} M_{1} \leqslant_{\text {alg }} K$, then $H \leqslant_{\text {alg }} K$;
i') if $H \leqslant \begin{aligned} & \text { ff } \\ & M_{1}\end{aligned} \leqslant_{\text {ff }} K$, then $H \leqslant_{\text {ff }} K$;
ii) if $H \leqslant_{\text {alg }} K$, then $M_{1} \leqslant_{\text {alg }} K$, while $H \not \star_{\text {alg }} M_{1}$, in general;
ii') if $H \leqslant_{\mathrm{ff}} K$, then $H \leqslant_{\mathrm{ff}} M_{1}$, while $M_{1} 丈_{\mathrm{ff}} K$, in general;
iii) if $H \leqslant$ alg M_{1} and $H \leqslant$ alg M_{2}, then $H \leqslant$ alg $\left\langle M_{1} \cup M_{2}\right\rangle$, while $H \not \approx$ alg $M_{1} \cap M_{2}$, in general;
iii') if $H \leqslant_{f f} M_{1}$ and $H \leqslant_{f f} M_{2}$, then $H \leqslant_{f f} M_{1} \cap M_{2}$, while $H \not \star_{f f}\left\langle M_{1} \cup M_{2}\right\rangle$, in general;
iv) $H_{i} \leqslant_{\text {ff }} K_{i}, \forall i \in I \Rightarrow \bigcap_{i \in I} H_{i} \leqslant_{f f} \cap_{i \in I} K_{i}$;
iv') $H_{i} \leqslant$ alg $K_{i}, \forall i \in I \Rightarrow\left\langle H_{i}, i \in I\right\rangle \leqslant_{\text {alg }}\left\langle K_{i}, i \in I\right\rangle$.

TAKAHASI'S THEOREM

Definition

For $H \leqslant \mathbb{F}_{A}$, we define $\mathcal{A} \mathcal{E}(H)=\left\{K \leqslant \mathbb{F}_{A} \mid H \leqslant\right.$ alg $\left.K\right\}$.

TAKAHASI'S THEOREM

Definition

For $H \leqslant \mathbb{F}_{A}$, we define $\mathcal{A} \mathcal{E}(H)=\left\{K \leqslant \mathbb{F}_{A} \mid H \leqslant\right.$ alg $\left.K\right\}$.

Question

How many algebraic extensions does a given $H \leqslant \mathbb{F}_{A}$ have ? Can we compute them all, at least when H is f.g.?

TAKAHASI'S THEOREM

Definition

For $H \leqslant \mathbb{F}_{A}$, we define $\mathcal{A} \mathcal{E}(H)=\left\{K \leqslant \mathbb{F}_{A} \mid H \leqslant\right.$ alg $\left.K\right\}$.

Question

How many algebraic extensions does a given $H \leqslant \mathbb{F}_{A}$ have ? Can we compute them all, at least when H is f.g.?

Theorem (Takahasi, 1951)
For every $H \leqslant_{\mathrm{fg}} \mathbb{F}_{\mathrm{A}}$, we have $\# \mathcal{A E}(H)<\infty$.

TAKAHASI'S THEOREM

Definition

For $H \leqslant \mathbb{F}_{A}$, we define $\mathcal{A} \mathcal{E}(H)=\left\{K \leqslant \mathbb{F}_{A} \mid H \leqslant\right.$ alg $\left.K\right\}$.

Question

How many algebraic extensions does a given $H \leqslant \mathbb{F}_{A}$ have ? Can we compute them all, at least when H is f.g.?

Theorem (Takahasi, 1951)
For every $H \leqslant \mathrm{fg} \mathbb{F}_{\mathrm{A}}$, we have $\# \mathcal{A} \mathcal{E}(H)<\infty$.

- Original proof by Takahasi was combinatorial and technical.

TAKAHASI'S THEOREM

Definition

For $H \leqslant \mathbb{F}_{A}$, we define $\mathcal{A} \mathcal{E}(H)=\left\{K \leqslant \mathbb{F}_{A} \mid H \leqslant\right.$ alg $\left.K\right\}$.

Question

How many algebraic extensions does a given $H \leqslant \mathbb{F}_{A}$ have ? Can we compute them all, at least when H is f.g.?

Theorem (Takahasi, 1951)

For every $H \leqslant \mathrm{fg} \mathbb{F}_{A}$, we have $\# \mathcal{A} \mathcal{E}(H)<\infty$.

- Original proof by Takahasi was combinatorial and technical.
- Modern proof, using Stallings automata, is much simpler, and due independently to V. (1997), Margolis-Sapir-Weil (2001) and Kapovich-Miasnikov (2002).

TAKAHASI'S THEOREM

Definition

For $H \leqslant \mathbb{F}_{A}$, we define $\mathcal{A} \mathcal{E}(H)=\left\{K \leqslant \mathbb{F}_{A} \mid H \leqslant\right.$ alg $\left.K\right\}$.

Question

How many algebraic extensions does a given $H \leqslant \mathbb{F}_{A}$ have ? Can we compute them all, at least when H is f.g.?

Theorem (Takahasi, 1951)

For every $H \leqslant \mathrm{fg} \mathbb{F}_{A}$, we have $\# \mathcal{A} \mathcal{E}(H)<\infty$.

- Original proof by Takahasi was combinatorial and technical.
- Modern proof, using Stallings automata, is much simpler, and due independently to V. (1997), Margolis-Sapir-Weil (2001) and Kapovich-Miasnikov (2002).
- Additionally, $\mathcal{A E}(H)$ will be computable...

QUOTIENTS AND FRINGE

Definition

A morphism of reduced A-automata $f: \Gamma_{1} \rightarrow \Gamma_{2}$ is called onto if every edge in Γ_{2} is the image of at least one edge from Γ_{1}. Then, we say that Γ_{2} is a quotient of Γ_{1}, and write $f: \Gamma_{1} \rightarrow \Gamma_{2}$.

QUOTIENTS AND FRINGE

Definition

A morphism of reduced A-automata $f: \Gamma_{1} \rightarrow \Gamma_{2}$ is called onto if every edge in Γ_{2} is the image of at least one edge from Γ_{1}. Then, we say that Γ_{2} is a quotient of Γ_{1}, and write $f: \Gamma_{1} \rightarrow \Gamma_{2}$.

Example

Let Γ be a finite reduced A-automata, and let \sim be an equivalence relation on $V \Gamma$. We denote by Γ / \sim the new reduced A-automata resulting from identifying the vertices according to \sim, plus reduction.

QUOTIENTS AND FRINGE

Definition

A morphism of reduced A-automata $f: \Gamma_{1} \rightarrow \Gamma_{2}$ is called onto if every edge in Γ_{2} is the image of at least one edge from Γ_{1}. Then, we say that Γ_{2} is a quotient of Γ_{1}, and write $f: \Gamma_{1} \rightarrow \Gamma_{2}$.

Example

Let Γ be a finite reduced A-automata, and let \sim be an equivalence relation on $V \Gamma$. We denote by Γ / \sim the new reduced A-automata resulting from identifying the vertices according to \sim, plus reduction.

Clearly, the projection $\pi: \Gamma \rightarrow \Gamma / \sim$ is onto, Γ / \sim is a reduced quotient of Γ, and every reduced quotient of Γ is of this form.

QUOTIENTS AND FRINGE

Definition

A morphism of reduced A-automata $f: \Gamma_{1} \rightarrow \Gamma_{2}$ is called onto if every edge in Γ_{2} is the image of at least one edge from Γ_{1}. Then, we say that Γ_{2} is a quotient of Γ_{1}, and write $f: \Gamma_{1} \rightarrow \Gamma_{2}$.

Example

Let Γ be a finite reduced A-automata, and let \sim be an equivalence relation on $\vee \Gamma$. We denote by Γ / \sim the new reduced A-automata resulting from identifying the vertices according to \sim, plus reduction.
Clearly, the projection $\pi: \Gamma \rightarrow \Gamma / \sim$ is onto, Γ / \sim is a reduced quotient of Γ, and every reduced quotient of Γ is of this form.

Definition

The fringe of a finite reduced A-automaton Γ, denoted by $\mathcal{O}(\Gamma)$, is the (finite) collection of all its reduced quotients:

$$
\mathcal{O}(\Gamma)=\{\Gamma / \sim \mid \sim \text { eq. rel. on } \vee \Gamma\} .
$$

FRINGE OF A SUBGROUP

Definition

Let $H \leqslant_{\mathrm{fg}} \mathbb{F}_{A}$. The fringe of H is

$$
\begin{aligned}
\mathcal{O}(H) & =\{\langle\Gamma\rangle \mid \Gamma \in \mathcal{O}(\operatorname{St}(H))\} \\
& =\{\langle\operatorname{St}(H) / \sim\rangle \mid \sim \text { eq. rel. on } \operatorname{VSt}(H)\},
\end{aligned}
$$

a finite and computable collection of f.g. extensions of H.

FRINGE OF A SUBGROUP

Definition

Let $H \leqslant_{\mathrm{fg}} \mathbb{F}_{A}$. The fringe of H is

$$
\begin{aligned}
\mathcal{O}(H) & =\{\langle\Gamma\rangle \mid \Gamma \in \mathcal{O}(\operatorname{St}(H))\} \\
& =\{\langle\operatorname{St}(H) / \sim\rangle \mid \sim \text { eq. rel. on } \operatorname{VSt}(H)\},
\end{aligned}
$$

a finite and computable collection of f.g. extensions of H.

Example:

For $H=\left\langle a^{-1} b^{-1} a b\right\rangle, \mathcal{O}(H)=\left\{H_{0}, H_{1}, H_{2}, H_{3}, H_{4}, H_{5}, H_{6}\right\}$, where:

FRINGE OF A SUBGROUP

Definition

Let $H \leqslant_{\mathrm{fg}} \mathbb{F}_{A}$. The fringe of H is

$$
\begin{aligned}
\mathcal{O}(H) & =\{\langle\Gamma\rangle \mid \Gamma \in \mathcal{O}(\operatorname{St}(H))\} \\
& =\{\langle\operatorname{St}(H) / \sim\rangle \mid \sim \text { eq. rel. on } \operatorname{VSt}(H)\},
\end{aligned}
$$

a finite and computable collection of f.g. extensions of H.

Example:

For $H=\left\langle a^{-1} b^{-1} a b\right\rangle, \mathcal{O}(H)=\left\{H_{0}, H_{1}, H_{2}, H_{3}, H_{4}, H_{5}, H_{6}\right\}$, where:

$$
H_{0}=H=\left\langle a^{-1} b^{-1} a b\right\rangle,
$$

FRINGE OF A SUBGROUP

Definition

Let $H \leqslant_{\mathrm{fg}} \mathbb{F}_{A}$. The fringe of H is

$$
\begin{aligned}
\mathcal{O}(H) & =\{\langle\Gamma\rangle \mid \Gamma \in \mathcal{O}(\operatorname{St}(H))\} \\
& =\{\langle\operatorname{St}(H) / \sim\rangle \mid \sim \text { eq. rel. on } \operatorname{VSt}(H)\},
\end{aligned}
$$

a finite and computable collection of f.g. extensions of H.

Example:

For $H=\left\langle a^{-1} b^{-1} a b\right\rangle, \mathcal{O}(H)=\left\{H_{0}, H_{1}, H_{2}, H_{3}, H_{4}, H_{5}, H_{6}\right\}$, where:

$$
H_{0}=H=\left\langle a^{-1} b^{-1} a b\right\rangle, \quad H_{1}=\left\langle a, b^{-1} a b\right\rangle,
$$

FRINGE OF A SUBGROUP

Definition

Let $H \leqslant{ }_{\mathrm{fg}} \mathbb{F}_{A}$. The fringe of H is

$$
\begin{aligned}
\mathcal{O}(H) & =\{\langle\Gamma\rangle \mid \Gamma \in \mathcal{O}(\operatorname{St}(H))\} \\
& =\{\langle\operatorname{St}(H) / \sim\rangle \mid \sim \text { eq. rel. on } \operatorname{VSt}(H)\},
\end{aligned}
$$

a finite and computable collection of f.g. extensions of H.

Example:

For $H=\left\langle a^{-1} b^{-1} a b\right\rangle, \mathcal{O}(H)=\left\{H_{0}, H_{1}, H_{2}, H_{3}, H_{4}, H_{5}, H_{6}\right\}$, where:

$$
\begin{array}{ll}
H_{0}=H=\left\langle a^{-1} b^{-1} a b\right\rangle, & H_{1}=\left\langle a, b^{-1} a b\right\rangle, \\
H_{2}=\left\langle b, a^{-1} b a\right\rangle, &
\end{array}
$$

FRINGE OF A SUBGROUP

Definition

Let $H \leqslant \mathrm{fg} \mathbb{F}_{A}$. The fringe of H is

$$
\begin{aligned}
\mathcal{O}(H) & =\{\langle\Gamma\rangle \mid \Gamma \in \mathcal{O}(\operatorname{St}(H))\} \\
& =\{\langle\operatorname{St}(H) / \sim\rangle \mid \sim \text { eq. rel. on } \operatorname{VSt}(H)\},
\end{aligned}
$$

a finite and computable collection of f.g. extensions of H.

Example:

For $H=\left\langle a^{-1} b^{-1} a b\right\rangle, \mathcal{O}(H)=\left\{H_{0}, H_{1}, H_{2}, H_{3}, H_{4}, H_{5}, H_{6}\right\}$, where:

$$
\begin{array}{ll}
H_{0}=H=\left\langle a^{-1} b^{-1} a b\right\rangle, & H_{1}=\left\langle a, b^{-1} a b\right\rangle, \\
H_{2}=\left\langle b, a^{-1} b a\right\rangle, & H_{3}=\langle a b, b a\rangle,
\end{array}
$$

FRINGE OF A SUBGROUP

Definition

Let $H \leqslant \mathrm{fg} \mathbb{F}_{A}$. The fringe of H is

$$
\begin{aligned}
\mathcal{O}(H) & =\{\langle\Gamma\rangle \mid \Gamma \in \mathcal{O}(\operatorname{St}(H))\} \\
& =\{\langle\operatorname{St}(H) / \sim\rangle \mid \sim \text { eq. rel. on } \operatorname{VSt}(H)\},
\end{aligned}
$$

a finite and computable collection of f.g. extensions of H.

Example:

For $H=\left\langle a^{-1} b^{-1} a b\right\rangle, \mathcal{O}(H)=\left\{H_{0}, H_{1}, H_{2}, H_{3}, H_{4}, H_{5}, H_{6}\right\}$, where:

$$
\begin{array}{ll}
H_{0}=H=\left\langle a^{-1} b^{-1} a b\right\rangle, & H_{1}=\left\langle a, b^{-1} a b\right\rangle, \\
H_{2}=\left\langle b, a^{-1} b a\right\rangle, & H_{3}=\langle a b, b a\rangle, \\
H_{4}=\left\langle a^{-1} b, a^{-2} b^{2}\right\rangle, &
\end{array}
$$

FRINGE OF A SUBGROUP

Definition

Let $H \leqslant \mathrm{fg} \mathbb{F}_{A}$. The fringe of H is

$$
\begin{aligned}
\mathcal{O}(H) & =\{\langle\Gamma\rangle \mid \Gamma \in \mathcal{O}(\operatorname{St}(H))\} \\
& =\{\langle\operatorname{St}(H) / \sim\rangle \mid \sim \text { eq. rel. on } \operatorname{VSt}(H)\},
\end{aligned}
$$

a finite and computable collection of f.g. extensions of H.

Example:

For $H=\left\langle a^{-1} b^{-1} a b\right\rangle, \mathcal{O}(H)=\left\{H_{0}, H_{1}, H_{2}, H_{3}, H_{4}, H_{5}, H_{6}\right\}$, where:

$$
\begin{array}{ll}
H_{0}=H=\left\langle a^{-1} b^{-1} a b\right\rangle, & H_{1}=\left\langle a, b^{-1} a b\right\rangle, \\
H_{2}=\left\langle b, a^{-1} b a\right\rangle, & H_{3}=\langle a b, b a\rangle, \\
H_{4}=\left\langle a^{-1} b, a^{-2} b^{2}\right\rangle, & H_{5}=\left\langle a^{2}, b^{2}, a b\right\rangle,
\end{array}
$$

FRINGE OF A SUBGROUP

Definition

Let $H \leqslant \mathbb{F}_{A}$. The fringe of H is

$$
\begin{aligned}
\mathcal{O}(H) & =\{\langle\Gamma\rangle \mid \Gamma \in \mathcal{O}(\operatorname{St}(H))\} \\
& =\{\langle\operatorname{St}(H) / \sim\rangle \mid \sim \text { eq. rel. on } \operatorname{VSt}(H)\},
\end{aligned}
$$

a finite and computable collection of f.g. extensions of H.

Example:

For $H=\left\langle a^{-1} b^{-1} a b\right\rangle, \mathcal{O}(H)=\left\{H_{0}, H_{1}, H_{2}, H_{3}, H_{4}, H_{5}, H_{6}\right\}$, where:

$$
\begin{array}{ll}
H_{0}=H=\left\langle a^{-1} b^{-1} a b\right\rangle, & H_{1}=\left\langle a, b^{-1} a b\right\rangle, \\
H_{2}=\left\langle b, a^{-1} b a\right\rangle, & H_{3}=\langle a b, b a\rangle, \\
H_{4}=\left\langle a^{-1} b, a^{-2} b^{2}\right\rangle, & H_{5}=\left\langle a^{2}, b^{2}, a b\right\rangle, \\
H_{6}=\langle a, b\rangle . &
\end{array}
$$

COMPUTING ALGEBRAIC EXTENSIONS

Observation

For $H \leqslant \begin{aligned} & \\ & \mathbb{F}_{A}\end{aligned}$, we have $\mathcal{O}(H)=\left\{H_{0}, H_{1}, \ldots, H_{k}\right\}$, all f.g., computable, and with minimum and maximum, $H=H_{0} \leqslant H_{i} \leqslant H_{k}=\left\langle A^{\prime}\right\rangle \leqslant$ ff \mathbb{F}_{A}, where $A^{\prime} \subseteq A$ is the set of letters in use.

COMPUTING ALGEBRAIC EXTENSIONS

Observation

For $H \leqslant_{\mathrm{fg}} \mathbb{F}_{A}$, we have $\mathcal{O}(H)=\left\{H_{0}, H_{1}, \ldots, H_{k}\right\}$, all f.g., computable, and with minimum and maximum, $H=H_{0} \leqslant H_{i} \leqslant H_{k}=\left\langle A^{\prime}\right\rangle \leqslant$ ff \mathbb{F}_{A}, where $A^{\prime} \subseteq A$ is the set of letters in use.

Proposition

For $H \leqslant f g \mathbb{F}_{A}$, we have $\mathcal{A E}(H) \subseteq \mathcal{O}(H)$. In particular, $\# \mathcal{A E}(H)<\infty$.

COMPUTING ALGEBRAIC EXTENSIONS

Observation

For $H \leqslant f g \mathbb{F}_{A}$, we have $\mathcal{O}(H)=\left\{H_{0}, H_{1}, \ldots, H_{k}\right\}$, all f.g., computable, and with minimum and maximum, $H=H_{0} \leqslant H_{i} \leqslant H_{k}=\left\langle A^{\prime}\right\rangle \leqslant$ ff \mathbb{F}_{A}, where $A^{\prime} \subseteq A$ is the set of letters in use.

Proposition

For $H \leqslant \mathrm{fg} \mathbb{F}_{A}$, we have $\mathcal{A} \mathcal{E}(H) \subseteq \mathcal{O}(H)$. In particular, $\# \mathcal{A} \mathcal{E}(H)<\infty$.
Theorem
$\mathcal{A E}(H)$ is computable from a set of generators for $H \leqslant \mathbb{F g}_{A}$.

COMPUTING ALGEBRAIC EXTENSIONS

Observation

For $H \leqslant$ fg \mathbb{F}_{A}, we have $\mathcal{O}(H)=\left\{H_{0}, H_{1}, \ldots, H_{k}\right\}$, all f.g., computable, and with minimum and maximum, $H=H_{0} \leqslant H_{i} \leqslant H_{k}=\left\langle A^{\prime}\right\rangle \leqslant$ ff \mathbb{F}_{A}, where $A^{\prime} \subseteq A$ is the set of letters in use.

Proposition

For $H \leqslant f g \mathbb{F}_{A}$, we have $\mathcal{A E}(H) \subseteq \mathcal{O}(H)$. In particular, $\# \mathcal{A E}(H)<\infty$.
Theorem
$\mathcal{A E}(H)$ is computable from a set of generators for $H \leqslant \mathbb{F g}_{A}$.
Proof.

- Compute St(H);

COMPUTING ALGEBRAIC EXTENSIONS

Observation

For $H \leqslant$ fg \mathbb{F}_{A}, we have $\mathcal{O}(H)=\left\{H_{0}, H_{1}, \ldots, H_{k}\right\}$, all f.g., computable, and with minimum and maximum, $H=H_{0} \leqslant H_{i} \leqslant H_{k}=\left\langle A^{\prime}\right\rangle \leqslant$ ff \mathbb{F}_{A}, where $A^{\prime} \subseteq A$ is the set of letters in use.

Proposition

For $H \leqslant \mathfrak{f g} \mathbb{F}_{A}$, we have $\mathcal{A E}(H) \subseteq \mathcal{O}(H)$. In particular, $\# \mathcal{A E}(H)<\infty$.
Theorem
$\mathcal{A E}(H)$ is computable from a set of generators for $H \leqslant \mathbb{f g}_{A}$.

Proof.

- Compute St(H);
- compute St(H)/~ for all equivalence relation ~on $\operatorname{VSt}(H)$;

COMPUTING ALGEBRAIC EXTENSIONS

Observation

For $H \leqslant$ fg \mathbb{F}_{A}, we have $\mathcal{O}(H)=\left\{H_{0}, H_{1}, \ldots, H_{k}\right\}$, all f.g., computable, and with minimum and maximum, $H=H_{0} \leqslant H_{i} \leqslant H_{k}=\left\langle A^{\prime}\right\rangle \leqslant$ ff \mathbb{F}_{A}, where $A^{\prime} \subseteq A$ is the set of letters in use.

Proposition

For $H \leqslant_{\mathrm{fg}} \mathbb{F}_{A}$, we have $\mathcal{A E}(H) \subseteq \mathcal{O}(H)$. In particular, $\# \mathcal{A} \mathcal{E}(H)<\infty$.
Theorem
$\mathcal{A E}(H)$ is computable from a set of generators for $H \leqslant f \mathbb{F}_{A}$.

Proof.

- Compute St(H);
- compute St(H)/~ for all equivalence relation ~ on VSt(H);
- compute $\mathcal{O}(H)$;

COMPUTING ALGEBRAIC EXTENSIONS

Observation

For $H \leqslant$ fg \mathbb{F}_{A}, we have $\mathcal{O}(H)=\left\{H_{0}, H_{1}, \ldots, H_{k}\right\}$, all f.g., computable, and with minimum and maximum, $H=H_{0} \leqslant H_{i} \leqslant H_{k}=\left\langle A^{\prime}\right\rangle \leqslant$ ff \mathbb{F}_{A}, where $A^{\prime} \subseteq A$ is the set of letters in use.

Proposition

For $H \leqslant \mathfrak{f g} \mathbb{F}_{A}$, we have $\mathcal{A E}(H) \subseteq \mathcal{O}(H)$. In particular, $\# \mathcal{A E}(H)<\infty$.
Theorem
$\mathcal{A E}(H)$ is computable from a set of generators for $H \leqslant f \mathbb{F}_{A}$.

Proof.

- Compute St(H);
- compute St(H)/~ for all equivalence relation ~on $\operatorname{VSt}(H)$;
- compute $\mathcal{O}(H)$;
- clean $\mathcal{O}(H)$ by deleting L whenever $K, L \in \mathcal{O}(H)$ with $K \leqslant_{f f} L$;

COMPUTING ALGEBRAIC EXTENSIONS

Observation

For $H \leqslant$ fg \mathbb{F}_{A}, we have $\mathcal{O}(H)=\left\{H_{0}, H_{1}, \ldots, H_{k}\right\}$, all f.g., computable, and with minimum and maximum, $H=H_{0} \leqslant H_{i} \leqslant H_{k}=\left\langle A^{\prime}\right\rangle \leqslant$ ff \mathbb{F}_{A}, where $A^{\prime} \subseteq A$ is the set of letters in use.

Proposition

For $H \leqslant \mathfrak{f g} \mathbb{F}_{A}$, we have $\mathcal{A E}(H) \subseteq \mathcal{O}(H)$. In particular, $\# \mathcal{A E}(H)<\infty$.
Theorem
$\mathcal{A E}(H)$ is computable from a set of generators for $H \leqslant f \mathbb{F}_{A}$.

Proof.

- Compute St(H);
- compute St(H)/~ for all equivalence relation ~on $\operatorname{VSt}(H)$;
- compute $\mathcal{O}(H)$;
- clean $\mathcal{O}(H)$ by deleting L whenever $K, L \in \mathcal{O}(H)$ with $K \leqslant_{f f} L$;
- the resulting set is $\mathcal{A E}(H)$.

DECIDING FREE-FACTORNESS

For the cleaning step we need:
Theorem
Given $H, K \leqslant f g \mathbb{F}_{A}$, it is algorithmically decidable whether $H \leqslant f f$.

DECIDING FREE-FACTORNESS

For the cleaning step we need:
Theorem
Given $H, K \leqslant f g \mathbb{F}_{A}$, it is algorithmically decidable whether $H \leqslant f f$.
Proved by:

- Whitehead 1930's (classical; exponential time);

DECIDING FREE-FACTORNESS

For the cleaning step we need:
Theorem
Given $H, K \leqslant f g \mathbb{F}_{A}$, it is algorithmically decidable whether $H \leqslant f f$.
Proved by:

- Whitehead 1930's (classical; exponential time);
- Silva-Weil 2006 (using Stallings graphs; exponential time);

DECIDING FREE-FACTORNESS

For the cleaning step we need:
Theorem
Given $H, K \leqslant f g \mathbb{F}_{A}$, it is algorithmically decidable whether $H \leqslant f f$.
Proved by:

- Whitehead 1930's (classical; exponential time);
- Silva-Weil 2006 (using Stallings graphs; exponential time);
- Roig-V.-Weil 2007 (an improvement of Whitehead algorithm working in polynomial time);

DECIDING FREE-FACTORNESS

For the cleaning step we need:
Theorem
Given $H, K \leqslant f g \mathbb{F}_{A}$, it is algorithmically decidable whether $H \leqslant f f$.

Proved by:

- Whitehead 1930's (classical; exponential time);
- Silva-Weil 2006 (using Stallings graphs; exponential time);
- Roig-V.-Weil 2007 (an improvement of Whitehead algorithm working in polynomial time);
- Puder 2011 (using Stallings graphs; exponential time).

DECIDING FREE-FACTORNESS

For the cleaning step we need:
Theorem
Given $H, K \leqslant f g \mathbb{F}_{A}$, it is algorithmically decidable whether $H \leqslant f f$.
Proved by:

- Whitehead 1930's (classical; exponential time);
- Silva-Weil 2006 (using Stallings graphs; exponential time);
- Roig-V.-Weil 2007 (an improvement of Whitehead algorithm working in polynomial time);
- Puder 2011 (using Stallings graphs; exponential time).

Example

For $H=\left\langle a^{-1} b^{-1} a b\right\rangle \leqslant \mathbb{F}_{2}$, we have $\mathcal{A} \mathcal{E}(H)=\left\{H, \mathbb{F}_{2}\right\}$. In particular, $a^{-1} b^{-1} a b$ is almost primitive.

DECIDING FREE-FACTORNESS

For the cleaning step we need:
Theorem
Given $H, K \leqslant f g \mathbb{F}_{A}$, it is algorithmically decidable whether $H \leqslant f f$.
Proved by:

- Whitehead 1930's (classical; exponential time);
- Silva-Weil 2006 (using Stallings graphs; exponential time);
- Roig-V.-Weil 2007 (an improvement of Whitehead algorithm working in polynomial time);
- Puder 2011 (using Stallings graphs; exponential time).

Example

For $H=\left\langle a^{-1} b^{-1} a b\right\rangle \leqslant \mathbb{F}_{2}$, we have $\mathcal{A} \mathcal{E}(H)=\left\{H, \mathbb{F}_{2}\right\}$. In particular, $a^{-1} b^{-1} a b$ is almost primitive.

THE ALGEBRAIC CLOSURE

Observation

- $H \leqslant_{\text {alg }} K_{1}$ and $H \leqslant_{\text {alg }} K_{2}$ then $H \leqslant_{\text {alg }}\left\langle K_{1} \cup K_{2}\right\rangle$;

THE ALGEBRAIC CLOSURE

Observation

- $H \leqslant_{\text {alg }} K_{1}$ and $H \leqslant_{\text {alg }} K_{2}$ then $H \leqslant_{\text {alg }}\left\langle K_{1} \cup K_{2}\right\rangle$;
- $H \leqslant \leqslant_{f f} K_{1}$ and $H \leqslant \leqslant_{\text {ff }} K_{2}$ then $H \leqslant{ }_{\text {ff }} K_{1} \cap K_{2}$.

THE ALGEBRAIC CLOSURE

Observation

- $H \leqslant \begin{aligned} & \text { alg } \\ & K_{1}\end{aligned}$ and $H \leqslant_{\text {alg }} K_{2}$ then $H \leqslant_{\text {alg }}\left\langle K_{1} \cup K_{2}\right\rangle ;$
- $H \leqslant_{\text {ff }} K_{1}$ and $H \leqslant_{\text {ff }} K_{2}$ then $H \leqslant_{\text {ff }} K_{1} \cap K_{2}$.

Theorem

For every extension $H \leqslant_{\mathrm{fg}} K \leqslant_{\mathrm{fg}} \mathbb{F}_{A}$ off.g. subgroups, there exists a unique L such that $H \leqslant_{\text {alg }} L \leqslant_{\text {ff }} K$; it is called the K-algebraic closure of H and denoted $L=\mathrm{Cl}_{k}(H)$.

THE ALGEBRAIC CLOSURE

Observation

- $H \leqslant_{\text {alg }} K_{1}$ and $H \leqslant_{\text {alg }} K_{2}$ then $H \leqslant_{\text {alg }}\left\langle K_{1} \cup K_{2}\right\rangle$;
- $H \leqslant_{\text {ff }} K_{1}$ and $H \leqslant_{\text {ff }} K_{2}$ then $H \leqslant{ }_{\text {ff }} K_{1} \cap K_{2}$.

Theorem

For every extension $H \leqslant_{\mathrm{fg}} K \leqslant_{\mathrm{fg}} \mathbb{F}_{A}$ off.g. subgroups, there exists a unique L such that $H \leqslant_{\text {alg }} L \leqslant_{\text {ff }} K$; it is called the K-algebraic closure of H and denoted $L=\mathrm{Cl}_{k}(H)$.

Observation

For $H \leqslant K, \mathrm{Cl}_{K}(H)$ is the maximal algebraic extension of H contained in K; in particular, it is computable from given generators of H and K.

THE ALGEBRAIC CLOSURE: REMARKS AND EXAMPLE

Remark

$\mathrm{Cl}_{\mathrm{K}}(\mathrm{H})$ depends on K, a very different behaviour from classical field extensions.

THE ALGEBRAIC CLOSURE: REMARKS AND EXAMPLE

Remark

$\mathrm{Cl}_{\mathrm{K}}(\mathrm{H})$ depends on K, a very different behaviour from classical field extensions.

Example

Let $H_{1}=\left\langle a^{-1} b^{-1} a b\right\rangle, H_{2}=\left\langle a, b^{-1} a b\right\rangle$, and $H_{3}=\mathbb{F}_{2}=\langle a, b\rangle$.

THE ALGEBRAIC CLOSURE: REMARKS AND EXAMPLE

Remark

$C l_{K}(H)$ depends on K, a very different behaviour from classical field extensions.

Example

Let $H_{1}=\left\langle a^{-1} b^{-1} a b\right\rangle, H_{2}=\left\langle a, b^{-1} a b\right\rangle$, and $H_{3}=\mathbb{F}_{2}=\langle a, b\rangle$.
We have $H_{1} \leqslant_{\text {ff }} H_{2} \leqslant_{\text {alg }} H_{3}$, and $H_{1} \leqslant_{\text {alg }} H_{3}$.

THE ALGEBRAIC CLOSURE: REMARKS AND EXAMPLE

Remark

$C l_{K}(H)$ depends on K, a very different behaviour from classical field extensions.

Example

Let $H_{1}=\left\langle a^{-1} b^{-1} a b\right\rangle, H_{2}=\left\langle a, b^{-1} a b\right\rangle$, and $H_{3}=\mathbb{F}_{2}=\langle a, b\rangle$.
We have $H_{1} \leqslant_{\text {ff }} H_{2} \leqslant_{\text {alg }} H_{3}$, and $H_{1} \leqslant_{\text {alg }} H_{3}$.
So $\mathrm{Cl}_{H_{2}}\left(H_{1}\right)=H_{1}$, while $\mathrm{Cl}_{H_{3}}\left(H_{1}\right)=\mathrm{H}_{3}$.

THE ALGEBRAIC CLOSURE: REMARKS AND EXAMPLE

Remark

$C l_{K}(H)$ depends on K, a very different behaviour from classical field extensions.

Example

Let $H_{1}=\left\langle a^{-1} b^{-1} a b\right\rangle, H_{2}=\left\langle a, b^{-1} a b\right\rangle$, and $H_{3}=\mathbb{F}_{2}=\langle a, b\rangle$.
We have $H_{1} \leqslant_{\text {ff }} H_{2} \leqslant_{\text {alg }} H_{3}$, and $H_{1} \leqslant_{\text {alg }} H_{3}$.
So $C_{H_{2}}\left(H_{1}\right)=H_{1}$, while $C l_{H_{3}}\left(H_{1}\right)=H_{3}$.
Remark
Compare with M. Hall's Theorem.

PSEUDO-VARIETIES

Definition

A pseudo-variety of groups v is a class of finite groups closed under taking subgroups, quotients and finite direct products.

PSEUDO-VARIETIES

Definition

A pseudo-variety of groups v is a class of finite groups closed under taking subgroups, quotients and finite direct products.

Examples

i) $\mathcal{G}=$ all finite groups;

PSEUDO-VARIETIES

Definition

A pseudo-variety of groups v is a class of finite groups closed under taking subgroups, quotients and finite direct products.

Examples

i) $\mathcal{G}=$ all finite groups;
ii) $\mathcal{G}_{p}=$ all finite p-groups, for p prime;

PSEUDO-VARIETIES

Definition

A pseudo-variety of groups v is a class of finite groups closed under taking subgroups, quotients and finite direct products.

Examples

i) $\mathcal{G}=$ all finite groups;
ii) $\mathcal{G}_{p}=$ all finite p-groups, for p prime;
iii) $\mathcal{G}_{\text {nil }}=$ all finite nilpotent groups;

PSEUDO-VARIETIES

Definition

A pseudo-variety of groups v is a class of finite groups closed under taking subgroups, quotients and finite direct products.

Examples

i) $\mathcal{G}=$ all finite groups;
ii) $\mathcal{G}_{p}=$ all finite p-groups, for p prime;
iii) $\mathcal{G}_{\text {nil }}=$ all finite nilpotent groups;
iv) $\mathcal{G}_{\text {sol }}=$ all finite soluble groups;

PSEUDO-VARIETIES

Definition

A pseudo-variety of groups v is a class of finite groups closed under taking subgroups, quotients and finite direct products.

Examples
i) $\mathcal{G}=$ all finite groups;
ii) $\mathcal{G}_{p}=$ all finite p-groups, for p prime;
iii) $\mathcal{G}_{\text {nil }}=$ all finite nilpotent groups;
iv) $\mathcal{G}_{\text {sol }}=$ all finite soluble groups;
v) $\mathcal{G}_{a b}=$ all finite abelian groups;

PSEUDO-VARIETIES

Definition

A pseudo-variety of groups v is a class of finite groups closed under taking subgroups, quotients and finite direct products.

Examples

i) $\mathcal{G}=$ all finite groups;
ii) $\mathcal{G}_{p}=$ all finite p-groups, for p prime;
iii) $\mathcal{G}_{\text {nil }}=$ all finite nilpotent groups;
iv) $\mathcal{G}_{\text {sol }}=$ all finite soluble groups;
v) $\mathcal{G}_{a b}=$ all finite abelian groups;
vi) for a finite group $V,[V]=\{q u o t i e n t s ~ o f ~ s u b g r o u p s ~ o f ~ V ~ V ~, ~ k \geqslant 1\} . ~$
vii) ...

PSEUDO-VARIETIES

Definition

A pseudo-variety of groups v is a class of finite groups closed under taking subgroups, quotients and finite direct products.

Examples
i) $\mathcal{G}=$ all finite groups;
ii) $\mathcal{G}_{p}=$ all finite p-groups, for p prime;
iii) $\mathcal{G}_{\text {nil }}=$ all finite nilpotent groups;
iv) $\mathcal{G}_{\text {sol }}=$ all finite soluble groups;
v) $\mathcal{G}_{a b}=$ all finite abelian groups;
vi) for a finite group $V,[V]=\{q u o t i e n t s ~ o f ~ s u b g r o u p s ~ o f ~ V ~ V ~, ~ k \geqslant 1\} . ~$
vii) ...

Definition

\mathcal{V} is extension-closed if $V \leqslant W$ with $V, W / V \in \mathcal{V} \Rightarrow W \in \mathcal{V}$.

THE PRO-V TOPOLOGY

Definition

Let G be a group, and \mathcal{v} be a pseudo-variety of finite groups. The pro- \mathcal{V} topology on G can be defined in several equivalent ways:

THE PRO-V TOPOLOGY

Definition

Let G be a group, and \mathcal{V} be a pseudo-variety of finite groups. The pro- \mathcal{V} topology on G can be defined in several equivalent ways:
i) it is the smallest topology making all the morphisms from G into all $V \in \mathcal{V}$ (with the discrete topology) continuous;

THE PRO-V TOPOLOGY

Definition

Let G be a group, and \mathcal{V} be a pseudo-variety of finite groups. The pro- \mathcal{V} topology on G can be defined in several equivalent ways:
i) it is the smallest topology making all the morphisms from G into all $V \in \mathcal{V}$ (with the discrete topology) continuous;
ii) a basis of open sets is given by $\varphi^{-1}(x)$, for all group morphism $\varphi: G \rightarrow V \in \mathcal{V} ;$

THE PRO-V TOPOLOGY

Definition

Let G be a group, and \mathcal{V} be a pseudo-variety of finite groups. The pro- \mathcal{V} topology on G can be defined in several equivalent ways:
i) it is the smallest topology making all the morphisms from G into all $V \in \mathcal{V}$ (with the discrete topology) continuous;
ii) a basis of open sets is given by $\varphi^{-1}(x)$, for all group morphism $\varphi: G \rightarrow V \in \mathcal{V}$;
iii) the normal (finite index) subgroups $K \unlhd G$ such that $G / K \in \mathcal{V}$ form a basis of neighborhoods of 1 ;

THE PRO-V TOPOLOGY

Definition

Let G be a group, and \mathcal{V} be a pseudo-variety of finite groups. The pro- \mathcal{V} topology on G can be defined in several equivalent ways:
i) it is the smallest topology making all the morphisms from G into all $V \in \mathcal{V}$ (with the discrete topology) continuous;
ii) a basis of open sets is given by $\varphi^{-1}(x)$, for all group morphism $\varphi: G \rightarrow V \in \mathcal{V}$;
iii) the normal (finite index) subgroups $K \unlhd G$ such that $G / K \in \mathcal{V}$ form a basis of neighborhoods of 1 ;
iv) it is the topology given by the pseudo-ultra-metric

$$
d(x, y)=2^{-r(x, y)}
$$

where $r(x, y)=\min \{|V| \mid V \in \mathcal{V}$, and separates x and $y\}$.

THE PRO-V TOPOLOGY

Definition

Let G be a group, and \mathcal{V} be a pseudo-variety of finite groups. The pro- \mathcal{V} topology on G can be defined in several equivalent ways:
i) it is the smallest topology making all the morphisms from G into all $V \in \mathcal{V}$ (with the discrete topology) continuous;
ii) a basis of open sets is given by $\varphi^{-1}(x)$, for all group morphism $\varphi: G \rightarrow V \in \mathcal{V}$;
iii) the normal (finite index) subgroups $K \unlhd G$ such that $G / K \in \mathcal{V}$ form a basis of neighborhoods of 1 ;
iv) it is the topology given by the pseudo-ultra-metric

$$
d(x, y)=2^{-r(x, y)}
$$

where $r(x, y)=\min \{|V| \mid V \in \mathcal{V}$, and separates x and $y\}$.
Observation:
The pro- $\mathcal{\nu}$ top. is Hausdorff $\Leftrightarrow d$ is a metric $\Leftrightarrow G$ is residually $-\mathcal{\nu}$.

THE V-CLOSURE

Proposition (Ribes, Zaleskiĭ)

Let \mathcal{V} be an extension-closed pseudo-variety, and consider \mathbb{F}_{A} with the pro- \mathcal{V} topology. For a given $H \leqslant_{\mathrm{fg}} \mathbb{F}_{A}$,
H is \mathcal{V}-closed $\Longleftrightarrow H$ is a free factor of a clopen subgroup. In particular, free factors of \mathcal{V}-closed subgroups are \mathcal{V}-closed.

THE V-CLOSURE

Proposition (Ribes, Zaleskiĭ)

Let \mathcal{V} be an extension-closed pseudo-variety, and consider \mathbb{F}_{A} with the pro- \mathcal{V} topology. For a given $H \leqslant_{\mathrm{fg}} \mathbb{F}_{A}$,
H is \mathcal{V}-closed $\Longleftrightarrow H$ is a free factor of a clopen subgroup. In particular, free factors of \mathcal{V}-closed subgroups are \mathcal{V}-closed.

Corollary

For an extension-closed \mathcal{V}, and $H \leqslant{ }_{\mathrm{fg}} \mathbb{F}_{A}$, we have $H \leqslant \operatorname{alg} \mathrm{Cl}_{\nu}(H)$.

THE V-CLOSURE

Proposition (Ribes, Zaleskiĭ)

Let \mathcal{V} be an extension-closed pseudo-variety, and consider \mathbb{F}_{A} with the pro- \mathcal{V} topology. For a given $H \leqslant f \mathbb{F}_{A}$,
H is \mathcal{V}-closed $\Longleftrightarrow H$ is a free factor of a clopen subgroup. In particular, free factors of \mathcal{V}-closed subgroups are \mathcal{V}-closed.

Corollary

For an extension-closed \mathcal{V}, and $H \leqslant f \mathbb{F}_{A}$, we have $H \leqslant \begin{aligned} & \text { alg } \\ & C l \\ & \nu\end{aligned}(H)$.
So, in the extension-closed case, we always have $\mathrm{Cl}_{\nu}(H) \in \mathcal{A} \mathcal{E}(H)$.

THE V-CLOSURE

Proposition (Ribes, Zaleskiĭ)

Let \mathcal{V} be an extension-closed pseudo-variety, and consider \mathbb{F}_{A} with the pro- \mathcal{V} topology. For a given $H \leqslant_{\mathrm{fg}} \mathbb{F}_{A}$,
H is \mathcal{V}-closed $\Longleftrightarrow H$ is a free factor of a clopen subgroup. In particular, free factors of \mathcal{V}-closed subgroups are \mathcal{V}-closed.

Corollary

For an extension-closed \mathcal{V}, and $H \leqslant f \mathbb{F}_{A}$, we have $H \leqslant \operatorname{alg} C l_{\nu}(H)$.
So, in the extension-closed case, we always have $\mathrm{Cl}_{\nu}(H) \in \mathcal{A} \mathcal{E}(H)$.

Proposition (Ribes, Zaleskiï)

For an extension-closed \mathcal{V}, and $H \leqslant \mathrm{fg} \mathbb{F}_{A}$, we have $\operatorname{rk}\left(\mathrm{Cl}_{\mathcal{V}}(H)\right) \leqslant \mathrm{rk}(H)$.

p-CLOSURE, nil-CLOSURE, sol-CLOSURE?

Theorem (Margolis-Sapir-Weil)

The p-closure of $H \leqslant{ }_{\mathrm{fg}} \mathbb{F}_{\mathrm{A}}$ is effectively computable, for every prime p.

p-CLOSURE, nil-CLOSURE, sol-CLOSURE?

Theorem (Margolis-Sapir-Weil)

The p-closure of $H \leqslant{ }_{\mathrm{fg}} \mathbb{F}_{A}$ is effectively computable, for every prime p.
And using the fact that $\mathrm{Cl}_{\text {nil }}(H)=\bigcap_{p} C l_{p}(H)$,

p-CLOSURE, nil-CLOSURE, SOl-CLOSURE?

Theorem (Margolis-Sapir-Weil)

The p-closure of $H \leqslant{ }_{\mathrm{fg}} \mathbb{F}_{A}$ is effectively computable, for every prime p.
And using the fact that $\mathrm{Cl}_{\text {nil }}(H)=\bigcap_{p} C l_{p}(H)$,
Theorem (Margolis-Sapir-Weil)
The nil-closure $\mathrm{Cl}_{\text {nil }}(H)$ of $H \leqslant f \mathbb{F}_{A}$ is effectively computable.

p-CLOSURE, nil-CLOSURE, SOl-CLOSURE?

Theorem (Margolis-Sapir-Weil)

The p-closure of $H \leqslant{ }_{\mathrm{fg}} \mathbb{F}_{A}$ is effectively computable, for every prime p.
And using the fact that $\mathrm{Cl}_{\text {nil }}(H)=\bigcap_{p} C l_{p}(H)$,
Theorem (Margolis-Sapir-Weil)
The nil-closure $\mathrm{Cl}_{\text {nil }}(H)$ of $H \leqslant \mathrm{fg} \mathbb{F}_{A}$ is effectively computable.

Problem

Find an algorithm to compute the solvable closure $\mathrm{Cl}_{\text {sol }}(\mathrm{H})$ of a given $H \leqslant{ }_{f g} \mathbb{F}_{A}$.

FIXED SUBGROUPS ARE COMPLICATED

$$
\begin{aligned}
\phi: F_{3} & \rightarrow F_{3} \\
a & \mapsto a \\
b & \mapsto b a \\
c & \mapsto c a^{2}
\end{aligned}
$$

FIXED SUBGROUPS ARE COMPLICATED

$$
\begin{aligned}
\phi: F_{3} & \rightarrow F_{3} \\
a & \mapsto a \\
b & \mapsto b a \\
c & \mapsto c a^{2}
\end{aligned}
$$

$$
\operatorname{Fix}(\phi)=\left\langle a, b a b^{-1}, c a c^{-1}\right\rangle
$$

$$
\begin{aligned}
\phi: F_{3} & \rightarrow F_{3} \\
a & \mapsto a \\
b & \mapsto b a \\
c & \mapsto c a^{2} \\
\varphi: F_{4} & \rightarrow F_{4} \\
a & \mapsto d a c \\
b & \mapsto c^{-1} a^{-1} d^{-1} a c \\
c & \mapsto c^{-1} a^{-1} b^{-1} a c \\
d & \mapsto c^{-1} a^{-1} b c
\end{aligned}
$$

FIXED SUBGROUPS ARE COMPLICATED

$$
\begin{array}{rlrl}
\phi: F_{3} & \rightarrow F_{3} & \\
a & \mapsto a & & \\
b & \mapsto b a & & \\
c & \mapsto c a^{2} & & \\
\varphi: F_{4} & \rightarrow F_{4} & & \\
a & \mapsto d a c & & \\
b & \mapsto c^{-1} a^{-1} d^{-1} a c & & \operatorname{Fix}(\varphi)=\langle w\rangle, \text { where } \ldots \\
c & \mapsto c^{-1} a^{-1} b^{-1} a c & & \\
d & \mapsto c^{-1} a^{-1} b c & &
\end{array}
$$

FIXED SUBGROUPS ARE COMPLICATED

$$
\begin{array}{rlrl}
\phi: F_{3} & \rightarrow F_{3} & \\
a & \mapsto a & & \\
b & \mapsto b a & & \\
c & \mapsto c a^{2} & & \\
\varphi: F_{4} & \rightarrow F_{4} & & \\
a & \mapsto d a c & & \\
b & \mapsto c^{-1} a^{-1} d^{-1} a c & & \operatorname{Fix}(\varphi)=\langle w\rangle, \text { where } \ldots \\
c & \mapsto c^{-1} a^{-1} b^{-1} a c & & \\
d & \mapsto c^{-1} a^{-1} b c & &
\end{array}
$$

$w=c^{-1} a^{-1} b d^{-1} c^{-1} a^{-1} d^{-1} a d^{-1} c^{-1} b^{-1} a c d a d a c d c d b c d a^{-1} a^{-1} d^{-1}$ $a^{-1} d^{-1} c^{-1} a^{-1} d^{-1} c^{-1} b^{-1} d^{-1} c^{-1} d^{-1} c^{-1}$ daabcdaccd $b^{-1} a^{-1}$.

WHAT IS KNOWN ABOUT FIXED SUBGROUPS?

Theorem (Dyer-Scott, 75)
Let $\phi \in \operatorname{Aut}\left(\mathbb{F}_{n}\right)$ be of finite order. Then, $\operatorname{Fix}(\phi) \leqslant \mathrm{ff} \mathbb{F}_{n}$.

WHAT IS KNOWN ABOUT FIXED SUBGROUPS?

Theorem (Dyer-Scott, 75)
Let $\phi \in \operatorname{Aut}\left(\mathbb{F}_{n}\right)$ be of finite order. Then, $\operatorname{Fix}(\phi) \leqslant \mathrm{ff} \mathbb{F}_{n}$.
Theorem (Gersten, 83 (published 87))
Let $\phi \in \operatorname{Aut}\left(\mathbb{F}_{n}\right)$. Then, $\operatorname{rk}(\operatorname{Fix}(\phi))<\infty$.

WHAT IS KNOWN ABOUT FIXED SUBGROUPS?

Theorem (Dyer-Scott, 75)
Let $\phi \in \operatorname{Aut}\left(\mathbb{F}_{n}\right)$ be of finite order. Then, $\operatorname{Fix}(\phi) \leqslant \mathrm{ff} \mathbb{F}_{n}$.
Theorem (Gersten, 83 (published 87))
Let $\phi \in \operatorname{Aut}\left(\mathbb{F}_{n}\right)$. Then, $\operatorname{rk}(\operatorname{Fix}(\phi))<\infty$.
Theorem (Bestvina-Handel, 88 (published 92))
Let $\phi \in \operatorname{Aut}\left(\mathbb{F}_{n}\right)$. Then, $\operatorname{rk}(\operatorname{Fix}(\phi)) \leqslant n$.

WHAT IS KNOWN ABOUT FIXED SUBGROUPS?

```
Theorem (Dyer-Scott, 75)
Let }\phi\in\operatorname{Aut}(\mp@subsup{\mathbb{F}}{n}{})\mathrm{ be of finite order. Then, }\operatorname{Fix}(\phi)\leqslantff\mp@subsup{\mathbb{F}}{n}{}\mathrm{ .
```

Theorem (Gersten, 83 (published 87))
Let $\phi \in \operatorname{Aut}\left(\mathbb{F}_{n}\right)$. Then, $\operatorname{rk}(\operatorname{Fix}(\phi))<\infty$.
Theorem (Bestvina-Handel, 88 (published 92))
Let $\phi \in \operatorname{Aut}\left(\mathbb{F}_{n}\right)$. Then, $\operatorname{rk}(\operatorname{Fix}(\phi)) \leqslant n$.
Theorem (Imrich-Turner, 89)
Let $\phi \in \operatorname{End}\left(\mathbb{F}_{n}\right)$. Then, $\operatorname{rk}(\operatorname{Fix}(\phi)) \leqslant n$.

WHAT IS KNOWN ABOUT FIXED SUBGROUPS?

Theorem (Dyer-Scott, 75)
Let $\phi \in \operatorname{Aut}\left(\mathbb{F}_{n}\right)$ be of finite order. Then, $\operatorname{Fix}(\phi) \leqslant \mathrm{ff} \mathbb{F}_{n}$.
Theorem (Gersten, 83 (published 87))
Let $\phi \in \operatorname{Aut}\left(\mathbb{F}_{n}\right)$. Then, $\operatorname{rk}(\operatorname{Fix}(\phi))<\infty$.
Theorem (Bestvina-Handel, 88 (published 92))
Let $\phi \in \operatorname{Aut}\left(\mathbb{F}_{n}\right)$. Then, $\operatorname{rk}(\operatorname{Fix}(\phi)) \leqslant n$.
Theorem (Imrich-Turner, 89)
Let $\phi \in \operatorname{End}\left(\mathbb{F}_{n}\right)$. Then, $\operatorname{rk}(\operatorname{Fix}(\phi)) \leqslant n$.
Theorem (Bogopolski-Maslakova, 2016; Feighn-Handel, 2018)
A free basis for $\operatorname{Fix}(\varphi)$ is computable, for $\varphi \in \operatorname{Aut}\left(\mathbb{F}_{n}\right)$.

WHAT IS KNOWN ABOUT FIXED SUBGROUPS?

Theorem (Dyer-Scott, 75)
Let $\phi \in \operatorname{Aut}\left(\mathbb{F}_{n}\right)$ be of finite order. Then, $\operatorname{Fix}(\phi) \leqslant \mathrm{ff} \mathbb{F}_{n}$.
Theorem (Gersten, 83 (published 87))
Let $\phi \in \operatorname{Aut}\left(\mathbb{F}_{n}\right)$. Then, $\operatorname{rk}(\operatorname{Fix}(\phi))<\infty$.
Theorem (Bestvina-Handel, 88 (published 92))
Let $\phi \in \operatorname{Aut}\left(\mathbb{F}_{n}\right)$. Then, $\operatorname{rk}(\operatorname{Fix}(\phi)) \leqslant n$.
Theorem (Imrich-Turner, 89)
Let $\phi \in \operatorname{End}\left(\mathbb{F}_{n}\right)$. Then, $\operatorname{rk}(\operatorname{Fix}(\phi)) \leqslant n$.
Theorem (Bogopolski-Maslakova, 2016; Feighn-Handel, 2018)
A free basis for $\operatorname{Fix}(\varphi)$ is computable, for $\varphi \in \operatorname{Aut}\left(\mathbb{F}_{n}\right)$.
Theorem (Mutanguha, 2022)
A free basis for $\operatorname{Fix}(\varphi)$ is computable, for $\varphi \in \operatorname{End}\left(\mathbb{F}_{n}\right)$.

INERTIA

Definition

A subgroup $H \leqslant \mathbb{F}_{n}$ is inert if $r k(H \cap K) \leqslant r k(K)$, for every $K \leqslant \mathbb{F}_{n}$. And H is compressed if $r k(H) \leqslant r k(K)$, for every $H \leqslant K \leqslant \mathbb{F}_{n}$.

INERTIA

Definition

A subgroup $H \leqslant \mathbb{F}_{n}$ is inert if $r k(H \cap K) \leqslant r k(K)$, for every $K \leqslant \mathbb{F}_{n}$. And H is compressed if $r k(H) \leqslant r k(K)$, for every $H \leqslant K \leqslant \mathbb{F}_{n}$.

Observation

There is an algorithm which, on input $u_{1}, \ldots, u_{k} \in \mathbb{F}_{A}$ decides whether $H=\left\langle u_{1}, \ldots, u_{k}\right\rangle$ is compressed: check the members in $\mathcal{A} \mathcal{E}(H)$.

INERTIA

Definition

A subgroup $H \leqslant \mathbb{F}_{n}$ is inert if $r k(H \cap K) \leqslant r k(K)$, for every $K \leqslant \mathbb{F}_{n}$. And H is compressed if $r k(H) \leqslant r k(K)$, for every $H \leqslant K \leqslant \mathbb{F}_{n}$.

Observation

There is an algorithm which, on input $u_{1}, \ldots, u_{k} \in \mathbb{F}_{A}$ decides whether $H=\left\langle u_{1}, \ldots, u_{k}\right\rangle$ is compressed: check the members in $\mathcal{A} \mathcal{E}(H)$.

We write $\operatorname{Fix}(S)=\bigcap_{\varphi \in S} \operatorname{Fix}(\varphi)$.

INERTIA

Definition

A subgroup $H \leqslant \mathbb{F}_{n}$ is inert if $r k(H \cap K) \leqslant r k(K)$, for every $K \leqslant \mathbb{F}_{n}$. And H is compressed if $r k(H) \leqslant r k(K)$, for every $H \leqslant K \leqslant \mathbb{F}_{n}$.

Observation

There is an algorithm which, on input $u_{1}, \ldots, u_{k} \in \mathbb{F}_{A}$ decides whether $H=\left\langle u_{1}, \ldots, u_{k}\right\rangle$ is compressed: check the members in $\mathcal{A} \mathcal{E}(H)$.

We write $\operatorname{Fix}(S)=\bigcap_{\varphi \in S} \operatorname{Fix}(\varphi)$.
Theorem (Dicks-V., 96)
Let $S \subseteq$ Mon $\left(\mathbb{F}_{n}\right)$ be a set of monomorphisms. Then, Fix (S) is inert.

INERTIA

Definition

A subgroup $H \leqslant \mathbb{F}_{n}$ is inert if $r k(H \cap K) \leqslant r k(K)$, for every $K \leqslant \mathbb{F}_{n}$. And H is compressed if $r k(H) \leqslant r k(K)$, for every $H \leqslant K \leqslant \mathbb{F}_{n}$.

Observation

There is an algorithm which, on input $u_{1}, \ldots, u_{k} \in \mathbb{F}_{A}$ decides whether $H=\left\langle u_{1}, \ldots, u_{k}\right\rangle$ is compressed: check the members in $\mathcal{A} \mathcal{E}(H)$.

We write $\operatorname{Fix}(S)=\bigcap_{\varphi \in S} \operatorname{Fix}(\varphi)$.
Theorem (Dicks-V., 96)
Let $S \subseteq$ Mon $\left(\mathbb{F}_{n}\right)$ be a set of monomorphisms. Then, Fix (S) is inert.

Theorem (Antolín-Jaikin-Zapirain, 2021)
Let $S \subseteq \operatorname{End}(G)$, where $G=\mathbb{F}_{n}$ or $G=\mathbb{S}_{n}$. Then, $\operatorname{Fix}(S)$ is inert.

INTERSECTIONS OF FIXED SUBGROUPS

Theorem (Martino-V. 2003)

The subgroup $\left\langle b\right.$, cacbab $\left.{ }^{-1} c^{-1}\right\rangle \leqslant \mathbb{F}_{3}=\mathbb{F}_{\{a, b, c\}}$ is the fixed subgroup of $\varphi: \mathbb{F}_{3} \rightarrow \mathbb{F}_{3}, a \mapsto 1, b \mapsto b, c \mapsto c a c b a b^{-1} c^{-1}$, but it is not the fixed subgroup of any set of automorphisms of \mathbb{F}_{3}.

INTERSECTIONS OF FIXED SUBGROUPS

Theorem (Martino-V. 2003)

The subgroup $\left\langle b\right.$, cacbab $\left.{ }^{-1} c^{-1}\right\rangle \leqslant \mathbb{F}_{3}=\mathbb{F}_{\{a, b, c\}}$ is the fixed subgroup of $\varphi: \mathbb{F}_{3} \rightarrow \mathbb{F}_{3}, a \mapsto 1, b \mapsto b, c \mapsto c a c b a b^{-1} c^{-1}$, but it is not the fixed subgroup of any set of automorphisms of \mathbb{F}_{3}.

Question

Is the lattice of fixed subgroups of \mathbb{F}_{n} (by autos or endos) closed under intersections?

INTERSECTIONS OF FIXED SUBGROUPS

Theorem (Martino-V. 2003)

The subgroup $\left\langle b\right.$, cacbab $\left.{ }^{-1} c^{-1}\right\rangle \leqslant \mathbb{F}_{3}=\mathbb{F}_{\{a, b, c\}}$ is the fixed subgroup of $\varphi: \mathbb{F}_{3} \rightarrow \mathbb{F}_{3}, a \mapsto 1, b \mapsto b, c \mapsto c a c b a b^{-1} c^{-1}$, but it is not the fixed subgroup of any set of automorphisms of \mathbb{F}_{3}.

Question

Is the lattice of fixed subgroups of \mathbb{F}_{n} (by autos or endos) closed under intersections? i.e., is it true that
$\forall S \subseteq \operatorname{End}\left(\mathbb{F}_{n}\right) \quad \exists \varphi \in \operatorname{End}\left(\mathbb{F}_{n}\right) \quad$ s. t. $\quad \operatorname{Fix}(S)=\operatorname{Fix}(\varphi) ?$

INTERSECTIONS OF FIXED SUBGROUPS

Theorem (Martino-V. 2003)

The subgroup $\left\langle b\right.$, cacbab $\left.{ }^{-1} c^{-1}\right\rangle \leqslant \mathbb{F}_{3}=\mathbb{F}_{\{a, b, c\}}$ is the fixed subgroup of $\varphi: \mathbb{F}_{3} \rightarrow \mathbb{F}_{3}, a \mapsto 1, b \mapsto b, c \mapsto c a c b a b^{-1} c^{-1}$, but it is not the fixed subgroup of any set of automorphisms of \mathbb{F}_{3}.

Question

Is the lattice of fixed subgroups of \mathbb{F}_{n} (by autos or endos) closed under intersections? i.e., is it true that
$\forall S \subseteq \operatorname{End}\left(\mathbb{F}_{n}\right) \quad \exists \varphi \in \operatorname{End}\left(\mathbb{F}_{n}\right) \quad$ s. t. $\quad \operatorname{Fix}(S)=\operatorname{Fix}(\varphi) ?$
Theorem (Martino-V., 2000)

$$
\forall S \subseteq \operatorname{End}\left(\mathbb{F}_{n}\right) \quad \exists \varphi \in \operatorname{End}\left(\mathbb{F}_{n}\right) \quad \text { s.t. } \quad \operatorname{Fix}(S) \leqslant \mathrm{ff} \operatorname{Fix}(\varphi)
$$

INTERSECTIONS OF FIXED SUBGROUPS

Theorem (Martino-V., 2000)
$\forall S \subseteq \operatorname{End}\left(\mathbb{F}_{n}\right) \quad \exists \varphi \in \operatorname{End}\left(\mathbb{F}_{n}\right) \quad$ s.t. $\quad \operatorname{Fix}(S) \leqslant \mathrm{ff} \operatorname{Fix}(\varphi)$

INTERSECTIONS OF FIXED SUBGROUPS

Theorem (Martino-V., 2000)
$\forall S \subseteq \operatorname{End}\left(\mathbb{F}_{n}\right) \quad \exists \varphi \in \operatorname{End}\left(\mathbb{F}_{n}\right) \quad$ s.t. $\quad \operatorname{Fix}(S) \leqslant \mathrm{ff} \operatorname{Fix}(\varphi)$
Sketch of proof:

- Technical argument: reduce to autos.

INTERSECTIONS OF FIXED SUBGROUPS

Theorem (Martino-V., 2000)
$\forall S \subseteq \operatorname{End}\left(\mathbb{F}_{n}\right) \quad \exists \varphi \in \operatorname{End}\left(\mathbb{F}_{n}\right) \quad$ s.t. $\quad \operatorname{Fix}(S) \leqslant \mathrm{ff} \operatorname{Fix}(\varphi)$
Sketch of proof:

- Technical argument: reduce to autos.
- Technical argument: reduce to proving that $\forall \varphi, \phi \in \operatorname{Aut}\left(\mathbb{F}_{n}\right)$ $\exists k \geqslant 0$ s.t $\operatorname{Fix}(\varphi) \cap \operatorname{Fix}(\phi) \leqslant$ ff $\operatorname{Fix}\left(\varphi \phi^{k}\right)$.

INTERSECTIONS OF FIXED SUBGROUPS

Theorem (Martino-V., 2000)
$\forall S \subseteq \operatorname{End}\left(\mathbb{F}_{n}\right) \quad \exists \varphi \in \operatorname{End}\left(\mathbb{F}_{n}\right) \quad$ s.t. $\quad \operatorname{Fix}(S) \leqslant \mathrm{ff} \operatorname{Fix}(\varphi)$
Sketch of proof:

- Technical argument: reduce to autos.
- Technical argument: reduce to proving that $\forall \varphi, \phi \in \operatorname{Aut}\left(\mathbb{F}_{n}\right)$ $\exists k \geqslant 0$ s.t $\operatorname{Fix}(\varphi) \cap \operatorname{Fix}(\phi) \leqslant$ ff $\operatorname{Fix}\left(\varphi \phi^{k}\right)$.
- Technical argument: can assume $\operatorname{Per}(\phi)=\operatorname{Fix}(\phi)$.

INTERSECTIONS OF FIXED SUBGROUPS

Theorem (Martino-V., 2000)
$\forall S \subseteq \operatorname{End}\left(\mathbb{F}_{n}\right) \quad \exists \varphi \in \operatorname{End}\left(\mathbb{F}_{n}\right) \quad$ s.t. $\quad \operatorname{Fix}(S) \leqslant \mathrm{ff} \operatorname{Fix}(\varphi)$
Sketch of proof:

- Technical argument: reduce to autos.
- Technical argument: reduce to proving that $\forall \varphi, \phi \in \operatorname{Aut}\left(\mathbb{F}_{n}\right)$ $\exists k \geqslant 0$ s.t $\operatorname{Fix}(\varphi) \cap \operatorname{Fix}(\phi) \leqslant$ ff $\operatorname{Fix}\left(\varphi \phi^{k}\right)$.
- Technical argument: can assume $\operatorname{Per}(\phi)=\operatorname{Fix}(\phi)$.
- Let $H=\operatorname{Fix}(\varphi) \cap \operatorname{Fix}(\phi) \leqslant \mathrm{fg} \mathbb{F}_{n}$.

INTERSECTIONS OF FIXED SUBGROUPS

Theorem (Martino-V., 2000)

```
\forallS\subseteqEnd(\mp@subsup{\mathbb{F}}{n}{})\quad\exists\varphi\in\operatorname{End}(\mp@subsup{\mathbb{F}}{n}{})\quad\mathrm{ s.t. }\quad\operatorname{Fix}(S)\leqslantff}\operatorname{Fix}(\varphi
```

Sketch of proof:

- Technical argument: reduce to autos.
- Technical argument: reduce to proving that $\forall \varphi, \phi \in \operatorname{Aut}\left(\mathbb{F}_{n}\right)$ $\exists k \geqslant 0$ s.t $\operatorname{Fix}(\varphi) \cap \operatorname{Fix}(\phi) \leqslant$ ff $\operatorname{Fix}\left(\varphi \phi^{k}\right)$.
- Technical argument: can assume $\operatorname{Per}(\phi)=\operatorname{Fix}(\phi)$.
- Let $H=\operatorname{Fix}(\varphi) \cap \operatorname{Fix}(\phi) \leqslant \mathrm{fg} \mathbb{F}_{n}$.
- For every $k \geqslant 0$: since $H \leqslant \operatorname{Fix}\left(\varphi \phi^{k}\right)$, there exists $M_{k} \in \mathcal{A} \mathcal{E}(H)$ such that $H \leqslant$ alg $M_{k} \leqslant$ ff $\operatorname{Fix}\left(\varphi \phi^{k}\right)$.

INTERSECTIONS OF FIXED SUBGROUPS

Theorem (Martino-V., 2000)

```
\forallS\subseteqEnd}(\mp@subsup{\mathbb{F}}{n}{})\quad\exists\varphi\in\operatorname{End}(\mp@subsup{\mathbb{F}}{n}{})\quad\mathrm{ s.t. }\quad\operatorname{Fix}(S)\leqslantff Fix(\varphi
```

Sketch of proof:

- Technical argument: reduce to autos.
- Technical argument: reduce to proving that $\forall \varphi, \phi \in \operatorname{Aut}\left(\mathbb{F}_{n}\right)$ $\exists k \geqslant 0$ s.t $\operatorname{Fix}(\varphi) \cap \operatorname{Fix}(\phi) \leqslant$ ff $\operatorname{Fix}\left(\varphi \phi^{k}\right)$.
- Technical argument: can assume $\operatorname{Per}(\phi)=\operatorname{Fix}(\phi)$.
- Let $H=\operatorname{Fix}(\varphi) \cap \operatorname{Fix}(\phi) \leqslant \mathrm{fg} \mathbb{F}_{n}$.
- For every $k \geqslant 0$: since $H \leqslant \operatorname{Fix}\left(\varphi \phi^{k}\right)$, there exists $M_{k} \in \mathcal{A} \mathcal{E}(H)$ such that $H \leqslant$ alg $M_{k} \leqslant$ ff $\operatorname{Fix}\left(\varphi \phi^{k}\right)$.
- By finiteness of $\mathcal{A} \mathcal{E}(H)$, there are $0 \leqslant r<s$ such that $M_{r}=M_{s}$.

INTERSECTIONS OF FIXED SUBGROUPS

Theorem (Martino-V., 2000)

```
\forallS\subseteqEnd(\mathbb{F}
```

Sketch of proof:

- Technical argument: reduce to autos.
- Technical argument: reduce to proving that $\forall \varphi, \phi \in \operatorname{Aut}\left(\mathbb{F}_{n}\right)$ $\exists k \geqslant 0$ s.t $\operatorname{Fix}(\varphi) \cap \operatorname{Fix}(\phi) \leqslant$ ff $\operatorname{Fix}\left(\varphi \phi^{k}\right)$.
- Technical argument: can assume $\operatorname{Per}(\phi)=\operatorname{Fix}(\phi)$.
- Let $H=\operatorname{Fix}(\varphi) \cap \operatorname{Fix}(\phi) \leqslant_{\mathrm{fg}} \mathbb{F}_{n}$.
- For every $k \geqslant 0$: since $H \leqslant \operatorname{Fix}\left(\varphi \phi^{k}\right)$, there exists $M_{k} \in \mathcal{A} \mathcal{E}(H)$ such that $H \leqslant$ alg $M_{k} \leqslant$ ff $\operatorname{Fix}\left(\varphi \phi^{k}\right)$.
- By finiteness of $\mathcal{A} \mathcal{E}(H)$, there are $0 \leqslant r<s$ such that $M_{r}=M_{s}$.
- Then, $H \leqslant M_{r}=M_{s} \leqslant \operatorname{Fix}\left(\varphi \phi^{r}\right) \cap \operatorname{Fix}\left(\varphi \phi^{S}\right)=\operatorname{Fix}(\varphi) \cap \operatorname{Fix}(\phi)=H$.

INTERSECTIONS OF FIXED SUBGROUPS

Theorem (Martino-V., 2000)

```
\forallS\subseteqEnd}(\mp@subsup{\mathbb{F}}{n}{})\quad\exists\varphi\in\operatorname{End}(\mp@subsup{\mathbb{F}}{n}{})\quad\mathrm{ s.t. }\quad\operatorname{Fix}(S)\leqslantff Fix(\varphi
```

Sketch of proof:

- Technical argument: reduce to autos.
- Technical argument: reduce to proving that $\forall \varphi, \phi \in \operatorname{Aut}\left(\mathbb{F}_{n}\right)$ $\exists k \geqslant 0$ s.t $\operatorname{Fix}(\varphi) \cap \operatorname{Fix}(\phi) \leqslant$ ff $\operatorname{Fix}\left(\varphi \phi^{k}\right)$.
- Technical argument: can assume $\operatorname{Per}(\phi)=\operatorname{Fix}(\phi)$.
- Let $H=\operatorname{Fix}(\varphi) \cap \operatorname{Fix}(\phi) \leqslant{ }_{\mathrm{fg}} \mathbb{F}_{n}$.
- For every $k \geqslant 0$: since $H \leqslant \operatorname{Fix}\left(\varphi \phi^{k}\right)$, there exists $M_{k} \in \mathcal{A} \mathcal{E}(H)$ such that $H \leqslant$ alg $M_{k} \leqslant$ ff $\operatorname{Fix}\left(\varphi \phi^{k}\right)$.
- By finiteness of $\mathcal{A} \mathcal{E}(H)$, there are $0 \leqslant r<s$ such that $M_{r}=M_{s}$.
- Then, $H \leqslant M_{r}=M_{s} \leqslant \operatorname{Fix}\left(\varphi \phi^{r}\right) \cap \operatorname{Fix}\left(\varphi \phi^{S}\right)=\operatorname{Fix}(\varphi) \cap \operatorname{Fix}(\phi)=H$.
- Hence, $H=M_{r} \leqslant \mathrm{ff} \operatorname{Fix}\left(\varphi \phi^{r}\right)$.

ASYMPTOTIC BEHAVIOR

ASYMPTOTIC BEHAVIOR: OBJECTIVES

- Objective: what does a "typical" subgroup of \mathbb{F}_{A} look like?

ASYMPTOTIC BEHAVIOR: OBJECTIVES

- Objective: what does a "typical" subgroup of \mathbb{F}_{A} look like?
- Asymptotic properties: how likely is it that a subgroup has finite index? is malnormal? What is the expected rank of a subgroup?

ASYMPTOTIC BEHAVIOR: OBJECTIVES

- Objective: what does a "typical" subgroup of \mathbb{F}_{A} look like?
- Asymptotic properties: how likely is it that a subgroup has finite index? is malnormal? What is the expected rank of a subgroup?
- Three levels of questions:

ASYMPTOTIC BEHAVIOR: OBJECTIVES

- Objective: what does a "typical" subgroup of \mathbb{F}_{A} look like?
- Asymptotic properties: how likely is it that a subgroup has finite index? is malnormal? What is the expected rank of a subgroup?
- Three levels of questions:
- Counting subgroups (with a given property)

ASYMPTOTIC BEHAVIOR: OBJECTIVES

- Objective: what does a "typical" subgroup of \mathbb{F}_{A} look like?
- Asymptotic properties: how likely is it that a subgroup has finite index? is malnormal? What is the expected rank of a subgroup?
- Three levels of questions:
- Counting subgroups (with a given property)
- (efficiently) generating subgroups uniformly at random

ASYMPTOTIC BEHAVIOR: OBJECTIVES

- Objective: what does a "typical" subgroup of \mathbb{F}_{A} look like?
- Asymptotic properties: how likely is it that a subgroup has finite index? is malnormal? What is the expected rank of a subgroup?
- Three levels of questions:
- Counting subgroups (with a given property)
- (efficiently) generating subgroups uniformly at random
- establishing asymptotic properties, e.g. probability of having finite index, of being malnormal; expected rank

WE CAN COUNT ONLY FINITE QUANTITIES

- Counting requires finite sets: choose parameters which guarantee finiteness

WE CAN COUNT ONLY FINITE QUANTITIES

- Counting requires finite sets: choose parameters which guarantee finiteness
- In the literature (but not here!):

WE CAN COUNT ONLY FINITE QUANTITIES

- Counting requires finite sets: choose parameters which guarantee finiteness
- In the literature (but not here!):
- fix k, draw uniformly at random a k-tuple \vec{w} of reduced words of length at most n, consider $H=\langle\vec{w}\rangle$

WE CAN COUNT ONLY FINITE QUANTITIES

- Counting requires finite sets: choose parameters which guarantee finiteness
- In the literature (but not here!):
- fix k, draw uniformly at random a k-tuple \vec{w} of reduced words of length at most n, consider $H=\langle\vec{w}\rangle$
- same thing, but let k be a function of n; includes Gromov's density model

WE CAN COUNT ONLY FINITE QUANTITIES

- Counting requires finite sets: choose parameters which guarantee finiteness
- In the literature (but not here!):
- fix k, draw uniformly at random a k-tuple \vec{w} of reduced words of length at most n, consider $H=\langle\vec{w}\rangle$
- same thing, but let k be a function of n; includes Gromov's density model
- Gromov, Arjantseva, Ol’shanskii, Kapovich, Miasnikov, Schupp, Shpilrain, Ollivier, Jitsukawa, Bassino, Nicaud, W. ...

OUR APPROACH HERE

- Here: we exploit the bijection between finitely generated subgroups of \mathbb{F}_{A} and Stallings automata; the parameter is the size n of the Stallings automaton (the number of vertices)

OUR APPROACH HERE

- Here: we exploit the bijection between finitely generated subgroups of \mathbb{F}_{A} and Stallings automata; the parameter is the size n of the Stallings automaton (the number of vertices)
-What does a size n subgroup look like?

OUR APPROACH HERE

- Here: we exploit the bijection between finitely generated subgroups of \mathbb{F}_{A} and Stallings automata; the parameter is the size n of the Stallings automaton (the number of vertices)
-What does a size n subgroup look like?
- A (simplified) picture with $n=200$ and $|A|=2$

OUR APPROACH HERE

- Here: we exploit the bijection between finitely generated subgroups of \mathbb{F}_{A} and Stallings automata; the parameter is the size n of the Stallings automaton (the number of vertices)
-What does a size n subgroup look like?
- A (simplified) picture with $n=200$ and $|A|=2$

- Work by Bassino, Martino, Nicaud, V., W.

STRATEGY

- Instead of counting or randomly generating subgroups of \mathbb{F}_{A}, we count or generate Stallings automata

STRATEGY

- Instead of counting or randomly generating subgroups of \mathbb{F}_{A}, we count or generate Stallings automata
- These are discrete objects: finite pointed connected core A-automata

STRATEGY

- Instead of counting or randomly generating subgroups of \mathbb{F}_{A}, we count or generate Stallings automata
- These are discrete objects: finite pointed connected core A-automata
- Consider a size n Stallings automaton: each letter a defines a partial injection f_{a} on the vertex set of Γ

STRATEGY

- Instead of counting or randomly generating subgroups of \mathbb{F}_{A}, we count or generate Stallings automata
- These are discrete objects: finite pointed connected core A-automata
- Consider a size n Stallings automaton: each letter a defines a partial injection f_{a} on the vertex set of Γ
- Γ is determined by the A-tuple $\left(f_{a}\right)_{a \in A}$ and the selection of a basepoint

STRATEGY

- Instead of counting or randomly generating subgroups of \mathbb{F}_{A}, we count or generate Stallings automata
- These are discrete objects: finite pointed connected core A-automata
- Consider a size n Stallings automaton: each letter a defines a partial injection f_{a} on the vertex set of Γ
- Γ is determined by the A-tuple $\left(f_{a}\right)_{a \in A}$ and the selection of a basepoint
- Counting strategy: determine the number PI_{n} of partial injections on n elements. Unfortunately, the number of size n subgroups is not $n P l_{n}^{|A|}$. Why?

STRATEGY

- Instead of counting or randomly generating subgroups of \mathbb{F}_{A}, we count or generate Stallings automata
- These are discrete objects: finite pointed connected core A-automata
- Consider a size n Stallings automaton: each letter a defines a partial injection f_{a} on the vertex set of Γ
- Γ is determined by the A-tuple $\left(f_{a}\right)_{a \in A}$ and the selection of a basepoint
- Counting strategy: determine the number PI_{n} of partial injections on n elements. Unfortunately, the number of size n subgroups is not $\left.n P\right|_{n} ^{|A|}$. Why?
- Random generation strategy: draw independently, uniformly at random, |A| partial injections, select randomly a base point. This almost works...

COUNTING AND SYMMETRIES

- Counting is highly sensitive to the presence of non-trivial automorphisms

COUNTING AND SYMMETRIES

- Counting is highly sensitive to the presence of non-trivial automorphisms
- Example: up to isomorphism, there is only one A-automaton consisting of a circuit labeled a^{3} (resp. $a^{2} b$) - with 3 vertices

COUNTING AND SYMMETRIES

- Counting is highly sensitive to the presence of non-trivial automorphisms
- Example: up to isomorphism, there is only one A-automaton consisting of a circuit labeled a^{3} (resp. $a^{2} b$) - with 3 vertices
- If the vertex set is $V=\{p, q, r\}$, we have in fact 2 graphs for a^{3}, and 6 for $a^{2} b$

COUNTING AND SYMMETRIES

- Counting is highly sensitive to the presence of non-trivial automorphisms
- Example: up to isomorphism, there is only one A-automaton consisting of a circuit labeled a^{3} (resp. $a^{2} b$) - with 3 vertices
- If the vertex set is $V=\{p, q, r\}$, we have in fact 2 graphs for a^{3}, and 6 for $a^{2} b$
- In general, the number of A-automaton (on a fixed set of vertices) consisting of a circuit labeled u depends on the length of u and on whether u is a non-trivial power

COUNTING AND SYMMETRIES

- Counting is highly sensitive to the presence of non-trivial automorphisms
- Example: up to isomorphism, there is only one A-automaton consisting of a circuit labeled a^{3} (resp. $a^{2} b$) - with 3 vertices
- If the vertex set is $V=\{p, q, r\}$, we have in fact 2 graphs for a^{3}, and 6 for $a^{2} b$
- In general, the number of A-automaton (on a fixed set of vertices) consisting of a circuit labeled u depends on the length of u and on whether u is a non-trivial power
- Symmetries mess up counting

SO WE COUNT LABELED STALLINGS AUTOMATA

- a solution to break symmetries: consider labeled structures (graphs)

SO WE COUNT LABELED STALLINGS AUTOMATA

- a solution to break symmetries: consider labeled structures (graphs)
- if $\Gamma=(V, E)$ and $|V|=n$, a labeling of Γ is a bijection from V to $[n]$

SO WE COUNT LABELED STALLINGS AUTOMATA

- a solution to break symmetries: consider labeled structures (graphs)
- if $\Gamma=(V, E)$ and $|V|=n$, a labeling of Γ is a bijection from V to $[n]$

Proposition

If Γ is a Stallings automaton (pointed connected reduced A-automaton), then Γ admits n ! labelings.

SO WE COUNT LABELED STALLINGS AUTOMATA

- a solution to break symmetries: consider labeled structures (graphs)
- if $\Gamma=(V, E)$ and $|V|=n$, a labeling of Γ is a bijection from V to $[n]$

Proposition

If Γ is a Stallings automaton (pointed connected reduced A-automaton), then Γ admits n ! labelings.

- Proof: Fix a spanning tree T, totally order vertices using the T-path from the basepoint to each vertex: $v_{1}<v_{2}<\cdots<v_{n}$. A labeling is a permutation of [n]

SO WE COUNT LABELED STALLINGS AUTOMATA

- a solution to break symmetries: consider labeled structures (graphs)
- if $\Gamma=(V, E)$ and $|V|=n$, a labeling of Γ is a bijection from V to $[n]$

Proposition

If Γ is a Stallings automaton (pointed connected reduced A-automaton), then Γ admits n ! labelings.

- Proof: Fix a spanning tree T, totally order vertices using the T-path from the basepoint to each vertex: $v_{1}<v_{2}<\cdots<v_{n}$. A labeling is a permutation of [n]
- Counting labeled Stallings automata gives us n ! times the number of Stallings automata (of subgroups)

SO WE COUNT LABELED STALLINGS AUTOMATA

- a solution to break symmetries: consider labeled structures (graphs)
- if $\Gamma=(V, E)$ and $|V|=n$, a labeling of Γ is a bijection from V to [$n]$

Proposition

If Γ is a Stallings automaton (pointed connected reduced A-automaton), then Γ admits n ! labelings.

- Proof: Fix a spanning tree T, totally order vertices using the T-path from the basepoint to each vertex: $v_{1}<v_{2}<\cdots<v_{n}$. A labeling is a permutation of [n]
- Counting labeled Stallings automata gives us n ! times the number of Stallings automata (of subgroups)
- Forgetting the labeling of a random labeled Stallings automaton, yields a random Stallings automaton

DIGRESSION: GENERATING SERIES

- \mathcal{A}, a class of finite combinatorial structures: e.g. graphs, pointed graphs, labeled graphs, permutations, partial injections, words, etc

DIGRESSION: GENERATING SERIES

- \mathcal{A}, a class of finite combinatorial structures: e.g. graphs, pointed graphs, labeled graphs, permutations, partial injections, words, etc
- Let a_{n} be the number of \mathcal{A}-structures of size n

DIGRESSION: GENERATING SERIES

- \mathcal{A}, a class of finite combinatorial structures: e.g. graphs, pointed graphs, labeled graphs, permutations, partial injections, words, etc
- Let a_{n} be the number of \mathcal{A}-structures of size n
- Generating series: $\sum_{n} a_{n} z^{n}$, where z is a formal variable. Formal power series: we don't care about convergence

DIGRESSION: GENERATING SERIES

- \mathcal{A}, a class of finite combinatorial structures: e.g. graphs, pointed graphs, labeled graphs, permutations, partial injections, words, etc
- Let a_{n} be the number of \mathcal{A}-structures of size n
- Generating series: $\sum_{n} a_{n} z^{n}$, where z is a formal variable. Formal power series: we don't care about convergence
- Example: permutations, $\sum n!z^{n}$

DIGRESSION: GENERATING SERIES

- \mathcal{A}, a class of finite combinatorial structures: e.g. graphs, pointed graphs, labeled graphs, permutations, partial injections, words, etc
- Let a_{n} be the number of \mathcal{A}-structures of size n
- Generating series: $\sum_{n} a_{n} z^{n}$, where z is a formal variable. Formal power series: we don't care about convergence
- Example: permutations, $\sum n!z^{n}$
- Exponential generating series (EGS): $\sum_{n} \frac{a_{n}}{n!} z^{n}$

DIGRESSION: GENERATING SERIES

- \mathcal{A}, a class of finite combinatorial structures: e.g. graphs, pointed graphs, labeled graphs, permutations, partial injections, words, etc
- Let a_{n} be the number of \mathcal{A}-structures of size n
- Generating series: $\sum_{n} a_{n} z^{n}$, where z is a formal variable. Formal power series: we don't care about convergence
- Example: permutations, $\sum n!z^{n}$
- Exponential generating series (EGS): $\sum_{n} \frac{a_{n}}{n!} z^{n}$
- better for labeled structures; and better for convergence, so we can use analysis

DIGRESSION: GENERATING SERIES

- \mathcal{A}, a class of finite combinatorial structures: e.g. graphs, pointed graphs, labeled graphs, permutations, partial injections, words, etc
- Let a_{n} be the number of \mathcal{A}-structures of size n
- Generating series: $\sum_{n} a_{n} z^{n}$, where z is a formal variable. Formal power series: we don't care about convergence
- Example: permutations, $\sum n!z^{n}$
- Exponential generating series (EGS): $\sum_{n} \frac{a_{n}}{n!} z^{n}$
- better for labeled structures; and better for convergence, so we can use analysis
- Permutations: $\sum z^{n}=\frac{1}{1-z}$

DIGRESSION: GENERATING SERIES

- \mathcal{A}, a class of finite combinatorial structures: e.g. graphs, pointed graphs, labeled graphs, permutations, partial injections, words, etc
- Let a_{n} be the number of \mathcal{A}-structures of size n
- Generating series: $\sum_{n} a_{n} z^{n}$, where z is a formal variable. Formal power series: we don't care about convergence
- Example: permutations, $\sum n!z^{n}$
- Exponential generating series (EGS): $\sum_{n} \frac{a_{n}}{n!} z^{n}$
- better for labeled structures; and better for convergence, so we can use analysis
- Permutations: $\sum z^{n}=\frac{1}{1-z}$
- Refer to the Bible: Ph. Flajolet, R. Sedgewick, Analytic combinatorics, Cambridge University Press, 2009

DIGRESSION: A CALCULUS OF LABELED COMBINATORIAL STRUCTURES

- \mathcal{A} and \mathcal{B} disjoint families of labeled structures (think: graphs), with EGS $A(z), B(z)$

DIGRESSION: A CALCULUS OF LABELED COMBINATORIAL STRUCTURES

- \mathcal{A} and \mathcal{B} disjoint families of labeled structures (think: graphs), with EGS $A(z), B(z)$
- $\mathcal{C}=$ structures that are either \mathcal{A} or $\mathcal{B}: C(z)=A(z)+B(z)$

DIGRESSION: A CALCULUS OF LABELED COMBINATORIAL STRUCTURES

- \mathcal{A} and \mathcal{B} disjoint families of labeled structures (think: graphs), with EGS $A(z), B(z)$
- $\mathcal{C}=$ structures that are either \mathcal{A} or $\mathcal{B}: C(z)=A(z)+B(z)$
- $\mathcal{C}=$ pairs (X, Y), of an \mathcal{A}-structure X and a \mathcal{B}-structure Y

DIGRESSION: A CALCULUS OF LABELED COMBINATORIAL STRUCTURES

- \mathcal{A} and \mathcal{B} disjoint families of labeled structures (think: graphs), with EGS $A(z), B(z)$
- $\mathcal{C}=$ structures that are either \mathcal{A} or $\mathcal{B}: C(z)=A(z)+B(z)$
- $\mathcal{C}=$ pairs (X, Y), of an \mathcal{A}-structure X and a \mathcal{B}-structure Y
- ...with appropriate labeling (the size is the sum of the sizes of X and Y)

DIGRESSION: A CALCULUS OF LABELED COMBINATORIAL STRUCTURES

- \mathcal{A} and \mathcal{B} disjoint families of labeled structures (think: graphs), with EGS $A(z), B(z)$
- $\mathcal{C}=$ structures that are either \mathcal{A} or $\mathcal{B}: C(z)=A(z)+B(z)$
- $\mathcal{C}=$ pairs (X, Y), of an \mathcal{A}-structure X and a \mathcal{B}-structure Y
- ...with appropriate labeling (the size is the sum of the sizes of X and Y)
- $C(z)=A(z) B(z)$

MORE CALCULUS

- $\mathcal{C}=$ pairs of two \mathcal{A}-structures: $C(z)=A^{2}(z)$

MORE CALCULUS

- $\mathcal{C}=$ pairs of two \mathcal{A}-structures: $C(z)=A^{2}(z)$
- $\mathcal{C}=k$-tuple of \mathcal{A}-structures: $C(z)=A^{k}(z)$

MORE CALCULUS

- $\mathcal{C}=$ pairs of two \mathcal{A}-structures: $C(z)=A^{2}(z)$
- $\mathcal{C}=k$-tuple of \mathcal{A}-structures: $C(z)=A^{k}(z)$
- $\mathcal{C}=$ sequences of \mathcal{A}-structures: $C(z)=\sum_{k} A^{k}(z)=\frac{1}{1-A(z)}$

MORE CALCULUS

- $\mathcal{C}=$ pairs of two \mathcal{A}-structures: $C(z)=A^{2}(z)$
- $\mathcal{C}=k$-tuple of \mathcal{A}-structures: $C(z)=A^{k}(z)$
- $\mathcal{C}=$ sequences of \mathcal{A}-structures: $C(z)=\sum_{k} A^{k}(z)=\frac{1}{1-A(z)}$
- Example. The EGS of 1 point is z. A permutation is a labeled sequence of points: its EGS is $\frac{1}{1-z}=\sum \frac{n}{n!} z^{n}$

AND MORE

- set of $k \mathcal{A}$-structures $=$ a sequence where we forget the order: $\frac{A^{k}(z)}{k!}$

AND MORE

- set of $k \mathcal{A}$-structures $=$ a sequence where we forget the order: $\frac{A^{k}(z)}{k!}$
- set of \mathcal{A}-structures: $\sum_{k} \frac{A^{k}(z)}{k!}=\exp (A(z))$

AND MORE

- set of $k \mathcal{A}$-structures $=$ a sequence where we forget the order: $\frac{A^{k}(z)}{k!}$
- set of \mathcal{A}-structures: $\sum_{k} \frac{A^{k}(z)}{k!}=\exp (A(z))$
- Example: set of points. There is exactly one of each size: the EGS is

$$
\sum \frac{1}{n!} z^{n}=\exp (z)
$$

AND MORE

- set of $k \mathcal{A}$-structures $=$ a sequence where we forget the order: $\frac{A^{k}(z)}{k!}$
- set of \mathcal{A}-structures: $\sum_{k} \frac{A^{k}(z)}{k!}=\exp (A(z))$
- Example: set of points. There is exactly one of each size: the EGS is

$$
\sum \frac{1}{n!} z^{n}=\exp (z)
$$

- cycle of $k \mathcal{A}$-structures $=$ a sequence up to cyclic shift: $\frac{A^{k}(z)}{k}$

AND MORE

- set of $k \mathcal{A}$-structures $=$ a sequence where we forget the order: $\frac{A^{k}(z)}{k!}$
- set of \mathcal{A}-structures: $\sum_{k} \frac{A^{k}(z)}{k!}=\exp (A(z))$
- Example: set of points. There is exactly one of each size: the EGS is

$$
\sum \frac{1}{n!} z^{n}=\exp (z)
$$

- cycle of $k \mathcal{A}$-structures $=$ a sequence up to cyclic shift: $\frac{A^{k}(z)}{k}$
- cycle of size $\geqslant 1$ of \mathcal{A}-structures:

$$
\sum_{k \geqslant 1} \frac{A^{k}(z)}{k}=-\log (1-A(z))=\log \left(\frac{1}{1-A(z)}\right)
$$

BACK TO COUNTING PARTIAL INJECTIONS: A SIMPLE BUT DISAPPOINTING IDEA

- direct computation of $P I_{n}$: for each $k \leqslant n$, choose a domain and a range (both k-subsets of $[n]$), and a permutation of k elements.

BACK TO COUNTING PARTIAL INJECTIONS: A SIMPLE BUT DISAPPOINTING IDEA

- direct computation of $P I_{n}$: for each $k \leqslant n$, choose a domain and a range (both k-subsets of $[n]$), and a permutation of k elements.
- $P I_{n}=\sum_{k=0}^{n}\binom{n}{k}^{2} k!$

BACK TO COUNTING PARTIAL INJECTIONS:
 A SIMPLE BUT DISAPPOINTING IDEA

- direct computation of $P I_{n}$: for each $k \leqslant n$, choose a domain and a range (both k-subsets of $[n]$), and a permutation of k elements.
- $P I_{n}=\sum_{k=0}^{n}\binom{n}{k}^{2} k!$
- shortcomings of this elementary computation:

BACK TO COUNTING PARTIAL INJECTIONS:

A SIMPLE BUT DISAPPOINTING IDEA

- direct computation of $P I_{n}$: for each $k \leqslant n$, choose a domain and a range (both k-subsets of $[n]$), and a permutation of k elements.
- $P I_{n}=\sum_{k=0}^{n}\binom{n}{k}^{2} k$!
- shortcomings of this elementary computation:
- very long to compute (quadratic time + multiplication of large numbers.

BACK TO COUNTING PARTIAL INJECTIONS:
 A SIMPLE BUT DISAPPOINTING IDEA

- direct computation of $P I_{n}$: for each $k \leqslant n$, choose a domain and a range (both k-subsets of $[n]$), and a permutation of k elements.
- $P I_{n}=\sum_{k=0}^{n}\binom{n}{k}^{2} k!$
- shortcomings of this elementary computation:
- very long to compute (quadratic time + multiplication of large numbers.
- difficult to analyze when the time comes to discuss connectivity.

COUNTING PARTIAL INJECTIONS: MUCH EASIER USING CALCULUS

- What is a partial injection? Think of its functional graphs (the a-edges in a Stallings automaton)

COUNTING PARTIAL INJECTIONS: MUCH EASIER USING CALCULUS

- What is a partial injection? Think of its functional graphs (the a-edges in a Stallings automaton)
- The connected components (orbits) are isolated points, sequences and cycles

COUNTING PARTIAL INJECTIONS: MUCH EASIER USING CALCULUS

- What is a partial injection? Think of its functional graphs (the a-edges in a Stallings automaton)
- The connected components (orbits) are isolated points, sequences and cycles
- Seen differently: a labeled set of structures that are either sequences of $\geqslant 1$ points, or cycles of $\geqslant 1$ points

COUNTING PARTIAL INJECTIONS: MUCH EASIER USING CALCULUS

- What is a partial injection? Think of its functional graphs (the a-edges in a Stallings automaton)
- The connected components (orbits) are isolated points, sequences and cycles
- Seen differently: a labeled set of structures that are either sequences of $\geqslant 1$ points, or cycles of $\geqslant 1$ points
- The EGS of a point is z, of a non-empty sequence of points $\frac{1}{1-z}-1=\frac{z}{1-z}$

COUNTING PARTIAL INJECTIONS: MUCH EASIER USING CALCULUS

- What is a partial injection? Think of its functional graphs (the a-edges in a Stallings automaton)
- The connected components (orbits) are isolated points, sequences and cycles
- Seen differently: a labeled set of structures that are either sequences of $\geqslant 1$ points, or cycles of $\geqslant 1$ points
- The EGS of a point is z, of a non-empty sequence of points $\frac{1}{1-z}-1=\frac{z}{1-z}$
- The EGS of a cycle of $\geqslant 1$ points is $\log \left(\frac{1}{1-2}\right)$

COUNTING PARTIAL INJECTIONS: MUCH EASIER USING CALCULUS

- What is a partial injection? Think of its functional graphs (the a-edges in a Stallings automaton)
- The connected components (orbits) are isolated points, sequences and cycles
- Seen differently: a labeled set of structures that are either sequences of $\geqslant 1$ points, or cycles of $\geqslant 1$ points
- The EGS of a point is z, of a non-empty sequence of points $\frac{1}{1-z}-1=\frac{z}{1-z}$
- The EGS of a cycle of $\geqslant 1$ points is $\log \left(\frac{1}{1-2}\right)$
- The EGS PInj is $\exp \left(\frac{z}{1-z}+\log \left(\frac{1}{1-z}\right)\right)=\frac{1}{1-z} \exp \left(\frac{z}{1-z}\right)$

A RECURRENCE RELATION FOR $P I_{n}$

- $\operatorname{PInj}(z)=\frac{1}{1-z} \exp \left(\frac{z}{1-z}\right)$

A RECURRENCE RELATION FOR $P I_{n}$

- $\operatorname{PInj}(z)=\frac{1}{1-z} \exp \left(\frac{z}{1-z}\right)$
- $\frac{d}{d z} \operatorname{PInj}(z)=\frac{2-z}{(1-z)^{2}} \operatorname{PInj}(z)$

A RECURRENCE RELATION FOR $P I_{n}$

- $\operatorname{PInj}(z)=\frac{1}{1-z} \exp \left(\frac{z}{1-z}\right)$
- $\frac{d}{d z} \operatorname{PInj}(z)=\frac{2-z}{(1-z)^{2}} \operatorname{PInj}(z)$
- $(1-z)^{2} \sum n \frac{P l_{n}}{n!} z^{n-1}=(2-z) \sum \frac{P l_{n}}{n!} z^{n}$

A RECURRENCE RELATION FOR $P I_{n}$

- $\operatorname{PInj}(z)=\frac{1}{1-z} \exp \left(\frac{z}{1-z}\right)$
- $\frac{d}{d z} \operatorname{PInj}(z)=\frac{2-z}{(1-z)^{2}} \operatorname{PInj}(z)$
- $(1-z)^{2} \sum n \frac{P l_{n}}{n!} z^{n-1}=(2-z) \sum \frac{P l_{n}}{n!} z^{n}$

Proposition

$$
P I_{0}=1, P I_{1}=2 \text { and for } n \geqslant 2, P I_{n}=2 n P I_{n-1}-(n-1)^{2} P I_{n-2}
$$

A RECURRENCE RELATION FOR $P I_{n}$

- $\operatorname{PInj}(z)=\frac{1}{1-z} \exp \left(\frac{z}{1-z}\right)$
- $\frac{d}{d z} \operatorname{PInj}(z)=\frac{2-z}{(1-z)^{2}} \operatorname{PInj}(z)$
- $(1-z)^{2} \sum n \frac{P l_{n}}{n!} z^{n-1}=(2-z) \sum \frac{P l_{n}}{n!} z^{n}$

Proposition

$$
P I_{0}=1, P I_{1}=2 \text { and for } n \geqslant 2, P I_{n}=2 n P I_{n-1}-(n-1)^{2} P I_{n-2}
$$

- Verify the count for $n=2: \mathrm{PI}_{2}=7$

A RECURRENCE RELATION FOR $P I_{n}$

- $\operatorname{PInj}(z)=\frac{1}{1-z} \exp \left(\frac{z}{1-z}\right)$
- $\frac{d}{d z} \operatorname{PInj}(z)=\frac{2-z}{(1-z)^{2}} \operatorname{PInj}(z)$
- $(1-z)^{2} \sum n \frac{P l_{n}}{n!} z^{n-1}=(2-z) \sum \frac{P l_{n}}{n!} z^{n}$

Proposition

$P I_{0}=1, P I_{1}=2$ and for $n \geqslant 2, P I_{n}=2 n P I_{n-1}-(n-1)^{2} P I_{n-2}$

- Verify the count for $n=2: P I_{2}=7$
- Note: $P I_{n}$ is computed in linear time (in the RAM model)

A RECURRENCE RELATION FOR $P I_{n}$

- $\operatorname{PInj}(z)=\frac{1}{1-z} \exp \left(\frac{z}{1-z}\right)$
- $\frac{d}{d z} \operatorname{PInj}(z)=\frac{2-z}{(1-z)^{2}} \operatorname{PInj}(z)$
- $(1-z)^{2} \sum n \frac{P l_{n}}{n!} z^{n-1}=(2-z) \sum \frac{P l_{n}}{n!} z^{n}$

Proposition

$P I_{0}=1, P I_{1}=2$ and for $n \geqslant 2, P I_{n}=2 n P I_{n-1}-(n-1)^{2} P I_{n-2}$

- Verify the count for $n=2: \mathrm{PI}_{2}=7$
- Note: $P I_{n}$ is computed in linear time (in the RAM model)
- Also: $\frac{P I_{n-1}}{P I_{n}} \leqslant \frac{1}{2 n}$

HANDLING CONNECTEDNESS: COUNTING

- We have computed the EGS of partial injections, $\operatorname{PInj}(z)=\frac{1}{1-z} \exp \left(\frac{z}{1-z}\right)$.

HANDLING CONNECTEDNESS: COUNTING

- We have computed the EGS of partial injections, $\operatorname{PInj}(z)=\frac{1}{1-z} \exp \left(\frac{z}{1-z}\right)$.
- If $|A|=r$, the EGS of $|A|$-tuples of partial injections of $[n]$ is $1+J(z)$, with $J(z)=\sum_{n \geqslant 1} \frac{P I_{n}^{r}}{n!} z^{n}$.

HANDLING CONNECTEDNESS: COUNTING

- We have computed the EGS of partial injections, $\operatorname{PInj}(z)=\frac{1}{1-z} \exp \left(\frac{z}{1-z}\right)$.
- If $|A|=r$, the EGS of $|A|$-tuples of partial injections of $[n]$ is $1+J(z)$, with $J(z)=\sum_{n \geqslant 1} \frac{P l_{n}^{r}}{n!} z^{n}$.
- We only want connected $|A|$-tuples: that is, which define a connected A-automaton.
- We have computed the EGS of partial injections, $\operatorname{PInj}(z)=\frac{1}{1-z} \exp \left(\frac{z}{1-z}\right)$.
- If $|A|=r$, the EGS of $|A|$-tuples of partial injections of $[n]$ is $1+J(z)$, with $J(z)=\sum_{n \geqslant 1} \frac{P I_{n}^{r} z^{n}}{n}$.
- We only want connected $|A|$-tuples: that is, which define a connected A-automaton.
- Let $C(z)$ be the EGS of connected $|A|$-tuples: then $1+J(z)=\exp (C(z))$

HANDLING CONNECTEDNESS: COUNTING

- We have computed the EGS of partial injections, $\operatorname{PInj}(z)=\frac{1}{1-z} \exp \left(\frac{z}{1-z}\right)$.
- If $|A|=r$, the EGS of $|A|$-tuples of partial injections of $[n]$ is $1+J(z)$, with $J(z)=\sum_{n \geqslant 1} \frac{P I_{n}^{r} z^{n}}{}$.
- We only want connected |A|-tuples: that is, which define a connected A-automaton.
- Let $C(z)$ be the EGS of connected $|A|$-tuples: then $1+J(z)=\exp (C(z))$
- so $C(z)=\log (1+J(z))=\sum_{n} \frac{C_{n}}{n!} z^{n}$

HANDLING CONNECTEDNESS: COUNTING

- We have computed the EGS of partial injections, $\operatorname{PInj}(z)=\frac{1}{1-z} \exp \left(\frac{z}{1-z}\right)$.
- If $|A|=r$, the EGS of $|A|$-tuples of partial injections of $[n]$ is $1+J(z)$, with $J(z)=\sum_{n \geqslant 1} \frac{P I_{n}^{r} z^{n}}{}$.
- We only want connected |A|-tuples: that is, which define a connected A-automaton.
- Let $C(z)$ be the EGS of connected $|A|$-tuples: then $1+J(z)=\exp (C(z))$
- so $C(z)=\log (1+J(z))=\sum_{n} \frac{c_{n}}{n!} z^{n}$
- Take the derivative: $\frac{d}{d z} J(z)=\frac{d}{d z} C(z)(1+J(z))$

HANDLING CONNECTEDNESS: COUNTING

- We have computed the EGS of partial injections, $\operatorname{PInj}(z)=\frac{1}{1-z} \exp \left(\frac{z}{1-z}\right)$.
- If $|A|=r$, the EGS of $|A|$-tuples of partial injections of $[n]$ is $1+J(z)$, with $J(z)=\sum_{n \geqslant 1} \frac{P I_{n}^{r} z^{n}}{n}$.
- We only want connected $|A|$-tuples: that is, which define a connected A-automaton.
- Let $C(z)$ be the EGS of connected $|A|$-tuples: then $1+J(z)=\exp (C(z))$
- so $C(z)=\log (1+J(z))=\sum_{n} \frac{C_{n}}{n!} z^{n}$
- Take the derivative: $\frac{d}{d z} J(z)=\frac{d}{d z} C(z)(1+J(z))$
- Yields a formula for the coefficients C_{n}, in terms of the $P I_{n}$

HANDLING CONNECTEDNESS: PROBABILITY

- Now the probability that an $|A|$-tuple is connected is $\frac{C_{n}}{P r_{n}}$. What does that look like?

HANDLING CONNECTEDNESS: PROBABILITY

- Now the probability that an $|A|$-tuple is connected is $\frac{C_{n}}{P r_{n}}$. What does that look like?
- Dive into real analysis!...

HANDLING CONNECTEDNESS: PROBABILITY

- Now the probability that an $|A|$-tuple is connected is $\frac{C_{n}}{P I_{n}}$. What does that look like?
- Dive into real analysis!...

Theorem (Bender)

Let $F(z, y)$ is a real function, analytic at $(0,0)$. Let $J(z)=\sum_{n>0} j_{n} z^{n}$, $C(z)=\sum_{n>0} c_{n} z^{n}$ and $D(z)=\sum_{n>0} d_{n} z^{n}$ with $C(z)=F(z, J(z))$ and $D(z)=\frac{\partial F}{\partial y}(z, J(z))$. If $j_{n-1}=O\left(j_{n}\right)$ and there exists $s \geqslant 1$ such that $\sum_{k=s}^{n-s}\left|j_{k} j_{n-k}\right|=\mathcal{O}\left(j_{n-s}\right)$, then $c_{n}=\sum_{k=0}^{s-1} d_{k} j_{n-k}+\mathcal{O}\left(j_{n-s}\right)$.

HANDLING CONNECTEDNESS: PROBABILITY

- Now the probability that an $|A|$-tuple is connected is $\frac{C_{n}}{P I_{n}}$. What does that look like?
- Dive into real analysis!...

Theorem (Bender)

Let $F(z, y)$ is a real function, analytic at $(0,0)$. Let $J(z)=\sum_{n>0} j_{n} z^{n}$, $C(z)=\sum_{n>0} c_{n} z^{n}$ and $D(z)=\sum_{n>0} d_{n} z^{n}$ with $C(z)=F(z, J(z))$ and $D(z)=\frac{\partial F}{\partial y}(z, J(z))$. If $j_{n-1}=O\left(j_{n}\right)$ and there exists $s \geqslant 1$ such that $\sum_{k=s}^{n-s}\left|j_{k} j_{n-k}\right|=\mathcal{O}\left(j_{n-s}\right)$, then $c_{n}=\sum_{k=0}^{s-1} d_{k} j_{n-k}+\mathcal{O}\left(j_{n-s}\right)$.

- Recall that $C(z)=\log (1+J(z))$. Use $F(z, y)=\log (1+y)$

HANDLING CONNECTEDNESS: PROBABILITY

- Now the probability that an $|A|$-tuple is connected is $\frac{C_{n}}{P I_{n}}$. What does that look like?
- Dive into real analysis!...

Theorem (Bender)

Let $F(z, y)$ is a real function, analytic at $(0,0)$. Let $J(z)=\sum_{n>0} j_{n} z^{n}$,
$C(z)=\sum_{n>0} c_{n} z^{n}$ and $D(z)=\sum_{n>0} d_{n} z^{n}$ with $C(z)=F(z, J(z))$ and
$D(z)=\frac{\partial F}{\partial y}(z, J(z))$. If $j_{n-1}=O\left(j_{n}\right)$ and there exists $s \geqslant 1$ such that
$\sum_{k=s}^{n-s}\left|j_{k} j_{n-k}\right|=\mathcal{O}\left(j_{n-s}\right)$, then $c_{n}=\sum_{k=0}^{s-1} d_{k} j_{n-k}+\mathcal{O}\left(j_{n-s}\right)$.

- Recall that $C(z)=\log (1+J(z))$. Use $F(z, y)=\log (1+y)$

Proposition

The probability that a size n tuple of partial injections is connected is $1-\frac{2^{r}}{n^{r-1}}+O\left(\frac{1}{n^{r-1}}\right)$: connectedness holds with probability tending to 1

HANDLING CORENESS: COUNT SEQUENCES

- We also want tuples of partial injections where every vertex that is not the basepoint, is adjacent to at least two edges.

HANDLING CORENESS: COUNT SEQUENCES

- We also want tuples of partial injections where every vertex that is not the basepoint, is adjacent to at least two edges.
- We show that the probablility that this holds also tends to 1 . Enough to consider $A=\{a, b\}$.

HANDLING CORENESS: COUNT SEQUENCES

- We also want tuples of partial injections where every vertex that is not the basepoint, is adjacent to at least two edges.
- We show that the probablility that this holds also tends to 1 . Enough to consider $A=\{a, b\}$.
- For a given partial injection f, a point in $[n]$ is either isolated (a sequence of length 1), or an extremity of a sequence, or has arity 2 in the graph of f.

HANDLING CORENESS: COUNT SEQUENCES

- We also want tuples of partial injections where every vertex that is not the basepoint, is adjacent to at least two edges.
- We show that the probablility that this holds also tends to 1 . Enough to consider $A=\{a, b\}$.
- For a given partial injection f, a point in $[n]$ is either isolated (a sequence of length 1), or an extremity of a sequence, or has arity 2 in the graph of f.
- A vertex has arity 1 if it is an extremity for one letter and isolated for the other letter.

HANDLING CORENESS: COUNT SEQUENCES

- We also want tuples of partial injections where every vertex that is not the basepoint, is adjacent to at least two edges.
- We show that the probablility that this holds also tends to 1. Enough to consider $A=\{a, b\}$.
- For a given partial injection f, a point in $[n]$ is either isolated (a sequence of length 1), or an extremity of a sequence, or has arity 2 in the graph of f.
- A vertex has arity 1 if it is an extremity for one letter and isolated for the other letter.
- The number of extremities, and of isolated points can be bounded above and under in terms of the number of sequences in the partial injection.

HANDLING CORENESS: COUNT SEQUENCES

- We also want tuples of partial injections where every vertex that is not the basepoint, is adjacent to at least two edges.
- We show that the probablility that this holds also tends to 1 . Enough to consider $A=\{a, b\}$.
- For a given partial injection f, a point in $[n]$ is either isolated (a sequence of length 1), or an extremity of a sequence, or has arity 2 in the graph of f.
- A vertex has arity 1 if it is an extremity for one letter and isolated for the other letter.
- The number of extremities, and of isolated points can be bounded above and under in terms of the number of sequences in the partial injection.
- Let X_{n} be the random variable which counts the number of sequences in a partial injection of size n.

COUNTING SEQUENCES

- Again EGS and powerful real analysis theorems help

COUNTING SEQUENCES

- Again EGS and powerful real analysis theorems help
- Let $P I_{n, k}$ is the number of partial injections of size n with k sequences and $\operatorname{SPInj}(z, u)=\sum_{n, k} \frac{P I_{n, k}}{n!} z^{n} u^{k}$

COUNTING SEQUENCES

- Again EGS and powerful real analysis theorems help
- Let $P I_{n, k}$ is the number of partial injections of size n with k sequences and $\operatorname{SPInj}(z, u)=\sum_{n, k} \frac{P I_{n, k}}{n!} z^{n} u^{k}$
- Similar calculus: cycles are $\log \left(\frac{1}{1-z}\right)$ and non-empty sequences are $\frac{z u}{1-z}, \operatorname{so~} \operatorname{SPInj}(z, u)=\frac{1}{1-z} \exp \left(\frac{z u}{1-z}\right)$

COUNTING SEQUENCES

- Again EGS and powerful real analysis theorems help
- Let $P I_{n, k}$ is the number of partial injections of size n with k sequences and $\operatorname{SPInj}(z, u)=\sum_{n, k} \frac{P P_{n, k}}{n!} z^{n} u^{k}$
- Similar calculus: cycles are $\log \left(\frac{1}{1-z}\right)$ and non-empty sequences are $\frac{z u}{1-z}$, so $\operatorname{SPInj}(z, u)=\frac{1}{1-z} \exp \left(\frac{z u}{1-z}\right)$
- Expected value of $X_{n}: \mathbb{E}\left(X_{n}\right)=\frac{\sum_{k} k P_{n, k}}{P I_{n}}$

COUNTING SEQUENCES

- Again EGS and powerful real analysis theorems help
- Let $P I_{n, k}$ is the number of partial injections of size n with k sequences and $\operatorname{SPInj}(z, u)=\sum_{n, k} \frac{P I_{n, k}}{n!} z^{n} u^{k}$
- Similar calculus: cycles are $\log \left(\frac{1}{1-z}\right)$ and non-empty sequences are $\frac{z u}{1-z}, \operatorname{so~} \operatorname{SPInj}(z, u)=\frac{1}{1-z} \exp \left(\frac{z u}{1-z}\right)$
- Expected value of $X_{n}: \mathbb{E}\left(X_{n}\right)=\frac{\sum_{k} k P_{n, k}}{P l_{n}}$
- Variance of $X_{n}: \sigma^{2}\left(X_{n}\right)=\mathbb{E}\left(X_{n}^{2}\right)-\mathbb{E}\left(X_{n}\right)^{2}$

COUNTING SEQUENCES

- Again EGS and powerful real analysis theorems help
- Let $P I_{n, k}$ is the number of partial injections of size n with k sequences and $\operatorname{SPInj}(z, u)=\sum_{n, k} \frac{P I_{n, k}}{n!} z^{n} u^{k}$
- Similar calculus: cycles are $\log \left(\frac{1}{1-z}\right)$ and non-empty sequences are $\frac{z u}{1-z}, \operatorname{so~} \operatorname{SPInj}(z, u)=\frac{1}{1-z} \exp \left(\frac{z u}{1-z}\right)$
- Expected value of $X_{n}: \mathbb{E}\left(X_{n}\right)=\frac{\sum_{k} k P_{n, k}}{P l_{n}}$
- Variance of $X_{n}: \sigma^{2}\left(X_{n}\right)=\mathbb{E}\left(X_{n}^{2}\right)-\mathbb{E}\left(X_{n}\right)^{2}$
- Using saddlepoint asymptotics

COUNTING SEQUENCES

- Again EGS and powerful real analysis theorems help
- Let $P I_{n, k}$ is the number of partial injections of size n with k sequences and $\operatorname{SPInj}(z, u)=\sum_{n, k} \frac{P I_{n, k}}{n!} z^{n} u^{k}$
- Similar calculus: cycles are $\log \left(\frac{1}{1-z}\right)$ and non-empty sequences are $\frac{z u}{1-z}, \operatorname{so~} \operatorname{SPInj}(z, u)=\frac{1}{1-z} \exp \left(\frac{z u}{1-z}\right)$
- Expected value of $X_{n}: \mathbb{E}\left(X_{n}\right)=\frac{\sum_{k} k P_{n, k}}{P l_{n}}$
- Variance of $X_{n}: \sigma^{2}\left(X_{n}\right)=\mathbb{E}\left(X_{n}^{2}\right)-\mathbb{E}\left(X_{n}\right)^{2}$
- Using saddlepoint asymptotics

Proposition (statistics on the number of sequences)

$$
\mathbb{E}\left(X_{n}\right)=\sqrt{n}(1+o(1)) \text { and } \sigma^{2}\left(X_{n}\right)=n(1+o(1))
$$

BACK TO CORENESS

- Chebyshev's inequality: $\mathbb{P}\left(\left|X_{n}-\mathbb{E}\left(X_{n}\right)\right|>\alpha\right)<\frac{\sigma^{2}\left(X_{n}\right)}{\alpha^{2}}$

BACK TO CORENESS

- Chebyshev's inequality: $\mathbb{P}\left(\left|X_{n}-\mathbb{E}\left(X_{n}\right)\right|>\alpha\right)<\frac{\sigma^{2}\left(X_{n}\right)}{\alpha^{2}}$
- Take $\alpha=\sqrt{n}: \mathbb{P}\left(X_{n}>3 \sqrt{n}\right)<\frac{o(n)}{n}=o(1)$

BACK TO CORENESS

- Chebyshev's inequality: $\mathbb{P}\left(\left|X_{n}-\mathbb{E}\left(X_{n}\right)\right|>\alpha\right)<\frac{\sigma^{2}\left(X_{n}\right)}{\alpha^{2}}$
- Take $\alpha=\sqrt{n}: \mathbb{P}\left(X_{n}>3 \sqrt{n}\right)<\frac{o(n)}{n}=o(1)$
- Pick f_{a} : with probability tending to 1 , it has $\leqslant 3 \sqrt{n}$ sequences, $\leqslant 6 \sqrt{n}$ extremities

BACK TO CORENESS

- Chebyshev's inequality: $\mathbb{P}\left(\left|X_{n}-\mathbb{E}\left(X_{n}\right)\right|>\alpha\right)<\frac{\sigma^{2}\left(X_{n}\right)}{\alpha^{2}}$
- Take $\alpha=\sqrt{n}: \mathbb{P}\left(X_{n}>3 \sqrt{n}\right)<\frac{o(n)}{n}=O(1)$
- Pick f_{a} : with probability tending to 1 , it has $\leqslant 3 \sqrt{n}$ sequences, $\leqslant 6 \sqrt{n}$ extremities
- The number of partial injections f_{b} for which a given vertex is isolated is $P I_{n-1}$

BACK TO CORENESS

- Chebyshev's inequality: $\mathbb{P}\left(\left|X_{n}-\mathbb{E}\left(X_{n}\right)\right|>\alpha\right)<\frac{\sigma^{2}\left(X_{n}\right)}{\alpha^{2}}$
- Take $\alpha=\sqrt{n}: \mathbb{P}\left(X_{n}>3 \sqrt{n}\right)<\frac{o(n)}{n}=O(1)$
- Pick f_{a} : with probability tending to 1 , it has $\leqslant 3 \sqrt{n}$ sequences, $\leqslant 6 \sqrt{n}$ extremities
- The number of partial injections f_{b} for which a given vertex is isolated is $P I_{n-1}$
- There are $\leqslant 6 \sqrt{n} P I_{n-1} P I_{n}$ pairs $\left(f_{a}, f_{b}\right)$ where an extremity of a sequence of f_{a} is isolated in f_{b} :
- Chebyshev's inequality: $\mathbb{P}\left(\left|X_{n}-\mathbb{E}\left(X_{n}\right)\right|>\alpha\right)<\frac{\sigma^{2}\left(X_{n}\right)}{\alpha^{2}}$
- Take $\alpha=\sqrt{n}: \mathbb{P}\left(X_{n}>3 \sqrt{n}\right)<\frac{o(n)}{n}=O(1)$
- Pick f_{a} : with probability tending to 1 , it has $\leqslant 3 \sqrt{n}$ sequences, $\leqslant 6 \sqrt{n}$ extremities
- The number of partial injections f_{b} for which a given vertex is isolated is $P I_{n-1}$
- There are $\leqslant 6 \sqrt{n} P I_{n-1} P I_{n}$ pairs $\left(f_{a}, f_{b}\right)$ where an extremity of a sequence of f_{a} is isolated in f_{b} :
- the corresponding probability is at most

$$
\frac{6 \sqrt{n} P I_{n-1} P I_{n}}{P I_{n}^{2}} \leqslant 6 \sqrt{n} \frac{P I_{n-1}}{P I_{n}} \leqslant \frac{6}{\sqrt{n}}
$$

WHERE DOES THAT TAKE US?

- The probability that an A-tuple of size n partial injections does not define a Stallings automaton (non-connectedness, non-coreness) tends to 0 as n grows to infinity

WHERE DOES THAT TAKE US?

- The probability that an A-tuple of size n partial injections does not define a Stallings automaton (non-connectedness, non-coreness) tends to 0 as n grows to infinity

Algorithm
 A rejection algorithm to randomly generate a subgroup of \mathbb{F}_{r} :
 Draw a random partial injection f_{a} of $[n]$, independently for each $a \in A$; if the $\left(f_{a}\right)_{a \in A}$ do not induce a Stallings automaton (with base vertex 1), reject and repeat.

WHERE DOES THAT TAKE US?

- The probability that an A-tuple of size n partial injections does not define a Stallings automaton (non-connectedness, non-coreness) tends to 0 as n grows to infinity

Algorithm
 A rejection algorithm to randomly generate a subgroup of \mathbb{F}_{r} :
 Draw a random partial injection f_{a} of $[n]$, independently for each $a \in A$; if the $\left(f_{a}\right)_{a \in A}$ do not induce a Stallings automaton (with base vertex 1), reject and repeat.

- The expected number of steps is at most 2

WHERE DOES THAT TAKE US?

- The probability that an A-tuple of size n partial injections does not define a Stallings automaton (non-connectedness, non-coreness) tends to 0 as n grows to infinity

Algorithm
 A rejection algorithm to randomly generate a subgroup of \mathbb{F}_{r} :
 Draw a random partial injection f_{a} of $[n]$, independently for each $a \in A$; if the $\left(f_{a}\right)_{a \in A}$ do not induce a Stallings automaton (with base vertex 1), reject and repeat.

- The expected number of steps is at most 2
- (Forget the labeling of the graph)

WHERE DOES THAT TAKE US?

- The probability that an A-tuple of size n partial injections does not define a Stallings automaton (non-connectedness, non-coreness) tends to 0 as n grows to infinity

Algorithm
 A rejection algorithm to randomly generate a subgroup of \mathbb{F}_{r} :
 Draw a random partial injection f_{a} of $[n]$, independently for each $a \in A$; if the $\left(f_{a}\right)_{a \in A}$ do not induce a Stallings automaton (with base vertex 1), reject and repeat.

- The expected number of steps is at most 2
- (Forget the labeling of the graph)
- Still needed: an efficient random generation algorithm for partial injections

ANOTHER BY-PRODUCT: EXPECTED RANK OF A SIZE n SUBGROUP

- The expected number of sequences of f_{a} is \sqrt{n}, so the expected number of a-labeled edge is $n-\sqrt{n}$

ANOTHER BY-PRODUCT: EXPECTED RANK OF A SIZE n SUBGROUP

- The expected number of sequences of f_{a} is \sqrt{n}, so the expected number of a-labeled edge is $n-\sqrt{n}$

Proposition

The expected rank of a random subgroup of size n is $E-V+1$, that is: $(|A|-1) n-|A| \sqrt{n}+1$

ANOTHER BY-PRODUCT: EXPECTED RANK OF A SIZE n SUBGROUP

- The expected number of sequences of f_{a} is \sqrt{n}, so the expected number of a-labeled edge is $n-\sqrt{n}$

Proposition

The expected rank of a random subgroup of size n is $E-V+1$, that is: $(|A|-1) n-|A| \sqrt{n}+1$

- Also: $\frac{I_{n}}{n!} \sim \frac{1}{\sqrt{2 e \pi}} n^{-\frac{1}{4}} e^{2 \sqrt{n}}$ [more saddlepoint asymptotics!]

ANOTHER BY-PRODUCT: EXPECTED RANK OF A SIZE n SUBGROUP

- The expected number of sequences of f_{a} is \sqrt{n}, so the expected number of a-labeled edge is $n-\sqrt{n}$

Proposition

The expected rank of a random subgroup of size n is $E-V+1$, that is: $(|A|-1) n-|A| \sqrt{n}+1$

- Also: $\frac{I_{n}}{n!} \sim \frac{1}{\sqrt{2 e \pi}} n^{-\frac{1}{4}} e^{2 \sqrt{n}}$ [more saddlepoint asymptotics!]

Proposition

The number of size n subgroups in \mathbb{F}_{r} is

$$
\frac{1}{n!} P l_{n}^{r}(1+o(1)) \sim n!^{r-1} \frac{n^{1-r / 4} e^{2 r \sqrt{n}}}{(2 \sqrt{e \pi})^{r}}
$$

STRATEGY TO DRAW A RANDOM INJECTION

- A size n partial injection is a disjoint union of orbits that are either cycles, or sequences

STRATEGY TO DRAW A RANDOM INJECTION

- A size n partial injection is a disjoint union of orbits that are either cycles, or sequences
- Compute the distribution of sizes of orbits (cycles and sequences), and the distribution of cycles vs. sequences for each size of orbits

STRATEGY TO DRAW A RANDOM INJECTION

- A size n partial injection is a disjoint union of orbits that are either cycles, or sequences
- Compute the distribution of sizes of orbits (cycles and sequences), and the distribution of cycles vs. sequences for each size of orbits
- Draw a size m of an orbit, decide whether it is a cycle or a sequence; and draw another random partial injection of size $n-m$

DISTRIBUTION OF THE SIZES OF COMPONENTS OF A PARTIAL INJECTION 1/2

- Pointing operator: selecting a vertex in a partial injection. The corresponding EGS is $\Theta \operatorname{PInj}(z)=\sum_{n} \frac{n P I_{n}}{n!} z^{n}=z \frac{d}{d z} \operatorname{PInj}(z)$

DISTRIBUTION OF THE SIZES OF COMPONENTS OF A PARTIAL INJECTION 1/2

- Pointing operator: selecting a vertex in a partial injection. The corresponding EGS is $\Theta \operatorname{PInj}(z)=\sum_{n} \frac{n P I_{n}}{n!} z^{n}=z \frac{d}{d z} \operatorname{PInj}(z)$
- We have $\operatorname{PInj}(z)=\exp (D(z))$, with $D(z)=\frac{z}{1-z}+\log \left(\frac{1}{1-z}\right)$ (sequences + cycles)

DISTRIBUTION OF THE SIZES OF COMPONENTS OF A PARTIAL INJECTION

 1/2- Pointing operator: selecting a vertex in a partial injection. The corresponding EGS is $\Theta \operatorname{PInj}(z)=\sum_{n} \frac{n P I_{n}}{n!} z^{n}=z \frac{d}{d z} \operatorname{PInj}(z)$
- We have $\operatorname{PInj}(z)=\exp (D(z))$, with $D(z)=\frac{z}{1-z}+\log \left(\frac{1}{1-z}\right)$ (sequences + cycles)
- $\Theta \operatorname{PInj}(z)=z \frac{d}{d z} D(z) \operatorname{PInj}(z)=\Theta D(z) \operatorname{PInj}(z)$

DISTRIBUTION OF THE SIZES OF COMPONENTS OF A PARTIAL INJECTION

 1/2- Pointing operator: selecting a vertex in a partial injection. The corresponding EGS is $\Theta \operatorname{PInj}(z)=\sum_{n} \frac{n P I_{n}}{n!} z^{n}=z \frac{d}{d z} \operatorname{PInj}(z)$
- We have $\operatorname{PInj}(z)=\exp (D(z))$, with $D(z)=\frac{z}{1-z}+\log \left(\frac{1}{1-z}\right)$ (sequences + cycles)
- $\Theta \operatorname{PInj}(z)=z \frac{d}{d z} D(z) \operatorname{PInj}(z)=\Theta D(z) \operatorname{PInj}(z)$
- That is: pointing a vertex in a partial injection = pointing a vertex in one component (say, of size k) and the remaining part is just a partial injection of size $n-k$

DISTRIBUTION OF THE SIZES OF COMPONENTS OF A PARTIAL INJECTION

 1/2- Pointing operator: selecting a vertex in a partial injection. The corresponding EGS is $\Theta \operatorname{PInj}(z)=\sum_{n} \frac{n P I_{n}}{n!} z^{n}=z \frac{d}{d z} \operatorname{PInj}(z)$
- We have $\operatorname{PInj}(z)=\exp (D(z))$, with $D(z)=\frac{z}{1-z}+\log \left(\frac{1}{1-z}\right)$ (sequences + cycles)
- $\Theta \operatorname{PInj}(z)=z \frac{d}{d z} D(z) \operatorname{PInj}(z)=\Theta D(z) \operatorname{PInj}(z)$
- That is: pointing a vertex in a partial injection = pointing a vertex in one component (say, of size k) and the remaining part is just a partial injection of size $n-k$
- Computationally:

DISTRIBUTION OF THE SIZES OF COMPONENTS OF A PARTIAL INJECTION

 1/2- Pointing operator: selecting a vertex in a partial injection. The corresponding EGS is $\Theta \operatorname{PInj}(z)=\sum_{n} \frac{n P I_{n}}{n!} z^{n}=z \frac{d}{d z} \operatorname{PInj}(z)$
- We have $\operatorname{PInj}(z)=\exp (D(z))$, with $D(z)=\frac{z}{1-z}+\log \left(\frac{1}{1-z}\right)$ (sequences + cycles)
- $\Theta \operatorname{PInj}(z)=z \frac{d}{d z} D(z) \operatorname{PInj}(z)=\Theta D(z) \operatorname{PInj}(z)$
- That is: pointing a vertex in a partial injection = pointing a vertex in one component (say, of size k) and the remaining part is just a partial injection of size $n-k$
- Computationally:
- $\left(\frac{z}{(1-z)^{2}}+\frac{z}{1-z}\right) \operatorname{PInj}(z)=\left(\sum_{k} k z^{k}+\sum_{k} z^{k}\right) \operatorname{PInj}(z)$

DISTRIBUTION OF THE SIZES OF COMPONENTS OF A PARTIAL INJECTION

2/2

$$
\cdot\left(\frac{z}{(1-z)^{2}}+\frac{z}{1-z}\right) \operatorname{PInj}(z)=\left(\sum_{k} k z^{k}+\sum_{k} z^{k}\right) \operatorname{PInj}(z)
$$

DISTRIBUTION OF THE SIZES OF COMPONENTS OF A PARTIAL INJECTION
 2/2

$$
\begin{aligned}
& \cdot\left(\frac{z}{\left(\frac{z}{1-2)^{2}}+\frac{z}{1-2}\right) \operatorname{PInj}(z)=\left(\sum_{k} k z^{k}+\sum_{k} z^{k}\right) \operatorname{PInj}(z)} \begin{array}{rl}
\frac{n P l_{n}}{n!}=\sum_{k}(k+1) \frac{P l_{n-k}}{(n-k)!}
\end{array}\right.
\end{aligned}
$$

DISTRIBUTION OF THE SIZES OF COMPONENTS OF A PARTIAL INJECTION
 2/2

- $\left(\frac{z}{(1-z)^{2}}+\frac{z}{1-z}\right) \operatorname{PInj}(z)=\left(\sum_{k} k z^{k}+\sum_{k} z^{k}\right) \operatorname{PInj}(z)$
- $\frac{n P l_{n}}{n!}=\sum_{k}(k+1) \frac{P l_{n-k}}{(n-k)!}$
- The probability that the pointed vertex is in a size k component is $\frac{(k+1) \frac{P_{n-k}}{(n-k)!}}{\frac{P_{n}}{n!}}$

DISTRIBUTION OF THE SIZES OF COMPONENTS OF A PARTIAL INJECTION 2/2

- $\left(\frac{z}{(1-z)^{2}}+\frac{z}{1-z}\right) \operatorname{PInj}(z)=\left(\sum_{k} k z^{k}+\sum_{k} z^{k}\right) \operatorname{PInj}(z)$
- $\frac{n P l_{n}}{n!}=\sum_{k}(k+1) \frac{P l_{n-k}}{(n-k)!}$
- The probability that the pointed vertex is in a size k component is $\frac{(k+1) \frac{P_{n}-k}{(n-k)!}}{\frac{P_{n}}{n!}}$
- and the probability that a size k component is a sequence (resp. a cycle $)$ is $\frac{k}{k+1}\left(\right.$ resp. $\left.\frac{1}{k+1}\right)$

DISTRIBUTION OF THE SIZES OF COMPONENTS OF A PARTIAL INJECTION 2/2

- $\left(\frac{z}{(1-z)^{2}}+\frac{z}{1-z}\right) \operatorname{PInj}(z)=\left(\sum_{k} k z^{k}+\sum_{k} z^{k}\right) \operatorname{PInj}(z)$
- $\frac{n P P_{n}}{n!}=\sum_{k}(k+1) \frac{P l_{n-k}}{(n-k)!}$
- The probability that the pointed vertex is in a size k component is $\frac{(k+1) \frac{P_{n-k}}{(n-k)!}}{\frac{P_{n}}{n!}}$
- and the probability that a size k component is a sequence (resp. a cycle) is $\frac{k}{k+1}\left(\right.$ resp. $\left.\frac{1}{k+1}\right)$
- Now we can randomly generate a partial injection

COMPLEXITY ISSUES

- The pre-computation of the $P I_{k}(k \leqslant n)$ takes linear time in n

COMPLEXITY ISSUES

- The pre-computation of the $P I_{k}(k \leqslant n)$ takes linear time in n
- The random generation of a partial injection as above takes linear time

COMPLEXITY ISSUES

- The pre-computation of the $P I_{k}(k \leqslant n)$ takes linear time in n
- The random generation of a partial injection as above takes linear time
- Checking connectedness and coreness takes linear time

COMPLEXITY ISSUES

- The pre-computation of the $P I_{k}(k \leqslant n)$ takes linear time in n
- The random generation of a partial injection as above takes linear time
- Checking connectedness and coreness takes linear time
- The expected number of rejects is $\leqslant 2$

COMPLEXITY ISSUES

- The pre-computation of the $P I_{k}(k \leqslant n)$ takes linear time in n
- The random generation of a partial injection as above takes linear time
- Checking connectedness and coreness takes linear time
- The expected number of rejects is $\leqslant 2$
- This is in the RAM model, where arithmetic operations on integers take unit time

COMPLEXITY ISSUES

- The pre-computation of the $P I_{k}(k \leqslant n)$ takes linear time in n
- The random generation of a partial injection as above takes linear time
- Checking connectedness and coreness takes linear time
- The expected number of rejects is $\leqslant 2$
- This is in the RAM model, where arithmetic operations on integers take unit time
- It looks complicated...but it is fast!

COMPLEXITY ISSUES

- The pre-computation of the $P I_{k}(k \leqslant n)$ takes linear time in n
- The random generation of a partial injection as above takes linear time
- Checking connectedness and coreness takes linear time
- The expected number of rejects is $\leqslant 2$
- This is in the RAM model, where arithmetic operations on integers take unit time
- It looks complicated...but it is fast!
- We are dealing with very large numbers: $P I_{n} \geqslant(n+1)$! has size $\mathcal{O}(n \log n)$: in the bitcost model, the precomputation is in $\mathcal{O}\left(n^{2} \log n\right)$ and the cost of one generation is $\mathcal{O}\left(n^{2} \log ^{2} n\right)$

SPECIALIZE FOR FINITE INDEX SUBGROUPS

- Stallings automata are saturated: made of permutations, not partial injections

SPECIALIZE FOR FINITE INDEX SUBGROUPS

- Stallings automata are saturated: made of permutations, not partial injections
- Follow the same reasoning. Number of permutations of size n : n !. Exact computation follows as in the general case (see subgroup growth)

SPECIALIZE FOR FINITE INDEX SUBGROUPS

- Stallings automata are saturated: made of permutations, not partial injections
- Follow the same reasoning. Number of permutations of size n : n !. Exact computation follows as in the general case (see subgroup growth)
- Randomly generating a size n permutation takes time $\mathcal{O}(n)$

SPECIALIZE FOR FINITE INDEX SUBGROUPS

- Stallings automata are saturated: made of permutations, not partial injections
- Follow the same reasoning. Number of permutations of size n : n !. Exact computation follows as in the general case (see subgroup growth)
- Randomly generating a size n permutation takes time $\mathcal{O}(n)$
- Bender's theorem shows that connectedness holds with probability tending to 1

SPECIALIZE FOR FINITE INDEX SUBGROUPS

- Stallings automata are saturated: made of permutations, not partial injections
- Follow the same reasoning. Number of permutations of size n : n !. Exact computation follows as in the general case (see subgroup growth)
- Randomly generating a size n permutation takes time $\mathcal{O}(n)$
- Bender's theorem shows that connectedness holds with probability tending to 1
- Core-ness is guaranteed

SPECIALIZE FOR FINITE INDEX SUBGROUPS

- Stallings automata are saturated: made of permutations, not partial injections
- Follow the same reasoning. Number of permutations of size n : n !. Exact computation follows as in the general case (see subgroup growth)
- Randomly generating a size n permutation takes time $\mathcal{O}(n)$
- Bender's theorem shows that connectedness holds with probability tending to 1
- Core-ness is guaranteed
- Comparing the number of size n saturated Stallings automata with the number of general Stallings automata yields the following probability: $\mathcal{O}\left(n^{r / 4} e^{-2 r \sqrt{n}}\right)=O\left(n^{-k}\right)$

MORE ASYMPTOTIC PROPERTIES

Theorem (Bassino, Martino, Nicaud, V., W.)
The probability that a size n subgroup is malnormal tends to 0 .

MORE ASYMPTOTIC PROPERTIES

Theorem (Bassino, Martino, Nicaud, V., W.)
The probability that a size n subgroup is malnormal tends to 0 .

- A subgroup is Whitehead minimal if no automorphism of \mathbb{F}_{r} reduces its size.

MORE ASYMPTOTIC PROPERTIES

Theorem (Bassino, Martino, Nicaud, V., W.)
The probability that a size n subgroup is malnormal tends to 0 .

- A subgroup is Whitehead minimal if no automorphism of \mathbb{F}_{r} reduces its size.

Theorem (Bassino, Nicaud, W.)
The probability that a size n subgroup is Whitehead minimal tends to 1.

MORE ASYMPTOTIC PROPERTIES

Theorem (Bassino, Martino, Nicaud, V., W.)

The probability that a size n subgroup is malnormal tends to 0 .

- A subgroup is Whitehead minimal if no automorphism of \mathbb{F}_{r} reduces its size.

Theorem (Bassino, Nicaud, W.)

The probability that a size n subgroup is Whitehead minimal tends to 1.

Theorem (Bassino, Martino, Nicaud, V., W.)
With probablility tending to e^{-r}, H fails to contain a conjugate of a letter.

WORD-BASED MODELS

- Draw a tuple \vec{h} of generators at random. Parameters: size of the tuple, length of the words, distribution on words.

WORD-BASED MODELS

- Draw a tuple \vec{h} of generators at random. Parameters: size of the tuple, length of the words, distribution on words.
- Few-generator model: fix $k \geqslant 2$, pick uniformly at random a k-tuple of words of length at most n, and let n tend to infinity.

WORD-BASED MODELS

- Draw a tuple \vec{h} of generators at random. Parameters: size of the tuple, length of the words, distribution on words.
- Few-generator model: fix $k \geqslant 2$, pick uniformly at random a k-tuple of words of length at most n, and let n tend to infinity.
- Gromov's density model: let B_{n} be the ball of radius n in \mathbb{F}_{A} $\left(\left|B_{n}\right|=\Theta\left((2 r-1)^{n}\right)\right.$. Fix $0<d<1$. Pick uniformly at random a $\left|B_{n}\right|^{d}$-tuple of words of length at most n, and let n tend to infinity.
- Draw a tuple \vec{h} of generators at random. Parameters: size of the tuple, length of the words, distribution on words.
- Few-generator model: fix $k \geqslant 2$, pick uniformly at random a k-tuple of words of length at most n, and let n tend to infinity.
- Gromov's density model: let B_{n} be the ball of radius n in \mathbb{F}_{A} $\left(\left|B_{n}\right|=\Theta\left((2 r-1)^{n}\right)\right.$. Fix $0<d<1$. Pick uniformly at random a $\left|B_{n}\right|^{d}$-tuple of words of length at most n, and let n tend to infinity.
- Variant: use the sphere rather than the ball.
- Draw a tuple \vec{h} of generators at random. Parameters: size of the tuple, length of the words, distribution on words.
- Few-generator model: fix $k \geqslant 2$, pick uniformly at random a k-tuple of words of length at most n, and let n tend to infinity.
- Gromov's density model: let B_{n} be the ball of radius n in \mathbb{F}_{A} $\left(\left|B_{n}\right|=\Theta\left((2 r-1)^{n}\right)\right.$. Fix $0<d<1$. Pick uniformly at random a $\left|B_{n}\right|^{d}$-tuple of words of length at most n, and let n tend to infinity.
- Variant: use the sphere rather than the ball.
- Easy to implement, and questionable (uniqueness).

THE CENTRAL TREE PROPERTY: FREE GENERATION

- The central tree property for $\vec{h}=\left(h_{1}, \ldots, h_{k}\right)$: small initial cancellation $=S t(H)$ consists of a central tree, and of one loop for each h_{i} connecting leaves of the tree.

THE CENTRAL TREE PROPERTY: FREE GENERATION

- The central tree property for $\vec{h}=\left(h_{1}, \ldots, h_{k}\right)$: small initial cancellation $=S t(H)$ consists of a central tree, and of one loop for each h_{i} connecting leaves of the tree.
- guaranteed if $\operatorname{Icp}(\vec{h})<\frac{1}{2} \min \vec{h}$, where $\operatorname{Icp}(\vec{h})$ is the length of the least common prefix of the elements of \vec{h} and \vec{h}^{-1} and $\min \vec{h}=\min \left|h_{i}\right|$.

THE CENTRAL TREE PROPERTY: FREE GENERATION

- The central tree property for $\vec{h}=\left(h_{1}, \ldots, h_{k}\right)$: small initial cancellation $=S t(H)$ consists of a central tree, and of one loop for each h_{i} connecting leaves of the tree.
- guaranteed if $\operatorname{Icp}(\vec{h})<\frac{1}{2} \min \vec{h}$, where $\operatorname{Icp}(\vec{h})$ is the length of the least common prefix of the elements of \vec{h} and \vec{h}^{-1} and $\min \vec{h}=\min \left|h_{i}\right|$.
- If the central tree property holds, then \vec{h} freely generates H.

THE CENTRAL TREE PROPERTY: FREE GENERATION

- The central tree property for $\vec{h}=\left(h_{1}, \ldots, h_{k}\right)$: small initial cancellation $=S t(H)$ consists of a central tree, and of one loop for each h_{i} connecting leaves of the tree.
- guaranteed if $\operatorname{Icp}(\vec{h})<\frac{1}{2} \min \vec{h}$, where $\operatorname{Icp}(\vec{h})$ is the length of the least common prefix of the elements of \vec{h} and \vec{h}^{-1} and $\min \vec{h}=\min \left|h_{i}\right|$.
- If the central tree property holds, then \vec{h} freely generates H.
- Also note: the central tree is usually very small: $f i x f(n)$ an unbounded, non-decreasing function. In the few-generator model, generically (only), $\operatorname{lcp}(\vec{h})<f(n)$.

THE CENTRAL TREE PROPERTY: MALNORMALITY

- Recall: H is malnormal if $H^{x} \cap H=1$ for every $x \notin H$. Equivalently, no word labels a closed walk at two different vertices of St (H).

THE CENTRAL TREE PROPERTY: MALNORMALITY

- Recall: H is malnormal if $H^{x} \cap H=1$ for every $x \notin H$. Equivalently, no word labels a closed walk at two different vertices of St (H).
- Assume that the central tree property holds. A sufficient condition for malnormality can be expressed in terms of common factors occurring in the h_{i} :

THE CENTRAL TREE PROPERTY: MALNORMALITY

- Recall: H is malnormal if $H^{x} \cap H=1$ for every $x \notin H$. Equivalently, no word labels a closed walk at two different vertices of St (H).
- Assume that the central tree property holds. A sufficient condition for malnormality can be expressed in terms of common factors occurring in the h_{i} :
- if $\operatorname{Icp}(\vec{h})<\frac{1}{4} \min \vec{h}$ and no word of length $\frac{1}{8} \min \vec{h}$ occurs twice as a factor of the elements of \vec{h} and \vec{h}^{-1}, then H is malnormal.

THE CENTRAL TREE PROPERTY: RIGIDITY

- Rigidity: if \vec{g} and \vec{h} have the central tree property and $H(\vec{g})=H(\vec{h})$, then \vec{g} and \vec{h} coincide up to the order of their elements and replacing a word by its inverse.

THE CENTRAL TREE PROPERTY: RIGIDITY

- Rigidity: if \vec{g} and \vec{h} have the central tree property and $H(\vec{g})=H(\vec{h})$, then \vec{g} and \vec{h} coincide up to the order of their elements and replacing a word by its inverse.
- So: picking a tuple of generators at random is - in practice - a method to randomly generate a subgroup in the sense that collisions are exponentially rare.

THE CENTRAL TREE PROPERTY: RIGIDITY

- Rigidity: if \vec{g} and \vec{h} have the central tree property and $H(\vec{g})=H(\vec{h})$, then \vec{g} and \vec{h} coincide up to the order of their elements and replacing a word by its inverse.
- So: picking a tuple of generators at random is - in practice - a method to randomly generate a subgroup in the sense that collisions are exponentially rare.
- The distribution of subgroups induced is radically different from the distribution based on drawing Stallings automata.

THE CENTRAL TREE PROPERTY: RIGIDITY

- Rigidity: if \vec{g} and \vec{h} have the central tree property and $H(\vec{g})=H(\vec{h})$, then \vec{g} and \vec{h} coincide up to the order of their elements and replacing a word by its inverse.
- So: picking a tuple of generators at random is - in practice - a method to randomly generate a subgroup in the sense that collisions are exponentially rare.
- The distribution of subgroups induced is radically different from the distribution based on drawing Stallings automata.
- Malnormality is generic in the word-based model, and negligible in the graph-based model.

WHITEHEAD MINIMALITY

- Recall: H is Whitehead minimal if it has the smallest size in its orbit under $\operatorname{Aut}(\mathbb{F})$.

WHITEHEAD MINIMALITY

- Recall: H is Whitehead minimal if it has the smallest size in its orbit under Aut (\mathbb{F}).
- [Bassino, Nicaud, W.] Whitehead minimality is exponentially generic in the few-generator model (Kapovich, Schupp, Shpilrain for cyclic subgroups) and it is also exponentially generic in the graph-based model.

GROUP PRESENTATIONS: AN ODD RESULT

- Classically: $G=\langle A \mid \vec{h}\rangle=\mathbb{F}_{A} /\langle\langle\vec{h}\rangle\rangle$.

GROUP PRESENTATIONS: AN ODD RESULT

- Classically: $G=\langle A \mid \vec{h}\rangle=\mathbb{F}_{A} /\langle\langle\vec{h}\rangle\rangle$.
- Why not $\left.G=\langle A \mid H\rangle=\mathbb{F}_{A} /\langle H\rangle\right\rangle$?

GROUP PRESENTATIONS: AN ODD RESULT

- Classically: $G=\langle A \mid \vec{h}\rangle=\mathbb{F}_{A} /\langle\langle\vec{h}\rangle\rangle$.
- Why not $\left.G=\langle A \mid H\rangle=\mathbb{F}_{A} /\langle H\rangle\right\rangle$?
- Up to density $1 / 2,\langle A \mid \vec{h}\rangle$ is generically infinite, hyperbolic (Gromov, Ol’shanskii, Ollivier).

GROUP PRESENTATIONS: AN ODD RESULT

- Classically: $G=\langle A \mid \vec{h}\rangle=\mathbb{F}_{A} /\langle\langle\vec{h}\rangle\rangle$.
- Why not $\left.G=\langle A \mid H\rangle=\mathbb{F}_{A} /\langle H\rangle\right\rangle$?
- Up to density $1 / 2,\langle A \mid \vec{h}\rangle$ is generically infinite, hyperbolic (Gromov, Ol'shanskii, Ollivier).
- But the probability that $\mathbb{F}_{A} /\langle\langle H\rangle\rangle$ is trivial tends to 1 as the size of n grows to infinity.

BEYOND FREE GROUPS: FEW GENERATORS IN HYPERBOLIC GROUPS

- [Gilman, Miasnikov, Osin, 2010] Let G be hyperbolic, A-generated and let $k \geqslant 1$. Exponentially generically, a random k-tuple $\vec{h}=\left(h_{1}, \ldots, h_{k}\right)$ of elements of G freely generates the subgroup $H(\vec{h})=\langle\vec{h}\rangle$ of G, and $H(\vec{h})$ is quasi-convex.

STALLINGS AUTOMATA

- [Kharlampovich, Miasnikov, W., 2017] Let $G=\langle A \mid R\rangle$, finite presentation. Assume that L is a language of representatives. Let $H \leqslant G$ and $\Gamma_{L}(H)$ be the fragment of the Schreier graph $S(G, H)$ spanned by the loops at H labeled by the L-representatives of the elements of H.

STALLINGS AUTOMATA

- [Kharlampovich, Miasnikov, W., 2017] Let $G=\langle A \mid R\rangle$, finite presentation. Assume that L is a language of representatives. Let $H \leqslant G$ and $\Gamma_{L}(H)$ be the fragment of the Schreier graph $S(G, H)$ spanned by the loops at H labeled by the L-representatives of the elements of H.
- A good analogue of Stallings automata: finite if and only if H is L-quasi-convex; membership problem, computation of intersections, decision of finiteness; under reasonable additional hypotheses on G : decision of conjugacy, almost malnormality.

STALLINGS AUTOMATA

- [Kharlampovich, Miasnikov, W., 2017] Let $G=\langle A \mid R\rangle$, finite presentation. Assume that L is a language of representatives. Let $H \leqslant G$ and $\Gamma_{L}(H)$ be the fragment of the Schreier graph $S(G, H)$ spanned by the loops at H labeled by the L-representatives of the elements of H.
- A good analogue of Stallings automata: finite if and only if H is L-quasi-convex; membership problem, computation of intersections, decision of finiteness; under reasonable additional hypotheses on G : decision of conjugacy, almost malnormality.
- Computable if H is L-quasi-convex (semi-algorithm)

STALLINGS AUTOMATA

- [Kharlampovich, Miasnikov, W., 2017] Let $G=\langle A \mid R\rangle$, finite presentation. Assume that L is a language of representatives. Let $H \leqslant G$ and $\Gamma_{L}(H)$ be the fragment of the Schreier graph $S(G, H)$ spanned by the loops at H labeled by the L-representatives of the elements of H.
- A good analogue of Stallings automata: finite if and only if H is L-quasi-convex; membership problem, computation of intersections, decision of finiteness; under reasonable additional hypotheses on G : decision of conjugacy, almost malnormality.
- Computable if H is L-quasi-convex (semi-algorithm)
- Examples: quasi-convex subgroups of hyperbolic groups, all subgroups of virtually free subgroups.

STALLINGS AUTOMATA

- [Kharlampovich, Miasnikov, W., 2017] Let $G=\langle A \mid R\rangle$, finite presentation. Assume that L is a language of representatives. Let $H \leqslant G$ and $\Gamma_{L}(H)$ be the fragment of the Schreier graph $S(G, H)$ spanned by the loops at H labeled by the L-representatives of the elements of H.
- A good analogue of Stallings automata: finite if and only if H is L-quasi-convex; membership problem, computation of intersections, decision of finiteness; under reasonable additional hypotheses on G : decision of conjugacy, almost malnormality.
- Computable if H is L-quasi-convex (semi-algorithm)
- Examples: quasi-convex subgroups of hyperbolic groups, all subgroups of virtually free subgroups.
- Generalizes work by Short, Gersten, Kapovich, Gitik, Markus-Epstein, Silva, Soler-Escriva, V.

THE MODULAR GROUP

- [Bassino, Nicaud, W.] The particular case of subgroups of $\operatorname{PSL}_{2}(\mathbb{Z})=\mathbb{Z}_{2} * \mathbb{Z}_{3}=\left\langle a, b \mid a^{2}=b^{3}=1\right\rangle$: the Stallings automata are combinatorially nice enough and can be counted: statistics, random generation.

THE MODULAR GROUP

- [Bassino, Nicaud, W.] The particular case of subgroups of $\operatorname{PSL}_{2}(\mathbb{Z})=\mathbb{Z}_{2} * \mathbb{Z}_{3}=\left\langle a, b \mid a^{2}=b^{3}=1\right\rangle$: the Stallings automata are combinatorially nice enough and can be counted: statistics, random generation.
- E.g., the expected isomorphism type of a subgroup of $\mathrm{PSL}_{2}(\mathbb{Z})$ of size n is

$$
\left(n^{\frac{1}{2}}+o\left(n^{\frac{1}{2}}\right), n^{\frac{1}{3}}+o\left(n^{\frac{1}{3}}\right), \frac{n}{6}-\frac{1}{3} n^{\frac{2}{3}}+o\left(n^{\frac{2}{3}}\right)\right)
$$

and there is strong concentration around these values.

THE MODULAR GROUP

- [Bassino, Nicaud, W.] The particular case of subgroups of $\operatorname{PSL}_{2}(\mathbb{Z})=\mathbb{Z}_{2} * \mathbb{Z}_{3}=\left\langle a, b \mid a^{2}=b^{3}=1\right\rangle$: the Stallings automata are combinatorially nice enough and can be counted: statistics, random generation.
- E.g., the expected isomorphism type of a subgroup of $\mathrm{PSL}_{2}(\mathbb{Z})$ of size n is

$$
\left(n^{\frac{1}{2}}+o\left(n^{\frac{1}{2}}\right), n^{\frac{1}{3}}+o\left(n^{\frac{1}{3}}\right), \frac{n}{6}-\frac{1}{3} n^{\frac{2}{3}}+o\left(n^{\frac{2}{3}}\right)\right)
$$

and there is strong concentration around these values.

- Also: counting and random generation of finite index subgroups (Stothers, 1970s), free subgroups, subgroups of a fixed isomorphism type.

Enriched Stallings automata

FREE-ABELIAN BY FREE GROUPS

FREE-ABELIAN BY FREE GROUPS

A group is free-abelian by free (FABF) if it is of the form
$G_{\alpha}=\mathbb{F}_{n} \ltimes_{\alpha} \mathbb{Z}^{m}=\left\langle\begin{array}{l|ll}x_{1}, \ldots, x_{n} & t_{i} t_{k}=t_{k} t_{i} & \forall i, k \in[1, m] \\ t_{1}, \ldots, t_{m} & x_{j}^{-1} t_{i} x_{j}=t_{i} \alpha_{j} & \forall i \in[1, m], \forall j \in[1, n]\end{array}\right\rangle$,

FREE-ABELIAN BY FREE GROUPS

A group is free-abelian by free (FABF) if it is of the form
$G_{\alpha}=\mathbb{F}_{n} \ltimes_{\alpha} \mathbb{Z}^{m}=\left\langle\begin{array}{l|ll}x_{1}, \ldots, x_{n} & t_{i} t_{k}=t_{k} t_{i} & \forall i, k \in[1, m] \\ t_{1}, \ldots, t_{m} & x_{j}^{-1} t_{i} x_{j}=t_{i} \alpha_{j} & \forall i \in[1, m], \forall j \in[1, n]\end{array}\right\rangle$,

FREE-ABELIAN BY FREE GROUPS

A group is free-abelian by free (FABF) if it is of the form
$G_{\alpha}=\mathbb{F}_{n} \ltimes \mathbb{Z}^{m}=\left\langle\begin{array}{l|ll}x_{1}, \ldots, x_{n} & t_{i} t_{k}=t_{k} t_{i} & \forall i, k \in[1, m] \\ t_{1}, \ldots, t_{m} & x_{j}^{-1} t_{i} x_{j}=t_{i} \alpha_{j} & \forall i \in[1, m], \forall j \in[1, n]\end{array}\right\rangle$,
where

- $T=\left\{t_{1}, \ldots, t_{m}\right\}$ is a free-abelian basis for $\langle T\rangle \simeq \mathbb{Z}^{m}$,

FREE-ABELIAN BY FREE GROUPS

A group is free-abelian by free (FABF) if it is of the form
$G_{\alpha}=\mathbb{F}_{n} \ltimes_{\alpha} \mathbb{Z}^{m}=\left\langle\begin{array}{l|ll}x_{1}, \ldots, x_{n} & t_{i} t_{k}=t_{k} t_{i} & \forall i, k \in[1, m] \\ t_{1}, \ldots, t_{m} & x_{j}^{-1} t_{i} x_{j}=t_{i} \alpha_{j} & \forall i \in[1, m], \forall j \in[1, n]\end{array}\right\rangle$,
where

- $T=\left\{t_{1}, \ldots, t_{m}\right\}$ is a free-abelian basis for $\langle T\rangle \simeq \mathbb{Z}^{m}$,
- $X=\left\{x_{1}, \ldots, x_{n}\right\}$ is a free basis for $\langle X\rangle \simeq \mathbb{F}_{n}$,

FREE-ABELIAN BY FREE GROUPS

A group is free-abelian by free (FABF) if it is of the form
$G_{\alpha}=\mathbb{F}_{n} \ltimes_{\alpha} \mathbb{Z}^{m}=\left\langle\begin{array}{l|ll}x_{1}, \ldots, x_{n} & t_{i} t_{k}=t_{k} t_{i} & \forall i, k \in[1, m] \\ t_{1}, \ldots, t_{m} & x_{j}^{-1} t_{i} x_{j}=t_{i} \alpha_{j} & \forall i \in[1, m], \forall j \in[1, n]\end{array}\right\rangle$,
where

- $T=\left\{t_{1}, \ldots, t_{m}\right\}$ is a free-abelian basis for $\langle T\rangle \simeq \mathbb{Z}^{m}$,
- $X=\left\{x_{1}, \ldots, x_{n}\right\}$ is a free basis for $\langle X\rangle \simeq \mathbb{F}_{n}$,

FREE-ABELIAN BY FREE GROUPS

A group is free-abelian by free (FABF) if it is of the form
$G_{\alpha}=\mathbb{F}_{n} \ltimes_{\alpha} \mathbb{Z}^{m}=\left\langle\begin{array}{l|ll}x_{1}, \ldots, x_{n} & t_{i} t_{k}=t_{k} t_{i} & \forall i, k \in[1, m] \\ t_{1}, \ldots, t_{m} & x_{j}^{-1} t_{i} x_{j}=t_{i} \alpha_{j} & \forall i \in[1, m], \forall j \in[1, n]\end{array}\right\rangle$,
where

- $T=\left\{t_{1}, \ldots, t_{m}\right\}$ is a free-abelian basis for $\langle T\rangle \simeq \mathbb{Z}^{m}$,
- $X=\left\{x_{1}, \ldots, x_{n}\right\}$ is a free basis for $\langle X\rangle \simeq \mathbb{F}_{n}$,
- $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in \operatorname{Aut}\left(\mathbb{Z}^{m}\right)=G L_{m}(\mathbb{Z})$, defining a homomorphism

$$
\begin{aligned}
\alpha: \mathbb{F}_{n} & \rightarrow \operatorname{Aut}\left(\mathbb{Z}^{m}\right)=\mathrm{GL}_{m}(\mathbb{Z}) \\
x_{j} & \mapsto \alpha_{j}
\end{aligned}
$$

FREE-ABELIAN BY FREE GROUPS

A group is free-abelian by free (FABF) if it is of the form
$G_{\alpha}=\mathbb{F}_{n} \ltimes_{\alpha} \mathbb{Z}^{m}=\left\langle\begin{array}{l|ll}x_{1}, \ldots, x_{n} & t_{i} t_{k}=t_{k} t_{i} & \forall i, k \in[1, m] \\ t_{1}, \ldots, t_{m} & x_{j}^{-1} t_{i} x_{j}=t_{i} \alpha_{j} & \forall i \in[1, m], \forall j \in[1, n]\end{array}\right\rangle$,
where

- $T=\left\{t_{1}, \ldots, t_{m}\right\}$ is a free-abelian basis for $\langle T\rangle \simeq \mathbb{Z}^{m}$,
- $X=\left\{x_{1}, \ldots, x_{n}\right\}$ is a free basis for $\langle X\rangle \simeq \mathbb{F}_{n}$,
- $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in \operatorname{Aut}\left(\mathbb{Z}^{m}\right)=G L_{m}(\mathbb{Z})$, defining a homomorphism

$$
\begin{aligned}
\alpha: \mathbb{F}_{n} & \rightarrow \operatorname{Aut}\left(\mathbb{Z}^{m}\right)=\mathrm{GL}_{m}(\mathbb{Z}) \\
x_{j} & \mapsto \alpha_{j}=A_{j}
\end{aligned}
$$

FREE-ABELIAN BY FREE GROUPS

A group is free-abelian by free (FABF) if it is of the form
$G_{\alpha}=\mathbb{F}_{n} \ltimes_{\alpha} \mathbb{Z}^{m}=\left\langle\begin{array}{l|ll}x_{1}, \ldots, x_{n} & t_{i} t_{k}=t_{k} t_{i} & \forall i, k \in[1, m] \\ t_{1}, \ldots, t_{m} & x_{j}^{-1} t_{i} x_{j}=t_{i} \alpha_{j} & \forall i \in[1, m], \forall j \in[1, n]\end{array}\right\rangle$,
where

- $T=\left\{t_{1}, \ldots, t_{m}\right\}$ is a free-abelian basis for $\langle T\rangle \simeq \mathbb{Z}^{m}$,
- $X=\left\{x_{1}, \ldots, x_{n}\right\}$ is a free basis for $\langle X\rangle \simeq \mathbb{F}_{n}$,
- $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in \operatorname{Aut}\left(\mathbb{Z}^{m}\right)=G L_{m}(\mathbb{Z})$, defining a homomorphism

$$
\begin{aligned}
\alpha: \mathbb{F}_{n} & \rightarrow \operatorname{Aut}\left(\mathbb{Z}^{m}\right)=\mathrm{GL}_{m}(\mathbb{Z}) \\
w & \mapsto \alpha_{w}=A_{w}
\end{aligned}
$$

FREE-ABELIAN BY FREE GROUPS

A group is free-abelian by free (FABF) if it is of the form
$G_{\alpha}=\mathbb{F}_{n} \ltimes_{\alpha} \mathbb{Z}^{m}=\left\langle\begin{array}{l|ll}x_{1}, \ldots, x_{n} & t_{i} t_{k}=t_{k} t_{i} & \forall i, k \in[1, m] \\ t_{1}, \ldots, t_{m} & x_{j}^{-1} t_{i} x_{j}=t_{i} \alpha_{j} & \forall i \in[1, m], \forall j \in[1, n]\end{array}\right\rangle$,
where

- $T=\left\{t_{1}, \ldots, t_{m}\right\}$ is a free-abelian basis for $\langle T\rangle \simeq \mathbb{Z}^{m}$,
- $X=\left\{x_{1}, \ldots, x_{n}\right\}$ is a free basis for $\langle X\rangle \simeq \mathbb{F}_{n}$,
- $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in \operatorname{Aut}\left(\mathbb{Z}^{m}\right)=G L_{m}(\mathbb{Z})$, defining a homomorphism

$$
\begin{aligned}
\alpha: \mathbb{F}_{n} & \rightarrow \operatorname{Aut}\left(\mathbb{Z}^{m}\right)=\mathrm{GL}_{m}(\mathbb{Z}) \\
\mathrm{w} & \mapsto \alpha_{w}=\mathrm{A}_{w}
\end{aligned}
$$

Remarks

FREE-ABELIAN BY FREE GROUPS

A group is free-abelian by free (FABF) if it is of the form
$G_{\alpha}=\mathbb{F}_{n} \ltimes_{\alpha} \mathbb{Z}^{m}=\left\langle\begin{array}{l|ll}x_{1}, \ldots, x_{n} & t_{i} t_{k}=t_{k} t_{i} & \forall i, k \in[1, m] \\ t_{1}, \ldots, t_{m} & x_{j}^{-1} t_{i} x_{j}=t_{i} \alpha_{j} & \forall i \in[1, m], \forall j \in[1, n]\end{array}\right\rangle$,
where

- $T=\left\{t_{1}, \ldots, t_{m}\right\}$ is a free-abelian basis for $\langle T\rangle \simeq \mathbb{Z}^{m}$,
- $X=\left\{x_{1}, \ldots, x_{n}\right\}$ is a free basis for $\langle X\rangle \simeq \mathbb{F}_{n}$,
- $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in \operatorname{Aut}\left(\mathbb{Z}^{m}\right)=G L_{m}(\mathbb{Z})$, defining a homomorphism

$$
\begin{aligned}
\alpha: \mathbb{F}_{n} & \rightarrow \operatorname{Aut}\left(\mathbb{Z}^{m}\right)=\mathrm{GL}_{m}(\mathbb{Z}) \\
w & \mapsto \alpha_{w}=A_{w}
\end{aligned}
$$

Remarks

- Normal form: $w t_{1}^{a_{1}} \cdots t_{m}^{a_{m}}=w t^{\mathbf{a}} \quad\left(w \in \mathbb{F}_{n}, \mathbf{a}=\left(a_{1}, \ldots, a_{m}\right) \in \mathbb{Z}^{m}\right)$.

FREE-ABELIAN BY FREE GROUPS

A group is free-abelian by free (FABF) if it is of the form
$G_{\alpha}=\mathbb{F}_{n} \ltimes_{\alpha} \mathbb{Z}^{m}=\left\langle\begin{array}{l|ll}x_{1}, \ldots, x_{n} & t_{i} t_{k}=t_{k} t_{i} & \forall i, k \in[1, m] \\ t_{1}, \ldots, t_{m} & x_{j}^{-1} t_{i} x_{j}=t_{i} \alpha_{j} & \forall i \in[1, m], \forall j \in[1, n]\end{array}\right\rangle$,
where

- $T=\left\{t_{1}, \ldots, t_{m}\right\}$ is a free-abelian basis for $\langle T\rangle \simeq \mathbb{Z}^{m}$,
- $X=\left\{x_{1}, \ldots, x_{n}\right\}$ is a free basis for $\langle X\rangle \simeq \mathbb{F}_{n}$,
- $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in \operatorname{Aut}\left(\mathbb{Z}^{m}\right)=G L_{m}(\mathbb{Z})$, defining a homomorphism

$$
\begin{aligned}
\alpha: \mathbb{F}_{n} & \rightarrow \operatorname{Aut}\left(\mathbb{Z}^{m}\right)=\mathrm{GL}_{m}(\mathbb{Z}) \\
w & \mapsto \alpha_{w}=A_{w}
\end{aligned}
$$

Remarks

- Normal form: $w t_{1}^{a_{1}} \cdots t_{m}^{a_{m}}=w t^{\mathbf{a}} \quad\left(w \in \mathbb{F}_{n}, \mathbf{a}=\left(a_{1}, \ldots, a_{m}\right) \in \mathbb{Z}^{m}\right)$.
- Multiplication rules: $t^{\mathrm{a}} w=w t^{\mathrm{aA}_{w}}$ and $w t^{\mathrm{a}}=t^{\mathrm{aA}_{w}^{-1}} w$.

FREE-ABELIAN BY FREE GROUPS

A group is free-abelian by free (FABF) if it is of the form
$G_{\alpha}=\mathbb{F}_{n} \ltimes_{\alpha} \mathbb{Z}^{m}=\left\langle\begin{array}{l|ll}x_{1}, \ldots, x_{n} & t_{i} t_{k}=t_{k} t_{i} & \forall i, k \in[1, m] \\ t_{1}, \ldots, t_{m} & x_{j}^{-1} t_{i} x_{j}=t_{i} \alpha_{j} & \forall i \in[1, m], \forall j \in[1, n]\end{array}\right\rangle$,
where

- $T=\left\{t_{1}, \ldots, t_{m}\right\}$ is a free-abelian basis for $\langle T\rangle \simeq \mathbb{Z}^{m}$,
- $X=\left\{x_{1}, \ldots, x_{n}\right\}$ is a free basis for $\langle X\rangle \simeq \mathbb{F}_{n}$,
- $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in \operatorname{Aut}\left(\mathbb{Z}^{m}\right)=G L_{m}(\mathbb{Z})$, defining a homomorphism

$$
\begin{aligned}
\alpha: \mathbb{F}_{n} & \rightarrow \operatorname{Aut}\left(\mathbb{Z}^{m}\right)=\mathrm{GL}_{m}(\mathbb{Z}) \\
W & \mapsto \alpha_{w}=\mathrm{A}_{w}
\end{aligned}
$$

Remarks

- Normal form: $w t_{1}^{a_{1}} \cdots t_{m}^{a_{m}}=w t^{\mathrm{a}} \quad\left(w \in \mathbb{F}_{n}, \mathbf{a}=\left(a_{1}, \ldots, a_{m}\right) \in \mathbb{Z}^{m}\right)$.
- Multiplication rules: $t^{\mathrm{a}} w=w t^{\mathrm{aA}_{w}}$ and $w t^{\mathrm{a}}=t^{\mathrm{aA}_{w}^{-1}} w$.
- If $A_{1}, A_{2}, \ldots, A_{n}=I_{m}$, then

$$
G_{\alpha}=\mathbb{F}_{n} \times \mathbb{Z}^{m} \text { is a free-abelian times free (FATF) group. }
$$

SUBGROUPS OF FABF GROUPS

Let $H \leqslant G_{\alpha}=\mathbb{F}_{n} \ltimes_{\alpha} \mathbb{Z}^{m}$ and consider the short exact sequence associated to G_{α} and its restriction to H :

$$
\begin{aligned}
& \mathbb{Z}^{m} \longmapsto G_{\alpha} \xrightarrow{k-\frac{\sigma}{\pi}-\zeta} \mathbb{F}_{n} \\
& \nabla / L^{\prime} \\
& L_{H}=H \cap \mathbb{Z}^{m}=\operatorname{ker}\left(\pi_{\mid H}\right) \longmapsto H \underset{\kappa_{-\overline{\sigma_{H}}}-2}{\pi_{\mid H}} H \pi
\end{aligned}
$$

SUBGROUPS OF FABF GROUPS

Let $H \leqslant G_{\alpha}=\mathbb{F}_{n} \ltimes_{\alpha} \mathbb{Z}^{m}$ and consider the short exact sequence associated to G_{α} and its restriction to H :

Proposition

Let $H \leqslant G_{\alpha}=\mathbb{F}_{n} \ltimes_{\alpha} \mathbb{Z}^{m}$. Then,

$$
H \simeq H \pi \ltimes \alpha_{H}\left(H \cap \mathbb{Z}^{m}\right) \simeq \mathbb{F}_{n^{\prime}} \ltimes \mathbb{Z}^{m^{\prime}}
$$

where $n^{\prime} \in[0, \infty], m^{\prime} \in[0, m]$, and $(u) \alpha_{H}=\alpha_{u \mid H \cap \mathbb{Z}^{m}} \in \operatorname{GL}\left(H \cap \mathbb{Z}^{m}\right)$.

SUBGROUPS OF FABF GROUPS

Let $H \leqslant G_{\alpha}=\mathbb{F}_{n} \ltimes_{\alpha} \mathbb{Z}^{m}$ and consider the short exact sequence associated to G_{α} and its restriction to H :

Proposition

Let $H \leqslant G_{\alpha}=\mathbb{F}_{n} \ltimes_{\alpha} \mathbb{Z}^{m}$. Then,

$$
H \simeq H \pi \ltimes_{\alpha_{H}}\left(H \cap \mathbb{Z}^{m}\right) \simeq \mathbb{F}_{n^{\prime}} \ltimes \mathbb{Z}^{m^{\prime}}
$$

where $n^{\prime} \in[0, \infty], m^{\prime} \in[0, m]$, and $(u) \alpha_{H}=\alpha_{u \mid H \cap \mathbb{Z}^{m}} \in \operatorname{GL}\left(H \cap \mathbb{Z}^{m}\right)$.
Definition. $L_{H}=H \cap \mathbb{Z}^{m}$ is called the base subgroup of H.

SUBGROUPS OF FABF GROUPS

Let $H \leqslant G_{\alpha}=\mathbb{F}_{n} \ltimes_{\alpha} \mathbb{Z}^{m}$ and consider the short exact sequence associated to G_{α} and its restriction to H :

Proposition

Let $H \leqslant G_{\alpha}=\mathbb{F}_{n} \ltimes_{\alpha} \mathbb{Z}^{m}$. Then,

$$
H \simeq H \pi \ltimes_{\alpha_{H}}\left(H \cap \mathbb{Z}^{m}\right) \simeq \mathbb{F}_{n^{\prime}} \ltimes \mathbb{Z}^{m^{\prime}}
$$

where $n^{\prime} \in[0, \infty], m^{\prime} \in[0, m]$, and $(u) \alpha_{H}=\alpha_{u \mid H \cap \mathbb{Z}^{m}} \in \operatorname{GL}\left(H \cap \mathbb{Z}^{m}\right)$.
Definition. $L_{H}=H \cap \mathbb{Z}^{m}$ is called the base subgroup of H.

Corollary

Subgroups of FABF (resp., FATF) groups are again FABF (resp FATF).

BASES

Recall that every subgroup $H \leqslant G_{\alpha}$ splits as:

$$
\begin{equation*}
H=H \pi \sigma \ltimes\left(H \cap \mathbb{Z}^{m}\right), \tag{1}
\end{equation*}
$$

where $\sigma: H \pi \rightarrow G_{\alpha}$ is a section of $\pi_{H}: H \rightarrow H \pi$

BASES

Recall that every subgroup $H \leqslant G_{\alpha}$ splits as:

$$
\begin{equation*}
H=H \pi \sigma \ltimes\left(H \cap \mathbb{Z}^{m}\right), \tag{1}
\end{equation*}
$$

where $\sigma: H \pi \rightarrow G_{\alpha}$ is a section of $\pi_{H}: H \rightarrow H \pi$

Definition

A 'basis' of a subgroup $H \leqslant G_{\alpha}$ is a pair

$$
(V \sigma ; B)=\left(v_{1} t^{c_{1}}, v_{2} t^{c_{2}}, \ldots, v_{n^{\prime}}, t^{c_{n^{\prime}}} ; t^{b_{1}}, t^{b_{2}}, \ldots, t^{b_{m^{\prime}}}\right)
$$

such that:

- $B=\left(b_{1}, b_{2}, \ldots, b_{m^{\prime}}\right)$ is a free-abelian basis of $L_{H}=H \cap \mathbb{Z}^{m} \simeq \mathbb{Z}^{m^{\prime}}$,
- $V=\left(v_{1}, v_{2}, \ldots, v_{n^{\prime}}\right)$ is a free basis of $H \pi \simeq \mathbb{F}_{n^{\prime}}$,
- σ is a section of $\pi_{I H}$.

BASES

Recall that every subgroup $H \leqslant G_{\alpha}$ splits as:

$$
\begin{equation*}
H=H \pi \sigma \ltimes\left(H \cap \mathbb{Z}^{m}\right), \tag{1}
\end{equation*}
$$

where $\sigma: H \pi \rightarrow G_{\alpha}$ is a section of $\pi_{H}: H \rightarrow H \pi$

Definition

A 'basis' of a subgroup $H \leqslant G_{\alpha}$ is a pair

$$
(V \sigma ; B)=\left(v_{1} t^{c_{1}}, v_{2} t^{c_{2}}, \ldots, v_{n^{\prime}}, t^{c_{n^{\prime}}} ; t^{b_{1}}, t^{b_{2}}, \ldots, t^{b_{m^{\prime}}}\right)
$$

such that:

- $B=\left(b_{1}, b_{2}, \ldots, b_{m^{\prime}}\right)$ is a free-abelian basis of $L_{H}=H \cap \mathbb{Z}^{m} \simeq \mathbb{Z}^{m^{\prime}}$,
- $V=\left(v_{1}, v_{2}, \ldots, v_{n^{\prime}}\right)$ is a free basis of $H \pi \simeq \mathbb{F}_{n^{\prime}}$,
- σ is a section of $\pi_{\mid H}$.

Remark. Note that $V \sigma$ is a free basis of the subgroup $H \pi \sigma$, hence:

- A basis of H is the result of joining a basis of each factor in (1).

COMPLETION

Let $H \leqslant G_{\alpha}=\mathbb{F}_{n} \ltimes \mathbb{Z}^{m}$ and let $w \in \mathbb{F}_{n}$. Definition
The completion of w in H is $C_{H}(w)=\left\{\mathbf{c} \in \mathbb{Z}^{m}: w t^{c} \in H\right\}=(w) \pi^{+} \tau$.

COMPLETION

Let $H \leqslant G_{\alpha}=\mathbb{F}_{n} \ltimes \mathbb{Z}^{m}$ and let $w \in \mathbb{F}_{n}$.

Definition

The completion of w in H is $C_{H}(w)=\left\{\mathbf{c} \in \mathbb{Z}^{m}: w t^{c} \in H\right\}=(w) \pi^{+} \tau$.

Lemma

$c_{H}(w)$ is either empty or a coset of $L_{H}=H \cap \mathbb{Z}^{m}$.

COMPLETION

Let $H \leqslant G_{\alpha}=\mathbb{F}_{n} \ltimes \mathbb{Z}^{m}$ and let $w \in \mathbb{F}_{n}$.

Definition

The completion of w in H is $C_{H}(w)=\left\{\mathbf{c} \in \mathbb{Z}^{m}: w t^{c} \in H\right\}=(w) \pi^{+} \tau$.

Lemma

$c_{H}(w)$ is either empty or a coset of $L_{H}=H \cap \mathbb{Z}^{m}$.
In $\mathbb{F}_{n} \times \mathbb{Z}^{m}$ completions are well behaved...

COMPLETION

Let $H \leqslant G_{\alpha}=\mathbb{F}_{n} \ltimes \mathbb{Z}^{m}$ and let $w \in \mathbb{F}_{n}$.

Definition

The completion of w in H is $\mathbf{c}_{H}(w)=\left\{\mathbf{c} \in \mathbb{Z}^{m}: w t^{c} \in H\right\}=(w) \pi^{\leftarrow} \tau$.

Lemma

$c_{H}(w)$ is either empty or a coset of $L_{H}=H \cap \mathbb{Z}^{m}$.
In $\mathbb{F}_{n} \times \mathbb{Z}^{m}$ completions are well behaved...

Lemma

If $\left\{v_{1} t^{c_{1}}, \ldots, v_{n^{\prime}} t^{t_{n^{\prime}}} ; t^{\mathrm{b}_{1}}, \ldots, t^{\mathrm{b}_{m^{\prime}}}\right\}$ is a basis of $\mathbb{F}_{n} \times \mathbb{Z}^{m}$ and $w \in \mathbb{F}_{n}$, then

$$
c_{H}(w)= \begin{cases}\varnothing & \text { if } w \notin H \pi \\ w \phi \rho C+L_{H} & \text { if } w \in H \pi,\end{cases}
$$

where $\phi: H \pi \rightarrow \mathbb{F}_{n^{\prime}}$ is the change of basis $x_{i} \mapsto x_{i}\left(v_{j}\right)$,
$\rho: \mathbb{F}_{n^{\prime}} \rightarrow \mathbb{Z}^{n^{\prime}}$ is the abelianization map,
C is the $n^{\prime} \times m$ integer matrix having c_{i} as ith row.

ENRICHED FLOWER AUTOMATA

ENRICHED FLOWER AUTOMATA

$$
\text { Let } S=\left\{u_{1} t^{a_{1}}, \ldots, u_{k} t^{a_{k}}\right\}
$$

ENRICHED FLOWER AUTOMATA

Let $S=\left\{u_{1} t^{a_{1}}, \ldots, u_{k} t^{a_{k}}\right\}$

ENRICHED FLOWER AUTOMATA

Let $S=\left\{u_{1} t^{a_{1}}, \ldots, u_{k} t^{a_{k}}\right\}$

ENRICHED FLOWER AUTOMATA

Let $S=\left\{u_{1} t^{a_{1}}, \ldots, u_{k} t^{a_{k}}\right\}=\left\{u_{1} t^{a_{1}}, \ldots, u_{s} t^{\mathrm{a}_{\mathbf{s}}}, t^{\mathrm{b}_{1}}, \ldots, t^{\mathrm{b}_{\mathbf{r}}}\right\}$

ENRICHED FLOWER AUTOMATA

$$
\text { Let } S=\left\{u_{1} t^{a_{1}}, \ldots, u_{k} t^{a_{k}}\right\}=\left\{u_{1} t^{a_{1}}, \ldots, u_{s} t^{\mathrm{a}_{s}}, t^{\mathrm{b}_{1}}, \ldots, t^{\mathrm{b}_{r}}\right\}
$$

ENRICHED FLOWER AUTOMATA

Let $S=\left\{u_{1} t^{a_{1}}, \ldots, u_{k} t^{a_{k}}\right\}=\left\{u_{1} t^{a_{1}}, \ldots, u_{s} t^{\mathrm{a}_{\mathbf{s}}}, t^{\mathrm{b}_{1}}, \ldots, t^{\mathrm{b}_{\mathbf{r}}}\right\}$

ENRICHED FLOWER AUTOMATA

Let $S=\left\{u_{1} t^{a_{1}}, \ldots, u_{k} t^{a_{k}}\right\}=\left\{u_{1} t^{\mathrm{a}_{1}}, \ldots, u_{s} t^{\mathrm{a}_{\mathrm{s}}}, t^{\mathrm{b}_{1}}, \ldots, t^{\mathrm{b}_{\mathrm{r}}}\right\}$

ENRICHED FLOWER AUTOMATA

Let $S=\left\{u_{1} t^{a_{1}}, \ldots, u_{k} t^{a_{k}}\right\}=\left\{u_{1} t^{\mathrm{a}_{1}}, \ldots, u_{s} t^{\mathrm{a}_{\mathrm{s}}}, t^{\mathrm{b}_{1}}, \ldots, t^{\mathrm{b}_{\mathrm{r}}}\right\}$

ENRICHED FLOWER AUTOMATA

$$
\text { Let } S=\left\{u_{1} t^{a_{1}}, \ldots, u_{k} t^{a_{k}}\right\}=\left\{u_{1} t^{a_{1}}, \ldots, u_{s} t^{\mathrm{a}_{s}}, t^{\mathrm{b}_{1}}, \ldots, t^{\mathrm{b}_{r}}\right\}
$$

- We add the basepoint subgroup $L \leqslant \mathbb{Z}^{m}$ as a label for $\boldsymbol{\bullet}$.

ENRICHED FLOWER AUTOMATA

Let $S=\left\{u_{1} t^{a_{1}}, \ldots, u_{k} t^{a_{k}}\right\}=\left\{u_{1} t^{a_{1}}, \ldots, u_{s} t^{t_{s}}, t^{b_{1}}, \ldots, t^{b_{r}}\right\}$

- We add the basepoint subgroup $L \leqslant \mathbb{Z}^{m}$ as a label for $\boldsymbol{\bullet}$.
- We add two labels $\mathbf{a}, \mathbf{b} \in \mathbb{Z}^{m}$ to the head and tail of every arc:

ENRICHED FLOWER AUTOMATA

Let $S=\left\{u_{1} t^{a_{1}}, \ldots, u_{k} t^{a_{k}}\right\}=\left\{u_{1} t^{a_{1}}, \ldots, u_{s} t^{a_{s}}, t^{b_{1}}, \ldots, t^{b_{r}}\right\}$

- We add the basepoint subgroup $L \leqslant \mathbb{Z}^{m}$ as a label for $\boldsymbol{\bullet}$.
- We add two labels $\mathbf{a}, \mathbf{b} \in \mathbb{Z}^{m}$ to the head and tail of every arc:

$$
t^{-\mathrm{a}} x_{i} t^{\mathrm{b}}
$$

ENRICHED FLOWER AUTOMATA

Let $S=\left\{u_{1} t^{a_{1}}, \ldots, u_{k} t^{a_{k}}\right\}=\left\{u_{1} t^{a_{1}}, \ldots, u_{s} t^{a_{s}}, t^{b_{1}}, \ldots, t^{b_{r}}\right\}$

- We add the basepoint subgroup $L \leqslant \mathbb{Z}^{m}$ as a label for $\boldsymbol{\bullet}$.
- We add two labels $\mathbf{a}, \mathbf{b} \in \mathbb{Z}^{m}$ to the head and tail of every arc:

ENRICHED FLOWER AUTOMATA

Let $S=\left\{u_{1} t^{a_{1}}, \ldots, u_{k} t^{a_{k}}\right\}=\left\{u_{1} t^{a_{1}}, \ldots, u_{s} t^{a_{s}}, t^{b_{1}}, \ldots, t^{b_{r}}\right\}$

- We add the basepoint subgroup $L \leqslant \mathbb{Z}^{m}$ as a label for $\boldsymbol{\bullet}$.
- We add two labels $\mathbf{a}, \mathbf{b} \in \mathbb{Z}^{m}$ to the head and tail of every arc:

ENRICHED FLOWER AUTOMATA

Let $S=\left\{u_{1} t^{a_{1}}, \ldots, u_{k} t^{a_{k}}\right\}=\left\{u_{1} t^{a_{1}}, \ldots, u_{s} t^{a_{s}}, t^{b_{1}}, \ldots, t^{b_{r}}\right\}$

- We add the basepoint subgroup $L \leqslant \mathbb{Z}^{m}$ as a label for $\boldsymbol{\bullet}$.
- We add two labels $\mathbf{a}, \mathbf{b} \in \mathbb{Z}^{m}$ to the head and tail of every arc:

ENRICHED FLOWER AUTOMATA

Let $S=\left\{u_{1} t^{\mathrm{a}_{1}}, \ldots, u_{k} t^{\mathrm{a}_{k}}\right\}=\left\{u_{1} t^{\mathrm{a}_{1}}, \ldots, u_{s} t^{\mathrm{a}_{s}}, t^{\mathrm{b}_{1}}, \ldots, t^{\mathrm{b}_{\mathrm{r}}}\right\}$

- We add the basepoint subgroup $L \leqslant \mathbb{Z}^{m}$ as a label for $\boldsymbol{\bullet}$.
- We add two labels $\mathbf{a}, \mathrm{b} \in \mathbb{Z}^{m}$ to the head and tail of every arc:

s.t. the abelian contribution of the j-th petal adds up to a_{j},

ENRICHED FLOWER AUTOMATA

Let $S=\left\{u_{1} t^{a_{1}}, \ldots, u_{k} t^{a_{k}}\right\}=\left\{u_{1} t^{a_{1}}, \ldots, u_{s} t^{\mathrm{a}_{s}}, t^{\mathrm{b}_{1}}, \ldots, t^{\mathrm{b}_{\mathrm{r}}}\right\}$

- We add the basepoint subgroup $L \leqslant \mathbb{Z}^{m}$ as a label for $\boldsymbol{0}$.
- We add two labels $\mathbf{a}, \mathrm{b} \in \mathbb{Z}^{m}$ to the head and tail of every arc:

$$
t^{-\mathrm{a}} x_{i} t^{\mathrm{b}}
$$

$$
t^{-b} x_{i}^{-1} t^{a}
$$

s.t. the abelian contribution of the j-th petal adds up to a_{j}, e.g.

ENRICHED FLOWER AUTOMATA

Let $S=\left\{u_{1} t^{a_{1}}, \ldots, u_{k} t^{a_{k}}\right\}=\left\{u_{1} t^{a_{1}}, \ldots, u_{s} t^{a_{s}}, t^{b_{1}}, \ldots, t^{\mathrm{b}_{\mathrm{r}}}\right\}$

- We add the basepoint subgroup $L \leqslant \mathbb{Z}^{m}$ as a label for $\boldsymbol{0}$.
- We add two labels $\mathbf{a}, \mathbf{b} \in \mathbb{Z}^{m}$ to the head and tail of every arc:

$$
t^{-\mathrm{a}} x_{i} t^{\mathrm{b}}
$$

$$
t^{-b} x_{i}^{-1} t^{a}
$$

s.t. the abelian contribution of the j-th petal adds up to a_{j}, e.g.

where $u_{j}=x_{i_{1}} x_{i_{2}} \cdots x_{i_{l}}$.

ENRICHED FLOWER AUTOMATA

Let $S=\left\{u_{1} t^{\mathrm{a}_{1}}, \ldots, u_{k} t^{\mathrm{a}_{k}}\right\}=\left\{u_{1} t^{\mathrm{a}_{1}}, \ldots, u_{s} t^{\mathrm{a}_{s}}, t^{\mathrm{b}_{1}}, \ldots, t^{\mathrm{b}_{\mathrm{r}}}\right\}$

- We add the basepoint subgroup $L \leqslant \mathbb{Z}^{m}$ as a label for $\boldsymbol{0}$.
- We add two labels $\mathbf{a}, \mathbf{b} \in \mathbb{Z}^{m}$ to the head and tail of every arc:

$$
t^{-\mathrm{a}} x_{i} t^{\mathrm{b}}
$$

$$
t^{-b} x_{i}^{-1} t^{a}
$$

s.t. the abelian contribution of the j-th petal adds up to a_{j}, e.g.

where $u_{j}=x_{i_{1}} x_{i_{2}} \cdots x_{i_{i}}$.

ENRICHED FLOWER AUTOMATA

Let $S=\left\{u_{1} t^{\mathrm{a}_{1}}, \ldots, u_{k} t^{\mathrm{a}_{k}}\right\}=\left\{u_{1} t^{\mathrm{a}_{1}}, \ldots, u_{s} t^{\mathrm{a}_{s}}, t^{\mathrm{b}_{1}}, \ldots, t^{\mathrm{b}_{\mathrm{r}}}\right\}$

- We add the basepoint subgroup $L \leqslant \mathbb{Z}^{m}$ as a label for $\mathbf{0}$.
- We add two labels $\mathbf{a}, \mathbf{b} \in \mathbb{Z}^{m}$ to the head and tail of every arc:

$$
t^{-\mathrm{a}} x_{i} t^{\mathrm{b}}
$$

$$
t^{-b} x_{i}^{-1} t^{a}
$$

s.t. the abelian contribution of the j-th petal adds up to a_{j}, e.g.

where $u_{j}=x_{i_{1}} x_{i_{2}} \cdots x_{i_{1}}$.

ENRICHED FLOWER AUTOMATA

Let $S=\left\{u_{1} t^{a_{1}}, \ldots, u_{k} t^{a_{k}}\right\}=\left\{u_{1} t^{a_{1}}, \ldots, u_{s} t^{a_{s}}, t^{b_{1}}, \ldots, t^{\mathrm{b}_{r}}\right\}$

- We add the basepoint subgroup $L \leqslant \mathbb{Z}^{m}$ as a label for $\boldsymbol{0}$.
- We add two labels $\mathbf{a}, \mathbf{b} \in \mathbb{Z}^{m}$ to the head and tail of every arc:

$$
t^{-\mathrm{a}} x_{i} t^{\mathrm{b}}
$$

$$
t^{-b} x_{i}^{-1} t^{a}
$$

s.t. the abelian contribution of the j-th petal adds up to a_{j}, e.g.

where $u_{j}=x_{i_{1}} x_{i_{2}} \cdots x_{i_{1}}$.

- \mathcal{F}_{S} is called the (enriched) flower automaton of S.

ENRICHED AUTOMATA

ENRICHED AUTOMATA

Definition

A \mathbb{Z}^{m}-enriched X-automaton $\widehat{\Gamma}_{L}=(\widehat{\Gamma}, L)$ is a pointed involutive automaton $\widehat{\Gamma}$ with:

1. the basepoint \odot labelled by a subgroup $L \leqslant \mathbb{Z}^{m}$. and every arc having:

ENRICHED AUTOMATA

Definition

A \mathbb{Z}^{m}-enriched X-automaton $\widehat{\Gamma}_{L}=(\widehat{\Gamma}, L)$ is a pointed involutive automaton $\widehat{\Gamma}$ with:

1. the basepoint © labelled by a subgroup $L \leqslant \mathbb{Z}^{m}$. and every arc having:
2. a middle "free label" $x_{i} \in X$.

ENRICHED AUTOMATA

Definition

A \mathbb{Z}^{m}-enriched X-automaton $\widehat{\Gamma}_{L}=(\widehat{\Gamma}, L)$ is a pointed involutive automaton $\widehat{\Gamma}$ with:

1. the basepoint \bullet labelled by a subgroup $L \leqslant \mathbb{Z}^{m}$. and every arc having:
2. a middle "free label" $x_{i} \in X$.

ENRICHED AUTOMATA

Definition

A \mathbb{Z}^{m}-enriched X-automaton $\widehat{\Gamma}_{L}=(\widehat{\Gamma}, L)$ is a pointed involutive automaton $\widehat{\Gamma}$ with:

1. the basepoint © labelled by a subgroup $L \leqslant \mathbb{Z}^{m}$. and every arc having:
2. a middle "free label" $x_{i} \in X$.
3. two "abelian labels" $\mathrm{a}, \mathrm{b} \in \mathbb{Z}^{m}$ in the head and tail respectively,

ENRICHED AUTOMATA

Definition

A \mathbb{Z}^{m}-enriched X-automaton $\widehat{\Gamma}_{L}=(\widehat{\Gamma}, L)$ is a pointed involutive automaton $\widehat{\Gamma}$ with:

1. the basepoint © labelled by a subgroup $L \leqslant \mathbb{Z}^{m}$.
and every arc having:
2. a middle "free label" $x_{i} \in X$.
3. two "abelian labels" $\mathrm{a}, \mathrm{b} \in \mathbb{Z}^{m}$ in the head and tail respectively,

ENRICHED AUTOMATA

Definition

A \mathbb{Z}^{m}-enriched X-automaton $\widehat{\Gamma}_{L}=(\widehat{\Gamma}, L)$ is a pointed involutive automaton $\widehat{\Gamma}$ with:

1. the basepoint \odot labelled by a subgroup $L \leqslant \mathbb{Z}^{m}$.
and every arc having:
2. a middle "free label" $x_{i} \in X$.
3. two "abelian labels" $\mathrm{a}, \mathrm{b} \in \mathbb{Z}^{m}$ in the head and tail respectively, meant to be read

ENRICHED AUTOMATA

Definition

A \mathbb{Z}^{m}-enriched X-automaton $\widehat{\Gamma}_{L}=(\widehat{\Gamma}, L)$ is a pointed involutive automaton $\widehat{\Gamma}$ with:

1. the basepoint \odot labelled by a subgroup $L \leqslant \mathbb{Z}^{m}$.
and every arc having:
2. a middle "free label" $x_{i} \in X$.
3. two "abelian labels" $\mathrm{a}, \mathrm{b} \in \mathbb{Z}^{m}$ in the head and tail respectively, meant to be read

ENRICHED AUTOMATA

Definition

A \mathbb{Z}^{m}-enriched X-automaton $\widehat{\Gamma}_{L}=(\widehat{\Gamma}, L)$ is a pointed involutive automaton $\widehat{\Gamma}$ with:

1. the basepoint © labelled by a subgroup $L \leqslant \mathbb{Z}^{m}$.
and every arc having:
2. a middle "free label" $x_{i} \in X$.
3. two "abelian labels" $\mathrm{a}, \mathrm{b} \in \mathbb{Z}^{m}$ in the head and tail respectively, meant to be read

ENRICHED AUTOMATA

Definition

A \mathbb{Z}^{m}-enriched X-automaton $\widehat{\Gamma}_{L}=(\widehat{\Gamma}, L)$ is a pointed involutive automaton $\widehat{\Gamma}$ with:

1. the basepoint © labelled by a subgroup $L \leqslant \mathbb{Z}^{m}$.
and every arc having:
2. a middle "free label" $x_{i} \in X$.
3. two "abelian labels" $\mathrm{a}, \mathrm{b} \in \mathbb{Z}^{m}$ in the head and tail respectively, meant to be read (for a given action $\alpha=\left(A_{i}\right)_{i}: \mathbb{F}_{X} \rightarrow G L_{m}(\mathbb{Z})$):

ENRICHED AUTOMATA

Definition

A \mathbb{Z}^{m}-enriched X-automaton $\widehat{\Gamma}_{L}=(\widehat{\Gamma}, L)$ is a pointed involutive automaton $\widehat{\Gamma}$ with:

1. the basepoint © labelled by a subgroup $L \leqslant \mathbb{Z}^{m}$.
and every arc having:
2. a middle "free label" $x_{i} \in X$.
3. two "abelian labels" $\mathrm{a}, \mathrm{b} \in \mathbb{Z}^{m}$ in the head and tail respectively, meant to be read (for a given action $\alpha=\left(A_{i}\right)_{i}: \mathbb{F}_{X} \rightarrow G L_{m}(\mathbb{Z})$):

ENRICHED AUTOMATA

Definition

A \mathbb{Z}^{m}-enriched X-automaton $\widehat{\Gamma}_{L}=(\widehat{\Gamma}, L)$ is a pointed involutive automaton $\widehat{\Gamma}$ with:

1. the basepoint © labelled by a subgroup $L \leqslant \mathbb{Z}^{m}$.
and every arc having:
2. a middle "free label" $x_{i} \in X$.
3. two "abelian labels" $\mathrm{a}, \mathrm{b} \in \mathbb{Z}^{m}$ in the head and tail respectively, meant to be read (for a given action $\alpha=\left(A_{i}\right)_{i}: \mathbb{F}_{X} \rightarrow G L_{m}(\mathbb{Z})$):

ENRICHED AUTOMATA

Definition

A \mathbb{Z}^{m}-enriched X-automaton $\widehat{\Gamma}_{L}=(\widehat{\Gamma}, L)$ is a pointed involutive automaton $\widehat{\Gamma}$ with:

1. the basepoint © labelled by a subgroup $L \leqslant \mathbb{Z}^{m}$.
and every arc having:
2. a middle "free label" $x_{i} \in X$.
3. two "abelian labels" $\mathrm{a}, \mathrm{b} \in \mathbb{Z}^{m}$ in the head and tail respectively, meant to be read (for a given action $\alpha=\left(A_{i}\right)_{i}: \mathbb{F}_{X} \rightarrow G L_{m}(\mathbb{Z})$):

Definition.
The subgroup recognized by $\widehat{\Gamma}_{L}$ in G_{α}, denoted by $\left\langle\widehat{\Gamma}_{L}\right\rangle_{\alpha}$ is the set of α-enriched labels of \odot-walks in $\widehat{\Gamma}$.

SKELETON

Definition:

The skeleton of $\widehat{\Gamma}_{L}$, denoted by $\operatorname{sk}\left(\widehat{\Gamma}_{L}\right)$ is the X-automaton obtained after removing from $\widehat{\Gamma}$ all the abelian labels.

SKELETON

Definition:

The skeleton of $\widehat{\Gamma}_{L}$, denoted by $\operatorname{sk}\left(\widehat{\Gamma}_{L}\right)$ is the X-automaton obtained after removing from $\widehat{\Gamma}$ all the abelian labels.

It is clear that $\left\langle\operatorname{sk}\left(\widehat{\Gamma}_{L}\right)\right\rangle=\left(\left\langle\widehat{\Gamma}_{L}\right\rangle\right) \pi \leqslant \mathbb{F}_{x}$.

SKELETON

Definition:

The skeleton of $\widehat{\Gamma}_{L}$, denoted by $\operatorname{sk}\left(\widehat{\Gamma}_{L}\right)$ is the X-automaton obtained after removing from $\widehat{\Gamma}$ all the abelian labels.

It is clear that $\left\langle\operatorname{sk}\left(\widehat{\Gamma}_{L}\right)\right\rangle=\left(\left\langle\widehat{\Gamma}_{L}\right\rangle\right) \pi \leqslant \mathbb{F}_{x}$.
Example: $\mathrm{A} \mathbb{Z}^{2}$-enriched $\{x, y\}$-automaton and its skeleton

SKELETON

Definition:

The skeleton of $\widehat{\Gamma}_{L}$, denoted by $\operatorname{sk}\left(\widehat{\Gamma}_{L}\right)$ is the X-automaton obtained after removing from $\widehat{\Gamma}$ all the abelian labels.

It is clear that $\left\langle\operatorname{sk}\left(\widehat{\Gamma}_{L}\right)\right\rangle=\left(\left\langle\widehat{\Gamma}_{L}\right\rangle\right) \pi \leqslant \mathbb{F}_{x}$.
Example: $\mathrm{A} \mathbb{Z}^{2}$-enriched $\{x, y\}$-automaton and its skeleton

REDUNDANCY

As it happens in the free group, it is clear that

$$
\begin{aligned}
\left\{\mathbb{Z}^{m} \text {-enriched X-automata }\right\} & \rightarrow\left\{\text { subgroups of } G_{\alpha}\right\} \\
\widehat{\Gamma} & \mapsto\langle\widehat{\Gamma}\rangle_{\alpha}
\end{aligned}
$$

is well-defined and onto (why?),

REDUNDANCY

As it happens in the free group, it is clear that

$$
\begin{aligned}
\left\{\mathbb{Z}^{m} \text {-enriched X-automata }\right\} & \rightarrow\left\{\text { subgroups of } G_{\alpha}\right\} \\
\widehat{\Gamma} & \mapsto\langle\widehat{\Gamma}\rangle_{\alpha}
\end{aligned}
$$

is well-defined and onto (why?), but very far from injective...

REDUNDANCY

As it happens in the free group, it is clear that

$$
\begin{aligned}
\left\{\mathbb{Z}^{m} \text {-enriched X-automata }\right\} & \rightarrow\left\{\text { subgroups of } G_{\alpha}\right\} \\
\widehat{\Gamma} & \mapsto\langle\widehat{\Gamma}\rangle_{\alpha}
\end{aligned}
$$

is well-defined and onto (why?), but very far from injective...
There is a lot of redundancy in an enriched automaton $\widehat{\Gamma}$:

- In the skeleton sk($(\widehat{\Gamma})$ (coming from non-determinism and non-coreness),

REDUNDANCY

As it happens in the free group, it is clear that

$$
\begin{aligned}
\left\{\mathbb{Z}^{m} \text {-enriched X-automata }\right\} & \rightarrow\left\{\text { subgroups of } G_{\alpha}\right\} \\
\widehat{\Gamma} & \mapsto\langle\widehat{\Gamma}\rangle_{\alpha}
\end{aligned}
$$

is well-defined and onto (why?), but very far from injective...
There is a lot of redundancy in an enriched automaton $\widehat{\Gamma}$:

- In the skeleton sk($(\widehat{\Gamma})$
(coming from non-determinism and non-coreness),
- In the basepoint subgroup L
(by conjugation w.r.t. the free part or closed foldings),

REDUNDANCY

As it happens in the free group, it is clear that

$$
\begin{aligned}
\left\{\mathbb{Z}^{m} \text {-enriched X-automata }\right\} & \rightarrow\left\{\text { subgroups of } G_{\alpha}\right\} \\
\widehat{\Gamma} & \mapsto\langle\widehat{\Gamma}\rangle_{\alpha}
\end{aligned}
$$

is well-defined and onto (why?), but very far from injective...
There is a lot of redundancy in an enriched automaton $\widehat{\Gamma}$:

- In the skeleton sk($(\widehat{\Gamma})$
(coming from non-determinism and non-coreness),
- In the basepoint subgroup L
(by conjugation w.r.t. the free part or closed foldings),
- In the arc-labelling
(by the multiplication rules in $G_{\alpha}+$ the action of L).

REDUNDANCY

As it happens in the free group, it is clear that

$$
\begin{aligned}
\left\{\mathbb{Z}^{m} \text {-enriched X-automata }\right\} & \rightarrow\left\{\text { subgroups of } G_{\alpha}\right\} \\
\widehat{\Gamma} & \mapsto\langle\widehat{\Gamma}\rangle_{\alpha}
\end{aligned}
$$

is well-defined and onto (why?), but very far from injective...
There is a lot of redundancy in an enriched automaton $\widehat{\Gamma}$:

- In the skeleton sk($(\widehat{\Gamma})$
(coming from non-determinism and non-coreness),
- In the basepoint subgroup L
(by conjugation w.r.t. the free part or closed foldings),
- In the arc-labelling
(by the multiplication rules in $G_{\alpha}+$ the action of L).
In order to get rid of these redundancy we introduce different kinds of transformations ...

ABELIAN TRANSFORMATIONS

ABELIAN TRANSFORMATIONS

Lemma

The following transformations do not change the subgroup $H=\left\langle\widehat{\Gamma}_{L}\right\rangle$:

ABELIAN TRANSFORMATIONS

Lemma

The following transformations do not change the subgroup $H=\left\langle\widehat{\Gamma}_{L}\right\rangle$:
$A 0$ Replacing the base subgroup $L \longrightarrow \bar{L}=L^{H \pi}=(L) A_{H \pi}$.

ABELIAN TRANSFORMATIONS

Lemma

The following transformations do not change the subgroup $H=\left\langle\widehat{\Gamma}_{L}\right\rangle$:
A0 Replacing the base subgroup $L \longrightarrow \bar{L}=L^{H \pi}=(L) A_{H \pi}$.
A1 Adding any $\mathrm{l} \in L$ to any abelian label in the neighborhood of $\boldsymbol{\bullet}$:

ABELIAN TRANSFORMATIONS

Lemma

The following transformations do not change the subgroup $H=\left\langle\widehat{\Gamma}_{L}\right\rangle$:
A0 Replacing the base subgroup $L \longrightarrow \bar{L}=L^{H \pi}=(L) A_{H \pi}$.
A1 Adding any $\mathrm{l} \in L$ to any abelian label in the neighborhood of $\boldsymbol{\bullet}$:

ABELIAN TRANSFORMATIONS

Lemma

The following transformations do not change the subgroup $H=\left\langle\widehat{\Gamma}_{L}\right\rangle$:
A0 Replacing the base subgroup $L \longrightarrow \bar{L}=L^{H \pi}=(L) A_{H \pi}$.
A1 Adding any $\mathrm{l} \in L$ to any abelian label in the neighborhood of $\boldsymbol{\bullet}$:

A2 Adding c and cA_{i} to the tail and head of an arc with free label x_{i} :

ABELIAN TRANSFORMATIONS

Lemma

The following transformations do not change the subgroup $H=\left\langle\widehat{\Gamma}_{L}\right\rangle$:
A0 Replacing the base subgroup $L \longrightarrow \bar{L}=L^{H \pi}=(L) A_{H \pi}$.
A1 Adding any $\mathrm{l} \in L$ to any abelian label in the neighborhood of \bullet :

A 2 Adding c and cA_{i} to the tail and head of an arc with free label x_{i} :

ABELIAN TRANSFORMATIONS

Lemma

The following transformations do not change the subgroup $H=\left\langle\widehat{\Gamma}_{L}\right\rangle$:
$A 0$ Replacing the base subgroup $L \backsim \bar{L}=L^{H \pi}=(L) A_{H \pi}$.
A1 Adding any $\mathrm{l} \in L$ to any abelian label in the neighborhood of $\boldsymbol{\bullet}$:

A2 Adding c and cA_{i} to the tail and head of an arc with free label x_{i} :

A3 Adding any $\mathrm{c} \in \mathbb{Z}^{m}$ to every abelian label in the neighborhood of a nonbase vertex:

ABELIAN TRANSFORMATIONS

Lemma

The following transformations do not change the subgroup $H=\left\langle\widehat{\Gamma}_{L}\right\rangle$:
A0 Replacing the base subgroup $L \backsim \bar{L}=L^{H \pi}=(L) A_{H \pi}$.
A1 Adding any $\mathrm{l} \in L$ to any abelian label in the neighborhood of \bullet :

A 2 Adding c and cA_{i} to the tail and head of an arc with free label x_{i} :

A3 Adding any $\mathrm{c} \in \mathbb{Z}^{m}$ to every abelian label in the neighborhood of a nonbase vertex:

ABELIAN TRANSFORMATIONS

Lemma

The following transformations do not change the subgroup $H=\left\langle\widehat{\Gamma}_{L}\right\rangle$:
A0 Replacing the base subgroup $L \backsim \bar{L}=L^{H \pi}=(L) A_{H \pi}$.
A1 Adding any $\mathrm{l} \in L$ to any abelian label in the neighborhood of \bullet :

A 2 Adding c and cA_{i} to the tail and head of an arc with free label x_{i} :

A3 Adding any $\mathrm{c} \in \mathbb{Z}^{m}$ to every abelian label in the neighborhood of a nonbase vertex:

ENRICHED FOLDINGS

ENRICHED FOLDINGS

Lemma

The following transformations do not change the subgroup recognized by an enriched automaton:

ENRICHED FOLDINGS

Lemma

The following transformations do not change the subgroup recognized by an enriched automaton:

F1 Identify two nonparallel incident arcs with the same labels:

ENRICHED FOLDINGS

Lemma

The following transformations do not change the subgroup recognized by an enriched automaton:

F1 Identify two nonparallel incident arcs with the same labels:

ENRICHED FOLDINGS

Lemma

The following transformations do not change the subgroup recognized by an enriched automaton:

F1 Identify two nonparallel incident arcs with the same labels:

(open folding)

ENRICHED FOLDINGS

Lemma

The following transformations do not change the subgroup recognized by an enriched automaton:

F1 Identify two nonparallel incident arcs with the same labels:

(open folding)

F2 "Identify" two parallel edges with the same free label:

ENRICHED FOLDINGS

Lemma

The following transformations do not change the subgroup recognized by an enriched automaton:

F1 Identify two nonparallel incident arcs with the same labels:

(open folding)

F2 "Identify" two parallel edges with the same free label:

ENRICHED FOLDINGS

Lemma

The following transformations do not change the subgroup recognized by an enriched automaton:

F1 Identify two nonparallel incident arcs with the same labels:

(open folding)

F2 "Identify" two parallel edges with the same free label:

ENRICHED FOLDINGS

Lemma

The following transformations do not change the subgroup recognized by an enriched automaton:

F1 Identify two nonparallel incident arcs with the same labels:

(open folding)

F2 "Identify" two parallel edges with the same free label:

ENRICHED FOLDINGS

Lemma

The following transformations do not change the subgroup recognized by an enriched automaton:

F1 Identify two nonparallel incident arcs with the same labels:

(open folding)

F2 "Identify" two parallel edges with the same free label:

TWO IMPORTANT LEMMAS

TWO IMPORTANT LEMMAS

Lemma
If $\widehat{\Gamma}_{L}$ is finite then a basis for $\bar{L}=L^{H \pi}$ is computable.

TWO IMPORTANT LEMMAS

Lemma

If $\widehat{\Gamma}_{L}$ is finite then a basis for $\bar{L}=L^{H \pi}$ is computable.
Proof. Given $\widehat{\Gamma}_{L}$ a finite enriched automaton,

1. Compute a free-abelian basis B of L;

TWO IMPORTANT LEMMAS

Lemma

If $\widehat{\Gamma}_{L}$ is finite then a basis for $\bar{L}=L^{H \pi}$ is computable.
Proof. Given $\widehat{\Gamma}_{L}$ a finite enriched automaton,

1. Compute a free-abelian basis B of L;
2. compute a basis W of $H \pi=\left\langle\operatorname{sk}\left(\widehat{\Gamma}_{L}\right)\right\rangle$;

TWO IMPORTANT LEMMAS

Lemma

If $\widehat{\Gamma}_{L}$ is finite then a basis for $\bar{L}=L^{H \pi}$ is computable.
Proof. Given $\widehat{\Gamma}_{L}$ a finite enriched automaton,

1. Compute a free-abelian basis B of L;
2. compute a basis W of $H \pi=\left\langle\operatorname{sk}\left(\widehat{\Gamma}_{L}\right)\right\rangle$;
3. check whether $L=\langle B\rangle$ is invariant by conjugation by $H \pi$, i.e., check whether

$$
(B) A_{w} \subseteq B
$$

TWO IMPORTANT LEMMAS

Lemma

If $\widehat{\Gamma}_{L}$ is finite then a basis for $\bar{L}=L^{H \pi}$ is computable.
Proof. Given $\widehat{\Gamma}_{L}$ a finite enriched automaton,

1. Compute a free-abelian basis B of L;
2. compute a basis W of $H \pi=\left\langle\operatorname{sk}\left(\widehat{\Gamma}_{L}\right)\right\rangle$;
3. check whether $L=\langle B\rangle$ is invariant by conjugation by $H \pi$, i.e., check whether

$$
(B) A_{w} \subseteq B
$$

(decidable since both B and W are finite)

TWO IMPORTANT LEMMAS

Lemma

If $\widehat{\Gamma}_{L}$ is finite then a basis for $\bar{L}=L^{H \pi}$ is computable.
Proof. Given $\hat{\Gamma}_{L}$ a finite enriched automaton,

1. Compute a free-abelian basis B of L;
2. compute a basis W of $H \pi=\left\langle\operatorname{sk}\left(\widehat{\Gamma}_{L}\right)\right\rangle$;
3. check whether $L=\langle B\rangle$ is invariant by conjugation by $H \pi$, i.e., check whether

$$
(B) A_{w} \subseteq B
$$

(decidable since both B and W are finite)
4. if YES then return B;

TWO IMPORTANT LEMMAS

Lemma

If $\widehat{\Gamma}_{L}$ is finite then a basis for $\bar{L}=L^{H \pi}$ is computable.
Proof. Given $\widehat{\Gamma}_{L}$ a finite enriched automaton,

1. Compute a free-abelian basis B of L;
2. compute a basis W of $H \pi=\left\langle\operatorname{sk}\left(\widehat{\Gamma}_{L}\right)\right\rangle$;
3. check whether $L=\langle B\rangle$ is invariant by conjugation by $H \pi$, i.e., check whether

$$
(B) A_{w} \subseteq B
$$

(decidable since both B and W are finite)
4. if YES then return B;
5. otherwise compute a basis for B^{\prime} for $\left\langle B \cup(B) A_{w}\right\rangle$;

TWO IMPORTANT LEMMAS

Lemma

If $\widehat{\Gamma}_{L}$ is finite then a basis for $\bar{L}=L^{H \pi}$ is computable.
Proof. Given $\widehat{\Gamma}_{L}$ a finite enriched automaton,

1. Compute a free-abelian basis B of L;
2. compute a basis W of $H \pi=\left\langle\operatorname{sk}\left(\widehat{\Gamma}_{L}\right)\right\rangle$;
3. check whether $L=\langle B\rangle$ is invariant by conjugation by $H \pi$, i.e., check whether

$$
(B) A_{w} \subseteq B
$$

(decidable since both B and W are finite)
4. if YES then return B;
5. otherwise compute a basis for B^{\prime} for $\left\langle B \cup(B) A_{w}\right\rangle$;
6. update $B \leftarrow B^{\prime}$ and repeat step 3 .

TWO IMPORTANT LEMMAS

Lemma

If $\widehat{\Gamma}_{L}$ is finite then a basis for $\bar{L}=L^{H \pi}$ is computable.
Proof. Given $\widehat{\Gamma}_{L}$ a finite enriched automaton, the previous algorithm always ends because every updating of B either:

- increases the rank of $\langle B\rangle$, or
- decreases the index of $\langle B\rangle$ in its direct sum completion C : $\langle B\rangle \leqslant{ }_{\mathrm{fi}} C \leqslant \mathbb{Z}^{m}$.

TWO IMPORTANT LEMMAS

Lemma

If $\widehat{\Gamma}_{L}$ is finite then a basis for $\bar{L}=L^{H \pi}$ is computable.
Proof. Given $\widehat{\Gamma}_{L}$ a finite enriched automaton, the previous algorithm always ends because every updating of B either:

- increases the rank of $\langle B\rangle$, or
- decreases the index of $\langle B\rangle$ in its direct sum completion C :

$$
\langle B\rangle \leqslant{ }_{\mathrm{fi}} C \leqslant \leqslant_{\oplus} \mathbb{Z}^{m} .
$$

Since the $r k(\langle B\rangle) \leqslant m$ and $|C:\langle B\rangle| \leqslant \infty$, the algorithm is guaranteed to terminate in finite time with output $\bar{L}=L^{H \pi}$.

TWO IMPORTANT LEMMAS

Lemma

If $\widehat{\Gamma}_{L}$ is finite then a basis for $\bar{L}=L^{H \pi}$ is computable.
Proof. Given $\widehat{\Gamma}_{L}$ a finite enriched automaton, the previous algorithm always ends because every updating of B either:

- increases the rank of $\langle B\rangle$, or
- decreases the index of $\langle B\rangle$ in its direct sum completion C :

$$
\langle B\rangle \leqslant \leqslant_{\mathrm{fi}} C \leqslant \oplus \mathbb{Z}^{m}
$$

Since the $r k(\langle B\rangle) \leqslant m$ and $|C:\langle B\rangle| \leqslant \infty$, the algorithm is guaranteed to terminate in finite time with output $\bar{L}=L^{H \pi}$.

Lemma

A pair of enriched $\operatorname{arcs} \widehat{\mathrm{e}}_{1}, \widehat{\mathrm{e}}_{2}$ in $\widehat{\Gamma}_{L}$ admit an open (resp. closed) folding if and only if the corresponding arcs $\mathrm{e}_{1}, \mathrm{e}_{2}$ admit an open (resp. closed) folding in $\operatorname{sk}\left(\widehat{\Gamma}_{L}\right)$.

TWO IMPORTANT LEMMAS

Lemma

If $\widehat{\Gamma}_{L}$ is finite then a basis for $\bar{L}=L^{H \pi}$ is computable.
Proof. Given $\widehat{\Gamma}_{L}$ a finite enriched automaton, the previous algorithm always ends because every updating of B either:

- increases the rank of $\langle B\rangle$, or
- decreases the index of $\langle B\rangle$ in its direct sum completion C :

$$
\langle B\rangle \leqslant{ }_{\mathrm{fi}} C \leqslant \leqslant_{\oplus} \mathbb{Z}^{m} .
$$

Since the $\operatorname{rk}(\langle B\rangle) \leqslant m$ and $|C:\langle B\rangle| \leqslant \infty$, the algorithm is guaranteed to terminate in finite time with output $\bar{L}=L^{H \pi}$.

Lemma

A pair of enriched $\operatorname{arcs} \widehat{\mathrm{e}}_{1}, \widehat{\mathrm{e}}_{2}$ in $\widehat{\Gamma}_{L}$ admit an open (resp. closed) folding if and only if the corresponding arcs $\mathrm{e}_{1}, \mathrm{e}_{2}$ admit an open (resp. closed) folding in sk($\left(\widehat{\Gamma}_{L}\right)$.

Proof. Play with abelian transformations.

REDUCED ENRICHED AUTOMATA

Definition.

An enriched automaton is said to be deterministic (resp., core) if its skeleton is so.

REDUCED ENRICHED AUTOMATA

Definition.

An enriched automaton is said to be deterministic (resp., core) if its skeleton is so.

An enriched automaton is said to be reduced if it is deterministic, core, and basepoint closed (i.e., $L=\bar{L}$).

REDUCED ENRICHED AUTOMATA

Definition.
An enriched automaton is said to be deterministic (resp., core) if its skeleton is so.

An enriched automaton is said to be reduced if it is deterministic, core, and basepoint closed (i.e., $L=\bar{L}$).

Proposition

Let $\widehat{\Gamma}_{L}$ be a reduced automaton recognizing $H \leqslant G_{\alpha}$. Then,

1. $L=H \cap \mathbb{Z}^{m}$;
2. $\left\langle\widehat{\Gamma}_{0}\right\rangle=H \pi \sigma$, where σ is given by T-petals in $\operatorname{sk}\left(\widehat{\Gamma}_{L}\right)$;
3. $\operatorname{sk}\left(\widehat{\Gamma}_{L}\right)=\operatorname{St}(H \pi)$.

REDUCED ENRICHED AUTOMATA

Definition.

An enriched automaton is said to be deterministic (resp., core) if its skeleton is so.

An enriched automaton is said to be reduced if it is deterministic, core, and basepoint closed (i.e., $L=\bar{L}$).

Proposition

Let $\hat{\Gamma}_{L}$ be a reduced automaton recognizing $H \leqslant G_{\alpha}$. Then,

1. $L=H \cap \mathbb{Z}^{m}$;
2. $\left\langle\widehat{\Gamma}_{0}\right\rangle=H \pi \sigma$, where σ is given by T-petals in $\operatorname{sk}\left(\widehat{\Gamma}_{L}\right)$;
3. $\operatorname{sk}\left(\widehat{\Gamma}_{L}\right)=\operatorname{St}(H \pi)$.

Hence, a reduced enriched automaton recognizing H properly encodes a splitting:

$$
H=H \pi \sigma \ltimes\left(H \cap \mathbb{Z}^{m}\right)
$$

REDUCED ENRICHED AUTOMATA

Definition.

An enriched automaton is said to be deterministic (resp., core) if its skeleton is so.

An enriched automaton is said to be reduced if it is deterministic, core, and basepoint closed (i.e., $L=\bar{L}$).

Proposition

Let $\hat{\Gamma}_{L}$ be a reduced automaton recognizing $H \leqslant G_{\alpha}$. Then,

1. $L=H \cap \mathbb{Z}^{m}$;
2. $\left\langle\widehat{\Gamma}_{0}\right\rangle=H \pi \sigma$, where σ is given by T-petals in $\operatorname{sk}\left(\widehat{\Gamma}_{L}\right)$;
3. $\operatorname{sk}\left(\widehat{\Gamma}_{L}\right)=\operatorname{St}(H \pi)$.

Hence, a reduced enriched automaton recognizing H properly encodes a splitting:

$$
H=H \pi \sigma \ltimes\left(H \cap \mathbb{Z}^{m}\right)
$$

But it is still not unique...

NORMALIZATION

The sources of redundancy of a reduced enriched automaton $\widehat{\Gamma}_{L}$ are:
I. the dependence of the abelian labels in the arcs "modulo the basepoint subgroup";

NORMALIZATION

The sources of redundancy of a reduced enriched automaton $\hat{\Gamma}_{L}$ are:
I. the dependence of the abelian labels in the arcs "modulo the basepoint subgroup";
II. the dependence of the abelian labels in the arcs "modulo the multiplication rules in G_{α} ".

NORMALIZATION

The sources of redundancy of a reduced enriched automaton $\widehat{\Gamma}_{L}$ are:
I. the dependence of the abelian labels in the arcs "modulo the basepoint subgroup";
II. the dependence of the abelian labels in the arcs "modulo the multiplication rules in G_{α} ".

Redundancy of type I is intrinsic and there is not much that we can do about it, other than considering the enriched automaton $\widehat{\Gamma}_{L}$ modulo L.

NORMALIZATION

The sources of redundancy of a reduced enriched automaton $\widehat{\Gamma}_{L}$ are:
I. the dependence of the abelian labels in the arcs "modulo the basepoint subgroup";
II. the dependence of the abelian labels in the arcs "modulo the multiplication rules in G_{α} ".

Redundancy of type I is intrinsic and there is not much that we can do about it, other than considering the enriched automaton $\widehat{\Gamma}_{L}$ modulo L. In order to fix redundancy of type II, we choose a spanning tree T in $\widehat{\Gamma}_{L}$ and we use abelian transformations to obtain an equivalent automaton $\widehat{\Delta}_{L}$ with zeros at every abelian arc-label except at the end of the arcs outside T.

NORMALIZATION

The sources of redundancy of a reduced enriched automaton $\widehat{\Gamma}_{L}$ are:
I. the dependence of the abelian labels in the arcs "modulo the basepoint subgroup";
II. the dependence of the abelian labels in the arcs "modulo the multiplication rules in G_{α} ".

Redundancy of type I is intrinsic and there is not much that we can do about it, other than considering the enriched automaton $\widehat{\Gamma}_{L}$ modulo L. In order to fix redundancy of type II, we choose a spanning tree T in $\widehat{\Gamma}_{L}$ and we use abelian transformations to obtain an equivalent automaton $\widehat{\Delta}_{L}$ with zeros at every abelian arc-label except at the end of the arcs outside T.

Lemma

For every reduced automata $\widehat{\Gamma}_{L}$ and every spanning tree T in $\widehat{\Gamma}_{L}$ there exists a unique equivalent T-normalized automaton (modulo L).

NORMALIZATION

The sources of redundancy of a reduced enriched automaton $\widehat{\Gamma}_{L}$ are:
I. the dependence of the abelian labels in the arcs "modulo the basepoint subgroup";
II. the dependence of the abelian labels in the arcs "modulo the multiplication rules in G_{α} ".

Redundancy of type I is intrinsic and there is not much that we can do about it, other than considering the enriched automaton $\widehat{\Gamma}_{L}$ modulo L. In order to fix redundancy of type II, we choose a spanning tree T in $\widehat{\Gamma}_{L}$ and we use abelian transformations to obtain an equivalent automaton $\widehat{\Delta}_{L}$ with zeros at every abelian arc-label except at the end of the arcs outside T.

Lemma

For every reduced automata $\widehat{\Gamma}_{L}$ and every spanning tree T in $\widehat{\Gamma}_{L}$ there exists a unique equivalent T-normalized automaton (modulo L).

ENRICHED STALLINGS AUTOMATA

Definition
Given $H \leqslant G_{\alpha}$, a (enriched) Stallings automaton of H is a normalized reduced automaton recognizing H.

ENRICHED STALLINGS AUTOMATA

Definition
Given $H \leqslant G_{\alpha}$, a (enriched) Stallings automaton of H is a normalized reduced automaton recognizing H. For a chosen spanning tree T, it is denoted by $\mathrm{St}_{T}(H)$.

ENRICHED STALLINGS AUTOMATA

Definition

Given $H \leqslant G_{\alpha}$, a (enriched) Stallings automaton of H is a normalized reduced automaton recognizing H. For a chosen spanning tree T, it is denoted by $\mathrm{St}_{T}(H)$.

Proposition

Given S a finite subset of G_{α}, a Stallings automaton for $\langle S\rangle$ is computable.

ENRICHED STALLINGS AUTOMATA

Definition

Given $H \leqslant G_{\alpha}$, a (enriched) Stallings automaton of H is a normalized reduced automaton recognizing H. For a chosen spanning tree T, it is denoted by $\mathrm{St}_{\boldsymbol{T}}(\mathrm{H})$.

Proposition

Given S a finite subset of G_{α}, a Stallings automaton for $\langle S\rangle$ is computable.

Proof. Given $S \subseteq \mathbb{F}_{n} \ltimes \mathbb{Z}^{m}$ finite generating H :

$$
S \rightsquigarrow\left(\mathcal{F}_{S}, L\right) \rightsquigarrow\left(\Gamma^{\prime}, L^{\prime}\right)
$$

ENRICHED STALLINGS AUTOMATA

Definition

Given $H \leqslant G_{\alpha}$, a (enriched) Stallings automaton of H is a normalized reduced automaton recognizing H. For a chosen spanning tree T, it is denoted by $\mathrm{St}_{\boldsymbol{T}}(\mathrm{H})$.

Proposition

Given S a finite subset of G_{α}, a Stallings automaton for $\langle S\rangle$ is computable.

Proof. Given $S \subseteq \mathbb{F}_{n} \ltimes \mathbb{Z}^{m}$ finite generating H :

$$
S \rightsquigarrow\left(\mathcal{F}_{S}, L\right) \rightsquigarrow\left(\Gamma^{\prime}, L^{\prime}\right) \rightsquigarrow \cdots \rightsquigarrow\left(\Gamma^{(p)}, L^{(p)}\right)
$$

ENRICHED STALLINGS AUTOMATA

Definition

Given $H \leqslant G_{\alpha}$, a (enriched) Stallings automaton of H is a normalized reduced automaton recognizing H. For a chosen spanning tree T, it is denoted by $\mathrm{St}_{\boldsymbol{T}}(\mathrm{H})$.

Proposition

Given S a finite subset of G_{α}, a Stallings automaton for $\langle S\rangle$ is computable.

Proof. Given $S \subseteq \mathbb{F}_{n} \ltimes \mathbb{Z}^{m}$ finite generating H :

$$
S \rightsquigarrow\left(\mathcal{F}_{S}, L\right) \rightsquigarrow\left(\Gamma^{\prime}, L^{\prime}\right) \rightsquigarrow \cdots \rightsquigarrow\left(\Gamma^{(p)}, L^{(p)}\right) \rightarrow\left(\overline{\Gamma^{(p)}}, \overline{L^{(p)}}\right) .
$$

ENRICHED STALLINGS AUTOMATA

Definition

Given $H \leqslant G_{\alpha}$, a (enriched) Stallings automaton of H is a normalized reduced automaton recognizing H. For a chosen spanning tree T, it is denoted by $\mathrm{St}_{\boldsymbol{T}}(\mathrm{H})$.

Proposition

Given S a finite subset of G_{α}, a Stallings automaton for $\langle S\rangle$ is computable.

Proof. Given $S \subseteq \mathbb{F}_{n} \ltimes \mathbb{Z}^{m}$ finite generating H :

$$
S \rightsquigarrow\left(\mathcal{F}_{S}, L\right) \rightsquigarrow\left(\Gamma^{\prime}, L^{\prime}\right) \rightsquigarrow \cdots \rightsquigarrow\left(\Gamma^{(p)}, L^{(p)}\right) \rightarrow\left(\overline{\Gamma^{(p)}}, \overline{L^{(p)}}\right) .
$$

After fixing a uniform way of choosing spanning trees...

ENRICHED STALLINGS AUTOMATA

Definition

Given $H \leqslant G_{\alpha}$, a (enriched) Stallings automaton of H is a normalized reduced automaton recognizing H. For a chosen spanning tree T, it is denoted by $\operatorname{St}_{\boldsymbol{T}}(\mathrm{H})$.

Proposition

Given S a finite subset of G_{α}, a Stallings automaton for $\langle S\rangle$ is computable.

Proof. Given $S \subseteq \mathbb{F}_{n} \ltimes \mathbb{Z}^{m}$ finite generating H :

$$
S \rightsquigarrow\left(\mathcal{F}_{S}, L\right) \rightsquigarrow\left(\Gamma^{\prime}, L^{\prime}\right) \rightsquigarrow \cdots \rightsquigarrow\left(\Gamma^{(p)}, L^{(p)}\right) \rightarrow\left(\overline{\Gamma^{(p)}}, \overline{L^{(p)}}\right) .
$$

After fixing a uniform way of choosing spanning trees...
Theorem (D.-V.)
There exists a (computable) bijection

$$
\begin{aligned}
\left\{(f . g .) \text { subgroups of } \mathbb{F}_{n} \ltimes \mathbb{Z}^{m}\right\} & \rightarrow \mathfrak{S} \subseteq\{\text { (finite) enriched automata }\} \\
H & \mapsto S t(H)
\end{aligned}
$$

FIRST APPLICATIONS: MEMBERSHIP PROBLEM

Corollary
A basis for a finitely generated subgroup $H \leqslant G_{\alpha}$ is computable from any finite set of generators.

FIRST APPLICATIONS: MEMBERSHIP PROBLEM

Corollary
A basis for a finitely generated subgroup $H \leqslant G_{\alpha}$ is computable from any finite set of generators.

Membership Problem for $G=\langle X \mid R\rangle, \operatorname{MP}(G)$
Given $u, v_{1}, \ldots, v_{k} \in \mathbb{F}_{x}$, decide whether $u \in H=\left\langle v_{1}, \ldots, v_{k}\right\rangle_{G}$; if yes, express u as a word in v_{1}, \ldots, v_{k}.

FIRST APPLICATIONS: MEMBERSHIP PROBLEM

Corollary
A basis for a finitely generated subgroup $H \leqslant G_{\alpha}$ is computable from any finite set of generators.

Membership Problem for $G=\langle X \mid R\rangle, \operatorname{MP}(G)$
Given $u, v_{1}, \ldots, v_{k} \in \mathbb{F}_{x}$, decide whether $u \in H=\left\langle v_{1}, \ldots, v_{k}\right\rangle_{G}$; if yes, express u as a word in v_{1}, \ldots, v_{k}.

Theorem (D.-V.)
The membership problem $\operatorname{MP}\left(G_{\alpha}\right)$ is computable.

FIRST APPLICATIONS: MEMBERSHIP PROBLEM

Corollary

A basis for a finitely generated subgroup $H \leqslant G_{\alpha}$ is computable from any finite set of generators.

Membership Problem for $G=\langle X \mid R\rangle, \operatorname{MP}(G)$
Given $u, v_{1}, \ldots, v_{k} \in \mathbb{F}_{x}$, decide whether $u \in H=\left\langle v_{1}, \ldots, v_{k}\right\rangle_{G}$; if yes, express u as a word in v_{1}, \ldots, v_{k}.

Theorem (D.-V.)

The membership problem $\operatorname{MP}\left(G_{\alpha}\right)$ is computable.
Proof. Let $u t^{\mathrm{a}} \in G_{\alpha}$ and $S=\left\{v_{1} t^{\mathrm{t}_{1}}, \ldots, v_{k} \mathrm{t}^{\mathrm{b}_{k}}\right\} \subseteq G_{\alpha}$ 1. Build an Stallings automaton $\widehat{\Gamma}_{L}=\operatorname{St}(\langle S\rangle)$;

FIRST APPLICATIONS: MEMBERSHIP PROBLEM

Corollary

A basis for a finitely generated subgroup $H \leqslant G_{\alpha}$ is computable from any finite set of generators.

Membership Problem for $G=\langle X \mid R\rangle, \operatorname{MP}(G)$
Given $u, v_{1}, \ldots, v_{k} \in \mathbb{F}_{x}$, decide whether $u \in H=\left\langle v_{1}, \ldots, v_{k}\right\rangle_{G}$; if yes, express u as a word in v_{1}, \ldots, v_{k}.

Theorem (D.-V.)

The membership problem $\operatorname{MP}\left(G_{\alpha}\right)$ is computable.
Proof. Let $u t^{\mathrm{a}} \in G_{\alpha}$ and $S=\left\{v_{1} t^{\mathrm{t}_{1}}, \ldots, v_{k} \mathrm{t}^{\mathrm{b}_{k}}\right\} \subseteq G_{\alpha}$

1. Build an Stallings automaton $\widehat{\Gamma}_{L}=\operatorname{St}(\langle S\rangle)$;
2. try to read u as a label of a o-walk in $\widehat{\Gamma}_{L}$;

FIRST APPLICATIONS: MEMBERSHIP PROBLEM

Corollary

A basis for a finitely generated subgroup $H \leqslant G_{\alpha}$ is computable from any finite set of generators.

Membership Problem for $G=\langle X \mid R\rangle, \operatorname{MP}(G)$
Given $u, v_{1}, \ldots, v_{k} \in \mathbb{F}_{x}$, decide whether $u \in H=\left\langle v_{1}, \ldots, v_{k}\right\rangle_{G}$; if yes, express u as a word in v_{1}, \ldots, v_{k}.

Theorem (D.-V.)

The membership problem $\operatorname{MP}\left(G_{\alpha}\right)$ is computable.
Proof. Let $u t^{\mathrm{a}} \in G_{\alpha}$ and $S=\left\{v_{1} t^{\mathrm{t}_{1}}, \ldots, v_{k} \mathrm{t}^{\mathrm{b}_{k}}\right\} \subseteq G_{\alpha}$

1. Build an Stallings automaton $\widehat{\Gamma}_{L}=\operatorname{St}(\langle S\rangle)$;
2. try to read u as a label of a o-walk in $\widehat{\Gamma}_{L}$; if not possible, return NO;

FIRST APPLICATIONS: MEMBERSHIP PROBLEM

Corollary

A basis for a finitely generated subgroup $H \leqslant G_{\alpha}$ is computable from any finite set of generators.

Membership Problem for $G=\langle X \mid R\rangle, M P(G)$
Given $u, v_{1}, \ldots, v_{k} \in \mathbb{F}_{x}$, decide whether $u \in H=\left\langle v_{1}, \ldots, v_{k}\right\rangle_{G}$; if yes, express u as a word in v_{1}, \ldots, v_{k}.

Theorem (D.-V.)

The membership problem $\operatorname{MP}\left(G_{\alpha}\right)$ is computable.
Proof. Let $u t^{\mathrm{a}} \in G_{\alpha}$ and $S=\left\{v_{1} t^{\mathrm{t}_{1}}, \ldots, v_{k} \mathrm{t}^{\mathrm{b}_{k}}\right\} \subseteq G_{\alpha}$

1. Build an Stallings automaton $\widehat{\Gamma}_{L}=\operatorname{St}(\langle S\rangle)$;
2. try to read u as a label of a o-walk in $\widehat{\Gamma}_{L}$; if not possible, return no;
3. if the final vertex is not oreturn no;

FIRST APPLICATIONS: MEMBERSHIP PROBLEM

Corollary
A basis for a finitely generated subgroup $H \leqslant G_{\alpha}$ is computable from any finite set of generators.

Membership Problem for $G=\langle X \mid R\rangle, \operatorname{MP}(G)$
Given $u, v_{1}, \ldots, v_{k} \in \mathbb{F}_{x}$, decide whether $u \in H=\left\langle v_{1}, \ldots, v_{k}\right\rangle_{G}$; if yes, express u as a word in v_{1}, \ldots, v_{k}.

Theorem (D.-V.)

The membership problem $\operatorname{MP}\left(G_{\alpha}\right)$ is computable.
Proof. Let $u t^{a} \in G_{\alpha}$ and $S=\left\{v_{1} t^{b_{1}}, \ldots, v_{k} t^{b_{k}}\right\} \subseteq G_{\alpha}$

1. Build an Stallings automaton $\widehat{\Gamma}_{L}=\operatorname{St}(\langle S\rangle)$;
2. try to read u as a label of a o-walk in $\widehat{\Gamma}_{L}$; if not possible, return no;
3. if the final vertex is not o return no;
4. compute the completion c_{w} of w in $\widehat{\Gamma}_{L}$ and check whether $\mathrm{a}-\mathrm{c}_{w} \in \mathrm{~L}$. If so return YES, otherwise return No.

INTERSECTIONS IN $\mathbb{F}_{n} \times \mathbb{Z}^{m}$

FREE-ABELIAN TIMES FREE GROUPS

FREE-ABELIAN TIMES FREE GROUPS

A group is free-abelian times free (FATF) if it is of the form

$$
\mathbb{F}_{n} \times \mathbb{Z}^{m}=\left\langle\begin{array}{l|ll}
x_{1}, \ldots, x_{n} & t_{i} t_{k}=t_{k} t_{i} & \forall i, k \in[1, m] \\
t_{1}, \ldots, t_{m} & x_{j}^{-1} t_{i} x_{j}=t_{i} & \forall i \in[1, m], \forall j \in[1, n]
\end{array}\right\rangle
$$

FREE-ABELIAN TIMES FREE GROUPS

A group is free-abelian times free (FATF) if it is of the form

$$
\mathbb{F}_{n} \times \mathbb{Z}^{m}=\left\langle\begin{array}{l|ll}
x_{1}, \ldots, x_{n} & t_{i} t_{k}=t_{k} t_{i} & \forall i, k \in[1, m] \\
t_{1}, \ldots, t_{m} & x_{j}^{-1} t_{i} x_{j}=t_{i} & \forall i \in[1, m], \forall j \in[1, n]
\end{array}\right\rangle
$$

FREE-ABELIAN TIMES FREE GROUPS

A group is free-abelian times free (FATF) if it is of the form

$$
\mathbb{F}_{n} \times \mathbb{Z}^{m}=\left\langle\begin{array}{l|ll}
x_{1}, \ldots, x_{n} & t_{i} t_{k}=t_{k} t_{i} & \forall i, k \in[1, m] \\
t_{1}, \ldots, t_{m} & x_{j}^{-1} t_{i} x_{j}=t_{i} & \forall i \in[1, m], \forall j \in[1, n]
\end{array}\right\rangle
$$

where

- $T=\left\{t_{1}, \ldots, t_{m}\right\}$ is a free-abelian basis for $\langle T\rangle \simeq \mathbb{Z}^{m}$.

FREE-ABELIAN TIMES FREE GROUPS

A group is free-abelian times free (FATF) if it is of the form

$$
\mathbb{F}_{n} \times \mathbb{Z}^{m}=\left\langle\begin{array}{l|ll}
x_{1}, \ldots, x_{n} & t_{i} t_{k}=t_{k} t_{i} & \forall i, k \in[1, m] \\
t_{1}, \ldots, t_{m} & x_{j}^{-1} t_{i} x_{j}=t_{i} & \forall i \in[1, m], \forall j \in[1, n]
\end{array}\right\rangle
$$

where

- $T=\left\{t_{1}, \ldots, t_{m}\right\}$ is a free-abelian basis for $\langle T\rangle \simeq \mathbb{Z}^{m}$.
- $X=\left\{x_{1}, \ldots, x_{n}\right\}$ is a free basis for $\langle X\rangle \simeq \mathbb{F}_{n}$.

FREE-ABELIAN TIMES FREE GROUPS

A group is free-abelian times free (FATF) if it is of the form

$$
\mathbb{F}_{n} \times \mathbb{Z}^{m}=\left\langle\begin{array}{l|ll}
x_{1}, \ldots, x_{n} & t_{i} t_{k}=t_{k} t_{i} & \forall i, k \in[1, m] \\
t_{1}, \ldots, t_{m} & x_{j}^{-1} t_{i} x_{j}=t_{i} & \forall i \in[1, m], \forall j \in[1, n]
\end{array}\right\rangle
$$

where

- $T=\left\{t_{1}, \ldots, t_{m}\right\}$ is a free-abelian basis for $\langle T\rangle \simeq \mathbb{Z}^{m}$.
- $X=\left\{x_{1}, \ldots, x_{n}\right\}$ is a free basis for $\langle X\rangle \simeq \mathbb{F}_{n}$.

Normal form: $w t_{1}^{a_{1}} \cdots t_{m}^{a_{m}}=w t^{\mathrm{a}} \quad\left(w \in \mathbb{F}_{n}, \mathrm{a}=\left(a_{1}, \ldots, a_{m}\right) \in \mathbb{Z}^{m}\right)$.

FREE-ABELIAN TIMES FREE GROUPS

A group is free-abelian times free (FATF) if it is of the form

$$
\mathbb{F}_{n} \times \mathbb{Z}^{m}=\left\langle\begin{array}{l|ll}
x_{1}, \ldots, x_{n} & t_{i} t_{k}=t_{k} t_{i} & \forall i, k \in[1, m] \\
t_{1}, \ldots, t_{m} & x_{j}^{-1} t_{i} x_{j}=t_{i} & \forall i \in[1, m], \forall j \in[1, n]
\end{array}\right\rangle
$$

where

- $T=\left\{t_{1}, \ldots, t_{m}\right\}$ is a free-abelian basis for $\langle T\rangle \simeq \mathbb{Z}^{m}$.
- $X=\left\{x_{1}, \ldots, x_{n}\right\}$ is a free basis for $\langle X\rangle \simeq \mathbb{F}_{n}$.

Normal form: $w t_{1}^{a_{1}} \cdots t_{m}^{a_{m}}=w t^{\mathrm{a}} \quad\left(w \in \mathbb{F}_{n}, \mathrm{a}=\left(a_{1}, \ldots, a_{m}\right) \in \mathbb{Z}^{m}\right)$.

Lemma

Let $H \leqslant \mathbb{F}_{n} \times \mathbb{Z}^{m}$. Then,

$$
H \simeq H \pi \times\left(H \cap \mathbb{Z}^{m}\right) \simeq \mathbb{F}_{n^{\prime}} \times \mathbb{Z}^{m^{\prime}}
$$

where $n^{\prime} \in[0, \infty], m^{\prime} \in[0, m]$.

FREE-ABELIAN TIMES FREE GROUPS

A group is free-abelian times free (FATF) if it is of the form

$$
\mathbb{F}_{n} \times \mathbb{Z}^{m}=\left\langle\begin{array}{l|ll}
x_{1}, \ldots, x_{n} & t_{i} t_{k}=t_{k} t_{i} & \forall i, k \in[1, m] \\
t_{1}, \ldots, t_{m} & x_{j}^{-1} t_{i} x_{j}=t_{i} & \forall i \in[1, m], \forall j \in[1, n]
\end{array}\right\rangle
$$

where

- $T=\left\{t_{1}, \ldots, t_{m}\right\}$ is a free-abelian basis for $\langle T\rangle \simeq \mathbb{Z}^{m}$.
- $X=\left\{x_{1}, \ldots, x_{n}\right\}$ is a free basis for $\langle X\rangle \simeq \mathbb{F}_{n}$.

Normal form: $w t_{1}^{a_{1}} \cdots t_{m}^{a_{m}}=w t^{\mathrm{a}} \quad\left(w \in \mathbb{F}_{n}, \mathbf{a}=\left(a_{1}, \ldots, a_{m}\right) \in \mathbb{Z}^{m}\right)$.

Lemma

Let $H \leqslant \mathbb{F}_{n} \times \mathbb{Z}^{m}$. Then,

$$
H \simeq H \pi \times\left(H \cap \mathbb{Z}^{m}\right) \simeq \mathbb{F}_{n^{\prime}} \times \mathbb{Z}^{m^{\prime}}
$$

where $n^{\prime} \in[0, \infty], m^{\prime} \in[0, m]$. Hence,
H is finitely generated $\Leftrightarrow H \pi$ is finitely generated

BASES

A basis for $H \leqslant \mathbb{F}_{n} \times \mathbb{Z}^{m}$ has the form:

$$
v_{1} t^{a_{1}}, \ldots, v_{n} t^{a_{n^{\prime}}} ; t^{b_{1}}, \ldots, t^{b_{m^{\prime}}}
$$

where:

- $\left\{v_{1}, \ldots, v_{n^{\prime}}\right\}$ is a basis of $H \pi$
- $\left\{b_{1}, \ldots, b_{m}\right\}$ is a free-abelian basis of $L=H \cap \mathbb{Z}^{m}$.

BASES

A basis for $H \leqslant \mathbb{F}_{n} \times \mathbb{Z}^{m}$ has the form:

$$
v_{1} t^{a_{1}}, \ldots, v_{n} t^{a_{n^{\prime}}} ; t^{b_{1}}, \ldots, t^{b_{m}}
$$

where:

- $\left\{v_{1}, \ldots, v_{n^{\prime}}\right\}$ is a basis of $H \pi$
- $\left\{b_{1}, \ldots, b_{m}\right\}$ is a free-abelian basis of $L=H \cap \mathbb{Z}^{m}$.

Lemma

If $\left\{v_{1} t^{a_{1}}, \ldots, v_{n^{\prime}} t^{a_{n^{\prime}}} ; t^{b_{1}}, \ldots, t^{b_{m^{\prime}}}\right\}$ is a basis of H and $w \in \mathbb{F}_{n}$, then

$$
c_{H}(w)= \begin{cases}\varnothing & \text { if } w \notin H \pi \\ w \phi \rho A+L & \text { if } w \in H \pi\end{cases}
$$

where $\phi: H \pi \rightarrow \mathbb{F}_{n^{\prime}}$ is the change of basis $x_{i} \mapsto x_{i}\left(v_{j}\right)$
$\rho: \mathbb{F}_{n^{\prime}} \rightarrow \mathbb{Z}^{n^{\prime}}$ is the abelianization map,
$A=\left(a_{i}\right)_{i \in\left[1, n^{\prime}\right]}$ is an integral $n^{\prime} \times m$ matrix.

SUBGROUP INTERSECTION

Let $H_{1}, H_{2} \leqslant_{\mathrm{fg}} \mathbb{F}_{n} \times \mathbb{Z}^{m}$ and respective bases for them, then $H_{1}=\left\{w t^{a} \in \mathbb{F}_{n} \times \mathbb{Z}^{m} \mid w \in H_{1} \pi\right.$ and $\left.a \in w \phi_{1} \rho_{1} A_{1}+L_{1}\right\}$,

$$
H_{2}=\left\{w t^{\mathrm{a}} \in \mathbb{F}_{n} \times \mathbb{Z}^{m} \mid w \in H_{2} \pi \text { and } \mathrm{a} \in w \phi_{2} \rho_{2} A_{2}+L_{2}\right\}
$$

SUBGROUP INTERSECTION

Let $H_{1}, H_{2} \leqslant_{\mathrm{fg}} \mathbb{F}_{n} \times \mathbb{Z}^{m}$ and respective bases for them, then

$$
\begin{aligned}
& H_{1}=\left\{w t^{\mathrm{a}} \in \mathbb{F}_{n} \times \mathbb{Z}^{m} \mid w \in H_{1} \pi \text { and } a \in w \phi_{1} \rho_{1} \mathrm{~A}_{1}+L_{1}\right\}, \\
& H_{2}=\left\{w t^{\mathrm{a}} \in \mathbb{F}_{n} \times \mathbb{Z}^{m} \mid w \in H_{2} \pi \text { and } a \in w \phi_{2} \rho_{2} \mathrm{~A}_{2}+L_{2}\right\}
\end{aligned}
$$

Hence,

$$
H_{1} \cap H_{2}=\left\{\begin{array}{l|l}
w t^{a} \in \mathbb{F}_{n} \times \mathbb{Z}^{m} & \begin{array}{l}
w \in H_{1} \pi \cap H_{2} \pi \\
a \in\left(w \phi_{1} \rho_{1} A_{1}+L_{1}\right) \cap\left(w \phi_{2} \rho_{2} A_{2}+L_{2}\right)
\end{array}
\end{array}\right\}
$$

SUBGROUP INTERSECTION

Let $H_{1}, H_{2} \leqslant_{\mathrm{fg}} \mathbb{F}_{n} \times \mathbb{Z}^{m}$ and respective bases for them, then

$$
\begin{aligned}
& H_{1}=\left\{w t^{\mathrm{a}} \in \mathbb{F}_{n} \times \mathbb{Z}^{m} \mid w \in H_{1} \pi \text { and } a \in w \phi_{1} \rho_{1} A_{1}+L_{1}\right\}, \\
& H_{2}=\left\{w t^{\mathrm{a}} \in \mathbb{F}_{n} \times \mathbb{Z}^{m} \mid w \in H_{2} \pi \text { and } a \in w \phi_{2} \rho_{2} A_{2}+L_{2}\right\}
\end{aligned}
$$

Hence,

$$
H_{1} \cap H_{2}=\left\{\begin{array}{l|l}
w t^{\mathrm{a}} \in \mathbb{F}_{n} \times \mathbb{Z}^{m} & \begin{array}{l}
w \in H_{1} \pi \cap H_{2} \pi \\
a \in\left(w \phi_{1} \rho_{1} A_{1}+L_{1}\right) \cap\left(w \phi_{2} \rho_{2} A_{2}+L_{2}\right)
\end{array}
\end{array}\right\}
$$

Therefore,
$\left(H_{1} \cap H_{2}\right) \pi=\left\{w \in H_{1} \pi \cap H_{2} \pi \mid\left(w \phi_{1} \rho_{1} A_{1}+L_{1}\right) \cap\left(w \phi_{2} \rho_{2} A_{2}+L_{2}\right) \neq \varnothing\right\}$

SUBGROUP INTERSECTION

Let $H_{1}, H_{2} \leqslant_{\mathrm{fg}} \mathbb{F}_{n} \times \mathbb{Z}^{m}$ and respective bases for them, then

$$
\begin{aligned}
& H_{1}=\left\{w t^{a} \in \mathbb{F}_{n} \times \mathbb{Z}^{m} \mid w \in H_{1} \pi \text { and } a \in w \phi_{1} \rho_{1} A_{1}+L_{1}\right\}, \\
& H_{2}=\left\{w t^{a} \in \mathbb{F}_{n} \times \mathbb{Z}^{m} \mid w \in H_{2} \pi \text { and } a \in w \phi_{2} \rho_{2} A_{2}+L_{2}\right\}
\end{aligned}
$$

Hence,

$$
H_{1} \cap H_{2}=\left\{\begin{array}{l|l}
w t^{a} \in \mathbb{F}_{n} \times \mathbb{Z}^{m} & \begin{array}{l}
w \in H_{1} \pi \cap H_{2} \pi \\
a \in\left(w \phi_{1} \rho_{1} A_{1}+L_{1}\right) \cap\left(w \phi_{2} \rho_{2} A_{2}+L_{2}\right)
\end{array}
\end{array}\right\}
$$

Therefore,
$\left(H_{1} \cap H_{2}\right) \pi=\left\{w \in H_{1} \pi \cap H_{2} \pi \mid\left(w \phi_{1} \rho_{1} A_{1}+L_{1}\right) \cap\left(w \phi_{2} \rho_{2} A_{2}+L_{2}\right) \neq \varnothing\right\}$

Remark

$$
\left(H_{1} \cap H_{2}\right) \pi \leqslant H_{1} \pi \cap H_{2} \pi \leqslant_{\mathrm{fg}} \mathbb{F}_{n}
$$

SUBGROUP INTERSECTION

Let $H_{1}, H_{2} \leqslant_{\mathrm{fg}} \mathbb{F}_{n} \times \mathbb{Z}^{m}$ and respective bases for them, then

$$
\begin{aligned}
& H_{1}=\left\{w t^{a} \in \mathbb{F}_{n} \times \mathbb{Z}^{m} \mid w \in H_{1} \pi \text { and } a \in w \phi_{1} \rho_{1} A_{1}+L_{1}\right\}, \\
& H_{2}=\left\{w t^{a} \in \mathbb{F}_{n} \times \mathbb{Z}^{m} \mid w \in H_{2} \pi \text { and } a \in w \phi_{2} \rho_{2} A_{2}+L_{2}\right\}
\end{aligned}
$$

Hence,

$$
H_{1} \cap H_{2}=\left\{\begin{array}{l|l}
w t^{a} \in \mathbb{F}_{n} \times \mathbb{Z}^{m} & \begin{array}{l}
w \in H_{1} \pi \cap H_{2} \pi \\
a \in\left(w \phi_{1} \rho_{1} A_{1}+L_{1}\right) \cap\left(w \phi_{2} \rho_{2} A_{2}+L_{2}\right)
\end{array}
\end{array}\right\}
$$

Therefore,
$\left(H_{1} \cap H_{2}\right) \pi=\left\{w \in H_{1} \pi \cap H_{2} \pi \mid\left(w \phi_{1} \rho_{1} A_{1}+L_{1}\right) \cap\left(w \phi_{2} \rho_{2} A_{2}+L_{2}\right) \neq \varnothing\right\}$

Remark

$$
\left(H_{1} \cap H_{2}\right) \pi \leqslant H_{1} \pi \cap H_{2} \pi \leqslant_{\mathrm{fg}} \mathbb{F}_{n}
$$

INTERSECTIONS IN FTFA GROUPS

$$
\text { Let } \begin{aligned}
H, H_{1}, H_{2} \leqslant \mathbb{F}_{n} \times \mathbb{Z}^{m} \text {, and } \pi: \mathbb{F}_{n} \times \mathbb{Z}^{m} & \rightarrow \mathbb{F}_{n} \\
u t^{\mathrm{a}} & \mapsto u
\end{aligned}
$$

INTERSECTIONS IN FTFA GROUPS

$$
\text { Let } \begin{aligned}
H, H_{1}, H_{2} \leqslant \mathbb{F}_{n} \times \mathbb{Z}^{m}, \text { and } \pi: \mathbb{F}_{n} \times \mathbb{Z}^{m} & \rightarrow \mathbb{F}_{n} \\
u t^{\mathrm{a}} & \mapsto u
\end{aligned}
$$

Remarks:

1. $H \simeq H \pi \times\left(H \cap \mathbb{Z}^{m}\right)$.

INTERSECTIONS IN FTFA GROUPS

$$
\text { Let } \begin{aligned}
H, H_{1}, H_{2} \leqslant \mathbb{F}_{n} \times \mathbb{Z}^{m}, \text { and } \pi: \mathbb{F}_{n} \times \mathbb{Z}^{m} & \rightarrow \mathbb{F}_{n} \\
u t^{\mathrm{a}} & \mapsto u
\end{aligned}
$$

Remarks:

1. $H \simeq H \pi \times\left(H \cap \mathbb{Z}^{m}\right)$.
2. H is f.g. $\Leftrightarrow H \pi$ is f.g.

INTERSECTIONS IN FTFA GROUPS

$$
\text { Let } \begin{aligned}
H, H_{1}, H_{2} \leqslant \mathbb{F}_{n} \times \mathbb{Z}^{m}, \text { and } \pi: \mathbb{F}_{n} \times \mathbb{Z}^{m} & \rightarrow \mathbb{F}_{n} \\
u t^{\mathrm{a}} & \mapsto u
\end{aligned}
$$

Remarks:

1. $H \simeq H \pi \times\left(H \cap \mathbb{Z}^{m}\right)$.
2. H is f.g. $\Leftrightarrow H \pi$ is f.g.
3. $\left(H_{1} \cap H_{2}\right) \pi \leqslant H_{1} \pi \cap H_{2} \pi$.

INTERSECTIONS IN FTFA GROUPS

$$
\text { Let } \begin{aligned}
H, H_{1}, H_{2} \leqslant \mathbb{F}_{n} \times \mathbb{Z}^{m}, \text { and } \pi: \mathbb{F}_{n} \times \mathbb{Z}^{m} & \rightarrow \mathbb{F}_{n} \\
u t^{\mathrm{a}} & \mapsto u
\end{aligned}
$$

Remarks:

1. $H \simeq H \pi \times\left(H \cap \mathbb{Z}^{m}\right)$.
2. H is f.g. $\Leftrightarrow H \pi$ is f.g.
3. $\left(H_{1} \cap H_{2}\right) \pi \leqslant H_{1} \pi \cap H_{2} \pi$.

So,

$$
\left(H_{1} \cap H_{2}\right) \pi \leqslant H_{1} \pi \cap H_{2} \pi \leqslant \mathbb{F}_{n}
$$

INTERSECTIONS IN FTFA GROUPS

$$
\text { Let } \begin{aligned}
H, H_{1}, H_{2} \leqslant \mathbb{F}_{n} \times \mathbb{Z}^{m} \text {, and } \pi: \mathbb{F}_{n} \times \mathbb{Z}^{m} & \rightarrow \mathbb{F}_{n} \\
u t^{\mathrm{a}} & \mapsto u
\end{aligned}
$$

Remarks:

1. $H \simeq H \pi \times\left(H \cap \mathbb{Z}^{m}\right)$.
2. H is f.g. $\Leftrightarrow H \pi$ is f.g.
3. $\left(H_{1} \cap H_{2}\right) \pi \leqslant H_{1} \pi \cap H_{2} \pi$.

So, if H_{1}, H_{2} are finitely generated:

$$
\left(H_{1} \cap H_{2}\right) \pi \leqslant H_{1} \pi \cap H_{2} \pi \leqslant \mathbb{F}_{n}
$$

INTERSECTIONS IN FTFA GROUPS

$$
\text { Let } \begin{aligned}
H, H_{1}, H_{2} \leqslant \mathbb{F}_{n} \times \mathbb{Z}^{m}, \text { and } \pi: \mathbb{F}_{n} \times \mathbb{Z}^{m} & \rightarrow \mathbb{F}_{n} \\
u t^{\mathrm{a}} & \mapsto u
\end{aligned}
$$

Remarks:

1. $H \simeq H \pi \times\left(H \cap \mathbb{Z}^{m}\right)$.
2. H is f.g. $\Leftrightarrow H \pi$ is f.g.
3. $\left(H_{1} \cap H_{2}\right) \pi \leqslant H_{1} \pi \cap H_{2} \pi$.

So, if H_{1}, H_{2} are finitely generated:

$$
\left(H_{1} \cap H_{2}\right) \pi \leqslant H_{1} \pi \cap H_{2} \pi \leqslant_{\mathrm{fg}} \mathbb{F}_{n}
$$

INTERSECTIONS IN FTFA GROUPS

$$
\text { Let } \begin{aligned}
H, H_{1}, H_{2} \leqslant \mathbb{F}_{n} \times \mathbb{Z}^{m} \text {, and } \pi: \mathbb{F}_{n} \times \mathbb{Z}^{m} & \rightarrow \mathbb{F}_{n} \\
u t^{\mathrm{a}} & \mapsto u
\end{aligned}
$$

Remarks:

1. $H \simeq H \pi \times\left(H \cap \mathbb{Z}^{m}\right)$.
2. H is f.g. $\Leftrightarrow H \pi$ is f.g.
3. $\left(H_{1} \cap H_{2}\right) \pi \leqslant H_{1} \pi \cap H_{2} \pi$.

So, if H_{1}, H_{2} are finitely generated:

$$
\left(H_{1} \cap H_{2}\right) \pi<H_{1} \pi \cap H_{2} \pi \leqslant_{\mathrm{fg}} \mathbb{F}_{n}
$$

INTERSECTIONS IN FTFA GROUPS

$$
\text { Let } \begin{aligned}
H, H_{1}, H_{2} \leqslant \mathbb{F}_{n} \times \mathbb{Z}^{m} \text {, and } \pi: \mathbb{F}_{n} \times \mathbb{Z}^{m} & \rightarrow \mathbb{F}_{n} \\
u t^{\mathrm{a}} & \mapsto u
\end{aligned}
$$

Remarks:

1. $H \simeq H \pi \times\left(H \cap \mathbb{Z}^{m}\right)$.
2. H is f.g. $\Leftrightarrow H \pi$ is f.g.
3. $\left(H_{1} \cap H_{2}\right) \pi \leqslant H_{1} \pi \cap H_{2} \pi$.

So, if H_{1}, H_{2} are finitely generated:

$$
\left(H_{1} \cap H_{2}\right) \pi<H_{1} \pi \cap H_{2} \pi \leqslant_{\mathrm{fg}} \mathbb{F}_{n}
$$

Example: $\mathbb{F}_{2} \times \mathbb{Z}$ is not Howson

INTERSECTIONS IN FTFA GROUPS

$$
\text { Let } \begin{aligned}
H, H_{1}, H_{2} \leqslant \mathbb{F}_{n} \times \mathbb{Z}^{m}, \text { and } \pi: \mathbb{F}_{n} \times \mathbb{Z}^{m} & \rightarrow \mathbb{F}_{n} \\
u t^{a} & \mapsto u
\end{aligned}
$$

Remarks:

1. $H \simeq H \pi \times\left(H \cap \mathbb{Z}^{m}\right)$.
2. H is f.g. $\Leftrightarrow H \pi$ is f.g.
3. $\left(H_{1} \cap H_{2}\right) \pi \leqslant H_{1} \pi \cap H_{2} \pi$.

So, if H_{1}, H_{2} are finitely generated:

$$
\left(H_{1} \cap H_{2}\right) \pi<H_{1} \pi \cap H_{2} \pi \leqslant_{\mathrm{fg}} \mathbb{F}_{n}
$$

Example: $\mathbb{F}_{2} \times \mathbb{Z}$ is not Howson
Subgroup Intersection Problem for $G=\langle X \mid R\rangle, \operatorname{SIP}(G)$
Input: $u_{1}, \ldots, u_{k}, v_{1}, \ldots, v_{l} \in\left(X^{ \pm}\right)^{*}$
Decide: $\left\langle u_{1}, \ldots, u_{k}\right\rangle \cap\left\langle v_{1}, \ldots, v_{l}\right\rangle$ is f.g., and if so, compute generators.

FREE-ABELIAN TIMES FREE GROUPS ARE NOT HOWSON

Lemma

The group $\mathbb{F}_{2} \times \mathbb{Z}$ is not Howson.

FREE-ABELIAN TIMES FREE GROUPS ARE NOT HOWSON

Lemma

The group $\mathbb{F}_{2} \times \mathbb{Z}$ is not Howson.

Example

Let $\mathbb{F}_{2} \times \mathbb{Z}=\langle x, y \mid-\rangle \times\langle t \mid-\rangle$, and consider the subgroups:

$$
H=\langle x, y\rangle \text { and } K=\langle t x, y\rangle
$$

FREE-ABELIAN TIMES FREE GROUPS ARE NOT HOWSON

Lemma

The group $\mathbb{F}_{2} \times \mathbb{Z}$ is not Howson.

Example

Let $\mathbb{F}_{2} \times \mathbb{Z}=\langle x, y \mid-\rangle \times\langle t \mid-\rangle$, and consider the subgroups:

$$
H=\langle x, y\rangle \text { and } K=\langle t x, y\rangle
$$

Then:

$$
\begin{aligned}
H \cap K & =\left\{w(x, y) \mid w \in \mathbb{F}_{2}\right\} \cap\left\{w(x t, y) \mid w \in \mathbb{F}_{2}\right\} \\
& =\left\{w(x, y) \mid w \in \mathbb{F}_{2}\right\} \cap\left\{w(x, y) t^{|w|_{x}} \mid w \in \mathbb{F}_{2}\right\} \\
& =\left\{w(x, y) t^{0}\left|w \in \mathbb{F}_{2},|w|_{x}=0\right\}\right. \\
& =\left\langle x^{-k} y x^{k}, k \in \mathbb{Z}\right\rangle=\langle\langle y\rangle\rangle_{\mathbb{F}_{2}}
\end{aligned}
$$

FREE-ABELIAN TIMES FREE GROUPS ARE NOT HOWSON

Lemma

The group $\mathbb{F}_{2} \times \mathbb{Z}$ is not Howson.

Example

Let $\mathbb{F}_{2} \times \mathbb{Z}=\langle x, y \mid-\rangle \times\langle t \mid-\rangle$, and consider the subgroups:

$$
H=\langle x, y\rangle \text { and } K=\langle t x, y\rangle
$$

Then:

$$
\begin{aligned}
H \cap K & =\left\{w(x, y) \mid w \in \mathbb{F}_{2}\right\} \cap\left\{w(x t, y) \mid w \in \mathbb{F}_{2}\right\} \\
& =\left\{w(x, y) \mid w \in \mathbb{F}_{2}\right\} \cap\left\{w(x, y) t^{|w|_{x}} \mid w \in \mathbb{F}_{2}\right\} \\
& =\left\{w(x, y) t^{0}\left|w \in \mathbb{F}_{2},|w|_{x}=0\right\}\right. \\
& =\left\langle x^{-k} y x^{k}, k \in \mathbb{Z}\right\rangle=\langle\langle y\rangle\rangle_{\mathbb{F}_{2}}
\end{aligned}
$$

is not finitely generated, since its Stallings automaton is infinite:

FREE-ABELIAN TIMES FREE GROUPS ARE NOT HOWSON

Lemma

The group $\mathbb{F}_{2} \times \mathbb{Z}$ is not Howson.

Example

Let $\mathbb{F}_{2} \times \mathbb{Z}=\langle x, y \mid-\rangle \times\langle t \mid-\rangle$, and consider the subgroups:

$$
H=\langle x, y\rangle \text { and } K=\langle t x, y\rangle
$$

Then:

$$
\begin{aligned}
H \cap K & =\left\{w(x, y) \mid w \in \mathbb{F}_{2}\right\} \cap\left\{w(x t, y) \mid w \in \mathbb{F}_{2}\right\} \\
& =\left\{w(x, y) \mid w \in \mathbb{F}_{2}\right\} \cap\left\{w(x, y) t^{|w|_{x}} \mid w \in \mathbb{F}_{2}\right\} \\
& =\left\{w(x, y) t^{0}\left|w \in \mathbb{F}_{2},|w|_{x}=0\right\}\right. \\
& =\left\langle x^{-k} y x^{k}, k \in \mathbb{Z}\right\rangle=\langle\langle y\rangle\rangle_{\mathbb{F}_{2}}
\end{aligned}
$$

is not finitely generated, since its Stallings automaton is infinite:

Remark: H and K are free groups with non-f.g. intersection... doesn't this contradict Howson's property for free groups?

INTERSECTION DIAGRAM

INTERSECTION DIAGRAM

$$
\begin{aligned}
\left(H_{1} \cap H_{2}\right) \pi & =\left\{w \in H_{1} \pi \cap H_{2} \pi: c_{H_{1}}(w) \cap \mathbf{c}_{H_{2}}(w) \neq \varnothing\right\} \\
& =\left\{w \in H_{1} \pi \cap H_{2} \pi:\left(w \phi_{1} \rho_{1} A_{1}+L_{1}\right) \cap\left(w \phi_{2} \rho_{2} A_{2}+L_{2}\right) \neq \varnothing\right\}
\end{aligned}
$$

INTERSECTION DIAGRAM

$$
\begin{aligned}
\left(H_{1} \cap H_{2}\right) \pi & =\left\{w \in H_{1} \pi \cap H_{2} \pi: c_{H_{1}}(w) \cap c_{H_{2}}(w) \neq \varnothing\right\} \\
& =\left\{w \in H_{1} \pi \cap H_{2} \pi:\left(w \phi_{1} \rho_{1} A_{1}+L_{1}\right) \cap\left(w \phi_{2} \rho_{2} A_{2}+L_{2}\right) \neq \varnothing\right\} \\
& =\left\{w \in H_{1} \pi \cap H_{2} \pi:\left(w \rho P_{1} A_{1}+L_{1}\right) \cap\left(w \rho P_{2} A_{2}+L_{2}\right) \neq \varnothing\right\}
\end{aligned}
$$

INTERSECTION DIAGRAM

$$
\begin{aligned}
\left(H_{1} \cap H_{2}\right) \pi & =\left\{w \in H_{1} \pi \cap H_{2} \pi: c_{H_{1}}(w) \cap \mathbf{c}_{H_{2}}(w) \neq \varnothing\right\} \\
& =\left\{w \in H_{1} \pi \cap H_{2} \pi:\left(w \phi_{1} \rho_{1} A_{1}+L_{1}\right) \cap\left(w \phi_{2} \rho_{2} A_{2}+L_{2}\right) \neq \varnothing\right\} \\
& =\left\{w \in H_{1} \pi \cap H_{2} \pi:\left(w \rho P_{1} A_{1}+L_{1}\right) \cap\left(w \rho P_{2} A_{2}+L_{2}\right) \neq \varnothing\right\} \\
& =\left\{w \in H_{1} \pi \cap H_{2} \pi: w \rho\left(P_{1} A_{1}-P_{2} A_{2}\right) \in L_{1}+L_{2}\right\}
\end{aligned}
$$

INTERSECTION DIAGRAM

$$
\begin{aligned}
\left(H_{1} \cap H_{2}\right) \pi & =\left\{w \in H_{1} \pi \cap H_{2} \pi: c_{H_{1}}(w) \cap \mathbf{c}_{H_{2}}(w) \neq \varnothing\right\} \\
& =\left\{w \in H_{1} \pi \cap H_{2} \pi:\left(w \phi_{1} \rho_{1} A_{1}+L_{1}\right) \cap\left(w \phi_{2} \rho_{2} A_{2}+L_{2}\right) \neq \varnothing\right\} \\
& =\left\{w \in H_{1} \pi \cap H_{2} \pi:\left(w \rho P_{1} A_{1}+L_{1}\right) \cap\left(w \rho P_{2} A_{2}+L_{2}\right) \neq \varnothing\right\} \\
& =\left\{w \in H_{1} \pi \cap H_{2} \pi: w \rho\left(P_{1} A_{1}-P_{2} A_{2}\right) \in L_{1}+L_{2}\right\} \\
& =\left(L_{1}+L_{2}\right)\left(P_{1} A_{1}-P_{2} A_{2}\right)^{\leftarrow} \rho^{\leftarrow}
\end{aligned}
$$

INTERSECTION DIAGRAM

$$
\begin{aligned}
\left(H_{1} \cap H_{2}\right) \pi & =\left\{w \in H_{1} \pi \cap H_{2} \pi: \mathbf{c}_{H_{1}}(w) \cap \mathbf{c}_{H_{2}}(w) \neq \varnothing\right\} \\
& =\left\{w \in H_{1} \pi \cap H_{2} \pi:\left(w \phi_{1} \rho_{1} A_{1}+L_{1}\right) \cap\left(w \phi_{2} \rho_{2} A_{2}+L_{2}\right) \neq \varnothing\right\} \\
& =\left\{w \in H_{1} \pi \cap H_{2} \pi:\left(w \rho P_{1} A_{1}+L_{1}\right) \cap\left(w \rho P_{2} A_{2}+L_{2}\right) \neq \varnothing\right\} \\
& =\left\{w \in H_{1} \pi \cap H_{2} \pi: w \rho\left(P_{1} A_{1}-P_{2} A_{2}\right) \in L_{1}+L_{2}\right\} \\
& =\left(L_{1}+L_{2}\right)\left(P_{1} A_{1}-P_{2} A_{2}\right)^{\leftarrow} \rho^{\leftarrow}=\left(L_{1}+L_{2}\right) R^{\leftarrow} \rho^{\leftarrow} .
\end{aligned}
$$

DECIDING INTERSECTIONS

We have:

$$
\begin{gathered}
\mathbb{F}_{n} \geqslant H_{1} \pi \cap H_{2} \pi \simeq \mathbb{F}_{r} \longrightarrow \rho \\
\left(H_{1} \cap H_{2}\right) \pi \simeq \underbrace{\left(L_{1}+L_{2}\right) R^{\leftarrow} \rho^{\leftarrow}}_{M \rho^{\leftarrow}} \longleftrightarrow \underbrace{}_{M} \longleftrightarrow \mathbb{Z}^{r} \longrightarrow \mathbb{R} \mathbb{Z}^{m} \\
\left.\nabla_{1}+L_{2}\right) \mathbb{R}^{\leftarrow} \\
L_{1}+L_{2}
\end{gathered}
$$

DECIDING INTERSECTIONS

We have:

$$
\begin{gathered}
\mathbb{F}_{n} \geqslant H_{1} \pi \cap H_{2} \pi \simeq \mathbb{F}_{r} \longrightarrow \rho^{\rho} \longrightarrow \mathbb{Z}^{r} \longrightarrow \mathbb{R} \mathbb{Z}^{m} \\
\left(H_{1} \cap H_{2}\right) \pi \simeq \underbrace{\left(L_{1}+L_{2}\right) R^{\leftarrow} \rho^{\leftarrow}}_{M \rho^{\leftarrow}} \longleftrightarrow \underbrace{\left(L_{1}+L_{2}\right) \mathbb{R}^{\leftarrow}}_{M} \longleftrightarrow L_{1}+L_{2}
\end{gathered}
$$

Theorem

Let $H_{1}, H_{2} \leqslant_{f g} \mathbb{F}_{n} \times \mathbb{Z}^{m}$. Then, TFAE:

1. the intersection $H_{1} \cap H_{2}$ is finitely generated;
2. the projection $\left(H_{1} \cap H_{2}\right) \pi$ is finitely generated;
3. $\left(H_{1} \cap H_{2}\right) \pi$ is either trivial, or has finite index in $H_{1} \pi \cap H_{2} \pi$,
4. either $r=0,1$ and M is trivial, or $\left|\mathbb{Z}^{r}: M\right|<\infty$.

DECIDING INTERSECTIONS

We have:

$$
\begin{gathered}
\mathbb{F}_{n} \geqslant H_{1} \pi \cap H_{2} \pi \simeq \mathbb{F}_{r} \longrightarrow \rho \\
\left(H_{1} \cap H_{2}\right) \pi \simeq \underbrace{\left(L_{1}+L_{2}\right) R^{\leftarrow} \rho^{\leftarrow}}_{M \rho^{\leftarrow}} \longleftrightarrow \underbrace{\mathbb{Z}^{r}}_{M} \underbrace{\left(L_{1}+L_{2}\right) \mathbb{R}^{\leftarrow}} \longleftrightarrow \mathbb{Z}^{m} \\
L_{1}+L_{2}
\end{gathered}
$$

Theorem

Let $H_{1}, H_{2} \leqslant_{f g} \mathbb{F}_{n} \times \mathbb{Z}^{m}$. Then, TFAE:

1. the intersection $H_{1} \cap H_{2}$ is finitely generated;
2. the projection $\left(H_{1} \cap H_{2}\right) \pi$ is finitely generated;
3. $\left(H_{1} \cap H_{2}\right) \pi$ is either trivial, or has finite index in $H_{1} \pi \cap H_{2} \pi$,
4. either $r=0,1$ and M is trivial, or $\left|\mathbb{Z}^{r}: M\right|<\infty$.

Corollary

The subgroup intersection problem $\operatorname{SIP}\left(\mathbb{F}_{n} \times \mathbb{Z}^{m}\right)$ is decidable.

INTERSECTION EXAMPLE

Let $H_{1}=\left\langle t^{L_{1}}, x^{3} t^{\mathrm{a}}, y x\right\rangle$,

INTERSECTION EXAMPLE

$$
\text { Let } H_{1}=\left\langle t^{L_{1}}, x^{3} t^{a}, y x\right\rangle, H_{2}=\left\langle t^{L_{2}}, x^{2} t^{d}, y x y^{-1}\right\rangle
$$

INTERSECTION EXAMPLE

$$
\text { Let } H_{1}=\left\langle t^{L_{1}}, x^{3} t^{a}, y x\right\rangle, H_{2}=\left\langle t^{L_{2}}, x^{2} t^{d}, y x y^{-1}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{2}
$$

INTERSECTION EXAMPLE

$$
\text { Let } H_{1}=\left\langle t^{L_{1}}, x^{3} t^{a}, y x\right\rangle, H_{2}=\left\langle t^{L_{2}}, x^{2} t^{d}, y x y^{-1}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{2}
$$

INTERSECTION EXAMPLE

Let $H_{1}=\left\langle t^{L_{1}}, x^{3} t^{\mathrm{a}}, y x\right\rangle, H_{2}=\left\langle t^{L_{2}}, x^{2} t^{d}, y x y^{-1}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{2}$

INTERSECTION EXAMPLE

Let $H_{1}=\left\langle t^{L_{1}}, x^{3} t^{\mathrm{a}}, y x\right\rangle, H_{2}=\left\langle t^{L_{2}}, x^{2} t^{d}, y x y^{-1}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{2}$

INTERSECTION EXAMPLE

Let $H_{1}=\left\langle t^{L_{1}}, x^{3} t^{\mathrm{a}}, y x\right\rangle, H_{2}=\left\langle t^{L_{2}}, x^{2} t^{d}, y x y^{-1}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{2}$

INTERSECTION EXAMPLE

Let $H_{1}=\left\langle t^{L_{1}}, x^{3} t^{\mathrm{a}}, y x\right\rangle, H_{2}=\left\langle t^{L_{2}}, x^{2} t^{\mathrm{d}}, y x y^{-1}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{2}$

INTERSECTION EXAMPLE

Let $H_{1}=\left\langle t^{L_{1}}, x^{3} t^{\mathrm{a}}, y x\right\rangle, H_{2}=\left\langle t^{L_{2}}, x^{2} t^{\mathrm{d}}, y x y^{-1}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{2}$

INTERSECTION EXAMPLE

Let $H_{1}=\left\langle t^{L_{1}}, x^{3} t^{a}, y x\right\rangle, H_{2}=\left\langle t^{L_{2}}, x^{2} t^{d}, y x y^{-1}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{2}$

INTERSECTION EXAMPLE

Let $H_{1}=\left\langle t^{L_{1}}, x^{3} t^{a}, y x\right\rangle, H_{2}=\left\langle t^{L_{2}}, x^{2} t^{d}, y x y^{-1}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{2}$

INTERSECTION EXAMPLE

Let $H_{1}=\left\langle t^{L_{1}}, x^{3} t^{a}, y x\right\rangle, H_{2}=\left\langle t^{L_{2}}, x^{2} t^{d}, y x y^{-1}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{2}$

INTERSECTION EXAMPLE

Let $H_{1}=\left\langle t^{L_{1}}, x^{3} t^{\mathrm{a}}, y x\right\rangle, H_{2}=\left\langle t^{L_{2}}, x^{2} t^{\mathrm{d}}, y x y^{-1}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{2}$

INTERSECTION EXAMPLE

Let $H_{1}=\left\langle t^{L_{1}}, x^{3} t^{\mathrm{a}}, y x\right\rangle, H_{2}=\left\langle t^{L_{2}}, x^{2} t^{\mathrm{d}}, y x y^{-1}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{2}$

INTERSECTION EXAMPLE

Let $H_{1}=\left\langle t^{L_{1}}, x^{3} t^{\mathrm{a}}, y x\right\rangle, H_{2}=\left\langle t^{L_{2}}, x^{2} t^{\mathrm{d}}, y x y^{-1}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{2}$

INTERSECTION EXAMPLE

Let $H_{1}=\left\langle t^{L_{1}}, x^{3} t^{\mathrm{a}}, y x\right\rangle, H_{2}=\left\langle t^{L_{2}}, x^{2} t^{\mathrm{d}}, y x y^{-1}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{2}$

INTERSECTION EXAMPLE

Let $H_{1}=\left\langle t^{L_{1}}, x^{3} t^{a}, y x\right\rangle, H_{2}=\left\langle t^{L_{2}}, x^{2} t^{d}, y x y^{-1}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{2}$

INTERSECTION EXAMPLE

Let $H_{1}=\left\langle t^{L_{1}}, x^{3} t^{\mathrm{a}}, y x\right\rangle, H_{2}=\left\langle t^{L_{2}}, x^{2} t^{\mathrm{d}}, y x y^{-1}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{2}$

INTERSECTION EXAMPLE

$$
\text { Let } H_{1}=\left\langle t^{L_{1}}, x^{3} t^{\mathrm{a}}, y x\right\rangle, H_{2}=\left\langle t^{L_{2}}, x^{2} t^{d}, y x y^{-1}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{2}
$$

INTERSECTION EXAMPLE

$$
\text { Let } H_{1}=\left\langle t^{L_{1}}, x^{3} t^{\mathrm{a}}, y x\right\rangle, H_{2}=\left\langle t^{L_{2}}, x^{2} t^{d}, y x y^{-1}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{2}
$$

INTERSECTION EXAMPLE

Let $H_{1}=\left\langle t^{L_{1}}, x^{3} t^{\mathrm{a}}, y x\right\rangle, H_{2}=\left\langle t^{L_{2}}, x^{2} t^{\mathrm{d}}, y x y^{-1}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{2}$

Claim:
$H_{1} \cap H_{2}=\left\{u t^{a}: u t^{a}\right.$ is componentwise-readable in St $\left.\left(H_{1}\right) \times \operatorname{St}\left(H_{2}\right)\right\}$

INTERSECTION EXAMPLE

Let $H_{1}=\left\langle t^{L_{1}}, x^{3} t^{\mathrm{a}}, y x\right\rangle, H_{2}=\left\langle t^{L_{2}}, x^{2} t^{d}, y x y^{-1}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{2}$

Claim:
$H_{1} \cap H_{2}=\left\{u t^{a}: u t^{a}\right.$ is componentwise-readable in St $\left.\left(H_{1}\right) \times \operatorname{St}\left(H_{2}\right)\right\}$
$\left(H_{1} \cap H_{2}\right) \pi=\left\{w \in \mathbb{F}_{w_{1}, w_{2}}: w\left(w_{1} t^{2 a}, w_{2} t^{a}\right) t^{L_{1}} \cap w\left(w_{1} t^{3 \mathrm{~d}}, w_{2} t^{0}\right) t^{L_{2}} \neq \varnothing\right\}$

INTERSECTION EXAMPLE

Let $H_{1}=\left\langle t^{L_{1}}, x^{3} t^{\mathrm{a}}, y x\right\rangle, H_{2}=\left\langle t^{L_{2}}, x^{2} t^{\mathrm{d}}, y x y^{-1}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{2}$

Claim:
$H_{1} \cap H_{2}=\left\{u t^{a}: u t^{a}\right.$ is componentwise-readable in St $\left.\left(H_{1}\right) \times \operatorname{St}\left(H_{2}\right)\right\}$
$\left(H_{1} \cap H_{2}\right) \pi=\left\{w \in \mathbb{F}_{w_{1}, w_{2}}: w\left(w_{1} t^{2 a}, w_{2} t^{a}\right) t^{L_{1}} \cap w\left(w_{1} t^{3 \mathrm{~d}}, w_{2} t^{0}\right) t^{L_{2}} \neq \varnothing\right\}$

$$
=\left\{w \in \mathbb{F}_{w_{1}, w_{2}}: w^{\text {ab }}\left[\begin{array}{c}
2 a-3 d \\
a-0
\end{array}\right] \in L_{1}+L_{2}\right\}
$$

INTERSECTION EXAMPLE

Let $H_{1}=\left\langle t^{L_{1}}, x^{3} t^{\mathrm{a}}, y x\right\rangle, H_{2}=\left\langle t^{L_{2}}, x^{2} t^{\mathrm{d}}, y x y^{-1}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{2}$

Claim:

$$
\begin{aligned}
H_{1} \cap H_{2} & =\left\{u t^{a}: u t^{a} \text { is componentwise-readable in St }\left(H_{1}\right) \times \operatorname{St}\left(H_{2}\right)\right\} \\
\left(H_{1} \cap H_{2}\right) \pi & =\left\{w \in \mathbb{F}_{w_{1}, w_{2}}: w\left(w_{1} t^{2 a}, w_{2} t^{a}\right) t^{L_{1}} \cap w\left(w_{1} t^{3 \mathrm{~d}}, w_{2} t^{0}\right) t^{L_{2}} \neq \varnothing\right\} \\
& =\left\{w \in \mathbb{F}_{w_{1}, w_{2}}: w^{\mathrm{ab}}\left[\begin{array}{c}
2 a-3 \mathrm{~d} \\
\mathrm{a}-0
\end{array}\right] \in L_{1}+L_{2}\right\} \\
& =\left(L_{1}+L_{2}\right) \mathbf{R}^{\leftarrow} \rho^{\leftarrow}, \text { where } \mathrm{R}=\left[\begin{array}{c}
2 a-3 \mathrm{~d} \\
\mathrm{a}-0
\end{array}\right] \text { and } \rho=\mathrm{ab} .
\end{aligned}
$$

FROM STALLINGS TO CAYLEY

FROM STALLINGS TO CAYLEY

$$
\begin{aligned}
& \mathrm{R}=\left[\begin{array}{c}
2 \mathrm{a}-3 \mathrm{~d} \\
\mathrm{a}-0
\end{array}\right] \\
& M=\left(L_{1}+L_{2}\right) \mathrm{R}^{4}
\end{aligned}
$$

We have that $\left(H_{1} \cap H_{2}\right) \pi=\left(L_{1}+L_{2}\right) R^{-1} \rho^{-1}=M \rho^{-1}$, i.e.,

FROM STALLINGS TO CAYLEY

$$
\begin{aligned}
& \mathrm{R}=\left[\begin{array}{c}
2 \mathrm{a}-3 \mathrm{~d} \\
\mathrm{a}-0
\end{array}\right] \\
& M=\left(L_{1}+L_{2}\right) \mathrm{R}^{*}
\end{aligned}
$$

We have that $\left(H_{1} \cap H_{2}\right) \pi=\left(L_{1}+L_{2}\right) R^{-1} \rho^{-1}=M \rho^{-1}$, i.e.,

$$
\begin{aligned}
\mathbb{F}_{\{x, y\}} \geqslant H_{1} \pi \cap H_{2} \pi & \simeq \mathbb{F}_{W_{1}, W_{2}} \xrightarrow{\rho} \mathbb{Z}^{2} \xrightarrow{\mathrm{R}} \mathbb{Z}^{m} \\
\nabla / & \nabla / \\
\left(H_{1} \cap H_{2}\right) \pi & \simeq M \rho^{-1} \longleftrightarrow M
\end{aligned}
$$

FROM STALLINGS TO CAYLEY

$$
\begin{aligned}
& \mathrm{R}=\left[\begin{array}{c}
2 \mathrm{a}-3 \mathrm{~d} \\
\mathrm{a}-0
\end{array}\right] \\
& M=\left(L_{1}+L_{2}\right) \mathrm{R}^{*}
\end{aligned}
$$

We have that $\left(H_{1} \cap H_{2}\right) \pi=\left(L_{1}+L_{2}\right) R^{-1} \rho^{-1}=M \rho^{-1}$, i.e.,

$$
\begin{aligned}
\mathbb{F}_{\{x, y\}} \geqslant H_{1} \pi \cap H_{2} \pi & \simeq \mathbb{F}_{W_{1}, W_{2}} \xrightarrow{\rho} \mathbb{Z}^{2} \xrightarrow{\nabla /} \mathbb{Z}^{m} \\
\nabla / & \nabla / \\
\left(H_{1} \cap H_{2}\right) \pi & \simeq M \rho^{-1} \longleftrightarrow L_{1}+L_{2}
\end{aligned}
$$

Then, $\operatorname{St}\left(\left(H_{1} \cap H_{2}\right) \pi,\left\{w_{i}\right\}_{i}\right) \simeq \operatorname{St}\left(M \rho^{-1},\left\{w_{i}\right\}_{i}\right)$

FROM STALLINGS TO CAYLEY

$$
\begin{aligned}
& \mathrm{R}=\left[\begin{array}{c}
2 \mathrm{a}-3 \mathrm{~d} \\
\mathrm{a}-0
\end{array}\right] \\
& M=\left(L_{1}+L_{2}\right) \mathrm{R}^{*}
\end{aligned}
$$

We have that $\left(H_{1} \cap H_{2}\right) \pi=\left(L_{1}+L_{2}\right) \mathrm{R}^{-1} \rho^{-1}=M \rho^{-1}$, i.e.,

$$
\begin{aligned}
\mathbb{F}_{\{x, y\}} \geqslant H_{1} \pi \cap H_{2} \pi & \simeq \mathbb{F}_{w_{1}, w_{2}} \xrightarrow{\rho} \mathbb{Z}^{2} \xrightarrow{\nabla} \xrightarrow{\nabla /} \mathbb{Z}^{m} \\
\nabla / & \nabla / \\
\left(H_{1} \cap H_{2}\right) \pi & \simeq M \rho^{-1} \longleftrightarrow L_{1}+L_{2}
\end{aligned}
$$

Then, $\operatorname{St}\left(\left(H_{1} \cap H_{2}\right) \pi,\left\{w_{i}\right\}_{i}\right) \simeq \operatorname{St}\left(M \rho^{-1},\left\{w_{i}\right\}_{i}\right)$

$$
\simeq \operatorname{Sch}\left(M \rho^{-1},\left\{w_{i}\right\}_{i}\right)
$$

FROM STALLINGS TO CAYLEY

We have that $\left(H_{1} \cap H_{2}\right) \pi=\left(L_{1}+L_{2}\right) \mathrm{R}^{-1} \rho^{-1}=M \rho^{-1}$, i.e.,

$$
\begin{aligned}
\mathbb{F}_{\{x, y\}} \geqslant H_{1} \pi \cap H_{2} \pi & \simeq \mathbb{F}_{W_{1}, W_{2}} \xrightarrow{\rho} \mathbb{Z}^{2} \xrightarrow{\nabla /} \mathbb{Z}^{m} \\
\nabla / & \nabla / \\
\left(H_{1} \cap H_{2}\right) \pi & \simeq M \rho^{-1} \longleftrightarrow L_{1} \\
& M \longleftrightarrow L_{2}
\end{aligned}
$$

Then, $\operatorname{St}\left(\left(H_{1} \cap H_{2}\right) \pi,\left\{w_{i}\right\}_{i}\right) \simeq \operatorname{St}\left(M \rho^{-1},\left\{w_{i}\right\}_{i}\right)$

$$
\begin{aligned}
& \simeq \operatorname{Sch}\left(M \rho^{-1},\left\{w_{i}\right\}_{i}\right) \\
& \simeq \operatorname{Cay}\left(\mathbb{F}_{w_{1}, w_{2}} / M \rho^{-1},\left\{\left[w_{i}\right]\right\}_{i}\right)
\end{aligned}
$$

FROM STALLINGS TO CAYLEY

We have that $\left(H_{1} \cap H_{2}\right) \pi=\left(L_{1}+L_{2}\right) \mathrm{R}^{-1} \rho^{-1}=M \rho^{-1}$, i.e.,

$$
\begin{aligned}
\mathbb{F}_{\{x, y\}} \geqslant H_{1} \pi \cap H_{2} \pi & \simeq \mathbb{F}_{W_{1}, W_{2}} \xrightarrow{\rho} \mathbb{Z}^{2} \xrightarrow{\nabla /} \mathbb{Z}^{m} \\
\nabla / & \nabla / \\
\left(H_{1} \cap H_{2}\right) \pi & \simeq M \rho^{-1} \longleftrightarrow L_{1} \\
& M \longleftrightarrow L_{2}
\end{aligned}
$$

Then, $\operatorname{St}\left(\left(H_{1} \cap H_{2}\right) \pi,\left\{w_{i}\right\}_{i}\right) \simeq \operatorname{St}\left(M \rho^{-1},\left\{w_{i}\right\}_{i}\right)$

$$
\begin{aligned}
& \simeq \operatorname{Sch}\left(M \rho^{-1},\left\{w_{i}\right\}_{i}\right) \\
& \simeq \operatorname{Cay}\left(\mathbb{F}_{w_{1}, w_{2}} / M \rho^{-1},\left\{\left[w_{i}\right]\right\}_{i}\right) \\
& \simeq \operatorname{Cay}\left(\mathbb{Z}^{2} / M,\left\{\mathbf{e}_{i}\right\}_{i}\right)
\end{aligned}
$$

FROM STALLINGS TO CAYLEY

$$
\begin{gathered}
R=\left[\begin{array}{c}
2 a-3 d \\
a-0
\end{array}\right] \\
\langle M\rangle=M=\left(L_{1}+L_{2}\right) R^{*}
\end{gathered}
$$

We have that $\left(H_{1} \cap H_{2}\right) \pi=\left(L_{1}+L_{2}\right) \mathrm{R}^{-1} \rho^{-1}=M \rho^{-1}$, i.e.,

$$
\begin{aligned}
& \mathbb{F}_{\{x, y\}} \geqslant \underset{\nabla /}{H_{1} \pi \cap H_{2} \pi} \simeq \underset{\nabla /}{\mathbb{F}_{w_{1}, w_{2}} \xrightarrow{\rho} \mathbb{Z}^{2} \xrightarrow{\mathbb{Z}^{2}} \xrightarrow{\mathrm{R}} \mathbb{Z}^{m}} \begin{array}{l}
\mathbb{Z}^{m}
\end{array} \\
& \left(H_{1} \cap H_{2}\right) \pi \simeq M \rho^{-1} \longleftarrow M \longleftrightarrow L_{1}+L_{2}
\end{aligned}
$$

Then, $\operatorname{St}\left(\left(H_{1} \cap H_{2}\right) \pi,\left\{w_{i}\right\}_{i}\right) \simeq \operatorname{St}\left(M \rho^{-1},\left\{w_{i}\right\}_{i}\right)$

$$
\begin{aligned}
& \simeq \operatorname{Sch}\left(M \rho^{-1},\left\{w_{i}\right\}_{i}\right) \\
& \simeq \operatorname{Cay}\left(\mathbb{F}_{w_{1}, w_{2}} / M \rho^{-1},\left\{\left[w_{i}\right]\right\}_{i}\right) \\
& \simeq \operatorname{Cay}\left(\mathbb{Z}^{2} / M,\left\{\mathbf{e}_{i}\right\}_{i}\right)
\end{aligned}
$$

FROM STALLINGS TO CAYLEY

$$
\begin{gathered}
R=\left[\begin{array}{c}
2 a-3 d \\
a-0
\end{array}\right] \\
\langle M\rangle=M=\left(L_{1}+L_{2}\right) R^{*}
\end{gathered}
$$

We have that $\left(H_{1} \cap H_{2}\right) \pi=\left(L_{1}+L_{2}\right) \mathrm{R}^{-1} \rho^{-1}=M \rho^{-1}$, i.e.,

$$
\begin{aligned}
& \mathbb{F}_{\{x, y\}} \geqslant \underset{\nabla /}{H_{1} \pi \cap H_{2} \pi} \simeq \underset{\nabla /}{\mathbb{F}_{w_{1}, w_{2}} \xrightarrow{\rho} \mathbb{Z}^{2} \xrightarrow{\mathbb{Z}^{2}} \xrightarrow{\mathrm{R}} \mathbb{Z}^{m}} \begin{array}{l}
\mathbb{Z}^{m}
\end{array} \\
& \left(H_{1} \cap H_{2}\right) \pi \simeq M \rho^{-1} \longleftarrow M \longleftrightarrow L_{1}+L_{2}
\end{aligned}
$$

Then, $\operatorname{St}\left(\left(H_{1} \cap H_{2}\right) \pi,\left\{w_{i}\right\}_{i}\right) \simeq \operatorname{St}\left(M \rho^{-1},\left\{w_{i}\right\}_{i}\right)$

$$
\begin{aligned}
& \simeq \operatorname{Sch}\left(M \rho^{-1},\left\{w_{i}\right\}_{i}\right) \\
& \simeq \operatorname{Cay}\left(\mathbb{F}_{w_{1}, w_{2}} / M \rho^{-1},\left\{\left[w_{i}\right]\right\}_{i}\right) \\
& \simeq \operatorname{Cay}\left(\mathbb{Z}^{2} /\langle\mathbf{M}\rangle,\left\{\mathbf{e}_{i}\right\}_{i}\right)
\end{aligned}
$$

FROM STALLINGS TO CAYLEY

$$
\begin{gathered}
\mathbf{R}=\left[\begin{array}{c}
2 \mathrm{a}-3 \mathrm{~d} \\
\mathrm{a}-0
\end{array}\right] \\
\langle\mathbf{M}\rangle=M=\left(L_{1}+L_{2}\right) \mathrm{R}^{\star} \\
\mathrm{PMQ}=\mathrm{D}=\operatorname{diag}\left(\delta_{1}, \delta_{2}\right)
\end{gathered}
$$

We have that $\left(H_{1} \cap H_{2}\right) \pi=\left(L_{1}+L_{2}\right) \mathrm{R}^{-1} \rho^{-1}=M \rho^{-1}$, i.e.,

$$
\begin{aligned}
& \mathbb{F}_{\{x, y\}} \geqslant H_{1} \pi \cap H_{2} \pi \simeq \mathbb{F}_{w_{1}, W_{2}} \xrightarrow{\rho} \mathbb{Z}^{2} \xrightarrow{\nabla} \xrightarrow{\nabla /} \mathbb{Z}^{m} \\
& \nabla / \nabla / \\
&\left(H_{1} \cap H_{2}\right) \pi \simeq M \rho^{-1} \longleftrightarrow M \longleftrightarrow L_{1}+L_{2}
\end{aligned}
$$

Then, $\operatorname{St}\left(\left(H_{1} \cap H_{2}\right) \pi,\left\{w_{i}\right\}_{i}\right) \simeq \operatorname{St}\left(M \rho^{-1},\left\{w_{i}\right\}_{i}\right)$

$$
\begin{aligned}
& \simeq \operatorname{Sch}\left(M \rho^{-1},\left\{w_{i}\right\}_{i}\right) \\
& \simeq \operatorname{Cay}\left(\mathbb{F}_{w_{1}, w_{2}} / M \rho^{-1},\left\{\left[w_{i}\right]\right\}_{i}\right) \\
& \simeq \operatorname{Cay}\left(\mathbb{Z}^{2} /\langle\mathbf{M}\rangle,\left\{\mathbf{e}_{i}\right\}_{i}\right) \\
& \simeq \operatorname{Cay}\left(\mathbb{Z}^{2} /\langle\mathbf{D}\rangle,\left\{\mathbf{e}_{i} \mathbf{Q}\right\}_{i}\right)
\end{aligned}
$$

FROM STALLINGS TO CAYLEY

$$
\begin{gathered}
\mathbf{R}=\left[\begin{array}{c}
2 \mathrm{a}-3 \mathrm{~d} \\
\mathrm{a}-0
\end{array}\right] \\
\langle\mathbf{M}\rangle=M=\left(L_{1}+L_{2}\right) \mathrm{R}^{\star} \\
\mathrm{PMQ}=\mathrm{D}=\operatorname{diag}\left(\delta_{1}, \delta_{2}\right)
\end{gathered}
$$

We have that $\left(H_{1} \cap H_{2}\right) \pi=\left(L_{1}+L_{2}\right) \mathrm{R}^{-1} \rho^{-1}=M \rho^{-1}$, i.e.,

$$
\begin{aligned}
\mathbb{F}_{\{x, y\}} \geqslant H_{1} \pi \cap H_{2} \pi & \simeq \mathbb{F}_{W_{1}, W_{2}} \xrightarrow{\rho} \mathbb{Z}^{2} \xrightarrow{\nabla /} \mathbb{Z}^{m} \\
\nabla / & \nabla / \\
\left(H_{1} \cap H_{2}\right) \pi & \simeq M \rho^{-1} \longleftrightarrow M
\end{aligned}
$$

Then, $\operatorname{St}\left(\left(H_{1} \cap H_{2}\right) \pi,\left\{w_{i}\right\}_{i}\right) \simeq \operatorname{St}\left(M \rho^{-1},\left\{w_{i}\right\}_{i}\right)$
$\simeq \operatorname{Sch}\left(M \rho^{-1},\left\{w_{i}\right\}_{i}\right)$
$\simeq \operatorname{Cay}\left(\mathbb{F}_{w_{1}, w_{2}} / M \rho^{-1},\left\{\left[w_{i}\right]\right\}_{i}\right)$
$\simeq \operatorname{Cay}\left(\mathbb{Z}^{2} /\langle\mathbf{M}\rangle,\left\{\mathbf{e}_{i}\right\}_{i}\right)$
$\simeq \operatorname{Cay}\left(\mathbb{Z}^{2} /\langle\mathbf{D}\rangle,\left\{\mathbf{e}_{i} \mathbf{Q}\right\}_{i}\right)$
$\simeq \operatorname{Cay}\left(\mathbb{Z} / \delta_{1} \mathbb{Z} \oplus \mathbb{Z} / \delta_{2} \mathbb{Z},\left\{\mathbf{e}_{i} \mathbf{Q}\right\}_{i}\right)$.

INTERSECTION AUTOMATON

Theorem (D.-V.)

Let $H_{1}, H_{2} \leqslant \mathbb{F}_{n} \times \mathbb{Z}^{m}$. Then
St $\left(\left(H_{1} \cap H_{2}\right) \pi,\left\{w_{i}(X)\right\}_{i}\right)=\operatorname{Cay}\left(\bigoplus_{i=1}^{r} \mathbb{Z} / \delta_{i} \mathbb{Z},\left\{\mathbf{e}_{i} \mathbf{Q}\right\}_{i}\right)$,
where $r=\operatorname{rk}\left(H_{1} \pi \cap H_{2} \pi\right)$.

INTERSECTION AUTOMATON

Theorem (D.-V.)
Let $H_{1}, H_{2} \leqslant \mathbb{F}_{n} \times \mathbb{Z}^{m}$. Then

$$
\text { St }\left(\left(H_{1} \cap H_{2}\right) \pi,\left\{w_{i}(X)\right\}_{i}\right)=\operatorname{Cay}\left(\bigoplus_{i=1}^{r} \mathbb{Z} / \delta_{i} \mathbb{Z},\left\{\mathbf{e}_{i} \mathbf{Q}_{i}\right),\right.
$$

where $r=\operatorname{rk}\left(H_{1} \pi \cap H_{2} \pi\right)$.

Corollary

Let $H_{1}, H_{2} \leqslant \mathbb{F}_{n} \times \mathbb{Z}^{m}$. Then,
$H_{1} \cap H_{2}$ is f.g. $\Leftrightarrow \delta_{i} \neq 0$, for all $i=1, \ldots, r$

INTERSECTION AUTOMATON

Theorem (D.-V.)
Let $H_{1}, H_{2} \leqslant \mathbb{F}_{n} \times \mathbb{Z}^{m}$. Then

$$
\text { St }\left(\left(H_{1} \cap H_{2}\right) \pi,\left\{w_{i}(X)\right\}_{i}\right)=\operatorname{Cay}\left(\bigoplus_{i=1}^{r} \mathbb{Z} / \delta_{i} \mathbb{Z},\left\{\mathbf{e}_{i} \mathbf{Q}\right\}_{i}\right),
$$

where $r=\operatorname{rk}\left(H_{1} \pi \cap H_{2} \pi\right)$.

Corollary

Let $H_{1}, H_{2} \leqslant \mathbb{F}_{n} \times \mathbb{Z}^{m}$. Then,

$$
\begin{aligned}
H_{1} \cap H_{2} \text { is f.g. } & \Leftrightarrow \delta_{i} \neq 0, \text { for all } i=1, \ldots, r \\
& \Leftrightarrow\left|\left(H_{1} \cap H_{2}\right) \pi: H_{1} \pi \cap H_{2} \pi\right|<\infty .
\end{aligned}
$$

INTERSECTION AUTOMATON

Theorem (D.-V.)
Let $H_{1}, H_{2} \leqslant \mathbb{F}_{n} \times \mathbb{Z}^{m}$. Then

$$
\text { St }\left(\left(H_{1} \cap H_{2}\right) \pi,\left\{w_{i}(X)\right\}_{i}\right)=\operatorname{Cay}\left(\bigoplus_{i=1}^{r} \mathbb{Z} / \delta_{i} \mathbb{Z},\left\{\mathbf{e}_{i} \mathbf{Q}\right\}_{i}\right),
$$

where $r=\operatorname{rk}\left(H_{1} \pi \cap H_{2} \pi\right)$.

Corollary

Let $H_{1}, H_{2} \leqslant \mathbb{F}_{n} \times \mathbb{Z}^{m}$. Then,

$$
\begin{aligned}
H_{1} \cap H_{2} \text { is f.g. } & \Leftrightarrow \delta_{i} \neq 0, \text { for all } i=1, \ldots, r \\
& \Leftrightarrow\left|\left(H_{1} \cap H_{2}\right) \pi: H_{1} \pi \cap H_{2} \pi\right|<\infty .
\end{aligned}
$$

Theorem (D.-V.)

Let $H_{1}, H_{2} \leqslant \mathbb{F}_{n} \times \mathbb{Z}^{m}$. Then,

1. we can algorithmically decide whether $H_{1} \cap H_{2}$ is f.g.
2. if so, $\operatorname{St}\left(\mathrm{H}_{1} \cap \mathrm{H}_{2}\right)$ is computable.

In particular, $\operatorname{SIP}\left(\mathbb{F}_{n} \times \mathbb{Z}^{m}\right)$ is solvable.

INTERSECTION SHOWCASE

$$
H_{1}=\left\langle t^{L_{1}}, x^{3} t^{a}, y x\right\rangle, H_{2}=\left\langle t^{L_{2}}, x^{2} t^{d}, y x y^{-1}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{2}
$$

INTERSECTION SHOWCASE

$$
H_{1}=\left\langle t^{L_{1}}, x^{3} t^{a}, y x\right\rangle, H_{2}=\left\langle t^{L_{2}}, x^{2} t^{d}, y x y^{-1}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{2}
$$

Case 1: $\quad \mathrm{a}=(1,0), \mathrm{d}=(0,1), L_{1}=\langle(0,6)\rangle, L_{2}=\langle(3,-3)\rangle$

$$
H_{1}=\left\langle t^{L_{1}}, x^{3} t^{\mathrm{a}}, y x\right\rangle, H_{2}=\left\langle t^{L_{2}}, x^{2} t^{d}, y x y^{-1}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{2}
$$

Case 1: $\quad a=(1,0), d=(0,1), L_{1}=\langle(0,6)\rangle, L_{2}=\langle(3,-3)\rangle$
Then, $\mathbf{R}=\left[\begin{array}{cc}2 & -3 \\ 1 & 0\end{array}\right], \mathrm{M}=\left[\begin{array}{cc}-2 & 4 \\ 1 & 1\end{array}\right], \mathbf{Q}=\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right], \mathrm{D}=\left[\begin{array}{ll}1 & 0 \\ 0 & 6\end{array}\right]$.

INTERSECTION SHOWCASE

$$
H_{1}=\left\langle t^{L_{1}}, x^{3} t^{a}, y x\right\rangle, H_{2}=\left\langle t^{L_{2}}, x^{2} t^{d}, y x y^{-1}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{2}
$$

Case 1: $\quad \mathbf{a}=(1,0), \mathrm{d}=(0,1), L_{1}=\langle(0,6)\rangle, L_{2}=\langle(3,-3)\rangle$
Then, $\mathbf{R}=\left[\begin{array}{rr}2 & -3 \\ 1 & 0\end{array}\right], \mathbf{M}=\left[\begin{array}{rr}-2 & 4 \\ 1 & 1\end{array}\right], \mathbf{Q}=\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right], \mathbf{D}=\left[\begin{array}{ll}1 & 0 \\ 0 & 6\end{array}\right]$.
Hence: St $\left(\left(H_{1} \cap H_{2}\right) \pi,\left\{w_{1}, w_{2}\right\}\right)=\operatorname{Cay}(\mathbb{Z} / 6 \mathbb{Z},\{-1,1\})$

INTERSECTION SHOWCASE

$$
H_{1}=\left\langle t^{L_{1}}, x^{3} t^{a}, y x\right\rangle, H_{2}=\left\langle t^{L_{2}}, x^{2} t^{d}, y x y^{-1}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{2}
$$

Case 1: $\quad \mathrm{a}=(1,0), \mathrm{d}=(0,1), L_{1}=\langle(0,6)\rangle, L_{2}=\langle(3,-3)\rangle$
Then, $\mathbf{R}=\left[\begin{array}{rr}2 & -3 \\ 1 & 0\end{array}\right], \mathbf{M}=\left[\begin{array}{rr}-2 & 4 \\ 1 & 1\end{array}\right], \mathbf{Q}=\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right], \mathbf{D}=\left[\begin{array}{ll}1 & 0 \\ 0 & 6\end{array}\right]$.
Hence: St $\left(\left(H_{1} \cap H_{2}\right) \pi,\left\{w_{1}, w_{2}\right\}\right)=\operatorname{Cay}(\mathbb{Z} / 6 \mathbb{Z},\{-1,1\})$

INTERSECTION SHOWCASE

$$
H_{1}=\left\langle t^{L_{1}}, x^{3} t^{a}, y x\right\rangle, H_{2}=\left\langle t^{L_{2}}, x^{2} t^{d}, y x y^{-1}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{2}
$$

Case 1: $\quad \mathrm{a}=(1,0), \mathrm{d}=(0,1), L_{1}=\langle(0,6)\rangle, L_{2}=\langle(3,-3)\rangle$
Then, $\mathbf{R}=\left[\begin{array}{cc}2 & -3 \\ 1 & 0\end{array}\right], \mathbf{M}=\left[\begin{array}{rr}-2 & 4 \\ 1 & 1\end{array}\right], \mathbf{Q}=\left[\begin{array}{rr}1 & -1 \\ 0 & 1\end{array}\right], \mathbf{D}=\left[\begin{array}{ll}1 & 0 \\ 0 & 6\end{array}\right]$.
After replacing $w_{1} \rightarrow x^{6} t^{(2,0),(0,3)}, w_{2} \rightarrow y x^{3} y^{-1} t^{(1,0),(0,0)}$ and folding:

INTERSECTION SHOWCASE

$$
H_{1}=\left\langle t^{L_{1}}, x^{3} t^{a}, y x\right\rangle, H_{2}=\left\langle t^{L_{2}}, x^{2} t^{d}, y x y^{-1}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{2}
$$

Case 1: $\quad \mathrm{a}=(1,0), \mathrm{d}=(0,1), L_{1}=\langle(0,6)\rangle, L_{2}=\langle(3,-3)\rangle$
Then, $\mathbf{R}=\left[\begin{array}{rr}2 & -3 \\ 1 & 0\end{array}\right], \mathbf{M}=\left[\begin{array}{rr}-2 & 4 \\ 1 & 1\end{array}\right], \mathbf{Q}=\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right], \mathbf{D}=\left[\begin{array}{ll}1 & 0 \\ 0 & 6\end{array}\right]$.
After replacing $w_{1} \rightarrow x^{6} t^{(2,0),(0,3)}, w_{2} \rightarrow y x^{3} y^{-1} t^{(1,0),(0,0)}$ and folding:

INTERSECTION SHOWCASE

$$
H_{1}=\left\langle t^{L_{1}}, x^{3} t^{a}, y x\right\rangle, H_{2}=\left\langle t^{L_{2}}, x^{2} t^{d}, y x y^{-1}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{2}
$$

Case 1: $\quad \mathrm{a}=(1,0), \mathrm{d}=(0,1), L_{1}=\langle(0,6)\rangle, L_{2}=\langle(3,-3)\rangle$
Then, $\mathbf{R}=\left[\begin{array}{rr}2 & -3 \\ 1 & 0\end{array}\right], \mathbf{M}=\left[\begin{array}{rr}-2 & 4 \\ 1 & 1\end{array}\right], \mathbf{Q}=\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right], \mathbf{D}=\left[\begin{array}{ll}1 & 0 \\ 0 & 6\end{array}\right]$.
After normalizing w.r.t. an spanning tree:

INTERSECTION SHOWCASE

$$
H_{1}=\left\langle t^{L_{1}}, x^{3} t^{a}, y x\right\rangle, H_{2}=\left\langle t^{L_{2}}, x^{2} t^{d}, y x y^{-1}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{2}
$$

Case 1: $\quad \mathrm{a}=(1,0), \mathrm{d}=(0,1), L_{1}=\langle(0,6)\rangle, L_{2}=\langle(3,-3)\rangle$
Then, $\mathbf{R}=\left[\begin{array}{rr}2 & -3 \\ 1 & 0\end{array}\right], \mathbf{M}=\left[\begin{array}{rr}-2 & 4 \\ 1 & 1\end{array}\right], \mathbf{Q}=\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right], \mathbf{D}=\left[\begin{array}{ll}1 & 0 \\ 0 & 6\end{array}\right]$.
After normalizing w.r.t. an spanning tree:

INTERSECTION SHOWCASE

$$
H_{1}=\left\langle t^{L_{1}}, x^{3} t^{a}, y x\right\rangle, H_{2}=\left\langle t^{L_{2}}, x^{2} t^{d}, y x y^{-1}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{2}
$$

Case 1: $\quad \mathrm{a}=(1,0), \mathrm{d}=(0,1), L_{1}=\langle(0,6)\rangle, L_{2}=\langle(3,-3)\rangle$
Then, $\mathbf{R}=\left[\begin{array}{rr}2 & -3 \\ 1 & 0\end{array}\right], \mathbf{M}=\left[\begin{array}{rr}-2 & 4 \\ 1 & 1\end{array}\right], \mathbf{Q}=\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right], \mathbf{D}=\left[\begin{array}{ll}1 & 0 \\ 0 & 6\end{array}\right]$.
Finally, after equalizing the abelian labels we obtain $\operatorname{St}\left(\mathrm{H}_{1} \cap \mathrm{H}_{2}\right)$:

INTERSECTION SHOWCASE

$$
H_{1}=\left\langle t^{L_{1}}, x^{3} t^{a}, y x\right\rangle, H_{2}=\left\langle t^{L_{2}}, x^{2} t^{d}, y x y^{-1}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{2}
$$

Case 1: $\quad \mathrm{a}=(1,0), \mathrm{d}=(0,1), L_{1}=\langle(0,6)\rangle, L_{2}=\langle(3,-3)\rangle$
Then, $\mathbf{R}=\left[\begin{array}{rr}2 & -3 \\ 1 & 0\end{array}\right], \mathbf{M}=\left[\begin{array}{rr}-2 & 4 \\ 1 & 1\end{array}\right], \mathbf{Q}=\left[\begin{array}{rr}1 & -1 \\ 0 & 1\end{array}\right], \mathbf{D}=\left[\begin{array}{ll}1 & 0 \\ 0 & 6\end{array}\right]$.
Finally, after equalizing the abelian labels we obtain $\operatorname{St}\left(\mathrm{H}_{1} \cap \mathrm{H}_{2}\right)$:

INTERSECTION SHOWCASE

$$
H_{1}=\left\langle t^{L_{1}}, x^{3} t^{a}, y x\right\rangle, H_{2}=\left\langle t^{L_{2}}, x^{2} t^{d}, y x y^{-1}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{2}
$$

INTERSECTION SHOWCASE

$$
H_{1}=\left\langle t^{L_{1}}, x^{3} t^{a}, y x\right\rangle, H_{2}=\left\langle t^{L_{2}}, x^{2} t^{d}, y x y^{-1}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{2}
$$

Case 2: $\quad \mathrm{a}=(3,3), \mathrm{d}=(2,2), L_{1}=\langle(1,2)\rangle, L_{2}=\langle(0,0)\rangle$.

INTERSECTION SHOWCASE

$$
H_{1}=\left\langle t^{L_{1}}, x^{3} t^{a}, y x\right\rangle, H_{2}=\left\langle t^{L_{2}}, x^{2} t^{d}, y x y^{-1}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{2}
$$

Case 2: $\quad \mathrm{a}=(3,3), \mathrm{d}=(2,2), L_{1}=\langle(1,2)\rangle, L_{2}=\langle(0,0)\rangle$.
Then, St $\left(\left(H_{1} \cap H_{2}\right) \pi,\left\{w_{1}, w_{2}\right\}\right)=\operatorname{Cay}(\mathbb{Z},\{0,1\})$

INTERSECTION SHOWCASE

$$
H_{1}=\left\langle t^{L_{1}}, x^{3} t^{a}, y x\right\rangle, H_{2}=\left\langle t^{L_{2}}, x^{2} t^{d}, y x y^{-1}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{2}
$$

Case 2: $\quad \mathrm{a}=(3,3), \mathrm{d}=(2,2), L_{1}=\langle(1,2)\rangle, L_{2}=\langle(0,0)\rangle$.
Then, St $\left(\left(H_{1} \cap H_{2}\right) \pi,\left\{w_{1}, w_{2}\right\}\right)=\operatorname{Cay}(\mathbb{Z},\{0,1\})$

INTERSECTION SHOWCASE

$$
H_{1}=\left\langle t^{L_{1}}, x^{3} t^{a}, y x\right\rangle, H_{2}=\left\langle t^{L_{2}}, x^{2} t^{d}, y x y^{-1}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{2}
$$

Case 2: $\quad \mathrm{a}=(3,3), \mathrm{d}=(2,2), L_{1}=\langle(1,2)\rangle, L_{2}=\langle(0,0)\rangle$.
Then, St $\left(\left(H_{1} \cap H_{2}\right) \pi,\left\{w_{1}, w_{2}\right\}\right)=\operatorname{Cay}(\mathbb{Z},\{0,1\})$

After replacing, folding, normalizing, and equalizing, we obtain St $\left(H_{1} \cap H_{2}\right)$:

INTERSECTION SHOWCASE

$$
H_{1}=\left\langle t^{L_{1}}, x^{3} t^{a}, y x\right\rangle, H_{2}=\left\langle t^{L_{2}}, x^{2} t^{d}, y x y^{-1}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{2}
$$

Case 2: $\quad \mathrm{a}=(3,3), \mathrm{d}=(2,2), L_{1}=\langle(1,2)\rangle, L_{2}=\langle(0,0)\rangle$.
Then, St $\left(\left(H_{1} \cap H_{2}\right) \pi,\left\{w_{1}, w_{2}\right\}\right)=\operatorname{Cay}(\mathbb{Z},\{0,1\})$

After replacing, folding, normalizing, and equalizing, we obtain $\mathrm{St}\left(\mathrm{H}_{1} \cap \mathrm{H}_{2}\right)$:

INTERSECTION SHOWCASE

$$
H_{1}=\left\langle t^{L_{1}}, x^{3} t^{a}, y x\right\rangle, H_{2}=\left\langle t^{L_{2}}, x^{2} t^{d}, y x y^{-1}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{2}
$$

INTERSECTION SHOWCASE

$$
H_{1}=\left\langle t^{L_{1}}, x^{3} t^{a}, y x\right\rangle, H_{2}=\left\langle t^{L_{2}}, x^{2} t^{d}, y x y^{-1}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{2}
$$

Case 3: $\quad \mathrm{a}=(3,3), \mathrm{d}=(2,2), L_{1}=\langle(2,2)\rangle, L_{2}=\langle(0,0)\rangle$.

INTERSECTION SHOWCASE

$$
H_{1}=\left\langle t^{L_{1}}, x^{3} t^{a}, y x\right\rangle, H_{2}=\left\langle t^{L_{2}}, x^{2} t^{d}, y x y^{-1}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{2}
$$

Case 3: $\quad \mathrm{a}=(3,3), \mathrm{d}=(2,2), L_{1}=\langle(2,2)\rangle, L_{2}=\langle(0,0)\rangle$.
Then, St $\left(\left(H_{1} \cap H_{2}\right) \pi,\left\{w_{1}, w_{2}\right\}\right)=\operatorname{Cay}(\mathbb{Z} / 2 \mathbb{Z},\{0,1\})$

INTERSECTION SHOWCASE

$$
H_{1}=\left\langle t^{L_{1}}, x^{3} t^{a}, y x\right\rangle, H_{2}=\left\langle t^{L_{2}}, x^{2} t^{d}, y x y^{-1}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{2}
$$

Case 3: $\quad \mathrm{a}=(3,3), \mathrm{d}=(2,2), L_{1}=\langle(2,2)\rangle, L_{2}=\langle(0,0)\rangle$.
Then, St $\left(\left(H_{1} \cap H_{2}\right) \pi,\left\{w_{1}, w_{2}\right\}\right)=\operatorname{Cay}(\mathbb{Z} / 2 \mathbb{Z},\{0,1\})$

INTERSECTION SHOWCASE

$$
H_{1}=\left\langle t^{L_{1}}, x^{3} t^{a}, y x\right\rangle, H_{2}=\left\langle t^{L_{2}}, x^{2} t^{d}, y x y^{-1}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{2}
$$

Case 3: $\quad \mathrm{a}=(3,3), \mathrm{d}=(2,2), L_{1}=\langle(2,2)\rangle, L_{2}=\langle(0,0)\rangle$.
Then, St $\left(\left(H_{1} \cap H_{2}\right) \pi,\left\{w_{1}, w_{2}\right\}\right)=\operatorname{Cay}(\mathbb{Z} / 2 \mathbb{Z},\{0,1\})$

After replacing, folding, normalizing, and equalizing, we obtain $\mathrm{St}\left(\mathrm{H}_{1} \cap H_{2}\right)$:

INTERSECTION SHOWCASE

$$
H_{1}=\left\langle t^{L_{1}}, x^{3} t^{a}, y x\right\rangle, H_{2}=\left\langle t^{L_{2}}, x^{2} t^{d}, y x y^{-1}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{2}
$$

Case 3: $\quad \mathrm{a}=(3,3), \mathrm{d}=(2,2), L_{1}=\langle(2,2)\rangle, L_{2}=\langle(0,0)\rangle$.
Then, St $\left(\left(H_{1} \cap H_{2}\right) \pi,\left\{w_{1}, w_{2}\right\}\right)=\operatorname{Cay}(\mathbb{Z} / 2 \mathbb{Z},\{0,1\})$

After replacing, folding, normalizing, and equalizing, we obtain $\mathrm{St}\left(\mathrm{H}_{1} \cap \mathrm{H}_{2}\right)$:

INTERSECTION SHOWCASE

$$
H_{1}=\left\langle t^{L_{1}}, x^{3} t^{a}, y x\right\rangle, H_{2}=\left\langle t^{L_{2}}, x^{2} t^{d}, y x y^{-1}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{2}
$$

INTERSECTION SHOWCASE

$$
H_{1}=\left\langle t^{L_{1}}, x^{3} t^{a}, y x\right\rangle, H_{2}=\left\langle t^{L_{2}}, x^{2} t^{d}, y x y^{-1}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{2}
$$

Case 4: $\quad a=(3,3), d=(2,2) \in \mathbb{Z}^{2}$, and $L_{2}=\langle(1,1)\rangle, L_{2}=\langle(0,0)\rangle$.

INTERSECTION SHOWCASE

$$
H_{1}=\left\langle t^{L_{1}}, x^{3} t^{a}, y x\right\rangle, H_{2}=\left\langle t^{L_{2}}, x^{2} t^{d}, y x y^{-1}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{2}
$$

Case 4: $\quad \mathrm{a}=(3,3), \mathrm{d}=(2,2) \in \mathbb{Z}^{2}$, and $L_{2}=\langle(1,1)\rangle, L_{2}=\langle(0,0)\rangle$.
Then, St $\left(\left(H_{1} \cap H_{2}\right) \pi,\left\{w_{1}, w_{2}\right\}\right)=\operatorname{Cay}(\{0\},\{0,0\})$

INTERSECTION SHOWCASE

$$
H_{1}=\left\langle t^{L_{1}}, x^{3} t^{\mathrm{a}}, y x\right\rangle, H_{2}=\left\langle t^{L_{2}}, x^{2} t^{\mathrm{d}}, y x y^{-1}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{2}
$$

Case 4: $\quad \mathrm{a}=(3,3), \mathrm{d}=(2,2) \in \mathbb{Z}^{2}$, and $L_{2}=\langle(1,1)\rangle, L_{2}=\langle(0,0)\rangle$.
Then, St $\left(\left(H_{1} \cap H_{2}\right) \pi,\left\{w_{1}, w_{2}\right\}\right)=\operatorname{Cay}(\{0\},\{0,0\})$

INTERSECTION SHOWCASE

$$
H_{1}=\left\langle t^{L_{1}}, x^{3} t^{a}, y x\right\rangle, H_{2}=\left\langle t^{L_{2}}, x^{2} t^{d}, y x y^{-1}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{2}
$$

Case 4: $\quad \mathrm{a}=(3,3), \mathrm{d}=(2,2) \in \mathbb{Z}^{2}$, and $L_{2}=\langle(1,1)\rangle, L_{2}=\langle(0,0)\rangle$.
Then, St $\left(\left(H_{1} \cap H_{2}\right) \pi,\left\{w_{1}, w_{2}\right\}\right)=\operatorname{Cay}(\{0\},\{0,0\})$

After replacing, folding, normalizing, and equalizing, we obtain St $\left(H_{1} \cap H_{2}\right)$:

INTERSECTION SHOWCASE

$$
H_{1}=\left\langle t^{L_{1}}, x^{3} t^{a}, y x\right\rangle, H_{2}=\left\langle t^{L_{2}}, x^{2} t^{d}, y x y^{-1}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{2}
$$

Case 4: $\quad \mathbf{a}=(3,3), \mathbf{d}=(2,2) \in \mathbb{Z}^{2}$, and $L_{2}=\langle(1,1)\rangle, L_{2}=\langle(0,0)\rangle$.
Then, St $\left(\left(H_{1} \cap H_{2}\right) \pi,\left\{w_{1}, w_{2}\right\}\right)=\operatorname{Cay}(\{0\},\{0,0\})$

After replacing, folding, normalizing, and equalizing, we obtain St $\left(H_{1} \cap H_{2}\right)$:

INTERSECTION SHOWCASE

$$
H_{1}=\left\langle t^{L_{1}}, x^{3} t^{a}, y x\right\rangle, H_{2}=\left\langle t^{L_{2}}, x^{2} t^{d}, y x y^{-1}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{2}
$$

INTERSECTION SHOWCASE

$$
H_{1}=\left\langle t^{L_{1}}, x^{3} t^{\mathrm{a}}, y x\right\rangle, H_{2}=\left\langle t^{L_{2}}, x^{2} t^{\mathrm{d}}, y x y^{-1}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{2}
$$

Case 5: $\quad \mathrm{a}=(6,6), \mathrm{d}=(4,4) \in \mathbb{Z}^{2}, L_{1}=\langle(6 p, 6 p)\rangle, L_{2}=\langle(0,0)\rangle$, for some $p \in \mathbb{Z}$.

INTERSECTION SHOWCASE

$$
H_{1}=\left\langle t^{L_{1}}, x^{3} t^{a}, y x\right\rangle, H_{2}=\left\langle t^{L_{2}}, x^{2} t^{d}, y x y^{-1}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{2}
$$

Case 5: $\quad a=(6,6), d=(4,4) \in \mathbb{Z}^{2}, L_{1}=\langle(6 p, 6 p)\rangle, L_{2}=\langle(0,0)\rangle$, for some $p \in \mathbb{Z}$.

Then, St $\left(\left(H_{1} \cap H_{2}\right) \pi,\left\{w_{1}, w_{2}\right\}\right)=\operatorname{Cay}(\mathbb{Z} / p \mathbb{Z},\{0,1\})$

INTERSECTION SHOWCASE

$$
H_{1}=\left\langle t^{L_{1}}, x^{3} t^{a}, y x\right\rangle, H_{2}=\left\langle t^{L_{2}}, x^{2} t^{d}, y x y^{-1}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{2}
$$

Case 5: $\quad a=(6,6), d=(4,4) \in \mathbb{Z}^{2}, L_{1}=\langle(6 p, 6 p)\rangle, L_{2}=\langle(0,0)\rangle$, for some $p \in \mathbb{Z}$.

Then, St $\left(\left(H_{1} \cap H_{2}\right) \pi,\left\{w_{1}, w_{2}\right\}\right)=\operatorname{Cay}(\mathbb{Z} / p \mathbb{Z},\{0,1\})$

INTERSECTION SHOWCASE

After replacing, folding, normalizing, and equalizing, we obtain St $\left(H_{1} \cap H_{2}\right)$:

INTERSECTION SHOWCASE

After replacing, folding, normalizing, and equalizing, we obtain St $\left(H_{1} \cap H_{2}\right)$:

MULTIPLE INTERSECTIONS IN
 $\mathbb{F}_{n} \times \mathbb{Z}^{m}$

WHAT ABOUT THE MULTIPLE VERSIONS?

Subgroup Intersection Problem in G, SIP (G)
Given $H_{1}, H_{2} \leqslant_{\mathrm{fg}} G$ (by finite sets of generators), decide whether $H_{1} \cap H_{2}$ is finitely generated; if yes, compute generators for $H_{1} \cap H_{2}$.

WHAT ABOUT THE MULTIPLE VERSIONS?

Subgroup Intersection Problem in G, SIP(G)
Given $H_{1}, H_{2} \leqslant_{\mathrm{fg}} G$ (by finite sets of generators), decide whether $H_{1} \cap H_{2}$ is finitely generated; if yes, compute generators for $H_{1} \cap H_{2}$.

Multiple Subgroup Intersection Problem in G, MSIP(G)
Given $H_{1}, \ldots, H_{k} \leqslant \mathrm{fg} G$ (by finite sets of generators), decide whether $H_{1} \cap \cdots \cap H_{k}$ is finitely generated; if yes, compute generators for $H_{1} \cap \cdots \cap H_{k}$.

WHAT ABOUT THE MULTIPLE VERSIONS?

Subgroup Intersection Problem in G, SIP (G)
Given $H_{1}, H_{2} \leqslant_{\mathrm{fg}} G$ (by finite sets of generators), decide whether $H_{1} \cap H_{2}$ is finitely generated; if yes, compute generators for $H_{1} \cap H_{2}$.

Multiple Subgroup Intersection Problem in G, MSIP(G)
Given $H_{1}, \ldots, H_{k} \leqslant \mathrm{fg} G$ (by finite sets of generators), decide whether $H_{1} \cap \cdots \cap H_{k}$ is finitely generated; if yes, compute generators for $H_{1} \cap \cdots \cap H_{k}$.

Remark:

If G is not Howson one cannot just apply induction ...

$$
H_{1} \cap \cdots \cap H_{k}=\left(H_{1} \cap \cdots \cap H_{k-1}\right) \cap H_{k}
$$

WHAT ABOUT THE MULTIPLE VERSIONS?

Subgroup Intersection Problem in G, SIP (G)
Given $H_{1}, H_{2} \leqslant_{\mathrm{fg}} G$ (by finite sets of generators), decide whether $H_{1} \cap H_{2}$ is finitely generated; if yes, compute generators for $H_{1} \cap H_{2}$.

Multiple Subgroup Intersection Problem in G, MSIP(G)

Given $H_{1}, \ldots, H_{k} \leqslant \mathrm{fg} G$ (by finite sets of generators), decide whether $H_{1} \cap \cdots \cap H_{k}$ is finitely generated; if yes, compute generators for $H_{1} \cap \cdots \cap H_{k}$.

Remark:

If G is not Howson one cannot just apply induction ...

$$
H_{1} \cap \cdots \cap H_{k}=\left(H_{1} \cap \cdots \cap H_{k-1}\right) \cap H_{k}
$$

There are subgroups $H_{1}, H_{2}, H_{3} \leqslant \mathbb{F}_{n} \times \mathbb{Z}^{m}$ such that H_{1}, H_{2}, H_{3} and $H_{1} \cap H_{2} \cap H_{3}$ are finitely generated, but $H_{1} \cap H_{2}, H_{1} \cap H_{3}, H_{2} \cap H_{3}$ are not ...

MULTIPLE INTERSECTIONS

Let $H_{1}, H_{2} \leqslant G$. There are $2^{3}=8$ possibilities for the finite/infinite generation of $H_{1}, H_{2}, H_{1} \cap H_{2}$:

MULTIPLE INTERSECTIONS

Let $H_{1}, H_{2} \leqslant G$. There are $2^{3}=8$ possibilities for the finite/infinite generation of $H_{1}, H_{2}, H_{1} \cap H_{2}$:

Observation

G is Howson \Leftrightarrow the highlighted 2-configuration is not realizable.

INTERSECTION CONFIGURATIONS

What about intersection configurations with $k \geqslant 2$ subgroups? Which ones are realizable in $\mathbb{F}_{n} \times \mathbb{Z}^{m}$?

INTERSECTION CONFIGURATIONS

What about intersection configurations with $k \geqslant 2$ subgroups? Which ones are realizable in $\mathbb{F}_{n} \times \mathbb{Z}^{m}$?

Is non-Howsonity the only obstruction to the realizability of k-intersection configurations in a free group?

INTERSECTION CONFIGURATIONS

What about intersection configurations with $k \geqslant 2$ subgroups?
Which ones are realizable in $\mathbb{F}_{n} \times \mathbb{Z}^{m}$?
Is non-Howsonity the only obstruction to the realizability of k-intersection configurations in a free group?

Definition

A k-configuration is a map $\chi: \mathcal{P}([k]) \backslash\{\varnothing\} \rightarrow\{0,1\}$.
(0 indicates f.g., and 1 non-f.g.).

INTERSECTION CONFIGURATIONS

What about intersection configurations with $k \geqslant 2$ subgroups?
Which ones are realizable in $\mathbb{F}_{n} \times \mathbb{Z}^{m}$?
Is non-Howsonity the only obstruction to the realizability of k-intersection configurations in a free group?

Definition

A k-configuration is a map $\chi: \mathcal{P}([k]) \backslash\{\varnothing\} \rightarrow\{0,1\}$.
(0 indicates f.g., and 1 non-f.g.).
Its support is $\mathcal{J}=\{\emptyset \neq I \subseteq[k] \mid(I) \chi=1\}$. We write $\chi=X_{\mathcal{J}}$.

INTERSECTION CONFIGURATIONS

What about intersection configurations with $k \geqslant 2$ subgroups?
Which ones are realizable in $\mathbb{F}_{n} \times \mathbb{Z}^{m}$?
Is non-Howsonity the only obstruction to the realizability of k-intersection configurations in a free group?

Definition

A k-configuration is a map $\chi: \mathcal{P}([k]) \backslash\{\varnothing\} \rightarrow\{0,1\}$.
(0 indicates f.g., and 1 non-f.g.).
Its support is $\mathcal{J}=\{\emptyset \neq 1 \subseteq[k] \mid(I) \chi=1\}$. We write $\chi=\chi_{\mathcal{J}}$.

Examples:

- $0=\chi_{\varnothing}$ is the zero k-configuration,

INTERSECTION CONFIGURATIONS

What about intersection configurations with $k \geqslant 2$ subgroups?
Which ones are realizable in $\mathbb{F}_{n} \times \mathbb{Z}^{m}$?
Is non-Howsonity the only obstruction to the realizability of k-intersection configurations in a free group?

Definition

A k-configuration is a map $\chi: \mathcal{P}([k]) \backslash\{\varnothing\} \rightarrow\{0,1\}$.
(0 indicates f.g., and 1 non-f.g.).
Its support is $\mathcal{J}=\{\emptyset \neq 1 \subseteq[k] \mid(I) \chi=1\}$. We write $\chi=\chi_{\mathcal{J}}$.

Examples:

- $0=\chi_{\varnothing}$ is the zero k-configuration,
- $1=\chi_{\mathcal{P}([k])}$ is the one k-configuration.

INTERSECTION CONFIGURATIONS

What about intersection configurations with $k \geqslant 2$ subgroups?
Which ones are realizable in $\mathbb{F}_{n} \times \mathbb{Z}^{m}$?
Is non-Howsonity the only obstruction to the realizability of k-intersection configurations in a free group?

Definition

A k-configuration is a map $\chi: \mathcal{P}([k]) \backslash\{\varnothing\} \rightarrow\{0,1\}$.
(0 indicates f.g., and 1 non-f.g.).
Its support is $\mathcal{J}=\{\emptyset \neq 1 \subseteq[k] \mid(I) \chi=1\}$. We write $\chi=\chi_{\mathcal{J}}$.

Examples:

- $0=\chi_{\varnothing}$ is the zero k-configuration,
- $1=\chi_{\mathcal{P}([k])}$ is the one k-configuration.
- $\chi_{\{1\}}$ is an almost- $0 k$-configuration.

INTERSECTION CONFIGURATIONS

INTERSECTION CONFIGURATIONS

$\chi_{\{\{2\},\{3\},\{1,2\},\{1,2,3\}\}}$

INTERSECTION CONFIGURATIONS

$\chi_{\{\{2\},\{3\},\{1,2\},\{1,2,3\}\}}$

$\chi_{\varnothing}=0$

INTERSECTION CONFIGURATIONS

$\chi_{\{\{2\},\{3\},\{1,2\},\{1,2,3\}\}}$

$\chi_{\varnothing}=0$

$X_{\{1\}}$

REALIZABILITY

Let G be a group, and $k \geqslant 1$.

Definition

A k-configuration $\chi: \mathcal{P}([k]) \backslash\{\varnothing\} \rightarrow\{0,1\}$ is realizable in G if there exist k subgroups $\mathscr{H}=\left\{H_{1}, \ldots, H_{k}\right\}$ of G (with possible repetitions) such that, for every $\varnothing \neq I \subseteq[k]$,

$$
H_{l}=\bigcap_{i \in I} H_{i} \text { is finitely generated } \Leftrightarrow(I) X=0 .
$$

REALIZABILITY

Let G be a group, and $k \geqslant 1$.

Definition

A k-configuration $\chi: \mathcal{P}([k]) \backslash\{\varnothing\} \rightarrow\{0,1\}$ is realizable in G if there exist k subgroups $\mathscr{H}=\left\{H_{1}, \ldots, H_{k}\right\}$ of G (with possible repetitions) such that, for every $\varnothing \neq I \subseteq[k]$,

$$
H_{l}=\bigcap_{i \in I} H_{i} \text { is finitely generated } \Leftrightarrow(I) X=0 \text {. }
$$

Remarks:

- The k-configuration 0 is always realizable in any group G;

REALIZABILITY

Let G be a group, and $k \geqslant 1$.

Definition

A k-configuration $\chi: \mathcal{P}([k]) \backslash\{\varnothing\} \rightarrow\{0,1\}$ is realizable in G if there exist k subgroups $\mathscr{H}=\left\{H_{1}, \ldots, H_{k}\right\}$ of G (with possible repetitions) such that, for every $\varnothing \neq I \subseteq[k]$,

$$
H_{l}=\bigcap_{i \in I} H_{i} \text { is finitely generated } \Leftrightarrow(I) \chi=0 \text {. }
$$

Remarks:

- The k-configuration 0 is always realizable in any group G;
- the k-configuration 1 is realizable in a group G if and only if G contains a non-finitely-generated subgroup $H \leqslant G$;

REALIZABILITY

Let G be a group, and $k \geqslant 1$.

Definition

A k-configuration $\chi: \mathcal{P}([k]) \backslash\{\varnothing\} \rightarrow\{0,1\}$ is realizable in G if there exist k subgroups $\mathcal{H}=\left\{H_{1}, \ldots, H_{k}\right\}$ of G (with possible repetitions) such that, for every $\varnothing \neq 1 \subseteq[k]$,

$$
H_{I}=\bigcap_{i \in I} H_{i} \text { is finitely generated } \Leftrightarrow(I) \chi=0
$$

Remarks:

- The k-configuration 0 is always realizable in any group G;
- the k-configuration 1 is realizable in a group G if and only if G contains a non-finitely-generated subgroup $H \leqslant G$;
- if a k-configuration χ is realizable in a free group $\mathbb{F}_{n}, n \geqslant 2$, then χ satisfies the Howson property:

$$
\forall \varnothing \neq I, J \subseteq[k],(I) \chi=(J) \chi=0 \Rightarrow(I \cup J) \chi=0
$$

INTERSECTION SATURATION

Question

Is it true that a k-configuration χ is realizable in a free group $\mathbb{F}_{n}, n \geqslant 2$
$\Leftrightarrow \chi$ respects the Howson property?

INTERSECTION SATURATION

Question

Is it true that a k-configuration χ is realizable in a free group $\mathbb{F}_{n}, n \geqslant 2$
$\Leftrightarrow \chi$ respects the Howson property?

Definition

A group G is said to be intersection-saturated if every k-configuration (for every finite $k \geqslant 1$) is realizable in G.

INTERSECTION SATURATION

Question

Is it true that a k-configuration χ is realizable in a free group $\mathbb{F}_{n}, n \geqslant 2$
$\Leftrightarrow \chi$ respects the Howson property?

Definition

A group G is said to be intersection-saturated if every k-configuration (for every finite $k \geqslant 1$) is realizable in G.

Question

Does there exists a finitely presented intersection-saturated group?

THE MULTIPLE INTERSECTION PROBLEM IS COMPUTABLE

```
Theorem (D.-Roy-V.)
MSIP( }\mp@subsup{\mathbb{F}}{n}{}\times\mp@subsup{\mathbb{Z}}{}{m})\mathrm{ is computable.
```


THE MULTIPLE INTERSECTION PROBLEM IS COMPUTABLE

Theorem (D.-Roy-V.)
$\operatorname{MSIP}\left(\mathbb{F}_{n} \times \mathbb{Z}^{m}\right)$ is computable. That is, there exists an algorithm which, given $k \geqslant 2$ f.g. subgroups $H_{1}, \ldots, H_{k} \leqslant \mathrm{fg} \mathbb{F}_{n} \times \mathbb{Z}^{m}$ (by finite sets of generators), decides whether $H_{1} \cap \cdots \cap H_{k}$ is finitely generated and, in the affirmative case, computes a basis for it.

THE MULTIPLE INTERSECTION PROBLEM IS COMPUTABLE

Theorem (D.-Roy-V.) $\operatorname{MSIP}\left(\mathbb{F}_{n} \times \mathbb{Z}^{m}\right)$ is computable. That is, there exists an algorithm which, given $k \geqslant 2$ f.g. subgroups $H_{1}, \ldots, H_{k} \leqslant \mathrm{fg} \mathbb{F}_{n} \times \mathbb{Z}^{m}$ (by finite sets of generators), decides whether $H_{1} \cap \cdots \cap H_{k}$ is finitely generated and, in the affirmative case, computes a basis for it.

To understand realizability of configurations in $\mathbb{F}_{n} \times \mathbb{Z}^{m}$ we need a couple more results:

THE MULTIPLE INTERSECTION PROBLEM IS COMPUTABLE

Theorem (D.-Roy-V.)
$\operatorname{MSIP}\left(\mathbb{F}_{n} \times \mathbb{Z}^{m}\right)$ is computable. That is, there exists an algorithm which, given $k \geqslant 2$ f.g. subgroups $H_{1}, \ldots, H_{k} \leqslant \mathrm{fg} \mathbb{F}_{n} \times \mathbb{Z}^{m}$ (by finite sets of generators), decides whether $H_{1} \cap \cdots \cap H_{k}$ is finitely generated and, in the affirmative case, computes a basis for it.

To understand realizability of configurations in $\mathbb{F}_{n} \times \mathbb{Z}^{m}$ we need a couple more results:

Proposition

Let $M^{\prime}, M^{\prime \prime} \leqslant \mathbb{F}_{n}$ be two subgroups of \mathbb{F}_{n} in free factor position, i.e., such that $\left\langle M^{\prime}, M^{\prime \prime}\right\rangle=M^{\prime} * M^{\prime \prime}$. Then, for any $H_{1}^{\prime}, \ldots, H_{k}^{\prime} \leqslant M^{\prime} \leqslant \mathbb{F}_{n}$ and $H_{1}^{\prime \prime}, \ldots, H_{k}^{\prime \prime} \leqslant M^{\prime \prime} \leqslant \mathbb{F}_{n}$, then

$$
\bigcap_{i=1}^{k}\left\langle H_{i}^{\prime}, H_{i}^{\prime \prime}\right\rangle=\left\langle\bigcap_{i=1}^{k} H_{i}^{\prime}, \bigcap_{i=1}^{k} H_{i}^{\prime \prime}\right\rangle .
$$

THE MULTIPLE INTERSECTION PROBLEM IS COMPUTABLE

Theorem (D.-Roy-V.)
$\operatorname{MSIP}\left(\mathbb{F}_{n} \times \mathbb{Z}^{m}\right)$ is computable. That is, there exists an algorithm which, given $k \geqslant 2$ f.g. subgroups $H_{1}, \ldots, H_{k} \leqslant \mathrm{fg} \mathbb{F}_{n} \times \mathbb{Z}^{m}$ (by finite sets of generators), decides whether $H_{1} \cap \cdots \cap H_{k}$ is finitely generated and, in the affirmative case, computes a basis for it.

To understand realizability of configurations in $\mathbb{F}_{n} \times \mathbb{Z}^{m}$ we need a couple more results:

Proposition

Let $M^{\prime}, M^{\prime \prime} \leqslant \mathbb{F}_{n}$ be two subgroups of \mathbb{F}_{n} in free factor position, i.e., such that $\left\langle M^{\prime}, M^{\prime \prime}\right\rangle=M^{\prime} * M^{\prime \prime}$. Then, for any $H_{1}^{\prime}, \ldots, H_{k}^{\prime} \leqslant M^{\prime} \leqslant \mathbb{F}_{n}$ and $H_{1}^{\prime \prime}, \ldots, H_{k}^{\prime \prime} \leqslant M^{\prime \prime} \leqslant \mathbb{F}_{n}$, then

$$
\bigcap_{i=1}^{k}\left\langle H_{i}^{\prime}, H_{i}^{\prime \prime}\right\rangle=\left\langle\bigcap_{i=1}^{k} H_{i}^{\prime}, \bigcap_{i=1}^{k} H_{i}^{\prime \prime}\right\rangle .
$$

Remark: The same equality is not true, in general, in $\mathbb{F}_{n} \times \mathbb{Z}^{m}$.

STRONG COMPLEMENTARITY

Definition

Two subgroups $M^{\prime}, M^{\prime \prime} \leqslant \mathbb{F}_{n} \times \mathbb{Z}^{m}$ are strongly complementary, denoted by $\left\langle M^{\prime}, M^{\prime \prime}\right\rangle=M^{\prime} \circledast M^{\prime \prime}$, if

$$
\left\langle M^{\prime} \pi, M^{\prime \prime} \pi\right\rangle=M^{\prime} \pi * M^{\prime \prime} \pi \quad \text { and } \quad\left\langle M^{\prime} \tau, M^{\prime \prime} \tau\right\rangle=M^{\prime} \tau \oplus M^{\prime \prime} \tau .
$$

STRONG COMPLEMENTARITY

Definition

Two subgroups $M^{\prime}, M^{\prime \prime} \leqslant \mathbb{F}_{n} \times \mathbb{Z}^{m}$ are strongly complementary, denoted by $\left\langle M^{\prime}, M^{\prime \prime}\right\rangle=M^{\prime} \circledast M^{\prime \prime}$, if

$$
\left\langle M^{\prime} \pi, M^{\prime \prime} \pi\right\rangle=M^{\prime} \pi * M^{\prime \prime} \pi \quad \text { and } \quad\left\langle M^{\prime} \tau, M^{\prime \prime} \tau\right\rangle=M^{\prime} \tau \oplus M^{\prime \prime} \tau \text {. }
$$

A basis for $M^{\prime} \circledast M^{\prime \prime}$ can be obtained by joining bases for M^{\prime} and $M^{\prime \prime}$.

STRONG COMPLEMENTARITY

Definition

Two subgroups $M^{\prime}, M^{\prime \prime} \leqslant \mathbb{F}_{n} \times \mathbb{Z}^{m}$ are strongly complementary, denoted by $\left\langle M^{\prime}, M^{\prime \prime}\right\rangle=M^{\prime} \circledast M^{\prime \prime}$, if

$$
\left\langle M^{\prime} \pi, M^{\prime \prime} \pi\right\rangle=M^{\prime} \pi * M^{\prime \prime} \pi \quad \text { and } \quad\left\langle M^{\prime} \tau, M^{\prime \prime} \tau\right\rangle=M^{\prime} \tau \oplus M^{\prime \prime} \tau .
$$

A basis for $M^{\prime} \circledast M^{\prime \prime}$ can be obtained by joining bases for M^{\prime} and $M^{\prime \prime}$.

Theorem (D.-Roy-V.)

Let $M^{\prime}, M^{\prime \prime} \leqslant \mathbb{F}_{n} \times \mathbb{Z}^{m}$ be strongly complementary. Then, for any $H_{1}^{\prime}, \ldots, H_{k}^{\prime} \leqslant M^{\prime} \leqslant \mathbb{F}_{n} \times \mathbb{Z}^{m}$ satisfying $r^{\prime}=\operatorname{rk}\left(\cap_{i=1}^{k} H_{i}^{\prime} \pi\right) \geqslant 2$, and any $H_{1}^{\prime \prime}, \ldots, H_{k}^{\prime \prime} \leqslant M^{\prime \prime} \leqslant \mathbb{F}_{n} \times \mathbb{Z}^{m}$ satisfying $r^{\prime \prime}=\operatorname{rk}\left(\cap_{i=1}^{k} H_{i}^{\prime \prime} \pi\right) \geqslant 2$,

$$
\bigcap_{i=1}^{k}\left\langle H_{i}^{\prime}, H_{i}^{\prime \prime}\right\rangle \text { is } f . g . \Leftrightarrow \bigcap_{i=1}^{k} H_{i}^{\prime} \text { and } \bigcap_{i=1}^{k} H_{i}^{\prime \prime} \text { are both f.g. }
$$

STRONG COMPLEMENTARITY

Definition

Two subgroups $M^{\prime}, M^{\prime \prime} \leqslant \mathbb{F}_{n} \times \mathbb{Z}^{m}$ are strongly complementary, denoted by $\left\langle M^{\prime}, M^{\prime \prime}\right\rangle=M^{\prime} \circledast M^{\prime \prime}$, if

$$
\left\langle M^{\prime} \pi, M^{\prime \prime} \pi\right\rangle=M^{\prime} \pi * M^{\prime \prime} \pi \quad \text { and } \quad\left\langle M^{\prime} \tau, M^{\prime \prime} \tau\right\rangle=M^{\prime} \tau \oplus M^{\prime \prime} \tau .
$$

A basis for $M^{\prime} \circledast M^{\prime \prime}$ can be obtained by joining bases for M^{\prime} and $M^{\prime \prime}$.

Theorem (D.-Roy-V.)

Let $M^{\prime}, M^{\prime \prime} \leqslant \mathbb{F}_{n} \times \mathbb{Z}^{m}$ be strongly complementary. Then, for any $H_{1}^{\prime}, \ldots, H_{k}^{\prime} \leqslant M^{\prime} \leqslant \mathbb{F}_{n} \times \mathbb{Z}^{m}$ satisfying $r^{\prime}=\operatorname{rk}\left(\cap_{i=1}^{k} H_{i}^{\prime} \pi\right) \geqslant 2$, and any $H_{1}^{\prime \prime}, \ldots, H_{k}^{\prime \prime} \leqslant M^{\prime \prime} \leqslant \mathbb{F}_{n} \times \mathbb{Z}^{m}$ satisfying $r^{\prime \prime}=\operatorname{rk}\left(\cap_{i=1}^{k} H_{i}^{\prime \prime} \pi\right) \geqslant 2$,

$$
\bigcap_{i=1}^{k}\left\langle H_{i}^{\prime}, H_{i}^{\prime \prime}\right\rangle \text { is f.g. } \Leftrightarrow \bigcap_{i=1}^{k} H_{i}^{\prime} \text { and } \bigcap_{i=1}^{k} H_{i}^{\prime \prime} \text { are both f.g. }
$$

Remark: It is not true without the hypotheses.

OBSTRUCTIONS TO REALIZABILITY

OBSTRUCTIONS TO REALIZABILITY

Lemma

Let $H_{1}, \ldots, H_{k} \leqslant \mathbb{F}_{n} \times \mathbb{Z}^{m}$. If, for some $\varnothing \neq I, J \subseteq[k], H_{1}$ and $H_{\text {J }}$ are f.g. whereas $H_{\mathbb{I} J}=H_{l} \cap H_{J}$ is not, then $\exists i \in I, \exists j \in J$ s.t. both $L_{i}, L_{j} \leqslant \mathbb{Z}^{m}$ have rank strictly smaller than m.

OBSTRUCTIONS TO REALIZABILITY

Lemma

Let $H_{1}, \ldots, H_{k} \leqslant \mathbb{F}_{n} \times \mathbb{Z}^{m}$. If, for some $\varnothing \neq I, J \subseteq[k], H_{1}$ and $H_{\text {J }}$ are f.g. whereas $H_{\mathbb{\prime} J}=H_{l} \cap H_{J}$ is not, then $\exists i \in I, \exists j \in J$ s.t. both $L_{i}, L_{j} \leqslant \mathbb{Z}^{m}$ have rank strictly smaller than m.

Proposition

Let χ be a k-configuration for which $\exists r \geqslant 2$ non-empty subsets $I_{1}, \ldots, I_{r} \subseteq[k]$ s.t. $\forall j \in\{1, \ldots, r\}$, $\left(I_{1} \cup \cdots \cup \widehat{I}_{j} \cup \cdots \cup I_{r}\right) X=0$ but $\left(I_{1} \cup \cdots \cup I_{r}\right) X=1$. Then x is not realizable in $\mathbb{F}_{n} \times \mathbb{Z}^{r-2}$.

OBSTRUCTIONS TO REALIZABILITY

Lemma

Let $H_{1}, \ldots, H_{k} \leqslant \mathbb{F}_{n} \times \mathbb{Z}^{m}$. If, for some $\varnothing \neq I, J \subseteq[k]$, H_{1} and $H_{\text {, }}$ are f.g. whereas $H_{\mathbb{I} J}=H_{l} \cap H_{J}$ is not, then $\exists i \in I, \exists j \in J$ s.t. both $L_{i}, L_{j} \leqslant \mathbb{Z}^{m}$ have rank strictly smaller than m.

Proposition

Let χ be a k-configuration for which $\exists r \geqslant 2$ non-empty subsets $I_{1}, \ldots, I_{r} \subseteq[k]$ s.t. $\forall j \in\{1, \ldots, r\}$, $\left(I_{1} \cup \cdots \cup \widehat{I}_{j} \cup \cdots \cup I_{r}\right) X=0$ but $\left(I_{1} \cup \cdots \cup I_{r}\right) X=1$. Then x is not realizable in $\mathbb{F}_{n} \times \mathbb{Z}^{r-2}$.

Example: An unrealizable configuration in $\mathbb{F}_{2} \times \mathbb{Z}$:

REALIZING k-CONFIGURATIONS

Proposition (D.-Roy-V.)

The k-config. $X_{[k]}$ is realizable in $\mathbb{F}_{2} \times \mathbb{Z}^{k-1}$, but not in $\mathbb{F}_{2} \times \mathbb{Z}^{k-2}$.

REALIZING k-CONFIGURATIONS

Proposition (D.-Roy-V.)

The k-config. $X_{[k]}$ is realizable in $\mathbb{F}_{2} \times \mathbb{Z}^{k-1}$, but not in $\mathbb{F}_{2} \times \mathbb{Z}^{k-2}$.

Proof: The second claim follows from previous proposition.

REALIZING k-CONFIGURATIONS

Proposition (D.-Roy-V.)

The k-config. $X_{[k]}$ is realizable in $\mathbb{F}_{2} \times \mathbb{Z}^{k-1}$, but not in $\mathbb{F}_{2} \times \mathbb{Z}^{k-2}$.

Proof: The second claim follows from previous proposition. For $k=1$ the statement is clear. Assume $k \geqslant 2$.

REALIZING k-CONFIGURATIONS

Proposition (D.-Roy-V.)

The k-config. $X_{[k]}$ is realizable in $\mathbb{F}_{2} \times \mathbb{Z}^{k-1}$, but not in $\mathbb{F}_{2} \times \mathbb{Z}^{k-2}$.

Proof: The second claim follows from previous proposition.
For $k=1$ the statement is clear. Assume $k \geqslant 2$.
Let $\{x, y\}$ be two free letters generating \mathbb{F}_{2}, and let $\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{\mathbf{k}-1}\right\}$ be the canonical free-abelian basis for \mathbb{Z}^{k-1}. Consider:

$$
H_{1}=\left\langle x, y ; t^{e_{2}}, \ldots, t^{e_{k-1}}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{k-1},
$$

REALIZING k-CONFIGURATIONS

Proposition (D.-Roy-V.)

The k-config. $X_{[k]}$ is realizable in $\mathbb{F}_{2} \times \mathbb{Z}^{k-1}$, but not in $\mathbb{F}_{2} \times \mathbb{Z}^{k-2}$.

Proof: The second claim follows from previous proposition.
For $k=1$ the statement is clear. Assume $k \geqslant 2$.
Let $\{x, y\}$ be two free letters generating \mathbb{F}_{2}, and let $\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{\mathrm{k}-1}\right\}$ be the canonical free-abelian basis for \mathbb{Z}^{k-1}. Consider:

$$
\begin{aligned}
& H_{1}=\left\langle x, y ; t^{\mathrm{e}_{2}}, \ldots, t^{\mathrm{e}_{k-1}}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{k-1} \\
& H_{2}=\left\langle x, y ; t^{\mathrm{e}_{1}}, t^{\mathrm{e}_{3}}, \ldots, t^{\mathrm{e}_{\mathrm{k}-1}}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{k-1}
\end{aligned}
$$

REALIZING k-CONFIGURATIONS

Proposition (D.-Roy-V.)

The k-config. $X_{[k]}$ is realizable in $\mathbb{F}_{2} \times \mathbb{Z}^{k-1}$, but not in $\mathbb{F}_{2} \times \mathbb{Z}^{k-2}$.

Proof: The second claim follows from previous proposition.
For $k=1$ the statement is clear. Assume $k \geqslant 2$.
Let $\{x, y\}$ be two free letters generating \mathbb{F}_{2}, and let $\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{\mathbf{k}-1}\right\}$ be the canonical free-abelian basis for \mathbb{Z}^{k-1}. Consider:

$$
\begin{aligned}
H_{1} & =\left\langle x, y ; t^{e_{2}}, \ldots, t^{e_{k-1}}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{k-1} \\
H_{2} & =\left\langle x, y ; t^{e_{1}}, t^{e_{3}}, \ldots, t^{\mathrm{e}_{k-1}}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{k-1}, \\
& \vdots \\
H_{k-1} & =\left\langle x, y ; t^{e_{1}}, \ldots, t^{e_{k-2}}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{k-1},
\end{aligned}
$$

REALIZING k-CONFIGURATIONS

Proposition (D.-Roy-V.)

The k-config. $X_{[k]}$ is realizable in $\mathbb{F}_{2} \times \mathbb{Z}^{k-1}$, but not in $\mathbb{F}_{2} \times \mathbb{Z}^{k-2}$.

Proof: The second claim follows from previous proposition.
For $k=1$ the statement is clear. Assume $k \geqslant 2$.
Let $\{x, y\}$ be two free letters generating \mathbb{F}_{2}, and let $\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{\mathrm{k}-1}\right\}$ be the canonical free-abelian basis for \mathbb{Z}^{k-1}. Consider:

$$
\begin{aligned}
H_{1} & =\left\langle x, y ; t^{\mathrm{e}_{2}}, \ldots, t^{\mathrm{e}_{k-1}}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{k-1} \\
H_{2} & =\left\langle x, y ; t^{\mathrm{e}_{1}}, t^{\mathrm{e}_{3}}, \ldots, t^{\mathrm{e}_{k-1}}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{k-1}, \\
& \vdots \\
H_{k-1} & =\left\langle x, y ; t^{\mathrm{e}_{1}}, \ldots, t^{\mathrm{e}_{k-2}}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{k-1}, \\
H_{k} & =\left\langle x, y t^{\mathrm{e}_{1}} ; t^{\mathrm{e}_{2}-\mathrm{e}_{1}}, \ldots, t^{\mathrm{e}_{k-1}-\mathrm{e}_{1}}\right\rangle \\
& =\left\langle x, y t^{\mathrm{e}_{1}}, \ldots, y t^{\mathrm{e}_{k-1}}\right\rangle \leqslant \mathbb{F}_{2} \times \mathbb{Z}^{k-1} .
\end{aligned}
$$

REALIZING k-CONFIGURATIONS

For a given set of indices $\varnothing \neq I \subseteq[k]$, let us compute H_{1} :

- Case 1: $k \notin I \subsetneq[k]$. In this case, clearly, $H_{I}=\left\langle x, y ; t^{e_{j}}\right.$ for $\left.j \notin I\right\rangle$ is f.g.

REALIZING k-CONFIGURATIONS

For a given set of indices $\varnothing \neq I \subseteq[k]$, let us compute H_{1} :

- Case 1: $k \notin I \subsetneq[k]$. In this case, clearly, $H_{I}=\left\langle x, y ; t^{e_{j}}\right.$ for $\left.j \notin I\right\rangle$ is f.g.
- Case 2: $k \in I \subsetneq[k]$. In this case, wlog. assume $1 \notin I$, and the intersection $H_{l}=H_{l \backslash\{k\}} \cap H_{k}$ is:

REALIZING k-CONFIGURATIONS

For a given set of indices $\varnothing \neq I \subseteq[k]$, let us compute H_{1} :

- Case 1: $k \notin I \subsetneq[k]$. In this case, clearly, $H_{I}=\left\langle x, y ; t^{e_{j}}\right.$ for $\left.j \notin I\right\rangle$ is f.g.
- Case 2: $k \in I \subsetneq[k]$. In this case, wlog. assume $1 \notin I$, and the intersection $H_{l}=H_{l \backslash\{k\}} \cap H_{k}$ is:

$$
=\left\langle x, y ; t^{e_{1}}, t^{e_{j}} \text { for } j \notin I\right\rangle \cap\left\langle x, y t^{e_{1}}, y t^{e_{2}}, \ldots, y t^{e_{k-1}}\right\rangle
$$

REALIZING k-CONFIGURATIONS

For a given set of indices $\varnothing \neq I \subseteq[k]$, let us compute H_{1} :

- Case 1: $k \notin I \subsetneq[k]$. In this case, clearly, $H_{I}=\left\langle x, y ; t^{e_{j}}\right.$ for $\left.j \notin I\right\rangle$ is f.g.
- Case 2: $k \in I \subsetneq[k]$. In this case, wlog. assume $1 \notin I$, and the intersection $H_{l}=H_{\backslash \backslash\{k\}} \cap H_{k}$ is:

$$
\begin{aligned}
& =\left\langle x, y ; t^{\mathrm{e}_{1}}, t^{\mathrm{e}_{\mathrm{j}}} \text { for } j \notin I\right\rangle \cap\left\langle x, y t^{\mathrm{e}_{1}}, y t^{\mathrm{e}_{2}}, \ldots, y t^{\mathrm{e}_{\mathrm{k}-1}}\right\rangle \\
& =\left\{w(x, y) t^{\mathrm{a}} \mid a_{j}=0, \forall j \in I\right\} \cap\left\{w(x, y) t^{a}\left|a_{1}+\cdots+a_{k-1}=|w|_{y}\right\}\right.
\end{aligned}
$$

REALIZING k-CONFIGURATIONS

For a given set of indices $\varnothing \neq I \subseteq[k]$, let us compute H_{1} :

- Case 1: $k \notin I \subsetneq[k]$. In this case, clearly, $H_{I}=\left\langle x, y ; t^{e_{j}}\right.$ for $\left.j \notin I\right\rangle$ is f.g.
- Case 2: $k \in I \subsetneq[k]$. In this case, wlog. assume $1 \notin I$, and the intersection $H_{l}=H_{\backslash \backslash\{k\}} \cap H_{k}$ is:

$$
\begin{aligned}
& =\left\langle x, y ; t^{e_{1}}, t^{e_{j}} \text { for } j \notin I\right\rangle \cap\left\langle x, y t^{e_{1}}, y t^{\mathrm{e}_{2}}, \ldots, y t^{\mathrm{e}_{k-1}}\right\rangle \\
& =\left\{w(x, y) t^{\mathrm{a}} \mid a_{j}=0, \forall j \in I\right\} \cap\left\{w(x, y) t^{\mathrm{a}}\left|a_{1}+\cdots+a_{k-1}=|w|_{y}\right\}\right. \\
& =\left\{w(x, y) t^{\mathrm{a}}\left|a_{1}+\cdots+a_{k-1}=|w|_{y}, a_{j}=0 \forall j \in I\right\}\right. \\
& =\left\langle x, y t^{e_{1}}, y t^{e^{e_{j}}} \text { for } j \notin I\right\rangle
\end{aligned}
$$

REALIZING k-CONFIGURATIONS

For a given set of indices $\varnothing \neq I \subseteq[k]$, let us compute H_{1} :

- Case 1: $k \notin I \subsetneq[k]$. In this case, clearly, $H_{I}=\left\langle x, y ; t^{e_{j}}\right.$ for $\left.j \notin I\right\rangle$ is f.g.
- Case 2: $k \in I \subsetneq[k]$. In this case, wlog. assume $1 \notin I$, and the intersection $H_{l}=H_{\backslash \backslash\{k\}} \cap H_{k}$ is:

$$
\begin{aligned}
& =\left\langle x, y ; t^{\mathrm{e}_{1}}, t^{\mathrm{e}_{\mathrm{j}}} \text { for } j \notin I\right\rangle \cap\left\langle x, y t^{\mathrm{e}_{1}}, y t^{\mathrm{e}_{2}}, \ldots, y t^{\mathrm{e}_{k-1}}\right\rangle \\
& =\left\{w(x, y) t^{\mathrm{a}} \mid a_{j}=0, \forall j \in I\right\} \cap\left\{w(x, y) t^{\mathrm{a}}\left|a_{1}+\cdots+a_{k-1}=|w|_{y}\right\}\right. \\
& =\left\{w(x, y) t^{\mathrm{a}}\left|a_{1}+\cdots+a_{k-1}=|w|_{y}, a_{j}=0 \forall j \in I\right\}\right. \\
& =\left\langle x, y t^{\mathrm{e}_{1}}, y t^{\mathrm{e}_{\mathrm{j}}} \text { for } j \notin I\right\rangle \\
& =\left\langle x, y t^{\mathrm{e}_{1}} ; t^{\mathrm{e}_{\mathrm{j}}-\mathrm{e}_{1}} \text { for } j \notin I\right\rangle
\end{aligned}
$$

which is again finitely generated.

REALIZING k-CONFIGURATIONS

For a given set of indices $\varnothing \neq I \subseteq[k]$, let us compute H_{1} :

- Case 1: $k \notin I \subsetneq[k]$. In this case, clearly, $H_{I}=\left\langle x, y ; t^{e_{i}}\right.$ for $\left.j \notin I\right\rangle$ is f.g.
- Case 2: $k \in I \subsetneq[k]$. In this case, wlog. assume $1 \notin I$, and the intersection $H_{l}=H_{\backslash \backslash\{k\}} \cap H_{k}$ is:

$$
\begin{aligned}
& =\left\langle x, y ; t^{\mathrm{e}_{1}}, t^{\mathrm{e}_{\mathrm{j}}} \text { for } j \notin I\right\rangle \cap\left\langle x, y t^{\mathrm{e}_{1}}, y t^{\mathrm{e}_{2}}, \ldots, y t^{\mathrm{e}_{k-1}}\right\rangle \\
& =\left\{w(x, y) t^{\mathrm{a}} \mid a_{j}=0, \forall j \in I\right\} \cap\left\{w(x, y) t^{\mathrm{a}}\left|a_{1}+\cdots+a_{k-1}=|w|_{y}\right\}\right. \\
& =\left\{w(x, y) t^{\mathrm{a}}\left|a_{1}+\cdots+a_{k-1}=|w|_{y}, a_{j}=0 \forall j \in I\right\}\right. \\
& =\left\langle x, y t^{\mathrm{e}_{1}}, y t^{\mathrm{e}_{\mathrm{j}}} \text { for } j \notin I\right\rangle \\
& =\left\langle x, y t^{\mathrm{e}_{1}} ; t^{\mathrm{e}_{\mathrm{j}}-\mathrm{e}_{1}} \text { for } j \notin I\right\rangle
\end{aligned}
$$

which is again finitely generated.

- Case 3: $I=[k]$. In this case, $H_{1}=\left(H_{1} \cap \cdots \cap H_{k-1}\right) \cap H_{k}=\langle x, y\rangle \cap\left\langle x, y t^{e_{1}} ; t^{\mathrm{e}_{2}-\mathrm{e}_{1}}, \ldots, t^{\mathrm{e}_{k-1}-\mathrm{e}_{1}}\right\rangle=\langle\langle x\rangle\rangle_{\mathbb{F}_{2}}$ is not finitely generated.

REALIZING k-CONFIGURATIONS

Lemma

Any almost-0 k-configuration $\chi\left[I_{0}\right]$ is realizable in $\mathbb{F}_{2} \times \mathbb{Z}^{\left|\left.\right|_{0}\right|-1}$.

REALIZING k-CONFIGURATIONS

Lemma

Any almost- 0 k-configuration $\chi\left[I_{0}\right]$ is realizable in $\mathbb{F}_{2} \times \mathbb{Z}^{\left|\left.\right|_{0}\right|-1}$.

Proposition

Let χ, χ^{\prime} be two k-configurations, and suppose that χ is realizable in $\mathbb{F}_{n} \times \mathbb{Z}^{m}$, and χ^{\prime} is realizable in $\mathbb{F}_{n^{\prime}} \times \mathbb{Z}^{m^{\prime}}$. Then, $\chi \vee \chi^{\prime}=\max \left\{\chi, \chi^{\prime}\right\}$ is realizable in $\mathbb{F}_{2} \times \mathbb{Z}^{m+m^{\prime}}$.

REALIZING k-CONFIGURATIONS

Lemma

Any almost- 0 k-configuration $\chi\left[I_{0}\right]$ is realizable in $\mathbb{F}_{2} \times \mathbb{Z}^{\left|\left.\right|_{0}\right|-1}$.

Proposition

Let χ, χ^{\prime} be two k-configurations, and suppose that χ is realizable in $\mathbb{F}_{n} \times \mathbb{Z}^{m}$, and χ^{\prime} is realizable in $\mathbb{F}_{n^{\prime}} \times \mathbb{Z}^{m^{\prime}}$. Then, $\chi \vee \chi^{\prime}=\max \left\{\chi, \chi^{\prime}\right\}$ is realizable in $\mathbb{F}_{2} \times \mathbb{Z}^{m+m^{\prime}}$.

Theorem (D.-Roy-V.)
For $k \geqslant 1$, every k-configuration x is realizable in $\mathbb{F}_{n} \times \mathbb{Z}^{m}$, for every $n \geqslant 2$ and $m \gg 0$; more precisely, for $m=\sum_{(I) X=1}(| | \mid-1)$.

REALIZING k-CONFIGURATIONS

Lemma

Any almost- 0 k-configuration $\chi\left[I_{0}\right]$ is realizable in $\mathbb{F}_{2} \times \mathbb{Z}^{\left|\left.\right|_{0}\right|-1}$.

Proposition

Let χ, χ^{\prime} be two k-configurations, and suppose that χ is realizable in $\mathbb{F}_{n} \times \mathbb{Z}^{m}$, and χ^{\prime} is realizable in $\mathbb{F}_{n^{\prime}} \times \mathbb{Z}^{m^{\prime}}$. Then, $\chi \vee \chi^{\prime}=\max \left\{\chi, \chi^{\prime}\right\}$ is realizable in $\mathbb{F}_{2} \times \mathbb{Z}^{m+m^{\prime}}$.

Theorem (D.-Roy-V.)
For $k \geqslant 1$, every k-configuration x is realizable in $\mathbb{F}_{n} \times \mathbb{Z}^{m}$, for every $n \geqslant 2$ and $m \gg 0$; more precisely, for $m=\sum_{(I)} X_{=1}(| | \mid-1)$.

Corollary

$\mathbb{F}_{n} \times \oplus_{i=1}^{\infty} \mathbb{Z}$ is intersection-saturated.

REALIZING k-CONFIGURATIONS

Lemma

Any almost- 0 k-configuration $\chi\left[I_{0}\right]$ is realizable in $\mathbb{F}_{2} \times \mathbb{Z}^{\left|\left.\right|_{0}\right|-1}$.

Proposition

Let χ, χ^{\prime} be two k-configurations, and suppose that χ is realizable in $\mathbb{F}_{n} \times \mathbb{Z}^{m}$, and χ^{\prime} is realizable in $\mathbb{F}_{n^{\prime}} \times \mathbb{Z}^{m^{\prime}}$. Then, $\chi \vee \chi^{\prime}=\max \left\{\chi, \chi^{\prime}\right\}$ is realizable in $\mathbb{F}_{2} \times \mathbb{Z}^{m+m^{\prime}}$.

Theorem (D.-Roy-V.)
For $k \geqslant 1$, every k-configuration x is realizable in $\mathbb{F}_{n} \times \mathbb{Z}^{m}$, for every $n \geqslant 2$ and $m \gg 0$; more precisely, for $m=\sum_{(I)} X_{=1}(| | \mid-1)$.

Corollary

$\mathbb{F}_{n} \times \oplus_{i=1}^{\infty} \mathbb{Z}$ is intersection-saturated.
Theorem (D.-Roy-V.)
There exist finitely presented intersection-saturated groups G.

BACK TO THE FREE CASE

Theorem (D.-Roy-V.)
A k-configuration x is realizable in a free group $\mathbb{F}_{n}, n \geqslant 2$ if and only if χ satisfies the Howson property; i.e., if and only if

$$
\forall \varnothing \neq I, J \subseteq[k],(I) X=(J) X=0 \Rightarrow(I \cup J) X=0
$$

REFERENCES I

[1] L. Bartholdi and P. Silva. "Rational Subsets of Groups". In: Handbook of Automata Theory. Volume II. Automata in Mathematics and Selected Applications. Berlin: European Mathematical Society (EMS), 2021, pp. 841-869.
[2] F. Bassino, A. Martino, et al. "Statistical Properties of Subgroups of Free Groups". Random Structures \& Algorithms 42.3 (May 2013), pp. 349-373.
[3] F. Bassino, C. Nicaud, and P. Weil. "Random Generation of Finitely Generated Subgroups of a Free Group". International Journal of Algebra and Computation 18.02 (Mar. 1, 2008), pp. 375-405.
[4] J. Delgado. "Extensions of Free Groups: Algebraic, Geometric, and Algorithmic Aspects". PhD thesis. Universitat Politècnica de Catalunya, Sept. 15, 2017.
[5] J. Delgado, M. Roy, and E. Ventura. "Intersection Configurations in Free and Free Times Free-Abelian Groups". 2022. arXiv: 2107.12426 [math].

REFERENCES II

[6] J. Delgado and E. Ventura. "A List of Applications of Stallings Automata". Transactions on Combinatorics 11.3 (June 15, 2022), pp. 181-235.
[7] J. Delgado and E. Ventura. "Stallings Automata for Free-Times-Abelian Groups: Intersections and Index". Publicacions Matemàtiques 66.2 (2022), pp. 789-830.
[8] I. Kapovich and A. Myasnikov. "Stallings Foldings and Subgroups of Free Groups". Journal of Algebra 248.2 (Feb. 15, 2002), pp. 608-668.
[9] A.Miasnikov, E. Ventura, and P. Weil. "Algebraic Extensions in Free Groups". In: Geometric Group Theory. Ed. by G. N. Arzhantseva, J. Burillo, et al. Trends in Mathematics. Birkhäuser Basel, Jan. 1, 2007, pp. 225-253.
[10] P. V. Silva and P. Weil. "On an Algorithm to Decide Whether a Free Group Is a Free Factor of Another". RAIRO. Theoretical Informatics and Applications 42.2 (2008), pp. 395-414.
[11] J. R. Stallings. "Topology of Finite Graphs". Inventiones Mathematicae 71 (Mar. 1983), pp. 551-565.

THANKS!

