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Abstract
Recent research inHumanRobot Collaboration (HRC) has spread and specialised inmany sub-fields.Many show considerable
advances, but the human–robot collaborative navigation (HRCN) field seems to be stuck focusing on implicit collaboration
settings, on hypothetical or simulated task allocation problems, on shared autonomy or on having the human as a manager.
This work takes a step forward by presenting an end-to-end system capable of handling real-world human–robot collabo-
rative navigation tasks. This system makes use of the Social Reward Sources model (SRS), a knowledge representation to
simultaneously tackle task allocation and path planning, proposes a multi-agent Monte Carlo Tree Search (MCTS) planner
for human–robot teams, presents the collaborative search as a testbed for HRCN and studies the usage of smartphones for
communication in this setting. The detailed experiments prove the viability of the approach, explore collaboration roles
adopted by the human–robot team and test the acceptability and utility of different communication interface designs.

Keywords Human–robot collaboration · Human–robot collaborative navigation · Human–robot interaction · Multi-agent
planning · Motion planning · Task representation · Object search

1 Introduction

Some tasks where humans collaborate with each other entail
a displacement across a given scenario. Moreover, such dis-
placement is a fundamental part of the task and requires to
be coordinated between the collaborating actors (e.g. ware-
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house logistics, delivery, sports, transportation through joint
manipulation...). This is what we call Human Collaborative
Navigation, which is frequently entangled with manipulative
tasks or other actions.

Human–Robot Collaboration (HRC) has made many
advances focusing on constrained tasks. In fact, some specific
settings have received somuch interest from the industry that
they are sometimes treated as the actual definition of HRC
(e.g. industrial shared workspaces [1–3]). Nonetheless, HRC
embraces a wide range of challenges and, as in human col-
laboration, an important subset of them involve navigation.
These challenges inspire a sub-field of HRC research known
as Human–Robot Collaborative Navigation (HRCN).

Until now Human–Robot Collaborative Navigation
(HRCN) lacked a representative constrained testbed, a
movement-only real-world collaborative navigation task
recognised by its solvers and explicitly plannificable. There-
fore, real-world applications have focussed on improving
performance in specific cases like shared autonomy, human
control over robot teams or implicit collaboration scenar-
ios (e.g. person-following, side-by-side navigation, handover
withmotion). In a more general sense, HRCN should include
multitasking, human–robot joint-tasks, multifinal goals and
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Fig. 1 Main contributions. We built a system capable of handling
generic collaborative navigation tasks. Themain contributions are build-
ing a knowledge representation model (green), designing a planner
for heterogeneous human–robot teams (purple) and defining a bench-

mark for human–robot collaborative navigation tasks (blue). Finally, we
developed an interface to handle the team interaction (red). Acronyms
used in the figure correspond to Social Reward Sources (SRS) and
Monte–Carlo Tree Search (MCTS). (Color figure online)

actions, task allocation, team-role assignment, shared knowl-
edge representation, mental models and agent preferences.
Consequently, a system tacklingHRCNshould be able to rep-
resent the previous and include the necessary tools to allow
communication, model reconciliation processes, role assign-
ment, planning and negotiation.

The overall goal of this work is to build a system capa-
ble of handling a generic collaborative navigation task. This
implies building a knowledge representation model, design-
ing a planner for heterogeneous human–robot teams, defining
a benchmark for human–robot collaborative tasks and devel-
oping an interface to handle interaction and multitasking
(Fig. 1).

To test the HRCN system, we propose the human–robot
collaborative search. In this context, coordination means
agreeing in a plan to explore the search space in a com-
plementary fashion (i.e. avoiding exploring the same or con-
current areas) and achieve the collaborative goal of finding
one object. Searchers keep track of the whole task progress
while observing teammates’ behaviour, thus inferring others’
future actions and planning exploration strategies.

The present document is organised as follows. Section 2
introduces the related work. Section 3 explains the Social
Reward Sources (SRS) model, the knowledge representa-
tion model, whilst Sect. 4 develops the multi-agent planner.
Section 5 defines the collaborative search benchmark and 6
discuses the emerging team-roles from the proposed collabo-
ration. Afterwards, Sect. 7 describes the app interface used to
enable human–robot communication. The conducted exper-
iments and their results are explained in Sect. 8. Finally, a
summary discussion of the overall work and the extracted
conclusions are presented in Sects. 9 and 10, respectively.

2 RelatedWork

In this section we discuss the work on previous articles
to depict the state of the art in this field. We review
task representation approaches for human–robot teams and
current approaches to human–robot collaborative naviga-
tion settings. Additionally, we discuss previous approaches
human–robot communication interfaces that inspired our
application.

Section 2.1 reviews different approaches to shared task
representation in human–robot teams. Section 2.2 discusses
current approaches and benchmarks in HRCN and, finally,
Section 2.3 describes significant references in the develop-
ment of human–robot interfaces.

2.1 Shared Task Representation in Human–Robot
Teams

We understand a shared task representation as the compound
of all information related to a task held in common by all
team members. Such construction may be achieved at differ-
ent levels, from simple assumptions of commitment of the
teammates to full understanding of their knowledge, decision
making processes and goals. We consider it to be useful once
it enables meaningful team communication that changes the
task execution. Bearing that inmind, herewe review different
approaches to knowledge representation and human–robot
communication that might build a bridge between human
and robot world understanding.

On the one hand, a core challenge is human understand-
ing of the robots’ capabilities, preferences, plans and goals.
Chakraborti et al. [4] discusses the meaning of different con-
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cepts arising from this endeavor (e.g. legibility, transparency,
explicability, predictability) and its counterparts (e.g. dissim-
ulation, obfuscation), all of them concerning either goals or
plans. Their review mainly focuses on path and motion plan-
ning, mostly relaying in humans’ learned physical intuition
to enable the information transfer process. Similarly, other
works establish human–robot communication through the
exertion of forces [5, 6] or commonly known physical inter-
faces (e.g. joysticks [7]). One alternative to convey higher
level information to the human in human–robot teams is the
usage of augmented reality (AR) [3], although it burdens the
humanwith the usage of an interface it helps to convey spatial
information that might be difficult to express in other means.

On the other hand, multiple fields work on robot’s
understanding of the human capabilities, preferences, plans
and goals. For example, recently Tuli et al. [8] built an
ontological-based system for human intention inference in
assembly operations (as in current goal), Liu et al. [1] claimed
to improve task scheduling in shared workspace settings
through introducing dynamic and stochastic representations
of the human task performance model and Rudenko et al. [9]
surveys advances in pedestrian trajectory prediction. Archi-
tecturally speaking, classically the human was treated as an
element of the environment, but recently the paradigm of
considering human–robot collaboration using a multi-agent
view is receiving more attention [10]. Building a multi-agent
plan is of special importance for human–robot teams tack-
ling collaborative navigation tasks. These tasks ask for longer
planning time horizons than other settings, and human team-
mates’ contribution can completely change the usefulness of
a given robot plan. Some ontological approaches to motion
planning can store and receive profound knowledge of the
task (e.g. Tuli et al. [8]), but they are usually implemented
in fully known environments. Moreover, they are frequently
used in architectures where task allocation processes are dis-
entangled from motion planning algorithms (e.g. [11]). This
disentanglement can prove to be problematic in dynamic
settings where tasks time and cost may experience major
changes, such as in social navigation and HRCN. That being
said they are ubiquitous in systems dealing with temporal
constraints such as time window, synchronisation or prece-
dence constraints (e.g. Nunes et al. [12]), as there seem to be
no motion planning methods that deal with them. Similarly,
multi-agent systems dealing with multitask systems should
account for any arising interdependence [13].

Interestingly, Elliot & Thrash [14] work supports the
simplification of representing human goals as approach
and avoidance motives. Some human behaviour modelling
approaches like the different variations of the social force
model [15, 16] also follow this trend. This is of special inter-
est, as many robot navigation and learning methods build
upon the concept of rewards, positive or negative feedbacks
received upon taking some actions or achieving some states.

This opens up a communication opportunity, as human inter-
pretation of robot actions in terms of action goals and means
to achieve them is similar to how other human actions are
conceived [17]. More so, Lin et al. [18] suggest that com-
plex rewards from learned behaviours may be disentangled
in sub-rewards with semantic significance. Similarly, cost
partitioning approaches [19] suggest that multiple rewards
representing different features may be combined in an addi-
tive fashion. We believe a modular representation of the
sources of reward present in the task world can provide a
flexible task representation, capable of adapting to changes
in the environment and the actors. Building from these, in
this workwe propose to build a shared task representation for
HRCNfromamodular reward definition architecture capable
of representing spatial properties and temporal constraints.

2.2 Human Robot Collaborative Navigation

Currently, there isn’t a clear definition of what is and what
isn’t human–robot collaboration in navigation tasks. Some
authors argue that pedestrian avoidance is a collaborative or
cooperative task due to the altruistic behaviours that arise in
these situations [20–22]. Here, we will not generally review
social navigation approaches, but works handling human–
robot navigation settings where they share a common goal.

Two of the most studied collaborative scenarios in nav-
igation tasks are the shared autonomy and human manager
settings. Most publications concerning these pertain to the
search and rescue research field [7, 23, 24]. We may label
them as examples of telematic HRCN, as in both scenar-
ios the human isn’t present in the navigation task space and
only contributes to the shared task through either controlling
the robot actions or managing team members coordination.
Some of these works consider the presence of human team-
members in the scene, but generally their interaction with the
robots is handled indirectly through the manager.

Some commonly studied scenarios where humans and
robots share a workspace and perform shared navigation
tasks are person-following [25], handover with motion [26]
and side-by-side navigation [27–29]. Though in these scenar-
ios there exist a shared task, the problem statement generally
considers a human performing the collaboration subcon-
sciously. Actually, achieving natural behaviour (their usual
behaviour) in humans who are over-conscious of the task
can be difficult in the experiment design of such collabo-
rative tasks. Assuming subconscious collaboration, we will
label such tasks as implicit HRCN scenarios.

Alternatively, Liu et al. [6] presents a shared manipulation
system for human–robot transportation. Conversely, in this
setting the human is consciously engaging in the collabora-
tive task. The proposed approach, however, focuses on the
robot’s dynamic control and the human is only treated as an
environmental payload input. Thus, we consider the robot
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as unaware of the interaction and also label the proposed
solution as implicit HRCN.

We would label a collaborative scenario as explicit HRCN
whenever all agents are aware of the task. Arguably, only in
explicit HRCN there may be human–robot teams. However,
there seems to be a lack of research tackling this kind of tasks.

2.3 Human–Robot Interfaces

The interface used to enable human–robot communication
in this work is based on the previous work from Kohler et
al. [30],which usedmobile phones usingAndroidOS in order
to communicate with robots using the ROS framework [31].
It is also based on Fogg’s previous work [32] on persuasive
design. More specifically, on their concept of trigger. Our
interface relies heavily on visual cues drawn upon a represen-
tation of the world. Similar approaches are frequently used
[3, 13] as they can convey spatial information that would be
otherwise difficult to express.

3 Social Reward Sources

The Social Reward Sources (SRS) model is a world and task
representation model constructed using sources of reward as
building blocks. It is a subjective representationwheremean-
ingful entities to the agents (robot or human) are modelled
as sources of reward or reward sources. Therefore, the SRS
model is constructed as a set of reward sources ψ ∈ �.

Important preceding researchon social navigation involves
the modelling of tasks using virtual forces (Social Force
Model (SFM)) [15, 16]. Our model inherits its advantages
as it originates from rethinking the late tendency to use
said forces as costs in the planning process [27, 28]. Also,
it generalises reward generation to avoid previous ad-hoc
solutions, adapts to complex semantic space definitions [33,
34] and models the existence of shared goals, multitasking
and multifinal actions. Additionally, it incorporates needed
dependency relations between tasks [13]. Another advantage
is that humans find it intuitive to generate plans using this
model (see Sect. 3.3.1).

Solutions to task representation in human–robot settings
in the literature are usually task-focused [6–8, 10] and do not
generalise to other scenarios. For instance, Liu et al. [6] task
representation is done through a control loop and can only be
applied to collaborative transportation, previous SFM appli-
cations [15, 16, 27] can only be applied to the target task they
are handling and task representation inmulti-robot collabora-
tive systems [35] is not designed to be used for human–robot
communication. However, although we can’t directly com-
pare to them, it is worth noting that this model has shown
potential in human–robot sharedworld representation of nav-
igation tasks [36].

Section 3.1 defines the concept of source of rewardψ and
its properties. Later, Sect. 3.2 introduces the world represen-
tation constructed through the interaction of many sources.
Section 3.3 discusses the usage of the SRS model in HRI,
while in 3.4 the multi-agent extension of the model is pre-
sented.

3.1 Source of Reward

Ultimately, a social reward source ψ ∈ � is a generative
model that defines a reward function along all the search
space r(ψ) = f (x, y) (this work focuses in R

2 navigation,
but could be applied to R

3 or a robot joint space, for exam-
ple). Reward sources act as building blocks of a subjective
world representation.We define it as subjective because each
source of reward may provide a different feedback to differ-
ent agents, even under the same conditions. For example,
rewards may vary due to risk, capabilities, effort, personal
preferences or eagerness to do a task or to follow someone’s
instructions. Hence, the constructed world representation is
subjective to a particular agent, from now on a0.

We want to use SRSs to build a unified subjective world
representation of all external events �W (Fig. 2). This
includes perceived and interpreted environment influences E
(from obstacles avoidance to conceptual abstractions such as
areas in a sports field), the pleasantness, cost or effort directly
related to performing certain actions A, rewarding feedback
due to progressing in tasks in hand or reaching goals T and
feedback emerging from the interaction with other agents I
(considering human or robot sharing any task with a0).

3.1.1 Source Definition

As introduced before, sources of rewardmay have non-trivial
spatial definitions. Sources of reward may exist attached to
physical objects, e.g. obstacle avoidance rewards.Othersmay
be defined over human constructed concepts, such as the pre-
viouslymentioned areas in a sport field. For practicality, even
classic navigation goals should contain some specified tol-

Fig. 2 World representation. In the Social Reward Sources model, all
entities and concepts influencing the actions of the robot are modelled
as sources of reward
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erance, which consequently defines an accepted zone. One
feature we deemed to be common in most cases is the exis-
tence of a boundary. Lots of sources have a binary effect,
showing clearly opposed effect whether a0 is located inside
or outside the boundary (e.g. pressing a button). Others have
a similar effect while including some transition (e.g. obstacle
avoidance or positioning oneself in a cinema).

We consider that all sources ψ have a boundary β. This
boundary is a closed surface in the search space (in R

2 the
boundary would enclose a determined area). The reward pro-
duction (reward/t) of the source is defined by two functions:
ri and re, corresponding to internal and external reward ratio
functions:

r(pa)

{
ri ( �p a

β ), if pa ⊆ β

re( �p a
β ), otherwise

(1)

where pa is the agent location, �p a
β is a vector pointing pa

from its nearest boundary point (Fig. 3) andβ is the closure of
the boundary surface (all points in the interior of the boundary
or on the boundary). The total reward output capability of the
source for a given location p is as follows:

r(p,�ti ) =
∫ ti f

ti0

r(p) · δt (2)

where,

�ti = ti f − ti0 (3)

Fig. 3 Reward definition. In front of a source, the reward perceived by
each agent is defined as a function of the shortest vector between its
boundary and their location �p a

β . This vector is, by definition, perpen-
dicular to the boundary surface β. Likewise, its dimensionality will be
equivalent to that of the source definition

3.1.2 Reward Consumption

Some sources of reward should be continuously outputting
reward. As a clear example, a building containing fire smoke
should be avoided at all times (except if the agent is a fire-
fighter, another nice example for the subjectivity of reward
sources). Other rewards, however, can only be collected once
or a limited number of times. This is a dynamic usually
observable in positive rewards. Sampling methods classi-
cally only use costs (negative rewards), as positive rewards
generate sinks (negative costs). Even in q-learning positive
rewards are usually only used in situations where they may
not be retaken (goal states, accumulating points...).

Ultimately, in all applications using rewards theworld rep-
resentation system should keep track of the obtained rewards.
This is usually solved ad-hoc, as the research focus is nor-
mally targeting the planning or decisionmakingmethod. The
SRS model shifts this responsibility to each source imple-
mentation, aiming to add flexibility in dealing with open
world problems.

Each source ψ has a determined reward production capa-
bility R. The final reward produced by the source is as
follows:

r f (p,�ti )

{
r(p,�ti ), if r(p,�ti ) ≤ Rt

Rt , if r(p,�ti ) > Rt
(4)

where,

Rt+1 = Rt −
a∑

r(pa,�t) (5)

R0 = R (6)

The available reward may be kept constant if the source is
defined with R −→ ∞ or may be consumed nearly instantly
if R = maxp r (Fig. 4). We may visualize sources as wells,
but outputting reward from a reward pool instead of water.

3.1.3 Environment Rewards

Rewards linked to elements of the environment. The star
example of these rewards is building obstacle avoidance,
which may be achieved through an exponential model (as
in the SFM [15]). Changing the environment changes their
rewards, but should not affect any of the following reward
sets.

ψ ∈ �E

3.1.4 Action Rewards

Action rewards are rewards linked to the actions of the agent.
They can be seen as an internal representation of agent a0.
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Fig. 4 Reward consumption. Evenwith a similar distribution of positive
reward sources, varying the available reward R can generate signifi-
cantly different behaviours. These images showcase the obtained path
using RRT � in two different settings. The blue and green sources have
reward productions rb and rg , correspondingly. The blue sources on the
above one are constructed with R = maxp rb, while the ones below
have R −→ ∞. In both cases, rg � rb and the green source should
be collected the last (see precedence relationships in Sect. 3.2.1). The
green source is added to aid visualization, forcing the plan of the second
scenario to move towards it (see objective function details in Sect. 4.5).
(Color figure online)

If it is a robot, it may represent energy cost and be defined
over robot configuration. If a0 is a person, it may be tuned to
represent fatigue, motivation or comfort. These rewards can
have a major role over task selection outcomes. Specially in
the task assignation processes of multi-agent planning.

Note that action sources are usually defined in a differ-
ent space than the rest. For instance, action sources used in
the presented experiments are defined in a one-dimensional
space whose only axis is the agent velocity. Alternatively,
other settings focusing in comfort may include variables
defining the agent’s body or arm configuration.

ψ ∈ �A

3.1.5 Task Rewards

Task rewards are linked to a0’s goals and objectives. This
includes sources of reward whose existence is subordinated
to the tasks at hand. This set, however, is restricted only to
the sources whose boundary (including its position) is inde-
pendent of all agents’ actions.

When task planning over the SRS model, one or var-
ious tasks with different goals may coexist in the same
world representation. In conjunction with Action rewards,

Fig. 5 Task versus interaction. The main difference between task and
interaction sources of rewards is their spatial definition. Sources whose
location is independent of any team member’s movement actions are
considered task sources, even if they are generated through direct inter-
action (e.g. the verbal command stated in the left image: "go to the
door"). Interaction rewards are those whose spatial definition is gener-
ated in one of the team members’ reference. Typical examples would
be side-by-side navigation, which is depicted in the right image. Notice
the goal moves according to the agent’s actions and it would change if
they took another path

this approach unifies task selection and navigation plan-
ning. It enables balancing tasks’ rewards while taking into
account well-grounded movement cost estimations. Further-
more, new requirements or tasks may be added or deleted on
execution.

Notice that suggesting another agent to go to a certain fix
location would fall into this reward source category. Even
though the reward is generated due to the interaction with
another agent, the task itself is independent of that agent
position (Fig. 5).

ψ ∈ �T

3.1.6 Agent Interaction Rewards

Sources of reward related to tasks directly involving spatial
interaction with other agents may be classified as I . Their
separate treatment comes up due to their spatial definition,
as it is referenced relative to the agents’ position. For exam-
ple, goals handling side-by-side navigation would fall into
this category, as they are directly dependent on the compan-
ion’s position and orientation. This example, and the one
presented in the previous section, may be clarified when
considering task progress in the future. When predicting or
planning future states, handling goals dependent on other
agents actions asks for a specific treatment (Fig. 5).

ψ ∈ �I

3.2 SRSWorld Representation

A SRS task world representation WSRS is constructed by a
set of sources of reward � = {ψ0, ψ1...ψn}. A complete
world representation will be identified as �W and it may be
subdivided in sets of each of the previous categories.
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Fig. 6 Supermarket example. From top to bottom, left to right: a Toy
example depicting a robot buying in a modern day supermarket. b
Depiction of the relevant sources attached to the current scenario and

a possible plan to satisfy the task at hand. c Time graph depicting the
available reward on each source along the execution the plan presented
in b. d Supermarket sources’ interdependence

�W = {�E , �A, �T , �I } (7)

As per definition, �W represents a multi-objective set-
ting. Classic methods would separately tackle task selection
and planning problems, but here we propose a model where
planners should confront both simultaneously. Notice that
this framework naturally takes into account the existence of
multi-final actions, as reward from different sources may be
collected simultaneously by the agents.

3.2.1 Source Interdependence

Reward sources in aworld representation can present interde-
pendence. These relations should be encoded with the source
set, as our world representation should be usable for planning
(Fig. 6). As of now, we defined three source interdependence
relations.

Strict precedence (ψi ⇒ ψ j ): Some sources may only be
rewarding after consuming another source’s reward (e.g.
going to a closed door may only be rewarding once we col-
lected the key). 
�

Soft precedence (ψ j → ψ j ): Some sources may only be
rewarding before consuming another source’s reward, though
their consumption is not mandatory for that to be consumed
(e.g. shifting one’s path from to pass through certain mid-
points may only be rewarding until reaching our goal, such
as prioritising shadows in summer sunny days). 
�
Codependent consumption (ψi ⇔ ψ j ): Consuming one
source reward may change the available reward in another
sources (e.g. if we need to write all available pencils and
pens may become sources of reward, but taking one of them
would consume the reward from all sources). Following the
previous metaphor, sources seen as wells may be completely
or partially sharing their reward pools with other sources. 
�

These relations can be represented in an interdependence
graph GI . All sources ψ ∈ �W are referenced as nodes
N in the graph, while edges E represent interdependence
relations between sources. Unconnected nodes in this graph
represent independent sources (though they may still be sub-
ject to changes due to agents’ actions or time restrictions).
Consequently, the complete world representationWSRS may
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be defined as follows:

WSRS = {�W ,GI } (8)

As a toy example, let us imagine a robot buying groceries
in a present time supermarket (Fig. 6). All products but one
have been collected, and we assume it has to pass through
one of the three available cashiers to pay. In this setting we
mayfind a soft precedence relationship between the last prod-
uct and the cashiers’ sources. The product may or may not
be taken before paying, but it can’t be collected after this.
The cashier sources have a codependent consumption rela-
tionship, as they offer the same service once paying on one
there remains no reason to go to the others. Finally, for legal
reasons it is mandatory to pay before getting out of the mar-
ket. Therefore, there exists a strict precedence between the
sources attached to those concepts.

Precedence relationships can be specially useful to shape
paths (Fig. 7). While a similar behaviour can be obtained
through negative rewards, they can easily provoke inaction,
specially if a number of them are stacked in the world rep-
resentation. This could be solved by resizing the positive
reward sources, but it would go against our objective to
achieve a modular and additive representation of the world.

3.3 Human–Robot Interaction Using SRS

Humans use abstract concepts as “room” or “flat” on a daily
basis, as well as relative quantification of gradable language
(e.g. rather, quite, very or dreadfully urgent). Likewise, we

usually use spatial and demonstrative language, often posi-
tioning objects in relative references (behind, in front, above,
at a certain distance of...). As introduced before, the main
motivation behind our spatially centered source definition is
dealing with these concepts.

Assuming there exists an ontological knowledge of the
environment, it becomes straightforward to encode simple
orders or suggestions into sources of reward. “Stay behind
me", “avoid the living room" or “don’t stay between me and
the tv" can be defined by certain areas (e.g. inR2) or volumes
(e.g. in R

3), whose boundaries may be strict or blurry. Such
concepts can be represented through a source of rewardψn+1

and, as the SRS Model naturally includes multitask settings,
they can be directly introduced into the task world represen-
tation.

In these sources, the amount of reward production and
R may encode the sense of importance delivered through
gradable language or, for example, the propensity to follow
someone’s instructions. They can be modelled following the
designer’s criteria and be directly integrated into the world
model in an online setting.

� ′
W = �W ∪ {ψn+1} (9)

Most sources of reward generated through human–robot
interaction generate either task or agent interaction rewards
(depending on the spatial reference). Alternatively, team-
mates’ communication may sprout from a world model
reconciliation process. The robot might acquire new infor-

Fig. 7 Path shaping through soft precedence. The plans depicted are
generated through expanding an RRT � in the SRSworld. In both exam-
ples, all blue sources have a soft precedence relationship with the green
one. Due to the soft nature and there being no relationship defined
between the blue sources, the path obtained may sometimes skip some

sources or follow a different order to collect them than the one depicted.
Note too that the RRT � used amulti-RRT approach, generating one tree
centred on each positive source. (Source: Dalmasso et al. [37]). (Color
figure online)
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mation from the environment or an agent’s characteristics or
state. In such cases, the information should be encoded in the
SRS model and added to its respective set.

3.3.1 SharedWorld Representation

Apart from handling direct instructions, the aim of the
SRSModel is to act as a common knowledge representation.
If both agents grasp the SRS concept, it may be possible to
achieve a shared task representation and, through it, under-
stand each other’s intentions and task contribution. Sharing
knowledge and task representations eases maintaining an
estimation of others’ knowledge andperception. This encour-
ages the proposal of multi-agent plans taking into account
capabilities and preferences of each agent.

All these virtues, however, build over the assumption of
themodel being intuitive for humans. To test this property,we
performed a user study using the model in a previous publi-
cation [36]. This study indicated that non-expert humans can
understand the main properties of this knowledge represen-
tation and use them to design robot behaviours (Fig. 8).

3.4 SRS in Multi-agent Settings

When dealing with multiple agents α = {a0, a1, ...am−1},
the sources of reward should be classified on other criteria.
Each source of rewardψk ∈ � may be consumed bymultiple
agents, from now on identified as the set of targets τk ⊆ α.
Sources may have from one (private sources) to m targets
(global sources).

�W = {ψτ0
0 , ψ

τ1
1 ...ψ

τn
n } (10)

Fig. 8 HRI using SRS. Some designs built by the participants in a
virtual user study. In this study, they were empowered to use three
instructions: avoid this place (red cylinders), pass through this place
(blue cylinders) and go to this place (green cylinders). The scenarios
and corresponding indications given to the participants were, following
rows from top to bottom. a) Crossroad: Guide the robot to reach the
objective (flag) avoiding the objects and crossing the road through the
crossroad. b) Spiders: Guide the robot to reach the objective however
you feel fitter. c) Free Space: Imagine a trajectory and try to make the
robot reproduce it. (Source: Dalmaso et al. [36]). (Color figure online)

Notice this is a representation of shared goals that arises
naturally from the source definition. The reward pool of
sources havingmore than one targetmay be consumed by any
of the targeted agents and, consequently, trigger any source
interdependence linked to it (Fig. 9).

Taking it one step ahead, one may define the task world
representation for each agent ai ∈ α, each with its reward
set:

�T eam = {�W0 , �W1 ...�Wm−1} (11)

WSRS = {�T eam,GI } (12)

The sources present in each set would represent the
believed knowledge of that agent, i.e. its mental model.
Maintaining an estimation of other agents’ knowledge and
perception encourages the proposal of plans that take into
account capabilities and preferences of each agent.

Imagine how the example depicted in Fig. 9 would change
if a0 believed a1 didn’t know the light had to be opened so that
a0 could read (i.e. believeda0 didn’t knowabout the existence
of ψ

{a0,a1}
0 ). Thus, a0’s world representation WTeam would

include�W0 = {ψ {a0,a1}
0 , ψ

{a0}
1 } and�W1 = {ψ {a0}

1 }. As one
solution, a0 may plan to open the light by himself, as even if
he knows a1 can open the light a0 doesn’t expect a1 to do it.
Alternatively, a0 may decide to inform a1 of the existence of
ψ

{a0,a1}
0 , i.e. engaging in a model reconciliation process.

Fig. 9 Multi-agent planning in SRS. Imagine a two agent team whose
objective is to read a panel inside the room. Only one of them is capable
of reading the panelψ {a0}

1 , while both can open the lightψ {a0,a1}
0 . There

exists a strict precedence between both sources, but a0 may plan to
directly go to the panel as he expects a1 to take care of the light
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4 Multi-agent MCTS

To plan over WSRS we use a decentralized variant of the
Monte Carlo Tree Search (MCTS). A thorough explanation
of the following formalization can be found in [38].

4.1 Problem Statement

We consider a human–robot team of m agents α =
{a0, a1...am−1}, where each agent a ∈ α plans its own
sequence of future actions xxxa . Each action xaj has a required
completion time taj . The feasible set of actions xxxa and
their associated costs at each step j are a function of
the previously taken actions xxxa0→ j = {xa1 , xa2 , ..., xaj−1}.
Thus, for each agent a there is a predefined set X a of
feasible action sequences xxxa . We will use xxx to denote a
set of action sequences for all humans and robots xxx :=
{xxxa0 , xxxa1, ..., xxxam−1} andX to denote the set of all feasible xxx .

The aim is to maximize a global team objective function
g(xxx)which is a function of the action sequences of all agents.
We assume g is deterministic given a known set of action
sequences xxx , but each agent amay only have a partial or inac-
curate perception of g(xxx), a local objective function f a(xxx).

Agents do not know the action sequences selected by
the other agents, though g(xxx) may be modified or f a(xxx)
updated through teammates communication. As some agents
in the team may be humans, the problem must be solved in
a decentralised and online setting. Agents may be able to
communicate and make shared plans taking into account the
objective functions f {a0..am−1}, however they are unable to
communicate during planning time to improve coordination.
This means they can only interact between the construc-
tion of one plan and the next, not being able to change
the plan halfway due to new information (some multi-robot
approaches [35] include information sharing in the planning
process). Therefore, each robot will plan based on the infor-
mation it has available locally.

4.2 AlgorithmOverview

In the presented approach, the objective function g is build
through the SRS model. Consequently, the planner must be
able to deal with an arbitrary dynamic objective function that
may change due to the past action sequences xxx1.. j−1.

The proposed algorithm is designed to run simultaneously
and asynchronously on all robots in the team.Wewill present
the algorithm from the perspective of one robot, from now
on referred as the agent a0. The algorithm cycles between
the three phases: (1) incrementally grow each agent search
space, a set of feasible action sequences for each agent of
the team X a , (2) individually compute the probability dis-
tribution over each agent possible action sequences and (3)
incrementally grow a search tree using MCTS while taking

Fig. 10 Heterogeneous search space. In heterogeneous teams each
actor may be able to explore different search spaces X̂ a . In the fig-
ure a human–drone team is shown, where only the later can explore the
space in the vertical dimension and pass above walls. The green cylin-
ders represent sources of positive reward that can be consumed by either
agent, indistinctly (ψ {a0,a1}

0 , ψ
{a0,a1}
1 ). Themap includes two-meter high

walls, but no roof. The given plan is generated by the presented method
by taking into account the actors’ capabilities. (Color figure online)

into account information about the other agents’ objectives
and plans.

4.3 Building the Search Space

To generate a feasible restricted set of each agent’s possible
paths X̂ a ⊆ X a we use a multiple RRT �. The generated
paths can be seen as heterogeneous action sequences, each
one leading to a different goal.

Othermulti-agentMCTS approaches use a pre-build PRM
as the agents’ search space (e.g. Best et al. [35]). However,
they work with homogeneous teams, where all agents are
assumed to have the same mobile and planning capabilities,
a premise that does not hold in human–robot settings. Using
individual RRTs, in our setting, each agent may have varying
capabilities and be subject to different restrictions (Fig. 10).

4.3.1 Agent Action Set

In the present approach, all agent actions are assumed to be
movement actions. Each of those are represented by oneRRT
node i defined by their origin (the node’s parent location) and
their goal (their own location and its completion time).

Every RRT node i with position �pi a and execution time
tai can have an unbounded number of children ch(i), but the
number of actions eligible after each agent action is bounded
to Na . Additionally, each action node stores a distribution
probability over its children electability on a satisfactory
shared plan qai , which is distributed only among the eligi-
ble actions.
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An achievable reward upper bound is calculated over each
individual agent’s action set. Rewards for each agent a action
sequencesxxxa ∈ X̂ a are updated as if theywere the onlymem-
ber on the team. Then, all these rewards are back-propagated
and each tree node i stores the maximum attainable reward
from it. To compute qai , only the Na children of each node
with the highest upper bound are considered, further prun-
ing the search tree. Finally, the selection probability qai is
weighted by those bounds.

4.4 Building a Human–Robot Team Plan

The objective of the algorithm is to build a collaborative
plan to tackle navigation team tasks over heterogeneous
action sets with variable time horizons. To do so, the MCTS
planner should contemplate the coexistence of agent action
sequences with different temporal length, ensure temporal
coherence in the tree expansion and provide a feasible reward
propagationmechanism to deal with a dynamic environment.

4.4.1 MCTS State

Each MCTS state s occurs at time ts , is formed by a
list of ongoing agent actions xs = {xa0s , xa1s , ..., xam−1

s }
and a list of their remaining time to completion r ts =
{r ta0s , r ta1s , ..., r tam−1

s }. Note that each agent action xas ref-
erences one node at that agent’s action set (Fig. 11).

As a state sk is defined by the ongoing actions xs , a new
MCTS state should be generated after any agent action xas is
finished.Also, eachMCTS state sk can have a limited number
of children states ch(sk). Each MCTS state can only have
as many successors as the existent possible combinations
of finished tasks’ eligible children. Formally, the number of
children states is bounded as follows:

|ch(sk)| ≤
{ai |r taisk =0}∏

a

ch(xask ) (13)

4.4.2 MCTS Expansion

The multi-agent plan is expanded from the root node s0,
which is formed by the root actions of each agent (virtual
0-time initial actions). In each iterationm, one of the expand-
able states in s0 is randomly selected through sampling on
eachfinished agent actionqai distribution. From the expanded
state sm , a chain of future states is continuously simulated fol-
lowing the same process until a final state is reached. Let us,
from now on, refer to this process as rollout. The MCTS tree
keeps expanding through continuous rollouts until the pre-
defined time or node limit is reached (detailed in Algorithm
1).

Algorithm 1 replan(�W ,GI , α)

1: for each a ∈ α do
2: X a ⇐ expandRRT (�a

W ,GI , a)

3: X̂ a, qai ⇐ pruneActionSet(�a
W ,GI , Na)

4: X̂ ⇐ X̂ ∪ X̂ a

5: end for
6: while t < tmax ‖ n < nmax do
7: S(xxxi ) ⇐ rollout(s0, X̂ , qi )
8: T ⇐ T ∪ S(xxxi )
9: for each a ∈ α do
10: qai ⇐ update(xxxai )
11: end for
12: end while
13: S(xxx f ) ⇐ get Best Plan(�W ,GI , T )

14: return S(xxx f )

Algorithm 2 rollout(sk, X̂ , qi )

1: if ch(sk , X̂ ) = ∅ then return {sk}
2: end if
3: sk+1 ⇐ sample(sk , qi )
4: return {sk} ∪ rollout(sk+1, X̂ , qi )

Finally, note that theqai values related to each agent actions
get updated at the end of each rollout. The probability of
the actions taking in each rollout is reduced. Such reduction
being lower the farther the action is from the current rollout
final state.

qai (action)′ = qai (action) · w · γ n (14)

where n is the number of actions between agent a’s node i
and a’s final action, w ∈ (0, 1) is the reduction weight and
γ ∈ (0.5, 1) is the weight discount factor.

An example of an ongoing collaborative plan expansion
of a two member human–robot team may be found in Fig.
11. Additionally, to ensure the viability of early plans we col-
lect potentially rewarding goals from the individual agents’
action sequences and combine them to define end state can-
didates. This allows for a predefined preliminary expansion
to the MCTS tree.

4.5 Objective Function

The collaborative plan objective function g(xxx) can be seen
as the additive combination of all the rewards influencing the
team. This includes the rewards related to each agent actions
cost A, their perceived influence of the environment E , the
tasks at hand T and team interaction I .

g(xxx) =
α∑
a

(Ra
A + Ra

E ) + RT + RI (15)
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Fig. 11 MCTS tree expansion. Example of a collaborative plan expan-
sion for a two-member team. From left to right: a Agent action sets,
which constitute the search space of the MCTS. Each node in these sets
represent the movement required to reach a determined pose from the
final pose of its parent. They store their final pose �pi a , the expected time

to complete the defined action tai and the probability distribution qai .
b Partial depiction of one possible tree generated by the MCTS. The
green, blue and red markers illustrate three possible different plans,
whose location on each agent action set can also be seen in figure a).
(Color figure online)

Fig. 12 Human–robot multi-agent MCTS. Planning example for a
three-agent team. From left to right: a A global plan fulfilling three
shared goals. bAn increase of an individual’s effort to maximize global
rewards. cOne of the agents is expected to stay still, as one of the shared

goals is inaccessible due to some hazard (red dot). d There are two haz-
ards in the scene, but they only affect one of the agents (green). The
planner adapts to fulfil as many shared goals as possible. (Color figure
online)

being

Ra
A(xxxa) =

∑
xaj ∈xxxa

rA(�a
A, xaj , t

a
j ) (16)

Ra
E (xxxa) =

S(xxxa)∑
sk

rE (�a
E , xask , tsk ,�tsk ) (17)

RT (xxx) =
S(xxx)∑
sk

rT (�τ
T , xxxs0→k , tsk ,�tsk ) (18)

RI (xxx) =
S(xxx)∑
sk

α∑
a

rI (�
τ
Ia , xxx

τ∪a
s0→k

, tsk ,�tsk ) (19)

where S(xxx) is the set of MCTS states defined by the action
sequences xxx . Observe rA(�a

A, xaj , t
a
j ) is the reward collected

from the action sources �A through the execution of action

xaj , which takes a time taj . Moreover, rE (�a
E , xa, t,�t) is

the reward generated by the environmental sources set �a
E

to target agent a while performing action xa during a period
�t initiated at time t . Similarly, rT and rI are the rewards
generated by sources�τ

T and�τ
Ia
given the action sequences

in xxxs0→k . Note that xxxs0→k symbolises the action sequences
that generate the tree branch connecting the initial state s0
and the state sk . Additionally,

�ts = ts − tp(s) (20)

where p(s) is the parent state of s. Consequently,

r tas =
{
r tap(s) − �ts if xas = xap(s)
tas − �ts otherwise

(21)
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The images in Fig. 12 are presented to provide some qual-
itative example of the model. A human–robot team of three
members is given three shared goals and the images show the
plan built by one of the robot agents using the multi-agent
MCTS model over the SRS representation of four different
environments.

5 Collaborative Search

Humans daily engage in searching tasks. Be it keys, writing
tools, earring or shoes, we search them following strategies
led by our beliefs and use a large spectrum of actions includ-
ing active perception and object manipulation. Moreover,
it’s a situation where we frequently seek collaboration. We
have no clear conclusions about the backing motivations for
that, but they may include a better expected outcome when
adding other’s knowledge and perceptions, better handling
of anxiety or trying to avoid other’s unconscious obstruc-
tion. During this process, one may update their belief over
the object location through the exploration of the environ-
ment, the observation of their colleagues’ actions and/or the
received information through active communication.

In this work, we consider a constrained search testbed.
We assume the environment is fixed. Therefore, there is no
occlusion removal through physical interaction. Moreover,
the agents’ perception capabilities are constant over time.
Specifically, the robot sensors are static in the robot platform
reference and the target object is on ground level, consid-
ered equally visible on all locations. In short, in this work
we consider search as a pure navigation task. Collaborating
agents are assumed to be engaged in the task. Moreover, they
can move freely, follow independent search policies and lose
contact.

5.1 Problem Statement

A human–robot team of agents α explores a known space to
locate a set of similar objects O . Each agent may actively
search the object, observe their teammates actions and/or
communicate with them. The task is assumed as finished
when all the objects are found.

In the real-world experiments presented in this work, the
team consists of one person and one robot, α = {a0, a1}.
Both agents are assumedcapable of autonomously navigating
through the search area. To construct the robot knowledge of
this task, we built an observability graph upon a discretised
representation of the search area.

The formal definition of the task detailed in the next sub-
sections was already introduced in [38] and added here for
clarity and completeness.

5.1.1 Agent Detection Model

The agents’ object location belief is continuously updated
based on the team members’ actions. Hence, we should
model the probability of each agent a ∈ α detecting an object
O at a certain location �p.

P(Da( �p,�t)|O( �p)) (22)

where �t = t f − t0 is the search time, Da( �p,�t) states one
object is detected by agent a and O( �p) is the fact that an
object is actually at the given location. To build this model,
we make a number of assumptions:

Assumption 1 Detectionmodels are independent of their ini-
tial time t0i . In other words, human detection capability does
not change over time. So for one agent:

P(Da( �p,�t)|O( �p)) =
∏
i

P(Da( �p,�ti )|O( �p)) (23)

where the overline in Da expresses the complementary state-
ment (i.e. being “undetected by agent a") and

t0i0 = t0, t fi f = t f , t fi = t0i+1 i = i0, ..., i f

Assumption 2 Detection models are independent of the
agent location. Human detection capability is independent
on the perceiving human position, as long as �p is visible, and
on all other participating agents’ position. Whereas, distrac-
tions or occlusions in its field of view due to other teammates
proximity are not considered. So for each location:

P(D( �p,�t)|O( �p)) =
α∏
a

P(Da( �p,�t)|O( �p)) (24)

5.1.2 Object Location Probability

At a given time t , where t0 is the task beginning and t f =
t , the updated object probability on each location given the
current accumulated global search is:

P(O( �p)|Dt ) = P(Dt |O( �p)) · P(O( �p))
P(Dt )

(25)

Note that we consider P(O( �p)) as the object probability
prior, being P(O( �p)|Dt ) the object location probability con-
ditioned to the current search (the object not being localised
until time t).

To update the global object location belief, we make the
following assumption:
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Assumption 3 Humansmake no false positiveswhile search-
ing or, on another perspective, they filter them automatically.
Consequently:

P(O( �p)|Dt ) = P(Dt ( �p)|O( �p)) · P(O( �p))
1 − ∑ �pi P(Dt ( �pi )|O( �pi )) · P(O( �pi ))

(26)

The previous formula can be further simplified for the
uniform prior case. If we are working on a uniform space
discretisation, we may use:

P(O( �p)|Dt ) = P(Dt ( �p)|O( �p))
N − ∑ �pi P(Dt ( �pi )|O( �pi ))

(27)

where N is the cardinality of the space discretisation and
P(Dt ( �p)|O( �p)) is iteratively updated from observations
using the detection model. One may obtain an efficient belief
update calculation using a dynamic programming approach.

5.2 Task Modelling Through SRS

The search task is represented as set of sources �S with
cardinality equal to that of the search space discretisation.
Each possible object location L has an equivalent source
ψL ∈ �S . Each sourceψL generates a reward proportional to
the probability of detecting the object on the source location
along the search space.

r(p) ∝ P(O( �pψL )|Dt ) (28)

The reward pool of each source is implicitly determined
by the detection probability decrease over time (Fig. 13). As
the probability of finding the object in one location p nears
zero, so will the available reward. The sources defined for the
search task present no interdependence between themselves,
though all have a soft precedence relation to the object local-
isation event ψO .

WS = {�S ∪ {ψO},GS} (29)

Fig. 14 Decision control over planning. This table classifies the arising
collaborative planning situations from each agent control over their
goals. This paper studies collaboration when agents have partition
decision sets. Grey cells are undefined behaviours, as the set is undeter-
mined. Conversely, in salmon cells agents have shared decision control
over one or both goals during planning. Thus, models tackling the last
should include negotiation

GS = {�S → ψO} (30)

Belief over object location probability is continuously
updated along the search. As a result, the total reward avail-
able is proportional to the believed probability of seeing an
object from each given lookout (discretisation block, Fig.
13).

6 Collaboration Roles

Collaboratively planning a search task, aswell as the negotia-
tion process that may arise, can havemany layers of deepness
and insight. As a first approach, we defined a simplified set
of decisions that may be taken by either member of a human–
robot pair team: the human goal and the robot goal. Planning
occurs many times in the search process as the object loca-
tion believe of the team gets updated. Consequently, both

Fig. 13 Reward consumption. Left and right pictures represent the initial and final states of a robot search episode. The central graph depicts the
available reward on three selected illustrative lookouts A,B and C, it gets reduced over time as the robot moves up, stops, turns and moves right
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goals refer to the next local goal taken in a certain search
state. These goals condition the current search plan, but they
may or may not be reached if a change in the environment
motivates a new planning phase before it happens.

Given the set unavoidable team decisions D = {human
goal, robot goal}, Fig. 14 classifies the arising collaborative
planning situations over each agent control. This paper stud-
ies collaboration when agents have partition decision sets
(DR ∪ DH = D & DR ∩ DH = ∅).

In the presented experiments, the human can communi-
cate with the robot through a set of four different messages.
Using the ’My pose’ message allows them to indicate to the
robot their position, either for re-identification or for convey-
ing information when under occlusion. Secondly, the human
can indicate their intention through the ’My goal’ message.
Similarly, they can also control the robot through the ’Robot
goal’ message. Finally, the human can also request from the
robot a new plan for both the human and the robot sending
a ’Replan’ message. Doing so, the robot will propose a new
plan taking into account all the information conveyed in the
previous messages. The replan message may also be used to
implicitly accept or reject the plan proposed by the robot by
requesting a new plan.

Summarizing, collaboration roles for a human–robot team
tackling a search task may vary depending on the decision
capability of each agent. Our system allows these relation-
ships to change along the task by empowering the human to
do so through a given set of messages. From here on, roles
arising with this setting are discussed, while a visual sum-
mary of their transitions is depicted in Fig. 15. Note that
on the following subsections R stands for robot and H for
human.

6.1 Leader(R)–Follower(H)

A leader-follower relationship occurs naturally if the human
sets no restrictions before calling for a Replan. In this state,
the robot takes the initiative of proposing a plan for the team,
optimising over the task representation. Both human and
robot final positions in the plan might change on different
executions.

In this mode, the human is still required to indicate their
position through ’My pose’. Additionally, the human can
always reject the shared plan proposed by the robot by press-
ing the ’Replan’ button again. Even though the robot has
complete freedomon the planning phase, both the veto option
and the decision of when to request a new plan make us label
the relationship as leader-follower, instead of master-slave.

6.2 Peer(H)-to-Peer(R)

A peer-to-peer relationship arises if the human also indicates
their intention by using ’My goal’ messages. This fixes the

Fig. 15 Role transitions. The left bar summarizes the usual terms to
classify collaboration roles as a gradable scale. The right figure depicts
the transition graph between team roles in the collaborative search
episodes. In the root node the robot decides both goals and transitions
occur whenever the human decides to take control over one of the goals
determination

human final position and constrains the robot options in the
planning phase. The robot has to comply with the restriction
and adapts its ownplanned path tomaximise task completion.
It must be kept in mind, however, that the robot may still
propose different paths leading to the given human goal.

As in the previous case, the human still retains its time
control and veto capability through the ’Replan’ functional-
ity.

6.3 Master(H)–Slave(R)

We consider a relationship shifting towards master-slave
whenever the human decides to indicate both their goal and
the robot’s. This happens when both ’My goal’ and ’Robot
goal’ messages are used. In this case, the robot still has
some flexibility to adapt its trajectory trying to minimise the
overlapping of explored areas, but it can be seen as a logic
interpretation of the human’s orders.

As in all other cases, the human can always reject the
shared plan proposed by the robot by pressing the ’Replan’
button again, thus having a last level of control over the robot
in case they decide to exercise it.

6.4 Leader (H)–Leader (R)

In the defined system, a singular interaction might occur if
the human decides to set intention and preference for the
robot’s actions through ’Robot goal’ messages, but leaves
’My goal’ undefined. In this case, the robot will propose a
team plan complying with the restrictions, but it will also
take the initiative in proposing goals for the human.

It may be difficult to imagine a human–human collabora-
tion where this kind of interaction appears. Humans facing
a similar situation might simply change roles if possible.
Human–robot teams, however, usually present heteroge-
neous capabilities. It may be easier to find situations where
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the human wants to have close control over the robot actions
(possibly critical) while they have no objection to leave their
own contribution to the robot’s optimising process.

Anyhow, this kind of interaction can arise from the given
options, so it is taken into account.

7 Smartphone App as HRI Interface

To enable the usage of the SRS model in human–robot
communication, we designed a mobile application [39]. It
has allowed us to share knowledge and task representations
through a user-friendly HRI graphical interface.

Collaborative search tasks can be carried out over arbi-
trarily large areas, which encourages the appearance of
multiple occlusions, high ambient noise and possible res-
olution problems. Gesture or speech-based communication
can be difficult in this setting. On the other hand, using spe-
cific gadgets (augmented reality glasses, microphones...) to
enable this exchange can be annoying for the user. With all
this in mind, we chose to design a mobile application as an
HRI interface as we consider it to be the least intrusive yet
functional solution.

Basedon the previouswork fromKohler et al. [30]wehave
designed an Android application that makes use of both the
connectivity and the touch screen of the device. Through this
application, the messages delivered by the human are con-
verted into either information or sources of reward that the
robot can understand. Likewise, all messages that the robot
wants to send to the human are converted into visual infor-
mation shown on the screen (Fig. 16). Communications are
carried out through the deployment of a localWi-Fi network.

7.1 Messages

On one hand, the interface allows the human to see the map
of the current task area. The robot conveys this information
to the human phone, as well as their teammembers’ believed
location. Lastly, it also shows the last proposed team plan and
provides visual feedback on whether the robot is computing
a new plan.

On the other hand, the interface allows the human to send
messages to the robot. These messages are predefined as:
’Replan’, ’My goal’, ’Robot goal’, ’My Pose’ and ’Robot
pose’. Knowing the position of both agents is essential
both for the robot when calculating the shared plan and for
the human when making any decision about which area to
explore next. The ’My Pose’message is added for model rec-
onciliation, both as a first identification and as an aidwhen the
location of the human is difficult to track (e.g. under occlu-
sion). The ’Robot Pose’ message is used at the beginning of
the episodes to approximate robot localisation without mov-
ing it.

Fig. 16 Mobile App main screen. Top: Screenshot of an ongoing
human–robot collaborative search where the human has used every
available functionality. 1) Replan button. 2) Input data selection menu.
3) Robot’s current position. 4) Human’s desired goal for the robot. 5)
Path calculated by the robot. 6) Human’s current position. 7) Human’s
intended goal. 8) Path calculated for the human. Bottom: Execution
using a simplified version of the interface for human–human collab-
orative search experiments. 1) Input data selection menu. 2) Human’s
current position. 3)Human’s intended goal. 4)Human’s partner position
5) Human’s partner intended goal. (Color figure online)

’My goal’ and ’Robot goal’ functionalities act implicitly
as positive reward sources in the SRS world representation.
All search sources have a soft precedence relationship to
them and they serve to generate rewards that condition the
robot’s calculation of the routes. Both having more message
options and showing the area the robot believes to be explored
were discarded for clarity and message bandwidth usage.
However, the flexibility of mobile applications allows us to
add this or any other information that we deem necessary in
future approaches.

7.2 Triggers

The ability of the robot to estimate which areas have been
explored can be very dependent on the frequency in which
the human indicates his or her position. Also, the robot will
need to know the human’s position in order to propose a valid
plan and, possibly, check if they are indeed following it. This
is a common problem in any navigation task with occlusions
and this solution requires the user’s participation. We took
the concept of trigger as an impulse that provokes an action
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[32] and used it to design four triggers or reminders with
the intention of stimulating the user to indicate their position
more frequently.

The first trigger is ’Toast’, i.e., a small message at the bot-
tom of the screen that tells the user too much time has passed
since the last time their position was updated. Namely, that
more than a threshold time has elapsed since the last update,
which gets reduced if the human doesn’t comply. The sec-
ond, ’Pop-up’, is a pop-up window that blocks the use of the
interface until the user accepts thewarning and indicates their
position. While the first one is a simple reminder, this one
encourages the user to indicate their position before the next
warning. The third, ’Multimodal’, reminds the user to indi-
cate their position through various sensory channels. After
the same threshold as in the previous cases, it activates the
smartphone’s vibrator and blinks the ’My pose’ option on the
screen so that the user receives the reminder whether they are
looking at the screen or looking at the ground, since they are
searching for an object at ground level.

In addition, we developed a fourth trigger using gamifi-
cation techniques [40]. This consists of adding a counter to
each of the available options (’My pose’, ’My goal’, ’Robot
goal’) visible to the user. In this way, the human can know
how many times they have used each of the options. The
effects of each of the triggers will be analyzed in Sect. 8.4.2.

8 Experiments Field of Study

In this section, we present the experiments that show the
performance of the described model.

To our knowledge, as explained in Sect. 3, there are no
other methods used in human–robot collaborative navigation
that we can compare our system with. While we can provide
some references of similar tasks applied to multi-robot set-
tings [24, 35], they are not comparable to our method due to
the presence of the human. Similarly, we have come across
references to social navigation [22, 41] and other human–
robot collaboration approaches [6, 7, 23, 26, 28], but they
are task-focused and are not applicable to our experimen-
tal setting. Consequently, experiments have been designed
to test the suitability and effectiveness of proposed system in
the collaborative search HRCN scenario.

This section is structured as follows. First, Sect. 8.1
describes the robot and experimental domain characteris-
tics. Second, Sect. 8.2 describes each experiment design. It
is subdivided into Sect. 8.2.1, which describes two interface
validation experiments, and Sect. 8.2.2, where the charac-
teristics of the human–robot collaborative search (HRCS)
experiment are defined. Following this, Sect. 8.3 lists the
demographic data of the participants of each experiment.
Similarly, it is divided into Sects. 8.3.1 and 8.3.2, contain-
ing participant information related to interface validation

and HRCS experiments, correspondingly. Finally, Sect. 8.4
presents the results of the experiments: interface acceptabil-
ity is evaluated in Sect. 8.4.1, interface triggers’ effect is
analysed in Sect. 8.4.2, collaborative search experiments are
showcased in Sect. 8.4.3 and the inferred collaborative role
taken by the team is discussed in Sect. 8.4.4.

8.1 Robot & Environment Domain

Theapplicationhas been testedon twodifferent smartphones,
the Google Nexus 5 and the Samsung Galaxy S10, both run-
ning Android 10 (kernel 4.14. October 2020 compilation).
The robot used is based on a Pioneer 2AT platform and the
object to be found are three Parcheesi tokens placed on the
floor always close to each other at a distance of about 15 cm
(Fig. 17). Their position is chosen randomly along the map
but more than 10 m away from the initial position of the
agents (to ensure a minimum duration of the experiment). As
for communications, we have resorted to deploying a local
Wi-Fi network using two routers to cover the entire area of
the experiment.

All the experiments carried out to validate both themobile
application and our shared planning method were performed
at the Barcelona Robot Lab1 using an area of about 750 m2

(8000 f t2). This area is composed of an open zone with
multiple occlusions (e.g. walls and columns) and dynamic
obstacles such as other passers-by may appear (Fig. 17). The
need for the use of our application may becomemore evident
in a larger area, however we opted for a medium-sized one to
avoid the volunteers’ exhaustion and forfeit. Volunteers are
not getting paid and the larger the search area, the longer and
harder the experiment will get.

8.2 Experiment Design

Experiment design details are presented in two subsections:
interface validation and collaborative search.

8.2.1 Interface Validation

The first two experiments are used to test the acceptability of
the application and to test the effectiveness of the different
triggers. This first stage is focused on testing the communi-
cation system and is independent of the functioning of the
planning algorithm. These experiments have been conducted
by human pair teams using a simplified version of the pre-
sented application (Fig. 16 - Bottom). The objective of the
first of these experiments is to study the benefits of using the
application, whilst that of the second is to test the effects of
the triggers on the participant’s behaviour.

1 http://www.iri.upc.edu/research/webprojects/pau/datasets/BRL/.
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Fig. 17 Experiment examples. Left & Center: Human–robot pairs collaboratively searching. Right: Group of three green Parcheesi tokens object
of the search

Participants in the first interface experiment conducted
two different collaborative searches. On the one hand, the
first search was done without the app, so they had to com-
municate with their partner through normal means. Some of
the observed means were speaking, shouting, using gestures
or establishing an initial plan at the beginning of the search.
On the other hand, the second search was performed with
our interface running on two mobile phones, one for each
member. They were only allowed to communicate through
it, which means that they could not use gestures or speak.
In this experiment, all volunteers collaborated one by one
with the same research assistant, from now on control user,
to ensure that the second member of the pair always behaves
in the same way. The control user adapted to the information
provided by the human as the robot would. Once the vol-
unteers had finished the second search, a questionnaire was
given, which we evaluated using ANOVA tests (see results
in Sect. 8.4.1).

Participants in the second interface experiment conducted
collaborative searches in a setting similar to that of the previ-
ous experiment. Each one performed a search with a control
user only communicating with him through the interface.
They repeated the same collaborative search twice, each
time receiving a randomly selected trigger among the four
explained in Sect. 7.2. As they were a different popula-
tion sample, potentially with different biases, preferences
and typical behaviours, they also carried out a first search
using the application without any trigger in order to obtain a
baseline to which compare the results obtained for each trig-
ger. In addition, to avoid the learning effect, a minimum of
three days elapsed between the first search, with no triggers,
and the other two searches, with triggers. At the end of the
experiments, another questionnaire was given. Their answers
were again evaluated using ANOVA tests (see the results in
Sect. 8.4.2).

8.2.2 Collaborative Search

For the human–robot collaborative search experiments, the
full version of our interface as depicted in Fig. 16 - Top
was used. The ’Robot goal’ function was added in order to
specify where the user wants the robot to go, allowing the
emergence of the different types of relationships presented in
Sect. 6. Also, the ’Replan’ button was incorporated. In order
to encourage the user to indicate their pose, the Multimodal
trigger is used.Additionally, since the previous twonew func-
tionalities increase the amount of time the user spend looking
at the interface, wemake the human’s icon color change from
green to red as a visual trigger (equivalent toToast) to indicate
that the robot has lost track of the user.

As in the previous experiments, we tested the model
in a two-agent collaborative search environment, although
here human participants collaborate with one robot in the
search task of three green Parcheesi tokens. To evaluate task
progress and performance, the searchable area is virtually
discretised and all obstacles in the scene are assumed to block
both the view of the robot and the human.

Each experiment episode follows the same operation
sequence. The human and the robot begin the search from
the same location, on a side-by-side initial pose. First, the
user indicates their position allowing the robot to identify
them as its search partner. The experiment begins once the
user presses the Replan button, which triggers the calcula-
tion of a team plan by the robot. Once the plan is available,
it’s shown on the user interface. At this point, if the user dis-
likes the proposed plan, they can reject it by requesting a new
plan through the Replan button. Otherwise, the plan will be
considered as accepted and the robot will start moving.

At any given moment, even previously to the first replan,
the usermay introduce restrictions to the plan specifying their
goal and/or the robot’s. As introduced before, this changes
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the nature of the interaction roles. Plans may also be rejected
halfway by the human or recalculated by the robot if any
obstacle to their completion is found. This process is repeated
until the Parcheesi tokens are found. All listed functionalities
can be observed in the explanatory video.2

8.3 Participants

A total of 71 different volunteers participated performing up
to 153 experiments. Participants on each experiment are a
different population, so their demographic data is reported
separately in their corresponding subsection (see 8.3.1 and
8.3.2).

All the experiments reported in this document have been
performed under the approval of the ethics committee of the
Universitat Politècnica de Catalunya (UPC)3 in accordance
with all the relevant guidelines and regulations. All volun-
teers who have participated in these experiments are of legal
age and in full use of their mental faculties. All of them
have signed an informed consent form after having received
all the relevant information regarding the experiment and
before the beginning of the experiment. Additionally, they
have accepted that all the information collected during the
experiments (messages exchanged through the application,
sensor readings, answers to questionnaires, photographs, and
videos) will be treated anonymously for academic purposes.

8.3.1 Interface Validation

In the first interface experiment there participated 20 volun-
teers, 7 women and 13 men, between 18 and 26 years old
(mean: 21.1, std: 3.46) and with an average education level
of B.Sc. (asmost common ongoing or finished studies). Their
self-evaluated knowledge in robotics was 2.90 (std: 1.25) on
a scale of 1 (None) to 7 (Expert) and none of them used
the interface before. In total, they performed in 40 interface
validation experiments.

Likewise, 30 different volunteers, 5 women and 25 men,
between 20 and 41 years old (mean: 27.8, std: 5.21) and on
average with M.Sc. (as most common ongoing or finished
studies) participated in the second interface experiment.
Their self-evaluated knowledge in robotics was 4.90 (std:
1.26) on a scale of 1 (None) to 7 (Expert) and none of them
used the interface in the previous round of experiments. In
total, 90 trigger effect experiments were performed.

8.3.2 Search Experiments

A total of 19 volunteers, 4 women and 15 men, participated
in the experiment. They were between 18 and 40 years old

2 Collaborative search video: https://youtu.be/k4j51308Zz4.
3 Ethics committee URL: https://comite-etica.upc.edu/en.

(mean: 21.95 std: 5.39), their education level was on average
B.Sc. and their average and their self-evaluated knowledge
in robotics was 2.37 (std: 1.21) on a scale of 1 (None) to
5 (Expert). No one could practice using the setting or the
mobile app, neither had they any previous experience with
it. Each of them participated in one or two episodes. In total,
21 human–robot collaborative search experiments were per-
formed.

8.4 Results

Results from the previously described experiments are dis-
cussed in this section. They are presented in four main
blocks: app’s acceptability study, trigger’s effects, collab-
orative search and types of collaboration.

8.4.1 App’s Acceptability Study

With the first experiment, our objective was to confirm two
hypotheses. First, the user does not reject its use, accepting
that it has advantages and disadvantages with respect to other
communication channels. Secondly. using our interface as
the only method of communication does not reduce the per-
formance of the task or, in other words, that the user is able
to adapt to it to perform the task with the same effectiveness
or even better.

To test the first two hypotheses, it is necessary to conduct
a user study and take not only subjective measures of user
experience perception, but also objective measures of task
duration and success rate. Figure 18 shows the results of the
post-experiment questionnaire answered by the users.

The answers from the users suggest that our interface
does not worsen the speed of information exchange, but does
make it easier to perform such exchange. Likewise, it seems
our interface allows the exchange of more information than
the typical methods used in human communication for this
type of task. The drawback is that the use of our applica-
tion shows a concentration reduction tendency, though it is
not statistically significant. There is unanimity on the appli-
cation offering more information when the partner is not in
sight. Moreover, a large majority consider that our interface
is an easier way of communication. We consider all this con-
firms our first hypothesis: the users have no inconvenience
in using our app and accept it due to its advantages, although
they realize it makes it harder to focus on the task at hand.

Looking at objective data, the mean search time of the
experiments without the app was 129.1 s (std: 86.0 s), whilst
the mean duration of the ones with the app was 124.8 s (std:
79.5 s).Although the difference is not statistically significant,
note that the variability is lower while using the app and its
usage takes time from the users. In addition, 95% of the
searches performed without the app resulted in successfully
finding the object while it was a 100% reached while using
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Fig. 18 Acceptability user
study. Top: Valuation of most
relevant factors from 1 (low) to 7
(high) regarding their perception
of the use of the interface.
Statistical significance marked
with *: p < 0.05, **: p < 0.01,
***: p < 0.001. Bottom: Result
of making the users to chose
among using or not the app (or
draw) for the same factors. The
maximum score is 20 since there
were 20 volunteers in this round
of experiments

the app. We consider this to confirm our second hypothesis:
the use of our interface does not hinder the performance of
the task.

Finally, let us take a look at the exchange of ’My pose’
messages which, as mentioned above, are essential for the
robot to be able to use its shared planning algorithm. Table 1
shows the clear difference between our control user (the
research assistant acting as theatrical robot) and the volun-
teers (users without previous training and typically with low
knowledge about the robot needs). Both if we look at the
evolution over the experiments or just at their average, the
control user sends about a 125% more messages than the
normal user.

A problemmay arise if the frequency with which the posi-
tion is updated is not high enough to be able to interpolate

the path that the user is following. This minimum threshold
is relative to the task. In our case, given the volunteers tend to
move at a speed which ranges from 0.5 (between columns or
near to edges) to 1.0 m/s (in open space), we establish 10 s
as the maximum threshold for the time between messages
(TBM) of ’My pose’ type. Table 1 also shows the percentage
of ’My pose’ messages that both users send without exceed-
ing this threshold counting since the previous message was
sent. Even the control user does not manage to stay above
95% since he is human and sometimes gets distracted. How-
ever, the real problem is that the standard user has a 13-23%
worse performance making that between 18% and 29% of
their ’My pose’ messages do not comply with this threshold
being this problematic for the robot.

Table 1 Evolution of ’My pose’ msgs. rate [msg/min] and time between messages (TBM)<10s [%]

User Experiment evolution Complete experiment

60 s 90 s 120 s

Control Rate [msg/min] (std. dev.) 17.91 (4.32) 16.61 (3.53) 14.92 (3.57) 15.59 (4.86)

TBM < 10 s [%] 94.79 94.36 94.25 90.95

Volunteer Rate [msg/min] (std. dev.) 8.06 (4.54) 7.90 (4.21) 6.08 (3.12) 6.38 (4.21)

TBM < 10 s [%] 81.82 81.76 70.59 72.94
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8.4.2 Trigger’s Effects

The second experiment has the objective of confirming one
hypothesis: we can encourage the user to increase the fre-
quency with which they indicate their position by using the
triggers previously discussed in Sect. 7.2.

As the 30 volunteers in this second round of experiments
are a different population sample, we perform a first experi-
ment with all of them and without any trigger to know which
one is the threshold which generates similar percentages
obtaining that we need to reduce that threshold from 10 s
to 8.32 s (76.78% of the messages were sent on average
within 10 s with the previous population sample and 76.82%
within 8.32 s with this second population sample). Having
done this, each volunteer performed two more collaborative
searches using in each one a randomly selected trigger.

The effectiveness of each trigger in encouraging the user
to indicate their position is shown in Fig. 19. The first trig-
ger, Toast, decreases the frequency inwhich the users indicate
their position. This possibly happens because the users expect
to be reminded but this trigger is to subtle for them to notice.
Conversely, Pop-up and Multimodal are both quite effective
increasing the percentage of messages along the complete
experiment, increasing messages with TBM< 8.32 s in a
4.89% and 6.92%, respectively. Finally, Counters is promis-
ing sincewith very little computational cost it can give almost
the same results with an increment of 5.09% for the com-
plete experiment, although with a lower performance than
Pop-up or Multimodal in the early stages of the experiments.
This seems to indicate that the users tend to get tired if they
are interrupted too often, turning gamification techniques the
best option for long-term tasks. Although without reaching
the control user level, this data suggests the veracity of our
third hypothesis.

As we did to test the degree of acceptance of our interface,
in this second round of experiments we also asked users to

fill out a post-experiment questionnaire to obtain subjective
data on their perception of how the triggers work (Fig. 20).

Neither the perceived difference in information sent
or received are statistically significant, the second being
expected as it is the information sent by the assistant. Con-
cerning their perceived frequency of the trigger remainders,
there are statistically significant differences between Pop-up
and Multimodal (M) compared to Counters. This means that
the users consider that both Pop-up andMultimodal aremuch
more present being Counters more subtle. There is also a sig-
nificant difference between the perceived frequency in what
they do update their position after being reminded. Data sug-
gests users eventually tire of Pop-up and stop reacting to it (as
can be seen in the final stages of the experiment in Fig. 19).
Similarly, Pop-up is rated as the most annoying trigger, fol-
lowed byMultimodal. Expectedly, using Counters allows the
users to concentrate on the task significantly better than using
Pop-up.

Following the samemethodology, and anticipating consid-
erable variances as in the previous valuation, we also asked
the users to choose between the triggers they used (Fig. 21).
The general feeling is that they consider Toast as the least
effective trigger and Multimodal as the most effective one,
confirming the results obtained in the previous valuation.
Regarding the intrusiveness, i.e. how much the trigger inter-
rupts you, they consider that Multimodal and Pop-up tie in
this aspect but, if we look at the degree of annoyance, they
consider Pop-up as notably more annoying which means that
they accept the intrusiveness of Multimodal but refuse the
one of Pop-up. Finally, they consider Counters and Multi-
modal as the best options to keep their attention on the task
being draw the more common answer when both triggers are
compared in this aspect.

To sum up, Multimodal is the most balanced trigger being
effective and not too much distracting for tasks which last
for about two or three minutes like in our case. However,

Fig. 19 Evolution of each
trigger’s TBM<8.32 s.
Percentage of ’My pose’
messages within the 8.32 s TBM
threshold using each trigger.
Baseline case with no triggers
and control user case also shown
for comparison
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Fig. 20 Main aspects evaluated in the triggers user study. User’s valuation from 1 (low) to 7 (high) of the main aspects related to the effects of
using each of the designed triggers. Statistical significance marked with *: p < 0.05, **: p < 0.01, ***: p < 0.001

Fig. 21 Comparison of triggers. T = Toast, P = Pop-up, M = Multi-
modal, C = Counters. Scoring as follows: +1 each time a user selects
one specific trigger for each factor. +0.5 for both triggers if they select
draw. Amount of draws near to the score in parentheses. Each row rep-

resents the comparison between the trigger at the beginning of the row
and each other trigger. The last column is the average of the scoring
versus every other trigger. There were 30 volunteers and each of them
used 2 triggers, so the maximum possible score is 5.0

for experiments with longer duration, we have observed that
Counters, i.e. a gamification-based trigger, provokes less
fatigue on the user as shown in Fig. 19.

8.4.3 Collaborative Search

Thehuman–robot search experiment has the objective of con-
firming three hypotheses. First, the fact that the SRS model
is flexible and expressive enough to represent a complex
human–robot collaborative navigation task. Second, given
the first hypothesis holds true, the proposed planner is capa-
ble of generating feasible and meaningful HRC plans along
the SRS world representation. Finally, the human partici-
pants in the experiments will have a positive perception of
the robot, its capabilities and their safety.

The 21 search episodes from the experiments are summa-
rized in Fig. 22 - Top. Here, each episode is depicted by two
stripes: a green stripe that represents the area explored by the
robot and anorange stripe showing the perceived contribution
of the human. All 21 episodes are stacked in an overlapping
fashion and the green and red thick lines represent the mean
robot and global exploration progress respectively. In gen-
eral, the graph represents the task progress over time and
each episode finishes when the object is found (see the yel-
low dots).

The search task was completed on all episodes (episodes
with technical difficulties were discarded). Episodes pre-
sented a mean time to completion of 316.2s and, on average,
the team had explored a 67.9% of the map when the object
was found. In the robot’s perception, both the human and
the robot explored more or less equivalent areas. The human
contribution, however, might be underestimated due to the
asynchronous update of their location in occlusion situations.
Moreover, the observable area from the initial location is usu-
ally counted as explored by the robot, as it may take the first
seconds of the episode to identify the human as the current
teammate. Consequently, it can be observed that the robot
contribution increases quicker at the beginning of the search.

Given all of the above, we consider as confirmed both the
first and second hypotheses, the SRSmodel is capable of rep-
resenting a human–robot collaborative navigation task and
the multi-agent MCTS planner can find feasible and mean-
ingful solutions over it. Data in Fig. 22 -Bottom also suggests
that the third hypothesis holds true.

The collaborative search task was taken both by profes-
sionals working in the field of robotics and other people. A
comparison between the episodes of both collectives can be
observed in Fig. 23. The episodes with the collaboration of
roboticists seem to present less variability, but also fewer
early-time discoveries.
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Fig. 22 Multi-agent human–robot collaborative search. Top: Experi-
mental data from human–robot collaborative search episodes. Bottom:
Participants’ feedback concerning the robot after the collaborative
search experiments. Some of the questions are inspired from the God-
speed questionnaire [42] (Source: Dalmasso et al. [38])

8.4.4 Collaboration Roles

The messages from the data of the third experiment were
extracted to study the type of collaboration that the partici-
pants sharedwith the robot. Following the criteria established
in Sect. 6, the collaboration roles have been assigned along
the episodes subject to the messages used by the human.
A graphical depiction of these can be observed in Fig. 24.
The most meaningful area of the graph could be the 100 −
200 s interval. Here, the 85, 71% of the episodes are still
ongoing and the role changes from the initial phase seem fin-
ished. Both leader-follower and master-slave strategies are
observed to be predominant, however neither the peer-to-
peer nor the leader-leader strategies have an non-negligible
percentage.

As done in the previous section, a comparison between
non-expert and expert participants is observable in Fig. 25.
It is interesting to note that roboticists actively avoided the
leader-leader strategy, possibly because it is an uncommon

Fig. 23 Non-experts vs roboticists. Experimental data from the human–
robot collaborative search experiments split between expert and non-
expert participants

human–robot relationship in the field. The strategy was,
however, followed by a significant part of the non-expert
participants. It may have been wrongly overlooked in the
literature and perhaps further research in this direction is
needed.

9 Discussion

The SRS model proposes to generalise the world view of the
robots (and their perception of the humans’ view) as a set of
reward sources. Using rewards to represent the world is not
an innovative approach in itself. For instance, samplingmeth-
ods have been using costs for a long time (arguably negative
rewards) and many learning approaches use rewards as their
mainworld feedback for their actions.Whatmight be innova-
tive, however, is themodelling of the sources of such rewards.
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Fig. 24 Collaboration roles. Collaboration roles over time in human–
robot search experiments

Fig. 25 Non-experts versus roboticists. Collaboration roles from the
human–robot collaborative search experiments split between expert and
non-expert participants

This paradigm shift draws the world as a modular construc-
tion of entities which may or may not be independent of each
other and can represent world and task progression dynam-
ics. Both multitasking and interdependency enable planners
to consider task allocation and task planning at the same level
as path planning. Grounding these usually high-level plan-

ning decisions to the path planning level makes it possible
to make decisions over more accurate time and cost approx-
imations in navigation tasks.

A concern that arises over the usage of this model is the
scalability. Though it naturally integrates changes in the envi-
ronment through the addition of new sources of reward, the
cardinality of these entities might entail computation prob-
lems. This issue might be solved through planning horizon
limitations or the generalisation of source sets in individual
sources. Further discussion is needed in the world mod-
elling process under SRS. Reward overlapping, a core feature
that enables the representation of multifinal actions in mul-
titasking settings, may produce undesired artefacts. Should
a cabinet or a table be considered sets of sources represent-
ing their different parts, zones with overlapping rewards may
overrepresent the designed intent. This discretisation design
problem is inherited fromprevious approaches, like the SFM,
and might be problematic when trying to represent human
body parts or fuzzy gradable hazards (i.e. dangerous temper-
atures, gas leakages or spread fire).

The planning approach presented in this work is capable
of generating multi-agent plans for heterogeneous human–
robot teams over the SRS world representation. This affir-
mation has been proven through real-world experimentation
over the proposed collaborative search testbed. We decided
to use RRTs to build the agent action sets for two main rea-
sons: (1) we focus on changing dynamic environments and
decided the action sets should be rebuilt (or reconstructed)
in each planning phase and (2) constructing independent
RRTs allowed us to represent the heterogeneous nature of the
human–robot teams and individually consider sources’ tar-
gets and their effects on the trees’ shape. It should be noted,
however, that RRTs might not converge into optimal solu-
tions under positive rewards influence and the resulting trees
won’t offer a complete representation of the agent’s options,
even at a qualitative level (Fig. 4). In worse cases, global
rewards attainable by two or more agents can provoke the
generation of overlapping agent action sets where all avail-
able team plans involve either more than one agent trying
to collect the same reward or some team member’s inaction.
Perhaps using agent-linked PRMs and dynamically recon-
structing them could solve some of these issues, though the
existence of cycles in the action set would make the model
more complex,with special concern on theUCTcomputation
and the horizon limitation of the MCTS rollouts.

Lastly, using a mobile app for communication in a search
task has one main drawback: the participant’s attention gets
divided between the task and the device. Other technical
approaches like using augmented reality headsets might be
able to ease handling both simultaneously. Conversely, natu-
ral language or gestural interaction could prove to be difficult
or impossible when separated in a noisy open space, espe-
cially if under occlusion. Consequently, we decided the best
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option available to test a possible day-to-day real-world sce-
nario was to use a smartphone interface.

10 Conclusion

The overall goal of this work is to build a system capa-
ble of handling generic collaborative navigation tasks. To
test this system, human–robot pairs were asked to tackle a
collaborative search. The collected data from such experi-
ments proves the SRS model is capable of representing a
human–robot collaborative navigation task. Likewise, the
multi-agent MCTS planner can find feasible and meaningful
solutions over such representation. Additionally, participants
in these experiments show a positive perception of the robot,
its capabilities and their safety.

The interface used for human–robot communication does
not hinder the performance of the team and it is possible
to encourage its desired usage using triggers. Concretely,
human users have no inconvenience in using our app, accept-
ing it due to its advantages though they realise it makes it
harder to focus on the task at hand.

In conclusion,we present a system capable of representing
and handling collaborative navigation tasks in human–robot
team settings. Such system has been tested online in real-
world experiments and the collaboration roles arising from
the collaboration are identified and discussed. To our knowl-
edge, there are no similar works in the present literature. We
find it promising to test this system in other collaborative
navigation tasks (e.g. search and retrieval, side-by-side nav-
igation...) or other team settings (e.g. UAV-human, teams
including more than one human and/or more than one
robot...). Moreover, we hope the room for improvement in
its building blocks to be a stepping stone for future research.
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