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Abstract: In data science and visualization, dimensionality reduction techniques have been ex-
tensively employed for exploring large datasets. These techniques involve the transformation of
high-dimensional data into reduced versions, typically in 2D, with the aim of preserving significant
properties from the original data. Many dimensionality reduction algorithms exist, and nonlinear
approaches such as the t-SNE (t-Distributed Stochastic Neighbor Embedding) and UMAP (Uniform
Manifold Approximation and Projection) have gained popularity in the field of information visu-
alization. In this paper, we introduce a simple yet powerful manipulation for vector datasets that
modifies their values based on weight frequencies. This technique significantly improves the results
of the dimensionality reduction algorithms across various scenarios. To demonstrate the efficacy of
our methodology, we conduct an analysis on a collection of well-known labeled datasets. The results
demonstrate improved clustering performance when attempting to classify the data in the reduced
space. Our proposal presents a comprehensive and adaptable approach to enhance the outcomes of
dimensionality reduction for visual data exploration.

Keywords: dimensionality reduction; data visualization; document embeddings

1. Introduction
1.1. Motivation

Dimensionality reduction (DR) techniques are essential tools in data science, enabling
the transformation of high-dimensional data into lower-dimensional representations, often
in 2D or 3D. These techniques have experienced a significant increase in popularity across
various fields, including machine learning, visualization, and experimental domains [1–3]. The
widespread adoption of DR techniques is attributed to the prevalence of high-dimensional
datasets, and their reduction to lower dimensions can facilitate tasks such as classification
and visualization [4]. DR algorithms are very useful for data visualization because they
can help users to obtain a sense of the distribution of the high-dimensional data, such
as the graph, the neighborhoods, or their global structure [1]. There are two primary
families of DR algorithms: linear and nonlinear [5,6]. The popularity of these techniques
is evident from the substantial number of recent surveys dedicated to exploring these
algorithms [5,7–10].

However, the performance of different DR algorithms can vary significantly, making it
challenging to select the most appropriate one for a specific task [11]. The results of the DR
algorithms can lead to misinterpretations, resulting in researchers recognizing clusters or
patterns that are not actually present, as demonstrated by Huang et al. in their work [12].
Furthermore, not all labeled models achieve perfect separation when using DR results, and
many models may require hyperparameter fine-tuning to obtain satisfactory outcomes.
For instance, t-Distributed Stochastic Neighbor Embedding (t-SNE) [13], a widely used
algorithm, is heavily reliant on the fine-tuning of hyperparameters. Identifying optimal
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values can be challenging, as we often lack an understanding of the structure of high-
dimensional data [14].

1.2. Related Work

In the field of information visualization, dimensionality reduction serves as a com-
mon and valuable tool for exploring high-dimensional data. Many visualization systems
leverage dimensionality reduction techniques to gain insights into complex datasets. For
instance, in the exploration of document sets, techniques like UMAP (Uniform Manifold
Approximation and Projection) projection of doc2vec embeddings from scientific docu-
ments have been used to build interactive tools [15–17]. Silva and Bacao also developed an
interactive tool called MapIntel, which utilizes BERT embeddings and UMAP for document
exploration [18,19].

Moreover, dimensionality reduction techniques can aid in the exploration of highly
structured documents, such as medical records [20]. By applying DR to such datasets,
researchers and practitioners can gain valuable insights and navigate through the com-
plexities of the data, facilitating more effective analysis and understanding. However, as
shown by Wattenberg et al. [14], the clusters that may appear after the projection are largely
dependent on the hyperparameter specification. But if the distribution is unknown, it may
not be possible to find the proper values for those.

Indeed, dimensionality reduction techniques are widely employed by researchers to
compare trajectories or paths in various domains. For instance, Hinterreiter et al. used
dimensionality reduction projections with t-SNE to explore Rubik’s Cube solutions and
positions in chess matches [2]. In a subsequent study, they extended the same framework
to explore chemical models and explanations [21].

Additionally, Burch et al. explored eye paths captured with eye tracking data using
different dimensionality reduction projection techniques, including t-SNE [22]. These
studies demonstrate the versatility and applicability of dimensionality reduction techniques
in comparing and analyzing trajectories or paths from diverse domains, contributing to a
more profound understanding of complex data structures and patterns.

In the experimental sciences, DR algorithms such as t-SNE and UMAP can also be
used to explore genetic interactions [23] or transcriptomic data [12]. And recently, other
algorithms have been introduced to improve the results of nonlinear projections, with the
aim of being less dependent on hyperparameter tuning [1,24–26]. Nevertheless, to the
best of our knowledge, this is the first instance in which the issue has been addressed by
modifying the original information, instead of altering the method by which the projection
is being executed.

In the exploration of data scenarios, the 2D scatterplot has remained the most com-
monly used visualization technique for a considerable period [4]. While alternative vi-
sualization methods such as scatterplot matrices (SPLOM) or 3D scatterplots have been
proposed, Sedlmair et al. [27] conducted empirical research and found that 2D scatterplots
were consistently effective. They observed that the other visualization techniques, such as
SPLOM or 3D scatterplots, were occasionally useful at best, but 2D scatterplots almost al-
ways provided satisfactory results. This demonstrates the enduring and widespread utility
of the 2D scatterplot as a valuable tool for exploring and understanding data patterns.

Espadoto et al. [28] conducted an in-depth analysis of different quality aspects of
dimensionality reduction techniques in their survey. Their work serves as a comprehen-
sive guide for users to better understand and select the most appropriate dimensionality
reduction techniques based on their specific requirements and the characteristics of their
data. By considering various quality aspects, researchers and practitioners can make in-
formed decisions and choose the most suitable dimensionality reduction approach for their
particular applications.



Appl. Sci. 2023, 13, 9967 3 of 20

1.3. Contributions

In this paper, our main focus is on enhancing the results of dimensionality reduction
(DR) algorithms specifically for data clustering purposes. Our approach is independent
of the chosen DR method; we transform the input dataset into a set of new vectors with
the same dimensionality, but that yields improved clustering results when subjected to a
DR algorithm. Consequently, our contribution lies in the development of a manipulation
scheme that when applied to high-dimensional datasets enhances the clustering ratio after
applying a DR algorithm.

The empirical validation of our approach was performed using a diverse set of models.
Our method offers two significant advantages: (a) it can be straightforwardly applied to
high-dimensional data with a simple analysis, and (b) it consistently improves the clustering
performance regardless of the chosen DR method. Through our experiments, we demonstrate
that our manipulation scheme leads to improved clustering results when used in conjunction
with PaCMAP (Pairwise Controlled Manifold Approximation Projection) [1], UMAP [16],
trimap () [25], and t-SNE () [13], showcasing its broad applicability and effectiveness.

2. Materials and Methods
2.1. Background

In the context of dimensionality reduction, given a dataset of n d-dimensional data
points denoted as X = [x1, . . . , xn] ∈ Rd×n and a new target dimension t (t � d), the
objective is to find a mapping function φ that transforms the d-dimensional data points
into a set of n t-dimensional points denoted as Y = [y1, . . . , yn] ∈ Rt×n. The goal of this
mapping is to minimize a specific distance function.

Typically, the projection function aims to approximate the pairwise distance relation-
ships between data points in X with those in Y. In other words, data points that are close
to each other in X should also be close to each other in Y, and those that are distant in X
should map to distant points in Y. The mapping function φ relies on distance functions
in both the high-dimensional space, denoted as δd, and the reduced space, denoted as δt.

Frequently, the Euclidean distance L2(p, p′) = ∑1≤i≤q

√
(pi − p′i)

2 is employed as the dis-
tance measure in both spaces. However, depending on the domain of the data, the distance
(or dissimilarity) measure required may differ from the Euclidean distance. For instance, in
the case of word embeddings, cosine similarity is commonly used as the distance measure.

Indeed, when reducing the dimensionality of a dataset, not all distance properties can
be fully preserved, as the reduced space is smaller than the original one. While preserving
neighborhoods is a common way to evaluate the quality of a dimensionality reduction
projection, there are other relevant aspects that should be considered. Some of these aspects
include computational scalability, whether the transformation is deterministic or stochastic,
and the preservation of certain geometric or topological properties of the data. For instance,
preserving pairwise distances and neighborhood structures is crucial for many applications,
but other factors like computational efficiency, interpretability of the results, and robustness
to noise may also be important considerations.

Our approach to evaluating the results of our algorithm is based on evaluating whether
clustering improves after applying the vector modifications. As demonstrated in previous
research, clustering can be improved using dimensionality reduction (DR) algorithms on the
original data [29,30]. However, our novel contribution is a new strategy for manipulating
the original data before the application of DR. We demonstrate that our method improves
clustering and thus provide valuable evidence of the utility and efficacy of our approach
for data visualization.

Our contributions are threefold:

• A new method for high-dimensional vector manipulation that improves a wide range
of DR algorithms.

• A validation study that proves that our technique enhances the results in many scenarios.
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• Data visualization examples that use document embeddings and provide evidence
that the technique also works with other kinds of high-dimensional data.

2.2. Vector Manipulation

Our enhancement process involves modifying the input vectors with the objective of
assisting the DR algorithm in performing better. Since we are working with labelled data,
our goal is to enhance the clustering of the reduced data. To validate the effectiveness of
our approach, we assess the clustering performance of the reduced datasets.

We take an input set X = [x1, . . . , xn] of data points, where each vector xi is a set of
real-valued observations that may come from simulations or measurements. Therefore,
each vector x from X has the form: x = (w1, . . . , wd), where d is the dimension of the vector.
Each real value wi is referred to as a weight.

The primary objective of our vector manipulation is to segregate the more relevant
weights from the less relevant ones. The rationale behind our vector manipulation is that
fewer specific values are likely to be more specific to the data point. To achieve this, we
adopt the concept of Inverse Document Frequency [31], borrowed from information re-
trieval.

Inverse Document Frequency (IDF), introduced as term specificity Spärk Jones [32,33]
is a common concept used in document processing, and it is defined as:

− log2(nt/N), (1)

where nt is the number of documents where the term t appears, and N is the total number
of documents of the corpus. The idea behind this concept is that words that appear in
few documents from a corpus may be more relevant as a feature for those documents
than words that appear frequently in all documents. By computing the IDF score for each
term in a collection of documents, we can identify the relative importance of each term in
characterizing the content of individual documents. A common reformulation of IDF is the
smooth version:

log2(N/(nt + 1)) + 1. (2)

In our specific domain, we adapt the IDF concept as follows: We treat our vectors
as documents, with the total number of vectors denoted by N. The individual weights
within the vectors are considered analogous to words. To compute the IDF measure, we
count the number of vectors in which each weight wi > 0 appears across the entire set of
vectors. This calculation results in a vector of dimensions 1× D, which we refer to as the
IDFs’ vector: IDFs = (id f1, . . . , id fD).

For every vector in the set X, we calculate the IDF by considering all the weights as
terms. Consequently, we determine the number of times each weight i is nonzero across
the entire dataset. This enables us to define the set of weights that all vectors have for
each dimension d as Wd. We can then calculate the count of nonzero elements in this set of
weights as weights = count(wd ∈Wd | wd > 0).

With this information, we can use weights as the value of nt in Equation (2).
To apply the IDF measure while preserving the significance of the individual weight

values, a direct substitution of each weight by its IDF is not suitable, as this would lead to
the loss of the weight’s original magnitude and relevance. Instead, we aim to modulate the
IDF by a factor that reflects the significance of the value. To achieve this, we approximate
the significance of a weight by considering the dispersion of the channel in which it exists.
For example, in a channel where most values are 1, a weight with a value of zero would be
highly significant, whereas a weight close to the average may not be highly significant.

To address this, we use the square root of the difference between each weight and
the average of all weights in that particular dimension. Specifically, for each weight
wd, we calculate the average as wd = ∑j=1...N wj,d/N, where N is the number of vec-
tors in the dataset. We then compute the corresponding weighting factor w f as follows:
w f = sign(w1 − w1) ·

√
|w1 − w1|. Here, sign(x) is a function that returns 1 if x is positive

and −1 if x is negative.
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Then, given the original vector xi = (w1, . . . , wD), we define the transformed vectors
xti as:

xti = (w f1 ∗ id f1, . . . , w fD ∗ id fD). (3)

By incorporating this weighting factor w f into the IDF calculation, we account for the
significance of the individual weight values, thus enabling a more appropriate modulation
of the IDF measure. This approach helps to retain the original meaning and relevance of
the weight values while still benefiting from the discriminative power provided by the IDF-
based vector manipulation. In practice, this method yields effective results and enhances
the clustering performance in the dimensionality reduction process for labeled data.

Figure 1 illustrates an example of the outcomes achievable with our method. The dataset
consists of spheres belonging to eleven distinct classes, represented in a 101-dimensional space.
When applying conventional dimensionality reduction (DR) algorithms, one of the classes
invariably overlaps with the other clusters, as depicted in the first and third columns of
the figure. However, by employing our manipulation scheme, we successfully separate
a significant portion of these data points, leading to improved clustering outcomes, as
evidenced in the second and fourth columns of the figure. By separating the data points
more effectively, our method enhances the visualization and aids in better understanding
the underlying patterns and relationships in the dataset. This demonstrates the effectiveness
of our method in improving the results of DR algorithms for data clustering tasks.

(a) PaCMAP (b) Modified + PaCMAP (c) tSNE (d) Modified + tSNE

(e) trimap (f) Modified + trimap (g) UMAP (h) Modified + UMAP

Figure 1. Dimensionality reduction of the spheres’ dataset using the different DR algorithms. Note
that one of the classes, identified with the pink color, tends to overlap with the other clusters in the
different cases. Our modifications effectively disentangle a substantial portion of the data points,
resulting in a clearer and improved data visualization.

Our algorithm’s performance evaluation encompasses two distinct stages: the visual-
ization of the dimensionality reduction (DR) datasets and the visualization of the document
embeddings. In the first stage, we assess the accuracy metric of popular datasets commonly
employed in articles on DR algorithms. In the second stage, we demonstrate the utility of
our algorithm for projecting data, particularly document embeddings constructed using
the doc2vec technique. We validate our algorithm’s capability to enhance the visualization
of document embeddings, showcasing its efficacy in document data visualization.
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3. Validation

Previous research has strongly suggested that the reduction in the dimensionality can
significantly enhance the performance of clustering algorithms [29,30]. In our study, our
primary objective is not to achieve the highest accuracy rate. Rather, we aim to evaluate the
behavior of two different projections: one with the original data and another with the data
modified by our algorithm. We want to ascertain the impact of our approach on the accuracy
of the clustering algorithm after dimensionality reduction. To guarantee a thorough assess-
ment, we plan to implement our methodology across multiple Dimensionality Reduction
algorithms. While our preliminary evaluation entails comparing the accuracy of clustering
using Support Vector Machines (SVM), we also broadened our analysis by incorporating
several other clustering algorithms, including K-Nearest Neighbors (KNN) [34], Decision
Trees (DT) [35], Extreme Gradient Boosting (XGBoost) [36], and Multilayer Perceptron
(MLP) [37]. Among the most widely used nonlinear DR techniques in various applications
are tSNE [13] and UMAP [16]. Additionally, emerging competitors have appeared recently,
such as trimap [25] and PaCMAP [1]. We test those four algorithms.

3.1. Datasets

We selected a set of datasets commonly used in dimensionality reduction tests. Besides
the widely known MNIST [38] and Fashion MNIST [39] models, we have also used other
examples that combine both images and information from text: the tiny images dataset
Cifar10 [40], Columbia images datasets (Coil20) [41], Human Activity Recognition using
smartphones’ dataset (har) [42], Sentiment Labelled Sentences (sentiment) [43], Street Num-
bers (svhn) [44], USPS numbers dataset [45], FlickrMaterial10 [46], and the 20 Newsgroups
dataset (20NG) [47]. All of them have multiple dimensions. We also included a specific
dataset that is difficult to cluster using DR techniques, as demonstrated in Jeon et al. [26]
and in Figure 1. This dataset, consisting of 10 K spheres in higher dimension, can be
obtained from the code accompanying the paper [26]. The characteristics of the different
datasets are shown in Table 1.

Table 1. Features of the different datasets.

Dataset Dimensions Samples Classes

20NG 99 18,844 20
Cifar10 1024 3250 10
Coil20 400 1440 20
Fashion-MNIST 784 10,000 10
FlickMaterial10 1534 997 10
Har 561 735 6
MNIST 784 70,000 10
Sentiment 200 2748 2
Spheres 101 10,000 11
Svhn 1024 732 9
USPS 255 9298 10

3.2. Experiment Setup

The majority of dimensionality reduction (DR) algorithms demonstrate a nondeterministic
behavior, primarily due to certain steps, such as initialization, which may utilize random
values to begin the selection of elements. Additionally, algorithms like tSNE and UMAP are
highly reliant on their hyperparameters [48]. For this study, we intentionally refrained from
hyperparameter tuning to maintain fairness and avoid bias in the results. Fine-tuning the
hyperparameters separately for both the original and modified datasets could potentially
skew the evaluation, and we wanted to ensure a fair comparison between the two. To
address this challenge and guarantee the robustness of our approach, we executed each
DR algorithm on a five-time basis independently. This allowed us to obtain multiple sets
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of projections for each dataset, thereby minimizing the impact of the nondeterministic
behavior and the influence of the default hyperparameter values.

For the clustering task, we initially opted (later, we compared with other methods)
for a linear Support Vector Machine (SVM) implementation by Boser et al. [49] with the
’multiclass’ parameter. The SVM algorithm was executed for 1000 iterations and evaluated
using two themes: ’calibrated’ and ’not-calibrated,’ with a tenfold cross-validation approach.
During each iteration, the SVM classifiers were trained on 80% of the data, while the
remaining 20% constituted the testing data. To address the nondeterministic nature of the
outcomes resulting from the inclusion of random variables in the execution of the SVM
algorithm, we conducted five repetitions of each experiment for each data sample. The
resulting accuracy values were then averaged to ensure the reliability and consistency of the
clustering performance evaluation. By using multiple repetitions, we aim to obtain robust
and stable performance metrics for the SVM-based clustering algorithm across different
datasets and DR techniques.

To sum up, the process works as follows:

• For each dataset d, a transformation is applied using our algorithm, giving the trans-
formed dataset dt.

• We project both d and dt using PaCMAP, tSNE, trimap, and UMAP.
• Each projected set is evaluated five times with the linear SVM method, and the results

are averaged.

This procedure was repeated five times, and the results are the average of the five runs.
The obtained results for the PaCMAP algorithm are presented in Table 2. It is evident

that in the majority of cases, the accuracy improves when our method is applied to the
various models and the data is subsequently reduced to two dimensions using PaCMAP.
Specifically, nine out of the eleven models exhibited an increase in their clustering accuracy.

Table 2. Impact of the vector manipulation algorithm on the PaCMAP DR method for clustering using
SVM. The center column displays the accuracy of the clustering algorithm when no vector manipula-
tion is applied to the data, while the rightmost column shows the accuracy when our manipulation
approach is applied. Notably, in the majority of the cases (9 out of 11), the accuracy improves.

Dataset Original + PaCMAP (SVM) Improved + PaCMAP (SVM)

20NG 0.5156 0.8605
Cifar10 0.2029 0.2252
Coil20 0.8278 0.8639
Fashion-MNIST 0.7232 0.7424
FlickMaterial10 0.5433 0.6047
Har 0.7285 0.7982
MNIST 0.9733 0.9416
Sentiment 0.6177 0.7898
Spheres 0.6653 0.9755
Svhn 0.1855 0.1955
USPS 0.9476 0.9401

The outcomes for the other dimensionality reduction (DR) algorithms exhibit similar
trends. For the tSNE algorithm, we observe improvements in 7 out of the 11 models, as
depicted in Table 3. The trimap algorithm does not work for the 20NG dataset (an error
occurred that we did not further investigate ). Nonetheless, the majority of the models (8
out of 10) also improve, with a behavior similar to that of PaCMAP, as indicated in Table 4.
Similarly, the UMAP yields comparable results, with 8 out of the 11 models experiencing
improved clustering accuracy, as shown in Table 5.

Notably, the PaCMAP algorithm, as demonstrated in [1], is less sensitive to hyper-
parameters. While we anticipate that better results might be obtained through proper
hyperparameter fine-tuning for the other methods, we deliberately kept the experiments as
neutral as possible to avoid unintended bias.
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Table 3. tSNE accuracy without (center) and with (right) the algorithm. In this case, 7 out of the
11 models improve the result.

Dataset Original + tSNE (SVM) Improved + tSNE (SVM)

20NG 0.4646 0.7854
Cifar10 0.2031 0.2306
Coil20 0.8319 0.8185
Fashion-MNIST 0.7222 0.7373
FlickMaterial10 0.5633 0.6207
Har 0.8588 0.8317
MNIST 0.9666 0.9174
Sentiment 0.5852 0.8252
Spheres 0.7626 0.8933
Svhn 0.1909 0.1982
USPS 0.9528 0.9333

Table 4. Accuracy obtained using trimap dimensionality reduction. The center column shows the
results without our method, while the rightmost use our algorithm. trimap breaks for the 20NG model.
In this case, we obtain an improvement in 8 out of the 10 models.

Dataset Original + Trimap (SVM) Improved + Trimap (SVM)

20NG - -
Cifar10 0.1914 0.2273
Coil20 0.7977 0.8236
Fashion-MNIST 0.7161 0.7251
FlickMaterial10 0.4780 0.6100
Har 0.6688 0.7620
MNIST 0.9636 0.8706
Sentiment 0.4812 0.9522
Spheres 0.7686 0.9757
Svhn 0.1891 0.1964
USPS 0.9387 0.9237

Table 5. Accuracy obtained using UMAP. The center column shows the results without our method,
while the rightmost use our algorithm. Here, we obtained an improvement in 8 out of the 11 models.

Dataset Original + UMAP (SVM) Improved + UMAP (SVM)

20NG 0.4859 0.8076
Cifar10 0.2062 0.2195
Coil20 0.7894 0.8634
Fashion-MNIST 0.7247 0.7343
FlickMaterial10 0.5833 0.6900
Har 0.8235 0.8054
MNIST 0.9650 0.9243
Sentiment 0.5927 0.6327
Spheres 0.5213 0.8933
Svhn 0.1955 0.2045
USPS 0.9520 0.9380

To further validate the performance of our algorithm, we conducted extra experiments
using several other algorithms, including K-Nearest Neighbors (KNN), Decision Trees
(DT), Multilayer Perceptron (MLP), and Extreme Gradient Boosting (XGBoost). The results
obtained were consistent across all algorithms. The experimental setup was identical to
that used for SVM, where we generated five datasets and executed the clustering algorithm
five times on each dataset. The reported results represent the mean accuracy of these runs,
visualized as slope charts in Figure 2 for PaCMAP. Analogously, we have also analyzed the
accuracy for the other DR techniques, as shown in Figure 3 (trimap), Figure 4 (tSNE), and
Figure 5 (UMAP).
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(a) KNN (b) DT (c) MLP (d) XGBoost

Figure 2. Comparing other clustering algorithms for the PaCMAP DR algorithm. The results are
equivalent to the ones obtained with SVM.

(a) KNN (b) DT (c) MLP (d) XGBoost

Figure 3. Evaluation of trimap clustering using KNN, DT, MLP, and XGBoost. As in the previous
case, the results are analogous to the ones obtained with SVM.
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(a) KNN (b) DT (c) MLP (d) XGBoost

Figure 4. Results obtained with the additional clustering algorithms for tSNE.

(a) KNN (b) DT (c) MLP (d) XGBoost

Figure 5. Analysis of the UMAP DR data. The additional clustering algorithms also work similarly to
the SVM.
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To provide further insights into the performance of the algorithms, we compiled a
summary of the percentages of the improvement in Table 6. The table reveals that our
vector manipulation strategy improves the clustering accuracy for the majority of datasets.
However, there are two datasets, namely MNIST and USPS, where our approach does not
yield an improvement. In these cases, the accuracy decreases, albeit by a small amount for
all DR algorithms. For the USPS model, the average accuracy reduction is consistently less
than 2% across all DR methods. Similarly, for the MNIST, the decrease is slightly larger but
remains below 9%. And the improvements can be considerable for some models, scaling
up to more than 60% for 20NG, the model that seems to benefit more from our approach.

Table 6. The table presents a comparative analysis of the enhancements achieved through various
Dimensionality Reduction (DR) techniques with our modification method. It displays the mean
improvement obtained by employing five distinct clustering approaches. The models that demon-
strate an improvement are highlighted in blue, while those that do not are highlighted in red. It is
noteworthy that some models, which exhibit no improvement, are consistent across all DR techniques.
Although these models exhibit a decline in accuracy, the magnitude of such reductions is negligible.

Dataset Improved +
PaCMAP

Improved +
tSNE

Improved +
Trimap

Improved +
UMAP

20NG 62.98% 47.62% - 65.66%
Cifar10 11.09% 21.64% 12.20% 4.96%
Coil20 2.61% 3.48% 2.80% 6.38%
Fashion-MNIST 3.54% 3.12% 2.79% 2.58%
FlickMaterial10 12.92% 13.25% 26.85% 16.80%
Har 9.50% −0.27% 8.08% −1.50%
MNIST −3.25% −2.51% −8.38% −2.65%
Sentiment 30.46% 30.11% 75.33% 22.33%
Spheres 28.83% 16.55% 13.15% 66.43%
Svhn 17.02% 30.03% 18.39% 29.76%
USPS −1.61% −0.89% −1.91% −1.32%

We can visually inspect the cases that exhibit no improvement. For instance, the
USPS model does not enhance across any of the employed DR algorithms following our
modification. Notwithstanding, the visualizations illustrate that the differences are not
substantial, as shown in Figure 6.

Another model that exhibits a good behavior with our system is the Coil20 model. In
this case, the enhancement is common to all DR algorithms but tSNE. This improvement
is evident in the projections obtained, shown in Figure 7. While certain classes remain
clustered even after the modifications, several clusters that were previously either split or
overlapped with others now form distinct and well-defined clusters after the modification.
The tSNE appears to be comparatively less performant than the other DR algorithms.

(a) PaCMAP (b) Modified + PaCMAP (c) tSNE (d) Modified + tSNE

Figure 6. Cont.
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(e) trimap (f) Modified + trimap (g) UMAP (h) Modified + UMAP

Figure 6. Dimensionality reduction of the USPS dataset utilizing different DR algorithms. The
PaCMAP (a) exhibits good results with the original data. Applying our vector modification (b),
although numerically inferior to the original, the clusters are not substantially changed. For the tSNE
(c), the modified version may give poorer results due to the fragmentation of some of the clusters that
can be seen in (d). trimap DR (e) is less effective than PaCMAP or UMAP at cluster separation. Our
algorithm output (f) appears visually akin to the original version (e). Finally, UMAP (g) yields results
similar to PaCMAP, with well-concentrated clusters and only minor instances of collision or overlap.
In this case, the data modification in (h) causes slight proximity changes in a couple of clusters.

(a) PaCMAP (b) Modified + PaCMAP (c) tSNE (d) Modified + tSNE

(e) trimap (f) Modified + trimap (g) UMAP (h) Modified + UMAP

Figure 7. The Coil20 dataset demonstrates enhanced clustering accuracy across all DR algorithms
following our modification, except for the tSNE algorithm. This dataset contains 20 classes. Observe
that the overall distribution of clusters improves after our modification (second and last column).

4. Document Visualization

In the previous section, we demonstrated that our method significantly improved
the projections of several models commonly used in DR publications. In information
visualization, DR algorithms are used in a wide range of scenarios to produce 2D layouts
that enable further data exploration. We analyze one such case: document exploration.

Documents are complex data samples that are composed of words and can have a
complex structure. We hereby use scientific articles as examples and have as a goal the
creation of a 2D layout that shows the distribution of documents in a database.
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To visualize documents, we need to transform those into simpler representations, such
as vectors. There are many ways to make this transformation, one is to extract concepts from
the text and represent those. Topic modeling has been previously used [50] to compare
PhD theses, for example. Recent work has also used Latent Semantic Analysis-based
representations followed by some DR algorithm [51,52] to obtain 2D representations of the
documents.

Finally, Cartolabe is a tool for the exploration of massive document databases as point
clouds with many interaction features. To achieve such layout, documents are transformed
into vectors doc2vec [17] and projected using UMAP.

Following this idea, we build a dataset and explore how our vector transformation
algorithm behaves when applied to doc2vec embeddings.

4.1. Document Embeddings

In numerous natural language tasks, a key component involves representing docu-
ments as fixed-size vectors. These representations capture the semantic essence of the
texts in a way that can be processed by machines. Among the commonly employed rep-
resentations, the bag-of-words [53] approach stands out. Another alternative is Latent
Dirichlet Allocation (LDA) [54]. More advanced representations such as word2vec [55] and
doc2vec [17] have been published recently. Unlike word2vec, which encodes individual
words as floating-point vectors, doc2vec represents complete documents. The algorithm
must first learn from a model containing textual data before it can create a doc2vec model.
The models’ specificity greatly influences the quality of the representation. As there were
no pre-existing models for representing scientific texts, our initial step involved the creation
of such a model.

4.1.1. Doc2vec Model Training

We trained our doc2vec model on a massive dataset with 400 vector dimensions. The
data used in the classification experiments is not included in our train set. Then, two
different approaches were studied over the generated embeddings: (a) standard vectors
with default values and (b) applying the L2 Norm on the previous item (a), as described
previously.

Since doc2vec has the ability to be scaled with a large amount of data, we decided to
explore the functionalities of this model by training it on large technical corpora. We decided
to utilize S2ORC [56], which is a widespread corpus for natural language processing and
text mining over scientific papers. That is, they have provided 136 M+ paper nodes
with 12.7 M+ full-text papers and connected by 467 M+ citation edges by combining
data from various sources with academic disciplines and identifying open-access papers.
The minimum and the maximum number of tokens in our selected dataset varies from
1 to 287,400. We decided to select documents with at least 200 tokens to not be less than the
smallest document in our test set.

For training purposes, since we focused on technical documents, we collected 341,891
documents with the size of ∼10 G in the fields of Engineering, Computer Science, Physics,
and Math, among the provided data sources.

4.1.2. Synthetic Dataset Creation

Since there is no standard baseline to evaluate the similarity between lengthy scientific
documents, exceeding 4000 tokens, as highlighted in [57], we created a synthetic dataset for
this purpose. The dataset was curated by hand-picking articles from diverse disciplines and
complementing them with a systematic selection of additional files from arxiv.org.

The construction of the synthetic dataset aimed to incorporate clearly differentiated
clusters, exemplified by distinct fields such as Electrical Engineering and Molecular Visu-
alization. Additionally, we sought to include similar fields, like Ambient Occlusion and
Global Illumination, both of which are different techniques aiming to achieve similar goals
in the domain of Computer Graphics.
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Another key objective was to ensure a relatively large number of classes, as most
existing baselines in the literature often involve only a few classes. During the collection
of data from arxiv.org, we have observed a prevalent trend of recent papers in the field
of Electrical Engineering employing deep learning techniques (EE22). Consequently, we
purposefully selected an additional cluster of articles in the same field, albeit from a
previous period (2015), referred to as EE15. This decision allowed further analysis to
determine whether older articles formed a distinct cluster and whether newer papers
demonstrated increased similarity to the Artificial Intelligence (AI) cluster.

After the selection process, the final synthetic dataset consisted of 278 documents
distributed across 13 classes. Each class comprised approximately 20 papers. The categories
and the number of papers in each class are outlined in Table 7.

Table 7. Contents of the different clusters.

Name of the Cluster Number of Articles

Artificial Intelligence (AI) 20
Astrophysics Galaxies (APG) 20
Bicycle Sharing Systems (BSS) 19
Computer Graphics—Ambient Occlusion (AO) 24
Electrical Engineering 2022 (EE22) 22
Electrical Engineering 2015 (EE15) 24
Global Illumination (GI) 25
High-Energy Astrophysics (HEAP) 20
Information Theory (IT) 23
Molecular Visualization in Virtual Reality (MVVR) 20
Viewpoint Selection (VS) 19
Visualization (Vis) 20
Volume Rendering (VolRend) 22

4.1.3. Data Preprocessing

To create the document embeddings, we followed this process: We first converted the
PDF documents into text format, and then we removed the author, image, table, and caption
information, along with the references, acknowledgements, and formulas. In addition, we
eliminated the sentences with less than three tokens. We then followed the preprocessing
pipelines on the raw data from [58] that lowercases, tokenizes, and de-accents the sentences.
Finally, stop words were removed using [59]. An additional task was performed on the test
sets. All these steps, as well as the posterior executions, used Python3.

This is the input that was given to the doc2vec algorithm. doc2vec, introduced
by [17] and inspired by word2vec [55] is considered as one of the NLP approaches to
representing documents as vectors. Recent experiments have showcased its applicability in
scientific document comparison, when combined with cosine similarity [60]. Furthermore,
doc2vec has proven effective for visually exploring corpora of scientific documents through
dimensionality reduction techniques [15]. In the doc2vec technique, two matrices, namely
D and W, were built. Each column in D corresponded to the mapping of a paragraph to a
unique vector. In W, each column represented a mapping of every word to a unique vector.
To predict the next word in a given context, both the paragraph vector and word vectors
were concatenated. As usual, we treated each document as a paragraph when employing
the doc2vec algorithm.

4.1.4. Clusters’ Quality Analysis

To assess the quality of the hand-picked clusters, we conducted an experiment using
cosine similarity. We utilized the preprocessing pipeline outlined above, and then, we
compared the cosine similarity of each document to any other in the data set, excluding
self-comparisons to maintain fairness in the evaluation. The obtained results are presented
in Table 8.
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Table 8. The average similarity scores for the different clusters in the technical documents’ dataset.
Notice how the inner average similarity of each class is consistently lower than the average similarities
against other classes, except for the HEAP (High-Energy Astrophysical Phenomena) and APG
(Astrophysics of Galaxies) classes. This aligns with the fact that both classes are closely related and
belong to the same arXiv superclass. Additionally, as anticipated, the Volume Rendering and Ambient
Occlusion classes exhibit a high degree of similarity. In addition, we can also see that the Volume
Rendering and Ambient Occlusion are very similar, as expected.

AI APG BSS AO EE15 EE22 GI HEAP IT MVVR VS Vis VolRend

AI 0.144 0.102 0.130 0.129 0.091 0.104 0.116 0.096 0.129 0.121 0.125 0.114 0.123
APG 0.102 0.290 0.213 0.195 0.077 0.093 0.106 0.249 0.189 0.200 0.192 0.099 0.190
BSS 0.130 0.213 0.374 0.214 0.106 0.111 0.128 0.201 0.223 0.234 0.231 0.162 0.217
AO 0.129 0.195 0.214 0.397 0.095 0.111 0.250 0.186 0.213 0.239 0.286 0.161 0.346
EE15 0.091 0.077 0.106 0.095 0.115 0.092 0.080 0.079 0.097 0.091 0.099 0.080 0.098
EE22 0.104 0.093 0.111 0.111 0.092 0.117 0.105 0.088 0.109 0.102 0.110 0.093 0.116
GI 0.116 0.106 0.128 0.250 0.080 0.105 0.227 0.106 0.121 0.148 0.178 0.137 0.221
HEAP 0.096 0.249 0.201 0.186 0.079 0.088 0.106 0.248 0.181 0.185 0.180 0.099 0.185
IT 0.129 0.189 0.223 0.213 0.097 0.109 0.121 0.181 0.312 0.208 0.231 0.123 0.215
MVVR 0.121 0.200 0.234 0.239 0.091 0.102 0.148 0.185 0.208 0.313 0.232 0.161 0.241
VS 0.124 0.195 0.232 0.270 0.096 0.107 0.168 0.181 0.223 0.259 0.301 0.163 0.274
Vis 0.115 0.099 0.163 0.160 0.080 0.093 0.136 0.099 0.121 0.158 0.163 0.194 0.174
VolRend 0.123 0.190 0.217 0.346 0.098 0.116 0.221 0.185 0.215 0.241 0.291 0.176 0.347

Considering the documents of each class as a cluster, we observed that we achieved
higher average cosine similarity (coherency) within documents of the same cluster com-
pared to the other clusters. Additionally, we observed that some clusters were more
coherent than others. For instance, the Electrical Engineering 2022 cluster was more similar
to the Artificial Intelligence (0.104) than the Electrical Engineering 2015 one (0.091). This
aligned with our earlier observation that many recent Electrical Engineering articles often
incorporate deep learning techniques. Furthermore, there was a notable cosine similarity
between some clusters such as Higher Energy Astrophysics and Astrophysics Galaxies
(0.248 self and 0.249 for AG) as well as dissimilarity in some others, namely Ambient Oc-
clusion (0.39 for self) and Electrical Engineering (0.095, 0.011 in 2015 and 2022 respectively).
These findings were consistent with our expectations. Another result that confirmed the
expected behavior of our approach was the similarity between related areas, such as Global
Illumination and Ambient Occlusion, both of which addressed a similar goal (realistic
image synthesis), through different techniques. Molecular Visualization in Virtual Reality,
which extensively employed Computer Graphics techniques, exhibited a higher similarity
to the Computer Graphics—Ambient Occlusion cluster. Similarly, the Volume Rendering
had the Virtual Reality cluster as a closer one.

When applying the PaCMAP for dimensionality reduction on the mentioned data, it
was evident from Figure 8a that not all areas were adequately clustered into distinct and
visible groups. Certain clusters appeared to be tightly packed together, and the algorithm
encountered difficulties in effectively segregating them. Nonetheless, it is noteworthy that
the clustering pattern was in accordance with our previous observations. Astrophysics
clusters were mixed at the bottom, while certain groups, like Information Theory and Bicy-
cle Sharing Systems, were distinctly positioned away from the central group of Computer
Graphics-related clusters. Despite these similarities, the algorithm still failed to create more
well-defined clusters.

However, with the application of the improved version of the algorithm, shown
in Figure 8b, significant improvements were evident. The enhanced version effectively
divided the clusters, such as the two Astrophysics groups. Furthermore, the Electrical
Engineering groups were now distinct from the others. A clear cluster for Viewpoint
Selection was also observable. This demonstrates the positive impact of our modifications
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on the algorithm’s performance, particularly when dealing with a challenging dataset that
includes papers from the Computer Graphics field and closely related areas.

In addition, the improved results are also observed in the case of other DR algo-
rithms, as depicted in Figure 8d,f,h. For instance, the tSNE algorithm exhibited more
sparse clusters, which could potentially be further optimized with different numbers of
neighbors. Nonetheless, as previously mentioned, we retained the default parameters of
the DR algorithms to prevent any unfair fine-tuning.

(a) PaCMAP (b) Modified + PaCMAP (c) tSNE (d) Modified + tSNE

(e) trimap (f) Modified + trimap (g) UMAP (h) Modified + UMAP

Figure 8. The documents dataset indicated clear improvements in all the DR algorithms. Please note
that the modified versions generated projections with a better separation between clusters.

In the second experiment, we present the results from a new dataset that differed
from the carefully curated one used previously. Instead of a deliberately designed dataset,
this collection was constructed by selecting the last 21 articles available arXiv database
on different areas. The dataset comprised six categories: Astrophysics, Computer Science,
Electrical Engineering, Mathematics, Quantum Physics, and Statistics. For each category,
the last 21 available articles were downloaded.

The documents from this dataset underwent the same preprocessing pipeline as
described earlier. Subsequently, we conducted similar experiments to evaluate clustering
performance. The results obtained from these experiments are illustrated in Figure 9.
In contrast to the previous dataset, here, the DR algorithms demonstrated less success
in identifying clusters. These results were enhanced through our data manipulation,
leading to the increased visibility of certain clusters, for example with PaCMAP (b). The
modified vectors exhibited improved performance with other DR algorithms as well. This
observation was evident from Figure 9d,f,h, where the distinct clusters were more distinctly
isolated following the modification of the input data. However, they did not exhibit the
same level of clarity as observed in the previous dataset.
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(a) PaCMAP (b) Modified + PaCMAP (c) trimap (d) Modified + trimap

(e) trimap (f) Modified + trimap (g) UMAP (h) Modified + UMAP

Figure 9. This document set was not as clearly separated by any of the DR techniques. With our
modification, the trimap demonstrated superior performance in achieving cluster separation. The
other techniques also improved, but the clustering separations were not obvious.

5. Conclusions and Future Work
5.1. Conclusions

We introduced a novel method designed to enhance the outcomes of DR algorithms
when dealing with high-dimensional datasets. The proposed technique is centered around
facilitating visual exploration and has been validated through the utilization of clustering
algorithms on the resultant data. The key advantage of our approach lies in its complete
automation, without requiring fine-tuning, and its compatibility with various DR algo-
rithms. Furthermore, the process requires only a global data analysis, incurring linear
computational costs, thereby making it well-suited for standard computers. The data
processing, implemented in C++, takes mere milliseconds to execute on a laptop. Another
advantage of our technique is that it achieves positive results for a variety of DR methods.
These results were obtained without any hyperparameter tweaking of the DR algorithms.
We analyzed the efficacy of our method through the use of conventional models featured
in articles that analyze DR algorithms. Our system showed favorable outcomes for the
majority of such models. Furthermore, we successfully employed the same approach for
visualizing documents using document embeddings.

5.2. Discussion

The presented algorithm holds the potential for application in any visualization system
that employs DR to create 2D layouts, such as [2,12,15,23]. Notably, we refrained from investi-
gating 3D layouts due to their less common usage and known disadvantages for users [27].

One limitation to acknowledge is that the algorithm did not uniformly improve the
clustering for all models. Nevertheless, we intend to conduct further investigations into
these results, particularly since two models that did not demonstrate improved clustering
were consistent across all DR algorithms. It is a well-established fact that the IDF may
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produce significantly large values for infrequent terms. However, upon analyzing the IDF
values generated for all models in our experiments, we did not encounter any issues. We
postulate that this could be attributed to our use of weights instead of terms. Specifically,
for document sets, we employed 400-dimensional embeddings. While this may pose a
challenge for significantly larger dimensions, 400 dimensions are adequate for accurately
representing extensive documents, such as scholarly articles.

5.3. Future Work

In the future, we aim to investigate various extensions. Primarily, we intend to
evaluate the performance of our methodology using embeddings besides doc2vec. While
we anticipate that the algorithm will function effectively with BERT [18] or Longformer [61]
embeddings, a comprehensive analysis is warranted. Additionally, we plan to delve deeper
into the reasons for the lack of improvement in certain models. Our conjecture is that
models with distinctly separated data in high-dimensional space may not necessitate this
enhancement. However, this can only be confirmed using labeled data, making the analysis
of non-labeled data challenging.
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