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Summary

In this master thesis, we are going to work towards a data based control algorithm, that given
a complex system and a goal, it can learn how to manipulate the control actions of the system
towards achieve that goal. The objective of developing such a control algorithm is to ensure
the correct operation of a small smart microgrid with several components that balances the
operational costs under optimal conditions and the economical performance of the system.

Particularly, in this thesis, we will describe the components that conforms a standard microgrid
including Energy Storage Systems (ESS) considering the efficiency and operational limits. Energy
Generation Systems that relies on climatic condition cannot be on demand. Consumption hubs,
like a regular household, whose consumption of electrical power depends on the daily habits can
change from time to time.

The composition of a microgrid of a "prosumer" - generally consumers of energy from the elec-
trical grid with production and storage capabilities - usually relies in several types of ESS with
complementary characteristics like a battery with higher storage capacity and a super capacitor
with higher power density. The production must have at least one energy source, that is usually
a renewable source, but the combination of several sources could increase the reliability of the
system.

At this level of management, the system can be considered as a set of ESS whose State of Charge
(SOC) can be considered the working space and can be leveled with the control actions. This type
of management is traditionally done with an economical criterion, whose optimization requires
the definition of an accurate model of the system and the correct parametrization of the goals.
We propose a different method that can be used without the previous knowledge of the system
dynamics and can simultaneously generate control signals and learn the optimal policy given a
parametrized cost function and the sensing of the system states.

The proposed set of methods are called Structured Online Learning methods, and relies in two
distinctive parts: the System Identification module, that will learn the dynamics of the system
given the collected data as a linear combination of non-linear basis functions of the state; and
a Value Function learning that will be updated given the learned model and can generate the
control signal that is showed optimal in a long term window.

As those systems require the definition of a differentiable and convex cost over the control effort,
we introduced some assumptions over the operational cost that can adapt the economical problem
to an equivalent of a Quadratic Regulator. This will also bring us the opportunity to compare our
method with some standard solutions like the Ricatti equation for a Linear Quadratic Regulator.

Comparing the standard solutions for the adapted problem that leverages the knowledge of the
real model and several versions of the Structured Online Learning algorithm, we can confidently
state that the proposed method generates comparable results in a reference tracking problem.
But, it can even enhance the economical performance if the generation and consumption profiles
has a certain degree of predictability.
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1 Introduction

1.1 Motivation

We are currently facing a change of paradigm in the energy generation and consumption habits.
The existing power units are outdated and approaching their technical end-of-life. This situation
coincides with the growing emphasis on decarbonization and ecological transition as part of the
agenda from most of the European regulators.

In response, the trend is shifting towards introducing a promoting renewable sources for the
energy production, that are generally more extensive than fueled power plants. In this context,
there is a general consensus about the prevalence of a Distributed Power Generation (DPG)
scenario, where a significant portion of energy is derived from a diverse range of renewable
energy sources located near consumption hubs and the introduction of the "prosumers", that
acts as productors and consumers of the energy resources simultaneously. This decentralized
setup not only allows for local generation and consumption of power but also enhances resilience
against disruptions to the main energy grid.

In this scenario, the consumers could also be tempted to introduce energy storage elements that
can reduce the costs in the long term by buying and selling to the grid according to the electricity
price of the grid. With that comes the optimization problem of managing the states of charge of
the household batteries according to the demand and production forecasts, and the price of the
grid electricity.

However, this transition to a renewable energy-based mix introduces certain challenges. The gen-
eration of electricity becomes unpredictable due to the intermittent nature of renewable sources,
and there can be a mismatch between generation and consumption times. For instance, the
hours of peak photovoltaic production do not always align with the highest electricity demand
from the population. This discrepancy needs to be addressed through the use of Energy Storage
Systems, which can absorb excess energy during periods of high production and release it when
demand is higher.

Regarding this complex problem, most of the advanced control methods that can assure some
degree of robustness and a good performance in the economical sense relies on an accurate
modeling of the microgrid and some optimization based control within a time window. Most of
the research regarding these methods analyze the heuristics associated to the modeling of the
production and consumption profiles along the day [SLP+22], and deals with it with different
strategies such as the sensitivity approach, the stochastic approach and the robust optimization
[Nas20].

However, there are many novel proposals that follow the new trends of learning a control law
based uniquely in sources of data. Among them there are several proposals that are based in
Reinforcement Learning techniques, that formulates the problem as a Markov Decision Process
(MDP) and maximizes the expected reward only by knowing the states and the reward at each
time such as in [AA22], [JWX+19]. And other methods look for analytical solutions that may
optimize iteratively the control law given each point of the state space using functions approxi-
mators.

The main advantage of those later solutions relies on the "plug and play" implementation of the
methods, that are usually more generalizable and, ideally, no prior knowledge of the particular
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system must be necessary.

1.2 Project Objectives

The objectives of this thesis will involve developing control algorithms to improve the benefits
that energy storage components, as they can move the produced energy in time to the moments
when it is needed or even trade with the grid to produce benefits.

It is commonly assumed that there are several levels of hierarchy that contribute to the overall
energy management system. From the smaller systems that are considered the lowest level of
control, and considering more simple control objectives. Up to the biggest ones, that gathers the
lower level systems and tends to consider more varied objectives and in a longer time horizon
like the grid level.

The lower level system is the component level, where the main focus of the problem addresses
challenges such as non-linearities, efficient management, safe and reliable behavior of compo-
nents, and estimation of State of Charge. These issues have been extensively studied by a large
community of investigators.

The next level of control hierarchy is the microgrid level. At this state, we can simplify the
considerations regarding the individual components, and consider its dynamics solved b their
controllers. This will allow to gather several components of varied types with different charac-
teristics and make them work towards a higher objective jointly. There is a growing interest
in integrating intermittent renewable energy sources into microgrids. This integration presents
significant challenges in terms of reliable operation and control. In the literature, two main
families of control approaches can be identified: centralized and decentralized. The centralized
approach relies on a central controller, while the decentralized approach facilitates distributed
decision-making among various units within the microgrid. This decentralized approach enhances
scalability and resilience of control algorithms.

At the grid level, the presence of prosumers (consumers with production and storage capabilities)
has sparked extensive research efforts to explore potential evolution of electricity markets and
decentralized energy management mechanisms. These mechanisms aim to enable active partic-
ipation of prosumers in the energy supply. The current energy system is witnessing significant
changes, including the increased penetration of small-scale production units, particularly those
utilizing renewable energy sources. In this context, distributed methods are employed to decom-
pose the problem, allowing multiple agents to collaboratively reach agreements through iterative
processes.

Within those levels of hierarchy, we focused on the microgrid level, where is not needed to model
the dynamics of the components, but the goal is to manage the State of Charge (SOC) of the
storage elements and the power that will be obtained from the grid, the storage elements and
the energy sources.

In order to do it, there are many approaches to solve the management problem. The most
popular ones are based on the Economical Model Predictive Control (EMPC) methods, that
given a model of the microgrid and a definition of the costs that are involved in the operation
of the microgrid, it will minimize numerically the computed costs within a time window. These
methods can be very accurate for the operation, and can have intrinsically built in several safety
measures like the limits of operation of the system. But they require an accurate model that can
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predict the behavior along the future time window and be efficient enough so the solution the
optimization problem can be solved in real time.

Our main goal in this thesis is to introduce new methods that can control this type of systems
without the need of an accurate model. Most of these methods are not as settled as the previous
ones, and they often can not assure an optimal control in the costs terms or satisfy the safety
constraints. Regarding those issues, there are some proposals with adaptive models control whose
parameters are updated as proposed in [GZ20].

Our study will focus on the Structured Online Learning set of algorithms. They are based on
the Value Function basis that describes the optimal cost that can be achieved from each point
of the state space. This approach pretends to showcase a method to learn the control law while
is performing the control action simultaneously.

1.3 Structure

This project will be structured in four main sections. In the second chapter [2], we will describe
the elements that will take part on the microgrid, including the Energy Storage Systems (ESS),
the energy sources and the household consumption profile.

In the third cahpter [3], we will describe the theoretical basis of the SOL algorithm, than includes
the definition of the Value Function, the Bellman equation and the application of the Hamilton-
Jacobi Bellman equation to define the optimal control signal in function of the Value Function.
After that, there is a description of some System identification algorithms that can learn the
parameters of the model as function of a set of nonlinear functions. These will be leveraged to
adjust the Value Function and learn online the optimal control.

The next chapter [4] will be devoted to the statement of the problem that we finally solved. In
this section, we identify the components of the microgrid and the configuration that it will take.
Then, we describe the hypothesis that allow us to resemble the Economical MPC problem into
a tracking problem by adjusting some of the parameters and under some assumptions.

Chapter [5] will present the results that we obtained under different circumstances such as the
simple tracking problem, some simplified profiles of production and consumption of energy, and
finally, the application on a system with real data. All of this with the corresponding discussion
about the obtained results and some Key Performance Indicators (KPIs).

After that, it will only remain some final conclusions about the project and a short dissertation
regarding the Economical, Social and Environmental impact.
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2 Problem statement

2.1 Smart Grids

In the context of power grids, a smart grid refers to an advanced, modernized infrastructure
that incorporates digital communication and information technologies to improve the efficiency,
reliability, sustainability and resilience of electricity generation, distribution and consumption.
It leverages real-time monitoring, control systems and intelligent automation to optimize grid
management and operation [CI12], [Sha20].

Some of the characteristics of a smart grid are:

1. Advanced Metering Infrastructure (AMI): Smart meters are installed at consumers’
premises to enable two-way communication between the utility and consumers. This facil-
itates real-time monitoring of electricity consumption, remote meter reading and demand
response programs.

2. Grid Monitoring and Control: Enabled by the AMI, smart grids technologies are
capable of real-time monitoring of various grid parameters, such as voltage, current, and
power flow. This allows early detection of faults, better outage management and improved
control of grid operation.

3. Distributed Energy Resource (DER) Integration : Smart grids facilitate the inte-
gration of renewable energy sources, energy storage systems, electric vehicles and other
decentralized energy resources. This allows for better utilization of clean energy and in-
creases grid flexibility.

Within the context of smart grids, our primary focus will be on the energy management challenges
faced by households. This involves addressing various aspects, such as defining the electrical
components essential to the system, including the Energy Storage System (ESS), Distributed
Energy Resources (predominantly utilizing renewable sources), and household consumption.

2.2 Energy Storage Systems

Ideally, a perfect energy storage system (ESS) should have a high energy density [DMBB23].
This allows them to store high amounts of energy in small and light devices. In addition, it must
have a high power density, what allows the system to absorb all the power that reaches it and
supply as much power as the user needs. This property enables fast charging and discharging of
energy. Furthermore, it must be efficient, as there should be no energy losses during the charging
and discharging processes. Ideally, it should also have a long service life that makes it reliable
for use over a long period of time and cost-effective.

Unfortunately, this type of ESS is not yet available at present and, to meet our storage needs, we
will consider two types of ESS: batteries, with a higher and cheaper storage capacity, and super-
capactiors (SC), with much higher power restrictions on input and output, but more expensive.

The batteries are ESS that work through chemical reactions inside the material. This allows
them to store more energy in smaller and lighter systems leveraging the chemical bounds. But
it also comes with the limitation of a slower charge and discharge rate due to the speed at which
the component reactions can take place. To model these limitations, Internal Resistance is often
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used, which will limit the current the battery can absorb and deliver given the voltage, and
effectively limiting the amount of energy it can take in. Moreover, this model can also simulate
the amount of energy that is lost during the charging of a battery cell in the form of heat, which
will also depend on the power supplied.

Regarding battery degradation, the lifetime of the chemical components has improved a lot since
the first technologies, but it is still one of the major handicaps of this type of ESS. Gradual
degradation of both energy density and power density is inevitable, but has been shown to be
faster if operated at temperatures outside the specified range and at higher peak power operations
[DMBB23].

In the other hand, the Super Capacitors (SC) are based on a physical properties of the sys-
tem instead of chemical ones. The voltage difference between two conducting surfaces tends to
accumulate ions until reaching the electrical equilibrium. This phenomenon relies on the high
capacitance of the systems (coefficient between the voltage difference and the stored energy be-
tween the surfaces) and can depend on many factors of the components such as the geometry
and the medium in which the elements are immersed.

This provides a limited energy density to this type of ESSs, but it has no intrinsic physical
limitations in the power that it can absorb or deliver, what indicates a very high power den-
sity. Regarding the efficiency of the SC operation, it might depend on many factors such as
temperature and the voltage. But, it usually tends to be more efficient than chemical batteries.

The degradation of this type of systems is not related to any physical phenomenon, but from
the chemical reactions that high voltage tension can trigger between several components and
the medium. This implies that the lifespan of a SC ESS tends to be much higher and almost
independent on the number of charging cycles [Phi22].

2.3 Distributed Energy Resources

The deployment of Distributed Energy Resources (DERs) in regular households commonly in-
cludes two widely adopted sources: wind and solar energy. Both sources offer unique advantages,
such as clean production and the decreasing costs per Watt-hour over time, as illustrated in Fig-
ure 2.1. However, it is important to acknowledge certain challenges associated with these sources.
The unpredictability of wind and solar energy production must be taken into account, as it is
influenced by meteorological conditions, which are beyond the control of the producer.

Between these two sources, we are going to develop more in depth the solar energy. This decision
is favored by many facts, solar energy is safer and easier to install in a common neighborhood
due to the lack of moving parts [FOF13]. The cost per Watt-hour is becoming lower in the later
years, the lower maintenance that is is usually required and still achieving an optimal energy
output. And most importantly for our controlling purpose, the more predictability and regularity
that solar energy production can hold [CCR+20] compared with the irregular production of wind
turbines [LTS+19],[MVG20].

The availability of energy from the sun varies on a daily basis, influenced by factors such as
the position of the sun, and the quantity of solar irradiance. These cyclic patterns determine
the amount of energy that can be harnessed. Sunlight tends to be strongest when the sun is
at its highest point in the sky, around noon, as the path through the atmosphere is shorter.
Additionally, seasonal variations arise from the tilt of the Earth’s axis in relation to its orbit
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Figure 2.1: Energy costs by sources. Image obtained from [Rue21]

around the sun. As stated in [CCR+20], the solar irradiance can very well modeled in a cloudless
sky on the surface of the Earth

Ics = bGb,τe
−0.09m(TL−1). (2.1)

The factor correction, denoted as b, accounts for adjustments relative to the extraterrestrial
irradiance. It helps compensating for variations or discrepancies between the measured irradiance
and the idealized extraterrestrial irradiance.

The modified Linke turbidity coefficient, represented as TL, affects the attenuation of light by the
atmosphere. It quantifies the level of atmospheric haze or pollution, with higher values indicating
greater attenuation and reduced transmitted light.

The relative optical air mass, denoted as m, measures the amount of air that sunlight must
traverse before reaching the Earth’s surface. It takes into account factors such as the angle
of incidence and the atmospheric conditions, providing an indication of the path length and
atmospheric density through which the sunlight passes.

The extraterrestrial irradiance, represented as Gb,τ , refers to the incoming solar radiation at the
outer boundary of Earth’s atmosphere. It depends on various parameters including the zenith
angle of sunlight, geographical latitude, angular position between the sun and the local meridian
in relation to the equatorial plane, angle between the surface plane and the horizontal plane,
angular variation of the local meridian due to the Earth’s rotation (approximately 15 degrees
per hour), and the angle of incidence.

These parameters collectively influence the quantity of light reaching the Earth’s surface, ac-
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Figure 2.2: Solar irradiance simulation

counting for atmospheric conditions, solar geometry, and the overall path of sunlight through
the atmosphere.

In Figure 2.2, a comparison is presented between the estimated irradiance and the measured data
obtained from a set of panels. The plot clearly demonstrates that the estimations closely align
with the corresponding measured values, indicating a remarkably high level of accuracy in the
estimation process. This agreement between the estimated and measured irradiance validates
the reliability and effectiveness of the estimation method used.

In order to compute an estimation of the energy that can be obtained with a solar panel, we have
to evaluate the solar panel efficiency ηp, that will depend employed technologies. The inverter
efficiency ηinv that accounts for the efficiency of the DC (direct current) to AC (alternating
current) conversion process. And the geometrical factors as the panel surface that is exposed to
the sunlight S.

Poutput = SηpηinvIcs. (2.2)

Additionally, in order to have a more accurate scenario, we also have some generation data
available obtained from [NSS+21b] that describes a high production household scenario.

2.4 Household Consumption

The daily variability of household consumption is highly pronounced due to the varying behaviors
of the individuals residing within it, as mentioned in [SSM+22]. However, by examining larger
communities or averaging data from the same household over multiple days, some insights about
household consumption can be obtained.

One relevant observation is the presence of a consumption offset, whereby the consumption of
idle machines connected to the grid remains constant. Throughout the day, there are multiple
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Figure 2.3: Demand and generation of power profiles

consumption peaks. The first peak occurs in the early morning when household members prepare
for the day, while another peak is observed at night, characterized by a wider consumption period.
It is worth noting that during the daylight hours, the overall consumption remains relatively
consistent.

As depicted in Figure 2.3, it is evident that the generation profile of a photovoltaic (PV) array
does not align with the consumption profiles, even when the array is appropriately sized to
meet the household’s needs throughout the day (as discussed in [NSS+21a] and [NSS+21b]).
This mismatch implies that without Energy Storage Systems (ESS), a significant portion of
the generated power would have to be directed to the grid instead of being utilized for direct
consumption. This can result in energy deficiencies and potential losses.

To address this disparity, the installation of ESS can prove beneficial. An ESS would enable the
distribution of power from production periods to consumption periods, thereby reducing depen-
dence on the wider electrical grid. By storing excess energy during periods of high generation
and utilizing it during times of high consumption, an ESS helps bridge the gap between PV
generation and household energy needs, optimizing energy utilization and minimizing reliance
on external power sources.

2.5 Microgrids

All the above mentioned components are in essence the components that are needed to conform
a microgrid [HPG18].

However, at a microgrid level, we are going to simplify the considerations over those components.
The management of the energy resources will not enter into the physical details of the systems



pàg. 20 Memòria

itself, but at higher level in a phenomenological behavior that can affect the grid tension.

Firstly, the voltage of the power line must be constant at any time. This means that the power
that is extracted from the power line must be also be supplied by either the power sources, the
batteries or the connections to wider grids. Otherwise, the voltage of the power line might drop,
and the systems that work under the assumption of a given voltage may malfunction. That
control should be instantaneous, and the smaller the microgrid, the more susceptible to drastic
changes it is, as the plugging or unplugging of electrical appliances will constitute a significant
change. This condition will later lead to the Equilibrium of the Grid restriction.

As for the ESS, the physical models of the systems usually include nonlinearities, and the chemical
reactions may need a little time until reaching the full charging speed. For the physical limitations
of the ESS, we will consider that it works linearly along all the working space, where the stored
energy will change proportionally with respect the input/output power. In order to make those
assumptions more correct, the low level controller must usually know the SOC of the ESS and
there are usually limitations on the range of SOC that the battery can work safely. Additionally,
the longevity concerns of the battery, the inefficiencies and the discourage of particular behaviors
can be included as hard and soft limits in an EMPC based control or into the operational costs
in a RL based technique.

Regarding the power generators and the connections to the power line, they all must pass through
power transformer and inverters so the line keeps its coherence, frequencies and voltage. Despite
advancements in the power electronics and the control techniques, the losses can waste from 5%
to 15% of power generation depending on the number of back-and-forth conversions[HPG18].

All those simplifications make a feasible EMPC formulation that can be solved under a reasonable
amount of time. An MPC is a multivariable control strategy that uses ideally an accurate state-
space model, some possible constraints on the process variables, and an objective function to
solve optimization problems. The predictive control solves an optimization problem using a
moving time horizon window. MPC is not only able to predict in advance the next control, but
it can also select the optimal control actions.

Classically, the MPC approach was formulated for tracking purposes, where the costs are for-
mulated in a quadratic form with respect to the desirable set-points. It penalizes deviations
of the states and control inputs from their reference trajectories while explicitly enforcing the
constraints.

The constraints can be determined by the system characteristics like the working limits of the
of the system states or the control signal limitations h(xk, uk) ≤ 0. Additionally, the states of
the system mus suffice the modeled dynamics at each time step xk+1 = f(xk, uk) ∀k. This will
transform the control problem into a optimization problem with several restrictions.

min
xk

∑
k=1,...,H

(xk − xrefk )TQ(xk − xrefk ) + uTkRuk

s.t. xk+1 = f(xk, uk) ∀k Predictive model constraints
h(xk, uk) ≤ 0 ∀k System constraints

(2.3)

where xk and uk are the states and control signals at each time step of the prediction horizon.
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The optimization function is added up along all the horizon window, H represents the size of
the horizon window and xref the set point for the states. f is the predictive model, that must
be accurate in order to obtain precise solutions, but computationally efficient, and h represent
the conditions that the states and control signals must satisfy.

In the economical MPC, the main difference will reside in the formulation of the optimization
function since will not require a reference trajectory or set point, and will uniquely based on the
operational costs that the control signal may generate. There is not an specific shape of those
costs, so it might take any form depending on the objectives that we want to optimize in each
case. The solution of this problem will simultaneously generate the trajectory of the states and
the control signal sequence to reach it

min
xk,uk

∑
k=1,...,H

L(xk, uk)

s.t. xk+1 = f(xk, uk) ∀k Predictive model constraints
h(xk, uk) ≤ 0 ∀k System constraints.

(2.4)

One of the most common formulations of the economic MPC related to the management of a
smart-grid can be formulated with the simplified subsystems [NBP20]. The control signals that
can be considered in the model will be the power flow of each one of the subsystems including
all the power sources such as the grid, the load on the storage systems and even the power
generators.

As system constraints, it may limit the power flow of each one of the subsystems

umin ≤ uk ≤ umax, (2.5)

where the limits are set by the particular installation in the smart-grid. Some particular power
flows may have additional temporal upper limits u+k , like the maximum generation that some
renewable power sources may have. Those will be instantaneous and depend on the climate con-
ditions, like the wind velocity for wind turbines or the available solar irradiance for photovoltaic
panels.

uk ≤ u+k (2.6)

Regarding the storage elements, we can consider that State of Charge of each one of them will
conform the working state space of the system. In general, they will be instantaneous, and will
depend on the previous State of Charge and the input and output power

SOCk+1 = SOCk + ζcu
in
k + ζdu

out
k (2.7)

where ζc and ζd are the charging and discharging efficiency factors that will be given by each of
the storage elements separately.
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Additionally, the SOC of each storage system has its own capacity and operational limits, so
they must also satisfy those system conditions

SOCmin ≤ SOCk ≤ SOCmax ∀k. (2.8)

As we stated before, in order to ensure the stability of the system, it must be satisfied the
equilibrium condition at each node of the microgrid, so the input and output power flows must
add up at any time instant

∑
i

uini,k =
∑
i

uouti,k . (2.9)

Regarding the economical costs of the EMPC formulation, most of the cost associated to electrical
power production are related to the purchase and maintenance of generators, as well as their
accessories. Additionally, legal canons (taxes) and electricity costs can also be included in the
associated economic costs

fE
k = (α1 + α2,k)

Tuk∆t, (2.10)

where ∆t is the sampling time, α1 is the time independent part of the control costs and α2,k

represents the time dependent part, such as the price of the grid electricity.

Other common costs are those associated to a smooth operation, that will penalize sudden
changes on the operational behavior

f∆u
k = ∆uTk∆uk, (2.11)

where ∆uk = uk − uk−1 is the control input variation between two consecutive time steps.

And the costs associated to a safety measures, that will introduce a penalization when the SOC
of some ESS components goes below some safety threshold δ

δi − ϵi,k ≤ SOCi,k, ∀i, k (2.12)

where the ϵ is a vector of slack variables that should be minimized by including an extra term
in the MPC cost function

fS
k = ϵTk ϵk. (2.13)

Then, the function that a regular EMPC would try to minimize is composed by a linear combi-
nation of all those costs along all he prediction horizon
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L(x,u) = λEfE
k + λSfS

k + λ∆uf∆u
k (2.14)
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3 Reinforcement Learning based Control

In this chapter, our focus will be on exploring concepts related to the management of system
with the objective of minimizing operational costs. As mentioned earlier in this document, our
project aims to develop algorithms that are independent of pre-existing models and instead rely
on data-driven approaches for control.

In this particular context, numerous approaches have been proposed. Among the most widely
recognized ones, it is noteworthy to mention the model-free approaches. These approaches de-
termine the optimal control based on the changes in states and the anticipated costs. Such
formulation is commonly associated with Reinforcement Learning (RL), which requires knowing
the states at each moment and the scalar cost of operation (also called stage cost). Typically,
this cost is assumed to be a function denoted as L(x, u), where x represents the current state
and u denotes the control action.

Using this definition, we can characterize the action policy π(x) as the function responsible for
determining the control actions at every state point, along with the corresponding long-term
expected cost for each state and action policy function J(x, π). When considering continuous
time and an infinite prediction horizon, this can be expressed as follows:

J(x0, π) =

∫ ∞

t0

L(x, π(x))dt, (3.1)

where the states will evolve according to the applied control action π(x) and the system and
x0 = x(t0) represents the initial point of the trajectory.

A commonly held assumption is the existence of an optimal Value Function, denoted as V , which
assigns the optimal long-term expected cost to each state point

V (x) = inf
π

J(x, π) ∀x. (3.2)

This optimal cost can only be achieved by applying the optimal control signals at each time step,
thereby defining the optimal policy function as well

π∗ = arginf
π

J(x, π) ∀x, (3.3)

where π∗ denotes the optimal control policy that would minimize the long term cost J(x, π) from
any point of the state space.

Many of the prevailing learning algorithms depend on the acquisition of data regarding state
changes before and after executing actions, as well as the associated costs incurred at each state
[MKS+13]. Utilizing this gathered information, one can attempt to approximate the actual Value
Function and Action Value Function.

For each lapse of time, we can deduce that the definition of the long term cost must be consistent
along the time:
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J(x0, π) =

∫ ∞

t0

L(x, π(x))dt

=

∫ t0+τ

t0

L(x, π(x))dt+

∫ ∞

t0+τ
L(x, π(x))dt

=

∫ t0+τ

t0

L(x, π(x))dt+ J(xτ , π),

(3.4)

where the notation x0 = x(t0) represents the initial state and xτ = x(t0+ τ) represents the state
of the system at time t0 + τ , which is obtained by applying the given policy π starting from the
initial time t0 for a duration of τ . If we can measure the states and compute the associated costs,
it becomes possible to compute the integral of the cost over a specific time period. By doing
so, we can estimate the values of the long-term cost for any state by comparing the previous
long-term cost function with the estimation provided by the right-hand side of equation (3.4).

The difference between any candidate representing the long-term cost for a given problem J(x0, π)
and the approximation obtained from the experience is commonly known as the Temporal Dif-
ference (TD) equation:

J(xt, π) +

∫ t+τ

t
L(x, π(x))dt− J(xt+τ , π), (3.5)

where xt represents the state at time t for any particular realization. Given an initial estimate of
the long-term cost function, we can iteratively refine it using the collected data and the Temporal
Difference formula (3.5). The goal is to minimize the discrepancy until equivalence is achieved
for all data points using the assignation in the Equation (3.6).

J(x(t), π)← J(x(t), π) + α
(∫ t+τ

t
L(x(s), π(x))ds+ J(x(t+ τ), π)− J(x(t), π)

)
, (3.6)

where α is the learning rate that determines how fast the Value Function can be learned. After
establishing the fundamental concepts of Reinforcement Learning, one can delve into the specific
methods of data collection for learning and the techniques for minimizing the Temporal Differ-
ence. These explorations lead to the development of various algorithms in the class of Temporal
Difference-based Reinforcement Learning.

3.1 The Ricatti analogy

These methods can also be applied to more classical problems like the Linear Quadratic Regu-
lator, where the system follows a Linear Time-Invariant(LTI) law:

ẋ = Ax+Bu, x(0) = x0, (3.7)

where x ∈ Rn is the state and u ∈ Rm is the control input. Additionally, the cost of performing
a certain policy is given by the quadratic cost:
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J(x, π) ≜
∫ ∞

0
[xT (s)Qx(s) + uT (s)Ru(s)] ds, (3.8)

where the stage cost depends quadratically on the state and the control cost L(x, u) = xT (t)Qx(t)+
uT (t)Ru(t), and both Q ∈ Rn×n and R ∈ Rm×m are symmetric and positive definite matrices.
As usually denoted as Q ≻ 0 and R ≻ 0.

With the definition of the Value Function in Equation (3.2) and the conditions of the Temporal
Difference in Equation (3.4) for any policy, we can establish Bellman’s principle of optimality
[Bel52]. This principle states that for every state x and any time interval τ , the Value Function
must satisfy:

V (x) = inf
π

{∫ t+τ

t
xT (s)Qx(s) + π(x)TRπ(x)ds+ V (x(t+ τ))

}
. (3.9)

From this condition, it can be elaborated by subtracting the left hand side of the equation

0 = inf
π

{∫ t+τ

t
xT (s)Qx(s) + π(x)TRπ(x)ds+ V (x(t+ τ))− V (x)

}
, (3.10)

and dividing both sides by the interval of time τ we can obtain

0 = inf
π

{1
τ

∫ t+τ

t
xT (s)Qx(s) + π(x)TRπ(x)ds+

V (x(t+ τ))− V (x)

τ

}
. (3.11)

As this equality must hold for any time interval, we can take the limit as the interval approaches
zero, limτ→0. In doing so, we can recover the definition of derivatives:

0 = inf
π

{
xT (t)Qx(t) + π(x)TRπ(x) +

dV (x)

dt

}
. (3.12)

The last term can be developed a little bit further applying the chain rule leaving us with the
following necessary condition of the Value Function:

0 = inf
π

{
xT (t)Qx(t) + π(x)TRπ(x) +

∂V (x)

∂x
ẋ
}

= inf
π

{
xT (t)Qx(t) + π(x)TRπ(x) +

∂V (x)

∂x
(Ax+Bπ(x))

}
.

(3.13)

The last equality is renowned the Hamilton-Jacobi-Bellman equation(HJB equation). It
has been proved in the Section 2.2.3 of the reference [FL23] that this HJB equation also provides
a sufficient condition for the optimal Value Function as it can be shown that a function that
satisfy this equation is unique.
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If there exists a solution V and an optimal control policy π∗ that fulfills this equation, we can
guarantee the stability of the closed-loop system. This is derived from the definition of the stage
cost L(x, u), which is always positive definite, implying that the Value Function is also positive
definite. Additionally, the derivative of the Value Function under the optimal policy control is
provided in the HJB Equation (3.12):

xT (t)Qx(t) + π∗(x)TRπ∗(x) +
dV (x)

dt
⇒ dV (x)

dt
= −

(
xT (t)Qx(t) + π∗(x)TRπ∗(x)

)
. (3.14)

The negative definiteness of the derivative of the Value Function implies that we have identified
a potential Lyapunov function candidate. Thus, the system is deemed stable, at least in the
Lyapunov sense.

So far, our analysis has been applicable to a broader scenario, considering both the stage cost
of operation denoted as L(x, u) and the system dynamics represented by ẋ. However, given the
specific problem at hand, we can now establish a necessary condition for the policy function as
well. As the control action that minimizes the value in the bracketed equation 3.13 must be a
critical point, the partial derivative of the control policy with respect to the given function must
be zero. This results in

2Rπ ∗+BT ∂V (x)

∂x

T

= 0⇒ π = −1

2
R−1BT (

∂V (x)

∂x
)T . (3.15)

If we replace the expression of the optimal control signal into the HJB Equation (3.13),

0 = xT (t)Qx(t) +
1

4

∂V (x)

∂x
BR−1BT ∂V (x)

∂x

T

+
∂V (x)

∂x
Ax− 1

2

∂V (x)

∂x
BR−1BT (

∂V (x)

∂x
)T

= xT (t)Qx(t) +
∂V (x)

∂x
Ax− 1

4

∂V (x)

∂x
BR−1BT ∂V (x)

∂x

T

,

(3.16)

we obtain a differential equation that the Value Function must satisfy. The linear constraints
on the partial derivatives of the Value Function in relation to the states suggest that a possible
choice for the Value Function could be quadratic in form.

V (x) = xTP (t)x, (3.17)

where P is assumed to be symmetric and positive definite matrix. Then, the HJB Equation
becomes:

0 = xTQx+ 2PAx− xTPBR−1BTPx, (3.18)

that can be rewritten into:
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0 = xt
(
Q+ PA+ATP T + PBR−1BTP

)
x. (3.19)

As this must be satisfied for all the states, we can then establish the condition that the P matrix
must satisfy:

0 = Q+ PA+ATP T + PBR−1BTP, (3.20)

and finally, the control action policy must take the form of

π(x) = −R−1BT

(
∂V (x)

∂x

)T

= −R−1BTPx. (3.21)

With this approach, we have reached the general solution for the Linear Quadratic Regulator
(LQR). To obtain the actual control signal, we only need to solve the matrix differential equation
that is the well known Algebraic Ricatti Equation (ARE).

3.2 A Structured Approximate Optimal Control

To derive an analytical solution for generating a control signal to control nonlinear systems, we
can begin by making a few assumptions about the problem. Firstly, we assume that the nonlinear
system is control-affine.

When we say that a nonlinear system is control-affine, it means that the system dynamics depend
linearly on the control signal, but the coefficients and independent terms can be nonlinear. In
this context, let define the state variable as x ∈ D ⊆ RN and the control input as u ∈ Ω ⊆ Rm,
where D represents the space of all possible states and Ω represents the space of all possible
control inputs.

Furthermore, we have two nonlinear continuous functions: f : D → Rn, which describes the state
dynamics, and g : D → Rn×m, which relates the control input to the state dynamics. These
functions help define the system behavior.

ẋ = F (x, u) = f(x) + g(x)u. (3.22)

In the general case, we cannot assume that the system will reach the desired equilibrium point
or be able to maintain it with a null control action. This situation may lead to an infinite
valued J(x0, π) for any initial condition. In order to address this problem, we will consider a
time-dependent stage cost that gradually diminishes the importance of the current stage cost
over time. This can be achieved by incorporating an exponential decay factor into the stage cost
function

J(t, x, u) = lim
T→∞

∫ T

t
e−γs

(
x(s)TQx(s) + uTRu

)
ds, (3.23)
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where Q ∈ Rn×n is positive semi-definite, γ ≤ 0 is the discount factor, and R ∈ Rm×m positive
definite. In this case, we can follow similar definitions of the optimal control policy and the Value
Function as outlined in Equations (3.2) and (3.3):

V (t, x) = J(t, x, π∗) = min
π

J(t, x, π). (3.24)

Indeed, in this case, the Value Function will explicitly depend on time due to the discount
factor, which introduces a time-dependency in the stage cost. However, we can still follow a
similar reasoning as in the time-independent formulation and derive the equivalent of Equation
(3.11).

0 = inf
π

{1
τ

∫ t+τ

t
e−γs

(
xT (s)Qx(s) + π(x)TRπ(x)

)
ds+

V (t+ τ, x(t+ τ))− V (t, x)

τ

}
. (3.25)

And performing the limit of τ → 0 we recover the differential formulation

0 = inf
π

{
e−γt

(
xT (t)Qx(t) + π(x)TRπ(x)

)
+

dV (t, x)

dt

}
.

0 = inf
π

{
e−γt

(
xT (t)Qx(t) + π(x)TRπ(x)

)
+

∂V (t, x)

∂t
+

∂V (t, x)

∂x
ẋ
}
.

(3.26)

Since the partial time derivative of the Value Function does not depend on the control policy,
we can take it out of the brackets and isolate it on the other side of the equation.

∂V (t, x)

∂t
= inf

π

{
e−γt

(
xT (t)Qx(t) + π(x)TRπ(x)

)
+

∂V (t, x)

∂x
F (x, π)

}
. (3.27)

This equation is commonly known as the Hamilton-Jacobi-Bellman equation (HJB equa-
tion). It is worth noting that the uniqueness of the Value Function and the optimality of any
control policy have been demonstrated in Section 2.2.3 of the book [FL23]. To simplify the
formulation, we can define the Hamiltonian operator H

H
(
x, u, ρ

)
:= −L(x, u) + ρTF (x, u). (3.28)

If we evaluate this on ρ = −∂V
∂x

T , we can recover the expression of the right hand side of the
HJB equation.

H
(
x, u,−∂V

∂x

T)
= −L(x, u)− ∂V

∂x
F (x, u). (3.29)

And the HJB equation can be simplified to
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∂V

∂t
= sup

π
H
(
x, u,−∂V

∂x

T)
, (3.30)

what should hold the property of having a null derivative for the optimal control policy, as it
must be a critical point

∂H

∂u

(
x, π∗,−∂V

∂x

T)
= 0. (3.31)

Moving forward, we will make an important assumption that each component of f and g can be
expressed or effectively approximated within the domain of interest by a linear combination of
a set of p basis functions ϕi ∈ C1 : D → R for i = 1, 2, ..., p. Consequently, the system dynamics
can be rewritten as follows:

ẋ = WΦ(x) +

m∑
j=1

WjΦ(x)uj , (3.32)

where W ∈ Rn×p are the parameters that multiplies the basis functions, Wj ∈ Rn×p are the pa-
rameters that multiplies the basis functions for each control action, and Φ(x) = [ϕ1(x), ..., ϕp(x)]

T

are the basis functions itself. In order to be able to represent the costs with the same set
of basis functions, we are going to assume that we will always have a constant term and a
set of linear terms in the first places of basis, and the other non-linear ones are placed last
Φ(x) = [1, x1, ..., xn, ϕn+2(x), ..., ϕp(x)]

T .

With this formulation, the policy cost can be rewritten in terms of these basis functions.

J(x0, u) = lim
T→∞

∫ T

0
e−γt

(
Φ(x)T Q̄Φ(x) + uTRu

)
dt, (3.33)

In the rewritten policy cost expression, Q̄ = diag(0, Q,0(p−n−1)×(p−n−1)) represents a block
diagonal matrix with all zeros except for the block corresponding to the linear part for the states
x.

Now, let assume that the Value Function has an exponential time dependency, similar to the
stage cost, and a quadratic dependence on the basis functions. We can represent the Value
Function as follows:

V (t, x) = e−γtV̂ (x) = e−γt
(
Φ(x)TPΦ(x)

)
, (3.34)

where P ∈ Rp×p is a symmetric matrix. These conditions enables us to effectively describe
the various functions associated with the controller. These functions encompass the system
dynamics, the stage cost of operation, the optimal value function, and consequently, the control
policy. We can achieve this by employing a sufficient number of basis functions that span the
state space.
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From the Equation (3.28), taking the Value Function as (3.34) and the parameterized dynamics
of (3.32), we can start developing the Hamiltonian in order to simplify the terms:

H = −e−γt
(
Φ(x)T Q̄Φ(x) + uTRu

)
− e−γt∂

(
Φ(x)TPΦ(x)

)
∂x

(
WΦ(x) +

m∑
j=1

WjΦ(x)uj

)
. (3.35)

Performing the partial derivative over the Value Function, and applying the distributive rule, we
can obtain

H = −e−γt
(
Φ(x)T Q̄Φ(x) + uTRu

)
− e−γtΦ(x)TP

∂Φ(x)

∂x

(
WΦ(x) +

m∑
j=1

WjΦ(x)uj

)
− e−γt

(
WΦ(x) +

m∑
j=1

WjΦ(x)uj

)T ∂Φ(x)
∂x

T

PΦ(x).

(3.36)

Following that, the terms within the brackets can be separated using the distributive property.
In the work by [FL23], the Structured Approximate Optimal Control algorithm was developed
under the assumption that the R matrix was diagonal. As a result, the cost associated with the
control action can be divided into a sum of various components of the control signal uj . Later
on, in Section [4], we will work in a generalization of the solutions with a generic R matrix.

H = −e−γt

(
Φ(x)T Q̄Φ(x) +

m∑
j=1

uj(x)
2 · rj,j +Φ(x)TP

∂Φ(x)

∂x
WΦ(x)

+ Φ(x)TP
∂Φ(x)

∂x

( m∑
j=1

WjΦ(x)uj

)
+Φ(x)TW T ∂Φ(x)

∂x

T

PΦ(x)

+
( m∑

j=1

WjΦ(x)uj

)T ∂Φ(x)
∂x

T

PΦ(x)

)
.

(3.37)

By employing these simplifications, we can look for the minimum value of the Hamiltonian, that
would represent the optimal policy. In order to do that, we can seek the critical points of the
Hamiltonian concerning the control signal by setting the derivative with respect to the control
signal equal to zero. This is possible because we know that there is only one critical point, and
it is the minimum value of the Hamiltonian.

0 =
∂H

∂uj
= −e−γt

(
2rj,juj + 2Φ(x)TP

∂Φ(x)

∂x
WjΦ(x)

)
. (3.38)

The existence of a unique solution for all components of the control signal relies on the condition
that none of the diagonal components of the R matrix are equal to zero, i.e., rj,j ̸= 0.
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u∗j = −
1

rj,j
Φ(x)TP

∂Φ(x)

∂x
WjΦ(x). (3.39)

In the other hand side of the HJB equation, we have that the derivative with respect to time
can be written as

∂V (t, x)

∂t
= −γe−γtΦ(x)TPΦ(x) + e−γtΦ(x)T ṖΦ(x) (3.40)

By substituting the solution of the optimal control into the Hamiltonian equation and equating
both sides of the equation in the HJB (Hamilton-Jacobi-Bellman) equation, we can determine
the dynamics of the Value Function P . To simplify certain parts of the equation, we can leverage
the fact that uj is a scalar and thus equivalent to its transpose.

−γe−γtΦ(x)TPΦ(x) + e−γtΦ(x)T ṖΦ(x) = −e−γt

(
Φ(x)T Q̄Φ(x)

+ Φ(x)TP
∂Φ(x)

∂x

( m∑
j=1

r−1
j,j WjΦ(x)Φ(x)

TW T
j

)∂Φ(x)
∂x

T

PΦ(x)

+ Φ(x)TP
∂Φ(x)

∂x
WΦ(x) + Φ(x)TW T ∂Φ(x)

∂x

T

PΦ(x)

− Φ(x)TP
∂Φ(x)

∂x

( m∑
j=1

r−1
j,j WjΦ(x)Φ(x)

TW T
j

∂Φ(x)

∂x

T

PΦ(x)
)

−
( m∑

j=1

Φ(x)TP
∂Φ(x)

∂x
r−1
j,j WjΦ(x)Φ(x)

TW T
j

)∂Φ(x)
∂x

T

PΦ(x)

)
.

(3.41)

After taking the common factor ∂Φ(x)
∂x

T
PΦ(x) or Φ(x)TP ∂Φ(x)

∂x in all of the summations, we can
simplify some of the addends and simplify the exponential factor e−γt leading to the following
expression:

−γΦ(x)TPΦ(x)+Φ(x)T ṖΦ(x) = −Φ(x)T Q̄Φ(x)

+ Φ(x)TP
∂Φ(x)

∂x

( m∑
j=1

r−1
j,j WjΦ(x)Φ(x)

TW T
j

)∂Φ(x)
∂x

T

PΦ(x)

− Φ(x)TP
∂Φ(x)

∂x
WΦ(x)− Φ(x)TW T ∂Φ(x)

∂x

T

PΦ(x).

(3.42)

As all the addend terms has ϕ(x)T as left side factor and Φ(x) as right factor, we can take the
common factor out and finally obtain the dynamics of the P matrix
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−γP + Ṗ =− Q̄+ P
∂Φ(x)

∂x

( m∑
j=1

r−1
j,j WjΦ(x)Φ(x)

TW T
j

)∂Φ(x)
∂x

T

P

− P
∂Φ(x)

∂x
W −W T ∂Φ(x)

∂x

T

P.

(3.43)

After developing the learning model for the Value Function, we can derive the expected long-term
cost and the optimal control policy by utilizing a linear combination of non-linear functions over
the state as a parameterization of the dynamics. However, to effectively capture these dynamics,
it is necessary to learn them from a set collected information.

3.3 System identification

Numerous approaches exist for determining the linear coefficients of dynamical data for a set of
non linear basis functions Φ(x).

3.3.1 Least Squares

Among the commonly used methods is the Least Squares approach, which aims to minimize the
squared difference between the dynamics predicted by the parameterized model and the actual
dynamics observed in a given dataset.

min
w

1

2

Ns∑
i=1

(wΦ(xi)− ẋi)T (wΦ(xi)− ẋi), (3.44)

where w was explicitly written in lower case, as in this case they does not represent the controlled
system. And the supper-index in each xi represents the i− th sample of the dataset.

3.3.2 Recursive Least Squares

Alternate approaches involve online learning of model parameters, where the parameters are
updated as new data is collected from sample to sample. One example of such an approach is
the Recursive Least Squares algorithm (RLS), which continuously refines the optimal parameters
based on a set of samples up to the k − th sample [FL23].

ŵk =
( k∑

i=1

ẋiΦ(xi)T
)( k∑

i=1

Φ(xi)Φ(xi)T
)
, (3.45)

we can state a recursive correction each time that a new samples is introduced. First we introduce
Rk as

Rk =

k∑
i=1

Φ(xi)Φ(xi)T =

k−1∑
i=1

Φ(xi)Φ(xi)T +Φ(xk)Φ(xk)T = Rk−1 +Φ(xk)Φ(xk)T . (3.46)

Accordingly, we can write
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k∑
i=1

ẋiΦ(xi)T =

k−1∑
i=1

ẋiΦ(xi)T + ẋkΦ(xk)T = ŵk−1Rk−1 + ẋkΦ(xk)T

= ŵk−1(Rk − Φ(xk)Φ(xk)T ) + ẋkΦ(xk)T

= ŵk−1Rk + (ẋ− ŵk−1Φ(x
k))Φ(xk)T .

(3.47)

And the recursive algorithms can be developed as follows

ŵk = ŵk−1 + (ẋ− ŵk−1Φ(x
k))Φ(xk)TR−1

k . (3.48)

3.3.3 Gradient Descent

In addition to the Recursive Least Squares algorithm, there are other recursive methods available,
such as Gradient Descent (GD). This method updates the parameters incrementally, taking steps
based on the derivative of the current squared error, with the aim of minimizing it.

If we define the squared error as J(w) = 1
2e

T e = (wΦ(x) − ẋ)T (wΦ(x) − ẋ), the GD algorithm
would update the coefficients with the new data

ŵk =ŵk−1 − γ
(∂J
∂w

)∣∣∣∣∣
ŵk−1,Φ(xk),ẋk

= ŵk−1 − γe
∂e

∂w

T
∣∣∣∣∣
ŵk−1,Φ(xk),ẋk

= (wΦ(x)− ẋ)TΦ(x)T

(3.49)

were γ is the learning rate of the algorithm.

3.3.4 Sparse Regression

Furthermore, the Sparse Identification of Non-linear Dynamics (SINDy) is another approach
worth considering. In SINDy, the objective function to be minimized incorporates the weight of
the parameter size. Typically, this discourages the presence of large parameters and promotes
model sparsity. This emphasis on sparsity enhances learning stability, as the model tends to rely
on a smaller number of basis functions.

J(w) =

Ns∑
i=1

eTi ei + λ||w||1 (3.50)

3.3.5 System identification examples

To evaluate the performance of the different system identification algorithms, we can check it
with some naive Systems. In the first one, we will have linear model with two states and two
inputs
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Figure 3.1: Linear System Identification performance

ẋ =

(
−0.1 0
0 −0.1

)
x+

(
0.9 1
−0.9 0.9

)
u, (3.51)

where the state space representation will have some losses proportional to the state values as
represented with the state matrix, and the input matrix will couple both input values to both of
the system states.

In this case, we have to adjust the hyperparameters of the SINdy and GD algorithms. In order
to do it, we have to take into account that the greater the λ in the SINDy algorithm, the greater
the weight of having more parameters and the lower the accuracy. As we have almost all the
parameters, and we will evaluate mostly the predictions accuracy, we will choose a small value
such as λ = 0.05. In the GD case the learning rate adjustments becomes a trade off between the
learning speed of the algorithm, and the stability towards a fixed set of parameters. The greater
the λ, the greater the shifts as each sample enters the learning algorithm. As we will have many
input samples, w priorized the leaning stability, and selected a learning rate of λ = 0.001.

Figure [3.1a] shows an excitation of the model with a control signal generated with three si-
nusoidal with different frequencies added. As we can see in the Figure[3.1b], this excitation is
enough for the predictors to learn the dynamics of the system with a set of linear basis functions.
The Gradient Descend is the the algorithm that learns the dynamics slower and with a worse
final error, and the Least Squares algorithm commits the smaller accumulated error.

We can also check the efficiency of the algorithm with a nonlinear system, that depends on the
sinus function of some states

ẋ =

 −0.1x1 + 3sin(x3) + 0.9u1 + u2
−0.1x2 + sin(x3)− 0.9u1 + 0.9u2

3

 (3.52)

In this scenario, prior knowledge of sinusoidal components in the system non-linearities becomes
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Figure 3.2: Nonlinear System Identification performance

crucial. This knowledge allows to achieve near-perfect prediction of the system dynamics using
predictors based on Least Squares, as illustrated in Figure [3.2b].

With these two examples, we have learned that those system identification algorithms are per-
fectly capable of learning the parameters for non-linear when the basis of functions are correctly
set up, and the relevance that the hyperparameters have for the learning process using SINdy
and GD.

To determine the algorithms deserving further investigation, we must consider the RLS and
SINDy algorithm ability to efficiently incorporate new knowledge gained from experience. Time
efficiency is prioritized to avoid the computational burden associated with relearning all data
points from scratch each time new input data is introduced for the LS method. This considera-
tions guides our selection process towards the first two ones.

It should be noted that in the toy examples used to demonstrate the learning capabilities of the
System Identification problem, certain hyperparameters needed to be tuned. For instance, in the
Gradient Descent algorithms, the learning rate γ had to be adjusted to ensure stable learning.
Additionally, the weight of the parameters norm had to be considered in the SINDy algorithm to
balance precision in the learning process. These hyperparameters play a crucial role in achieving
optimal performance and should be carefully fine-tuned accordingly.

3.4 Structured Online Learning-Based Control

A novel approach in System Identification involves combining the previously learned algorithms
with the model-based controller discussed in subsection 3.2. This integration results in an adap-
tive control algorithm capable of simultaneously learning the model for non-linear dynamics
using collected data and generating control signals based on the acquired knowledge. In the
book [FL23], a method known as Structured Online Learning-Based Control (SOL Control) is
proposed. SOL Control involves a series of iterative steps throughout the control process to
effectively govern the system.

The SOL control algorithm initiates by collecting a small set of samples comprising state, control
signal, and dynamical output triples. These samples are used to initialize the System Identi-
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fication algorithm. Simultaneously, an initialization of the Value Function parameter P (0) is
also performed to set the initial state of the algorithm. These initialization are crucial steps to
kick-start the learning and control processes effectively.

Once the controller parameters are initialized with certain values, the learning process can com-
mence through iterative steps. The iterations involve the following steps:

1. Generate a control signal u(t) given the current learned Value Function parameters
P (t) and Model coefficients W with the Equation (3.39).

2. Apply the generated control signal and observe the behavior of the system.

3. If necessary, save the state, control, and dynamics trio for later use in updating the
model parameters based on the chosen System Identification (SI) algorithm.

4. Integrate P (t) using Equation (3.43), which updates the Value Function using the col-
lected data.

These steps are repeated iteratively to continually improve the learned model and control strategy
based on the observed system behavior.

It is worth to remark that the System Identification problem can be extended to include the
control signal by introducing it to the basis functions. In this case, the dynamical model can be
rewritten as follows

ẋ = WΦ(x) +

m∑
j=1

WjΦ(x)uj =
(
W W1 . . . Wm

)


Φ(x)
Φ(x)u1

...
Φ(x)um

 (3.53)

In order to adapt the controlled system to the system identification notation (Section 3.3), the
following substitutions can be made:

• The notation w can be replaced with w ≜
(
W W1 . . . Wm

)
. This indicates that

the parameter vector w is composed of the model coefficients W along with additional
coefficients W1 to Wm.

• The notation Φ(x) can be substituted with Φ(x) ≜


Φ(x)

Φ(x)u1
...

Φ(x)um

. This means that the

feature vector Φ(x) is augmented with additional terms Φ(x)u1 to Φ(x)um, where u1 to
um represent the control signals.

These substitutions allow for an expanded representation of the parameters and feature vectors,
taking into account the additional terms associated with the control signals.

Furthermore, it is crucial to highlight that for improved time performance of the controller, we
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have the flexibility to determine when to update the learned system model. Usually, if the current
model demonstrates accurate predictions or if the system is in a steady state condition, there
may be no need to incorporate additional data and update the model. This selective approach to
model updates allows for more efficient utilization of computational resources and can contribute
to overall controller performance.
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4 Proposed approach

In this section, we are going to put together the elements described in Section 2 in order to
establish the system that we will try to manage.

4.1 The microgrid components

In this case, we will model one household with a combined storage system composed of a battery
and a super capacitor (see Figure 4.1). The higher battery capacity can give us the flexibility to
store the energy that we produce in the long term and cover the power needs of the household.
The supercapacitor might have a lower capacity due to the high costs and space needs for higher
power capacity. This last element will give us the capacity to absorb in the short term all the
power needed or generated due to its high power density, but will not be able to maintain it in
the long term.

Figure 4.1: Household Grid

The house elements will be considered as power drawers only, and the demand profiles will depend
on the complexity of the problem that we can solve. The simplest ones might be modeled
as a constant consumption or a known sinusoidal behavior that represents the two peaks of
consumption in the morning and the late evening. But we can also address the challenge of
having real data once the model is well defined and solved for simpler cases.

For this problem, we are additionally considering a source of electrical power. As discussed
earlier, it will consist in an array of Photovoltaic pannels, that will be cheaper to install and
service due to the lack of moving parts, and the easy access to it in any circumstances opposed
to the wind turbines, whose optimal deployment would require high altitude installations.

Finally, all of the energy elements will be connected to the same power line, so any lack or
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excess of power can be sent or subtracted from the wider grid. This set up will ensure the well
functioning of the system even when the batteries are full or drained out, or when the system
cannot provide the necessary power capacities.

Note that this will add an extra cost to the installation, as it will need to be able to handle
enough power peaks, but more importantly, the cost of buying electricity from the grid will have
a greater impact on the cost of operation, as the prices cannot be determined by the household
members.

4.2 Working hypothesis

In our simplified grid, we are going to consider a linear behavior of the Energy Storage Systems,
what means that the charging and discharging of the batteries will be proportional to the amount
of power introduced or drained from the ESS.

dSOC

dt
= ηPower, (4.1)

where the SOC is the state of charge of the Storage System, and η is the efficiency factor,
that we are going to consider constant for both the battery and the SC, and symmetrical for
charging and discharging. In a real system, this factor could depend in many variables such
as the temperature, the amount of power and even the life cycle of the system in a nonlinear
fashion. Although we have simplified matters, we are going to consider different efficiencies for
the two ESS that we have available due to the discussed properties, the battery will have a lower
efficiency coefficient due to the sensibility to changes, and in the other hand, the SC will be
pretty much efficient both charging and discharging operations.

The SOC of ESS will also have some leaks only from having it turned on, so some loses propor-
tional to the SOC itself can be considered. In this case, the battery tends to be more stable,
and therefore, the leaked energy is lower than that from the Super Capacitor. Given this two
ESS, the model of the system will have the following structure:

dSOCbatt/dt = −αbattSOCbatt + ηbattubatt

dSOCSC/dt = −αSCSOCSC + ηSCuSC
(4.2)

where the control inputs ubatt and uSC are the delivered power to the Storage Systems, that
can be positive if charging the ESSs or negative if draining them. And the suffixes of the SOC,
coefficients and inputs represents the effects on that term.

In addition, we have to considerate the equilibrium of the grid condition, that relates the power
that can be delivered to the Storage Systems with the generation, the demand, and the needed
power that we have to draw from the electrical grid.

ubatt + uSC = Generation−Demand+ ugrid, (4.3)

where a positive Generation indicates an increase on the power of the grid that has to be absorbed
by the ESSs or the electrical grid if the previous fails in that. The Demand represents the
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Parameters Values
ηbatt 0.9
ηSC 0.99
αbatt 0.01
αSC 0.1

Table 4.1: Grid parameters

consumption of the household and will drain out the stored energy. Finally, the ugrid represents
the power that is taken out of the electrical grid, so a positive value may charge the ESSs or
compensate the high demand peak, whereas a negative value indicates a excess of the power that
the system can handle, and therefore the need to deliver it to he grid.

Given the complexity to forecast the price of the electricity from the grid, we are going to consider
that the price of borrowing power from it will be constant, and the price of delivering power will
also be positive, as the surplus of electricity must be absorbed by a third party with some costs.

To simplify the notation, we are going to introduce the disparity as the difference between the
Generation and the Demand, so it can be treated as a single variable that the system have to
reject in order to stabilize the SOC of the ESSs.

ubatt + uSC = Disparity + ugrid. (4.4)

In the Table 4.1, we can see a summary of the parameter values that we are going to use in order
to simulate the problem and the costs of operation parameters.

[
dSOCbatt/dt
dSOCSC/dt

]
=

[
−αbatt 0

0 −αSC

][
SOCbatt

SOCSC

]
+

[
ηbatt 0
0 ηSC

][
ubatt
uSC

]
(4.5)

4.2.1 Economic MPC

A natural way to solve the problem is by presenting a multi modal Economic Model Predictive
Control where the objective cost function balances different control objectives cost for the opti-
mization problem. The knowledge of the system evolution is leveraged in order make accurate
predictions of the system behavior and therefore optimize accurately the objective function. The
Economic part stands for the type of function that has to be optimized where, opposed to a
tracking problem, does not have reference that the system must follow, but and accumulated
cost of operation that has to be minimized. This objective usually has various costs that com-
petes to be minimized, as different objectives might not be aligned, and an optimal equilibrium
must be reached according to the design of the cost function.

In this case, several types of costs can be assigned to the operation of the system. The principal
one that has to be considered is the economical cost that extracting and delivering electrical
power to the grid, as buying energy or storing it in third party Storage Systems does come with
a price.

Other factors might include the amount of power that the battery and SC systems has to handle,
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and the higher it is, the more it affects to the lifespan of the components. This cost will be higher
for the battery component and be progressive. They can be translated to an economical cost
as the degradation of the efficiency can be taken into account as well as the need to change the
battery sooner implies an economical cost to the owners.

A third cost can be associated to the State of Charge of the elements, as having some room in
the higher level of the SOC will be useful to absorb more energy and some room in the lower part
is advised to have a save operation. It can be also taken into account the fact that some battery
technologies like the Li+ ions based ones, suffer some degree of degradation if they operates in
the extremes of its capacities.

That last type of costs can be addressed with some soft constraints over the SOC of the compo-
nents. That add a new parameter to the system, but has an optimal value of zero if the desired
restriction is met by the SOC

L(SOC)safety = csafety · zsafety
s.t. zsafety ≥ 0

SOC ≤ SOCmaxdesired + zsafety,

(4.6)

where SOCmaxdesired is the limit that we wished to be fulfilled. Eventhough the described cost
is linear, in a more general case, it can be considered to describe any other positive function for
positive values of zsafety, but coming with its computational burden.

Another great advantage of using EMPC methods comes from the possibility to establish hard
limits to the system states, controls or any relation between them, what bring us the flexibility
to work and operate in safe environments if there is a solution that meets the restrictions.

Despite all those advantages, there are also some drawbacks in employing MPC methods. The
first one comes with the hyperparameters that we have to tune in order to obtain the desired
equilibrium between the different cost functions. But the hardest choice to make is the equilib-
rium between the control horizon, that will affect to the computational burden as the horizon is
increased, and the time constant, that will allow a more detailed control if short, but at the cost
of being able to predict shorter in time.

This decision can be found quite hard, as the power demand and generation forecasts are done
in a daily basis, so the relevant fluctuations can last for hours, whereas the controller must be
able to handle changes in a sub-minute basis, as switching appliances like the light, the oven or
the microwave happen in the scale of minutes.

In order to address the dichotomy between the time performance (with lower prediction horizon
steps), reliability (having a small time intervals at each step) and optimality (leveraging the
knowledge of the forecast by expanding the predicted time horizon), there are several proposals.
Among the most popular ones, there is the differentiation between a EMPC based planner,
with higher time horizon that leverages the forecasting knowledge and generates the trajectory
that the SOC of the ESSs must follow, and the tracker, with shorter time horizon, but higher
reliability in the control, that will be in charge of following the desired trajectory despite the
sudden changes on production or demand.
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4.2.2 Reinforcement Learning

Another approach that has been growing in popularity is the data driven approach, that can
learn the policy to control the system. These methods does also rely on a cost function, that
will be optimized in the long term as seen in the Section 3.

As in the previous case, one of the principal problems is to determine the cost function that we
want to optimize in order to describe a well functioning system. We decided to make an analogy
to a quadratic cost in order to leverage the SOL method described in the Section 3.4 from the
book [FL23].

The first limitation that we can find applying those learning techniques is the lack of hard
constraints that can limit or couple different variables, like in the the equation (4.4). As stated
before, this links the elements in the same power-line inlcuding the inputs from the grid, the
energy production and consumption disparity and the Storage Systems ones. This input signal
can be freed if we substitute the power input of one of the Energy Storage Systems, for instance,
the one related to the Super Capacitor

uSC = Disparity + ugrid − ubatt. (4.7)

The model becomes a little bit different by substituting the previous condition. Now, the pro-
duction and demand profiles implications on the system can be explicitly observed, as well as
the power drawn from the grid.

dSOCbatt/dt = −αbattSOCbatt + ηbattubatt

dSOCSC/dt = −αSCSOCSC + ηSC(Disparity + ugrid − ubatt).
(4.8)

In this context, we want to penalize having great power inputs to the Storage Systems due to
the degradation that it may generate. But the cost will be much lower for the Super Capacitor
compared to the Battery one. In the other hand, the power obtained and delivered to the grid
will have a higher cost due to the economical implications that it must convey. This description
leads us to a quadratic cost with different 3 parameters for the control inputs

L(u) = rbattu
2
batt + rSCu

2
SC + rgridu

2
grid, (4.9)

where the specific proportion between each one of them will generate a different behavior.

As we have done before with the system equation, the grid stability condition can be embedded
in the control cost as well

L(u) = rbattu
2
batt + rSC(Disparity + ugrid − ubatt)

2 + rgridu
2
grid

= rbattu
2
batt + rSCDisparity2 + rSCu

2
grid + rSCu

2
batt + 2rSCubattDisparity

+ 2rSCugridDisparity + 2rSCubattugrid + rgridu
2
grid

≈ (rbatt + rSC)u
2
batt + 2rSCubattDisparity

+ 2rSCugridDisparity + 2rSCubattugrid + (rgrid + rSC)u
2
grid,

(4.10)
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where the last equivalence has been done joining the terms and eliminating the one that only
depends on the power Disparity between generation and consumption. If we assume that the
remaining terms related to the Disparity won’t have much effect on the total cost thanks to the
small value that rSC represents and that the PV array is well dimensioned such as the mean of
the Disparity is null, the cost of control can be estimated as

L(u) ≃ (rbatt + rSC)u
2
batt + 2rSCubattugrid + (rgrid + rSC)u

2
grid. (4.11)

That can also be rewritten in a quadratic non diagonal matrix

R =

(
rbatt + rSC rSC

rSC rgrid + rSC

)
. (4.12)

such as L(u) = uTRu, and the control vector can be expressed as a two dimensional vector

u =

(
ubatt
ugrid

)
. (4.13)

In order to elongate the life time of the battery, we stated that it was better to operate in a
narrower path that avoids reaching the top and the bottom of the electrical capacity. And better
if we could discourage operating near the limits. This condition can be translated to a quadratic
condition

L(SOCbatt) = qbatt(SOCbatt − SOCbatt,middle)
2, (4.14)

where the coefficient qbatt can determinate how loose the condition is if we get far from the
desired point, and next to the operational limits of the battery. The SOCbatt,middle term is the
operational point of the battery, around which we have decided that can be easier to operate
around safely. The easier operational point can be the 50% of the battery capacity, as it will
have the same room up to the top and lower limits.

In the case of the SC, we will also want to operate around the middle point of the capacity, as
it will allow us to be more flexible in the operation and be able to absorb the power peaks more
efficiently.

L(SOCSC) = qSC(SOCSC − SOCSC,middle)
2, (4.15)

In this case, as the SC has a lower capacity and due to the relevance that having some availability
in the SC capacity for the grid reliability, this qSC coefficient might take a higher value compared
to the battery’s coefficient.

If we join the two terms, we can now define a quadratic cost for the states L(x) = xTQx, where
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(a) Battery SOC cost comparison.
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(b) SC SOC cost comparison.

Figure 4.2: Comparison between the soft constraints and quadratic behavior

Q =

(
qbatt 0
0 qSC

)
, (4.16)

and the state is a normalized one that goes around zero

x =

(
SOCbatt − SOCref

batt

SOCSC − SOCref
SC

)
. (4.17)

Note that this method does not contemplate any hard constraints, neither in the control power
signals nor in the states. The only way to avoid it is by adjusting correctly the parameters in order
to avoid the limits and in case that it cannot be handled, having some recovering policies such
as cropping the power inputs for the battery an SC to the specifications in case the controller’s
signal gets out of bounds. And having some policy of extracting and delivering the excess power
to the grid despite the greater cost in case the limits are reached.

In the Figure [4.2] we can see how the quadratic cost can be compared to the soft constraints if
the parameters are chosen in order to match them. The Battery will have a wider operational
range, so the cost curve can be softer, but as the SC operational point consideration is due
to reliability issues, the range will be smaller, and the quadratic cost curve must also be more
pronounced.

In order to describe all the parameters that we will use for the learning algorithm parameters,
they will be described in the Table [4.2]. The capacity of the systems are designed to represent
a real installation with a significantly higher volume for the battery compared to the SC, and
adjusted to the production and consumption profiles in the Figure 2.3. The references will be
set at the middle point of the capacity, so the penalization Will be higher next to the working
limits and symmetrical in the upper and lower bounds. The values of the Q matrix are adjusted
to represent the higher costs of the soft constraints of the SC, that were set to ensure some safety
measurements. Lastly, the parameters of the R costs matrix are scaled to represent the higher
cost of taking electricity from the grid with respect to the battery and the SC. And also represent
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Parameters value
Battery Capacity 10 kW · h

SOCref
batt 5 kW · h

SC Capacity 3 kW · h
SOCref

SC 1.5 kW · h
rSC 0.01kW−2

rbatt 0.1kW−2

rgrid 1kW−2

qbatt 1(kW · h)−2

qSC 23(kW · h)−2

Table 4.2: Controller hyperparameters

the higher power limits with the degradation costs of the battery components with respect to
the SC’s.

4.3 Generalization of the learning algorithm

Given that we have a non diagonal matrix for the control cost, we cannot employ the method de-
veloped in 3.4 straightforwardly, as they assumed that it was diagonal. However, the assumption
was only used to state the dynamics of the P (t) matrix, and we can take the same approximation
with a more general matrix.

We can begin with the same definition of the Hamiltonian functional

H = −e−γt
(
Φ(x)T Q̄Φ(x) + uTRu

)
− e−γt∂

(
Φ(x)TPΦ(x)

)
∂x

(
WΦ(x) +

m∑
j=1

WjΦ(x)uj

)
, (4.18)

so the maximum value of it needs to be equal to the time derivative of the Value Function (3.34)
according to the Hamilton-Jacobi Bellman equation (3.30).

In this case, we are going to derive the equation by components as before

∂H

∂uj
= −e−γt

(
R[j,:]u+ uTR[:,j] − 2Φ(x)TP

∂Φ(x)

∂x
WjΦ(x)

)
, (4.19)

where uj stands for the j − th element of the control signal, R[j,:] and R[:,j] represents the j − th
row and column of the R matrix respectively. As the R matrix is symmetrical, and the partial
derivative must be zero, we can obtain some conditions over the optimal control inputs

0 = R[:,j]uj − Φ(x)TP
∂Φ(x)

∂x
WjΦ(x) (4.20)

And stacking all the dimensions, we can get
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0 =
(
u1 . . . um

)
R−

(
Φ(x)TP ∂Φ(x)

∂x W1Φ(x) . . . Φ(x)TP ∂Φ(x)
∂x WmΦ(x)

)
(4.21)

leading to the following definition of the optimal control signal

uT = Φ(x)TP
∂Φ(x)

∂x

(
W1Φ(x) . . . WmΦ(x)

)
R−1, (4.22)

where we have leveraged the common pre-factor of the independent term vector. After that, we
can substitute it in the HJB equation (3.30) and return to the expected result

−γe−γtΦ(x)TPΦ(x) + e−γtΦ(x)T ṖΦ(x) = −e−γt

(
Φ(x)T Q̄Φ(x)

− Φ(x)TP
dΦ(x)

∂x
WΦ(x)R−1

(
WΦ(x)

)T dΦ(x)
∂x

T

PΦ(x)

+ Φ(x)TP
dΦ(x)

∂x
WΦ(x) + Φ(x)TW T dΦ(x)

∂x

T

PΦ(x).

(4.23)

where WΦ(x) =
(
W1Φ(x) . . . WmΦ(x)

)
. And finally, the dynamics of the P (t) matrix can

be stated as

Ṗ = −Q̄+ γP + P
dΦ(x)

∂x
WΦ(x)R−1

(
WΦ(x)

)T dΦ(x)
∂x

T

P

− P
dΦ(x)

∂x
W −W T dΦ(x)

∂x

T

P

(4.24)

With this generalization, we can also recover the previous dynamics if the matrix R is diagonal.
But similarly, the matrix must be not singular.
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5 Results

5.1 Simulation results

In this section, we are going to test the performance of the SOL algorithms compared with other
classical solutions like the Linear Quadratic Regulators (LQR) in different scenarios. The main
goals of the problem and the structure of the cost was already given in the previous chapter [4],
and we are going to variate the profiles of the disparity.

Firstly, we will assume a null disparity, what will reduce the problem into a classical tracking
problem with a single tracking reference. Secondly, we can consider it as a random white noise,
what will make the problem similar to a noise rejection problem in a tracking scenario. And
later on, the problem will be stated with a synthetic disparity profile, were the new signal must
be managed adequately and cannot be longer considered a noise rejection problem.

5.1.1 Stabilizing Control

In our first approach, we will compare the different methods in a simple stabilizing method
with online learning. To have some ground truth, to compare it with, we will have the optimal
Ricatti solution so the cost of the tacking problem should be lower bounded by it. In this case,
we will consider a noise free environment, where the disparity between the production and the
consumption will be null. So, the system must be driven to the reference point the most efficiently
possible and maintain the State of Charge despite the power leaks of the Storage Systems.

Regarding the SOL algorithm, we have to make several choices in order to define correctly the
solution. The first one is related to the choice of basis functions. This decision can be defined by
the knowledge that we have about the system and the complexity that we expect. If there are
high nonlinearities an periodic parameters, we could introduce polynomial and sinusoidal basis
with respect to the system states, but those would come with a higher computational costs and
even instabilities in the System Identification process.

In our case, a simple linear model is enough to represent the variability of the dynamics, and
assuming the representation of the states as in the Equation (4.17), we could choose the constant
term and the linear parts as basis functions:

Φ(x) =

 1
x1
x2

 . (5.1)

And the second choice that we can make is related to the computational efficiency and the
stability of the solution. A constant update of the learned model parameters would lead to an
unstable update of the dynamics of the Value Function Ṗ (t). In order to enforce the stability of
the system, we could limit the updates of the database of points, and therefore the updates of
the learned model parameters when the prediction diverge from the actual dynamics.

We could estimate the actual dynamics with and Eulerian equation from two consecutive samples

ẋ(t) =
x(t+∆)− x(t)

∆
, (5.2)



pàg. 52 Memòria

0 5 10 15 20 25
Time (h)

0

2

4

6

8

10

12

St
at
e 
Er
ro
r C

os
t

SINDy
RLS
LS
Ricatti

0 5 10 15 20 25
Time (h)

0

2

4

6

8

10

12

Co
nt
ro
l e

ffo
rt 
Co

st

SINDy
RLS
LS
Ricatti

Figure 5.1: State error costs evolution on the left side and Control effort ones on the right side
of the system with a initial system identification phase of two hours.
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Figure 5.2: State error costs evolution on the left side and control effort ones on the right side
of the system without an initial system identification phase.

and the modeled prediction will depend on the current set of parameters and the basis evaluation

ˆ̇x(t) = W (t)Φ(x(t)) +
∑
j

Wj(t)Φ(x(t))uj(t) (5.3)

And the updates will only take place if the difference between them reaches a certain value
||ẋ(t)− ˆ̇x(t)|| > ϵ(t) that may also be variable as discussed at the end of the Section 3.4.

We will keep the choices that we have made relating the basis functions and the System Identifi-
cation updates in this section along all the experimentation part to make a more simple tracking
of the results. Except if we say so, the basis functions will be limited to the constant and linear
parts thanks to the simplicity of the problems that we have proposed, and the updates con-
dition will be kept in order to be more efficient, and avoid unnecessary updates of the system
parameters.

As we can see in the Figures [5.1] and [5.2], the learning algorithms are able to produce the
correct control actions in order to reduce the tracking error except for the Gradient Descent
method, that behaves more unstably, and requires more iterations to learn the dynamics.
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We can observe that the SINDy and LS System Identification methods gives us an almost perfect
tracking compared to the costs generated by the Ricatti solution in both cases, with and without
an initial phase with some system excitation. However, the RLS system Identification algorithm
overlaps the control signal with the SINDy’s if we provide an initial period of system excitation.
But if we do not have that initial phase, the system is not behaving in a stable way, due to the
corrections that a recursive method might introduce when new data is introduced.

Regarding the precision of the model learning, we have to take into account that the system is
learned around the tracking objective

xs = x− xref , (5.4)

Therefore, there will be some constants in the linear model. In this case, the states will be the
SOC of the storing elements. After performing the learning, the SINDy and LS’s parameters
coincide up to the third decimal as

[
ẋs,1
ẋs,2

]
=

[
−0.050 −0.010 0
−0.150 0 −0.100

]
Φ(x)+

[
0.900 0 0
0.990 0 0

]
Φ(x)u(1)+

[
0 0 0

0.990 0 0

]
Φ(x)u(2).

(5.5)

This can be transcribed to a more standard form of the system dynamics

[
ẋs,1
ẋs,2

]
=

[
−0.010 0

0 −0.100

][
xs,1
xs,2

]
+

[
0.900 0
0.990 0.990

]
u+

[
−0.050
−0.150,

]
(5.6)

that matches the expected values of the modeled microgrid 0.050 = αbatt · SOCref
batt, 0.150 =

αbatt · SOCref
batt, the efficiency parameters are also equal to ηbatt = 0.90 and the super capacitor

one ηSC = 0.990. This means that the system identification module does converge with a high
precision to the expected values along the iterative online learning and control process.

As the model is pretty simple, only a few points are necessary to estimate the parameters. As we
stated before, the updating strategy will depend on the estimated error of the predictions, and
once the error is lower than some threshold, we will stop collecting samples and updating the
model parameters. For instance, the SINDy method has only used 9 samples of the dynamics in
the database, the RLS method has required 11, and the LS one needed only 8 samples.

In this context, the time constraints of learning de dynamics does not affect the computation of
the control signals, and the similarities between the RLS and LS methods are quite clear.

In the Figure [5.3], we can observe the evolution of the states along the reference tracking. We
can observe that the Ricatti solution is the smothest one, but all the methods seem reliable.

In these cases, the optimal solution will fall a bit below the tracking signal due to the energy
leaks in the storage systems, where maintaining the level of charge also has some costs on the
power grid.
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Figure 5.3: Evolution of the SOC and control actions for the steady state reference and no
demand.
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Ricatti SINDy RLS LS
Steady state cost 0.0857 0.0891 0.0993 0.0897

Total cost 778.52 926.18 958.06 940.15
max ubatt 6.849 3.856 3.863 3.488
max uSC 0.169 0.352 0.323 0.149
max ugrid 1.0 0.203 0.203 1.0

Table 5.1: System control without identification phase KPIs.

Lastly, we will compare the steady state cost of each one of the methods, the total cost in all the
process and the maximum control actions that will affect to estimate the cost of operation, the
longevity of the batteries and the installation needed.

As we can see in the Table [5.1], the best steady state cost is found by the Ricatti equation as
expected by the theoretical results. But only by a small margin with respect to the SINDy and
LS method.

Regarding the Total Cost of the operation, the best one is again the Ricatti method by a great
margin, as it starts approaching the tracking to the reference since the beginning. The other
methods must learn the system model parameters and converge the dynamics of the value func-
tion at the same time, so it is expected some initial gap.

The Key Performance Indicator that can be improved by the SOL models is the conservativeness
at imposing great charging loads to the battery, mostly at the beginning. This may assure a
better battery longevity, but ideally, those costs were already taken into account in the modeling.

In our experiments, the SINDy is the one that provides a better and more stable performance if
the parameter λ that accounts for the cost of having more parameters is well tuned so that the
prediction performance is no hurt. In the other algorithms, despite having a small value, there
are some residual components on the rest of the parameters.

5.1.2 Noise rejection

After checking the stabilization probabilities, and the optimality of the learned solutions, we can
study how the system will behave if there is some unmodeled disturbance.

In this section, we will evaluate the robustness of the control methods based on data points
against some random noise signal of the mean power of about E[disparity2] = 0.2kW embedded
in the disparity between the energy consumption and a the energy production.

In the Figure [5.4], we can see the evolution of the systems under the noisy conditions. The
yellow line represents the presence of the power disparity disturbance that must be compensated
by the control signals, whereas the control inputs are in different tones of green.

We can observe that in this case, the states matches better the reference, and the control signal
will absorb the disturbances. As they are of a very high frequency, and a zero mean, the noise
will be integrated in a very short period of time, and therefore not affect to the evolution of the
system.

As the dynamics of the battery SOC is not affected by the power disparity explicitly, the system
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Figure 5.4: Evolution of the SOC and control actions with a zero mean noisy demand disparity.

identification algorithm will not be affected by the presence of noise. However, in the dynamics
of the SOC of the supercapacitor, the estimated dynamics depends a lot on the samples chosen
due to the relevance of noise. In this scenario, broader samplings are encouraged as well as a
wider view of the data. This will favour the LS algorithm in front of the RLS and the SINDy
method, that iteratively takes each sample as ground truth.

Despite the presence of noise, and the bad approximations that it triggers in the System Identi-
fication algorithms, the generated control signal can stabilize the states to the desired reference
and with similar results in the tracking as the noiseless situation.

Figure [5.5] compares the performance of the different methods with the LQR criteria. As we
expected, the Ricatti solution provides the more stable and smooth solutions, but the learned
methods don not fall short in comparison despite not knowing the real model a priori.

The RLS and LS curves are, again, very similar one to another, and the SINDy methods does
take a while longer to reach the desired reference as improving the model predictions is not its
unique focus.

Table [5.2] compares the performance of the models. One surprising finding is the performance
of the steady state cost with the RLS method. We can observe that the tracking of the battery
SOC reference in this case was better, than in the noise free version. This was achieved with
a more responsive control signal to the noise, where higher spikes are observed in the charging
signals.
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Figure 5.5: State error costs evolution on the left side and control effort ones on the right side
of the system with a zero mean noisy disparity.

Ricatti SINDy RLS LS
Steady state cost 0.0883 0.0911 0.0427 0.0975

Total cost 778.69 2047.46 896.17 963.90
max ubatt 3.496 8.276 3.852 6.559
max uSC 6.242 8.145 4.089 7.165
max ugrid 2.842 1.654 0.904 2.755

Table 5.2: System control with noisy disturbance KPIs.

However, the total cost of the Ricatti solution is still lower than the other methods due to
it’s previous knowledge. That compared with the time that the convergence of the system
identification parameters added to the convergence of the value function puts them in some
disadvantageous position.

5.1.3 Simplified consumption-production profiles

The best simplification that we can find will be given by the composition of a set of sinusoidal
functions, that can be easily tracked and predicted. In our case, we will simulate the power con-
sumption and generation disparity with a basal negative power consumption, to negative peaks,
one in the morning and another in the evening, and another positive peak at noon representing
the power generation of the solar panels.

The formula that we have found roughly can be given by

Disparity(t) = 1.7 · sin(ω1t− π/4)− sin(ω2t− 7π/12)− 0.5 (5.7)

where the time t is expressed in hours, and the Disparity is in kW . The frequencies of the
Disparity will be ω1 = 3/2π/24 and ω2 = 4π/24. The total balance of the power will be slightly
positive of about 0.226kW · h. This will not be able to compensate the loses due to the battery
inefficiencies, but can contribute a little in that sense.

As we can see in the Figure [5.6], it will be clearly prominent the peak in the middle of the day,
as the production exceeds by far the consumption. We have also introduced the consumption
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Figure 5.6: Energy disparity profile.

peaks early in the morning at awaking time, and late at night since the diner.

We can note that we have adjusted the function with only two sinusoid signals and a steady
state consumption, so the representations will contain some obvious simplifications. However,
we have captured the main characteristics of the functions that we wanted to portray.

As the dynamics will no correspond to the learned model, the parameters learned will not corre-
spond any real ones, so we are only going to evaluate the dynamics the the continuous learning
process will generate in the control policy and therefore the states transitions.

As we can see in the Figure [5.7], the accumulative information of the LS method drives the
control away from the optimal point, and a drastic shift on the control signal is observed at
noon as the production starts to decrease. This shift is caused by the accumulated error on the
predicted dynamics, that will trigger the new introduction of learning data-points in order to
adapt the model to the newly observed data.

The SINDy method will generate a similar evolution as the reference Ricatti equation, where the
battery absorbs must of the excess and deficiencies of energy. This will help to reduce the peaks
of power that we extract from the grid and therefore, the total cost of getting and producing
energy.

The RLS method is the one that adapts the fastest to changing conditions, and in this case there
will be no exception. It will have a more nervous systems, where the control actions pikes every
now and then, but the recursive nature of the model will make the learning faster and therefore,
the tracking more accurate.
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Figure 5.7: Evolution of the SOC and control actions with a simplified demand disparity.
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Figure 5.8: State Error costs evolution on the left side and Control effort ones on the right side
of a simplified demand disparity.

Ricatti SINDy RLS LS
Total cost 5156 5161 4433 5444
max ubatt 3.433 9.0 4.443 7.779
max uSC 6.987 10.793 5.170 5.629
max ugrid 2.822 3.630 2.257 2.523

Table 5.3: System control with simplified demand KPIs.
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In the cost curves displayed in the Figure [5.8], we can match the insights that have discussed
above. The LS model returns many undesired spikes along the day in both the tracking perfor-
mance and the control input. The SINDy method also has one single spike that would be needed
to be handled by some bound in order to preserve the safety of the components. And the RLS
method will lead to a lower tracking cost than the Ricatti solution once the system is stabilized.
However, this will come with a higher control cost in most of the cases.

Now we can discuss about some Key Performance Indicators in the Table [5.3]. In this case,
there will be no steady state cost, as the system will be more dynamic. We can observe, as we
expected, that the total cost of operation will be similar in the SINDy and the Ricatti reference
one due to the similarities that we have observed before. But surprisingly, the total accumulated
cost of all the day will be lower for the RLS method. This means that the greater flexibility
and learning capabilities of this system allowed this model to outperform the Ricatti solution by
rejecting a predictable signal of the disparity, despite not having the formulation of the signal
nor the basis functions that are adequate for representing it.

The LS is clearly the one that provided worst performance from all the previous KPIs as we
would expect from the previous graphics.

Regarding the maximum control signal registered, we have that the ugrid is especially stable, as
all the methods will remain almost in the same level, except for the LS. The SINDy algorithm
suffers from a peak in the other signals in the Battery and the SC controls. But the RLS method
is the one that maintains the maximum levels of power under some threshold.

Another factor that we could measure is the average slew rate of the control signals, as a higher
slew rate will also affect to the battery performance. But, as we did not take it into account in
the definition of the problem, we are going to keep that factor aside.

5.1.4 Internal Model

If the system disturbance have a known structure - either they are generated by another system,
or the signal follows a known linear differential equation-, the controller can reject it by incor-
porating the model of the disturbance within the original model. This approach is known as
Internal Model Principle (IMP) first proposed by Francis and Wonham [FW76].

In a State Space representation, the Internal Model can be represented as an augmentation of
the plant. The extra dimensions will follow the expected dynamics and can affect linearly the
dynamics of the original variables. This characteristics can affect and improve the design of the
new controllers thanks to the more accurate knowledge of the system dynamics.

As the synthetic disparity profile is generated by a composition of two periodic signals and a
constant, it can be represented with a combination of variables of an Internal Model whose
dynamics are known.

The constant term does not need any extra variable, as the original basis of functions already
accounts for them. But each one of the periodic terms will need the introduction of two at
least two variables. Let consider we have a single frequency sinusoidal function to learn as a
disturbance. Then, the augmented plant would follow the subsequent dynamics:
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[
ẋ1d
ẋ2d

]
=

[
0 ω
−ω 0

][
x1d
x2d

]
(5.8)

such as the solution of the dynamics can be obtained like a system of Ordinary Differential
Equations (ODE) in the Laplace transformed space


sX1d − x1d(0) = ωX2d

sX2d − x2d(0) = −ωX1d ⇒ X2d =
−ωX1d + x2d(0)

s

(5.9)

What can be substituted in the first equation

s2X1d − sx1d(0) = −ω2X1d + ωx2d(0)⇒ X1d =
sx1d(0) + ωx2d(0)

s2 + ω2
(5.10)

whose solution in the temporal domain will be

x1d(t) = x1d(0)cos(ωt) + x2d(0)sin(ωt). (5.11)

The solution of the second variable will be also given by the derivative of the first one

ẋ1d(t)

ω
= x2d(t)⇒ x2d(t) = −x1d(0)sin(ωt) + x2d(0)cos(ωt). (5.12)

With those functions, we can generate an arbitrary sinusoidal disturbance as a linear combination
of those two new variables of the augmented plant

d(t) = c1 · x1d(t) + c2 · x2d(t)

=
(
c1x1d(0) + c2x2d(0)

)
cos(ωt) +

(
− c2x1d(0) + c1x2d(0)

)
sin(ωt)

(5.13)

using this decomposition, we can reproduce the two frequencies that we chose in the first place
into those terms by selecting the adequate parameters. Firstly, we can start with the

1.7 · sin(3/2π/24t− π/4) = 1.7sin(3/2π/24t)cos(π/4)− 1.7cos(3/2π/24t)sin(π/4) (5.14)

and a simple identification of the terms can be translated into

3/2π/24 = ω1(
c1x1d(0) + c2x2d(0)

)
= −1.7sin(π/4)(

− c2x1d(0) + c1x2d(0)
)
= 1.7cos(π/4)

(5.15)
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In order to simplify the terms we can state that the initial conditions can be [x1d(0), x2d(0)] =
[1, 0], so the constants can be easily assigned c1 = −1.7sin(π/4) and c2 = −1.7cos(π/4).

To represent the other periodic signal, we can add two more dimensions to the problem in the
disturbance hidden dynamics

−sin(4π/24t− 7π/12) = −sin(4π/24t)cos(7π/12) + cos(4π/24t)sin(7π/12) (5.16)

4π/24 = ω2(
c3x3d(0) + c4x4d(0)

)
= sin(7π/12)(

− c4x3d(0) + c3x4d(0)
)
= −cos(7π/12)

(5.17)

And, as before, simplifying the initial conditions to [x3d(0), x4d(0)] = [1, 0], we can get c3 =
sin(7π/12) and c4 = cos(7π/12).

With this signal, we can obtain exactly the same disparity that we had before in the Figure [5.6].
And the plant that we will want to obtain will be

[
ẋstates
ẋd

]
=

[
Astates 0

0 Ad

]
+

[
Bstates

0

]
u (5.18)

where the states subscript denotes the original linear system, and the d subscript represents the
dynamics of the auxiliary terms. In this case, xd will have four dimensions and an initial state
of [1, 0, 1, 0], whereas

Ad =


0 ω1 0 0
−ω1 0 0 0
0 0 0 ω2

0 0 −ω2 0

 . (5.19)

to make a fair comparison, we are going to introduce a new way of controlling the system. In
this case, we will assume that there is a system that is fast enough in order to recognize the
current demand in Real Time. And, in order to correct the variable disparity, this system will
ask from the grid the power needed to compensate that. This decoupling of the tracking problem
with respect to the disparity rejection will make the system behave as with a constant reference
tracking problem.

As we can see in the Figure [5.9], the compensated model will have a much better tracking
performance, but at the cost of increasing the maximum power extracted from the grid. For the
other models, we can see how the knowledge obtained from the hidden model is leveraged to
predict the future profile of the disparity, and therefore take more knowledgeable decisions and
reduce the total cost in the longer term.
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Figure 5.9: Evolution of the SOC and control actions with an augmented plant for the disparity.
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Figure 5.10: State error costs evolution on the left side and control effort ones on the right side
of a system with an augmented plant for the disparity.

Ricatti SINDy RLS LS Ricatti+FF
Total cost 5166 4241 4227 4201 3968
max ubatt 3.433 6.330 3.954 3.947 4.165
max uSC 6.987 7.041 4.733 4.724 6.987
max ugrid 2.822 1.531 1.545 1.526 2.090

Table 5.4: System control with an augmented demand KPIs.

All three learning models does obtain a reasonable parametrization of the real system, and are
able to generate a good control signal that drives correctly the battery charges. In this case, the
learned models with the three methods will also coincide at least up to the third decimal, and
will take the form



ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6


=



−0.050 −0.010 0 0 0 0 0
−0.646 0 −0.100 −1.192 −1.189 0.956 −0.259

0 0 0 0 0.196 0 0
0 0 0 −0.196 0 0 0
0 0 0 0 0 0 0.524
0 0 0 0 0 −0.524 0





1
x1
x2
x3
x4
x5
x6


+



0.900 0
0.990 0.990
0 0
0 0
0 0
0 0


[
u1
u2

]

(5.20)

From the constants, we can identify the terms that we calculated theoretically, and see how
the terms match the ones we predicted like ω1 = 3/2 ∗ π/24 ≃ 0.196, ω2 ≃ 0.524, c1 = c2 =
1.7sin(π/4) ≃ 1.192 ≃ 1.189, c3 = sin(7π/12) ≃ 0.956 and c4 = cos(7π/12) ≃ 0.259.

Regarding the cost curves in the Figure [5.10], we can note that there is clear shifting between
the standard Ricatti control law and the learned ones. The latter methods also presents lower
peaks in each of the curves, that could denote some slight better performance in general. In the
other hand, the Ricatti law added to a Feed Forward (FF) law that compensates for the disparity
will have a much better performance while tracking the reference with the Ricatti law as we can
deduce form the purple curve on the chart. However, this comes with a worse cost in the control
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Figure 5.11: Real dataset for generation and consumption profiles

signal.

In the Table [5.4] we have gathered the same KPIs as before. We can see that the compensation
of the Disparity with the grid control will result in a better control law as the Total cost is the
lower. But this advantage might be a result from the fast control at the initial phase, as no
model must be learned since the beginning.

It is very worth noting that the learning systems performed similarly in the three cases, and
notably better than the simple Ricatti law. This demonstrate that the extra knowledge of the
system can be well leveraged by this controller in order to reduce the long term cost.

Regarding the maximum control signals, the learning model will be more conservative than the
Ricatti models when it comes to taking power from the grid. And the SINDy will have the
biggest peak in the battery power.

5.2 Experimetal Results

Finally, we tried to implement those systems with a set of real data. The consumption dataset
was collected in a regular household of four members in Spain, courtesy of the Automatic Control
group at the IRI [NSS+21b]. This dataset is composed by a registration every ten minutes of
the power consumed at the moment along several years. This generates a very noisy dataset, as
the consumption may drop or skyrocket very easily at any point of time even though it does not
average all the ten minutes straight. For example, the microwave use can represent a very high
power consumption, but the average time of use is only for a few minutes.

To avoid the highly noisy data, we averaged the consumption over two years. In this way, we
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Figure 5.12: Evolution of the SOC and control actions with the real data.

can filter most of the irregular spikes in the consumption, but in the other hand, we might also
loose the details about the seasonal profile of the consumption.

Regarding the Generation Power datset, we chose a grid conformed by a few Photovoltaic Panels
destined to cover the consumption of a farm in Germany [NSS+21a]. As the power generated
along the day was higher than the consumption of the household, we scaled the data in order to
match the consumption that we needed.

The total power that the household consumes along the average day is of about 72kW · h, and
we will scale the daily energy generation to about 78kW · h, so there is room to loose against
the inefficiencies of the batteries.

As the disparity data is very sparse for the control purposes that we wanted (the control signal
must react in under a minute basis), we have interpolated the data points so the integration can
be performed naturally.

In this case, we do not know the main frequencies of the system disparity, so we could not
implement the augmented plant that we discussed in the previous context. For that reason,
the simple model, with some disparity profile will be implemented for the control law. As we
discussed before, this will flavor models that can adapt to new dynamics faster, such as the
RLS System Identification method. But it will discourage other methods that wants to balance
between the prediction accuracy and the other parameters, such as the SINDy method.
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Figure 5.13: Tracking and Control cost the system with real data for the disparity.

Ricatti SINDy RLS LS
Total cost 45305 78484 31497 39271
max ubatt 3.553 9 9 9
max uSC 8.783 12.12 8.755 15.244
max ugrid 5.063 9 7.864 9

Table 5.5: System control with real data KPIs.

As we can see in the Figure [5.12], the SOC of the Battery even gets out of bounds when the
production is getting much higher than the consumption. For that reason, this method can be
discarded in order to preserve the safety operation of the system.

As the Ricatti control law can not be adapted to the current situation, it will only reject the
disparity as a disturbance in the states. And due to the unbounded nature of it, the system
states does fluctuate dangerously near the limits. The good part is that the control signal will
behave smoothly as the system evolves, and it will be able to absorb the excess of consumption
and production with the batteries capacity.

In the other hand, the RLS and LS methods present a tighter tracking of the reference at the
cost of having more important control signals. Specially in the case of the LS method. The
RLS will have a very nervous control, but it can be seen that it does adapt fast to the changing
conditions of the system.

From Figure [5.13], we can corroborate the previous hypothesis that the RLS and LS methods
will generate a much smaller tracking error than the Ricatti control law at the cost of increasing
the operation cost. And, as before, we are going to discard the SINDy method due to the state
limits surpassing.

From Table [5.5], it is confirmed that the significant reduction on the tracking cost translates
also in a significant reduction in the Total Cost of operation along all the day. But we can see
that the hard limitations on the battery power and the grid power are reached in almost all the
cases except for the Ricatti control law.
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6 Conclusions

In this project, our focus was on investigating methods for controlling a system without pos-
sessing specific knowledge about the system’s plant and dynamics. We delved into the depths
of various methods, particularly highlighting their relevance to the control of electrical systems
using reinforcement learning (RL) approaches. Through these approaches, we aimed to generate
control policies that minimize a predefined cost function.

During our study, we encountered certain limitations regarding the permissible form of the cost
function, as analytical solutions to the equations were required. Specifically, the control signal
component had to be quadratic to facilitate differentiation and obtain an equation for solving
the optimal control law.

As the model is learned online, and the control signal is generated over the learned model, this
techniques can resemble the more established adaptive control techniques, where the controller is
parameterized and adjusted online. However, this particular method is based on the Hamilton-
Jacobi Bellman equations in order to define the optimal control for each scenario, and the learned
model is employed to update the value function that describes the best action. This technique
allowed us to achieve remarkably good performance in the tracking problem, even in the presence
of noise, and the model could be also employed to learn and control more complex systems with
embedded non linearities.

In our study case, the problem that we solved was not an exact match of the original problem.
Several simplifications of the problem modeling allowed us to have a more schematic problem
without the internal dynamics of the components or the circuits. More over, the parameters
that we employed in the simulation model were not tuned with a real system, but employed
to illustrate the learning and controlling capabilities of the SOL instead. And the Economical
problem was transformed into a reference tracking problem with a set of approximations of the
costs, that might not portrait the reality of the problem. For instance, the symmetry in the
control costs of each component might not be realistic, as the charging and depleting of storage
systems might not be equivalent in terms of efficiency nor battery degradation. And regarding
the power extracted from the grid, the price of storing it in a third party station will probably
not be at the same cost as buying it from the grid. However, those approximations made the
problem tractable for the purposes of this project.

Remarkably, we observed that it is indeed possible to control a system with nearly flawless
performance, even when compared to the Ricatti control law in tracking problems. This success
was achieved despite the initial learning phase required to acquire the model and converge the
Value Function. Furthermore, we discovered that the prediction capabilities incorporated in the
model learning process provided an advantage to the SOL algorithm. Leveraging the future
dynamics of the system allowed us to minimize the control signal or preemptively compensate
for potential tracking disturbances.

Overall, this project served as a significant step towards our broader objective, showcasing
promising advancements in our understanding of system control methods employing Robust
Reinforcement Learning methods.

In the future, we could work on the approximations that we have taken to solve this problem,
make the operation cost more resembling to a solution for the original Economic MPC problem,
or even forecast the costs and benefits derived from extracting and injecting power to the grid.
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What would shift the current problem of reducing the peaks of power energies into a time shifting
of the energy storing, consumption and release to achieve the optimal economic performance.

We expect to develop a further investigation on the RL algorithms oriented to control situations.
Regarding this approaches, we have already worked with some model free methods that can
learn the control signal without a system identification module. Those works were based on the
assumption over the basis functions that can represent the real Value Function, and the learning
of the parameters with the sampled values of the cost function and the states. Then, the control
can be obtained by optimizing the associated cost in the Value Function, and a function estimator
that generates those control signals.

We are also expecting to explore other branches that are also related with the study of RL
algorithms that can reproduce and improve the EMPC methods like the line of studies traced
by Sebastien Gros and Mario Zanon [GZ20],[ZG21]. Where they demonstrated the equivalence
between the EMPC optimality and the RL solutions, and leveraged the best characteristics of
both worlds: the easy implementation of hard limits on the control and states signals of the
MPC approaches, and the learning adaptability of the RL methods.



Efficient Management of Energy Systems including Storage Systems pàg. 71

7 Time Schedule

As in any research project, a generic time schedule is needed in order to organize and set the
intermediate goals towards the finalization of a good thesis on time. In this regard, we proposed
an initial time line that scheduled the different tasks involved in the process.

We need to highlight that this project was developed as an extended Master’s thesis, what means
that the work load must of 30 European Credits Transfer system (ECTS). As for each credit it
is expected a dedication of at least 30 hours, the total workload is about 900 hours. Those were
split from the 6th of February until the 3rd of March with a total count of 21 weeks.

The distribution of the expected week dedication can be followed in the Gantt chart of Figure
[7.1].

w1 w2 w3 w4 w1 w2 w3 w4 w1 w2 w3 w4 w1 w2 w3 w4 w5 w1 w2 w3 w4

Review of the state of the art

Study of the problem

Review of control techniques

Reinforcement Learning techniques for control

Formal formulation of the problem

Project development

Initial tests of reviewed techniques

Development of new algorithms

Validation and testing of the algorithms

Compilation and documentation

February March April May June

Figure 7.1: Gantt chart of the weeks load distribution.

As we can see, most of the weeks will have overlapped tasks, as the research process is intrinsically
a back a forward process between the literature review and the development of the project.

the review of the state of the art will begin with the study of the problem itself, that includes
the definition of electrical grids, the study of the working principles of the components and the
contextualization of microgrids inside the hierarchical structure of the electric grid management.

Once the problem complexities are overviewed, we can start studying the more classical methods
of controlling it, and after that, we can almost simultaneously start with the more modern and
unconventional proposals of control.

Alongside with that review of the already existing proposals, we can start developing our part
of the project that may include the development of new control algorithms, the adaptation of
previous proposals to our specific case and the final validation of them.

The last part of the thesis will be dedicated to the documentation of all the work done along
those months, that may include theoretical and experimental results of the problem.
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8 Budget

This section is devoted to the description of the economical costs that the development of this
thesis has generated. This can be divided into several sources like the working force, the software
licensing, the material costs and the energetic costs.

8.1 Working fore

Regarding the working force that has been gathered with the purpose of developing this thesis,
we can compute the time of one student and two tutors.

The student has dedicated a full time effort during the four 5 months from the beginning of
February until the 3rd of July. This can be computed as the hours worked by week (40 h/week)
times the 52 weeks of a year and multipliying it by the fraction of the year worked 12/4. This
returns a total of roughly 866 hours worked in the project.

In this case, the project was done in the frame of a PhD program, so the student was perceiving
the salary of a regular PhD candidate, in this case of 19.788, 26AC as brute salary per year. This
give us a total of 8245AC along the 4 months dedicated to it.

With respect to the directors of the thesis, it can be assumed that a 5% of the total hours
dedicated by the student must also be dedicated by each one of the directors including meetings
and the consequent followup of the work. This can be translated as dedication of roughly 43.3
hours for each one of the directors. As the average salary of a university professor in Spain is of
50, 600 AC a year [sal23], we can compute the percentage of the salary that was dedicated to this
particular project.

Asset Decication (h) Yearly salary (AC) Year hours cost (AC)
Student 866 19.788,26 2080 8245

First director 43.3 50,600 2080 1053
Second Director 43.3 50,600 2080 1053

Table 8.1: Thesis working force costs

So we can conclude that the total cost associated to the dedicated working force is of roughly
10351 AC along all the process.

8.2 Software licensing

In this case, the majority of the code was developed in the python 3.10 programming language,
that is under an Open Source licensing. This means that no cost is needed to assume in order
to enjoy the use of it.

8.3 Material costs

Regarding the materials used along the development of the thesis, the main asset was the use of
a computer in all the phases of the development. Since the initial research and learning of the
topic until the code writing and results gathering.
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The estimation of the upper bound of a laptop lifetime is about 5 years. Following this, we can
compute linearly the depreciation of this particular asset along the used time of 5 months.

As the total cost of the laptop was 1800 AC, the depreciation cost can be computed as

1800AC× 5months

12months/year · 5years
= 150AC. (8.1)

8.4 Energetic costs

Regarding the energetic expenses, the main costs can be associated to the laptop, as the illu-
mination and conditioning of the working environment can be split in all the workers of the
office.

As the average consumption of a high end laptop is of 180W and the average electricity price
along the office hours is of 0.185AC/kWh, we can compute the total consumption of electricity
and the associated cost to it.

180W × 693h
1kW

1000W
× 0.185AC/kWh = 23.08AC (8.2)

8.5 Total associated cost

Finally, the total associated cost devoted to the development of the project can be estimated as
the summation of all the previous costs.

This gives us a total cost of

10351AC+ 0AC+ 120AC+ 23AC = 10524AC. (8.3)

Where the majority of the costs are associated to the staff involved in the development of the
project
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9 Environmental impact

Regarding the environmental impact of the thesis, most of consumption is related to the building
and transportation of the needed materials for the development of the thesis, and the other part
is related to the production of the energy resources employed.

Despite its inaccuracies, one generally accepted way of calculating the environmental impact of
a project can be associated to the carbon footprint that is measured in Kg of CO2 emitted to
the atmosphere.

9.1 Material footprint

In this regard, we will only study the emissions that the production and transportation of a
laptop may generate. The average emissions during the building of the product is estimated as
331KgCO2[Hau22] and usually constitutes between the 75% and 85% of the total footprint of
the laptop. As to the transportation of the product and the assembling pieces, until reaching
the final consumer, it is estimated of about 33KgCO2 [Hau22].

If we add them and take the proportional part of the lifetime of the asset, we can have an
estimation of the carbon footprint associated to the employed materials.

(331KgCO2 + 33KgCO2)× 4months

60months
= 24.27KgCO2. (9.1)

9.2 Energetic footprint

Regarding the carbon footprint that the energy production has in Spain, we can observe a
descendant tendency over the last twenty years thanks to the introduction and consolidation
of renewable sources inside the energy mix[Tis23]. This website also provides an estimation of
0.166KgCO2 per kW h for the Spanish electrical mix, so we can compute the total electrical
footprint associated to the laptop consumption of electricity

180W × 693h
1kW

1000W
× 0.166KgCO2/kWh = 20.7KgCO2. (9.2)

9.3 Environmental impact of DER

Regardless of the previous carbon footprint, we can also consider the negative carbon footprint
that the implementation of and efficient system that include Distributed Energy Resources, with
smaller losses thanks to the proximity between production and consumption, and the wider
installation of renewable electrical sources.

The development and evolution of the knowledge in this field can bring major changes in the
electrical industry, not only in the local scope, but even in the global one. But it is hard to
estimate the impact that one single thesis may have in any of those developments.
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10 Social impact

The social impact of this thesis is tightly related to the development of new control techniques
that can make a more reliable and more economical efficient management of the Distributed
Energy Resources.

As we cannot asses the particular impact of the current thesis inside this topic, any work towards
this objective may produce a positive influence on the development of the field.

We have stated that a robust management of the microgrids that contains production, con-
sumption and storage elements can make viable the correct working of the system under harsh
circumstances. This can affect positively to communities that are isolated from a wider electrical
grid, as the understanding of the needs and the management conditions can help to design the
installation of the electrical system and bring that resource to them.

This robustness in the supply may also be of vital relevance under natural disasters, where some
communities may suffer from cutoffs from the grid, and it may be important to maintain the
supply to the most critical infrastructure like hospitals or communication systems.

In the other hand, the economical benefits can come from a correct operation, that can optimize
the costs of every household by selling the electricity when the consumption is high and buying
when the price is low. This personal benefit from each one of the "prosumers" can affect entire
communities and therefore depict a generalized saving in the electrical bill of all the participants.

The economical benefit may also attract the investment in this types of systems of all types of
particulars. This could change the landscape of the electrical production, where the majority of
the population may take part and conforming a social change in the electrical consumption and
production habits.
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