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MAGNNETO: A Graph Neural Network-based
Multi-Agent system for Traffic Engineering
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Abstract— Current trends in networking propose the use of
Machine Learning (ML) for a wide variety of network optimiza-
tion tasks. As such, many efforts have been made to produce
ML-based solutions for Traffic Engineering (TE), which is a fun-
damental problem in ISP networks. Nowadays, state-of-the-art
TE optimizers rely on traditional optimization techniques, such as
Local search, Constraint Programming, or Linear programming.
In this paper, we present MAGNNETO, a distributed ML-based
framework that leverages Multi-Agent Reinforcement Learning
and Graph Neural Networks for distributed TE optimization.
MAGNNETO deploys a set of agents across the network that
learn and communicate in a distributed fashion via message
exchanges between neighboring agents. Particularly, we apply
this framework to optimize link weights in OSPF, with the goal of
minimizing network congestion. In our evaluation, we compare
MAGNNETO against several state-of-the-art TE optimizers in
more than 75 topologies (up to 153 nodes and 354 links), including
realistic traffic loads. Our experimental results show that, thanks
to its distributed nature, MAGNNETO achieves comparable
performance to state-of-the-art TE optimizers with significantly
lower execution times. Moreover, our ML-based solution demon-
strates a strong generalization capability to successfully operate
in new networks unseen during training.

Index Terms—Traffic Engineering, Routing Optimization,
Multi-Agent Reinforcement Learning, Graph Neural Networks

I. INTRODUCTION

During the last decade, the networking community has
devoted significant efforts to build efficient solutions for
automated network control, pursuing the ultimate goal of
achieving the long-desired self-driving networks [1], [2]. In
this vein, Machine Learning (ML) is considered as a promising
technique for producing efficient tools for autonomous net-
working [3], [4].

In this paper, we revisit a fundamental networking problem:
Traffic Engineering (TE) optimization [5], [6]. TE is among
the most common operation tasks in today’s ISP networks.
Here, the classical optimization goal is to minimize network
congestion, which is typically achieved by minimizing the
maximum link utilization in the network [7]–[11]. Given the
relevance of this problem, we have witnessed a plethora of
proposals approaching this problem from different angles, such
as optimizing the configuration of widely deployed link-state
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protocols (e.g., OSPF [12]), making fine-grained flow-based
routing, or re-routing traffic across overlay networks [13], [14].

Likewise, for the last years the networking community has
focused on developing effective ML-based solutions for TE.
In particular, many works propose the use of Reinforcement
Learning (RL) for efficient TE optimization (e.g., [15]–[18]).
However, at the time of this writing, no ML-based proposal
has succeeded to replace long-established TE solutions; in-
deed, the best performing TE optimizers to date are based
on traditional optimization algorithms, such as Constraint
Programming [10], Local Search [9], or Linear Program-
ming [11], [19].

In this paper, we present MAGNNETO, a novel ML frame-
work for distributed TE optimization leveraging Graph Neural
Networks (GNN) [20] and Multi-Agent Reinforcement Learn-
ing (MARL) [21] at its core1. In the proposed algorithm, a RL-
based agent is deployed on each router. Similarly to standard
intradomain routing protocols (e.g., OSPF), MAGNNETO’s
agents exchange information with their neighbors in a dis-
tributed manner. In particular, agents communicate via a neural
network-driven message passing mechanism, and learn how to
cooperate to pursue a common optimization goal. As a result,
the proposed framework is fully distributed, and agents learn
how to effectively communicate to perform intradomain TE
optimization, i.e. to minimize the maximum link utilization in
the network.

More in detail, MAGNNETO presents the following contri-
butions:

Top performance with very low execution times:
We compare MAGNNETO against a curated set of well-
established TE solutions: SRLS [9], DEFO [10] and
TabuIGPWO [11]. These solutions implement mature opti-
mization techniques on top of expert knowledge. As a result,
they are able to achieve close-to-optimal performance in
large-scale networks within minutes [22]. Our results show
that MAGNNETO achieves comparable performance to these
state-of-the-art TE solutions, while being significantly faster.
In fact, when enabling several simultaneous actions in our
framework, it runs up to three orders of magnitude faster than
the baseline optimizers (sub-second vs. minutes) in networks
with 100+ nodes. The reason for this is the fully decentralized

1MAGNNETO stands for Multi-Agent Graph Neural Network
Optimization. The code of this framework and all the data
needed to reproduce our experiments are publicly available at:
https://github.com/BNN-UPC/Papers/wiki/MAGNNETO-TE.
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architecture of MAGNNETO, which naturally distributes and
parallelizes the execution across the network.

Generalization over unseen networks: A common down-
side of current ML-based solutions applied to networking is
their limited performance when operating in different networks
to those seen during training, which is commonly referred to
as lack of generalization [23]. Without generalization, training
must be done at the same network where the ML-based
solution is expected to operate. Hence, from a practical stand-
point generalization is a crucial aspect, as training directly in
networks in production is typically unfeasible. MAGNNETO
implements internally a GNN, which introduces proper learn-
ing biases to generalize across networks of different sizes and
structures [23]. In our evaluation, we train MAGNNETO in
two different networks, and test its performance and speed on
75 real-world topologies from the Internet Topology Zoo [24]
not seen before. Our results show that in such scenarios,
MAGNNETO still achieves comparable performance to state-
of-the-art TE optimizers, while being significantly faster.

No need for overlay technologies: Recent TE optimizers
rely on novel overlay technologies to achieve their optimiza-
tion goals [9], [10]. By leveraging Segment Routing [25]
these solutions are able to use arbitrary overlay paths that
are not routed via the standard OSPF weights. This allows
to extend the routing space to a source-destination granularity
and –as shown in the literature– it renders outstanding results.
However, in this paper we show that comparable performance
is achievable by using only standard destination-based OSPF
routing. Indeed, MAGNNETO is fully compliant with current
OSPF-based networks, and does not require the use of any
overlay technology.

MAGNNETO is partially based on an earlier version pre-
sented at [26]. In that work, we raised an open question:
Is ML ready for Traffic Engineering optimization? Our goal
was to discuss whether state-of-the-art ML techniques are
mature enough to outperform traditional TE solutions; to this
end, we presented a ML framework for TE optimization, and
made an exploratory evaluation on this. This paper actually
deeps dive into this question by formulating an enhanced
ML framework –MAGNNETO– and performing a much more
comprehensive evaluation. We summarize below the main
novelties of this work with respect to [26]:

• MAGNNETO formulates the TE problem as a Decentral-
ized Partially-Observable Markov Decision Process (Dec-
POMDP), which enables to achieve a more functional
MARL setting. Instead, the previous solution [26] oper-
ated over a classical MDP, where agents must take actions
sequentially in a synchronized manner.

• MAGNNETO supports simultaneous actions at each RL
optimization step. This dramatically reduces the execution
time (up to 10x in our experiments) with respect to the
previous framework, which was limited by design to one
action per step.

• We present in this paper an extensive evaluation including
75+ real-world topologies, large-scale scenarios (up to
153 nodes), and a benchmark consisting of a representa-
tive collection of advanced TE optimizers. In contrast, the
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Figure 1: Intradomain traffic engineering optimization with
MAGNNETO.

evaluation of [26] only considered 3 different topologies
of limited size (up to 24 nodes), and the results were
compared against a single TE solver.

The remainder of this paper is as follows. Section II
describes the TE scenario where we deploy the proposed
ML-based system. Section III formalizes MAGNNETO, as a
general framework for networked environments. Afterwards,
Section IV describes how we adapt this framework to perform
intradomain TE optimization. In Section V, we make an
extensive evaluation of the proposed framework against state-
of-the-art TE proposals. Section VI summarizes the main
existing works related to this paper, and lastly Section VII
concludes the paper.

II. NETWORK SCENARIO

This section describes the intradomain TE scenario where
MAGNNETO operates. In this paper, we consider the in-
tradomain TE problem, where network traffic is measured and
routed to minimize network congestion. Typically, IP networks
run link-state Interior Gateway Protocols (IGP), such as Open
Shortest Path First (OSPF) [12], that choose paths using the
Dijkstra’s algorithm over some pre-defined link weights.

There exists a wide range of architectures and algorithms
for TE in the literature [27]. Network operators commonly use
commercial tools [28], [29] to fine-tune link weights. However,
other mechanisms propose to add extra routing entries [30] or
end-to-end tunnels (e.g., RSVP-TE [31]) to perform source-
destination routing, thus expanding the solution space.

MAGNNETO is a fully distributed framework that inter-
faces with standard OSPF, by optimizing the link weights used
by such protocol. As a result, it does not require any changes
to OSPF and it can be implemented with a software update
on the routers where it is deployed. In this context, relying on
well-known link-state routing protocols, such as OSPF, offers
the advantage that the network is easier to manage compared
to finer-grained alternatives, such as flow-based routing [32].

Figure 1 illustrates the general operational workflow of
MAGNNETO:

1) Traffic Measurement: First, a traffic measurement plat-
form deployed over the network identifies a new Traffic Matrix
(TM). This new TM is communicated to all participating
routers (Fig. 1, step 1), which upon reception will start the
next step and optimize the routing for this TM. We leave
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out of the scope of this paper the details of this process,
as TM estimation is an extensive research field with many
established proposals. For instance, this process can be done
periodically (e.g., each 5-10 minutes as in [11]), where the TM
is first estimated and then optimized. Some proposals trigger
the optimization process when a relevant change is detected
in the TM [33], while others use prediction techniques to
optimize it in advance [34]. Also, some real-world operators
make estimates considering their customers’ subscriptions and
operate based on a static TM. Our proposal is flexible and can
operate with any of these approaches.

2) MAGNNETO TE optimization: Once routers receive
the new TM, the distributed RL-based agents of MAGN-
NETO start the TE optimization process, which eventually
computes the per-link weights that optimize OSPF routing
in the subsequent step (Fig. 1, step 2). Particularly, we set
the goal to minimize the maximum link load (MinMaxLoad),
which is a classic TE goal in carrier-grade networks [7],
[8], [10]. This problem is known to be NP-hard, and even
good settings of the weights can deviate significantly from
the optimal configuration [8], [32]. Our MARL optimization
system is built using a distributed Graph Neural Network
(GNN) that exchanges messages over the physical network
topology. Messages are sent between routers and their directly
attached neighbors. The content of such messages are hidden
states that are produced and consumed by artificial neural
networks and do not have a human-understandable meaning.
The GNN makes several message iterations and, during this
phase, local configuration of the router remains unchanged,
thus having no impact on the current traffic. More details about
the inner workings, performance, communication overhead,
and computational cost can be found in Sections III-V.

3) OSPF convergence: Lastly, the standard OSPF conver-
gence process is executed taking into account the new per-
link weights computed by MAGNNETO. Specifically, each
agent has computed the optimal weigths for its locally attached
links. For OSPF to recompute the new forwarding tables, it
needs to broadcast the new link weights; this is done using the
standard OSPF Link-State Advertisements (LSAs) [12]. Once
the routers have an identical view of the network, they compute
locally their new forwarding tables (Fig. 1, step 3), and traffic
is routed following the optimization goal. Convergence time
of OSPF is a well-studied subject. For instance, routing tables
can converge in the order of a few seconds in networks with
thousands of links [35].

III. MAGNNETO
This section provides a detailed description on how MAGN-

NETO operates. To do so we first briefly introduce the main
ML methodologies it implements. Note that MAGNNETO
is conceived as a general framework to optimize networked
environments in a distributed fashion; details on how it is
particularly adapted to face intradomain TE are then provided
in Section IV.

A. Related ML-based Technologies
MAGNNETO incorporates two well-known ML-based

mechanisms: Multi-Agent Reinforcement Learning and Graph

Neural Networks. Let us provide some background on these
technologies:

1) Reinforcement Learning (RL): According to the regular
setting of RL [36], an agent interacts with the environment in
the following way: at each step 𝑡, the agent selects an action
𝑎𝑡 based on its current state 𝑠𝑡 , to which the environment
responds with a reward 𝑟𝑡 and then moves to the next state 𝑠𝑡+1.
This interaction is modeled as an episodic, time-homogeneous
Markov Decision Process (MDP) (S,A, 𝑟, 𝑃, 𝛾), where S
and A are respectively the state and action spaces; 𝑃 is
the transition kernel, 𝑠𝑡+1 ∼ 𝑃(·|𝑠𝑡 , 𝑎𝑡 ); 𝑟𝑡 represents the
immediate reward given by the environment after taking action
𝑎𝑡 from state 𝑠𝑡 ; and 𝛾 ∈ (0, 1] is the discount factor used to
compute the return 𝐺𝑡 , defined as the –discounted– cumulative
reward from a certain time-step 𝑡 to the end of the episode 𝑇 :
𝐺𝑡 =

∑𝑇
𝑡=0 𝛾

𝑡𝑟𝑡 . The behavior of the agent is described by a
policy 𝜋 : S → A, which maps each state to a probability
distribution over the action space, and the goal of an RL
agent is to find the optimal policy in the sense that, given
any considered state 𝑠 ∈ S, it always selects an action that
maximizes the expected return �̂�𝑡 . There are two main model-
free approaches to this end [37]:

• Action-value methods, typically referred to as
Q-learning; the policy 𝜋 is indirectly defined from
the learned estimates of the action value function
𝑄 𝜋 (𝑠, 𝑎) = E𝜋 [𝐺𝑡 |𝑠0 = 𝑠, 𝑎0 = 𝑎].

• Policy Gradient (PG) methods, which directly attempt
to learn a parameterized policy representation 𝜋\ . The
Actor-Critic family of PG algorithms also involves learn-
ing a function approximator 𝑉𝜙 (𝑠) of the state value func-
tion 𝑉 𝜋\ (𝑠) = E𝜋\ [𝐺𝑡 |𝑠𝑡 = 𝑠]. In this case, actions are
exclusively selected from function 𝜋\ , which estimates
the policy (i.e., the actor), but the training of such policy
is guided by the estimated value function 𝑉𝜙 (𝑠), which
assesses the consequences of the actions taken (i.e., the
critic).

2) Multi-Agent Reinforcement Learning (MARL): In a
MARL framework there is a set of agents V interacting with
a common environment that have to learn how to cooperate
to pursue a common goal. Such a setting is generally for-
mulated as a Decentralized Partially Observable MDP (Dec-
POMDP) [21] where, besides the global state space S and
action space A, it distinguishes local state and action spaces
for every agent –i.e., S𝑣 andA𝑣 for 𝑣 ∈ V. At each time step 𝑡
of an episode, each agent may choose an action 𝑎𝑣𝑡 ∈ A𝑣

based on local observations of the environment encoded in
its current state 𝑠𝑣𝑡 ∈ S𝑣 . Then, the environment produces
individual rewards 𝑟 𝑣𝑡 (and/or a global reward 𝑟𝑡 ), and it
evolves to a next global state 𝑠𝑡+1 ∈ S –i.e., each agent 𝑣
transitions to the following state 𝑠𝑣

𝑡+1 ∈ S𝑣 . Typically, a
MARL system seeks for the optimal global policy by learning
a set of local policies {𝜋\𝑣 }𝑣∈V . For doing so, most state-of-
the-art MARL solutions implement traditional (single-agent)
RL algorithms on each distributed agent, while incorporating
some kind of cooperation mechanism between them [21].
The standard approach for obtaining a robust decentralized
execution, however, is based on a centralized training where
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extra information can be used to guide agents’ learning [38].
3) Graph Neural Networks (GNN): These models are a

recent family of neural networks specifically conceived to
operate over graph-structured data [20], [23]. Among the
numerous GNN variants developed to date [39], we focus on
Message Passing Neural Networks (MPNN) [40], which is
a well-known type of GNN whose operation is based on an
iterative message-passing algorithm that propagates informa-
tion between elements in a graph G = (N , E). Focusing on
the set of nodes, the process is as follows: first, each node
𝑣 ∈ N initializes its hidden state ℎ0

𝑣 using some initial features
already included in the input graph. At every message-passing
step 𝑘 , each node 𝑣 receives via messages the current hidden
state of all the nodes in its neighborhood B(𝑣) = {𝑢 ∈ N |∃𝑒 ∈
E, 𝑒 = (𝑢, 𝑣) ∨ 𝑒 = (𝑣, 𝑢)}, and processes them individually by
applying a message function m(·) together with its own internal
state ℎ𝑘𝑣 . Then, the processed messages are combined by an
aggregation function a(·):

𝑀𝑘
𝑣 = 𝑎({𝑚(ℎ𝑘𝑣 , ℎ𝑘𝑖 )}𝑖∈B(𝑣) ) (1)

Finally, an update function u(·) is applied to each node 𝑣;
taking as input the aggregated messages 𝑀 𝑘

𝑣 and its current
hidden state ℎ𝑘𝑣 , it outputs a new hidden state for the next step
(𝑘 + 1):

ℎ𝑘+1𝑣 = 𝑢(ℎ𝑘𝑣 , 𝑀𝑘
𝑣 ). (2)

After a certain number of message passing steps 𝐾 , a readout
function r(·) takes as input the final node states ℎ𝐾𝑣 to produce
the final output of the GNN model. This readout function can
predict either features of individual elements (e.g., a node’s
class) or global properties of the graph. Note that a MPNN
model generates a single set of message, aggregation, update,
and readout functions that are replicated at each selected
graph element.

B. Execution Framework

MAGNNETO internally models a networked environment
as a graph G = (N , E,V), with N and E representing the
set of nodes and edges, respectively, and V acting for a
set of agents that can control some of the graph entities
(nodes or edges). Let S and A represent the global state
and action spaces, respectively, defined as the joint and union
of the respective agents’ local spaces, S =

∏
𝑣∈V S𝑣 and

A =
⋃
𝑣∈V A𝑣 . The theoretical framework of MAGNNETO

allows to implement both Q-learning and PG methods, so for
the sake of generalization let 𝑓\ represent the global RL-based
function that is aimed to learn –i.e., the global state-action
value function 𝑄 \ for the former, or the global policy 𝜋\ for
the latter.

A main contribution of MAGNNETO is that it makes all
agents 𝑣 ∈ V learn the global RL-based function approxi-
mator in a fully distributed fashion –i.e., all agents end up
constructing and having access to the very same representa-
tion 𝑓\ . In particular, and from a theoretical RL standpoint,
this allows to formulate the problem within two different
paradigms depending on the number of actions allowed at
each time-step of the RL episode. On the one hand, imposing

a single action per time-step enables to devise the problem
as a time-homogeneous MDP of single-agent RL [37]. On
the other hand, it requires the more challenging Dec-POMDP
formalization of standard MARL [21] when letting several
agents act simultaneously. Note, however, that in practice the
execution pipeline of MAGNNETO is exactly the same in both
cases.

Another relevant feature of our design is that all agents
𝑣 ∈ V are able to internally construct such global represen-
tation 𝑓\ mainly through message communications with their
direct neighboring agents B(𝑣) and their local computations,
no longer needing a centralized entity responsible for col-
lecting and processing all the global information together.
Such a decentralized, message-based generation of the global
function is achieved by modeling the global function 𝑓\ with
a MPNN (see Sec. III-A3), so that all agents 𝑣 ∈ V deployed
in the network are actually replicas of the MPNN modules
(message, aggregation, update and readout functions) that
perform regular message exchanges with their neighbors B(𝑣)
following the message passing iteration procedure of MPNNs;
in particular, note that such parameter sharing implies that all
agents share as well the same local state and action spaces.
This reinterpretation of a MPNN as a set of copies of its
internal modules is especially important due to the fact that
in our approach we directly map the graph G to a real
networked scenario, deploying copies of the MPNN modules
along hardware devices in the network (e.g., routers) and
making all message communications involved to actually go
through the real network infrastructure. Hence, our proposed
architecture naturally distributes the execution of the MPNN,
and consequently is able to fully decentralize the execution of
single-agent RL algorithms.

Algorithm 1 summarizes the resulting distributed pipeline.
At each time-step 𝑡 of an episode of length 𝑇 , the MPNN-
driven process of approximating the function 𝑓\ (𝑠𝑡 , 𝑎𝑡 )
–where 𝑠𝑡 ∈ S and 𝑎𝑡 ∈ A refer to the global state and
action at 𝑡– first constructs a meaningful hidden state ℎ𝑣 for
each agent 𝑣 ∈ V. Each hidden state ℎ𝑣 basically depends
on the hidden representations of the neighboring agents B(𝑣),
and its initialization ℎ0

𝑣 is a function of the current agent state
𝑠𝑡𝑣 ∈ S𝑣 , which is in turn based on some pre-defined internal
agent features 𝑥𝑡𝑣 . Those representations are shaped during
𝐾 message-passing steps, where hidden states are iteratively
propagated through the graph via messages between direct
neighbors. In particular, successive hidden states ℎ𝑘𝑣 , where
𝑘 accounts for the message-passing step, are computed by the
message, aggregation and update functions of the MPNN, as
previously described in Section III-A3.

Once agents generate their final hidden representation, a
readout function –following the MPNN nomenclature– is
applied to each agent to finally obtain the global function 𝑓\ .
Particularly, in our system the readout is divided into two
steps: first, each agent 𝑣 ∈ V implements a local readout
that takes as input the final representation ℎ𝐾𝑣 , and outputs
the final value -or a representation- of the global function
𝑓\ over every possible action in the agent’s space A𝑣 ; for
instance, this output could be the unnormalized log probability
(i.e., logit) of the agent’s actions in case of PG methods,
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Algorithm 1: MAGNNETO’s execution pipeline.
Require: A graph G = (N , E) with a set of agents V,

MPNN trained parameters \ = {\𝑖}𝑖∈{𝑚,𝑎,𝑢,𝑟 }
Input: Initial graph configuration 𝑋0

G , episode length 𝑇 ,
number of message passing steps 𝐾

1 Agents initialize their states 𝑠0𝑣 based on 𝑋0
G

2 for 𝑡 ← 0 to 𝑇 do
3 Agents initialize their hidden states

ℎ0
𝑣 ← (𝑠𝑡𝑣 , 0, . . . , 0)

4 for 𝑘 ← 0 to 𝐾 do
5 Agents share their current hidden state ℎ𝑘𝑣 to

neighboring agents B(𝑣)
6 Agents process the received messages

𝑀 𝑘
𝑣 ← 𝑎\𝑎 ({𝑚\𝑚 (ℎ𝑘𝑣 , ℎ𝑘`)}`∈B(𝑣) )

7 Agents update their hidden state
ℎ𝑘+1𝑣 ← 𝑢(ℎ𝑘𝑣 , 𝑀𝑘

𝑣 )
8 end for
9 Agents partially evaluate the RL function 𝑓\ over

their own actions { 𝑓\ (𝑠𝑡 , 𝑎)}𝑎∈A𝑣
← 𝑟\𝑟 (ℎ𝐾𝑣 )

10 Agents receive the partial evaluations of 𝑓\ of the
rest of agents and build the global representation
𝑓\ ← { 𝑓\ (𝑠𝑡 , 𝑎)}𝑎∈A

11 Agents select the same set of actions 𝐴𝑡
according to 𝑓\

12 Agents whose action was selected execute it, and
the environment updates the graph configuration
𝑋 𝑡+1G

13 Agents update their states 𝑠𝑡+1𝑣 based on 𝑋 𝑡+1G
14 end for
Output: New graph configuration 𝑋∗G that optimizes

some pre-defined objective or metric

or directly the q-value associated to each action when con-
sidering Q-learning algorithms. The second and last steps
involve a communication layer that propagates such individual
outputs to the rest of the agents, so that all of them can
internally construct the global representation of 𝑓\ for the
overall network state 𝑠𝑡 =

∏
𝑣∈V 𝑠

𝑡
𝑣 and all possible actions⋃

𝑣∈V {𝑎𝑣,0, 𝑎𝑣,1, . . . , 𝑎𝑣,𝑖}, with 𝑖 ∈ N\{0} the number of
actions of local agent spaces A𝑣 . Finally, to ensure that all
distributed agents sample the same actions when 𝑓\ encodes
a distribution, they are provided with the same probabilistic
seed before initiating the process. Consequently, only agents
whose action has been selected does execute an action at each
time-step 𝑡. Note that actions are not actually applied over
the network configuration until the whole optimization process
finishes.

IV. MAGNNETO FOR TRAFFIC ENGINEERING

In this section we describe the particular adaptations of
the general MAGNNETO framework when applying it to the
intradomain TE scenario described in Section II. Moreover, we
provide some details about the training pipeline of our models.

A. General Setting

A straightforward approach to map the graph G of the
described MAGNNETO framework to a computer network
infrastructure is to associate the nodes N to hardware devices
(e.g., router, switches) and the edges E to the physical links
of the network. Regarding the set of agents V, they can be
identified either with the set of nodes, so that they individually
control a hardware device, or with the set of edges by
controlling some configuration parameters of a link connecting
two devices.

In the intradomain TE problem, the goal is to learn the set of
link weightsW = {𝑤𝑒}𝑒∈E that minimizes the maximum link
utilization for a certain traffic matrix 𝑇𝑀 . Hence, we adapt
MAGNNETO so that each agent controls a link (i.e., V=̂E)
and can modify its weight 𝑤𝑒; in fact, in order to make the
notation simpler, from now on we will refer to each agent
𝑣 ∈ V as the edge 𝑒 ∈ E it represents. We also note that:
• computer networks are commonly represented as directed

graphs with links in both directions, so for each directed
link 𝑒 = (𝑛𝑠𝑟𝑐𝑒 , 𝑛𝑑𝑠𝑡𝑒 ) ∈ E, with 𝑛𝑠𝑟𝑐𝑒 , 𝑛𝑑𝑠𝑡𝑒 ∈ N , we define
its neighbor as the set B(𝑒) of edges whose source node
coincides with the destination node of 𝑒, i.e. B(𝑒) = {𝑒′ ∈
E|𝑛𝑠𝑟𝑐

𝑒′ = 𝑛𝑑𝑠𝑡𝑒 }. In other words, edges in B(𝑒) are those
links that can potentially receive traffic from link 𝑒.

• in practice, link-based agents 𝑒 ∈ E would be deployed
and executed in their adjacent source (𝑛𝑠𝑟𝑐𝑒 ) or destination
(𝑛𝑑𝑠𝑡𝑒 ) hardware device.

Furthermore, we implement a well-known Actor-Critic method
named Proximal Policy Optimization (PPO) [41], which offers
a favorable balance between reliability, sample complexity, and
simplicity. Consequently, in this case the global function 𝑓\
of the framework (see Sec. III-B) is the global policy 𝜋\ of
the actor. Regarding the critic’s design, more information can
be found in Section IV-C.

B. Adapting MAGNNETO to TE

Having clear the general configuration of our MAGNNETO
implementation, now we will further describe its operation
when dealing with the intradomain TE objective. To do so,
let us reinterpret each of the main fundamental elements
introduced earlier from a TE perspective:

1) Environment: We consider episodes of a fixed number
of time-steps 𝑇 . At the beginning of each episode, the envi-
ronment provides with a set of traffic demands between all
source-destination pairs (i.e., an estimated traffic matrix [11]).
Each link 𝑒 ∈ E has an associated capacity 𝑐𝑒, and it is
initialized with a certain link weight 𝑤0

𝑒. These link weights
are in turn used to compute the routers’ forwarding tables,
using the standard Dijkstra’s algorithm. Each agent 𝑣𝑒 ∈ V
has access to its associated link features, which in our case
are the current weight, its capacity, the estimated traffic matrix
and the weights of the other links. This can be achieved with
standard procedures in OSPF-based environments (see Sec. II).

2) State Space and Message Passing: At each time-step 𝑡
of an episode, each link-based agent 𝑣𝑒 ∈ V, feeds its MPNN
module with its input features 𝑥𝑡𝑒 to generate its respective ini-
tial hidden state ℎ0

𝑒 (Figure 2.a). In particular, agents consider
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Figure 2: Description of the message passing and action selection process of MAGNNETO at a certain time-step 𝑡 of an
episode. For simplicity, visual representations of steps (c) and (d) are focused on a single agent (𝐴9); however, note that the
same procedure is executed in parallel in all link-based agents.

as input features the current weight 𝑤𝑡𝑒 and the utilization
𝑢𝑡𝑒 [0, 1] of the link, and construct their initial link hidden
representations ℎ0

𝑒 as a fixed-size vector where the first two
components are the input features and the rest is zero-padded.
Note that the link utilization can be easily computed by the
agent with the information of the estimated traffic matrix and
the global link weights locally maintained. Then, the algorithm
performs K message-passing steps (Figures 2.b and 2.c). At
each step 𝑘 , the algorithm is executed in a distributed fashion
over all the links of the network. Particularly, each link-based
agent 𝑒 ∈ E receives the hidden states of its neighboring
agents B(𝑒), and combines them individually with its own
state ℎ𝑘𝑒 through the 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 function (a fully-connected
NN). Then, all these outputs are gathered according to the
𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛 function –in our case an element-wise min and
max operations– producing the combination 𝑀 𝑘

𝑒 . Afterwards,
another fully-connected NN is used as the 𝑢𝑝𝑑𝑎𝑡𝑒 function,
which combines the link’s hidden state ℎ𝑘𝑒 with the new
aggregated information 𝑀𝑘

𝑒 , and produces a new hidden state
representation for that link (ℎ𝑘+1𝑒 ). As mentioned above, this
process is repeated K times, leading to some final link hidden
state representations ℎ𝐾𝑒 .

3) Action Space: In our implementation, each agent 𝑒 ∈ E
can only take a single action: to increase its link weight 𝑤𝑒 in
one unit. In particular, the agent’s action selection (Figure 2.d)
is done as follows: first, every agent applies a local readout
function –implemented with a fully-connected NN– to its final
hidden state ℎ𝐾𝑒 , from which it obtains the global logit estimate
of choosing its action (i.e., increase its link weight) over the
actions of the other agents. Then, as previously described in
Section III-B, these logits are shared among agents in the
network, so that each of them can construct the global policy
distribution 𝜋\ . By sharing the same probabilistic seed, all
agents sample locally the same set of actions 𝐴𝑡 . Finally,
agents whose action has been selected increase by one unit
the weight of their associated link in its internal global state
copy, which is then used to compute the new link utilization
𝑢𝑡+1𝑒 under the new weight setting, as well as to initialize its
hidden state representation in the next time-step 𝑡 + 1.

4) Reward Function: During training, a reward function is
computed at each step 𝑡 of the optimization episode. In our
case, given our optimization goal we directly define the reward
𝑟𝑡 as the difference of the global maximum link utilization
between steps 𝑡 and 𝑡+1. Note that this reward can be computed
locally at each agent from its global state copy, which is
incrementally updated with the new actions applied at each

time-step.

C. Training Details

The training procedure highly depends on the type of RL
algorithm chosen. In our particular implementation, given that
we considered an Actor-Critic method (PPO), the objective at
training is to optimize the parameters {\, 𝜙} so that:
• the previously described GNN-based actor 𝜋\ becomes a

good estimator of the optimal global policy;
• the critic 𝑉𝜙 learns to approximate the state value function

of any global state.
As commented in Section III-A1, the goal of the critic is
to guide the learning process of the actor; it is no longer
needed at execution time. Therefore, taking 𝑉𝜙 a centralized
design would have no impact on the distributed nature of
MAGNNETO.

In fact, following the standard approach of MARL sys-
tems [38], the training of MAGNNETO is performed in a
centralized fashion, and such centrality precisely comes from
the critic’s model. In particular, we have implemented 𝑉𝜙 as
another link-based MPNN, similar to the actor but with a
centralized readout that takes as inputs all link hidden states in
and outputs the value function estimate. We also considered a
MPNN-based critic to exploit the relational reasoning provided
by GNNs; however, note that any other alternative design
might be valid as well.

At a high level, the training pipeline is as follows. First,
an episode of length 𝑇 is generated by following the cur-
rent policy 𝜋\ , while at the same time the critic’s value
function 𝑉𝜙 evaluates each visited global state; this defines
a trajectory {𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑝𝑡 , 𝑉𝑡 , 𝑠𝑡+1}𝑇 −1

𝑡=0 , where 𝑝𝑡 = 𝜋\ (𝑎𝑡 |𝑠𝑡 )
and 𝑉𝑡 := 𝑉𝜙 (𝑠𝑡 ). When the episode ends, this trajectory is
used to update the model parameters –through several epochs
of minibatch Stochastic Gradient Descent– by maximizing
the global PPO objective 𝐿𝑃𝑃𝑂 (\, 𝜙) described in [41]. The
same process of generating episodes and updating the model
is repeated for a fixed number of iterations to guarantee
convergence.

V. EVALUATION

In this section we extensively evaluate MAGNNETO in an
intradomain TE scenario: we benchmark it against a curated
set of advanced TE optimizers in more than 75 different real-
world topologies, using realistic traffic loads. As shown in
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our experimental results, MAGNNETO achieves similar per-
formance to state-of-the-art TE optimizers with a significantly
lower execution time. We begin by describing the considered
baselines as well as the setup used in our evaluations. The rest
of the section is devoted to analyze the results.

A. Baselines

In this section we describe the set of baselines we use to
benchmark MAGNNETO in our evaluation. We particularly
consider a well-established standard TE mechanism and three
advanced TE optimizers.

The first baseline is labeled as "Default OSPF", a simple
heuristic widely used in today’s ISP networks. In Default
OSPF, link weights are inversely proportional to their ca-
pacities and traffic is split over multiple paths using Equal-
Cost Multi-Path (ECMP). In our experiments, all performance
results are expressed in terms of their improvement with
respect to Default OSPF.

As state-of-the-art TE benchmarks, we consider the follow-
ing set of centralized algorithms provided by REPETITA [22]:
• TabuIGPWO (IGP Weight Optimizer, based on [11]): This

algorithm runs a Local Search to find the OSPF weights
that minimize the load of the maximally-utilized link.
TabuIGPWO requires more execution time than the rest of
baselines, but represents a classical TE optimizer that op-
erates in the same optimization space than MAGNNETO
(i.e., OSPF link weight configuration).

• DEFO (Declarative and Expressive Forwarding Opti-
mizer) [10]: It uses Constraint Programming and Segment
Routing (SR) [25] to optimize routing configurations in
the order of minutes. To this end, DEFO reroutes traffic
paths through a sequence of middlepoints, spreading their
traffic over multiple ECMP paths.

• SRLS (Segment Routing and Local Search) [9]: By lever-
aging Local Search and SR, SRLS achieves similar –or
even better– performance than DEFO at a lower execution
time. It also implements ECMP, and reroutes traffic paths
through a sequence of middlepoints.

Particularly, SRLS and DEFO represent state-of-the-art TE
optimizers obtaining close-to-optimal performance on several
network optimization goals –one of them being our intrado-
main TE goal of minimizing the most loaded link. To this
end, both optimizers leverage SR, which enables to define
overlay paths at a source-destination granularity. In contrast,
MAGNNETO and TabuIGPWO operate directly over standard
OSPF-based networks with destination-based routing.

B. Experimental Setup

We compare MAGNNETO against the previously defined
TE baselines in all our experimental settings, which involve 82
different real-world topologies: NSFNet, GBN, and GEANT2
from [42], and 79 networks from the Internet Topology
Zoo dataset [24]. In this section we provide more low-level
technical details of MAGNNETO’s configuration, required to
reproduce the results.

Regarding the length 𝑇 of the training and evaluation RL-
based episodes, it varies depending on the network topology
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Figure 3: Evaluation of MAGNNETO for different number
of simultaneous actions 𝑛 ∈ {1, 2, 5, 10}, each of them con-
sidering an episode length of 𝑇 = 150/𝑛. The training only
considers samples of NSFNet and GEANT2 topologies, and
the evaluation is performed over 100 unseen TMs on the GBN
topology. Each MAGNNETO model and baseline optimizer is
trained and/or evaluated twice for uniform and gravity-based
traffic profiles; markers represent the mean of these results,
and we also include the corresponding boxplots.

size and the number of simultaneous actions allowed (more
details below in Sec. V-C). At the beginning of each episode,
the link weights are randomly selected as an integer in the
range [1, 4], so our system is evaluated over a wide variety of
scenarios with random routing initializations. From that point
on, at each step of an episode one or several agents can modify
their weight by increasing it by one unit.

Taking [43] as a reference for defining the hyperparame-
ters’ values of the solution, we ran several grid searches to
appropriately fine-tune the model. The implemented optimizer
is Adam with a learning rate of 3·10−4, 𝛽=0.9, and 𝜖=0.01.
Regarding the PPO setting, the number of epochs for each
training episode is set to 3 with batches of 25 samples, the
discount factor 𝛾 is set to 0.97, and the clipping parameter
is 0.2. We implement the Generalized Advantage Estimate
(GAE), to estimate the advantage function with _=0.9. In
addition, we multiply the critic loss by a factor of 0.5, and
we implement an entropy loss weighted by a factor of 0.001.
Finally, links’ hidden states ℎ𝑒 are encoded as 16-element
vectors, and in each MPNN forward propagation 𝐾=4 message
passing steps are executed.

For each experiment, we generate two sets of simulated
traffic matrices: uniform distribution across source-destination
traffic demands, and traffic distributions following a gravity
model [44] –which produces realistic Internet traffic patterns.
The training process of MAGNNETO highly depends on the
topology size; in a machine with a single CPU of 2.20 GHz,
it can take from few hours (≈20 nodes) to few days (100+
nodes).

C. Multiple Actions and Episode Length

As previously mentioned in Section III, there is a relevant
hyperparameter that needs to be further addressed: the episode
length 𝑇 of RL-based episodes, which represents the maximum
number of optimization steps that MAGNNETO needs to
execute before producing a good set of link weights. In this
section we provide more details about its definition in terms
of the topology size and the number of simultaneous actions.
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Figure 4: Evaluation of MAGNNETO’s generalization capability for (a) uniform and (b) gravity traffic. Each point of the CDF
corresponds to the mean MinMaxLoad improvement over 100 TMs for one of the 75 evaluation topologies from Topology
Zoo [24], and boxplots are computed based on these mean improvement values as well. Both the uniform (a) and gravity (b)
MAGNNETO models evaluated were trained exclusively on samples from the NSFNet and GEANT2 topologies [42].

Let 𝑛 be such maximum number of simultaneous actions
allowed at each time-step 𝑡 of the episode. When imposing
𝑛=1 –i.e., only one link weight changes per time-step–, we
have empirically found that MAGNNETO requires an episode
length of ≈2−3 times the number of links in the network to
reach its best performance. This is in line to what we already
observed in our preliminary work [26]. However, whereas [26]
was subject to 𝑛=1 by design, MAGNNETO allows taking
𝑛>1 actions at each time-step, which can potentially reduce
the number of required optimization steps (i.e., speed up the
optimization process).

Figure 3 shows that the length 𝑇 of the episode –which
directly relates to the execution time– can be reduced pro-
portionally by 𝑛 without a noticeable performance loss. In
particular, the model with 𝑛=10 actually reduces by one order
of magnitude the execution time of the 1-action model, but
still achieves comparable performance to the state-of-the-art
optimizers of our benchmark –for both traffic profiles, and
evaluating on a topology not previously seen in training.

Given the good trade-off that provides allowing more than
one action at each time-step, for the rest of our experiments
we fine-tuned the number of actions 𝑛 and the episode length
𝑇 to balance a competitive performance with the minimum
possible execution time. Later in Section V-F we will analyze
in detail the execution cost of MAGNNETO.

D. Generalization over Unseen Topologies

In Section I we argued the importance of generalization
in ML-based solutions, which refers to the capability of the
solution to operate successfully in other networks where it was
not trained. In this section, we bring MAGNNETO under an
intensive evaluation in this regard.

In our experiments, MAGNNETO only observes NSFNet
(14 nodes, 42 links) and GEANT2 (24 nodes, 74 links)
samples during training [42], whereas the evaluation is per-
formed over a subset of 75 networks from the Topology Zoo
dataset [24] including topologies ranging from 11 to 30 nodes,
and from 30 to 90 links. More in detail:

• We train two MAGNNETO models, one for each traffic
profile (uniform and gravity).

• Each model is trained observing 50 different TMs –either
uniform or gravity-based, depending on the model– alter-
nating between the NSFNet and GEANT2 topologies.

• Each of these two trained models is evaluated over 100
different TMs –again, either uniform or gravity-based–
on each of the 75 topologies from Topology Zoo.

Overall, this experimental setup comprises 7, 500 evaluation
runs for each traffic profile, which we summarize in Figures
4a and 4b, respectively for uniform and gravity-based loads. In
particular, note that we first compute the mean MinMaxLoad
improvement of MAGNNETO –and the baselines– over the
100 TMs of each evaluation network, obtaining a single value
for each of the 75 topologies. Thus, in these figures we
represent the corresponding CDF and boxplot of the 75-sized
vector of mean improvement values for each TE optimizer.

In both traffic scenarios MAGNNETO achieves comparable
performance to the corresponding best performing bench-
mark –DEFO when considering uniform traffic and SRLS
for gravity. In fact, MAGNNETO outperforms TabuIGPWO,
improves DEFO with gravity-based traffic, and lies within a
2% average improvement difference with respect to SRLS in
both cases. We reckon that these represent remarkable results
on generalization; as far as we know, this is the first time that
a ML-based model consistently obtains close performance to
state-of-the-art TE optimizers on such a large and diverse set
of topologies not previously seen in training.

E. Traffic Changes in Large Topologies

After evaluating the generalization capabilities of MAGN-
NETO, we aim to test the performance of our method over
traffic changes in large networks, where the combinatorial of
the optimization process might dramatically increase. Having
considered networks up to 30 nodes and 90 links so far, for this
set of experiments we arbitrarily select four large real-world
topologies from Topology Zoo [24]: Interoute (110 nodes, 294
links), Colt (153 nodes, 354 links), DialtelecomCz (138 links,
302 links) and VtlWavenet2011 (92 nodes, 192 links). Figures
5.I-IV depict these topologies.

In these experiments, for each traffic profile (uniform or
gravity) we train a MAGNNETO model on each network.
Then, we evaluate models on the same topology where they



9

I. INTEROUTE II. COLT III. DIALTELECOMCZ IV. VTLWAVENET2011

0% 10% 20% 30% 40%
MinMaxLoad Improvement w.r.t. Default OSPF

0.0

0.2

0.4

0.6

0.8

1.0

F(
x)

TabuIGPWO DEFO SRLS MAGNNETO

(a) Interoute Uniform

0% 5% 10% 15% 20% 25%
MinMaxLoad Improvement w.r.t. Default OSPF

0.0

0.2

0.4

0.6

0.8

1.0

F(
x)

TabuIGPWO DEFO SRLS MAGNNETO

(b) Colt Uniform

0% 10% 20% 30% 40%
MinMaxLoad Improvement w.r.t. Default OSPF

0.0

0.2

0.4

0.6

0.8

1.0

F(
x)

TabuIGPWO DEFO SRLS MAGNNETO

(c) DialtelecomCz Uniform

0% 5% 10% 15% 20%
MinMaxLoad Improvement w.r.t. Default OSPF

0.0

0.2

0.4

0.6

0.8

1.0

F(
x)

TabuIGPWO DEFO SRLS MAGNNETO

(d) VtlWavenet2011 Uniform

0% 10% 20% 30% 40%
MinMaxLoad Improvement w.r.t. Default OSPF

0.0

0.2

0.4

0.6

0.8

1.0

F(
x)

TabuIGPWO DEFO SRLS MAGNNETO

(e) Interoute Gravity

0% 10% 20% 30%
MinMaxLoad Improvement w.r.t. Default OSPF

0.0

0.2

0.4

0.6

0.8

1.0

F(
x)

TabuIGPWO DEFO SRLS MAGNNETO

(f) Colt Gravity

0% 10% 20% 30% 40%
MinMaxLoad Improvement w.r.t. Default OSPF

0.0

0.2

0.4

0.6

0.8

1.0

F(
x)

TabuIGPWO DEFO SRLS MAGNNETO

(g) DialtelecomCz Gravity

0% 10% 20% 30% 40%
MinMaxLoad Improvement w.r.t. Default OSPF

0.0

0.2

0.4

0.6

0.8

1.0

F(
x)

TabuIGPWO DEFO SRLS MAGNNETO

(h) VtlWavenet2011 Gravity

Figure 5: Evaluation of MAGNNETO on traffic changes in four large real-world topologies (I-IV) from the Topology Zoo
dataset [24], both for uniform ((a)-(d)) and gravity-based ((e)-(h)) traffic loads. A MAGNNETO model is trained for each
network and traffic profile, and then evaluated on the same topology over 100 unseen TMs. CDFs represent the MinMaxLoad
improvement results of each optimizer for those 100 evaluation TMs.

were trained, over 100 different TMs not previously seen in
training. Figures 5.a-d and 5.e-f show the corresponding CDF
of all these evaluations, considering uniform and gravity traffic
loads respectively.

As we can see, with uniform traffic SRLS is clearly the
best performing baseline, achieving a remarkable overall im-
provement gap with respect to the other two benchmarked
optimizers. However, in this scenario MAGNNETO is able
to obtain similar improvements to SRLS, slightly outper-
forming it in VtlWavenet2011. On the other hand, results
with gravity-based traffic suggest that Default OSPF already
provides with low-congested routing configurations in scale-
free networks when considering more realistic traffic. Despite
this fact, MAGNNETO turns out to be the overall winner
in the comparison with gravity loads, consistently achieving
lower congestion ratios for a large number of TMs in all four
topologies.

In short, in all scenarios MAGNNETO attained equivalent
–or even better– performance than the advanced TE optimizers
benchmarked. These results evince its potential to successfully
operate in large computer networks.

F. Execution Cost

Lastly, in this section we evaluate the execution cost of
MAGNNETO. In particular, we measure the impact of the
message communications involved when running our dis-
tributed solution, as well as compare its execution time against
the considered set of state-of-the-art TE baselines; Table I
gathers these results for several variable-sized networks used
in the previous evaluations.

Taking into account the recommendations of
REPETITA [9], as well as analyzing the results provided
in the original works [9]–[11], we defined the following
running times for each of our benchmarks: 10 minutes for
TabuIGPWO, 3 minutes for DEFO, and 1 minute for SRLS.

At first glance, the execution time of MAGNNETO becomes
immediately its most remarkable feature. Particularly, it is
able to obtain subsecond times even for the larger network
of our evaluation (Colt). Indeed, as previously discussed in
Section V-C these times could be further reduced by allowing
multiple simultaneous actions. For instance, by considering up
to 10 simultaneous actions, MAGNNETO can run 3 orders of
magnitude faster than the most rapid state-of-the-art TE opti-
mizer. This relevant difference can be explained by the fact that
MAGNNETO’s distributed execution naturally parallelizes the
global optimization process across all network devices (i.e.,
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NSFNet GBN GEANT2 VtlWavenet2011 Interoute DialtelecomCz Colt

(#nodes, #links) (14,42) (17,52) (24,74) (92,192) (110,294) (138,302) (153,354)
MAGNNETO Link Overhead∗ (MB/s) 1.20 1.32 1.20 0.83 1.28 0.91 1.01
Execution Time (s)

TabuIGPWO [11] 600 600 600 600 600 600 600
DEFO [10] 180 180 180 180 180 180 180
SRLS [9] 60 60 60 60 60 60 60
MAGNNETO [𝑛 actions] 0.08/𝑛 0.12/𝑛 0.16/𝑛 0.42/𝑛 0.64/𝑛 0.66/𝑛 0.78/𝑛
∗Average value, with an extra 20% message size for headers and metadata.

Table I: Cost of MAGNNETO: Average link overhead and execution time –in terms of the maximum number of simultaneous
actions allowed– for variable-sized network topologies.

routers); in contrast, typical TE optimizers rely on centralized
frameworks that cannot benefit from this.

Such decentralization comes at the expense of the extra mes-
sage overhead generated by the MPNN. In this context, Table I
shows that the link overhead produced by MAGNNETO (few
MB/s) can reasonably have a negligible impact in today’s
real-world networks with 10G/40G (or even more) interfaces.
Moreover, note that this cost is quite similar in all topologies;
this is as expected, given that the messaging overhead of the
GNN-based communications is directly proportional to the
average node degree of the network, and computations are
distributed among all nodes.

To sum up, our results show that MAGNNETO is able to
attain equivalent performance to state-of-the-art centralized TE
optimizers –even in topologies not previously seen in training–
with significantly lower execution time, and with an affordable
message communication overhead.

VI. RELATED WORK

Recently, numerous solutions based on Deep Reinforce-
ment Learning (DRL) have been proposed to solve complex
networking problems, especially in the context of routing
optimization and TE [15], [17], [45]. However, current state-
of-the-art RL-based TE solutions fail to generalize to unseen
scenarios (e.g., different network topologies) as the imple-
mented traditional neural networks (e.g., fully connected,
convolutional) are not well-suited to learn and generalize over
data that is inherently structured as graphs. In [16], the authors
design a DRL-based architecture that obtains better results
than Shortest Path and Load Balancing routing. Regarding
MARL-based solutions [46], [47], most of them suffer from
the same lack of topology generalization. An exception to that
is the work of [18], an interesting MARL approach for multi-
region TE that consistently outperforms ECMP in several
scenarios, although it is not benchmarked against state-of-the-
art TE optimizers.

GNNs [20], [48], and in particular Message Passing Neural
Networks (MPNN) [40], precisely emerged as specialized
methods for dealing with graph-structured data; for the first
time, there was an AI-based technology able to provide
with topology-aware systems. In fact, GNNs have recently
attracted a large interest in the field of computer networks
for addressing the aforementioned generalization limitations.
The work from [42] proposes to use GNN to predict network
metrics and a traditional optimizer to find the routing that
minimizes some of these metrics (e.g., average delay). Authors

of [49] propose a novel architecture for routing optimization
in Optical Transport Networks that embeds a GNN into a
centralized, single-agent RL setting that is compared against
Load Balancing routing.

Narrowing down the use case to intradomain TE, we high-
light the work of [50], whose premise is similar to ours: the
generation of easily-scalable, automated distributed protocols.
For doing so, the authors also use a GNN, but in contrast to our
approach they are focused on learning routing strategies that
directly imitate already existing ones –shortest path and min-
max routing– and compare their solution against these ones.
This is the reason why they did not implement a RL-based
approach, but instead a semi-supervised learning algorithm,
therefore guiding the learning process with explicit labeled
data. In fact, so far the very few works that combine GNNs
with a MARL framework [51], [52] are theoretical papers from
the ML community, and none of them apply to the field of
networking.

VII. CONCLUSIONS

Intradomain Traffic engineering (TE) is nowadays among
the most common network operation tasks, and has a major
impact on the performance of today’s ISP networks. As such,
it has been largely studied, and there are already some well-
established TE optimizers that deliver near-optimal perfor-
mance in large-scale networks. During the last few years,
state-of-the-art TE solutions have systematically competed
for reducing execution times (e.g., DEFO [10], SRLS [9]),
thus scaling better to carrier-grade networks and achieving
faster reaction to traffic changes. In this context, ML has
attracted interest as a suitable technology for achieving faster
execution of TE tasks and –as a result– during recent years the
networking community has devoted large efforts to develop
effective ML-based TE solutions [15]–[18]. However, at the
time of this writing no ML-based solution had shown to
outperform state-of-the-art TE optimizers.

In this paper we have presented MAGNNETO, a novel ML-
based framework for intradomain TE optimization. Our system
implements a novel distributed architecture based on Multi-
Agent Reinforcement Learning and Graph Neural Networks.
In our evaluation, we have compared MAGNNETO with a
set of non-ML-based TE optimizers that represent the state of
the art in this domain. After applying our system to 75+ real-
world topologies, we have observed that it achieves compa-
rable performance to the reference TE benchmarks. However,
MAGNNETO offers considerably faster operation than these
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state-of-the-art TE solutions, reducing execution times from
several minutes to sub-second timescales in networks of 100+
nodes. In this context, MAGNNETO was especially designed
to perform several actions at each RL optimization step,
which enables to considerably accelerate the optimization
process. Particularly, we have seen that our system was able
to perform up to 10 actions in parallel with no noticeable
decrease in performance. These results lay the foundations
for a new generation of ML-based systems that can offer the
near-optimal performance of traditional TE techniques while
reacting much faster to traffic changes.

Last but not least, we have shown that the proposed sys-
tem offers strong generalization power over networks unseen
during the training phase, which is an important characteristic
from the perspective of deployability and commercialization.
Particularly, generalization enables to train ML-based products
in controlled testbeds, and then deploy them in different real-
world networks in production. However, this property has been
barely addressed by prior ML-based TE solutions. In contrast,
MAGNNETO has demonstrated to generalize succesfully over
a wide and varied set of 75 real-world topologies unseen
during training. The main reason behind this generalization
capability is that the proposed system implements internally
a GNN that structures and processes network information as
graphs, and computes the information on distributed agents
that communicate with their neighbors according to the un-
derlying graph structure (i.e., the network topology).
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