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Practical flexural design approach for one-way hybrid fiber-reinforced 
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A B S T R A C T   

Fiber-reinforced concrete (FRC) is increasingly used for structural applications. Slabs are a particularly attractive 
use for FRC due to a potentially increased redistribution capacity, as well as the efficient cracking control that 
fibers provide. However, methods for reliably establishing slenderness limits of such elements are missing. 
Therefore, in this study, a previously developed closed-form solution for slenderness limits of hybrid FRC (HFRC) 
slabs (steel reinforcement bars and steel fibers) is presented and updated. Subsequently, a comprehensive 
parametric study on one-way solid slabs is performed, drawing clear conclusions on which parameters are the 
most influencing and offering a practical flexural design approach in the form of graphs and tables for deter-
mining minimum thicknesses of HFRC slabs that may be used as design aids for practitioners.   

1. Introduction 

Fiber reinforced concrete (FRC), i.e. concrete with uniformly 
distributed steel and/or macro-synthetic fibers, has been largely 
researched in the last three decades as a potential alternative or com-
plement to concrete reinforced with steel bars. With a focus on char-
acterizing the material, a large number of research papers has been 
published, with an important emphasis on ultimate limit state (ULS) 
studies on tensile strength, flexure strength and shear strength. Addi-
tionally, since the research on FRC experienced rapid growth, consid-
erable attention was paid to crack control, whereas studies on deflection 
became relevant only in the las decade. 

However, in the design of reinforced concrete buildings, including 
fibers or not as concrete reinforcement, ULS considerations have 
increasingly become secondary to serviceability limit state (SLS) re-
quirements, in particular, deflections [1]. Namely, while, on average, 
increasingly higher strength concrete is used over the past decades, the 
increase in strength is not accompanied by a proportional increase in 
stiffness. Following architectural, use and operational requirements for 
larger spans and earlier removal of shoring during construction, con-
crete structures are increasingly sensitive to deflection, and SLS of 
deformation becoming a design governing state. 

At the same time, deflection calculation methods can be time- 
consuming and imprecise [1]. However, deflection calculations are 
required at early stages of design, given that the size (depth) of 

reinforced concrete members under flexure is governed by deflection 
control requirements. That is why a rational design of flexural members, 
such as slabs, needs to start by knowing what is the minimum thickness 
or maximum slenderness ratios (span/height L/h or span/effective depth 
L/d) that guarantees a proper deflection control. Several methods and 
code provisions aimed at setting minimum thickness exist for long for 
reinforced concrete (RC) members, but these are missing for FRC or 
hybrid FRC (HFRC) members, i.e. members reinforced with a combi-
nation of fibers and steel bars. Some of such methods for RC members 
are also well suited to the iterative process of design required for opti-
mization, and it has been demonstrated that their rationality enables 
those methods to be extended and adapted for FRC and HFRC. 

From the mid-twentieth century, the most common deflection con-
trol methods used have been constant slenderness ratios L/n recom-
mended in design codes. However, it has been shown that such 
simplified approaches can lead to either excessively heavy or excessively 
deformable elements, both being resource-inefficient use [2,3]. The 
importance of indirect deflection control methods was also proven for 
optimization of embodied carbon in buildings [4]. However, efficient 
deflection control methods are not straightforward to implement at 
early stages of design, given the iterative nature of reinforced concrete 
design where deflection calculation depends on the reinforcement ratio, 
and the reinforcement ratio depends on the depth of the member, which 
in turn depends on deflection control design. 

Among the methods that have been developed to overcome this 
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drawback, the one initially proposed by Rangan [5], and subsequently 
updated by Scanlon and Choi [6] and Scanlon and Lee [7] stands out as 
being one of the most versatile in allowing the direct choice of boundary 
conditions, span, load, concrete properties and allowable deflection 
criteria [3]. Despite the method was originally developed for and 
applied to reinforced concrete (RC) elements with solid rectangular 
cross-section, its rationality enables to adapt it to other cross-sectional 
geometries and to variants of the material. Recent years have seen a 
growing trend of innovative concretes being applied, with alternative/ 
sustainable binders (alkali-activated concretes, limestone calcined clay 
cements, etc.), aggregates (recycled aggregate concrete) and reinforce-
ment (micro and macro structural fibers, fiber reinforced polymer bar, 
textile reinforcement), with many of those already being included in 
new design codes such as the new Eurocode 2, FprEN 1992-1-1:2022 
[8,9]. 

Among these, one of the most investigated and practically applied 
concretes has become fiber reinforced concrete (FRC). FRC has become a 
popular solution because of its numerous benefits such as improved 
fracture energy [10], crack control [11,12], behavior under fatigue 
loads [13–18] and redistribution capacity [19,20]. This has led to the 
application of FRC in various structural members such as precast tunnel 
segments [21–23], ground-supported slabs [24], retaining walls [25] 
and, more recently, flat slabs for structural floors [26–30]. It is precisely 
this last application that can offer the largest market perspective for 
FRC. But proper coverage of deflection control by design codes is still 
lacking [24]. 

In the first experimental constructions that have been erected 
including FRC slabs, fiber reinforcement has been designed aiming at 
totally or almost totally replacing steel reinforcing bars. This has led to 
designs with quite high amounts of fibers (≥100 kg/m3 of steel mac-
rofibres). Alternatively, this research team believes that potentially 
optimal solutions may be found by combining bars and fibers, i.e. by 
using HFRC rather than FRC. This belief is founded in the facts that bars 
are more efficient at resisting directional and localized forces (such as 
tension due to flexure), whereas fibers are more efficient at resisting 
volumetric forces (such as tension due to shrinkage or temperature). 
This statement was already experimentally proven in [24,29,31] for 
ULS. However, finding the right proportion of the two sorts of rein-
forcement is not obvious, and may probably only be found after more 
research and construction practice. 

Thus, the aim of the current research is to offer practitioners a 
straightforward design approach for HFRC concrete floors by providing 
design aids to find the minimum depth for one-way HFRC slabs -based 
on SLS of deformability criteria- as a start point for their designs. 

One of the first steps in this direction was the study by Tošić et al. 
[32] in which a closed-form solution was developed for the so-called 
„long“ method of Rangan-Scanlon, enabling direct calculation of the 
effective moment of inertia factor α (ratio of the effective moment of 
inertia Ie to the gross moment of inertia Ig). This parameter, α, ultimately 
enables the use of the „short” method of Rangan-Scanlon, that is a quite 
accurate and still fast method to predict the minimum slenderness of RC 
members under deflection, such as slabs. In their study [32], the authors 
also extended the method to FRC and hybrid FRC (HFRC) elements, 
providing only a preliminary comparison between RC and HFRC 
elements. 

Below, a comprehensive parametric study of one-way solid HFRC 
slabs is performed, analyzing the effect of different parameters 
(boundary conditions, span, load, allowable deflection, effective depth, 
concrete compressive and tensile strength) on slenderness limits, 
determined by means of using the novel closed-form solution. The re-
sults of the parametric study are presented and analyzed. As a result, a 
set of graphs and tables are provided, that may serve as design tools for 
practitioners. 

2. Closed form solution for HFRC slenderness limit calculation 

2.1. Formulation for RC members 

In this section, a brief summary of both the Rangan-Scanlon method 
as presented in [5,6] and the closed-form solution for α as developed in 
[32] are provided. The basis for the Rangan-Scanlon method is the in-
cremental deflection, Δinc, calculation as defined in Equation (1): 

Δinc =
λΔκWsusL4

384EcIe
+

κWslL4

384EcIe
(1) 

Where, 
λΔ – long-term deflection multiplier for sustained loads, = ξ/(1 +

50•ρ’), where ξ is a time dependent-factor provided graphically in ACI 
318-19 [33] and ρ’ is the compressive reinforcement ratio, 

κ – deflection coefficient depending on boundary conditions (5, 1.4, 
2, 48 for simply supported, both ends continuous, one end continuous, 
and fixed end cantilever conditions, respectively), 

Wsus – all sustained loads (self-weight + superimposed dead loads +
sustained fraction of live load), 

L – span length, 
Ec – modulus of elasticity of concrete, 
Ie – effective moment of inertia, 
Wsl – additional live load (sustained fraction of live load). 
The key parameter in the expression is the effective moment of 

inertia Ie. If calculated according to ACI 318-19 [33], this is 

Ie =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ig for Ma ≤ (2/3)Mcr

Icr

1 −

(
(2/3)Mcr

Ma

)2(

1 −
Icr

Ig

) for Ma > (2/3)Mcr (2) 

Where, 
Ig – moment of inertia of the gross concrete cross-section, 
Icr – moment of inertia of the fully cracked cross-section, 
Mcr – cracking moment, 
Ma – maximum moment on the cross-section due to service loads at 

the stage deflection is calculated. 
For a rectangular cross-section, the cracking moment Mcr can be 

computed as 

Mcr = Wgfr =
bh2

6
fr (3) 

Where, 
Wg – section modulus of the gross concrete cross-section, 
fr – modulus of rupture, 
b – cross-section width, 
h – cross-section height. 
To obtain an expression in terms of a span-to-depth ratio based on 

Equation (1), the following is assumed:  

1. Δinc is equated with the maximum allowable value of the incremental 
deflection (Δinc)allow,  

2. Ig is taken as bh3/12, assuming a rectangular solid cross-section, and  
3. Ie is taken as αIg. 

Then, the following holds: 

(Δinc)allow =
12λΔκWsusL4

384Ecαbh3 +
12WslL4

384Ecαbh3 =
κ

32
(λΔWsus + Wsl)L

αEcb

(
L
h

)3

(4)  

L
h
=

[
32αEcb

κ(λΔWsus + Wsl)

(Δinc

L

)

allow

]1
3

(5) 

The general or “long method of Rangan-Scanlon” consists of five 
steps [34]: 1] initial choice of h to account for self-weight (e.g., from 
current code-recommended L/h ratios), 2] calculation of required steel 
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area for strength requirements, 3] Calculation of Ie to determine α, 4] use 
of computed α in Equation (5), to find h and 5] check for convergence 
between obtained and assumed h and iterate until convergence. 

Since the method is unsuitable for establishing element depths at 
early design stages—as it requires knowing the reinforcement ratio—the 
“short Rangan-Scanlon method” was proposed in posterior research, 
these consisting in adopting a preestablished value of α. A value of 0.4 
was proposed by Scanlon and Choi [6] and 0.52 by Scanlon and Lee [7]. 
Still, adopting only a constant value of α can ben proven to be inaccurate 
or inadequate in certain cases [3]. 

Therefore, Tošić et al. [32] developed a novel closed-form solution to 
find α enabling a fast and easy use form of the “long method of Rangan- 
Scanlon”, thus making feasible parametric studies that can facilitate 
finding a set of values of α to be finally used in the “short method of 
Rangan-Scanlon” (i.e. as recommended “constant” values). 

First, Equation (2) is rewritten in dimensionless format with μ = Mcr/ 
Ma and δ = Icr/Ig: 

Ie

Ig
= α =

⎧
⎪⎪⎨

⎪⎪⎩

1forμ ≥ 1.5
δ

1 −

(
2
3

μ
)2

(1 − δ)
forμ < 1.5 (6) 

The cracking moment Mcr is rewritten as: 

Mcr =
bh2

6
fr =

bh2

6

(
0.62

̅̅̅̅

fc′
√ )

=
0.62

6
bh2

̅̅̅̅

fc′
√

(Nmm) (7) 

It should be noted that Equation (7) is valid only for SI units, for US 
customary units, 0.62 should be replaced by 7.5. Considering the 
required value of the tensile reinforcement ratio ρreq, the applied 
moment Ma = ηMn can be written as: 

Ma = ηMn = η
(

d
h

)2

bh2ρreqfy

(

1 −
ρreqfy

1.7fc′

)

(Nmm) (8) 

Where, 
Mn – nominal flexural strength 
η – ratio of maximum moment due to service loads to nominal flex-

ural strength 
d – distance from extreme compression fiber to centroid of longitu-

dinal tension reinforcement, 
fc’ – specified compressive strength of concrete, 
fy – specified yield strength of reinforcement, 
ρreq – tensile reinforcement ratio required to resist Mn (at midspan for 

simply supported and continuous members and at the support for 
cantilevers). 

For the case of SI units, μ can be written as: 

μ =
Mcr

Ma
=

0.62
̅̅̅̅
fc′

√

6η
(

d
h

)2ρreqfy

(
1 −

ρreqfy
1.7fc′

) (9) 

Whereas, for US customary units 0.62 should be replaced by 7.5. 
As for δ = Icr/Ig, it is calculated from Ig = bh3/12. 
For an RC cross-section under bending moments (without an axial 

force), the position of the neutral axis is independent of the applied M 
and can be expressed through the neutral axis coefficient ξ = c/d, where 
c is the depth of the compressed zone through Eq. (10). 

Icr =
bh3

12

[

12
(

d
h

)3

nρprov(1 − ξ)
(

1 −
ξ
3

)]
(
mm4) (10) 

Where, 
n – ratio of steel-to-concrete moduli of elasticity (Es/Ec). 
ρprov – provided tensile reinforcement. 
Thus, δ can be determined by means of Eq. (11). 

δ =
Icr

Ig
= 12

(
d
h

)3

nρprov(1 − ξ)
(

1 −
ξ
3

)

(11) 

For RC sections under bending including only tensile reinforcement 
and under service load, ξ can be directly computed with Eq. (12). 

ξ = − nρprov +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
nρprov

)2
+ 2nρprov

√

= nρprov

(

− 1+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 +
2

nρprov

√ )

(12) 

Therefore, using Equations (9), (11) and (12), α can be calculated as 
a function of the specified concrete strength (from which Ec is deter-
mined), steel grade (from which fy and Es are determined), and an 
assumed (or calculated) amount of provided reinforcement ratio ρprov. 

For low-reinforced cross-sections, the required amount of tensile 
reinforcement (ρreq) may be less than the minimum amount of rein-
forcement (ρmin) that must be provided to avoid brittle failure under 
tensile stress: 

ρmin = max

(
0.25

̅̅̅̅

f ′
c

√

fy
,
1.38

fy

)

for SI units  

ρmin = max

(
3
̅̅̅̅

f ′
c

√

fy
,
200
fy

)

for US customary units (13) 

Therefore, the provided amount of tensile reinforcement, ρprov, is 
defined according to Eq. (14). 

ρprov = max
(
ρreq, ρmin

)
(14)  

2.2. Formulation for HFRC members 

The principal idea behind the use of HFRC instead of RC is to use 
fibers as a distributed reinforcement guaranteeing a minimum post- 
cracking (residual) flexural strength over the entire element with lon-
gitudinal steel reinforcement added in those zones where the largest 
bending moments (hogging or sagging) are expected [11,26,35], while 
ensuring that Mn-HFRC ≈ Mn-RC. 

The ACI 544.4-18 Guide to Design with Fiber-Reinforced Concrete 
[36] allows the calculation of the flexural strength of HFRC members by 
directly assuming the superposition of the flexural strength of both the 
RC and the FRC section, i.e., Mn-HFRC = Mn-RC + Mn-FRC. Additionally, the 
ACI 544.4-18 guide suggests the use of the fib Model Code 2010 [37] 
constitutive models for FRC. 

Therefore, the moment bearing capacity of rectangular FRC cross- 
section may be calculated using the rigid-plastic model of the fib 
Model Code 2010, this resulting in Eq. (15). 

Mn− FRC = 0.5bh2fFtu(Nmm) (15) 

Where, 
fFtu – ultimate residual tensile strength of FRC, =fR3/3, where, 
fR3 – residual flexural tensile strength corresponding to a crack 

mouth opening displacement (CMOD) value of 2.5 mm in the EN 14651 
[38] three-point bending characterization test. 

Then, the moment bearing capacity of an HFRC rectangular cross- 
section can be computed by applying Eq. (16). 

Mn− HFRC =

(
d
h

)2

bh2ρreqfy

(

1 −
ρreqfy

1.7fc′

)

+ 0.5bh2fFtu =

= bh2

[(
d
h

)2

ρreqfy

(

1 −
ρreqfy

1.7fc′

)

+ 0.5fFtu

]

(Nmm) (16) 

Where, 
ρreq – tensile reinforcement geometrical ratio (As/Ac), in the shape of 

bars, required to resist the remainder of Mn after the contribution of 
fibers is considered, i.e. Mn–HFRC – Mn–FRC (at midspan for simply sup-
ported and continuous members and at the support for cantilevers). 

Subsequently, for SI units, μ changes to μHFRC through a constant 
addition of 0.5fFtu to the nominal flexural strength: 
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μHFRC =
0.62

6 bh2
̅̅̅̅
fc′

√

ρreq,HFRCbh2
[(

d
h

)2ρreq,HFRCfy

(
1 −

ρreq,HFRC fy
1.7fc′

)
+ 0.5fFtu

] =

=
0.62

̅̅̅̅
fc′

√

6η
[(

d
h

)2ρreq,HFRCfy

(
1 −

ρreq,HFRC fy
1.7fc′

)
+ 0.5fFtu

] (17) 

Whereas, for US customary units, 0.62 should be replaced by 7.5 
Additionally, δ, changes as well because of the different value of Icr for 
HFRC members. For this purpose, the expression proposed by Amin et al. 
[39] is considered: 

Icr,HFRC =

[
bc3

3
+ nAs,prov,HFRC(d − c)2

]

+ nAF
(h − c)2

3
(
mm4) (18) 

Where, 
As,prov,HFRC – area of provided tensile reinforcement bars, 
AF – cumulative area of fibers in the cracked portion of the cross- 

section. 
Starting from the formulation of AF proposed by Amin et al. [39], 

Tošić et al. [32]—through a series of simplifications adopted for steel 
fiber reinforced concrete (SFRC), based on a database of experimental 
results—reached Eq. (19). The original expression from [39] was 
simplified by adopting average values of steel fiber aspect ratio, ultimate 
strength and modulus of elasticity (from a database of experimental 
results) as 65, 1.25 GPa and 200 GPa. 

AF = 3.46bh
fR3
̅̅̅̅
fc′

√ (1 − 0.9ξHFRC)10− 3 (19) 

So, Equation (18) can be rewritten as Eq. (20) 

Icr,HFRC =
bh3

12
n

[

12
(

d
h

)3

ρprov,HFRC(1 − ξHFRC)

(

1 −
ξHFRC

3

)

+ 0.014
fR3
̅̅̅̅
fc′

√ (1

− 0.9ξHFRC)

]

(20) 

and the coefficient δ expressed through Eq. (21) 

δHFRC = n

[

12
(

d
h

)3

ρprov,HFRC(1 − ξHFRC)

(

1 −
ξHFRC

3

)

+ 0.014
fR3
̅̅̅̅
fc′

√ (1

− 0.9ξHFRC)

]

(21) 

Hence, once μHFRC is found using equation (17) and δHFRC is found 
using equation (21), the effective moment of inertia factor for HFRC 
members (αHFRC) can be computed. However, Tošić et al. [32] concluded 
that Equation (6) cannot be directly applied to HFRC and Eq. (22) should 
be applied to compute αHFRC. 

αHFRC =

⎧
⎪⎪⎨

⎪⎪⎩

1forμHFRC ≥ 1.5
δHFRC

1 −

(
2
3

μHFRC

)mHFRC

(1 − δHFRC)

forμHFRC < 1.5 (22) 

Namely, the authors state that, as α provides the ratio of Ie/Ig aver-
aged over the entire member length, it depends on: (1) the neutral axis 
position in individual cracked sections; (2) the extent of cracking and (3) 
on contribution of uncracked sections, i.e. tension stiffening. In general, 
the cracking pattern of HFRC members will be significantly different 
from that expected for RC members with the same ratio of longitudinal 
reinforcement [40]. Hence, in [32], the exponent mHFRC was introduced 
and calibrated using numerical simulations as 

mHFRC =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2
(

1 −
fR1

fr
• (1 − 1.1ρ*)

)

; for
fR1

fr
≤ 1.0

2ρ* ≤ 1; for
fR1

fr
> 1.0

(23) 

Indicating by its two branches, the dependence of the exponent 
mHFRC on whether the FRC post-cracking residual strength displays 
softening or hardening behavior. More details can be found in the study 
by Tošić et al. [32], however, it should be noted that the exponent was 
calibrated based on numerical studies and further experimental verifi-
cation is needed. 

Where, 
fR1 – average value of residual flexural tensile strength corresponding 

to a crack mouth opening displacement (CMOD) value of 0.5 mm in the 
EN 14651 [38] three-point bending characterization test. 

ρ* – min(0.5%, ρprov,HFRC). 
Finally, in HFRC members, even in pure bending, the position of the 

neutral axis is dependent of loading (and therefore of M), so that 
Equation (12) cannot be used, and an iterative process is necessary. To 
avoid this, Tošić et al. [32] conducted a parametric study comparing 
neutral axis positions of HFRC and RC members with the same rein-
forcement ratio and under the same bending moment and obtained a 
direct relationship between ξRC and ξHFRC: 

ξHFRC/ξRC =

{
1.14(ρprov,HFRC)

− 0.62
, ρprov,HFRC ≤ 1.0%

− 0.065ρprov,HFRC + 1.24, ρprov,HFRC > 1.0%

}

≥ 1.0 (24) 

Thereby, a complete set of equations was provided for direct use for 
the “long method of Rangan-Scanlon” for HFRC members. 

In terms of practical application, to avoid brittle failure, the mini-
mum longitudinal steel reinforcement ratio for HFRC members, ρmin, 

HFRC, was adopted according to the Annex L of the new Eurocode 2 [8] 
provisions. In this code, ρmin,HFRC for HFRC beams is the same as for RC 
beams. But for slabs, a reduction up to 50% is allowed following Eq. 
(25). 

ρmin,HFRC =

{
ρmin,RCforbeams

0.5ρmin,RCforslabs (25) 

Thus, for hybrid reinforced slabs, ρmin,HFRC is taken as: 

ρmin,HFRC = max

(
0.125

̅̅̅̅

f ′
c

√

fy
,
0.69

fy

)

for SI units  

ρmin,HFRC = max

(
1.5

̅̅̅̅

f ′
c

√

fy
,
100
fy

)

for US customary units (26) 

Therefore, the provided amount of tensile bars reinforcement, ρprov, 

HFRC, is defined as: 

ρprov,HFRC = max
(
ρreq,HFRC, ρmin,HFRC

)
(27)  

3. Parametric study on HFRC one-way solid slabs 

In order to investigate the practical implications of the proposed 
method, a comprehensive parametric study was devised and performed 
to find values of the effective moment of inertia factor α and slenderness 
L/h for HFRC one-way solid slabs. The motivation was ultimately to 
develop practical design tools based on the parametric study results, that 
allow the set the minimum depth of one-way solid slabs at early stages of 
design. 

For this purpose, the following parameters and values were consid-
ered in the parametric study:  

• Rectangular cross-section, of breadth b and height h; 
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• Reinforcing steel with a specified yield strength fy of 60 ksi (413.7 
MPa);  

• Three specified concrete strengths, fc’, of 3000, 4000 and 5000 psi 
(20.7, 27.6 and 34.5 MPa);  

• Three average residual tensile strengths, fR1, of 150, 450 and 750 psi 
(1.0, 3.1 and 5.2 MPa);  

• Residual strength fR3 = fR1 (based on [32,41])  
• Relative effective depth, d/h, of 0.75, 0.85 and 0.95;  
• Spans L of 15 and 35 ft (4.6 and 10.7 m);  
• Superimposed surface loads Q of 80 and 160 psf (3.8 and 7.7 kN/m2);  
• Three boundary conditions – fixed–fixed (both ends continuous), 

fixed–pinned (one end continuous) and pinned–pinned (simply 
supported);  

• Two incremental deflection limits for floors or roofs. One for floors or 
roofs supporting or attached to non-structural elements that are 
likely to be damaged by large deflections (deflection limit of L/480, a 
case called “damageable”) and one for floors or roofs not likely to be 
damaged by large deflections (deflection limit of L/240, a case called 
“non-damageable”). 

In total, there were 7 parameters, leading to 3 × 3 × 3 × 2 × 2 × 3 ×
2 = 648 individual cases. For each case, α was calculated using the 
following procedure:  

1. An initial height h0 was assumed based on existing L/h ratios in ACI 
318-19 [33];  

2. From the superimposed surface load and self-weight (determined 
based on h0) the nominal moment(s) in representative cross-section 
(s) is(are) determined and bar reinforcement ratio(s) ρreq,HFRC 
necessary for strength requirements is(are) calculated;  

3. ρreq,HFRC is checked against ρmin,HFRC given by Equation (26);  
4. ξ is calculated according to Equation (12) for RC and, then, ξHFRC to 

Equation (24);  
5. μHFRC, δHFRC and mHFRC are calculated based on Equations (17), (21) 

and (23) and considering Ma = 0.67Mn, i.e., η = 0.67;  
6. αHFRC is calculated according to Equation (22) for the representative 

cross-sections of the member (mid-span cross-section and both sup-
port cross-sections, depending on the boundary conditions). The 
overall factor α for the entire member is then calculated by averaging 
the factors for representative sections considering the bending 
moment law, i.e., the portions of length of hogging and sagging 
moments, which are 0 and 1 for simply supported elements, 0.25 and 
0.75 for one end continuous boundary conditions and 0.42 and 0.58 
for both ends continuous boundary conditions;  

7. h is found using Equation (5) considering L, α, (Δ/L)allow, boundary 
conditions (expressed through the factor κ, which is 5.0, 2.0 and 1.4 
for simply supported elements and elements with one or both ends 
continuous, respectively), Ec, long-term deflection multiplier (λΔ = 2) 
for loads causing long-term deflections;  

8. h is checked against h0 and the process is repeated until convergence. 

The process is summarized in the flowchart in Fig. 1. 
The values of fR1 and fR3 adopted for the study (average values), as 

well as their relationship (fR3 = fR1) are representative of steel fiber 
reinforced concrete at typical quantities of 0.25%–1.50% by volume of 
concrete. Nonetheless, these values and the relationship are based on the 
database from which they were obtained [32,41] and may differ in other 
concretes or other fiber types (such as macro-synthetic fibers), specif-
ically they were obtained using a linear regression with a coefficient of 
determination R2 of 0.9. Nonetheless, both parameters are left inde-
pendent in the method so different values can be adopted if measured or 
considered appropriate. Additionally, as recognized by Tošić et al. [32], 
the long-term deflection multiplier λΔ might be different for HFRC 
relative to RC. In fact, adopting the same value as for RC is conservative 
since the presence of steel fibers can improve tension stiffening [42]. 
However, currently available experimental results are insufficient and 

Fig. 1. Process flowchart for HFRC one-way slab design.  
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inconclusive in this regard. 
For span and superimposed surface load, only two values were 

selected, covering the extremes of feasible ranges for usual one-way 
solid slabs in buildings. From Equation (5), it can be seen that the in-
fluence of these parameters on the value of α1/3 is linear and, therefore, 
any intermediate values could be omitted, as intermediate values may 
be linearly interpolated when searching for the slenderness (L/h) of a 
slab using equation (5), where L/h depends linearly of α1/3. 

4. Results and discussion 

After performing the parametric study calculations, the first next step 
was the analysis and the determination of the influence of individual 
parameters. In each case, six of the seven parameters were fixed and one 
was considered with its extreme values. For example, both ends 
continuous boundary condition, non-damageable non-structural ele-
ments, Q = 160 psf (7.7 kN/m2), fc’ = 4000 psi (27.6 MPa), fR1 = fR3 =

450 psi (3.2 MPa), d/h = 0.85. Then, spans L of 15 and 35 ft (4.6 and 
10.7 m) are considered and the obtained L/h limits and α factors are 
compared for the two cases. 

In this particular case, the L/h value for L = 15 ft (4.6 m) is obtained 
as 33.7 and for L = 35 ft (10.7 m) as 28.5. This is observed as a |33.7/ 
28.5 – 1| = 18.2% difference, which is significant. However, if the value 
of α is considered for both cases, 0.323 and 0.301 are obtained, 
respectively. In this case, the difference should be analyzed in terms of 
α1/3, since this is how α influences L/h in Equation (5). Hence, the dif-
ference is |(0.323/0.301)1/3 – 1| = 2.4%, much smaller than when 
considering L/h. 

This process was then repeated for each of the individual parameters. 
Since seven parameters were considered in total, in order to obtain easy- 
to-use graphic charts, it was necessary to identify which parameters do 
not significantly affect the magnitudes of L/h or α. Once the less influ-
ential parameters were identified, the values of L/h or of α depending on 
those parameters are averaged as a single value of L/h or of α, 
respectively. 

It was considered that when the difference between the two extreme 
values in a set of values of L/h or of α1/3 for a certain parameter is 
smaller than 10%, such a parameter is considered to be of negligible 
influence. By doing this, any error would have been limited to 5% with 
respect to each of the extreme values for which it was averaged. A 5% 
error on a slab with a depth of 250 mm (10 in) would be an error of 12.5 
mm (0. 5 in). Such errors can be considered acceptable errors at an early 
stage of design. 

After studying the sensitiveness of L/h and α1/3 to each of the pa-
rameters, it was consistently found that α1/3 was far less sensitive to 
variations to most of the parameters, and that it is a more robust vari-
able. This finding is consistent with the results of prior research on RC 
members [32,34], where it was found that for slabs α1/3 is far less var-
iable than L/h for flat elements (like slabs and wide beams), whereas L/h 
is less variable than α1/3 for deep elements (such as narrow beams). 

Hence, the practical design charts developed below have been 
devised to find values of α rather than of L/h, since α could be expressed 
in terms of a smaller number of parameters (to which it is sensitive). 
Therefore, the slenderness (L/h) of a certain slab may be found by using 
Equation (5), i.e., using the “short method of Rangan-Scanlon,” and 
using the corresponding value of α provided in the design tools. 

After identifying the parameters to which α1/3 is more sensitive, it 
was found that the influence of the studied parameters varies signifi-
cantly depending on whether slabs are attached to “damageable” or to 
“non-damageable” non-structural elements. 

4.1. Slabs attached to “non-damageable” non-structural elements 

For HFRC one-way solid slabs attached to “non-damageable” non- 
structural elements, the parameters significantly affecting α1/3 were 
found to be residual strength fR1, load (Q), span (L) and boundary 

conditions. The large influence of boundary conditions and of span (L) 
were already expected, as these factors are among those that most in-
fluence the diagrams of forces and thus the level of cracking of the cross 
section, which influences the moment of inertia and thus α. The influ-
ence of load (Q) is often disregarded in design codes [8,33]. However, 
finding that it is influential on α was not a surprise in this case, as pre-
vious research reached the same conclusion [3,34]. The influence of 
residual strength fR1, which was never put forward by a similar study, 
can well be explained by the fact that fR1 influences the depth of the 
position of the neutral axis of the cracked section. This, in its turn, in-
fluences the moment of inertia of the cracked section, and thus α. 

The specified concrete compressive strength (fc’) was not signifi-
cantly affecting α1/3. Despite the variation of the concrete compressive 
strength (fc’) considerably influences deflection through the modulus of 
elasticity (Ec), this influence is already considered in the method, 
because in Eq. (5) the modulus of Elasticity (Ec) is included as a 
parameter. So, as the variation of the modulus of elasticity (Ec) is not 
expected to influence α. Besides, the influence of the compressive 
strength (fc’) was found to be only of second order on α, through its 
influence on the modulus of rupture (fr) and the residual strength fR1. 

At the same time, the relative effective depth, d/h, was found to be an 
“intermediately” significant parameter – depending on the combination 
of other parameters. It was found that d/h does not affect significantly 
α1/3 when the boundary condition is “both ends continuous”. Whereas, 
for other boundary conditions (“one end continuous” and “simply sup-
ported”), in some cases d/h was only found to be influential when it 
becomes very small, i.e. d/h = 0.75. That is why the results for d/h =
0.75 have been separated from the results corresponding to d/h = 0.85 
and 0.95 in those cases. 

The results are shown in Table 1, where the α factor values are shown 
for each set of influential parameters, but averaged for the non- 
influential parameters. In other words, for a given set of fR1, Q, L and 
boundary condition (and d/h, depending on the set of parameters), α 
was averaged for the compressive strengths and for d/h, where this 
parameter was found to be not predominant. This averaging was done 

Table 1 
Values of the α factor depending on several parameters for HFRC for one-way 
solid slabs attached to non-damageable non-structural elements.  

α Deflection control 
Att. to non- 
damageable elem. 
Q (psf) 

Boundary conditions L (ft) fR1 (psi) d/h 80 160 

Both ends continuous 15 150 All 0.284a 0.234a 

450 All 0.375a 0.330a 

750 All 0.429a 0.385a 

35 150 All 0.232a 0.209a 

450 All 0.333a 0.309a 

750 All 0.389a 0.364a 

One end continuous 15 150 0.75 0.218 0.206 
0.85–0.95 0.198a 0.171a 

450 All 0.376a 0.284a 

750 All 0.376a 0.345a 

35 150 0.75 0.207 0.144 
0.85–0.95 0.164a 0.155a 

450 0.75 0.290 0.287 
0.85–0.95 0.277a 0.262a 

750 All 0.344a 0.329a 

Simply supported 15 150 All 0.207a 0.182a 

450 All 0.324a 0.292a 

750 All 0.396a 0.363a 

35 150 0.75 0.191 0.190 
0.85–0.95 0.157a 0.148a 

450 0.75 0.282 0.271 
0.85–0.95 0.278a 0.262a 

750 All 0.351a 0.334a 

a ρmin,HFRC (Equation (26)) is larger than ρ+req,HFRC. 
NOTE: 1 ft = 0.305 m, 1000 psi = 6.895, 10 psf = 0.479 kN/m2. 

M. Sanabra-Loewe et al.                                                                                                                                                                                                                      



Structures 56 (2023) 104926

7

omitting the results for compressive strength, f’c, equal to 4000 psi (27.6 
MPa), and taking only the extreme values (3000 psi and 5000 psi, i.e. 
20.7 and 34.5 MPa), as the small influence of compressive strength was 
found to be mostly linear and including the intermediate value did not 
make a difference. It can also be seen that, except for 10 cases (out of 
46), the required positive reinforcement, ρ+req,HFRC was smaller than ρmin, 

HFRC, whereas ρ-
req,HFRC was always larger than ρmin,HFRC in slabs with 

either “one end continuous” or “both ends continuous”. 
The results in Table 1 are also graphically represented in Figs. 2–4 

which allow a quick and easy determination of the value of α based on 
the influential parameters (load (Q), span (L), residual strength (fR1), 
boundary conditions and sometimes d/h). 

Finally, it should be noted that the whole set of values of α used to 
compute the average α values showed in Table 1 ranged from 0.140 to 
0.437 with a global average of 0.290. It can be seen, therefore, that it is 
not possible to adopt a recommendation for a constant value of α, as the 
range of values is ± 50% of the average. Considering that L/h depends 
on α1/3, taking the average value of 0,290 would give an error of up to a 
22% in L/h, which is well beyond the 5% that we have taken as 
acceptable. 

4.2. Slabs attached to “damageable” non-structural elements 

As for HFRC one-way solid slabs attached to “damageable” non- 
structural elements, the parameters significantly affecting α1/3 were 
found to be residual strength fR1, load (Q), span (L) and boundary con-
ditions. The specified concrete compressive strength (fc’) and the rela-
tive effective depth (d/h) did not significantly affect α1/3. 

The results are shown in Table 2 where the α factor values are shown 
for each set of influential parameters, but averaged for the non- 
influential parameters. In this case, each value of α in Table 2 is an 
average of six values (averaging over the results for the two extreme 
values of fc’ and for the three values of d/h: 0.75, 0.85 and 0.95). For all 
36 cases the required positive reinforcement, ρ+req,HFRC, was lower than 
the minimum amount of reinforcement, ρmin,HFRC, defined by Equation 
(26).In 5 cases, also the required negative reinforcement, ρ-

req,HFRC, was 
lower than the minimum, ρmin,HFRC. 

The results in Table 2 are also graphically represented in Figs. 5–7 
which allow a quick and easy determination of the value of α based on 
the influential parameters (load (Q), span (L), residual strength (fR1) and 
boundary conditions). 

Finally, it should be noted that the whole set of values of α used to 
compute the average α values showed in Table 2 ranged from 0.207 to 
0.601 with a global average of 0.401. As for slabs attached to non- 
damageable non-structural elements, it is not possible to adopt a 
recommendation for a constant value of α, as the range of values is ±
50% of the average. Considering that L/h depends on α1/3, taking the 
average value of 0,401 would give an error of up to a 20% in L/h, which 
is well beyond the 5% that we have taken as acceptable. 

5. Conclusions 

This study presented an in-depth analysis of the minimum slender-
ness calculation of SFRC hybrid one-way slabs, using the long method of 
Rangan-Scanlon. Some minor adjustments in the original formulas have 
been described. These adjustments where necessary to perform the 
parametric study, considering those cases where the minimum amount 
of reinforcement to prevent a brittle failure is larger than the rein-
forcement required without considering ductility requirements. 

In order to identify and quantify the influence of residual flexural 
strength of the FRC (fR) in HFRC one-way slabs, the study includes a 
representative range (from 150 to 750 psi, i.e. 1.0 to 5.2 MPa) for fR. The 
results of the parametric study have been represented in plots and tables 
that can be used as design aids for practitioners. They are summarized 
next:  

• For all the cases studied of one-way HFRC slabs, attached to either 
“damageable” or “non-damageable” non-structural elements, it was 
found that α1/3 is much less sensible than L/h to the variation of most 
of the studied variables. Therefore, all the results and the design tools 
provided allow the determination of α, that may subsequently be 
used to find L/h using the provided formulas of the long method of 
Rangan-Scanlon. 

Fig. 2. HFRC one-way slabs with both ends continuous, attached to non-damageable non-structural elements– dependence of factor α on fR1, span L and load Q (Δ– 
cases where minimum reinforcement, ρmin,HFRC, is larger than the required positive reinforcement, ρ+req,HFRC). NOTE: 1 ft = 0.305 m, 1000 psi = 6.895, 10 psf = 0.479 
kN/m2. 
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Fig. 3. HFRC one-way slabs with one end continuous, attached to non-damageable non-structural elements– dependence of factor α on fR1, span L, load Q and d/h (Δ 
– cases where minimum reinforcement, ρmin,HFRC, is larger than the required positive reinforcement, ρ+req,HFRC). NOTE: 1 ft = 0.305 m, 1000 psi = 6.895, 10 psf =
0.479 kN/m2. 

Fig. 4. HFRC simply supported one-way slabs, attached to non-damageable non-structural elements– dependence of factor α on fR1, span L, load Q and d/h (Δ – cases 
where minimum reinforcement, ρmin,HFRC, is larger than the required positive reinforcement, ρ+req,HFRC). NOTE: 1 ft = 0.305 m, 1000 psi = 6.895, 10 psf = 0.479 
kN/m2. 
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• In the case of HFRC one-way slabs attached to “damageable” non- 
structural elements:  
a. The parameters found to significantly affect α1/3 were load (Q), 

span (L), boundary conditions and residual flexural tensile 
strength (fR1).  

b. For the range of considered parameters, α varied between 0.207 
and 0.601 with an average of 0.401.  

c. For all the cases studied, the amount of positive reinforcement in 
bars needed to meet ductility requirements is larger than the 
amount of steel required for flexure strength. For a small number 
of cases this is also true for negative moments.  

• In the case of HFRC one-way slabs attached to “non-damageable” 
non-structural elements:  
a. The parameters found to significantly affect α1/3 were load (Q), 

span (L), boundary conditions, residual flexural tensile strength 
(fR1), and for certain combinations of the previous factors, relative 
effective depth (d/h) is also an influential factor.  

b. When the amount of fibers is high, i.e. fR1 = 750 psi (5.2 MPa), the 
relative effective depth (d/h) is not an influential factor. For lower 
amounts of fibers, the relative effective depth (d/h) is only 
influential for simply supported slabs and for slabs continuous at 
one end.  

c. For the range of considered parameters, α varied between 0.140 
and 0.437 with an average of 0.290. 

d. With only very few exceptions, the amount of positive reinforce-
ment in bars needed to meet ductility requirements is larger than 
the amount of steel required for flexure strength. Whereas, for 
negative moments, the amount of reinforcement required for 
flexure strength was found to be always larger than the minimum 
amount of steel required for ductility. 

The results of this study, including the provided design tools, may be 
used in research focused on economic parameters, to find out whether 
hybrid reinforced HFRC one-way slabs may be economically competi-
tive with conventional RC one-way slabs. 

Table 2 
Values of the α factor depending on several parameters for HFRC one-way solid 
slabs attached to damageable non-structural elements.  

α Deflecion control 
Damageable 
L (ft) 

Boundary conditions Q (psf) fR1 (psi) 15 35 

Both ends continuous 80 150 0.508a 0.388a 

450 0.557a 0.465a 

750 0.592b 0.513b 

160 150 0.398a 0.331a 

450 0.468a 0.416a 

750 0.514b 0.469b 

One end continuous 80 150 0.332a 0.250a 

450 0.431a 0.363a 

750 0.492b 0.429a 

160 150 0.272a 0.225a 

450 0.376a 0.336a 

750 0.439a 0.401a 

Simply supported 80 150 0.337a 0.240a 

450 0.453a 0.367a 

750 0.520a 0.441a 

160 150 0.282a 0.222a 

450 0.400a 0.344a 

750 0.468a 0.418a 

a Minimum reinforcement, ρmin,HFRC, after Equation (26), is larger than the 
required positive reinforcement, ρ+req,HFRC. 
bBoth positive and negative required reinforcements, ρ-

req,HFRC and ρ-
req,HFRC, are 

lower than the minimum amount of reinforcement, ρmin,HFRC. 
NOTE: 1 ft = 0.305 m, 1000 psi = 6.895, 10 psf = 0.479 kN/m2. 

[BOTH ENDS CONTINUOUS]

Fig. 5. HFRC one-way slabs with both ends continuous, attached to damageable non-structural elements – dependence of factor α on fR1, span L and load Q (Δ – cases 
where minimum reinforcement, ρmin,HFRC, is larger than required positive reinforcement, ρ+req,HFRC;◇– cases where minimum reinforcement, is larger than both the 
required positive moment, ρ+req,HFRC, and the required negative reinforcement, ρ-

req,HFRC). NOTE: 1 ft = 0.305 m, 1000 psi = 6.895, 10 psf = 0.479 kN/m2. 
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[ONE END CONTINUOUS]

Fig. 6. HFRC one-way slabs with one end continuous, attached to damageable non-structural elements– dependence of factor α on fR1, span L and load Q (Δ – cases 
where minimum reinforcement, ρmin,HFRC, is larger than the required positive reinforcement, ρ+req,HFRC; ◇– cases where minimum reinforcement, is larger than both 
the required positive moment, ρ+req,HFRC, and the required negative reinforcement, ρ-

req,HFRC). NOTE: 1 ft = 0.305 m, 1000 psi = 6.895, 10 psf = 0.479 kN/m2. 

[SIMPLY SUPPORTED]

Fig. 7. HFRC simply supported one-way slabs, attached to damageable non-structural elements– dependence of factor α on fR1, span L and load Q (Δ – cases where 
minimum reinforcement, ρmin,HFRC, is larger than required positive reinforcement, ρ+req,HFRC). NOTE: 1 ft = 0.305 m, 1000 psi = 6.895, 10 psf = 0.479 kN/m2. 
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