
id178371

DEVELOPMENT OF A CONTEXT KNOWLEDGE
SYSTEM FOR MOBILE CONVERSATIONAL

AGENTS

RAÚL LOZANO GARCIA

Thesis supervisor: QUIM MOTGER DE LA ENCARNACION (Department of Service and Information
System Engineering)

Degree: Bachelor Degree in Informatics Engineering (Software Engineering)

Thesis report

Facultat d'Informàtica de Barcelona (FIB)

Universitat Politècnica de Catalunya (UPC) - BarcelonaTech

29/06/2023

Abstract

A mobile conversational agent or chatbot is software that can perform tasks or services
for a particular user or group. The main goal of this Final Degree Project is to develop
a context knowledge system for mobile agents, as well as provide it with tools that allow
it to be adapted dynamically. This system will allow the user to receive personalised
suggestions of actions based on their context and preferences.

This project is developed in the A modality, which means it is associated with a university
department. In this case, this project is linked to the Software and Service Engineer-
ing Group (GESSI) department from the Barcelona School of Informatics, Universitat
Politècnica de Catalunya.

This system will expose feature integrations between different applications of a mobile
device, allowing the user to perform actions in one application and receive suggestions
of possible actions to be executed in another application, letting them complete that
suggestion without having to explicitly open the application.

Resum

Un agent conversacional mòbil o chatbot és un programari que pot realitzar tasques o
serveis per a un usuari o grup en concret. L’objectiu principal d’aquest Treball de Fi
de Grau és desenvolupar un sistema de coneixement de context per a agents mòbils,
aix́ı com proporcionar-li eines perquè pugui adaptar-se dinàmicament. Aquest sistema
permetrà a l’usuari rebre suggeriments personalitzats d’accions basades en el seu context
i preferències.

Aquest projecte es desenvolupa en la modalitat A, que significa que està associat a un
departament universitari. En aquest cas, aquest projecte està vinculat al departament
de Grup d’Enginyeria del Software i dels Serveis (GESSI) de la Facultat d’Informàtica de
Barcelona, Universitat Politècnica de Catalunya.

Aquest sistema exposarà integracions de funcions entre diferents aplicacions d’un dis-
positiu mòbil, permetent a l’usuari realitzar accions en una aplicació i rebre suggeriments
d’accions possibles per a ser executades en una altra, permetent-li completar aquesta
acció sense haver d’obrir expĺıcitament l’aplicació en qüestió.

Resumen

Un agente conversacional móvil o chatbot es un software que puede realizar tareas o
servicios para un usuario o grupo en concreto. El objetivo principal de este Trabajo de
Fin de Grado es desarrollar un sistema de conocimiento de contexto para agentes móviles,
aśı como proporcionarle herramientas para que pueda adaptarse dinámicamente. Este
sistema permitirá al usuario recibir sugerencias personalizadas de acciones basadas en su
contexto y preferencias.

Este proyecto se desarrolla en la modalidad A, que significa que está asociado a un
departamento universitario. En este caso, este proyecto está vinculado al departamento de
Grupo de Ingenieŕıa del Software y de los Servicios (GESSI) de la Facultad de Informática
de Barcelona, Universitat Politècnica de Catalunya.

Este sistema expondrá integraciones de funciones entre diferentes aplicaciones de un dis-
positivo móvil, permitiendo al usuario realizar acciones en una aplicación y recibir sug-
erencias de acciones posibles para ser ejecutadas en otra, permitiéndole completar esa
acción sin tener que abrir expĺıcitamente la aplicación en cuestión.

Contents

1 Introduction 7
1.1 Contextualization . 7
1.2 Concepts . 9
1.3 Problem to be solved . 10
1.4 Stakeholders . 11

2 Justification 13
2.1 Examples of task-oriented conversational agents 14
2.2 Justification of the solution proposed . 15

3 Scope 17
3.1 Goals . 17
3.2 Requirements . 18

3.2.1 Functional requirements . 18
3.2.2 Non-functional requirements . 19

3.3 Obstacles and risks . 20

4 Methodology 21
4.1 Working methodology . 21
4.2 Monitoring tools and validation . 21

5 Time planning 23
5.1 Task description . 24
5.2 Resources . 26
5.3 Estimations and Gantt . 27
5.4 Risk management: alternative plans and obstacles 30

6 Budget 31
6.1 Identification of costs . 31

6.1.1 Human resources . 31
6.1.2 Material resources . 32
6.1.3 General resources . 33
6.1.4 Contingencies . 34
6.1.5 Unforeseen events . 34
6.1.6 Final budget . 34

6.2 Management control . 35

7 Fundamentals 36

1

7.0.1 What is a Knowledge Graph? . 36
7.0.2 Ontologies . 37
7.0.3 Why use Knowledge Graphs? . 37

7.1 Semantic Web . 38
7.1.1 Resource Description Framework (RDF) 38
7.1.2 Semantic RDF Schema . 39
7.1.3 SPARQL . 40

8 Requirement specification 42
8.1 Motivational example . 42
8.2 Functional requirements . 43

8.2.1 User stories . 43
8.3 Non-functional requirements . 57

9 Design 60
9.1 Basic structure . 60
9.2 Logical architecture . 61
9.3 Design patterns . 62

9.3.1 Dependency Injection . 63
9.3.2 Singleton . 63

9.4 Data model diagram . 63
9.4.1 Entities and relations . 65

10 Implementation process 68
10.1 System overview . 68
10.2 Development resources . 69

10.2.1 Technologies and frameworks used 69
10.2.2 Development tools . 70

10.3 Data schema extension . 70
10.3.1 Creation of the data schema extension 70
10.3.2 Domain constraints . 73

10.4 Knowledge base operations . 73
10.4.1 Entity definitions . 73
10.4.2 User preferences . 83
10.4.3 Suggestions computation . 84

11 Testing 89
11.1 Knowledge base test dataset . 89
11.2 Component testing . 91
11.3 Integration testing . 92

12 Sustainability 95
12.1 Initial milestone . 96

12.1.1 Economic dimension . 96
12.1.2 Environmental dimension . 96
12.1.3 Social dimension . 96

12.2 Final milestone . 97
12.2.1 Economic dimension . 97
12.2.2 Environmental dimension . 98

2

12.2.3 Social dimension . 99

13 Legislation 101

14 Final planning and budget 102
14.1 Estimations . 102
14.2 Budget . 106

15 Conclusions 107
15.1 Achievement of the goals . 107
15.2 Technical competencies . 108
15.3 Future work . 110
15.4 Personal conclusions . 110

A Swagger API documentation 111

References 114

3

List of Figures

1.1 Example of how the current knowledge base looks like 10

2.1 Example of how Google Assistant looks like 14
2.2 Example of how Siri looks like . 15
2.3 Example of how the final knowledge base will look like 15

4.1 Example of a Git feature branching strategy 22
4.2 Snapshot of the student’s board in Taiga 22

5.1 Gantt’s diagram . 28
5.2 Gantt’s diagram . 29

7.1 Example of a graph . 36
7.2 Example of an RDF triple . 39
7.3 Example of a schema.org schema . 40
7.4 Example of a SPARQL query . 40

8.1 Motivational example . 42

9.1 3-layer architecture . 61
9.2 Spring Boot flow architecture . 62
9.3 Data model diagram . 64

10.1 Example of how users were represented in the initial knowledge base . . . 69
10.2 Example of how the data for Alice and Bob users would be represented in

the extended data schema . 72
10.3 SPARQL query to request feature integrations from source features and

previous user preferences . 85
10.4 SPARQL query to request app integrations from a target feature and pre-

vious user preferences . 86
10.5 SPARQL query to request source-target parameter integrations for selected

app . 87
10.6 SPARQL query to request custom parameters for selected app 88

11.1 Example conversation between the chatbot and the user 91
11.2 Component testing . 92
11.3 Component testing results . 92
11.4 Integration testing example . 93

14.1 Gantt’s diagram . 104
14.2 Gantt’s diagram . 105

4

List of Tables

5.1 Summary table of the tasks . 27
5.2 Project risks . 30

6.1 Salaries of the roles involved in the project 31
6.2 Cost of the human resources involved in the project 32
6.3 Software resources used in the project. 33
6.4 Hardware costs . 33
6.5 Unforeseen events costs . 34
6.6 Final budget estimation . 35

8.1 User Story 1: Add a feature integration 44
8.2 User Story 2: Read a feature integration 45
8.3 User Story 3: Update a feature integration 45
8.4 User Story 4: Delete a feature integration 46
8.5 User Story 5: Create a parameter . 46
8.6 User Story 6: Read a parameter . 47
8.7 User Story 7: Update a parameter . 47
8.8 User Story 8: Delete a parameter . 48
8.9 User Story 9: Add a parameter integration 48
8.10 User Story 10: Read a parameter integration 49
8.11 User Story 11: Update a parameter integration 49
8.12 User Story 12: Delete a parameter integration 50
8.13 User Story 13: Add an app integration 50
8.14 User Story 14: Read an app integration 51
8.15 User Story 15: Update an app integration 51
8.16 User Story 16: Delete an app integration 52
8.17 User Story 17: Request feature integrations from a source features and

previous user preferences . 52
8.18 User Story 18: Request app integrations from a selected target feature and

previous user preferences . 53
8.19 User Story 19: Request source-target parameter integrations for a selected

app . 53
8.20 User Story 20: Request custom parameters for a selected app 54
8.21 User Story 21: Design and integrate the data schema extensions 54
8.22 User Story 22: Manage Knowledge Base with CRUD operations 55
8.23 User Story 23: Define and formalise domain constraints for the integrations 55
8.24 User Story 24: Obtain personalised suggestions of actions 56
8.25 User Story 25: Obtain personalised suggestions of apps 56

5

8.26 User Story 26: Obtain parameters used for an integration 56
8.27 User Story 27: Obtain custom parameters 57
8.28 Non-functional requirement 1: Speed and Latency 57
8.29 Non-functional requirement 2: Reliability and Availability 57
8.30 Non-functional requirement 3: Scalability and Extensibility 58
8.31 Non-functional requirement 4: Access . 58
8.32 Non-functional requirement 5: Privacy 58
8.33 Non-functional requirement 6: Project Planning 59

12.1 Final cost of the project . 97
12.2 Maintenance cost of the project . 98

14.1 Summary table of the tasks with their initial and final time estimations. . 103
14.2 Initial and final budget . 106

6

Chapter 1

Introduction

The project “Development of a context knowledge system for mobile conversational
agents” corresponds to my Final Degree Project to conclude my studies in Informatics En-
gineering, at the Barcelona School of Informatics, Universitat Politècnica de Catalunya.
This work belongs to the Software Engineering specialization, so it aims to address a
series of concepts and topics taught in this specialization. It is developed in the A modal-
ity, which means it is associated with a university department. In this case, this project
is linked to the Software and Service Engineering Group (GESSI) department and it is
directed by one of its members, Quim Motger de la Encarnación.

The main goal of this project is to develop a context knowledge system [1] for mobile
agents, as well as provide it with tools that allow it to be adapted dynamically. This
knowledge system will expose feature integration between different applications of a mo-
bile device. In this project, we identify feature integration between two particular appli-
cations as the correlation of an action done by the user in a specific application and the
resulting suggestion of possible action to be executed by the user in another application,
based on the user’s context.

1.1 Contextualization

The popularity of ChatGPT and other large language models has been increasing lately,
and this has provoked as a consequence an increase in interest in the natural language
processing field (NLP). These models have been a revolution when it comes to mobile
conversational agents, due to them being able to provide text generation capabilities,
which is a very important aspect when it comes to conversational agents. This ability
to make systems that are capable of both understanding and generating text is key in
several fields, and this has made the interest in conversational agents arise.

A conversational agent [2], also known as a chatbot can be described as an entity that can
simulate a real conversation a user would have with another human. It uses both Natural
Language Processing (NLP) and Natural Language Understanding (NLU) in order to
provide a proper conversation in natural language, so the user is able to understand.

There are several types of chatbots, such as rule-based, generative, retrieval-based or task-
oriented. The chatbot developed in the Chatbots4Mobile project follows the task-oriented
approach, due to its special characteristics related to the knowledge structure [3]. Also

7

known as declarative, these type of chatbots resolves an attempt to a specific task or the
configuration of a specific task executed in a software environment. Evolving from basic
rule-based NLP techniques to the appearance and revolution of deep learning models like
recurrent neural networks and, more recently, transformer models, these chatbots are able
to understand the user’s intent and provide the user with the best possible answer to the
question asked. This type of chatbot can be usually seen in customer service, where the
user asks a question and the chatbot provides the user with the best possible answer to
the question asked.

Recently, there has been a huge increase in the number of chatbots that are being devel-
oped, and this is due to the fact that the technology behind them is becoming more and
more accessible to the general public. And thus, added to the revolution currently hap-
pening in the field of NLP, with transformer models such as BERT, GPT, etc..., makes
conversational agents a very interesting topic to study and get involved in.

Other aspects that may attract and are attracting the attention of the public are:

� Generative content : the ability to generate text is a very important aspect when
talking about chatbots, and it is also one of the most important aspects when
it comes to the user experience. The ability to generate content considering the
context of the user is what makes this project so interesting.

� Personalisation: the ability to provide a personalised experience to the user is also
a very important aspect when it comes to chatbots. This is also one of the main
goals of this project.

� Adaptive style: the ability to adapt the style of the conversation with the user is
also a very important feature, especially in contexts where the chatbot may have
more or less knowledge of the user, and it must adapt to that and offer the best
possible information to them.

There is another type of chatbot which has high relevance for this project, and it is the
knowledge-based chatbot. This type of chatbot is based on a knowledge base, which is a
database that stores information about a particular or several topics, and it is used to
provide the user with the best possible answer to what was asked.

However, all types of chatbots can be also combined, to make their functionalities even
more powerful. For instance, if we consider both the task-oriented and the knowledge-
based chatbot types when combined, we can obtain a really powerful chatbot. In this
case, the final result would be a chatbot that is supported by a knowledge base, which
would allow us to set, adapt, and modify the conversational experience the user will have
with the agent applied to a particular context. This is the key of this project, enabling the
definition of a knowledge base which will make a chatbot adapt to the user’s necessities
and context.

This project is part of a much wider project, which is named Chatbots4Mobile [4], and it is
also carried by the GESSI. This bigger project consists of the full design and development
of a conversational agent system, including both the design of the chatbot itself (what
the user will see on their screens) as well as the development of a mobile app knowledge
base for the apps that will be integrated and also the design and implementation of
the data modelling and storage system. In this case, the project “Development of a
context knowledge system for mobile conversational agents” will focus more on the latter;

8

although the knowledge base already exists, it was originally limited to model feature-
oriented knowledge based on the NL processing of document-related data, designed to
conduct deductive and inductive knowledge-generation techniques. In this thesis, we aim
at extending the knowledge base to support the process of automatic enactment of mobile
app features through the formalisation of the features exposed by those applications
and the data required to enact those features, by using the conversational agent as a
supporting agent for the user to conduct automatic enactment of those features.

1.2 Concepts

In this section, there will be a series of concepts that will be mentioned several times
throughout the document, in order to clarify their meaning and also try to avoid any
misunderstanding to the reader.

� App: A mobile application integrating a specific set of functionalities for a given
domain.

� App catalogue: It is the complete set of apps that are stored in the knowledge
base. This set of apps will be the core of the knowledge base to which the chatbot
has access to support the conversational process and the execution of tasks (i.e.,
feature integration, see below).

� App integration: It reflects the correlation that exists between two apps (that is,
a user first performed an action and after that, they performed another action in a
different app). The first app will be considered as the one that exposes the initial
action (source) and the second one will be the app that performs the final action
(target).

� Users: People who use the applications available in the app catalogue and benefit
from the suggestions the chatbot will provide.

� Feature: It is a functionality that corresponds to an action a user can perform in
a particular app. For instance, in the case of a calendar app, a feature could be
create an event or delete an event.

� Feature integration: It refers to the correlation that exists between two fea-
tures (i.e., a functional requirement from the user’s perspective [5]) from different
applications. One action done in a particular application will trigger this feature
integration, which will have another action from a different application as its target.

� Parameter: It is a value that is required to perform a particular action/feature.
For instance, a feature may require a date and a name to be specified, so these two
values will be considered as parameters.

� Parameter integration: It is the process associated with obtaining a parameter
value that appears in the integration of a particular action and using it in another
action integration. The parameter that we obtain the value from will be considered
as the one which populates the parameter integration and the one which receives
this value and uses it for itself will be the target.

To have a better understanding of the current state of the system’s knowledge base, a
visual representation of what has been created, as can be seen in Figure 1.1.

9

Figure 1.1: Example of how the current knowledge base looks like
Font: GESSI-Chatbots4Mobile

It currently has this structure due to it being limited to a particular context and a series
of functionalities. It is only composed of a set of users, a set of mobile applications and
a set of features that are associated with each one of them. The features are the ones
that will be used to perform the feature integration and parameter integration processes.
In this case, considering the example shown, the PlanRoute feature (also named Change-
ConstructedRoute, PlanFeature or OSMEditing) is integrated into the net.osmand [6]
application, a trail-tracking app including navigational and route-planning features. The
ScheduleMeeting (PlanMeeting, ScheduleMeeting or also named CreateEvent) feature is
integrated into the ws.xsoh.etar [7] application, a calendar app. The user quim.motger
uses both apps, and the knowledge base extension proposed in this project will be re-
sponsible for linking the PlanRoute feature with the ScheduleMeeting one in an automatic
way, allowing him to perform both actions by only performing one of them.

1.3 Problem to be solved

As mentioned in the previous section, this project will work on the design and devel-
opment of an extension of an initial knowledge base, in order to make it facilitate the
automated implementation of functionalities within mobile applications. At this mo-
ment, this initial knowledge base (database) scope is limited to modelling feature-oriented
knowledge, so several changes are required.

Checking the current data model the system has, it can be seen that it is limited to the
knowledge of the features at a granular level (a feature is an irreducible element). The
concept of feature is to be extended with other aspects, such as the actions the user
has done in the past, the context of the user, etc. This will allow the agent to have a
much more complete knowledge of the user, and thus, be able to provide a much more
personalised experience.

This existing knowledge base the agent has access to is not enough. As mentioned, the
system has no notion of the context of the user, an aspect that can be key to providing
an overall better experience to them.

In this context, we refer to user context as the preferences of the user as described in [8]
towards a specific use/configuration of a set of mobile applications (i.e., an applications

10

catalogue).

In other words, the current system does not have the formalisation of either features or
feature integrations from a technical perspective, nor can provide a personalised experience
to the user (due to it being designed for other purposes), so there is a need to extend the
current system with a more complex data model, in order to have some knowledge of the
user’s context.

In summary, it is required the design and development of several features to enhance
the product that is being implemented, such as the integration of a context knowledge
system or a much more complex data schema, so the user can have a fully personalised
experience with the agent, as well as delivering a high-quality product the users can rely
on and truly get a benefit from.

1.4 Stakeholders

The stakeholders are all the individuals or groups that are interested, benefited and also
involved in the project. Taking all of them into account is key because they allow us to
be able to define everything related to the project correctly. Taking this into account,
it is a must to consider all of their opinions, requirements and desires. The different
stakeholders that have been identified have been listed below.

Mobile app users

As has been described before, they are the ones who will truly obtain the benefits of using
the conversational agents, by having one of them on their devices.

GESSI

GESSI is the research group that owns the project Chatbots4Mobile, which is the master
project of this. We can identify several stakeholders in the department:

� Product Owner: it is the one responsible for maximizing the value that is being
delivered as well as ensuring the delivery of the product. In this case, the whole
department is considered the product owner, they want to obtain a high-quality
final product from all of their projects, including this one.

� Project coordinators: are the individuals that are responsible for coordinating
not only this project but also the other sub-projects that are being developed related
to Chatbots4Mobile.

� Final Degree Project’s director: Quim Motger de la Encarnación will be the
person who will supervise and guide the project, to make it progress and keep the
correct path.

� Developer: is the one responsible for implementing all the software, documenting
the whole process of the project and assuring the correct functioning of it. In this
case, there is only one developer, and it is the author of this Final Degree Project.

11

Mobile software developers

Not only entities that are close to the project will be benefited from it. In this case,
there is a whole group of developers that work on the production of conversational agents
that, by checking Chatbots4Mobile can be inspired and obtain another perspective of
how conversational agents should work, and more.

Task-oriented and knowledge base chatbots NLP community

Of course, everyone with an interest in this type of chatbot will be keen on considering
what has been developed in this thesis, as it is a really useful tool that can be used, for
instance, as a reference for future projects.

12

Chapter 2

Justification

The pervasiveness of conversational agents in mobile devices (e.g., Siri, Google Assistant)
is already a reality nowadays. However, the usage of these agents is limited to just being
used whenever the user wants to, and this affects directly the experience people get from
their assistants, negatively. In the following sections, some existing conversational agents
will be mentioned, and also the justification of the presented solution will be presented.

Before justifying the existence of this thesis, it is important to mention that the scope of
this thesis is limited to the extension of the knowledge base to support the design and
development of the task-oriented chatbot; therefore, the design and development of the
conversational system itself, especially in terms of dialogue management, intent recogni-
tion, entity extraction, etc., is not considered; it will be aimed towards the development
of its knowledge base, which will improve the overall performance and capabilities of the
chatbot.

The agent Chatbots4Mobile will offer will be a combination of a task-oriented and a
knowledge-based agent, and it will be also domain-specific. In other words, it will be
a task-oriented agent, as it will be able to perform a specific task (i.e., to provide the
user with a list of suggestions of apps that can be useful for them), and it will be also
knowledge-based, as it will have a knowledge base that will be used to store and retrieve
the information needed to perform the task. Finally, it will be domain-specific, as it will
be focused on the domain of mobile applications.

13

2.1 Examples of task-oriented conversational agents

Nowadays mobile conversational agents are part of most of our devices, although their
usage is not as expanded as it could be. In this section, two examples of ubiquitous agents
will be shown and, although not behaving as the one that we are going to develop, they
are still interesting to see, since they represent the state of the art in terms of direct user
support.

Google Assistant [9]

Google Assistant is a virtual assistant developed by Google, and it can be found and
installed with ease on several platforms, and it is dedicated to mobile and home devices
mainly. You can request via its application or by using voice commands several actions,
such as searching for things on the internet, playing games, and also actions with Google
apps, such as creating events, reminders, and more. If we compare what this assistant can
do with what our chatbot will be able to do, we can see that Google’s assistant enables the
execution of a set of specific actions for which an entry gateway is provided, whereas our
chatbot will be modelled to support the integration of functionalities between different
applications.

Figure 2.1: Example of how Google Assistant looks like
Font: Analytics Vidhya [10]

Apple’s Siri [11]

Siri is the virtual assistant developed by Apple, which is a built-in feature for all iOS
devices and it cannot be installed or accessed by any devices that use a different operating
system. It can resolve your doubts by searching the internet as well, or also make some
actions with Apple native applications, like setting alarms, reminders, and so on. It can
be manually invoked or it can also be requested by voice commands. The chatbot will be
able to perform actions as Siri does, with the difference that it will not be only performing
actions with native applications, but with a much wider range of applications, the user
might have installed. It also happens the same as with Google Assistant, that Siri is not
able to integrate functionalities between different applications, which is one of the main
features of our chatbot.

14

Figure 2.2: Example of how Siri looks like
Font: Macworld [12]

2.2 Justification of the solution proposed

The current state of Chatbots4Mobile’s knowledge base, as has been explained and shown
previously (a representation of its initial state is shown in 1.1), is limited to the knowledge
of the features at a granular level. What it is aimed is to extend the current system with
a more complex data model, to make it support the formalisation of the application’s
features, as well making it able to store information related to the user’s context. Both
of these aspects will allow the agent to have much more complete knowledge of the user
(in terms of actions they do/they have done in the past, preferences, etc.), and thus, be
able to provide a much more personalised experience. An example of how the knowledge
base will look after the addition of the new features is shown in 2.3.

Figure 2.3: Example of how the final knowledge base will look like
Font: GESSI-Chatbots4Mobile

As can be appreciated, the new data model will have the existing entities (i.e., users,
apps and features) the current system has, but it will be extended with the addition of
feature integrations, which will correlate two applications. To develop these integrations,
parameters will be used, and also parameter integration will be added. Last but not
least, app integrations will be added as well to understand in a more general way which
apps the user usually uses together. All of these extensions will be done in order to have
a more complete system, which will be able to work in a custom way for each user.

15

Considering the example shown above, we can see that the user, the apps and the features
these expose are the same as the ones in the initial knowledge base shown in 1.1. However,
it can be seen that now each feature has a set of parameters that enables us to know
what is required to perform the feature (e.g., the feature PlanRoute now has parameters
that allow us to indicate the name, the starting location and the end location of the
route we want to plan). Also, it can be seen that the concept of integrations appears as
well, in this case, we can see a feature integration defined between the two apps called
PlanRoute-ScheduleMeeting, which has the first one as the source feature and the second
one as the target. A parameter integration called RouteName-EventName is also defined,
which correlates the parameter name of the feature PlanRoute with the parameter name
of the feature ScheduleMeeting.

One aspect that is worth mentioning is that with the desired solution the concept of
cross-app feature integration is introduced. This concept can be defined as the ability to
integrate the features of two or more applications. There are several examples of this con-
cept, such as deep linking, SDKs, APIs, or more recent techniques such as MashReDroid
[13]. However, the solution proposed in this thesis is different from the ones mentioned,
as it aims to provide this integration by using a conversational agent.

Our contribution focuses on the development of a context knowledge base, which will
allow the agent Chatbots4Mobile to offer a more personalised experience to the user.

With this, what it is aimed is to extend the current functionalities the project Chat-
bots4Mobile offers, enabling it to provide both an integration between several applica-
tions and a much more personalised experience in terms of suggestions displayed to the
user.

So, it can be said that the main contribution of this thesis is the development of a context
knowledge base, which will focus on contributing into two scopes: (1) the cross-app
feature integration, and (2) the task-oriented, domain-specific and knowledge-
based conversational agents, aiming for the delivery of a personalised experience to
the user.

16

Chapter 3

Scope

In this chapter, the main goals of this project are defined, as well as all the requirements
that have to be ensured in order to deliver a correct final product. Lastly, the possible
obstacles and risks that may appear during the development process are analysed, in
order to have awareness of what can happen and to avoid unforeseen circumstances.

3.1 Goals

This project has a clear goal defined, which then is divided into different sub-goals in order
to facilitate tasking management, as well as being more capable to monitor everything is
going according to plan.

The main goal of this project is to integrate a feature-based Context Knowledge
System (CKS) into an existing Knowledge Base (KB) in the field of mo-
bile applications and the set of features these expose with the required data
schema and business logic to allow the formalisation of these features and
the potential personalized integration between functionalities from different
applications. To achieve this, a set of sub-goals have been defined:

G1 Design the data schema extension to support the formalisation of:

(a) Mobile app features

(b) Input and output parameters

(c) App integrations

(d) Feature integrations

(e) Parameter integrations

(f) User-preferred integrations

G2 Define and formalise the domain constraints of these feature integrations. That
includes (1) setting a unique identifier for each feature, (2) defining the data is
being sent before actually performing any action in the knowledge base and (3)
ensuring the data that is trying to be added does fit with what is already stored in
the knowledge base.

17

G3 Integrate the data schema into the existing KB and extend the KB with the required
business logic to populate the KB with CKS data (CRUD operations).

G4 Extend the KB with advanced inductive requests based on the customisation and
enactment of potential integrations for a given user.

G5 Evaluate the KB extension through the integration of a conversational agent query-
ing and modifying a specific KB instance.

3.2 Requirements

In this section all the functional and non-functional requirements have been defined for
this project, considering the goals that have been mentioned. These requirements have
great relevance, due to them being the ones defining a valid product.

It is important to mention that in this section the requirements are not detailed in a
formal way, but in a more general way, in order to have a better understanding of what
the system has to do. The formalisation of these requirements has been done and can be
found in Chapter 8 Requirement specification.

3.2.1 Functional requirements

System management

� The system’s current data schema will be extended to support a wider range of
options, that is (1) mobile app features, (2) feature parameters and (3) potential
integrations between apps, features and parameters.

� The system’s Knowledge Base will be also extended with advanced inductive re-
quests, and these will be the following:

– Request feature integrations from source features and previous user prefer-
ences.

– Request app integrations from a selected target feature and previous user
preferences.

– Request source-target parameter integrations for a selected app.

– Request custom parameters for a selected app.

Administrator’s requirements

� The users with the pertinent privileges will be able to design and extend data
schema extensions which will be then integrated into the existing Knowledge Base,
which are the ones recently mentioned.

� The users with the pertinent privileges will be able to populate the current Knowl-
edge Base with Context Knowledge Base data with the required business logic. The
operations that will be added to these types of data will be the CRUD ones:

– Create

– Read

18

– Update

– Delete

These CRUD operations will be defined for all the entities that are currently de-
fined as well as the ones that will be added. So, the CRUDS are defined for the
users, applications, features, parameters, app integrations, feature integrations and
parameter integrations entities.

� The users with the pertinent privileges will be able to both define and formalise
the domain constraints those potential integrations that will be added will have.
Those constraints are applied at a business logic level, and they consist of (1) unique
identifiers for each entity, (2) validation of the data being sent to the knowledge
base and (3) ensuring data integrity. Those constraints will be explained more in
detail later on.

Chatbot management

� The system will allow the chatbot to obtain suggestions of (1) target applications,
(2) target features, (3) parameter integrations and (4) custom parameters based on
the user’s actions on an application from their device.

� The system will allow the chatbot to be able to receive feedback from the user to
check if what is being displayed fits their requirements, by modifying the user’s
preferences they have previously defined accordingly.

� The system will allow the chatbot to know if a user has performed a particular
action that it recommended, by applying the corresponding changes in the user’s
knowledge stored in the Knowledge Base.

3.2.2 Non-functional requirements

In terms of the Context Knowledge System that is going to be developed, the follow-
ing non-functional requirements are the ones that the system must satisfy. The Volere
Requirements Specification Template [14] has been used to define this.

� 12a. Speed and Latency Requirements: the system has to be able to provide
the requested information in a reduced amount of time.

� 12d. Reliability and Availability Requirements: the system has to be always
available for the chatbot, and it should be resistant to errors, it knows how to act
when something fails.

� 12g. Scalability or Extensibility Requirements: the system has to be able to
scale (that is, in terms of the knowledge base size) its features without letting the
users with no access to the conversational agent.

� 15a. Access Requirements: access to this knowledge has to be restricted to
only the developers and administrators of it, using credentials and having to access
to the system through a Virtual Private Network (VPN).

� 15c. Privacy Requirements: the user’s data the system uses has to be protected
and the application must assure its privacy, by having security measures such as
the ones mentioned in the previous requirement.

19

� 21a. Project Planning: to develop the system, every feature that is wanted to
be implemented has to be defined before starting the process of development.

3.3 Obstacles and risks

During the development of this thesis, different obstacles and blockers may appear, and
they might affect by delaying the completion of some features, forcing us to maybe not
complete every goal set.

� Bugs: in every software development project there is a possibility of spending a
significant amount of time dealing with bugs. Depending on the phase these appear,
they can have a considerable impact and may affect our initial planning.[15]

� Deadline of the project: the whole project will last no more than 4 months, so if
there are some problems or delays during the process, this will cause us to discard
some aspects initially defined, due to the lack of more hours to complete them.

� Lack of experience in the field: I have no previous experience in developing
a context knowledge system or with anything related to conversational agents: se-
mantic web, not that much experience with graph databases nor RDF. . . , so if
during the process the necessity of learning a particular technology appears, there
will be no other option but to spend some time learning it reducing the amount of
time available to actually work on the development of the project.

20

Chapter 4

Methodology

A correct definition of the working methodology it is going to be applied, the monitor-
ing tools that will be used and the validation methods that will be chosen to control
everything is going correctly is key in the development process of a thesis.

4.1 Working methodology

Due to the short amount of time given to complete this thesis (approximately 4 months),
it has been decided to work in an agile [16] manner, in order to be able to organise
the work in a clear way. For instance, the Kanban scheduling system has been chosen
to organise what needs to be done. A series of tasks will be defined, and they will be
distributed along the sprints previously scheduled, each one of them lasting two weeks.
Once a sprint ends, there will be some retrospectives in order to see if everything that
had been defined has been accomplished or if there have been some tasks that should be
considered in the following iterations.

4.2 Monitoring tools and validation

On the one hand, in terms of validation, there will be, at least, a meeting with the director
once every two weeks, which can be considered as both a sprint planning and a sprint
review session. However, there will be constant communication with the director, and
any other meetings will be scheduled if needed. The means of communication chosen
have been mail and also using Slack [17].

On the other hand, some monitoring tools will be used to have everything organised and
accessible, making it easy for the director and the department to check everything is
going according to the plan:

Git [18]

It is the most popular distributed version control system in the market, and it is the one
that GESSI have been using while working on the Chatbots4Mobile project. The Git
Feature Branch workflow will be used, which allows us to divide the code into branches,
enabling us to work on different features independently and then merge them all together
in a clean way. Each branch will contain a feature (task) previously defined, and once it

21

has been implemented, it will be merged with the main branch, which contains the final
code. This workflow can be seen in figure 4.1

Figure 4.1: Example of a Git feature branching strategy
Font: Tencent [19]

GitHub [20]

It is a popular online hosting service for version control and development, which uses Git.
The project’s code will be uploaded and stored there, so it can be easily checked by any
member that has access to it. The reason behind this choice is simple: it is also currently
being used by other projects related to Chatbots4Mobile.

Taiga [21]

It is an open-source agile project management software which will be used in order to
work on the project as desired, using agile methodologies. There we will have all the
tasks and sprints defined, and by this interface Taiga offers everything will be organised
immaculately. A snapshot of how the used board looks can be seen in figure 4.2.

Figure 4.2: Snapshot of the student’s board in Taiga

22

Chapter 5

Time planning

As has been previously mentioned, agile methodologies will be used in the development
of this project, more specifically, the concept of sprints from the Scrum methodology has
been chosen, in order to organise the work as well as to be able to track everything more
efficiently. In the agile methodology, previous to the sprints, there is a pre-stage called
Inception, which aims to identify the goals and also the risks of the project, as well as
to perform the temporal planning, define the user stories and so on. Therefore, since
February 9th, which is when the first meeting between the director and the student took
place until March 9th, the project is considered to be in the inception stage.

Related to the sprints, they will be done every two weeks:

� Sprint 1: from March 9th to March 23rd

� Sprint 2: from March 23rd to April 6th

� Sprint 3: from April 6th to April 20th

� Sprint 4: from April 20th to May 4th

� Sprint 5: from May 4th to May 18th

� Sprint 6: from May 18th to June 1st

� Sprint 7: from June 1st to June 15th

Those sprints will last 2 weeks starting and ending on Thursdays, in which the Sprint
Planning of the next iteration will be held and also both the Sprint Review and Sprint
Retrospective from the previous iteration will be discussed, due to us adapting the Scrum
methodology. For each of those meetings, the student will take some notes as a summary
of the contents discussed, and those notes will appear as an appendix in the final report.

The remaining time, which takes from June 15th until the oral defence day (which can be
between the 26th and the 30th of June), will be dedicated to the final phase of the project,
which will consist of polishing the documentation, beautifying the code and preparing for
the final presentation.

For this time planning, it is important to mention that weekends are considered as working
days for me as well, due to them being the days in which I can dedicate more time for the
project. They have been considered when estimating the scheduled time for each task.

23

5.1 Task description

To organise the tasks, two big groups have been defined:

� Project management (PM): all the tasks related to the project which are not
directly related to the development of the solution. Both the meetings and docu-
mentation are included in this group.

� Development (DEV): all the tasks related to the development of the application.
Due to the size of the project, the development tasks have been divided into smaller
groups, based on the sub-goals previously defined: Project set up (DEV0), Data
schema extension (DEV1), Domain constraints (DEV2), Data schema integra-
tion into the Knowledge Base (DEV3), Knowledge Base extension (DEV4) and
Knowledge Base evaluation (DEV5)

Project management (PM)

� PM1 - Context and scope: define the main goal of the thesis, give previous
context, explain the relevance and justification of the topic, how the work will be
developed and with which tools. Also, possible risks and obstacles are defined.

� PM2 - Temporal planning: define the project’s phases, the tasks to be done and
the estimated time for each one. Also, the possible risks and obstacles are defined.

� PM3 - Budget and sustainability: define and describe the cost of the project
as well as the budget.

� PM4 - Initial documentation: unify the documents generated in PM1, PM2
and PM3, obtaining an initial version of the thesis.

� PM5 - Final documentation: prepare the final version of the thesis.

� PM6 - Oral defence preparation: prepare the oral defence of the thesis.

� PM7 - Sprint Planning: meeting dedicated to choosing the tasks that will be
done in the upcoming iteration.

� PM8 - Sprint Review: meeting dedicated to showing the job done in the last
iteration and receiving feedback.

� PM9 - Sprint Retrospective: meeting dedicated to evaluating the work done
in the last iteration and, if necessary, making changes.

Project set up (DEV0)

� DEV0.1 - Learn the scientific fundamentals: check the technologies that will
be used in the project and learn the basic concepts of it, in order to be able to use
them for the development of the solution without having to spend too much time
learning them while developing. The technologies to be studied are Java Spring
Boot, SPARQL and RDF.

� DEV0.2 - Set up the development environment: set up the development
environment and analyse the initial contents of it, which will be used to develop
the solution. The development environment is composed of the following tools:
Visual Studio, GitHub and GraphDB.

24

Data schema extension (DEV1)

� DEV1.1 - Identify requirements: identify the requirements for the data schema
extension.

� DEV1.2 - Define entities and relationships: define both the entities and
relationships that will be included in the data schema extension.

� DEV1.3 - Define attributes: define the attributes of the entities that will be
included in the extended data schema.

� DEV1.4 - Create the data schema: once everything is defined, add everything
together and formally define the extended data schema, which which will be used
as a reference in order to implement it.

Domain constraints (DEV2)

� DEV2.1 - Analyse potential constraints: analyse the potential constraints
that can be applied to entities, relationships and attributes that will be added to
the data schema extension.

� DEV2.2 - Formalise the constraints for each feature: define the constraints
for each feature integration.

� DEV2.3 - Implement the constraints: formally implement the constraints in
the thesis.

Data schema integration (DEV3)

� DEV3.1 - Analyse the existing KB structure: analyse the existing KB struc-
ture and identify the required changes.

� DEV3.2 - Identify required changes: identify the required changes to the
existing KB structure.

� DEV3.3 - Implement changes to KB: implement the required changes to the
existing KB structure.

� DEV3.4 - Create business logic for CRUD operations: create the business
logic for the CRUD operations.

� DEV3.5 - Test the integration: test the integration of the extended data schema
into the existing KB.

Knowledge Base extension (DEV4)

� DEV4.1 - Identify the types of inductive requests to be supported: the
chatbot will be able to perform inductive requests, which means that the user can
ask the chatbot to perform actions that are not explicitly defined in the chatbot’s
knowledge base. It is a must to identify what are the expected types of inductive
requests that the chatbot will be able to perform.

� DEV4.2 - Design a method for customisation and enactment of potential
integrations.

� DEV4.3 - Implement the method for supporting inductive requests.

25

� DEV4.4 - Test the extension: test the Knowledge Base’s extension with induc-
tive requests.

Knowledge Base evaluation (DEV5)

� DEV5.1 - CRUD operations testing: test the CRUD operations of the ex-
tended data schema developed, to ensure every entity is being created, read, up-
dated and deleted correctly.

� DEV5.2 - Integrate the KB extension into the agent: add the designed and
implemented knowledge base extension into the current conversational agent.

� DEV5.2 - Test the agent’s ability to query and modify the KB: check that
the agent can perform the desired actions and see what happens in the knowledge
base when the agent performs them.

� DEV5.3 - Evaluate the results and make improvements as needed: after
testing, check if everything is working as expected and, if not, make the necessary
changes.

5.2 Resources

Human resources

� Quim Motger de la Encarnación (D): the director of this thesis. His role is
to guide the student across the different stages of the project, to accomplish the
established goals.

� Raúl Lozano Garćıa (S): the student author of this thesis. His role is to both
design and develop the defined functionalities.

� Carla Campàs Gené (C): student that, along with GESSI has developed some
chatbot implementation tasks. She will allow the student author of the thesis to
ease the integration process as well as the evaluation of the agent’s knowledge base
system.

Material resources

� HP Omen (LAP1): laptop which will be used to develop the project.

� Dell Latitude 3520 (LAP2): laptop which will be used to develop the project.

� Mouse (M)

� Visual Studio Code (VS): code editor to develop the project as well as to
document the process.

� GitHub and Git (GIT): version controlling tools.

26

5.3 Estimations and Gantt

Task ID Task Name Effort Dependencies Resources

PM Project management 100
PM1 Context and scope 20 D, S, LAP1, LAP2, M, VS
PM2 Temporal planning 10 PM1 D, S, LAP1, LAP2, M, VS
PM3 Budget and sustainability 10 PM2 D, S, LAP1, LAP2, M, VS
PM4 Initial documentation 10 PM3 D, S, LAP1, LAP2, M, VS
PM5 Final documentation 20 PM4 D, S, LAP1, LAP2, M, VS
PM6 Oral defence preparation 20 PM5 D, S, LAP1, LAP2, M
PM7 Sprint Planning 5 D, S, LAP1, LAP2, M
PM8 Sprint Review 5 D, S, LAP1, LAP2, M
PM9 Sprint Retrospective 5 D, S, LAP1, LAP2, M
DEV0 Project set up 10
DEV0.1 Learn the scientific fundamentals 5 S, LAP1, LAP2, M
DEV0.2 Set up the development environ-

ment
5 D, S, LAP1, LAP2, M, GIT

DEV1 Data schema extension 80 DEV0
DEV1.1 Identify requirements 10 S, LAP1, LAP2, M, GIT
DEV1.2 Define entities and relationships 30 DEV1.1 S, LAP1, LAP2, M, GIT
DEV1.3 Define attributes 15 DEV1.1 S, LAP1, LAP2, M, GIT
DEV1.4 Create the data schema 25 DEV1.1 S, LAP1, LAP2, M, GIT
DEV2 Domain constraints 60
DEV2.1 Analyse potential constraints 20 S, LAP1, LAP2, M
DEV2.2 Formalise the constraints for each

feature
30 DEV2.1 S, LAP1, LAP2, M

DEV2.3 Implement the constraints 10 DEV2.2 S, LAP1, LAP2, M, VS
DEV3 Data schema integration 130 DEV2
DEV3.1 Analyse the existing KB struc-

ture
20 S, LAP1, LAP2, M, VS, GIT

DEV3.2 Identify required changes 20 DEV3.1 S, LAP1, LAP2, M, VS, GIT
DEV3.3 Implement changes to KB 35 DEV3.2 S, LAP1, LAP2, M, VS, GIT
DEV3.4 Create business logic for CRUD

operations
35 DEV3.3 S, LAP1, LAP2, M, VS, GIT

DEV3.5 Test the integration 20 DEV3.4 S, LAP1, LAP2, M, VS, GIT
DEV4 Knowledge Base extension 105 DEV3
DEV4.1 Identify the types of inductive re-

quests to be supported
10 S, LAP1, LAP2, M, VS, GIT

DEV4.2 Design a method for customisa-
tion and enactment of potential
integrations

35 DEV4.1 S, LAP1, LAP2, M, VS, GIT

DEV4.3 Implement the method for sup-
porting inductive requests

35 DEV4.2 S, LAP1, LAP2, M, VS, GIT

DEV4.4 Test the extension 25 DEV4.3 S, LAP1, LAP2, M, VS, GIT
DEV5 Knowledge Base evaluation 75 DEV4
DEV5.1 CRUD operations testing 15 S, LAP1, LAP2, M, VS, GIT
DEV5.2 Integrate the KB extension into

the agent
15 S, LAP1, LAP2, M, VS, GIT

DEV5.3 Test the agent’s ability to query
and modify the KB

35 S, LAP1, LAP2, M, VS, GIT

DEV5.4 Evaluate the results and make im-
provements as needed

10 DEV5.1, DEV5.2 S, LAP1, LAP2, M, VS, GIT

Table 5.1: Summary table of the tasks
Font: Own elaboration

27

Figure 5.1: Gantt’s diagram

28

Figure 5.2: Gantt’s diagram

29

5.4 Risk management: alternative plans and obsta-

cles

In this chapter, the possible risks that may appear during the development of the project
are listed. For each of them, the impact level and the mitigation are also specified.

Possible risk Impact level Mitigation

Deadline of the project Medium Design of a high-quality and detailed
time planning

Lack of experience in the field High Assignment of more hours in tasks
where the developer lacks experience

Bugs Medium Addition of testing and previous con-
sideration of incompatibilities

Table 5.2: Project risks
Font: Own elaboration

Before mentioning the possible risks, it is important to mention that when preparing the
project planning those possible risks were taken into account, when estimating the time
needed for each task. However, it is relevant to say that this estimated time added to each
task may be shorter or longer than the real-time needed to complete the task, depending
on the risks involved.

Firstly, the time-related risk is one possible problem that we may face, since it determines
if the project can be successfully delivered or not. Due to this, proper initial planning
and a rigorous following of it are required.

Secondly, the lack of knowledge of some techniques or technologies used in the project
may cause delays in the development, which might affect the final delivery of the project,
obtaining a final product less complete. For instance, some of the technologies used in
the project are new or not very well known by myself, such as working with GraphDB
or using SPARQL queries. In this case, I will maybe have to dedicate more time to
particular tasks that require the use of these technologies (maybe even more than the
estimated time in the initial planning), an aspect that may affect not only the planning
but may also affect the scope of the project.

Finally, bugs may appear during the development of the project. Depending on the phase
in which they appear, they may have a considerable impact and may affect the initial
planning. If they appear to be critical, they will stop the development of the project until
they are solved, and if they are not that critical, they will be tried to solve in the next
sprint iteration.

30

Chapter 6

Budget

In this chapter, all the costs associated with the development of the project are de-
scribed. Human resources, general expenses and taxes are taken into account, obtaining
an approximate budget for the work.

6.1 Identification of costs

6.1.1 Human resources

To be able to estimate how much the cost related to human resources will be, it is
important to set both the salary per hour and the number of hours per person involved
in the project. After considering this, table 6.1 it is defined the salary per hour of each
member implicated in the project. Those salaries have been estimated by checking the
average salary of each role in Barcelona, Spain, and the site where the information has
been taken is Glassdoor[22]. The gross salary per hour has been taken, and the Social
Security (SS) has been added to it.

Role Gross salary (hour) + SS

Project Lead [PL] 27,10 ¿

Solution Architect [SA] 26 ¿

Software Architect [A] 24,70 ¿

Developer [D] 13,20 ¿

Tester [T] 17,20 ¿

Table 6.1: Salaries of the roles involved in the project
Font: Own elaboration

Once the salaries have been defined, the cost per task can be defined as well, as it is shown
in table 6.2. For each task, each of the involved roles has been set with an approximate
number of hours of dedication.

31

Task ID Task Name PL SA A D T Cost

PM Project management 30h 0h 0h 100h 0h 2.199 ¿
PM1 Context and scope 2 0 0 20 0 318,20 ¿

PM2 Temporal planning 2 0 0 10 0 186,20 ¿

PM3 Budget and sustainability 1 0 0 10 0 159,10 ¿

PM4 Initial documentation 0 0 0 10 0 132 ¿

PM5 Final documentation 5 0 0 20 0 399,50 ¿

PM6 Oral defence preparation 5 0 0 20 0 399,50 ¿

PM7 Sprint Planning 5 0 0 5 0 201,50 ¿

PM8 Sprint Review 5 0 0 5 0 201,50 ¿

PM9 Sprint Retrospective 5 0 0 5 0 201,50 ¿

DEV0 Project set up 2h 0h 0h 10h 0h 186,20 ¿
DEV0.1 Learn the basic concepts 0 0 0 5 0 66 ¿

DEV0.2 Set up the development environment 2 0 0 5 0 120,20 ¿

DEV1 Data schema extension 0h 17h 38h 25h 0h 1.710,60 ¿
DEV1.1 Identify requirements 0 2 8 0 0 249,60 ¿

DEV1.2 Define entities and relationships 0 10 20 0 0 754 ¿

DEV1.4 Define attributes 0 5 10 0 0 377 ¿

DEV1.5 Create the data schema 0 0 0 25 0 330 ¿

DEV2 Domain constraints 0h 17,5h 42,5h 0h 0h 1.504,75 ¿
DEV2.1 Analyse potential constraints 0 7,5 12,5 0 0 503,75 ¿

DEV2.2 Formalise the constraints for each feature 0 10 20 0 0 754 ¿

DEV2.3 Implement the constraints 0 0 10 0 0 247 ¿

DEV3 Data schema integration 0h 10h 30h 90h 15h 2.449 ¿
DEV3.1 Analyse the existing KB structure 0 5 15 0 0 500,50 ¿

DEV3.2 Identify required changes 0 5 15 0 0 500,50 ¿

DEV3.3 Implement changes to KB 0 0 0 35 0 462 ¿

DEV3.4 Create business logic for CRUD operations 0 0 0 35 0 462 ¿

DEV3.5 Test the integration 0 0 0 5 15 324 ¿

DEV4 Knowledge Base extension 0h 3h 7h 75h 20h 1.584,90 ¿
DEV4.1 Identify the types of inductive requests to be

supported
0 3 7 0 0 250.90 ¿

DEV4.2 Design a method for customisation and en-
actment of potential integrations

0 0 0 35 0 462 ¿

DEV4.3 Implement the method for supporting induc-
tive requests

0 0 0 35 0 462 ¿

DEV4.4 Test the extension 0 0 0 5 20 410 ¿

DEV5 Knowledge Base evaluation 0h 0h 0h 45h 30h 1.110 ¿
DEV5.1 CRUD operations testing 0 0 0 15 0 198 ¿

DEV5.2 Integrate the KB extension into the agent 0 0 0 15 0 198 ¿

DEV5.3 Test the agent’s ability to query and modify
the KB

0 0 0 5 30 582 ¿

DEV5.4 Evaluate the results and make improvements
as needed

0 0 0 10 0 132 ¿

Total 30h 47,5h 117,5h 335h 65h 10.744,45 ¿

Table 6.2: Cost of the human resources involved in the project
Font: Own elaboration

6.1.2 Material resources

In terms of material resources, they have been divided into two categories: software and
hardware. The software resources are the ones that are needed to develop the project, and
the hardware resources are the ones that are needed to run the project. In the following
subsections, the software and hardware resources are described in detail.

32

Software

For each of the software used, since they offer a free version or a student version, for the
estimation of the budget any piece of it will be considered. In table 6.3 all the software
resources used are listed.

Software resource Price Amortization
Visual Studio Code [23] 0¿ 0¿
GitHub/Git [24] 0¿ 0¿
GraphDB [25] 0¿ 0¿
Total 0¿

Table 6.3: Software resources used in the project.
Font: Own elaboration

Hardware

For the development of this thesis, basic hardware will be used. It will be composed of
two laptops and a mouse. The Tax Office allows to amortize the cost of the hardware in
3-4 years, so the amortization will be computed using the following formula:

Amortization (¿) = (Cost (euros) / (Lifetime (years) * Annual workdays * 8 hours)) *
Project dedication (hours)

Resource Price Lifetime Usage time Amortization
HP Omen ax001ns [26] 1.199 ¿ 4 years 535 hours 79,86 ¿

Dell Latitude 3520 [27] 1.124 ¿ 4 years 535 hours 74,87 ¿

Logitech MX Master 3 [28] 20 ¿ 4 years 535 hours 1,33 ¿

Total 156,06¿

Table 6.4: Hardware costs
Font: Own elaboration

6.1.3 General resources

Although the project is not going to be developed in a company, the resources that are
going to be used are the same as in a company. So, there are two costs that have to be
considered:

� Electricity: Although the cost of electricity varies daily, in order to simplify the
estimation of the budget, the cost of electricity at the time of writing this document
is 0.19746 ¿/kWh [29], and that value will be the one used for the estimation of
the budget. Considering that the project will be developed over 128 days, the
consumption of the room where the developer will work is approximately 140W,
and also that the developer will work 4 hours per day, the cost of the electricity is
estimated as follows:

Electricity cost (¿) = (0.19746 ¿/kWh) * (140W) * (4h/day) * (128 days) =
14,15 ¿

33

� Internet: The monthly cost of the internet service the developer has is around
80¿. Considering that the project will be developed over 128 days, the cost of the
internet is estimated as follows:

Internet cost (¿) = 80¿ * (128 days / 30 days) = 341,33 ¿

In conclusion, the total cost of those general resources is 14,15 + 341,33 = 355,48¿.

6.1.4 Contingencies

The contingency cost is an amount of money that is added to the project’s budget, in order
to cover those unforeseen events that have not been anticipated. This cost is calculated
as a percentage of the total value of the budget, and it is usually determined by the sector
and the level of detail of the budget. In software projects, it is usually between 10 and
20% of the total budget[30]. Just to set a value inside this range, a contingency cost of
15% has been defined.

6.1.5 Unforeseen events

Previously, in section 5.4, the possible risks that may appear during the development of
the project were listed, as well as the mitigation for each of them. This mitigation has
also a cost, and that is why it has to be considered when estimating the budget of the
project. Its cost has been estimated using the following formula:

Cost (¿) = Probability (%) * Fixer salary (¿/h) * Dedicated time (hours)

Applying this, the following estimations are obtained:

Risk Probability Dedicated time Cost
Deadline of the project 25% 30h 99 ¿

Lack of experience in the field 80% 50h 528 ¿

Bugs 40% 30h 158,40 ¿

Total 785,40 ¿

Table 6.5: Unforeseen events costs
Font: Own elaboration

It is important to note that the responsible for working on the mitigation of the risks will
be the developer, so the costs have been estimated using the salary of the developer.

6.1.6 Final budget

Finally, after identifying the resources and estimating the cost of each of them, the final
budget of the project is obtained, as can be seen in table 6.6.

34

Cost Value
Human resources 10.744,45 ¿

Material resources 156,06 ¿

General resources 355,48 ¿

Contingencies 1577,47 ¿

Unforeseen events 785,40 ¿

Total cost 13.618,86 ¿

Table 6.6: Final budget estimation
Font: Own elaboration

6.2 Management control

Once the budget has been estimated, some metrics must be defined to help detect possible
deviations that may occur. For this reason, after each sprint, these metrics and the real
costs obtained will be used in order to identify any deviation in advance or, if not, to
check if the initial budget estimation is being fulfilled.

The metrics established are the following:

� Hours per task deviation:

(Estimated hours - Real hours) * Real cost

� Human resources:

– Cost of human resources per task deviation:

(Estimated cost - Real cost) * Real hours

– Human resources cost deviation:

(Estimated cost per hour - Real cost per hour) * Real hours

� General resources cost deviation:

Estimated general resources cost - Real general resources cost

� Total contingency cost deviation:

Estimated unforeseen expenses - Real unforeseen expenses

� Total cost deviation:

Estimated total cost - Real total cost

� Total hours deviation:

Estimated total hours - Real total hours

35

Chapter 7

Fundamentals

In this chapter, the fundamentals of the project are explained, in order to understand
what the extension will be technologically based on.

7.0.1 What is a Knowledge Graph?

A Knowledge Graph is a knowledge base that uses a graph data model to store knowledge
[31]. Before explaining what a Knowledge Graph is, it is necessary to explain how a graph
data model works.

A graph data model is a data model that stores data in the form of a graph [32]. What
is a graph? It is a data structure that consists of a set of nodes and a set of edges, which
are the ones that connect the nodes. An example of a graph can be seen in figure 7.1.

Figure 7.1: Example of a graph
Font: Plum Flower Software [33]

As can be seen, a node represents an entity and an edge represents a relationship between
two entities. Those relationships can be directed or undirected. In the example, the

36

relationship between the nodes is directed, because it is only possible to go from one
direction to the other, but not the other way around.

This information represented as a graph has to be stored somewhere, and that is where
another term comes into play: the knowledge base. A knowledge base, long story short,
is a centralised repository of organised information. It is used to store information in
a way that allows us to retrieve it in a fast way. Taking into consideration the thesis
context, the knowledge base is the database that stores the information the chatbot uses.

Last but not least, it is necessary to mention another feature of the knowledge graphs that
is key to understanding how they work: the integration of deduction and/or induction
knowledge techniques. Deduction and induction are two types of reasoning that are used
to, given some information, derive new information from it [34].

So, in other words, a Knowledge Graph is a graph data model that stores knowledge, and
it combines different aspects from some data management paradigms, these being (1) the
database (it stores the data), (2) the knowledge base (it possesses formal semantics) and
(3) the graph (it represents the data in a graph) [35].

7.0.2 Ontologies

It has been mentioned that in this thesis a Knowledge Graph is used, as it has been also
said that they follow a graph data model. However, it is also necessary to mention how
the information the graph contains is structured and understandable for everyone. That
is why ontologies are something to take into account.

An ontology is a formal representation of knowledge as a set of concepts within a domain,
as well as the relationships that exist between those concepts [36]. It defines a common
vocabulary which enables a good organisation of knowledge, both in a structured and
systematic way. By using ontologies, knowledge sharing between systems, apps, and also
stakeholders is facilitated.

They are usually represented using some kind of ontology language, such as Web Ontology
Language (OWL) [37] or Resource Description Framework (RDF) [38]. A more detailed
explanation of these languages (RDF in particular) will be given later in section 7.1.1.

To sum up, ontologies are used to define the structure of the information that is stored
in the Knowledge Graph, and by using them it is possible to make some actions such as
automated reasoning, knowledge sharing or addition of new knowledge in a more efficient
way.

7.0.3 Why use Knowledge Graphs?

After analysing what has been previously mentioned, it can be concluded that this type
of database, taking into account the thesis’ context, is the best option to store the infor-
mation about the chatbots, due to several reasons:

� The information about the features and user preferences is not structured, so using
a relational database is not the best option. A knowledge graph is a smarter option
because it allows one to store information in a more flexible way.

37

� The information about the features and user preferences is not only stored but also
related. The users have, for instance, a lot of features related to them, and those
features are related to other features, and so on. That is why it is necessary to
store all that information in a way that allows us to retrieve it easily. In this case,
a knowledge graph is the best option, because it allows us to store the information
in a way that allows us to retrieve it easily.

� The information about the features and user preferences is not complete. They
are constantly changing, so it is necessary to be able to add new information to
the database without having to modify the previous one. Due to the flexibility of
the knowledge graphs, it is possible to add new information without applying any
changes to the existing one, so it is one of the main reasons why a knowledge graph
is the best option for this project.

7.1 Semantic Web

The Semantic Web (also known as Web Semantic or Web 3.0) can be defined as an
extension of the current World Wide Web (WWW), which looks for adding more meaning
to content that is available on the Internet, in order to make it more understandable for
machines and, therefore, more useful for humans [39].

The semantic is a branch of linguistics dedicated to the study of meaning, reference and
truth [40]. For instance, a word can have different meanings depending on the context it
is used in, and words that are similar in one context can be different in another.

Therefore, it can be said that what the Semantic Web does is add semantics to the current
Web contents, so that machines can have a better understanding of the information,
enabling them to have knowledge about the context and, as a consequence, to be able to
have more accurate interpretations of the information in question.

The first person to use the term Semantic Web, Tim Berners-Lee, explained that, in the
context of the Semantic Web, the term semantic reflects that the data is manageable
by machines, and the term web reflects a dynamic realm of interconnected objects with
mappings from URIs to objects [41].

7.1.1 Resource Description Framework (RDF)

As has been said, RDF [42] is an ontology language, and it is used to represent informa-
tion. It is indeed the standard language for representing information in a graph, as it is
mentioned in the World Wide Web Consortium (W3C) website [43].

The usage of an ontology language allows to have standard semantics and syntaxis for:

� Concept definitions.

� Relationship definitions.

� Constraints.

RDF is a graph-based data model, and it is composed of triples. These triples are
composed of three elements:

� Subject: the resource that is being described.

38

� Predicate: the property that is being described.

� Object: the value of the property.

Below, in figure 7.2, an example of how a triple should be formed is shown. In order to
have a complete understanding, let’s set an example: “The kid uses a mobile phone”. In
this case, the subject would be “The kid”, the predicate would be “uses” and the object
would be “mobile phone”. So, using triples for representing information as the one in the
example, an understandable graph can be created, for both humans and machines.

Figure 7.2: Example of an RDF triple
Font: Ontotext

It is important to mention that the nodes in an RDF graph can be either resources,
literals or blank nodes. For instance, resources are the ones that are identified by a URI,
and they can be either a subject or an object, and literals are the ones that represent
values, and they can be either a subject or an object.

In conclusion, RDF is a very important part of the Semantic Web, as it is the standard
language for representing information in a graph, and it is used for representing infor-
mation in a way that is understandable for both humans and machines. For this thesis,
RDF is used for representing the information that is contained in the Knowledge Base,
more specifically in the Knowledge Graph.

7.1.2 Semantic RDF Schema

Another key aspect of this thesis and closely related to the Semantic Web and more
specifically to RDF is the Semantic RDF Schema [44], a schema that is used for repre-
senting information within a graph. It is a very important part of the Semantic Web, as
it provides a solid standard for representing what is inside a graph, enabling us to have a
clear understanding of the information that is contained in it. There are several schemas
that are used in the Semantic Web, such as FOAF (Friend of a Friend) [45], which is used
for representing people, DCT (Dublin Core Terms) [46], which is used for representing
metadata, or Schema.org, which is the one that has been used in this thesis.

Schema.org [47] is a collaborative project between Google, Microsoft, Yahoo and Yandex,
and it is a collection of schemas that can be used to markup web pages in order to help
search engines and other systems to have a better understanding of the information
contained in web pages, graph data and other types of documents.

Schema.org is a very important part of this thesis, as it is the schema that is used to
represent the data our knowledge base contains. There are several reasons why it has
been chosen, and that is because it provides (1) standardised vocabulary to represent
information in, for instance, a Knowledge Graph, (2) interoperability between different
systems and (3) semantic annotations for web pages. An example of a schema that is
used in this thesis is shown below, in figure 7.3. It is the schema used to represent the

39

users of the system. It has several properties defined, such as the address. It can be seen,
from the perspective of object-oriented programming, as a class, and the properties as
the attributes of the class.

Figure 7.3: Example of a schema.org schema
Font: Schema.org

7.1.3 SPARQL

Another important part of the Semantic Web is SPARQL. It is a query language for RDF,
and it is used for querying RDF graphs. It is a very important part of the Semantic Web,
as it allows one to query the information that is contained in the Knowledge Graph. It
has a syntax that is very similar to SQL, and it is composed, mainly of two parts: the
SELECT clause and the WHERE clause.

The SELECT clause is used for specifying the variables that are going to be retrieved
from the query, and the WHERE clause is used for specifying the conditions that the
results must meet. Below, in figure 7.4, an example of a SPARQL query performed in
the developed Knowledge Base is shown.

Figure 7.4: Example of a SPARQL query
Font: Own elaboration

40

As can be seen in the figure, the SELECT clause is used to specify that the id and the
email properties are the ones that will be retrieved from the query, and the WHERE
clause is used to specify that the results must be the ones that have the Person type.

It is important to highlight SPARQL due to its importance in both the Semantic Web
and this thesis. It allows us to give the chatbot the information from the Knowledge
Base that it requires to perform its tasks. For instance, if the chatbot needs to know the
name of a person, it can perform a SPARQL query to the Knowledge Base, and it will
retrieve the information that it needs.

41

Chapter 8

Requirement specification

In this chapter, all the requirements the system has to meet are both specified and
described. A requirement can be defined as a condition, capability or expectation that
the system in question must satisfy.

These sets of requirements have been divided into two big groups: functional and non-
functional requirements.

8.1 Motivational example

For a better, clearer perspective on the set of functional and non-functional requirements
depicted in this section, we present a motivational example of a case study exemplifying
the expected behaviour of the knowledge base system extension. This example can be
found in figure 8.1.

Figure 8.1: Motivational example

Let’s consider the following scenario: there is a a user called Bob, who has a set of apps
installed on his phone, where one of them is a music app (for instance, Simple Music
Player [48]) and another one is a clock app that has a timer functionality (for instance,
the MyFit [49] app). Bob usually works out and when he is going to start he sets a timer

42

in order to keep track of the rest time between sets. Bob also has a playlist on the music
app that he always listens to when working out, called ”Calorie Burner”.

So, Bob is used to doing the following order:

1. Open the MyFit app (MyFit.openApp())

2. Set a timer (AlarmApp.setTimer())

3. Open the music app (MusicPlayer.openApp())

4. Search the playlist (MusicPlayer.searchPlaylist(”Calorie Burner”))

5. Play the playlist (MusicPlayer.searchPlaylist(”Calorie Burner”).play())

6. Start working out

Bob has been doing this for a while, and with the knowledge system that is being de-
veloped, the chatbot will be able to learn about the user’s context and patterns, such as
the one mentioned above 1. So now, with this extended knowledge system, the chatbot
will be able to get the trigger that the user Bob has performed the AlarmApp.setTimer()
action, and then the chatbot will consult the knowledge that exists about Bob, and
based on his apps, usual actions and context, the chatbot will be able to suggest Bob
play the particular playlist he always listens when working out, so Bob does not have
to do it manually. The chatbot then, will perform by itself all three actions mentioned
above (MusicPlayer.openApp(), MusicPlayer.searchPlaylist(”Calorie Burner”) and Mu-
sicPlayer.playPlaylist(”Calorie Burner”)), reducing the number of steps Bob has to do to
achieve the same result.

That is what this project is about, to develop a knowledge system that is able to learn
about the user’s context and patterns, and then be able to suggest the user with the best
possible integrations between the apps the user has installed on their phone, in order to
make them have a better experience.

8.2 Functional requirements

The functional requirements are the ones that define the functionality of a system, and
they can describe the behaviour of the software as well.

8.2.1 User stories

A user story [50] is a general description of a software feature, specified from the perspec-
tive of the final user. It has to define what the user exactly wants and the reason why.
Its goal is to make understandable what the user requires from the system, and what is
valuable for them. These user stories always follow the following structure:

As a [User Role], I want to [Goal], so that [Reason].

On each of the elements that are between brackets is a field that has to be filled with
the corresponding information. For them to be defined correctly each one of them must
answer the following questions:

1This learning is out of the scope of this project. In this thesis, the focus is on collecting this learning,
modelling it, updating it and returning it to the chatbot.

43

System management

� User Role: For whom is the feature being developed? The role of the user has to
be specified, and it can be a final user, administrator, etc.

� Goal: What is the user trying to achieve? The action that the user wants to
perform has to be specified, and it can be a request, creation, modification, etc.

� Reason: What will the user obtain by achieving the goal? The reason why the
user wants to act has to be specified.

It is also important to mention that, to know when a user’s story is fully accomplished,
an acceptance criteria [51] has to be defined.

US1: Add a feature integration
As an Administrator
I want to Extend the existing data schema by making it able to add

feature integrations
So that It is able to support a wider range of options that allows the

chatbot to have more information about the user.
Acceptance criteria

� The system receives a JSON body which follows the data
model schema design.

� The system, if the feature integration already exists in
the data schema, throws a 409 error.

� The system, if the body is not valid, throws a 400 error.
� The system, if the body is valid, adds the feature inte-
gration to the knowledge base.

Table 8.1: User Story 1: Add a feature integration

44

US2: Read a feature integration
As an Administrator
I want to Extend the existing data schema by making it able to read

feature integrations
So that It is able to support a wider range of options that allows the

chatbot to have more information about the user.
Acceptance criteria

� The system, if a specific feature integration is not speci-
fied, will let the chatbot know all the information stored
in the knowledge base about all the feature integrations.

� The system, if a specific feature integration is specified,
if it exists, will let the chatbot know all the information
stored in the knowledge base about that feature integra-
tion.

� The system, if a specific feature integration is specified,
if it does not exist, will return a 404 error.

Table 8.2: User Story 2: Read a feature integration

US3: Update a feature integration
As an Administrator
I want to Extend the existing data schema by making it able to update

feature integrations
So that It is able to support a wider range of options that allows the

chatbot to have more information about the user.
Acceptance criteria

� The system receives a JSON body which follows the data
model schema design.

� The system, if the specified feature integration does not
exist, throws a 404 error.

� The system, if the body is not valid, throws a 400 error.
� The system, if the body is valid, updates the feature
integration in the knowledge base.

Table 8.3: User Story 3: Update a feature integration

45

US4: Delete a feature integration
As an Administrator
I want to Extend the existing data schema by making it able to delete

feature integrations
So that It is able to support a wider range of options that allows the

chatbot to have more information about the user.
Acceptance criteria

� The system, if the specified feature integration does not
exist, throws a 404 error.

� The system, if the specified feature integration exists,
throws a 204 message and deletes the feature integration
from the knowledge base, including all the relations it
had.

Table 8.4: User Story 4: Delete a feature integration

US5: Create a parameter
As an Administrator
I want to Extend the existing data schema by adding parameters
So that It is able to support a wider range of options that allows the

chatbot to have more information about the user.
Acceptance criteria

� The system receives a JSON body which follows the data
model schema design.

� The system, if the parameter already exists in the data
schema, throws a 409 error.

� The system, if the body is not valid, throws a 400 error.
� The system, if the body is valid, adds the feature inte-
gration to the data schema.

Table 8.5: User Story 5: Create a parameter

46

US6: Read a parameter
As an Administrator
I want to Extend the existing data schema by making it able to read

parameters
So that It is able to support a wider range of options that allows the

chatbot to have more information about the user.
Acceptance criteria

� The system, if a specific parameter is not specified, will
let the chatbot know all the information stored in the
knowledge base about all the parameters.

� The system, if a specific parameter is specified, if it ex-
ists, will let the chatbot know all the information stored
in the knowledge base about that parameter.

� The system, if a specific parameter is specified, if it does
not exist, will return a 404 error.

Table 8.6: User Story 6: Read a parameter

US7: Update a parameter
As an Administrator
I want to Extend the existing data schema by making it able to update

parameters
So that It is able to support a wider range of options that allows the

chatbot to have more information about the user.
Acceptance criteria

� The system receives a JSON body which follows the data
model schema design.

� The system, if the specified parameter does not exist,
throws a 404 error.

� The system, if the body is not valid, throws a 400 error.
� The system, if the body is valid, updates the parameter
in the knowledge base.

Table 8.7: User Story 7: Update a parameter

47

US8: Delete a parameter
As an Administrator
I want to Extend the existing data schema by making it able to delete

parameters
So that It is able to support a wider range of options that allows the

chatbot to have more information about the user.
Acceptance criteria

� The system, if the specified parameter does not exist,
throws a 404 error.

� The system, if the specified parameter exists, throws a
204 message and deletes the parameter from the knowl-
edge base, including all the relations it had.

Table 8.8: User Story 8: Delete a parameter

US9: Add a parameter integration
As an Administrator
I want to Extend the existing data schema by adding parameter inte-

grations
So that It is able to support a wider range of options that allows the

chatbot to have more information about the user.
Acceptance criteria

� The system receives a JSON body which follows the data
model schema design.

� The system, if the parameter integration already exists
in the data schema, throws a 409 error.

� The system, if the body is not valid, throws a 400 error.
� The system, if the body is valid, adds the feature inte-
gration to the data schema.

Table 8.9: User Story 9: Add a parameter integration

48

US10: Read a parameter integration
As an Administrator
I want to Extend the existing data schema by making it able to read

parameter integrations
So that It is able to support a wider range of options that allows the

chatbot to have more information about the user.
Acceptance criteria

� The system, if a specific parameter integration is not
specified, will let the chatbot know all the information
stored in the knowledge base about all the parameter
integrations.

� The system, if a specific parameter integration is speci-
fied, if it exists, will let the chatbot know all the informa-
tion stored in the knowledge base about that parameter
integration.

� The system, if a specific parameter integration is speci-
fied, if it does not exist, will return a 404 error.

Table 8.10: User Story 10: Read a parameter integration

US11: Update a parameter integration
As an Administrator
I want to Extend the existing data schema by making it able to update

parameter integrations
So that It is able to support a wider range of options that allows the

chatbot to have more information about the user.
Acceptance criteria

� The system receives a JSON body which follows the data
model schema design.

� The system, if the specified parameter integration does
not exist, throws a 404 error.

� The system, if the body is not valid, throws a 400 error.
� The system, if the body is valid, updates the parameter
integration in the knowledge base.

Table 8.11: User Story 11: Update a parameter integration

49

US12: Delete a parameter integration
As an Administrator
I want to Extend the existing data schema by making it able to delete

parameter integrations
So that It is able to support a wider range of options that allows the

chatbot to have more information about the user.
Acceptance criteria

� The system, if the specified parameter integration does
not exist, throws a 404 error.

� The system, if the specified parameter integration exists,
throws a 204 message and deletes the parameter from
the knowledge base, including all the relations it had.

Table 8.12: User Story 12: Delete a parameter integration

US13: Add an app integration
As an Administrator
I want to Extend the existing data schema by adding app integrations
So that It is able to support a wider range of options that allows the

chatbot to have more information about the user.
Acceptance criteria

� The system receives a JSON body which follows the data
model schema design.

� The system, if the app integration already exists in the
data schema, throws a 409 error.

� The system, if the body is not valid, throws a 400 error.
� The system, if the body is valid, adds the feature inte-
gration to the data schema.

Table 8.13: User Story 13: Add an app integration

50

US14: Read an app integration
As an Administrator
I want to Extend the existing data schema by making it able to read

app integrations
So that It is able to support a wider range of options that allows the

chatbot to have more information about the user.
Acceptance criteria

� The system, if a specific app integration is not specified,
will let the chatbot know all the information stored in
the knowledge base about all the app integrations.

� The system, if a specific app integration is specified, if
it exists, will let the chatbot know all the information
stored in the knowledge base about that app integration.

� The system, if a specific app integration is specified, if
it does not exist, will return a 404 error.

Table 8.14: User Story 14: Read an app integration

US15: Update an app integration
As an Administrator
I want to Extend the existing data schema by making it able to update

app integrations
So that It is able to support a wider range of options that allows the

chatbot to have more information about the user.
Acceptance criteria

� The system receives a JSON body which follows the data
model schema design.

� The system, if the specified app integration does not
exist, throws a 404 error.

� The system, if the body is not valid, throws a 400 error.
� The system, if the body is valid, updates the app inte-
gration in the knowledge base.

Table 8.15: User Story 15: Update an app integration

51

US16: Delete an app integration
As an Administrator
I want to Extend the existing data schema by making it able to delete

app integrations
So that It is able to support a wider range of options that allows the

chatbot to have more information about the user.
Acceptance criteria

� The system, if the specified app integration does not
exist, throws a 404 error.

� The system, if the specified app integration exists,
throws a 204 message and deletes the app from the
knowledge base, including all the relations it had.

Table 8.16: User Story 16: Delete an app integration

US17: Request feature integrations from a source features and previous user preferences
As an Administrator
I want to Extend the existing data schema with the possibility to re-

quest feature integrations from source features and previous
user preferences

So that The chatbot capabilities are improved, and it can offer the
user a more personalised experience.

Acceptance criteria
� The system has a new endpoint that receives a feature
and a user id.

� The system returns a list of features that has a high
probability of being integrated with the feature received,
based on user preferences.

� The system returns a 200 message if the feature and user
id are valid.

� The system returns a 404 message if the feature or user
id is not valid.

Table 8.17: User Story 17: Request feature integrations from a source features and
previous user preferences

52

US18: Request app integrations from a selected target feature and previous user preferences
As an Administrator
I want to Extend the existing data schema with the possibility to re-

quest app integrations from a selected target feature and pre-
vious user preferences

So that The chatbot capabilities are improved, and it can offer the
user a more personalised experience.

Acceptance criteria
� The system has a new endpoint that receives a source
and a target feature and a user id.

� The system returns a list of apps that are capable of
performing the target feature, basing the results on the
user preferences.

� The system returns a 200 message if the source, target
and user id are valid.

� The system returns 404 if any of the specified does not
exist.

Table 8.18: User Story 18: Request app integrations from a selected target feature and
previous user preferences

US19: Request source-target parameter integrations for a selected app
As an Administrator
I want to Extend the existing data schema with the possibility to re-

quest source-target parameter integrations for selected app
So that The chatbot capabilities are improved, and it can offer the

user a more personalised experience.
Acceptance criteria

� The system has a new endpoint that receives a JSON
body specifying the source app and feature, and the
target app and feature.

� The system returns a list of parameters integrations that
are possible between the two desired features, if any.

� The system returns a 200 message if the JSON body is
valid, 404 if the specified apps and/or features do not
exist.

Table 8.19: User Story 19: Request source-target parameter integrations for a selected
app

53

US20: Request custom parameters for a selected app
As an Administrator
I want to Extend the existing data schema with the possibility to re-

quest custom parameters for selected app
So that The chatbot capabilities are improved, and it can offer the

user a more personalised experience.
Acceptance criteria

� The system has a new endpoint that receives a JSON
body specifying the source app and feature, and the
target app and feature.

� The system returns the target feature’s parameters that
do not have a parameter integration with the source
feature ones (that is, the ones that must be explicitly
specified by the user).

� The system returns a 200 message if the JSON body is
valid, 404 if the specified apps and/or features do not
exist.

Table 8.20: User Story 20: Request custom parameters for a selected app

Administrator’s management

US21: Design and integrate the data schema extensions
As an Administrator
I want to Design and extend data schema extensions
So that They can be then integrated into the existing Knowledge Base

and allow the change in the chatbot’s behaviour
Acceptance criteria

� The data schema designs must be compatible with what
the Knowledge Base already has.

� The data schema designs must be designed so they can
be then used to perform personalised actions for the
users.

� The chatbot adapts to the new data schema correctly,
changing its behaviour accordingly.

Table 8.21: User Story 21: Design and integrate the data schema extensions

54

US22: Manage Knowledge Base with CRUD operations
As an Administrator
I want to Populate the Knowledge with Context Knowledge Base data,

including the required business logic, using CRUD operations
So that I can manage the chatbot’s knowledge in an effective and cen-

tralised way
Acceptance criteria

� The system must provide Create, Read, Update and
Delete (CRUD) operations for managing the Context
Knowledge Base data.

� The system must ensure the correct functioning of the
CRUD operations.

� The Knowledge Base, after performing one of the CRUD
operations must reflect the pertinent changes, and the
chatbot must be able to use the newest state of the data.

Table 8.22: User Story 22: Manage Knowledge Base with CRUD operations

US23: Define and formalise domain constraints for the integrations
As an Administrator
I want to Both define and formalise domain constraints for potential

integrations
So that The correct alignment between the new integrations and the

requirements can be ensured.
Acceptance criteria

� The system provides a way to define domain constraints
for the integrations.

� The domain constraints are imposed when integrating
any applications, features or parameters.

Table 8.23: User Story 23: Define and formalise domain constraints for the integrations

55

Chatbot management

US24: Obtain personalised suggestions of actions
As a Chatbot user
I want to Ask the chatbot to give me possible suggestions of actions
So that I can have other actions suggested in case the initial recom-

mendation it has given me does not fit what I want.
Acceptance criteria

� The chatbots offers the user suggestions of actions to
integrate with their initial action.

� The chatbot, if the user asks for more suggestions, gives
them other suggestions computed on their preferences,
and updates the user profile accordingly.

Table 8.24: User Story 24: Obtain personalised suggestions of actions

US25: Obtain personalised suggestions of apps
As a Chatbot user
I want to Ask the chatbot to give me possible suggestions of applications
So that I can have other apps suggested in case the initial recommen-

dation it has given me does not fit what I want.
Acceptance criteria

� The chatbots offers the user suggestions of apps with
which they can integrate the feature the user has chosen.

� The chatbot, when the user chooses an app, updates the
user profile accordingly.

Table 8.25: User Story 25: Obtain personalised suggestions of apps

US26: Obtain parameters used for an integration
As a Chatbot user
I want to Ask the chatbot to give me the data it will use to complete

the action it has recommended
So that I can check everything that is going to be defined using the

data from the action I made is correct or not.
Acceptance criteria

� The chatbots offers the user the parameter integrations
that will be used to complete the action. This means
that it will show the user the data that will be used from
its initial action to complete the suggested action.

� The chatbot, when the user wants to change some of
this data, updates it accordingly.

Table 8.26: User Story 26: Obtain parameters used for an integration

56

US27: Obtain custom parameters
As a Chatbot user
I want to Know what parameters are left to specify for the target action
So that I can define them with the correct values and let the chatbot

act for me.
Acceptance criteria

� The chatbots offers the user the parameters from the
target action that have not been defined using the data
from the initial action (the ones that do not have pa-
rameter integration).

Table 8.27: User Story 27: Obtain custom parameters

8.3 Non-functional requirements

The non-functional requirements are those that specify criteria that can be used to judge
the operation of a system, rather than specific behaviours. In this section, the non-
functional requirements of the system are presented.

Requirement Speed and Latency

Description The system has to be able to provide the requested in a reduced
amount of time.

Justification The system must be able to give the chatbot the information it
requests quickly, so the final user has an efficient and seamless ex-
perience

Satisfaction
condition

The requirement will be considered completed if the requests the
chatbot requests are provided in less than 5 seconds.

Table 8.28: Non-functional requirement 1: Speed and Latency

Requirement Reliability and Availability

Description The system has to be always available for the users, and it should
be resistant to errors.

Justification The system must be highly reliable and available for the chatbot and
the final users at all times, in order to avoid any possible disruption
and be able to ensure constant access to the system.

Satisfaction
condition

The system must be prepared to deal with any type of errors that
can appear, and keep functioning correctly. In case of an interrup-
tion, the system must be prepared to handle it quickly and be back
in a reduced amount of time.

Table 8.29: Non-functional requirement 2: Reliability and Availability

57

Requirement Scalability and Extensibility

Description The system must be able to scale its features without letting the
chatbot and the users with no service.

Justification The system has to be able to be extended without having an impact
on the users’ experience.

Satisfaction
condition

The system should support its scalability, allowing the addition/-
subtraction of features without causing any downtime or restriction
when accessing the service.

Table 8.30: Non-functional requirement 3: Scalability and Extensibility

Requirement Access

Description The access to this service must be restricted.

Justification The knowledge that is stored in the Knowledge Base has to be acces-
sible only to authorized personnel: administrators and developers,
to ensure the integrity of the service as well as securing the data.

Satisfaction
condition

The access to the system should be restricted to admins and devel-
opers only. Some sort of authentication mechanisms must be added
to strengthen the security of both the data and the Knowledge Base.

Table 8.31: Non-functional requirement 4: Access

Requirement Privacy

Description The user’s data must be protected and the system must ensure its
privacy.

Justification The system must treat the data inside the Knowledge Base (espe-
cially all the related to the users) with uttermost privacy to accom-
plish privacy regulations and ensure the confidentiality of the user’s
information.

Satisfaction
condition

The system must ensure user data protection. To achieve this, it
must follow all the pertinent privacy regulations as well as having
this data protected by some security measures, such as authorized
access.

Table 8.32: Non-functional requirement 5: Privacy

58

Requirement Project Planning

Description Every feature that is intended to be done, it must have been previ-
ously defined.

Justification A good project planning is a must when trying to develop a system.
Making sure that all the required features are defined initially before
starting the development process is key.

Satisfaction
condition

All the desired features must be clearly defined, described and doc-
umented before starting the development. Also, time planning must
be done and an overall consideration of all the aspects that involve
the project must be treated.

Table 8.33: Non-functional requirement 6: Project Planning

59

Chapter 9

Design

In this chapter, the design of the knowledge base that is developed in this project is
explained. Both the physical and logical architecture of the application are described, as
well as the design patterns that have been used to develop it. Finally, the data model
diagram is shown.

9.1 Basic structure

Considering the Chatbots4Mobile project as a whole, the physical structure of the solution
is composed of a mobile phone that uses the chatbot and the knowledge base as a backend.

� The mobile phone: it is the device that the user uses to interact with the chat-
bot. It is the device that triggers the chatbot, and it is the device that receives
suggestions from the chatbot.

� The chatbot: it is the application that the user interacts with. It is the one that
receives the user’s requests, and it is the one that provides the user with suggestions.

� The chatbot’s NLU component: it is the component of the chatbot that is
responsible for understanding the user’s requests. It is the one that receives the
user’s requests, and it is the one that provides the chatbot with the user’s requests
in a structured way.

� The knowledge base: it is the backend of the application. It is the one that
receives the requests from the chatbot, and the source of the information for it to
provide the user with suggestions.

This thesis is focused on the knowledge base, as it is the one that is being developed in
this project.

This architecture follows the 3-layer architecture, which is a software architecture pattern
that separates the concerns of the application into three interconnected layers, as shown
in Figure 9.1.

� Presentation layer: this layer is the one that interacts with the chatbot. It is
responsible for receiving the user’s requests, and it is also responsible for showing
the results to the user.

60

� Business layer: this layer is the one that contains the business logic of the appli-
cation. It is responsible for processing the user’s requests, and it is also responsible
for providing the results to the presentation layer.

� Data layer: this layer is the one that contains the data of the application. It is the
one that stores the data, and it is the one that provides the data to the business
layer.

In this case, the presentation layer is the mobile phone, more specifically the chatbot, the
business layer and the data layer are both in the knowledge base.

Figure 9.1: 3-layer architecture
Font: Own elaboration

It is important to mention that the following sections are going to focus on the knowledge
base, more specifically on the Knowledge Graph, as it is the one that is being developed
in this project.

9.2 Logical architecture

In terms of the logical architecture that has been chosen for the development of the
knowledge-based system, due to the fact that Java Spring Boot is the framework that
has been chosen for the development of the system, the most common architecture has
been followed.

In this case, the Spring Boot flow architecture is the one shown in figure 9.2. This
architecture, as can be seen, has a very simple flow, which is the following:

1. The client is the one who makes the HTTPS request to the server, although he is
not the one explicitly who makes the request, but the chatbot.

2. The request is received by the knowledge base, arriving at the controllers, which are
the ones that, based on the request, map the request to the corresponding service.

3. The service layer is the one doing the business logic, it is the one which will prepare
the data to be sent to the client. In this case, the service will call the repository
layer, which is the one that will access the database and perform the operations
that are needed, as well as use the models defined, which are the ones that will be
used to represent the data.

4. Once the service has the data, it will return it to the controller, which will be the
one that will return the data to the client.

61

Figure 9.2: Spring Boot flow architecture
Font: javaTpoint [52]

Spring Boot is an extension of the Spring framework [53], which is a framework used
as well to develop web applications, and it offers several modules that can be used to
develop different parts of the application, such as the Spring Data module, which is the
one that is used to access the database, or Spring MVC, which is the one that is used to
develop the controllers and the services.

In this case, Spring Boot uses these modules that have been mentioned before. The
architecture of Spring Boot is the same as the architecture of Spring MVC, but it is
simplified, due to the fact that DAO (Data Access Object) and DAOImpl (Data Access
Object Implementation) are not used, and the repository layer is used instead.

This type of architecture allows separating the functionality of the application into dif-
ferent layers, which allows a more modular application, which is easier to maintain and
extend, as well as to test.

9.3 Design patterns

A design pattern can be described as a common approach to a recurring problem. Design
patterns are a way to describe a solution to a problem that occurs in a specific context.
They are not a finished design but a template, which can be used on several occasions
when the necessities of the application allow it.

In this case, most Java Spring Boot projects usually follow a set of design patterns, and
this project is not an exception. Two of the most common design patterns have been
used, and will be explained next.

62

9.3.1 Dependency Injection

Dependency injection is a design pattern that allows the creation of loosely coupled
modules. This means that the modules are not dependent on one another, the dependency
itself is injected, rather than created explicitly within the class, allowing to have better
testability and a much more modular design.

9.3.2 Singleton

One of the most common design patterns that can be found and used in several projects
of different types is the singleton pattern. This pattern is used when there is the necessity
of having one and only one instance of a class.

In this case, in Java Spring Boot, the singleton pattern is used to be able to manage
shared resources. In this project, this has been used quite regularly. For instance, the
repository classes are defined as singletons implicitly, when annotating them with the
@Repository annotation. This is done as well with the controllers and the services. An
example of how this is done can be seen in the following code snippet:

@org . spr ingframework . s t e r eo type . Repos i tory
public class UserRepos i tory {

. . .
}

9.4 Data model diagram

The data model diagram is a diagram that shows the different entities that are going to
be used in the project, and the relations between them.

Due to the database that is going to be used, the data model diagram is not going to be
a relational diagram, but a NoSQL diagram. This means that the relationships between
the entities are not going to be represented as foreign keys but as references to other
entities.

Although an example of how the data model diagram is going to look has been shown in
figure 2.3, it may be quite difficult to see the general structure of the diagram. For this
reason, a simplified version of the diagram is shown in figure 9.3. In this one, each entity
has been defined so that it is easier to see the relations between them.

63

Figure 9.3: Data model diagram
Font: GESSI-Chatbots4Mobile

64

9.4.1 Entities and relations

Just to be able to fully understand the project’s structure, the different entities (with
their attributes) and relations are detailed, as well as the schema.org type for each of
them is specified. For each entity, the domain constraints applied for each attribute (if
any) are also specified. Those constraints are the ones that the data must follow in order
to be valid, and due to our knowledge base being schema-less, all the restrictions are at
the business logic level.

� User (schema:Person): It represents a user of the application. It has the follow-
ing attributes:

– schema:identifier: This is the unique identifier of the user. Its domain con-
straint is that it must be unique, there cannot be two users with the same
identifier.

– schema:email: This is the email of the user. Its domain constraint is that it
must be a mail address (it must contain an @ symbol).

– schema:givenName: This is the given name of the user.

– schema:familyName: This is the family name of the user.

And the following relations:

– schema:application: It connects the user with an App that he/she uses.

– schema:Action: It connects the user with a preferred feature integration that
he/she has.

– schema:PropertyValue: It connects the user with a preferred parameter
integration that he/she has.

– schema:AppIntegration: It connects the user with a preferred app integra-
tion that he/she has.

� App (schema:MobileApplication): It represents an application that the user
uses. It has the following attributes:

– schema:identifier: This is the unique identifier of the application. Its domain
constraint is that it must be unique, there cannot be two applications with the
same identifier.

– schema:name: This is the name of the application.

– schema:datePublished: This is the date when the application was pub-
lished. Its domain constraint is that it must be a date which follows the
Month/Day/Year format. (e.g. 12/31/2020)

– schema:dateModified: This is the date when the application was last mod-
ified. Its domain constraint is that it must be a date which follows the Mon-
th/Day/Year format. (e.g. 12/31/2020)

– schema:applicationCategory: This is the category of the application. It
domain constraint is that it has a set of possible values, and only those values
are allowed. Those values are: Trail Tracking, Sports Activity, POI Report,

65

Calendar, GPS/Maps, Weather, Air quality, Instant Messaging, Task Man-
ager, Notes.

– schema:releaseNotes: This is the release notes of the application.

– schema:softwareVersion: This is the version of the application.

And the following relations:

– schema:description: This is the description of the application.

– schema:abstract: This is the summary of the application.

– schema:keywords: It connects the app with a feature that it exposes.

� Feature (schema:DefinedTerm): It represents a feature of an application. It
has the following attributes:

– schema:identifier: This is the unique identifier of the feature. Its domain
constraint is that it must be unique, there cannot be two features with the
same identifier.

– schema:name: This is the name of the feature.

And the following relations:

– schema:hasPart: It connects the feature with a parameter that it has.

� Parameter (schema:Boolean / schema:Number / schema:Text / schema:
GeoCoordinates / schema:Contact): It represents a parameter of a feature.
Depending on the type of the parameter, it will be defined as one of the specified
types. This is limited but the idea is to allow the extension of the types based
on the app’s domain and the features they expose and covered by the chatbot.
To support that only those types are allowed, the domain constraint is that when
creating a parameter its type has to be explicitly specified, and it has to be one of
the presented types. It has the following attributes:

– schema:identifier: This is the unique identifier of the parameter. Its domain
constraint is that it must be unique, there cannot be two parameters with the
same identifier.

– schema:name: This is the name of the parameter.

� AppIntegration (schema:AppIntegration): It represents the integration of two
apps. It has the following attributes:

– schema:identifier: This is the unique identifier of the app integration. Its
domain constraint is that it must be unique, there cannot be two app integra-
tions with the same identifier (that is that there cannot be two app integrations
with the same source and target apps).

– schema:name: This is the name of the app integration.

And the following relations:

– schema:source: This is the source app of the integration. Its domain con-
straint is that it must be an app that exists in the system.

66

– schema:target: This is the target app of the integration. Its domain con-
straint is that it must be an app that exists in the system.

� FeatureIntegration (schema:Action): It represents the integration of two fea-
tures from different apps. It has the following attributes:

– schema:identifier: This is the unique identifier of the feature integration.
Its domain constraint is that it must be unique, there cannot be two feature
integrations with the same identifier (that is that there cannot be two feature
integrations with the same source and target features).

– schema:name: This is the name of the feature integration.

And the following relations:

– schema:source: This is the source feature of the integration. Its domain
constraint is that it must be a feature that exists in the system.

– schema:target: This is the target feature of the integration. Its domain
constraint is that it must be a feature that exists in the system.

� ParameterIntegration (schema:PropertyValue): It represents the integration
of two parameters from two features. It has the following attribute:

– schema:identifier: This is the unique identifier of the parameter integration.
Its domain constraint is that it must be unique, there cannot be two param-
eter integrations with the same identifier (that is that there cannot be two
parameter integrations with the same source and target parameters).

– schema:name: This is the name of the parameter integration.

And the following relations:

– schema:name: This is the source parameter of the integration. Its domain
constraint is that it must be a parameter that exists in the system.

– schema:value: This is the target parameter of the integration. Its domain
constraint is that it must be a parameter that exists in the system.

67

Chapter 10

Implementation process

In this chapter, all the processes related to what has been implemented are described.
The process is divided into three main parts: the original project’s state, the data schema
extension and the knowledge base extension.

As it has been previously mentioned, this Final Degree Project has focused on the de-
velopment of the knowledge base extension, that is, the back-end knowledge base for the
chatbot. Therefore, everything that is mentioned in this chapter is related to the back-
end, and images of real examples of how the data is structured in the knowledge base are
shown.

10.1 System overview

The initial knowledge base was provided by the Chatbots4Mobile research project infras-
tructure, and what could be seen there was a database without the formalisation of the
concept of a feature from the software engineering perspective (e.g, parameters, integra-
tions), nor anything related to working with the user’s information (e.g. user preferences).
The data was composed, as it has been mentioned and shown in the section 1.2 Concepts,
of (1) a catalogue of mobile applications known by the chatbot, (2) a set of users with
any kind of information about them (in terms of neither attributes nor preferences) and
(3) a set of features that the mobile applications have (they are the ones that trigger the
chatbot to enter into action). An example of how a user was represented in the knowl-
edge base is shown in figure 10.12. These shown nodes are the ones that have a direct
relationship with our thesis, although there are more types of entities defined, they are
not inside this project’s scope, so only the relevant ones for our case are displayed. As it
can be seen, the knowledge base did not have any information related to the formalisation
of a feature, and that was the main goal of this project.

By checking the image and understanding that Schema.org is the vocabulary that is used
to represent the data in the knowledge base, it can be seen that the user is represented as
a schema:Person and has a relation with the schema:MobileApplication called com.strava
[54], which exposes several features (schema:keywords), as well as it also has a description
of the application itself.

2All the images that will be shown of the knowledge base represent unreal users that were created for
testing purposes. Any real user has been shown in order to protect and maintain their privacy.

68

Figure 10.1: Example of how users were represented in the initial knowledge base
Font: Own elaboration

The main goal of this project, as a reminder, was to extend the knowledge base in order
to make the conversational agent able to offer a personalised experience to the user, by
considering their preferences and actions performed across the apps the chatbot is aware
of, and that is done by (1) formalising both features and feature integrations and (2)
personalizing the feature integrations.

Therefore, after considering the initial state of the knowledge base and having a clear
idea of what the goal of this project defined by GESSI (owner of the Chatbots4Mobile
parent project) was, the next step was to define the new schema that allowed us to move
from the initial database to a context-aware knowledge base.

10.2 Development resources

10.2.1 Technologies and frameworks used

� Java: a high-level, class-based, object-oriented programming language developed
and maintained by Oracle. [55]

� SPARQL: a query language for databases that retrieve data stored in the Resource
Description Framework (RDF) format. [56]

� Java Spring Boot: an open source Java-based framework used to create a micro
Service, developed by Pivotal Software, Inc. [57]

� RDF: a standard model for data interchange on the Web. In this case, it is used
to represent the data of the application. [38]

� RDF4J: a Java framework for processing RDF data. It is distributed under the
terms of the Eclipse Public License, and it is well-integrated with the Spring Frame-
work. [58]

� Springdoc: a framework that allows the automatic generation of Swagger docu-
mentation for the Spring Boot REST API. [59]

69

� JUnit: a testing framework for the Java programming language. [60]

10.2.2 Development tools

� Visual Studio Code: a source-code editor developed by Microsoft for Windows,
Linux and macOS. [23]

� Git: a distributed version-control system for tracking changes in source code during
software development. [20]

� GraphDB: an RDF triplestore developed by Ontotext [25]. For this project, it is
used to:

– Store the RDF data.

– Execute SPARQL queries.

– Manage the RDF data.

– Visualize the RDF data.

10.3 Data schema extension

Once the initial knowledge base was analysed, it was time to start considering what
should be done in order to extend it and transform it into a context knowledge base.

10.3.1 Creation of the data schema extension

The first thing that was required to do was to redefine the data schema. There were
several questions that were emerging and that needed to be answered. The first question
was: With what should the knowledge base be extended to support feature
formalisation (including feature integrations) and user preferences? The answer
to this question was not easy, due to the fact that some redesign of the data schema was
required.

After having some discussions with the project’s director, two main actions were decided
to be done. The first one was to complement the existing data schema by (1) adding
parameters to each feature, in order to be able to represent the different values that they
can have and facilitate the integration between them and (2) adding the possibility of
representing the user preferences.

The first action was done by defining that each feature would have a set of input/output
parameters that would define the different values that the feature requires to be performed
(if any). With this, we obtain a much more precise representation of the features, and
we can now define the integrations between them in a much more accurate way.

The second action was decided to be done by adding new entities to the data schema
that would allow us to represent for each user what preferences he has got in terms of
applications and in terms of specific features these apps expose. This way, the agent
would be able to know about the user’s historical integrations and would be able to
recommend him new ones based on that. There were 3 types of integrations that were
considered and finally added:

70

� Application to application: this type of integration would let us know what
applications the user usually integrates, without specifying the features that are
integrated (multiple features can be integrated between two applications). For
instance, there can be a user that usually plans a route in Strava and then creates
an event in Google Calendar [61] with the route’s information, or they can also add
photos of a route into Strava and wants to add to a Google Calendar event the
photos that were added to Strava. We will end up obtaining that the user has an
app integration between Strava and Google Calendar defined.

� Feature to feature: this type of integration would let us know what features
the user usually integrates, without specifying the applications that expose those
features (multiple applications can expose the same feature). For instance, there
can be a user that usually plans a route in Strava when they go hiking and then
creates an event in Google Calendar with the route’s information, or they can also
plan a route to make tourism using Google Maps and wants to add to a Google
Calendar event the route that was planned. We will end up obtaining only one
feature integration which involves the act of planning a route and creating an event,
no matter what applications are used to do so. By specifying the features that are
integrated, we can know more about the user’s preferences and recommend him a
much more accurate integration.

� Parameter to parameter: this type of integration would let us automate the
process of integrating two applications’ features (depending on the features that are
being integrated all the required parameters for the target feature can be defined
totally defined if the values obtained from the source feature are enough, partially
otherwise), so the user action would be reduced to just confirm the integration
or, in some cases, having to specify fewer parameters than if the action was done
manually by them.

With this in mind, we were able to make the design of the new data schema. The result
of this design was shown in section 9.4 Data model diagram.

The second question was related to the first one: What can be used to represent the
new entities and relations? Considering the fact that both RDF and schema.org were
used in the initial knowledge base, it was decided to keep using them in the extended
version. The reason for this is that they are the most used technologies in the semantic
web, as was explained in chapter 7 State of the art. So, the next step was to analyse what
schema from schema.org could be used in our scenario, in order to avoid the creation of
new ones when possible. The final result of this analysis was previously shown along
with the data model diagram. We finally managed to reuse resources from schema.org
to represent the new entities and relations, except for the AppIntegration entity and the
source feature in a feature integration. With this new schema, the chatbot would be able
to have more information about the user and more possible actions to make whenever
the user performed any action. Now an example of how the data for some users would
be represented can be seen in figure 10.2.

71

Figure 10.2: Example of how the data for Alice and Bob users would be represented in
the extended data schema

Font: Own elaboration

Let’s consider the user Bob again, and let’s suppose that he usually performs the following:
he usually plans a route in Strava and then he creates an event in Simple Calendar
with the route’s information. Now, with this new data schema, we can check that this
information is represented in the knowledge base in several ways. First, we can see
that there is an AppIntegration entity that represents the integration between Strava
and Google Calendar. Then, we can see that there is a FeatureIntegration entity that
represents the integration between the features PlanRoute and CreateEvent. Finally, we
can see that there is a ParameterIntegration entity that represents the integration between
the parameters route-name/event-name and start-location/location from these features.
We can see that Bob has those integrations as preferred, due to the chatbot having now
the ability to store what the user prefers. With this, whenever Bob performs the planning
of a route in Strava, the chatbot will estimate which is the most possible suggestion he
would like to receive based on his preferences, and in case of doing it, he would use
the parameter integrations defined to be able to automatically defines the one which is
possible (the ones that are the target of the parameter integrations, the rest should be
provided by the user). Now, the process of integrating two applications’ features can be
estimated with the knowledge base’s data and it can be done in an efficient way, letting
the user just perform the action and confirm the integration.

It is important to clarify that the responsible for when and how the user preferences
are updated is the chatbot. The extended knowledge base simply provides a flexible
mechanism to add/update/delete these preferences and persist them so that their access
is both clear and efficient. The decision-making part is beyond the scope of this work.

72

10.3.2 Domain constraints

The domain constraints are the rules that are going to be used in the knowledge base in
order to insert new data, as well as to make sure that the data the chatbot will consume
follow always the same format and there are no ambiguities or errors in it.

The domain constraints defined for the extended data schema were the following:

� Unique identifier: each entity in the knowledge base has an identifier defined.
This identifier has to be unique for each entity, so there cannot be two entities with
the same identifier. With this, we make sure that the data is not duplicated and
that the data is consistent. It is important to clarify that the identifiers have not
been generated, but specific properties that are unique for each entity have been
used instead, allowing us to facilitate the accessibility to the data.

� Data completeness: each entity in the knowledge base has to follow the data
schema that was defined for it. This schema has some properties that are required
and some that are optional. With this approach, we expose a compromised so-
lution with respect to a full schemaless knowledge graph by forcing the presence
and validity of some properties which are required for the correct modelling - and
therefore, execution - of feature integrations.

� Data integrity constraints: the data that is inserted in the knowledge base has
to be consistent with the data that is already in it. This means that the relations
between the entities have to be consistent and that the entities that are related to
each other have to exist on both sides of the relation. This is done in order to make
sure the chatbot uses data that exists and does not try to compute suggestions with
inexistent data.

There are some more constraints that are usually followed for every database, such as
handling the null values or the data types, but the most relevant ones that make our
system work and make it scalable are the ones that were explained above.

10.4 Knowledge base operations

In this section, all the API operations that are related to the knowledge base are described.
Also, the API documentation generated using Springdoc in Swagger [62] can be found in
appendix A.

10.4.1 Entity definitions

73

Users

In order to be able to work with users, the CRUD operations have been defined.

Considering that a User object looks like the following:

1 {
2 "identifier *": "string",

3 "email *": "string",

4 "givenName *": "string",

5 "familyName *": "string",

6 "apps": [

7 "string"

8],

9 "preferredFeatureIntegrations": [

10 "string"

11],

12 "preferredParameterIntegrations": [

13 "string"

14],

15 "preferredApps": [

16 "string"

17]

18 }

Description Get all the users

Method GET

Endpoint /users

Responses 200: User[]

Description Get a specific user by ID

Method GET

Endpoint /users/:id

Parameters id: User’s unique identifier

Responses 200: User
404: Not Found

Description Create a user

Method POST

Endpoint /users

Body User

Responses 201: Created
400: Bad Request
409: User already exists

74

Description Update a user

Method PUT

Endpoint /users/:id

Parameters id: User’s unique identifier

Body User

Responses 200: Updated
404: Not Found

Description Delete a user

Method DELETE

Endpoint /users/:id

Parameters id: User’s unique identifier

Responses 204: No Content
404: Not Found

Mobile Applications

In order to be able to work with mobile applications, the CRUD operations have been
defined.

Considering that a MobileApplication object looks like the following:

1 {
2 "name*": "string",

3 "identifier *": "string",

4 "description *": "string",

5 "summary *": "string",

6 "releaseNotes *": "string",

7 "applicationCategory *": "AppCategory",

8 "datePublished *": "string",

9 "dateModified *": "string",

10 "softwareVersion *": "string",

11 "features *": [

12 "string"

13]

14 }

Description Get all the mobile apps

Method GET

Endpoint /apps

Responses 200: MobileApplication[]

75

Description Get a specific mobile app by ID

Method GET

Endpoint /apps/:id

Parameters id: Mobile application’s unique identifier

Responses 200: MobileApplication
404: Not Found

Description Create a mobile app

Method POST

Endpoint /apps

Body MobileApplication

Responses 201: Created
400: Bad Request
409: MobileApplication already exists

Description Update a mobile app

Method PUT

Endpoint /apps/:id

Parameters id: Mobile application’s unique identifier

Body MobileApplication

Responses 200: Updated
404: Not Found

Description Delete a mobile app

Method DELETE

Endpoint /apps/:id

Parameters id: Mobile Application’s unique identifier

Responses 204: No Content
404: Not Found

76

App Integrations

In order to be able to work with the integration of Apps, the CRUD operations have been
defined.

Considering that an AppIntegration object looks like the following:

1 {
2 "identifier": "string",

3 "name": "string",

4 "sourceApp *": "string",

5 "targetApp *": "string"

6 }

Description Get all the app integrations

Method GET

Endpoint /apps/integrations

Responses 200: AppIntegration[]

Description Get a specific app integration by ID

Method GET

Endpoint /apps/integrations/:id

Apps id: App integration’s unique identifier

Responses 200: AppIntegration
404: Not Found

Description Create an app integration

Method POST

Endpoint /Apps/integrations

Body AppIntegration

Responses 201: Created
400: Bad Request
409: AppIntegration already exists

Description Update an app integration

Method PUT

Endpoint /apps/integrations/:id

Apps id: App integration’s unique identifier

Body AppIntegration

Responses 200: Updated
404: Not Found

77

Description Delete an app integration

Method DELETE

Endpoint /apps/integrations/:id

Apps id: App integration’s unique identifier

Responses 204: No Content
404: Not Found

Features

In order to be able to work with features, the CRUD operations have been defined.

Considering that a Feature object looks like the following:

1 {
2 "identifier": "string",

3 "name*": "string",

4 "parameters *": [

5 "string"

6]

7 }

Description Get all the features

Method GET

Endpoint /features

Responses 200: Feature[]

Description Get a specific feature by ID

Method GET

Endpoint /features/:id

Parameters id: Feature’s unique identifier

Responses 200: Feature
404: Not Found

Description Create a feature

Method POST

Endpoint /features

Body Feature

Responses 201: Created
400: Bad Request
409: Feature already exists

78

Description Update a feature

Method PUT

Endpoint /features/:id

Parameters id: Feature’s unique identifier

Body Feature

Responses 200: Updated
404: Not Found

Description Delete a feature

Method DELETE

Endpoint /features/:id

Parameters id: Feature’s unique identifier

Responses 204: No Content
404: Not Found

Feature Integrations

In order to be able to work with the integration of features, the CRUD operations have
been defined.

Considering that a FeatureIntegration object looks like the following:

1 {
2 "identifier": "string",

3 "name": "string",

4 "sourceFeature *": "string",

5 "targetFeature *": "string"

6 }

Description Get all the feature integrations

Method GET

Endpoint /features/integrations

Responses 200: FeatureIntegration[]

Description Get a specific feature integration by ID

Method GET

Endpoint /features/integrations/:id

Parameters id: Feature integration’s unique identifier

Responses 200: FeatureIntegration
404: Not Found

79

Description Create a feature integration

Method POST

Endpoint /features/integrations

Body FeatureIntegration

Responses 201: Created
400: Bad Request
409: FeatureIntegration already exists

Description Update a feature integration

Method PUT

Endpoint /features/integrations/:id

Parameters id: Feature integration’s unique identifier

Body FeatureIntegration

Responses 200: Updated
404: Not Found

Description Delete a feature integration

Method DELETE

Endpoint /features/integrations/:id

Parameters id: Feature integration’s unique identifier

Responses 204: No Content
404: Not Found

Parameters

In order to be able to work with parameters, the CRUD operations have been defined.

Considering that a Parameter object looks like the following:

1 {
2

3 "identifier *": "string",

4 "name*": "string",

5 "type*": : "ParameterType"

6 }

where ParameterType can have 5 possible values: [Number, Boolean, Text, GeoCoordi-
nates, ContactPoint].

80

Description Get all the parameters

Method GET

Endpoint /parameters

Responses 200: Parameter[]

Description Get a specific parameter by ID

Method GET

Endpoint /parameters/:id

Parameters id: Parameter’s unique identifier

Responses 200: Parameter
404: Not Found

Description Create a parameter

Method POST

Endpoint /parameters

Body Parameter

Responses 201: Created
400: Bad Request
409: Parameter already exists

Description Update a parameter

Method PUT

Endpoint /parameters/:id

Parameters id: Parameter’s unique identifier

Body Parameter

Responses 200: Updated
404: Not Found

Description Delete a parameter

Method DELETE

Endpoint /parameters/:id

Parameters id: Parameter’s unique identifier

Responses 204: No Content
404: Not Found

81

Parameter Integrations

In order to be able to work with the integration of parameters, the CRUD operations
have been defined.

Considering that a ParameterIntegration object looks like the following:

1 {
2 "identifier": "string",

3 "sourceParameter *": "string",

4 "targetParameter *": "string"

5 }

Description Get all the parameter integrations

Method GET

Endpoint /parameters/integrations

Responses 200: ParameterIntegration[]

Description Get a specific parameter integration by ID

Method GET

Endpoint /parameters/integrations/:id

Parameters id: Parameter integration’s unique identifier

Responses 200: ParameterIntegration
404: Not Found

Description Create a parameter integration

Method POST

Endpoint /parameters/integrations

Body ParameterIntegration

Responses 201: Created
400: Bad Request
409: ParameterIntegration already exists

Description Update a parameter integration

Method PUT

Endpoint /parameters/integrations/:id

Parameters id: Parameter integration’s unique identifier

Body ParameterIntegration

Responses 200: Updated
404: Not Found

82

Description Delete a parameter integration

Method DELETE

Endpoint /parameters/integrations/:id

Parameters id: Parameter integration’s unique identifier

Responses 204: No Content
404: Not Found

10.4.2 User preferences

Several operations have been defined in order to add and remove preferences from a user.

App integration preferences

Description Add a preferred app integration to a user

Method POST

Endpoint /users/:id/integrations/apps

Parameters id: User’s unique identifier

Body AppIntegration

Responses 201: Created
404: Not Found

Description Delete a preferred app integration to a user

Method DELETE

Endpoint /users/:id/integrations/apps

Parameters id: User’s unique identifier

Responses 204: No Content
404: Not Found

Feature integration preferences

Description Add a preferred feature integration to a user

Method POST

Endpoint /users/:id/integrations/features

Parameters id: User’s unique identifier

Body FeatureIntegration

Responses 201: Created
404: Not Found

83

Description Delete a preferred feature integration to a user

Method DELETE

Endpoint /users/:id/integrations/features

Parameters id: User’s unique identifier

Responses 204: No Content
404: Not Found

Parameter integrations preferences

Description Add a preferred parameter integration to a user

Method POST

Endpoint /users/:id/integrations/parameters

Parameters id: User’s unique identifier

Body ParameterIntegration

Responses 201: Created
404: Not Found

Description Delete a preferred parameter integration to a user

Method DELETE

Endpoint /users/:id/integrations/parameters

Parameters id: User’s unique identifier

Responses 204: No Content
404: Not Found

10.4.3 Suggestions computation

In order to be able to offer suggestions to the users based on their actions, the following
operations have been defined.

The first operation that has been defined allows us to obtain, based on the action the
user has just made (i.e., the feature enacted in the user’s smartphone device), the list
of features that can be integrated with the one that has been used. Although all the
features that can be integrated with the one that has been used are returned, it is a
sorted list, where the first feature is the one that is most likely to be integrated with the
one that has been used, according to the user preferences (more specifically, the preferred
feature integrations are considered the most likely to be integrated, and then the app
integrations are taken into account). The endpoint of this operation is the following:

84

Description Request feature integrations from source features and previous user
preferences

Method GET

Endpoint /users/:id/integrations/features/:source

Parameters id: User’s unique identifier
source: feature that acts as the source of the integration

Responses 200: Feature: string[]
404: Not Found

An example of a SPARQL that this query has defined to obtain the features basing
specifically on the user preferences is shown in figure 10.3.

Figure 10.3: SPARQL query to request feature integrations from source features and
previous user preferences

Font: Own elaboration

The second operation that has been defined allows us to obtain, based on a source and
a target feature, the list of apps that can perform the target feature. Although all the
apps that have the target feature defined are returned, it is a sorted list, where the first
app is the one that is most likely to be used by the user, according to their preferences
(more specifically, the preferred apps that expose this feature are considered the most
likely to be used, and then the apps that the user uses that expose this feature are taken
into account). The endpoint of this operation is the following:

Description Request app integrations from a target feature and previous user pref-
erences

Method GET

Endpoint /users/:id/integrations/apps/feature/:source/:target

Parameters id: User’s unique identifier
source: feature that acts as the source of the integration
target: feature that acts as the target of the integration

Responses 200: MobileApplication: string[]
404: Not Found

85

An example of an SPARQL query that this call has defined to obtain the apps that expose
the given target feature basing on the user preferences is shown in figure 10.4.

Figure 10.4: SPARQL query to request app integrations from a target feature and
previous user preferences

Font: Own elaboration

The third operation that has been defined allows us to obtain the list of parameter
integrations that can be performed between two features from two different apps. The
endpoint of this operation is the following:

Description Request source-target parameter integrations for selected app

Method GET

Endpoint /parameters/integrations/request

Body {
”sourceApp”: ”string”,
”sourceFeature”: ”string”,
”targetApp”: ”string”,
”targetFeature”: ”string”
}

Responses 200: ParameterIntegrations: string[]
404: Not Found

An example of an SPARQL query that this call has defined to obtain the parameter
integrations between two features from two different apps is shown in figure 10.5.

86

Figure 10.5: SPARQL query to request source-target parameter integrations for selected
app

Font: Own elaboration

The fourth and last operation that has been defined allows us to obtain the list of pa-
rameters that must be specified by the user when integrating two features from two
different apps, due to them not having any parameter integration defined for this case.
The endpoint of this operation is the following:

Description Request custom parameters for selected app

Method GET

Endpoint /parameters/integrations/request/custom

Body {
”sourceApp”: ”string”,
”sourceFeature”: ”string”,
”targetApp”: ”string”,
”targetFeature”: ”string”
}

Responses 200: Parameters: string[]
404: Not Found

An example of an SPARQL query that this call has defined to obtain the parameters
that must be specified by the user when integrating two features from two different apps
is shown in figure 10.6.

87

Figure 10.6: SPARQL query to request custom parameters for selected app
Font: Own elaboration

88

Chapter 11

Testing

In this chapter, all the testing that has been done on this project will be mentioned and
explained, as well as the results obtained after performing the tests.

There are four types of testing levels that can be done to a software system: unit testing,
integration testing, system testing and acceptance testing [63]. Due to the scope of this
project, only the first two types of testing have been done, due to the current state of the
Chatbots4Mobile general project, which is still in development.

11.1 Knowledge base test dataset

There have been several aspects that have been considered when evaluating the function-
ality of what has been implemented:

� Test dataset: In order to check the functionality of the CRUD operations defined,
they have been used to define a dataset with which other functionalities could be
tested. This dataset is the one from figure 10.2 and has the following:

– Users: 2 mock users have been defined (Alice and Bob).

– Apps: 7 apps have been defined, most of them being reused from the original
dataset given. A total of 6 features are defined, and each of those applications
has, at least, a feature integration defined for its feature exposed, having
a total of 7. These apps and their features (with their parameters) are the
following:

* Strava:

· Plan a route: allows the user to plan a route (e.g. running, cycling,
etc.) specifying the name, where it starts and where it ends, and the
persons that are invited to join (if any).

· Parameters: [route-name, start-location, end-location, invites]

* Google Calendar:

· Create an event: allows the user to create an event specifying its name,
date, a brief description and its location.

89

· Parameters: [event-name, event-datetime, event-description, location]

* Simple Calendar:

· Create an event: allows the user to create an event specifying its name,
date, a brief description and its location.

· Parameters: [event-name, event-datetime, event-description, location]

* TickTick:

· Create a task: allows the user to create a task specifying its name, a
brief description, the collaborators (i any) and the final date and time.

· Parameters: [task-name, task-description, collaborators, final-datetime]

* Music Player & MP3 Player:

· Play a playlist: allows the user to play a specific playlist.

· Parameters: [playlist-title]

* MyFit:

· Activate a timer: allows the user to start a timer.

* Weather, Forecast, Thermometer:

· Set your location: allows the user to set its location in the app.

· Parameters: [location]

With this dataset, we were able to add integrations between those entities and
then add them as Alice and Bob’s preferred integrations, so we could have a
real case scenario.

� Simulation of the system: Once the dataset was defined, we simulated the
interaction of users with the chatbot. This way, we could perform the operations the
agent should call to see if we could obtain the expected results. The following figure
11.1 reflects a possible conversation between the chatbot and the user that would
require access to the knowledge base as well as the computation of the suggestions.

90

Figure 11.1: Example conversation between the chatbot and the user

In this case, the knowledge base has the logic to perform the pertinent operations and
provide the chatbot with the information the user needs in each case: actions (features),
apps, etc.

With this, we were able to perform an evaluation of what was implemented. Exactly
what testing was performed and the reasons why as well as the results obtained will be
explained next.

11.2 Component testing

Unit testing is a low-level type of testing, consisting in testing individual functions/meth-
ods from a class, a module or a component, so they are performed at a granular level.
Component testing’s granularity, on the other hand, has a higher granularity, as it tests
a whole software component, which is a set of classes, modules, frameworks, etc. that are
interconnected and work together to achieve a common goal [64].

This testing has been done using the JUnit framework, which is a pretty popular frame-
work to perform unit testing in Java. What has been tested are the CRUD operations
of all the models, as well as the calls that allow the chatbot to set the user’s preferences
and provide them with suggestions (ergo everything that has been defined) in order to
see that all works as expected. This has been done due to the importance of letting the
chatbot to work only with valid and well-structured data, as well as to avoid any type of
data corruption.

The tests have been defined for the controllers, which are the classes that handle the
HTTP requests. Due to them being the initial point of the application, it has been
considered enough to test them, as they are the ones that call the services, and the
services are the ones that call the repositories, which are the ones that perform the
CRUD operations. An example of how these tests are defined can be seen in figure 11.2
and the results can be seen in figure 11.3. All of them can be found in the project’s
repository [65], in the src/test folder.

91

Figure 11.2: Component testing
Font: Own elaboration

Figure 11.3: Component testing results
Font: Own elaboration

11.3 Integration testing

Integration testing is a type of testing that is based on testing the interaction and the
correct integration of two different software systems or components. Its goal is to ensure
the correct working of the system as a whole, as well as to detect whatever defects (errors
or bugs) that may arise from the interaction of the components [66].

In this project, due to it being part of a much wider system, the knowledge base that
has been developed, in the end, has to be integrated with the rest of the system (that
is, the chatbot may be able to use it to offer recommendations to the user). Therefore,
integration testing has been carried out to ensure that the knowledge base works correctly
with the rest of the system. The integration tested is based on the integration between

92

the knowledge base and the NLU chatbot component, trying to ensure the end-to-end
functionality of the system.

This has been done with the help of a chatbot developer (explained in 5.2), who has been
the one responsible for integrating the knowledge base with the chatbot and checking
that everything works correctly. If there was any problem, the student was there to help
and was responsible for solving whatever problem that may have arisen.

An example of how the integration testing has been carried out can be seen in the following
figure 11.4.

Figure 11.4: Integration testing example

This example follows the previously shown example of a chatbot conversation (see figure
11.1). In this case, we can see how the chatbot interprets the user’s message and with the
input received and considering the user profile, it queries the knowledge base to obtain the
recommendations that the user is asking for. Those calls to the knowledge base are the
inductive requests that have been defined in the previous section (see subsection 10.4.3).
So, the scenario goes as follows:

1. The chatbot gets triggered by Bob’s action of planning a route using Strava, and
asks him if he wants to create a task.

2. Bob says no, and asks for other suggestions.

3. The chatbot interprets the message and queries the knowledge base, requesting
feature integrations considering Plan a route as the source feature and considering
Bob’s preferences (first GET call). Then, the chatbot receives the recommendations
from the knowledge base and shows them to Bob.

4. Bob chooses to create an event.

5. The chatbot asks if he wants to use Google Calendar to create an event.

6. Bob asks for other suggestions.

93

7. The chatbot queries the knowledge base again, requesting app integrations consid-
ering Plan a route as the source feature, Create an event as the target feature and
considering Bob’s preferences (second GET call). Then, the chatbot receives the
recommendations from the knowledge base and shows them to Bob.

8. Bob chooses to create an event using Simple Calendar.

9. The chatbot queries the knowledge base again, requesting all the parameters that
are integrated between these two features from these two apps (third GET call).
Then, the chatbot receives the results from the knowledge base and shows them to
Bob.

10. Bob, once those parameters are shown, customises them to his liking (if needed).

11. The chatbot queries the knowledge base again, requesting the parameters that are
lacking of a value for the integration between these two features from these two
apps (fourth GET call). Then, the chatbot receives the results from the knowledge
base and shows them to Bob.

12. Bob specifies the desired values, and the chatbot creates the event in Simple Cal-
endar.

94

Chapter 12

Sustainability

After completing the EDINSOST2-ODS survey, I have been able to think over and realise
the importance sustainability has in a project.

Firstly, related to the economic dimension, I have been working and getting better at it
during my specialization. I am aware of the importance of analysing the possible costs of
a project, as well as studying the market and its viability. I am aware of the importance
of making a deep analysis based on the data when evaluating a project. The economic
impact is crucial, including a deep study of what the costs and the potential returns are
key aspects when evaluating the viability of a project.

Moreover, the usage of open-source technologies within the project can have an impact
when it comes to the estimation of the costs, as well as the potential for community
contributions (although this estimation is not as easy to compute as the previous one).
Long story short, focusing on these aspects can help us when deciding whether the project
is feasible or not.

Secondly, related to the environmental dimension, I have realised the underestimated
impact hardware and software have, particularly computers containing toxic metals. That
is why recycling these tools at the end of their lifespan is a must. Although it does not
affect my thesis work, this training in sustainability has helped me to cover aspects of
this type. Regarding my thesis work, I want to highlight the low environmental impact
it has compared to other disciplines which are really close to this one, like Language
Models (LLMs) in general. By focusing on taking into account the environmental impact
throughout my research, including resource utilization or energy efficiency, I intend to
contribute to ending up having a much more environmentally conscious approach in the
field.

Finally, related to the social dimension, I have realised the importance of the impact a
project can have on society. There are several dilemmas that can arise when developing a
project that involves the usage of data (e.g. privacy, security, etc.). Another aspect I have
found really key is the usage of open-source technologies mentioned earlier; contributing
to the open-source community is a great way to give back to society. Lastly, regarding
my thesis work, I want to emphasise the importance of the impact it can have on the end
users: the development of a system which can offer a fully personalised experience to the
user makes it a great tool for society.

95

12.1 Initial milestone

12.1.1 Economic dimension

Regarding PPP, have you estimated the cost of the realization of the project?

In the Budget chapter, an estimation of the project’s costs has been made, taking into
account all the factors that surely intervene as well as possible factors that may appear
during the development. Once all the costs have been estimated, the project’s viability
has been analysed, taking into account the possible deviations that may occur during the
development. After this analysis, it has been concluded that the project is financially
viable, due to the fact that the estimated total cost (deviations included) is not extremely
high, and the value of the project is high enough to justify the investment.

12.1.2 Environmental dimension

Regarding PPP, have you estimated the environmental impact that the real-
ization of the project will have?

Due to the nature of the project (software development), the environmental impact will
be minimal. Nevertheless, the impact related to the use of the hardware is considered,
such as the electricity consumption, as well as the impact that might be caused by the
use of a virtual machine deployed in a server hosted by the university.

12.1.3 Social dimension

Regarding PPP, what do you think you will get from the realization of this
project?

I consider that this project will help me to improve my skills, not only in terms of
programming but also in terms of organization, due to the fact that I will be the one in
charge of the project (along with the director) and I will have to manage precisely my
time. It will also allow me to apply all the concepts and knowledge I have learned so far
in the degree.

Regarding lifespan, how will the project improve sociality’s quality of life?

It will mainly save users some time, by offering actions they may want to perform after
a particular action, saving them that process.

Regarding lifespan, is there a real need for the project?

From GESSI’s point of view, there is a real need for this product, since, as it has been
commented in the contextualization, this tool would allow the Chatbots4Mobile project
to expand its features, and would offer a new service to the users, which will be very
useful.

96

12.2 Final milestone

12.2.1 Economic dimension

Regarding PPP, have you quantified the cost (human and material resources)
of carrying out the project? What decisions have you taken to reduce the
cost? Have you quantified these savings?

Both the human and material resources have been quantified in the project (check chapter
14 Final planning and budget). Finally, the human resources have been reduced to a single
person, only myself acting as the developer of the project. In terms of material resources,
the only costs considered have been the ones related to the hardware and software as
well as the electricity consumption and the Internet connection (general resources). This
cost is the one that was estimated initially, and taking into account that finally there
has been no payment for the human resources, the cost of the project has been reduced
drastically, as can be seen in table 12.1.

Cost Value
Human resources 4.422,00 ¿

Material resources 156,06 ¿

General resources 355,48 ¿

Total cost 4.933,54 ¿

Table 12.1: Final cost of the project
Font: Own elaboration

We can conclude that there has been a huge saving in the cost of the project, compared
to what was initially estimated. The total saving has been 8.487,32 ¿, which is a 63,25%
of the initial cost.

Regarding PPP, has the planned cost been adjusted to the final cost? Have
you justified the differences (lessons learned)?

If we compare what was initially estimated with the final cost, we can see that there is
a huge difference between them. The initial cost was 13.420,86¿, and the final cost has
been 511,54¿. This difference is due to the fact that the human resources, which were
the ones that inflated the initial cost, have been drastically reduced, due to me being
the only one developing the project. There have been no unforeseen events either, so the
amount of money initially estimated has been also removed.

Regarding lifespan, what is the estimated lifetime cost of the project? Could
this cost be reduced to make it more viable?

The cost across the lifetime of the project may be higher than the current one. I will
not be the one maintaining the project, so the necessity of hiring personnel to do it
arises. These people will also need a computer to work with, so the cost of that has to
be considered as well. If we consider that the material resources costs are the same as
the ones considered in the development, adding the cost of the personnel, the cost of
the project would be the one that can be seen in table 12.2. Only a developer has been
considered.

97

Cost Value
Material resources 156,06 ¿

General resources 355,48 ¿

Developer 27.456 ¿

Total cost 27.967.54 ¿/year

Table 12.2: Maintenance cost of the project
Font: Own elaboration

It is important to mention that the maintenance cost of the project is computed annually,
considering that there will be a developer working full time maintaining/improving the
project.

Regarding lifespan, has the cost of adjustments/upgrades/repairs during the
lifetime of the project been taken into account?

Yes, the cost of adjustments/upgrades/repairs has been taken into account. The cost of
the developer previously detailed is the one that has been considered for this. He/She
will be the one responsible for the maintenance of the project-

Regarding risks, could scenarios occur that would undermine the viability of
the project?

There can happen two things: the first one is that the project is not used, and the second
one is that the project goes viral and is used by a lot of people. In the first case, the cost
of the project will not be affected; with the existing resources everything will be covered
and depending on the number of users, the viability of the system can be considered. In
the second case, the cost of the project will increase, as the amount of resources needed
will increase as well. The cost of the project will be higher, but the income will be higher
as well, so the viability of the project will not be affected.

12.2.2 Environmental dimension

Regarding PPP, have you quantified the environmental impact of your project?
What measures have you taken to reduce it? Have you quantified this reduc-
tion?

In terms of environmental impact, the development of this project is not very significant.
This thesis is based on the development and extension of software that is already in use,
so the resources that have been used are the ones that are already used for it (for example,
the server that hosts the knowledge base and the electricity used to power it), and there
has been no real addition of resources that have made this impact increase. The resources
used for this development have been one computer (there have been two computers used,
but not at the time so technically it is one computer), and the electricity used to power
it (more information about this can be checked in sections 5.2 and 6.1.3). The computers
are both laptops, so they are not very powerful computers, and they are not on all the
time. Another resource that is important to mention is the virtual machine deployed in
ESSI’s server, which is used to host the knowledge base. This virtual machine is also
not very powerful in terms of computational power, so its impact is also low. The total
impact of this project resides on the laptop itself as well as the software that has been

98

used to develop it. There has been no reduction so there is not a quantification of it
available.

Regarding PPP, if you had to redo the project, would you be able to reduce
the resources used?

I do not believe that there is a way to reduce the resources used for this project, as the
resources used are the mandatory ones to develop it, there is nothing extra that has been
used. The resources used are not very powerful, and the energy consumption derived
from the development of this project has been restricted to the original plan, so the level
of impact is really low especially when compared to projects from similar areas, such as
LLMs or other projects that require a lot of computational power.

Regarding lifespan, what resources do you estimate that the project will con-
sume during its useful life? What would be the environmental impact of these
resources?

The resources that will be used across the existence of this project are practically the
same ones used for the initial development of it. There will be the necessity of using a
laptop/ computer to add/fix/deploy new features, as well as the electricity used to power
both the laptop in use and the server (which will be also a resource used) that hosts the
knowledge base. It is important to note that the resources, when they reach the end of
their lifespan, will be replaced by new ones, in order to avoid the impact of the project
to increase.

So, in terms of the environmental impact of these resources, laptop usage will be reduced,
ergo the impact of it will be reduced. The impact of the server, however, will remain
the same as it is for the development, but it will not increase as the server will not be
replaced by a more powerful one.

Regarding lifespan, will the project allow to reduce the usage of other re-
sources? Globally, will the usage of the project improve or worsen the eco-
logical footprint?

Due to the project being an extension of an already existing software, the ecological
footprint will not be affected by it. The project will not allow reducing the usage of other
resources, as it is not a project that is meant to be used by the general public, but by a
specific group of people that are already using the software that this project is based on.

Regarding risks, could there be scenarios that would increase the ecological
footprint of the project?

I do believe that the project could increase its ecological footprint, but the scenario that
may provoke that is very unlikely. Maybe there could be an impact if the chatbot started
to be used by a large number of people, meaning that a much more powerful server would
be needed to host the knowledge base, but the amount of users that should appear in
order to make this happen is very high, so I do consider that it can be discarded.

12.2.3 Social dimension

Regarding PPP, has the realisation of this project involved significant per-
sonal, professional or ethical reflections of the people involved?

99

The realisation of this project has not involved significant nor personal or ethical reflec-
tions of the people involved. A professional reflection, however, has been made by myself,
as it has been the first time that I have worked with a project contained inside a bigger
one, and also the usage of several new technologies has been a challenge that has been
overcome.

Regarding lifespan, who will benefit from the use of the project? Are there
any groups that may be disadvantaged by the project? To what extent?

The potential users of the chatbot will, after system and acceptance validation benefited
from this new knowledge system, as they will be receiving suggestions from the chatbot
that they already used, offering them new options that they may find useful. This new
knowledge system adds different functionalities to the chatbot, and that may call the
attention of the general public, adding new users to the system.

To the best of our knowledge, any group may feel disadvantaged or rejected by the project,
as the knowledge system’s information is not biased in any way, and it is not intended to
be used in a way that may harm any group of people.

Regarding lifespan, to what extent does the project solve the problem initially
posed?

The project solves the problem initially posed in a way that the chatbot is now able to
offer suggestions to the users, based on the information that it has received from the
user’s context (previous actions, new actions, etc.).

Regarding risks, could there be scenarios that would make the project detri-
mental to a particular segment of the population?

There are no scenarios that would make the project detrimental to a particular segment
of the population, as the information that the knowledge system receives is not biased in
any way.

Regarding risks, could the project create some kind of dependency that would
leave users in a position of weakness?

There is the possibility that the system may not work in terms of adding/updating/delet-
ing the information from a user, making the user’s suggestion static in the sense that they
will be always the same until the system is fixed. But I will not consider this as a depen-
dency, as the user will always receive suggestions using the existing data, so the service
will not be interrupted.

100

Chapter 13

Legislation

In this chapter, both the laws and the regulations that the application complies with
are mentioned. Firstly, regarding the libraries and frameworks that are used in the
development of the project, all of them are open source and have different licenses, such
as MIT [67], Apache 2.0 [68] and EPL [69]. All of them share some characteristics, such
as the fact that they are permissive licenses, which means that they allow the use of the
software in any context, including commercial and non-commercial. They also allow the
modification of the software and the distribution of the modified versions, as long as the
license is included in the modified version. In our case, the license under which our code
is published is the Apache 2.0 one.

Secondly, regarding the database, the service uses some data which was taken from other
projects related to Chatbots4Mobile, such as applications and features. This data has
been taken from public sources or has been created by the department, so there is no
problem related to that either, since that in this data collection process, the involved
researchers and developers aimed at guaranteeing compliance with respect to the regu-
lations from the original data sources, making sure that its distribution and usage for
the purposes covered in this thesis were authorized. User data does not compromise the
General Data Protection Regulation (GDPR) [70] because, in the context of the thesis,
everything is mocked, so there is no real user data being used.

Lastly, this project is not being released into any platform as a product in particular, it
is serving as a service to another project. This bigger project is still in development, so
that is why is not being released as a product.

101

Chapter 14

Final planning and budget

Once the project has been developed, it is necessary to go back to the original time
planning and budget to see if everything has been done as how it was initially defined,
or if any changes have been made. In this chapter, both the final planning and the final
budget will be detailed, and compared with the initial ones in case of any changes.

14.1 Estimations

Regarding the estimations, the initial estimations were detailed in section 5.3 ”Estima-
tions and Gantt”. There, the estimations for the different tasks were detailed, as well as
the Gantt diagram, which showed the time distribution that would be tried to be followed
to perform each of the tasks.

Although the initial estimations were made without having a clear idea of the complexity
of each task, the final estimations have been quite similar to the initial ones, as can
be seen in table 14.1. There have been some tasks that have taken a little longer than
expected, but others have taken less time than expected, so the final estimations have
been quite similar to the initial ones. The final Gantt diagram can be seen in figures 14.1
and 14.2, where the final distribution of the tasks across the different weeks can be seen.

102

Task ID Task Name Estimated
Effort (h)

Final Effort
(h)

Difference
(h)

Dependencies

PM Project management 100 100 0
PM1 Context and scope 20 20 0
PM2 Temporal planning 10 10 0 PM1
PM3 Budget and sustainability 10 10 0 PM2
PM4 Initial documentation 10 10 0 PM3
PM5 Final documentation 20 20 0 PM4
PM6 Oral defence preparation 20 20 0 PM5
PM7 Sprint Planning 5 5 0
PM8 Sprint Review 5 5 0
PM9 Sprint Retrospective 5 5 0
DEV0 Project set up 10 25 +15
DEV0.1 Learn the basic concepts 5 15 +10
DEV0.2 Set up the development environ-

ment
5 10 +5

DEV1 Data schema extension 80 77.5 -2.5 DEV0
DEV1.1 Identify requirements 10 15 +5
DEV1.2 Define entities and relationships 30 25 -5 DEV1.1
DEV1.3 Define attributes 15 12.5 -2.5 DEV1.1
DEV1.4 Create the data schema 25 25 0 DEV1.1
DEV2 Domain constraints 60 60 0
DEV2.1 Analyse potential constraints 20 20 0
DEV2.2 Formalise the constraints for each

feature
30 30 0 DEV2.1

DEV2.3 Implement the constraints 10 10 0 DEV2.2
DEV3 Data schema integration 130 132.5 +2.5 DEV2
DEV3.1 Analyse the existing KB structure 20 22.5 +2.5
DEV3.2 Identify required changes 20 20 0 DEV3.1
DEV3.3 Implement changes to KB 35 35 0 DEV3.2
DEV3.4 Create business logic for CRUD op-

erations
35 35 0 DEV3.3

DEV3.5 Test the integration 20 20 0 DEV3.4
DEV4 Knowledge Base extension 105 108 +3 DEV3
DEV4.1 Identify the types of inductive re-

quests to be supported
10 15 +5

DEV4.2 Design a method for customisation
and enactment of potential integra-
tions

35 38 +3 DEV4.1

DEV4.3 Implement the method for support-
ing inductive requests

35 30 -5 DEV4.2

DEV4.4 Test the extension 25 25 0 DEV4.3
DEV5 Knowledge Base evaluation 75 75 DEV4
DEV5.1 CRUD operations testing 15 15 0
DEV5.2 Integrate the KB extension into the

agent
15 15 0

DEV5.3 Test the agent’s ability to query
and modify the KB

35 35 0

DEV5.4 Evaluate the results and make im-
provements as needed

10 10 0 DEV5.1, DEV5.2

Table 14.1: Summary table of the tasks with their initial and final time estimations.
Font: Own elaboration

103

Figure 14.1: Gantt’s diagram

104

Figure 14.2: Gantt’s diagram

105

14.2 Budget

Regarding the budget, the initial budget was estimated and detailed in section 6 ”Budget”.
It ended up being a total of 13.420,86 ¿, after considering all the resources and expenses
that were going to be necessary for the development of the project.

The final budget, however, has been drastically reduced, due to the fact that the project
has been developed by a single person, and not by a team of people, as it was initially
planned. Considering that the person who has developed the project has not been paid,
the final budget has been simplified to only the material and general resources. So, a
comparative table between the initial and final budget can be seen in table 6.6.

Cost Initial Final
Human resources 10.546,45 ¿ 4.422,00 ¿

Material resources 156,06 ¿ 156.06 ¿

General resources 355,48 ¿ 355,48 ¿

Contingencies 1577,47 ¿ 237.60 ¿

Unforeseen events 785,40 ¿ 0.00 ¿

Total cost 13.420,86 ¿ 5.408,74 ¿

Table 14.2: Initial and final budget
Font: Own elaboration

106

Chapter 15

Conclusions

15.1 Achievement of the goals

In this section, the goals that were set at the beginning of the project (check section 3.1)
as well as the level of accomplishment of those goals are shown. We can say that all of
them have been achieved successfully, and the level of accomplishment is high, as all the
goals have been achieved completely.

G1: Design the data schema extension to support the formalisation of: (a) Mobile app
features, (b) Input and output parameters, (c) App integrations, (d) Feature integrations,
(e) Parameter integrations, and (f) User preferred integrations.

The data schema extension was thoroughly studied and designed, in terms of how to
make it efficient (use only the required to not have to make a huge extension) and easy to
apply to the existing knowledge base. This design included the definition of the different
entities that were required, as well as the formalisation of the different features, and the
different integrations. The formalisation of all of those entities, attributes, and relations
was done following the Schema.org standard (see 7.1.2).

G2: Define and formalise the domain constraints of these feature integrations.

The domain constraints were defined and formalised and, due to the knowledge base
being schema-less, the constraints were applied in the business logic of the knowledge
base. This was done to ensure the uniqueness of the different entities, data completeness,
and data integrity.

G3: Integrate the data schema into the existing KB and extend the KB with the required
business logic to populate the KB with CKS data (CRUD operations).

For each of the entities that were defined in the extended data schema (including the
ones that were already defined in the knowledge base), the CRUD operations were im-
plemented. This was done to be able to create, read, update, and delete the different
entities. Apart from that, the business logic was also implemented to ensure the domain
constraints that were defined in G2. To ensure the correct functioning of the operations,
unit tests were created and executed (see 11.2).

107

G4: Extend the KB with advanced inductive requests based on the customisation and
enactment of potential integrations for a given user.

The advanced inductive requests were implemented and tested using two different ap-
proaches (see 11.2 and 11.3). The advanced inductive requests consisted of the following:

� Request feature integrations from source features and previous user preferences.
8.17

� Request app integrations from a selected target feature and previous user prefer-
ences. 8.18

� Request source-target parameter integrations for a selected app. 8.19

� Request custom parameters for a selected app. 8.20

These advanced inductive requests allow the chatbot to be able to perform personalised
suggestions to the user and offer them the best possible integration based on their pref-
erences and context.

G5: Evaluate the KB extension through the integration of a conversational agent querying
and modifying a specific KB instance.

The knowledge base extension was evaluated by integrating it with the chatbot. This
integration was done using REST, and the chatbot was able to perform the different
operations that were defined in G4. The integration was tested and the results were
satisfactory (see 11.3).

15.2 Technical competencies

Hereunder, the level of accomplishment of the technical competencies that were set at
the beginning of the project is shown:

CES1.1: To develop, maintain and evaluate complex and/or critical software systems
and services. [In-depth]

This competence has been achieved and developed during the whole process of creating
the extension of the knowledge base. All the related to how the requests are processed,
how the data should be stored and how the data should be retrieved has been. Not
only the development of new features/extensions has been made, but also the required
to maintain and have everything tested and working.

CES1.2: To solve integration problems in the function of the strategies, standards and
available technologies [A little bit]

This competence has been achieved in the sense that the integration of the new features
has been made in a way that it is easy to integrate with the rest of the system. The
communication between the chatbot (the one which makes the requests) and the knowl-
edge base has been made using REST. Apart from that, when defining which schema.org
properties should be used, the ones that were already used in the knowledge base were
taken into account and have been tried to avoid the creation of new ones, reusing the
ones that were already defined. This has been followed, however, the creation of new
ones was required in some cases.

108

CES1.4: To develop, maintain and evaluate distributed services and applications with
network support. [Enough]

This competence has been achieved due to the fact that the knowledge base is a dis-
tributed service, meaning that the chatbot and the knowledge base are not on the same
server, allowing the knowledge base to be used by other services. Also, the maintenance
of the initial knowledge base has been made, and the evaluation of the new features has
been made, with the goal to have in the knowledge base the most recent information
possible.

CES1.5: To specify, design, implement and evaluate databases. [In-depth]

In order to achieve this competence in depth, a structured process has been followed.
First, the analysis of the initial knowledge base was made. Then, the specification of the
new features and goals was made, and once this was done, the design of the extended
structure was made. Once the design phase was over, the implementation came and
finally, the evaluation of the new features was added. This process has been followed for
each of the new features that were added to the knowledge base.

Other aspects such as how to retrieve and compute the desired information from the
knowledge base have been also taken into account, and have been tried to be done in the
least amount of requests possible, to have a better performance.

CES1.6: To administrate databases (CIS4.3). [A little bit]

An administration of the database has been made, however, it has not been done in a
professional way, but in a way that it is possible to have the knowledge base running and
working. The administration of the database has been made in the sense that the data
has been stored in a way that it is possible to retrieve it, and the data has been stored
in a way that it is possible to be used by other services, making it understandable and
easy to use for both machines and humans.

CES1.7: To control the quality and design tests in the software production [Enough]

There has been some testing defined which allows testing the new features that have
been added to the knowledge base. Component testing has been made, which allows us
to control that the request is being received and all the flow that was defined is being
followed. Also, the integration testing has been made, which allows us to test that the
new features are being integrated nicely by the chatbot. With this testing defined, we
have been able to ensure that the new knowledge base is working as expected.

CES2.1: To define and manage the requirements of a software system. [Enough]

This competence has been achieved by (1) identifying, (2) defining and (3) managing
both the functional and the non-functional requirements that the new knowledge base
must have. The identification of the stakeholders was also made for each case.

CES3.2: To design and manage a data warehouse. [A little bit]

In order to achieve this competence, the requirements of the new features that were
added to the knowledge base were defined. The structure of the nodes, the properties
these nodes should have, the relations between the nodes, etc. were defined, using the
schema.org vocabulary (when possible, if there was no other option, a new schema.org
vocabulary was created). Also, the inductive requests were defined in a way that took the

109

most profit from the knowledge base’s structure, allowing to have a much clear request
defined and a much better performance.

15.3 Future work

This project has served as an extension of what was currently developed in the Chat-
bots4Mobile project and there is still some work to be done. The thesis scope was limited
to the user preferences and the context understood as the set of apps installed in the
user’s device + the set of features used. Currently, the responsibility of the decision-
making of these preferences is 100% on the chatbot but, over time, a hybrid approach
can be studied so that historical user data (e.g., integrations made throughout their use
with a set of applications) can also be used to apply decision criteria on when and how
to update these preferences, beyond the feedback collected in user interactions with the
chatbot, which is what chatbot should now do.

15.4 Personal conclusions

I would like to start this section by thanking my thesis director Quim, who has been
a really key piece when it comes to the resolution of this project. He has been always
worried about how I was doing, helped me with the new technologies/difficulties that I
have been facing across the development of the knowledge system, and also I would like to
highlight his availability; he has been always looking forward to knowing how everything
was going and I am thankful for that.

By developing this project, I have gained several pieces of knowledge that I may put to
use maybe not in the immediate future but in the following years of my career. Having
to deal with a non-relational database, defining everything following schemas, how to
handle this type of data, learning SPARQL to be able to obtain the data I was creating,
etc. are technologies and actions that will be done again in the future certainly and I
am really happy to have gained this knowledge by making something useful for someone
(GESSI).

Last but not least, I am proud of how I was able to overcome whatever difficulty I was
facing. I had several problems with making the knowledge base initially work, I had zero
experience with most of the technologies I had to use, and I had to learn how to use them
by myself. I am really happy with the result I have obtained, and I am really happy to
have learned that there is no problem that cannot be solved and that if you put in enough
effort, you will be able to overcome it.

110

Appendix A

Swagger API documentation

111

112

113

References

[1] Hayet Brabra Sara Bouguelia et al. Context Knowledge-aware Recognition of Com-
posite Intents in Task-oriented Human-Bot Conversations. url: https://www.
researchgate.net/publication/361388749_Context_Knowledge-aware_Recognition_

of_Composite_Intents_in_Task-oriented_Human-Bot_Conversations (visited
on 02/28/2023).

[2] Eric Griffing. What is a Conversational Agent? url: https://www.dashbot.io/
blog/conversational-agent (visited on 02/24/2023).

[3] Jordi Marco Quim Motger Xavier Franch. Software-Based Dialogue Systems: Sur-
vey, Taxonomy, and Challenges. url: https://dl.acm.org/doi/full/10.1145/
3527450 (visited on 06/11/2023).

[4] Software and Service Engineering Group. Chatbots4Mobile. url: https://gessi.
upc.edu/en/projects/chatbots4mobile (visited on 02/24/2023).

[5] Jordi Marco Quim Motger Xavier Franch. Integrating Adaptive Mechanisms into
Mobile Applications Exploiting User Feedback. url: https://link.springer.
com/chapter/10.1007/978-3-030-75018-3_23 (visited on 02/28/2023).

[6] OsmAnd. OsmAnd. url: https://osmand.net/ (visited on 06/19/2023).
[7] Etar-Group. Etar-Calendar. url: https : / / github . com / Etar - Group / Etar -

Calendar (visited on 06/19/2023).
[8] Sara Bouguelia et al. “Context Knowledge-Aware Recognition of Composite In-

tents in Task-Oriented Human-Bot Conversations”. In: Lect. Notes Comput. Sci.
(including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics). Vol. 13295
LNCS. 2022, pp. 237–252. doi: 10.1007/978-3-031-07472-1_14.

[9] Google. Google Assistant, your own personal Google. url: https://assistant.
google.com/ (visited on 02/26/2023).

[10] Analytics Vidhya. Ok Google! Speech to Text in Python with Deep Learning in 2
Minutes. url: https://www.analyticsvidhya.com/blog/2021/09/ok-google-
speech-to-text-in-python-with-deep-learning-in-2-minutes/ (visited on
06/11/2023).

[11] Apple. Siri - Apple. url: https://www.apple.com/siri/ (visited on 02/26/2023).
[12] Macworld. How to stop Siri listening to you. url: https://www.macworld.com/

article/673641/how- to- stop- siri- listening- to- you.html (visited on
06/11/2023).

[13] others J.Chen X.Peng.MashReDroid: enabling end-user creation of Android mashups
based on record and replay. url: https://link.springer.com/article/10.1007/
s11432-019-2646-2 (visited on 06/12/2023).

[14] Volere. Volere Requirements Specification Template. url: https://www.volere.
org/templates/volere-requirements-specification-template/ (visited on
02/26/2023).

114

https://www.researchgate.net/publication/361388749_Context_Knowledge-aware_Recognition_of_Composite_Intents_in_Task-oriented_Human-Bot_Conversations
https://www.researchgate.net/publication/361388749_Context_Knowledge-aware_Recognition_of_Composite_Intents_in_Task-oriented_Human-Bot_Conversations
https://www.researchgate.net/publication/361388749_Context_Knowledge-aware_Recognition_of_Composite_Intents_in_Task-oriented_Human-Bot_Conversations
https://www.dashbot.io/blog/conversational-agent
https://www.dashbot.io/blog/conversational-agent
https://dl.acm.org/doi/full/10.1145/3527450
https://dl.acm.org/doi/full/10.1145/3527450
https://gessi.upc.edu/en/projects/chatbots4mobile
https://gessi.upc.edu/en/projects/chatbots4mobile
https://link.springer.com/chapter/10.1007/978-3-030-75018-3_23
https://link.springer.com/chapter/10.1007/978-3-030-75018-3_23
https://osmand.net/
https://github.com/Etar-Group/Etar-Calendar
https://github.com/Etar-Group/Etar-Calendar
https://doi.org/10.1007/978-3-031-07472-1_14
https://assistant.google.com/
https://assistant.google.com/
https://www.analyticsvidhya.com/blog/2021/09/ok-google-speech-to-text-in-python-with-deep-learning-in-2-minutes/
https://www.analyticsvidhya.com/blog/2021/09/ok-google-speech-to-text-in-python-with-deep-learning-in-2-minutes/
https://www.apple.com/siri/
https://www.macworld.com/article/673641/how-to-stop-siri-listening-to-you.html
https://www.macworld.com/article/673641/how-to-stop-siri-listening-to-you.html
https://link.springer.com/article/10.1007/s11432-019-2646-2
https://link.springer.com/article/10.1007/s11432-019-2646-2
https://www.volere.org/templates/volere-requirements-specification-template/
https://www.volere.org/templates/volere-requirements-specification-template/

[15] Techopedia. Software Bug. url: https://www.techopedia.com/definition/
24864/software-bug- (visited on 02/24/2023).

[16] Atlassian. What is Agile? url: https://www.atlassian.com/agile (visited on
02/24/2023).

[17] Slack. Slack is your digital HQ — Slack. url: https://slack.com/intl/en-gb/
(visited on 02/27/2023).

[18] Git. Git. url: https://git-scm.com/ (visited on 02/24/2023).
[19] Tencent. Flow. url: https://cloud.tencent.com/developer/article/1824154

(visited on 06/11/2023).
[20] GitHub. GitHub. url: https://github.com/ (visited on 02/24/2023).
[21] Taiga. Taiga: Your opensource agile project management software. url: https:

//www.taiga.io/ (visited on 02/24/2023).
[22] Glassdoor. Glassdoor Job Search — You deserve a job that loves you back. url:

https://www.glassdoor.com/ (visited on 03/07/2023).
[23] Visual Studio Code. Visual Studio Code - Code Editing. Redefined. url: https:

//code.visualstudio.com/ (visited on 03/12/2023).
[24] GitHub. Pricing · Plans for every developer - GitHub. url: https://github.com/

pricing (visited on 03/12/2023).
[25] Ontotext. GraphDB Download. url: https://www.ontotext.com/products/

graphdb/download/ (visited on 03/12/2023).
[26] PC Expansion. Hp Omen 15 Ax001ns. url: https://www.pcexpansion.es/hp-

omen-15-ax001ns.php (visited on 03/09/2023).
[27] Dell. Portátil Latitude 3520. url: https://www.dell.com/es-es/shop/port%C3%

A1tiles-dell/port%C3%A1til-latitude-3520/spd/latitude-15-3520-laptop

(visited on 03/07/2023).
[28] Logitech. RATÓN INALÁMBRICO M185. url: https://www.logitech.com/

es-es/products/mice/m185-wireless-mouse.910-002235.html (visited on
03/07/2023).

[29] Selectra. Precio de la luz por horas. url: https://tarifaluzhora.es/ (visited on
03/07/2023).

[30] Brian Potts. How to Define your ERP Contingency Budget. url: https://www.
thirdstage - consulting . com / how - to - define - your - erp - contingency -

budget/#:~:text=Most%20contingency%20budgets%20are%20way,to%20go%

20forward%20for%20approval. (visited on 03/12/2023).
[31] IBM. What is a Knowledge Graph? url: https : / / www . ibm . com / topics /

knowledge-graph#:~:text=A%20knowledge%20graph%2C%20also%20known,the%

20term%20knowledge%20%E2%80%9Cgraph.%E2%80%9D (visited on 06/09/2023).
[32] Thomas Frisendal. Graph Data Modeling. url: http://graphdatamodeling.com/

(visited on 06/09/2023).
[33] Plum Flower Software. An intro to graph databases in healthcare. url: https:

//plumflowersoftware.com/blog/post/84/An+intro+to+graph+databases+

in+healthcare (visited on 06/11/2023).
[34] Conjointly.Deduction and Induction. url: https://conjointly.com/kb/deduction-

and-induction/ (visited on 06/12/2023).
[35] Ontotext. What is a Knowledge Graph? url: https : / / www . ontotext . com /

knowledgehub/fundamentals/what-is-a-knowledge-graph/ (visited on 05/31/2023).
[36] Tom Gruber. Definition of Ontology. url: https://tomgruber.org/writing/

definition-of-ontology (visited on 06/09/2023).

115

https://www.techopedia.com/definition/24864/software-bug-
https://www.techopedia.com/definition/24864/software-bug-
https://www.atlassian.com/agile
https://slack.com/intl/en-gb/
https://git-scm.com/
https://cloud.tencent.com/developer/article/1824154
https://github.com/
https://www.taiga.io/
https://www.taiga.io/
https://www.glassdoor.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://github.com/pricing
https://github.com/pricing
https://www.ontotext.com/products/graphdb/download/
https://www.ontotext.com/products/graphdb/download/
https://www.pcexpansion.es/hp-omen-15-ax001ns.php
https://www.pcexpansion.es/hp-omen-15-ax001ns.php
https://www.dell.com/es-es/shop/port%C3%A1tiles-dell/port%C3%A1til-latitude-3520/spd/latitude-15-3520-laptop
https://www.dell.com/es-es/shop/port%C3%A1tiles-dell/port%C3%A1til-latitude-3520/spd/latitude-15-3520-laptop
https://www.logitech.com/es-es/products/mice/m185-wireless-mouse.910-002235.html
https://www.logitech.com/es-es/products/mice/m185-wireless-mouse.910-002235.html
https://tarifaluzhora.es/
https://www.thirdstage-consulting.com/how-to-define-your-erp-contingency-budget/#:~:text=Most%20contingency%20budgets%20are%20way,to%20go%20forward%20for%20approval.
https://www.thirdstage-consulting.com/how-to-define-your-erp-contingency-budget/#:~:text=Most%20contingency%20budgets%20are%20way,to%20go%20forward%20for%20approval.
https://www.thirdstage-consulting.com/how-to-define-your-erp-contingency-budget/#:~:text=Most%20contingency%20budgets%20are%20way,to%20go%20forward%20for%20approval.
https://www.thirdstage-consulting.com/how-to-define-your-erp-contingency-budget/#:~:text=Most%20contingency%20budgets%20are%20way,to%20go%20forward%20for%20approval.
https://www.ibm.com/topics/knowledge-graph#:~:text=A%20knowledge%20graph%2C%20also%20known,the%20term%20knowledge%20%E2%80%9Cgraph.%E2%80%9D
https://www.ibm.com/topics/knowledge-graph#:~:text=A%20knowledge%20graph%2C%20also%20known,the%20term%20knowledge%20%E2%80%9Cgraph.%E2%80%9D
https://www.ibm.com/topics/knowledge-graph#:~:text=A%20knowledge%20graph%2C%20also%20known,the%20term%20knowledge%20%E2%80%9Cgraph.%E2%80%9D
http://graphdatamodeling.com/
https://plumflowersoftware.com/blog/post/84/An+intro+to+graph+databases+in+healthcare
https://plumflowersoftware.com/blog/post/84/An+intro+to+graph+databases+in+healthcare
https://plumflowersoftware.com/blog/post/84/An+intro+to+graph+databases+in+healthcare
https://conjointly.com/kb/deduction-and-induction/
https://conjointly.com/kb/deduction-and-induction/
https://www.ontotext.com/knowledgehub/fundamentals/what-is-a-knowledge-graph/
https://www.ontotext.com/knowledgehub/fundamentals/what-is-a-knowledge-graph/
https://tomgruber.org/writing/definition-of-ontology
https://tomgruber.org/writing/definition-of-ontology

[37] W3C. OWL. url: https://www.w3.org/OWL/ (visited on 06/09/2023).
[38] W3C. RDF - Semantic Web Standards. url: https://www.w3.org/RDF/ (visited

on 05/20/2023).
[39] W3C. Semantic Web. url: https://www.w3.org/standards/semanticweb/

(visited on 06/09/2023).
[40] Wikipedia. Semantics. url: https://en.wikipedia.org/wiki/Semantics (vis-

ited on 06/09/2023).
[41] Ontotext. What is the Semantic Web? url: https : / / www . ontotext . com /

knowledgehub/fundamentals/what-is-the-semantic-web/ (visited on 05/31/2023).
[42] Carbon LDP. The Advantages of Resource Description Framework (RDF). url:

https://carbonldp.com/blog/2017/12/18/the-advantages-of-resource-

description-framework-rdf/ (visited on 06/09/2023).
[43] W3C. Semantic Web. url: https://www.w3.org/standards/semanticweb/

(visited on 05/31/2023).
[44] Aidan Hogan. RDF Schema (RDFS) and Semantics. url: https://link.springer.

com/chapter/10.1007/978-3-030-51580-5_4 (visited on 06/12/2023).
[45] Libby Miller Dan Brickley. FOAF Vocabulary Specification. url: http://xmlns.

com/foaf/0.1/ (visited on 06/12/2023).
[46] DublinCore. DCMI Metadata Terms. url: https : / / www . dublincore . org /

specifications/dublin-core/dcmi-terms/ (visited on 06/12/2023).
[47] Schema.org. Schema.org. url: https://schema.org/ (visited on 05/31/2023).
[48] F-Droid. Simple Music Player. url: https://f-droid.org/en/packages/com.

simplemobiletools.musicplayer/ (visited on 06/12/2023).
[49] Pratyush-Avi. MyFit-App-A-fitness-Centric-App. url: https : / / github . com /

Pratyush-Avi/MyFit-App-A-fitness-Centric-App (visited on 06/12/2023).
[50] Coursera. What is a User Story? url: https://www.coursera.org/articles/

what-is-user-story (visited on 05/29/2023).
[51] ProductPlan. Acceptance Criteria. url: https://www.productplan.com/glossary/

acceptance-criteria/ (visited on 05/29/2023).
[52] JavaTpoint. Spring Boot Architecture. url: https : / / www . javatpoint . com /

spring-boot-architecture (visited on 06/11/2023).
[53] Spring. Spring. url: https://spring.io/ (visited on 06/02/2023).
[54] Strava. Strava. url: https://www.strava.com/ (visited on 06/13/2023).
[55] Java. Java — Oracle. url: https://www.java.com/en/ (visited on 05/20/2023).
[56] W3C. SPARQL Query Language for RDF. url: https://www.w3.org/TR/rdf-

sparql-query/ (visited on 05/20/2023).
[57] VMware. Spring Boot. url: https://spring.io/projects/spring-boot (visited

on 05/20/2023).
[58] Eclipse Foundation. Eclipse RDF4J. url: https://rdf4j.org/ (visited on 05/20/2023).
[59] springdoc-openapi. OpenAPI 3 Library for spring-boot. url: https://springdoc.

org/ (visited on 05/20/2023).
[60] JUnit. JUnit. url: https://junit.org/junit5/ (visited on 06/01/2023).
[61] Google. Google Calendar. url: https://workspace.google.com/products/

calendar/?hl=en (visited on 06/17/2023).
[62] Swagger. Swagger. url: https://swagger.io/ (visited on 06/03/2023).
[63] Guru99. Levels of Testing. url: https://www.guru99.com/levels-of-testing.

html (visited on 06/11/2023).

116

https://www.w3.org/OWL/
https://www.w3.org/RDF/
https://www.w3.org/standards/semanticweb/
https://en.wikipedia.org/wiki/Semantics
https://www.ontotext.com/knowledgehub/fundamentals/what-is-the-semantic-web/
https://www.ontotext.com/knowledgehub/fundamentals/what-is-the-semantic-web/
https://carbonldp.com/blog/2017/12/18/the-advantages-of-resource-description-framework-rdf/
https://carbonldp.com/blog/2017/12/18/the-advantages-of-resource-description-framework-rdf/
https://www.w3.org/standards/semanticweb/
https://link.springer.com/chapter/10.1007/978-3-030-51580-5_4
https://link.springer.com/chapter/10.1007/978-3-030-51580-5_4
http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/
https://schema.org/
https://f-droid.org/en/packages/com.simplemobiletools.musicplayer/
https://f-droid.org/en/packages/com.simplemobiletools.musicplayer/
https://github.com/Pratyush-Avi/MyFit-App-A-fitness-Centric-App
https://github.com/Pratyush-Avi/MyFit-App-A-fitness-Centric-App
https://www.coursera.org/articles/what-is-user-story
https://www.coursera.org/articles/what-is-user-story
https://www.productplan.com/glossary/acceptance-criteria/
https://www.productplan.com/glossary/acceptance-criteria/
https://www.javatpoint.com/spring-boot-architecture
https://www.javatpoint.com/spring-boot-architecture
https://spring.io/
https://www.strava.com/
https://www.java.com/en/
https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/TR/rdf-sparql-query/
https://spring.io/projects/spring-boot
https://rdf4j.org/
https://springdoc.org/
https://springdoc.org/
https://junit.org/junit5/
https://workspace.google.com/products/calendar/?hl=en
https://workspace.google.com/products/calendar/?hl=en
https://swagger.io/
https://www.guru99.com/levels-of-testing.html
https://www.guru99.com/levels-of-testing.html

[64] Atlassian. Types of software testing. url: https://www.atlassian.com/continuous-
delivery/software-testing/types-of-software-testing (visited on 06/01/2023).

[65] duplant1s. Chatbots4MobileTFG. url: https://github.com/duplant1s/chatbots4mobiletfg
(visited on 06/17/2023).

[66] javaTpoint. Integration testing. url: https://www.javatpoint.com/integration-
testing (visited on 06/03/2023).

[67] Open Source Initiative. The MIT License. url: https : / / opensource . org /

license/mit/ (visited on 05/20/2023).
[68] The Apache Software Foundation. APACHE LICENSE, VERSION 2.0. url: https:

//www.apache.org/licenses/LICENSE-2.0 (visited on 05/20/2023).
[69] Eclipse Foundation. Eclipse Public License - v 2.0. url: https://www.eclipse.

org/legal/epl-2.0/ (visited on 05/20/2023).
[70] GDPR. General Data Protection Regulation (GDPR). url: https://gdpr-info.

eu/ (visited on 05/29/2023).

117

https://www.atlassian.com/continuous-delivery/software-testing/types-of-software-testing
https://www.atlassian.com/continuous-delivery/software-testing/types-of-software-testing
https://github.com/duplant1s/chatbots4mobiletfg
https://www.javatpoint.com/integration-testing
https://www.javatpoint.com/integration-testing
https://opensource.org/license/mit/
https://opensource.org/license/mit/
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://www.eclipse.org/legal/epl-2.0/
https://www.eclipse.org/legal/epl-2.0/
https://gdpr-info.eu/
https://gdpr-info.eu/

	Introduction
	Contextualization
	Concepts
	Problem to be solved
	Stakeholders

	Justification
	Examples of task-oriented conversational agents
	Justification of the solution proposed

	Scope
	Goals
	Requirements
	Functional requirements
	Non-functional requirements

	Obstacles and risks

	Methodology
	Working methodology
	Monitoring tools and validation

	Time planning
	Task description
	Resources
	Estimations and Gantt
	Risk management: alternative plans and obstacles

	Budget
	Identification of costs
	Human resources
	Material resources
	General resources
	Contingencies
	Unforeseen events
	Final budget

	Management control

	Fundamentals
	What is a Knowledge Graph?
	Ontologies
	Why use Knowledge Graphs?

	Semantic Web
	Resource Description Framework (RDF)
	Semantic RDF Schema
	SPARQL

	Requirement specification
	Motivational example
	Functional requirements
	User stories

	Non-functional requirements

	Design
	Basic structure
	Logical architecture
	Design patterns
	Dependency Injection
	Singleton

	Data model diagram
	Entities and relations

	Implementation process
	System overview
	Development resources
	Technologies and frameworks used
	Development tools

	Data schema extension
	Creation of the data schema extension
	Domain constraints

	Knowledge base operations
	Entity definitions
	User preferences
	Suggestions computation

	Testing
	Knowledge base test dataset
	Component testing
	Integration testing

	Sustainability
	Initial milestone
	Economic dimension
	Environmental dimension
	Social dimension

	Final milestone
	Economic dimension
	Environmental dimension
	Social dimension

	Legislation
	Final planning and budget
	Estimations
	Budget

	Conclusions
	Achievement of the goals
	Technical competencies
	Future work
	Personal conclusions

	Swagger API documentation
	References

