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Thermoelasticity of contractions and, for the one-dimensional case, the exponential energy decay is
Moore-Gibson-Thompson found under some conditions on the constitutive coefficients. Then, a fully discrete
microtemperatures approximation is introduced by using the finite element method and the implicit Euler
Porosity scheme. We show that the discrete energy decays and we obtain some a priori error
Energy decay estimates from which, under some adequate additional regularity conditions on the
Finite elements continuous solution, we derive the linear convergence of the approximations. Finally, we

A priori error estimates perform some numerical simulations to demonstrate the accuracy of the approximations

and the behavior of the discrete energy and the solution.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC
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1. Introduction

Thought there exists a huge quantity of macroscopic situations which can be described by the classical theory of
thermoelasticity, in many physical phenomena the microscopic structure plays a relevant role and must be incorporated
in the material model of solids. The Cosserat brothers [1] introduced the micropolar theories at the beginning of the past
century, but the studies about microstructure were not developed in a relevant way until the sixties (see the books of
Eringen [2] or lesan [3]). One of the theories including microstructure is the so-called theory of the materials with voids [4-
6] (also known as porous materials). In this case the “bulk density” is the product of the density of the material matrix by
the volume fraction. The material points are thus affected by small voids, and this introduces a new degree of freedom. This
theory is well-accepted by the scientific community and there exists a substantial volume of research papers dedicated
to these models (see, among others, [7-13]). This is because of the large number of applications (building industry, bone
repair, etc...) and several interesting comments regarding this line can be found in the book of Straughan [ 14, p. 307-308].

Between the different aspects concerning the microstructure, we can include the idea of “microtemperatures”. Since
the materials with microstructure can be understood as composed by microelements, we can suppose them too to be
subjected to deformations of the temperature and we can study the variation of the temperature inside the microelement,
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which depends on the direction, and we will call them microtemperatures (see [15-17]). It is worth recalling that this
notion comes from the works of Grot [18], Riha [19,20] and Verma et al. [21]; however, the concept has been fully
embraced by the scientific community only since the last couple of decades and we can cite several contributions in
this sense (see [22-26] among others).

Heat and microheat propagation were proposed within the parabolic theory of partial differential equations, but
this fact brings to the instantaneous propagation of thermal (or microthermal) waves which is incompatible with the
causality principle. Several people have since tried to propose alternative theories that overcome this unrealistic effect.
We can recall the damped hyperbolic heat equation proposed by Cattaneo and Maxwell [27] which has been extended
to microtemperatures recently. An alternative equation describing the heat with finite speed propagation of waves is
determined by the Moore-Gibson-Thompson (MGT) equation [28]. Although it was originally introduced by Stokes in
the mid-nineteenth century [29], this equation is named after the works [30,31], and it plays a paramount role in the
description of several physical phenomena (see, e.g., [32-35] and references therein). In fact, this equation has deserved
much attention in the last four years in several thermomechanical situations (see, for instance, [36-57]). The present
work builds on these previous contributions concerning MGT thermoelastic equation and introduces a theory with porous
effects and with heat and microheat effects of the MGT type. Later, we prove the existence and uniqueness of the solutions
in the three-dimensional case. We also restrict our attention to the homogeneous one-dimensional case and we show the
exponential stability of the solutions (it is known that we cannot expect a similar result in higher dimension). Then,
we develop a numerical study of a variational formulation of the problem by using the classical finite element method
and the implicit Euler scheme. A discrete version of the energy property and a main a priori error estimates result are
proved, from which the linear convergence of the approximations is derived under some regularity conditions. Finally,
some one-dimensional numerical simulations are shown, to demonstrate the accuracy of the algorithm and the behavior
of the discrete energy. In order to clarify the innovation of this paper, we want to emphasize that, in this work, we
propose (for the first time) a Moore-Gibson-Thompson theory for the microtemperatures. Thus, we obtain a new system
of equations which has not been previously considered, nor studied in the literature. In view of the techniques we apply
here, our work can have several similarities with other previous contributions; however, the aspects concerning MGT
microtemperatures are completely new. In this paper, we have tried to see how to extend several previous results to the
case when we incorporate these MGT microtemperatures.

The plan of this paper is the following. In the next section we set down the basic equations of the problem. We also
provide the basic assumptions and the functional setting as a Cauchy problem in a suitable Hilbert space. The existence
and uniqueness of the solutions to this Cauchy problem are proved in Section 3 by means of the theory of semigroup
of linear operators. We restrict our attention to the one-dimensional case in Section 4 and we prove the exponential
decay of the solutions in this case. Later, we develop the numerical study of the one-dimensional problem (for the sake
of simplicity in the writing) in Section 5. By using the finite element method and the implicit Euler scheme, fully discrete
approximations are introduced, and a property of the discrete energy some a priori error estimates are proved. Finally,
some numerical simulations are presented in Section 6. The Conclusions end the paper.

2. Basic equations and assumptions

We consider a nonhomogeneous porous material occupying a smooth, bounded domain £2 C R>. First, we consider
the evolution equations for the theory of poro-thermoelasticity with microtemperatures for a centrosymmetric material:

pil; = tjj,
Jo=hj;+g.
PN = Gjjs

péi = Gjij + qi — Q..
The first two equations represent, respectively, the balances of the linear momentum and of the first stress moment. Here
p is the mass density, u; is the displacement vector, t; is the stress tensor, J is the equilibrated inertia, ¢ is the change in
volume fraction with respect to its reference value, h; is the equilibrated stress and g is the equilibrated body force. Next,
we have the balances of the energy and of its first moment, where 7 is the entropy, g; is the heat flux vector, ¢; is the
first moment of the energy vector, g; is the first heat flux moment tensor and Q; is the microheat flux average vector.
In order to obtain the final model, we complement the above relations with the constitutive equations (see [58]):

tij = Ajyrsers + D¢ — a0,

hi = Ajb j — NyTj,

& = —Dyej — §¢ + FO,

pn = ajjejj + Fp + abd,

pei = —Nji¢ j — ByTj.
Here, Ajjs is the elasticity tensor, A; and £ characterize the porosity of the material, and Bj plays a similar role to the
thermal capacity for the microtemperatures. The tensors Dj;, a;, Nij, as well as the scalars F and a, describe the coupling
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between the physical quantities appearing in the equations. Furthermore, e; = %(u,;j +u;;) is the linearized strain tensor.
Finally, we introduce the constitutive equations for g;, g;;, Q; (see again [58]),

t
at) = / gt — $)9,(5) + hy(t — S)T(¢ — s)ds,

oo

t
qii(t) = / Pyjrs(t — )T, 5(s)ds,

t
t)= / [(gii(t — s) = Gy(t — 5))0(s) + (hy(t — s) — Hy(t — s))Tj(s)ds, |

where 6 is the temperature and T; are the microtemperatures. We shall denote by

t t
alt) = a(0) + / 0(s)ds, Ri(t) = Ri(0) + / Ti(s)ds
0 0

the thermal and microthermal displacements, respectively, and, finally, we consider the relaxation functions:
* — 1 *
gj(s)=«; +e’ 7 (;KU — KU) ,
hi(s) = H + e+ ( Hyj — HU)
Pijrs( )= Pl;krs + e_% (TPUrS PJrs) ’
* s (1
GU(S) = KU +e = KU KU

_s (1
Hi(s) = Aj + e r( Aj — Au)

The positive constant 7 is usually known as relaxation parameter. Once again, &, Hyj, Pjis, Kij and Aj;, as well as their
“starred” versions, are tensorial structural coefficients related to the usual constitutive equations for the temperature and
microtemperatures (see [15]). It is understood that all the tensors appearing in the above equations might depend on the
space variable x. Plugging the newly derived constitutive equations into the equations of poro-thermoelasticity, we have
the system of field equations:

,Ollz = (AI]TSeTS + Dyd’ ajj )
]¢:( lj¢,} NUT)'_Dyey €¢+F9
TAQ + ad = —Ta;8; — aé; — chz) Fo + (kb j + Kjoj+ HyTy + HiR) i,

TByiR;j + ByRj = —tNjighj — Niih + (PysTr s + PR, S) — K6
—K;OZJ — AijTJ A*R]
Taking the sum of the derivative of the first equation (multiplied by t) with the first equation, calling
U=rtlu+u,
and doing the same for ¢, we can simplify the system to obtain
pi‘l = [Ajjrsérs + Du¢ aij(Té + 9)],j, .
J¢’ [Alj¢.] U(TT +T)]1 Djje;; — Ep+F(t6 +6),
Tad + ad = a,]e,j—Fqﬁ—}-(K,ﬂ + ko + HyTj + HiRy) i, (1)

IBij.R.j + Binj = - jl¢,} (Pl]rsTr s+ PyrsRT s) Klje.
—K;Ol’j — AUT] A% R],

where we have omitted the hat to simplify the notation. We endow the above system with the Dirichlet boundary
conditions:

ui(X, t)xeoe = O(X, txcae = (X, H)ixese = Ri(X, t)jxese =0, (2)

and the initial conditions, for a.e. x € £2,

ui(x,0) = u)(x), i(x,0) = o P(x),  ¢(x,0)=¢°x),

d(x,0) = Y°x), a(x,0)=a’(x), &x 0)=06° ( ) (3)
a(x,0)=0%x), Ri(x,0)=R)(x), Ri(x 0)=T>(=x),

Ri(x, 0) = S°(x).
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Remark 1. System (1) in full generality can appear quite complicated. However, in order to better understand the thermal
and mechanical coupling between the equations, one can look at the isotropic case, where several simplifications occur.
Specifically, we have

pili = AU + (A + p)(divu); + Do ; — a*(t6 + 0),, (4)
Jé =AAp — ¢ — Ddivu + F(z0 4 6) — Ndiv (zT + T), (5)
106 + ad = kA0 + k* Ao — a* divil — Fp + HdivT + H* divR, (6)
TBR; + BR; = P AT; 4 P{ AR; + (P4 + Ps)(div T) ;

+ (Pj 4+ PZ)(divR); — N ; — AT, — A*R; — K6; — K*a ;. (7)

Here ) and p are the Lameé constants, while P4, Ps and P are the only coefficients affecting the microtemperatures in the
isotropic case, see [16].

Finally, we introduce the phase space associated to our problem
H=VXHXVXxHxXxVxVxHxVxV xH,

where V and H are the usual real Sobolev spaces H(}(Q) and [%(£2), respectively. We note that their complexification is
standard. Now, let
E‘,‘j = Kij — TK;,

D *
Pijrs = Pijrs - TPijr57

7\,’1‘ = Aj — ‘L'A;kj, (8)
H,‘j = H,‘j — ‘L’H;,
Ky = Ky — TK;..

We ask that

(i) There exist positive constants pg, Jo, ®g, By such that

p(X) > po, J(X) > Jo, a(x) > ao, Bj(x)&:i&; > Bo&i&;

for every & = (§;).
(ii) There exists a positive constant C; such that

Aijrs%-ijgrs + 2D1’j$ij7] + 5772 > Cl(‘i:ijgij + 772)

for every § = (§;) and n € R.
(iii) There exists a positive constant C, such that

Pismines = Congnigs Pirsmihes = Canygn

for every n = (n;).
(iv) There exists positive constants C3, C; such that

Ki&& + (Hi + K2Em; + Ajning > G (&& + nimi),
and
Ri€i&i + (Hi + Ky + Agmimi = Ca(&& + nims),

for every & = (&), n = ().
(v) We have the following symmetries

ijrs jirs» ij ji? ji

* * * * * *
Aijrs = Arsijv P = P: K = Kn Aij = A’
Aj = Aji,  Pips = Pjirs, ki = Kji, Ay = Aj,

as well as the equality’
Hi =K, Hji=Kj.

In light of the latter condition, it is understood that, from now on, we will always use Kj; in place of Hj;.

1 We recall that this kind of equality is related with the Onsager postulate in the case of the classical theory.
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These assumptions are natural in the study of porous thermoelastic materials. The interpretation of the assumption
(i) is obvious. Condition (ii) says that the internal mechanical energy is positive. This condition is usual in the studies
corresponding to the elastic stability. Conditions (iii) and (iv) are also natural and they are related with the behavior of
the heat (and microheat) conduction materials. The symmetries proposed in (v) are usual in the context we consider. We
endow # with the norm

I3, = fg (Al-,-rsu,-,jur,s + 2Dyt b + E161 + Ay i + pvivi + IV 1P + altd + 61> + 15 (20, + )10 + )
+ K06, + Bif(tSi + TS + Tj) + Piro(tTij + Rij) tTrs + Rrs) + Aj(T 4+ Ri)(zTi + Ri)
+ TPysTy s Tij + T AT, + (HY + K3 )06, + o)) (T T; + Ry) + [tHji + rl?ij]r,»aj) dx.
Introducing the state vector
U=(u,v,¢,¥,0,0,0, R, T;, Sp),

we view the system as a Cauchy problem in # written as follows:

d
U0 =AU, U0 = W, v?, 0% v0 a® 0° 9O RY, T?, S0). 9)

Here, A is the linear operator defined as

Vi
u; !
Vi %[Aijrsers + Djj¢ — aij(fﬁ + 9)],j,
¢ 14
v LA — Ny(tS; + TLi — Dijey — §¢ + F(z9 +6)
al| 0
Algl= o , (10)
9 %M
R; T;
T; R
L TGNy
where
M = —ad — ajv;j — Fy + (k0 + K;Ot,j + HTj + HI;TR]'),,', (11)
N; = —B,‘ij + PijrsTr.sj + Pi;rer»Sj — AUTJ — A;Rj — Njil[f,j — ijQJ — KJO[J, (12)

and Cj is the inverse of the matrix Bj. This operator A has a (dense) domain:

Vi, l[/, 19, 51‘ eV
(Aijrsurs),j €H
DA)={uen (Ajd;)i € H
(k6 j + K;C\l,j)’,‘ €eH
(PijrsTr,s + P Rr,s),j €H

ijrs

3. Existence of solutions
In this section, we obtain an existence and uniqueness theorem for the problem proposed in system (9). We will use
the Lumer-Phillips theorem. With standard notation, in what follows p(A) denotes the resolvent set of the operator A.
Lemma 1. The operator A satisfies
(AU, U) <0,

for every U € D(A).
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Proof. By the Dirichlet boundary condition and the divergence theorem, a direct computation reveals that
(AU, U) = — fg [0, + 2K40.,T; + AyTiT; + Py Ty jTr ] dv.
Assumptions (iii) and (iv) entail the dissipativity of the operator, and the proof is finished.
Lemma 2. The operator A is invertible. In particular 0 € p(A).

Proof. For every fixed vector
f = (f;l’ i2’f3’f4’f57f67f7’ 1'87 igvfilo) EH

we look for a unique solution U € ©(A) to the equation

AU =f.
In components, equivalently we try to solve in D(A) the following system:

v =f, (13)
(Ajistir s + Dyop — a0) ; = pf?, (14)
v =f, (15)
[Ajpj — Ny(tSj + Tj)li — Dyjttij — £ + F(z 0 +6) = I, (16)
o= (17)
9 =f°, (18)
—ad — ajvij — Fy + (60 + ko + HyTy + HiRy) i = atf”, (19)
Ti = f%, (20)
Si=f7, (21)
—BySj + PijrsTr 5 + PjirsRrisi — ATy — AjRj — Niity

—Kij0j — Ko j = Byf;'°. (22)

We can immediately substitute (13), (15), (17), (18), (20) and (21) into the other four equations to obtain the system:
(Ajjrstr,s + Dy) j = lI/zJ,
Aii¢j — Dyjuij — E¢p = W2,
(kjoj+ HiR) = ¥,
(P oRris)j — AR — Kjaj = W,

(23)

where
¥ = ,Of,‘2 + (af?); + (faijf,‘s),js
w2 = I+ N2 + of)) — F(P° + ©f°),
w3 = arf’ + of® + ayf + P + (kaf? + Kif )i
Wt = Byf? — (Pyrsf,) 5 + Auf® + Nif 3 + Kif 5.

Notice that system (23) can be seen as two uncoupled systems: the first system in the variables u;, ¢ and the second one
in the variables «, R;. Let us focus on the first system. We define the bilinear form:

By ((ui, @), (uf, ¢*)) = f [Airsttijuf s + Dyj(uijo* + uj';¢) + pop* | dv.
2

By assumption (ii) and the Young inequality, it is clear that B; is coercive and continuous on the space V4 x V4. Since
(¢!, w?) is easily seen to belong to [V~']%, namely, the dual space of V4, by the Lax-Milgram theorem, we obtain the
existence of u;, ¢ satisfying the first part of (23). By the same token, defining the form:
B2 (@, Ry), (@*,R)) = / [ ki s + K (o iR + oiR;)
2

+A?}RiR;k + P;rsRi,er.S ] dv,
it is possible to find «, R; which satisfy the third and fourth equations.
Thus, we have proved the following existence and uniqueness result.
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Theorem 3. The problem (9) admits a unique solution. In fact, the solutions to problem (9) generate a contractive semigroup
and, for every U(0) € D(A), there exists a unique solution with the following regularity:

U € C([0, 00); D(A)) N C'([0, 00); H).
4. Exponential stability: the one-dimensional system

In this section, we focus on the exponential stability of the system in one space dimension assuming the homogeneous
case. In this setting, the system becomes

pij = Auxx + D¢x i a*(tax + dx)7

J¢ = A*¢y — N(tR + Ry) — Duy — ¢ + F(td + &),

10 + ad = —a*ly — Fd + Kb + K*axx + HRy + H*Ry,

TBR + BR = —N¢y + PRy + P*Rex — Kdty — K*ay — AR — A*R.

(24)

To this system of equations, we adjoint the homogeneous null boundary conditions (2) and the corresponding initial
conditions (3) to the one-dimensional case.
For the sake of clarity, we write conditions (i)-(iv) in this one-dimensional setting:

M

(i*) The coefficients p, J, a and B are positive.
(ii*) A > 0 and A& > D°.

(iii*) P* > 0 and P > tP*.

(iv¥) k > 0, kA > K?, k > tk*, (kK — Tk*)(A — TA*) > (K — TK*)2.

We note that condition (v) is satisfied automatically when we ask K = H and K* = H*. It is worth imposing a new
assumption to guarantee the exponential decay. In this section, we assume that a* # 0 and N # 0.

In the previous section, we have shown an existence and uniqueness theorem which can be applied to this system.
It is worth noting that, in order to simplify the notation, we have assumed that the functions took real values. However,
we could obtain the same result even if the functions had values in C. That is, if we consider the previous system with
complex variables, then we can guarantee that the solutions generate a semigroup of contractions and that the origin of
the complex plane is within the resolvent of the operator.

We prove the exponential stability exploiting the classical Priiss result. It is known that, in order to prove the
exponential stability for a contractive semigroup, it is enough to show that the imaginary axis is contained in the resolvent
set of the operator and that the asymptotic condition

Iim (M —A)7Y| < o0 (25)
[A]—o00
holds (see [59]). First, we show that the imaginary axis is contained in the resolvent of the operator A. We will proceed
by contradiction and so, we assume that there exist two sequences A, € R and

U, = (Uun, vn, dn, ¥, oy, Oy Oy, Ry, T, Sp) € D(A)

such that

1Uall3, =1, (26)
and

liaU, — AU, ||, — O. (27)

Since 0 € p(A) we can assume that

An 7> 0.

In components, convergence (27) reads

iAplly — vy — 0 inV, (28)
DAnpvn — (Adeell + Db — a* T — a*36y) — O in H, (29)
Donh — ¥n — 0 in V, (30)
i — (A* by — NTOSy — NOT, — Dty — Ehy + FT0n + F6y) — 0 in H, (31)
Dty — 6y — 0 iV, (32)
DDl — By — O in V, (33)
DD — (—a0y — a*dyvn — Fin + kdgebn + k*dcorn + KTy + K*3:Ry) — 0 in H,

AR, —T, — 0 inV, (34)
iIh —S, — 0 inV, (35)
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iTBASy, — (—BSy — NoxWry + POy Ty + P*0uRy — K040, — K*0yay — AT, — A*R;) — 0 in H. (36)
By the dissipativity of the operator A we know that
O, Ty —> 0, inV.
Thanks to (32), (34) and the fact that A,, /A 0, we infer that
o, Ry — 0, inV.
Now, let us multiply by 6, Eq. (34). Since 6, — 0, exploiting Eq. (33) and the fact that U, is bounded in #, we obtain
U, — 0, inH.
A similar multiplication, this time by T,, of Eq. (36), yields
Sp — 0, inH.
Now, observe that by Eq. (35) and the fact that T, — 0 in V, we have
Sn .
)\—n — 0, inV.
Henge, dividing by A, Eq. (31), we see at once that dy¢, /A, is bounded in H. This allows us to multiply (36) by dx¢,/An
to obtain

N 1 "
E(‘/fn» On)v — E(aX(P R, + PT,) - ax(bn) — 0.

L
0
Now, we see that, by the Gagliardo-Nirenberg inequality,

1
1 10x(P*Ry + PTy)|| 2

0y(P*R, PT,
WPTRAPTO ] _ ¢ o(P*Ry + PT)I3

V1Al 100 ey
Ox(P*R,, + PT,
LB R AP
vavey
On the other hand, we find that
1
8x‘bn 1 ||axx¢’n||j ||8x¢n||
< C1l|0xénll 2 +G <C,
H VTl o0 VTl Al

where C is a positive constant independent of n. Therefore, we have
[8x(P*Rn + PTa) - 3x@nllee _ lI9xpnllice [I0x(P*Rn + PTa)ll1e0 N

< 0.
An V1 An] sy
In view of (30), this implies
¢p— 0 inV.

A multiplication of (31) by ¢, entails also the convergence
Y — 0 inH.

Finally, repeating the argument for u, and v, (because a* # 0) we reach a contradiction, proving that
U,— 0 in®#.

Now, we will show that the asymptotic condition (25) is satisfied. Again, we assume that it does not hold and we will
arrive to a contradiction. If the condition is not fulfilled, then there will exist a sequence of real numbers A, — oo and
a sequence of unit norm vectors at the domain of operator A such that convergence (27) holds. From this point, we can
follow the same argument proposed before since the unique key point is that A, does not tend to zero. We arrive again
to a contradiction and we have proved the following result.

Theorem 4. The solutions to system (24) with boundary conditions (2) and initial conditions (3) decay in an exponential form,
that is, there exist two constants M > 1 and w > 0 such that

IU(6)l12, < Me™"||U(0)||2,.

Remark 2. We could also study the decay of solutions in dimension greater than one. Thought we do not give any proof,
it is natural to expect that we cannot obtain uniform exponential decay in general. Furthermore, it is possible to show
that the isothermal undamped solutions, obtained for the usual thermoelasticity by Dafermos [60], can be also found in
our case. Therefore, the study for dimensions greater than one involves several cumbersome issues.

8
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Remark 3. To prove this theorem we have assumed that all the boundary conditions are of Dirichlet homogeneous type.
It is clear that we could also consider several other situations, in the sense that we could combine Dirichlet with Neumann
homogeneous boundary conditions. The picture regarding exponential stability does not really change in all these other
cases; however, these possibilities involve several different problems and the Sobolev space, where the equations would
be well posed, changes depending on the particular boundary conditions. For the sake of brevity, we prefer not to dwell
on studying all of the possibilities.

5. Numerical analysis of a fully discrete scheme

In this section, we consider a fully discrete approximation of the porous-thermoelastic problem with microtempera-
tures studied in the previous section, providing some a priori error estimates which lead to the linear convergence under
adequate regularity conditions. As usual, we consider the deformation of the body over a finite time interval [0, T¢], with
a given final time Ty > 0.

For the sake of simplicity in the calculations, we restrict ourselves to the one-dimensional case in a finite spatial
interval (0, £), £ > 0; however, we note that the extension to the multi-dimensional setting is straightforward and it can
be obtained proceeding in a similar way. The numerical analysis presented in this section could be adapted by using the
operators introduced in Section 2. ] ) )

First, we derive the variational formulation of the problem. So, let us denote v =1, ¥ =¢,60 =&, ¥ =6, T =R and
S =T and define the variational spaces Y = L*(0, £) and E = H(}(O, £). In the space Y we represent the inner product and
the norm by (-, -) and | - ||, respectively, and, for the space E, we consider the usual inner product and norm defined in
H'(0, £), denoted as (-, )¢ and || - ||, respectively. Therefore, multiplying the equations of system (24) by adequate test
functions in the space E we obtain the following weak problem.

Find the velocity field v : [0, Ty] — E, the porosity speed v : [0, T] — E, the temperature speed ¥ : [0, Tf] — E and the
microtemperature speed S : [0, Ty] — E such that v(0) = v°, ¥(0) = ¥, #(0) = ¥°, S(0) = S° and, for a.e. t € (0, T) and
forallw,m,r,Z € E,

p(0(t), w) + Aux(t), wx) = —D((€), wy) — a*(TO(t) + Ox(t), w), (37)
JO(6), m) + A*(x(t), my) + §((t), m) = —D(ux(t), m) + F(zd(t) + 6(t), m)
m),

—N(zS8\(t) 4 T(t), (38)
(zad () + av(t), 1) + k(6:(t), 1) + 1 (ax(t), 1) = —a*(vy(t), 1) = F(Y(£), 1)

FH(T,(t), ) + H*(Ry(1), 1), (39)
(TBS(t) + BS(t), Z) + P(T(t), Z) + P*(Ry(t), Zo) + A(T(t), Z) = =N(Y(t), Z) — K(6:(t), Z)

—K*(an(t), Z) — A*(R(t), Z), (40)

where the displacement, the porosity, the temperature, the microtemperature, the thermal displacement and the
microthermal displacement are then recovered from the relations:

t t
u(f)z/ v(s)ds +u°, ¢(t)=/ Y(s)ds + ¢°,
0[ Ot
9(t)=/ ®(s)ds + 6°, T(t)=/ S(s)ds + T°, (41)
Ot Ot
a(t):f 6(s)ds + o, R(t):/ T(s)ds + R°.
0 0

Now, we introduce the fully discrete approximation of problem (37)-(41). This is done in two steps. First, we approximate
it in the spatial variable. Thus, we construct the finite dimensional space E" C E as follows:

E'= (2" € C([0, 1) NE ; 2[4 1 € Prllas, aia]) fori=0,....M—1}, (42)

where we have used a uniform partition of the interval [0, £], dividing it into M subintervals denoted by ap = 0 < a; <

- < ay = £ with a uniform length h = a;,1 — a; = £/M. Here, Py([a;, a;;1]) is the space of polynomials of degree less or
equal to 1 for each subinterval [a;, a;4], that is, the finite element space E" is composed of continuous and piecewise affine
functions and, as usual, h > 0 denotes the spatial discretization parameter. Then, by using the finite element projection
operator over E" denoted by P" (see, for instance, the work of Clément [61]) we can define an approximation of the initial

conditions given as
Ph 0 th — thO ¢0h _ Ph¢0 1/jOh zphwo O[Oh — PhOlO 90h — Phe()
190h Php0, RO — phRO. TOh — phTO SO _ phg0, (43)

Secondly, to obtain the discretization of the time derivatives, we use a uniform partition of the time interval [0, Ty],
denoted by 0 =ty < t; < --- < ty = Ty, with a time step size k = Ty /N and nodes t, = nkforn =0, 1, ..., N. Moreover,
for a continuous function f(t) let f, = f(t,) and, for a sequence {wn}ﬁ=0, let us denote by sw, = (w, — wy—1)/k its

9
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divided differences. Therefore, by using the well-known implicit Euler scheme we obtain the fully discrete approximation
of problem (37)-(41).

Find the discrete velocity field {v!*}\_, C E", the discrete porosity speed {y*}N_  C E", the discrete temperature speed
{9hkyN_ " C E" and the discrete microtemperature speed {ST}N_ < EN such that v* = v, Yk = 3O, 9k = pOh shk — g0
and, forn=1,...,N and for all w", m", r" z" € EN,

p(8UpE, wh) + A((Ul)y, wi) = —D(@*, wi) — a* (T (3 ) + (08 ), w), (44)
JEY™, mty + A*((pK),, mh) + E(pK, mt) = —D((u*),, m") + F(z o 0% mh) — N(z(SM), + (T, m"),  (45)
(1adOM + a4 k(O ), ) + k¥ (@), 1) = —a (V1) ¥M) — F(y ™, 1)

+H((T)e, 1) + H*(R)y, ), (46)
(tBSS! + BS[*, Z") + P((T* )y, Z8) + P*((RIF)y, Z0) + A(TI*, Z") = —=N((" ), Z") — K((01%)x, Z™)

—K*((0f* )y, Z") — A*(RI, ZM), (47)

where the discrete displacement, the discrete porosity, the discrete temperature, the discrete microtemperature, the
discrete thermal displacement and the discrete microthermal displacement are then recovered from the relations:

n n n n
utk = kz otk k= kz Yl g g gk = kz ok 4 goh Tk — kZSJnk 4T,
= = = = (48)
a)l;k — ngjhk + O{Oh, Rzk — kZTjhk + ROh.
j=1 j=1

By using conditions (i*)-(iv*) on the constitutive coefficients and the well-known Lax-Milgram lemma, it is possible to
prove that the fully discrete problem (44)-(48) admits a unique solution.

The aim of this section is to provide an a priori error analysis of this approximation. First, we will obtain a discrete
stability result that we will state as follows.

Lemma 5. Under conditions (i*)-(iv*), we obtain that the sequences {u™®, v, ok ik gftk ghk ghk phk Thk "ghk\' generated
by discrete problem (44)-(48), satisfy the stability estimate:

k(2 ke, 2 k)2 k(2 k(2 (2 k)2 ke[ 2 k(2 k(2
o 1% =+ g g + D" 17 + g e + o IE + 10,71 + 19,15 4+ IRy NIE + 1T, MIE + IS, 1I° < €,

where C is a positive constant which is independent of the discretization parameters h and k.

Proof. In order to prove this lemma, we will assume, for simplicity, that t = 1 and, to simplify the notation, we remove
the superscripts in all the variables. If we take as a test function w" = v,’j" in Eq. (44) we find that

P(8vn, v) + A((tn)x, (Vn)x) = =D((Pn, (Vn))x) — a*((Fn)x + (Bn)xs Vn)-

Keeping in mind that
1

(Svn v) = ol = oo 12},

A((up)y, (Up)y) = ﬂ[”(un)xnz - ||(un—l)x||2 + [l(un — un—])x”Z],
we have

r 2 _ 2 A 2 2 _ 2

2k [lonll lon—1lI" + 2k Nl (utn ) It 1)ell” + 1ty — tun—1)xll

+D((¢pn, (vn))x) < =a*((Fn)s> va) + CUIEeN + llvall®)-

Now, we proceed in a similar way for the remaining variables. Taking into account that

— S 2 2 2
§(@n ) = 5 {16017 = 19011 + 16 — o2},

—a*((vn)e» D) = a*((Dn)x, vn),
_N((l/fn)x, Sn) = N((Sn)m Wn),

we find that
o L A B P T (R P

2k
A
e L[N (RN B (RS
< NS ¥+ C 191 + 16012 + 1l + U(Tae 1),

10
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e L LY o B TN R TN B (CAME )
FD(ns (00))e) < @*(Bude vn) + CCNVaP + 190l + NTa Dl + 1 RAI2),

B
el = U5+ o [ = 1T 07) + 5 [Tl = UTa 7] 4+ PR (00
= N((Sndes ¥) + C (Il + 161 + 1Sall? + IRl
Observing that

DAt Y) + DU, () = . | (e 80) = (1) )

+((tn — Un—1)x, Pn — Pn—1) }7
All(un = tn—1 1> + & llpn — Pn1l1* + 2D((tn — tn—1)x, P — Pn—1) = 0,
thanks to the assumptions (i*)-(iv*), combining the previous estimates and summing up to n we obtain

plloall® + Alun)ell® +J1¥all* + € l1dnll* + A*[1(@n)x 1 + 2D((tn)s, $n)

+all ) + (Ol + 2k Y (@) (%)) + BIISal> + PlI(Ta)el?

j=1
AT + 2kP* > (R (Si))
j=1
<CkZ(u a)ell® + 16N + S 1% + IR I + 19512 + 15117 + 1Ty )ell?

j=1
+II(R )||2+||9I|2+|Iv,||2)

+C<Ilv 12 4+ 1ulE + 101 + 1e°1F + 119°1% + 1617 + 15°1> + IITOIIE)-
Thanks again to assumptions (i*)-(iv*) we have

Al(un) 1 + € lldull® + 2D((tn)ss dn) = CUUIUn I + lldnll®),

and, taking into account that

n
a2 + IRal2 = G (16512 + 1T 1Z) + € (11 + IR°IZ).

j=1

k[ 9300 + (R (53] = € (NOIP + NlxallZ + 10IZ + 16°12

j=1

n
IR + (Tl + IO + 1RO 4+ k D[ + 1T ).
j=1

using a discrete version of Gronwall’s inequality (see, for instance, [7]) we conclude the desired discrete stability property.

Now, we will focus on the derivation of some a priori error estimates. First, we obtain the error estimates on the
velocity field. Thus, we subtract variational Eq. (37), at time t = t, and for a test function w = w" € E" C E, and discrete
variational Eq. (44) to obtain, for all w" € E",

plin — up, wh) + Al(un — ), wi) + @ (Fn — 07 ) + (6 — 65, w") + D(¢hn — B3, wy) = 0.

In the previous equation, and also in the rest of this section, again we will assume that t = 1 for the sake of simplicity.
We note that it is straightforward to extend the analysis shown below to the general situation.
Taking into account that

(Un — (Svgk, Un — hk) = (Un — Svp, Uy — hk) + (6vp — (Svhk Un — Ur’;k),

1
(avn—ahv,’:", o) = 5 { lon = oI = o — ol 12},
((un—li") (o = 09 2 (e = ), (e — S
o — W = o = el 4 — 0 = (s — 0P,
(B = D) vy — wh) = —(9, — 0¥ (on = W),
(o = of*)es 0 = 1) = (0 — ol (90 — P10,

11
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we find that, for all w" € E,
P
] lon = 92 = oo = o 12} 4 DUgn — 91 (Sun — )0
ot = W = = Wl = ) = (s — )0
+a* (0, — 19 )x» Un — vhk)
= € (Win = 80l Nita = Sunl2 + llow = w2 + (tn = w0l + g — S1¥I2
(60 — OFWIIZ + 190 — 24112 + [lon — V|2 4 (Svp — S, v wh)) .

Proceeding in a similar form for the porosity speed, the temperature speed and the microtemperature speed, taking into
account that

E(dn — B, Y — U) = (dn — DI, fn — 8¢n) + (b0 — PLX, Spn — S91Y),

& (60— ¢n" 600 — 89y") = % { 19 - ¢,’;"||2 ~gn1 = S5 IP + llgn — 9 = (fut — SHEDI? |,

(wn - #k)x, Sn _Zh) = _N(llfn - (S _Zh)x),

N(
N((llfn - 1/f,?k)x, Sn - 5;'") = _N(wn - hk (Sn Sgk)x)7

we have
2 = V12 = s — 7] D — 561 (i — 90
b [0 = 91 — 0y = G + 0 — 91 — (91 — IR

NS = 1% Y — 2+ 5 {160 — 9012 — s — 0l )12
C (1 — 89l + bw — 8ullZ + 1ra — "I + (@ — BV + g — #1212
1160 — O8I + 190 = DRI + (e — VI + (T = TN + 115, — SBI2
O = SY Yo — ) ) Vit € B,
n n — IVn—1 — 1 Oln—Ol x> (Un n x
1 = 01 = 9y = D 1P| (e — af e (90 = 9290)
Z—{H(e — Ol = N1 = 61 P
+a” ((Un_v )x»ﬂn ﬂ,ﬁ'k)
C (190 = 8901 + 160 — 86012 + 19 — r"IZ + 160 — OV + 190 — 21|
Flatn = NI+ 1 — Y + (T — T + 1Ry — REWIZ + [log — vh?
(80 — SO, 9, — rh)) vrh e EM,
B
S 150 = SHIZ = 1Sa1 = SI 2} = NG = 9 (52 = SE49)
o 1T = TP = 1T — T2 2]
A
P ((Re = RV (S = S+ 2 {IT = T2 = T = 25,17
C (130 = 8Sal -+ o = STl + S = 212 + (T — TN + 1S, — SE¥I12
Fltn = NI+ 16 = BN + 1 (Re = RENI + 1Ry = R 4 [ — 2
(55, — 8SIK. S, —zh)) vzh € EN.

2k

Since
D(¢n — ¢y, (Sttn — Sty Y) + D(8pn — 883", (ttn — 1)
= 2 60— 0l = 90— ot — 91y, (e — a0
Hfn = B = (B — B, (= = (o — ) |
and observing that, thanks again to assumptions (i*)-(iv*),

All(un — ulf)y — = (s — U™ Wll? + Elldn — O — (nr — & I
+2D(¢n - (¢n71 - d’hk )) (un - uhk - (un—1 hk ))x > O
12
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combining the previous estimates, multiplying them by 2k and summing up to n, it leads, for all w", m", r*, z" e E*,

pllve — V|12 4 2D(gn — ¢, (un — ul®)) + All(un — ul )l + Tl — w12

n
A [(Bn — SR> + all P — D117 + 267k Y (e — o), (865 — 86 )s)
j=1
+[[(Bn — O/)lI* + BlISa — SP*II* + PII(T, — TP WlI* + AT, — T¥
n

+2P*k > ((Rj = RI)y. (8T; — 8T/%)) + & llpn — o112
j=1

| 2

"
<Cky ( 105 — Svill* + 18y — SulIF + vy — wllF + Ny — u)ll® + 1y — ¢ 11>
j=1

H1(0) = 0Nl + 119 — 2/*112 + fly — w1 + (1) — S0, v — wh)

IS5 — 8512 + Iy — 8Tjl1 + 1) — ZM1 + (T — T% )l + 115 — Sf*)12

+l(e — oWl + IRy — RN + IRy — RIIZ + [y — w12 + Il — 895112

+(8S; — 8SM™, S — Z) + Ny — 8117 + 1w — mP I + (e — & )l

+liy — D12 + 16, — X112 + (895 — Sy, vy — mP) + 19 — 89117 + 116 — 86,113

19y = TP + (60 — 691, 95 — 1) ) € (00 = uOMZ + u® — w0 + |0 — 9O

+l16° — 12 + lla® — M1 + IR — ROMIZ + (|90 — 9" )% + (100 — 0°" 2

IS = S 4 70— T ) .

Thanks again to assumptions (i*)-(iv*) we find that

2D(n — P¥, (un — ulE)) + All(un — u¥Nll> + Ellpn — SN2 = CUlI(un — ul*NlI? + llpn — S24N12).

Recalling that

kY (o — o) (86 — 86%)) < (o — @f)es (B — O1%) + (07" — 0%, (e — ef¥)y)

j=1
n n
+Ck D 116 — 07 %l® + Ch D lidy — Seyl7.
j=1 j=1
n
k> (R = RN (8T — 8T™)) < ((Tw — Ti)s (Ra — RE)) + (T = Ty, (Ry — R,
j=1

n n
+Ck D I = T )l + Ck Y IR, — SRy,
j=1 j=1

n
lotn — o117 < c(rn + k16— 611 + e — a°*'||§),
j=1

n
IRy — RIIZ = C(J+ K3 1Ty =TI + 1R — R2),
j=1
n
kZ(Svj — 51)}1/{, vj — w]h) = (vy — v,’;k, Up — w,’;') + (% =%, vy — w’f)
= n—1
+ Z(U]‘ — v]h", vj — wjh — (V41 — w]ﬂl)),
j=1

where similar estimates can be obtained for the differences 8; — 85/, §9; — §9/* and §v; — 8y, and I, and J, are the

integration errors defined as

2
tn n
I, = / 0(s)ds — k ol -
: 2

E
13

(49)
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2
th n
Jo= f T(s)ds—k» Tj| . (50)
0 pa
E
using again a discrete version of Gronwall’s inequality (see [7]) we conclude the following a priori error estimates result.

Theorem 6. Let the assumptions (i*)-(iv*) still hold. If we denote by (v, v, ¥, S) the solution to problem (37)-(41) and
by (vf, 1//”’" hk, S"") the solution to problem (44) (48), then we have the following a priori error estimates, for all w" =

W, = (mf o, = (g 20 = (2 C B,
hk 2 hk 2 hk 2
max { lon = oI o — W+ 1 = I+ e — IR + Nl — af2

1160 = OFFIE + 1190 = DI + 1Ry — RIIE + ITa = TIAUE + 1S, — SII° |

N
<Cky ( 105 — 8v11% + iy — w12 + vy — w]I2
j=1
HIIS; = 8Si1I* + 1T — 8Ty l7 + 1S — Z17 + 195 — 8511

+li — 817 + v — mi 17 + 119 — 89511> + 16 — 86,17 + 1% — 117 )
+C max fllun — whl? + 9 — mbI2 4+ 190 = 101 + 1S, — 2312

N-1

C
+2 2 ( vy — w}! = (W1 — wiy)IP + 19y — m = (Yyr — mfy I
j=1

95 = 1 = o1 = T )IP 15— 2 = (Sivr = 2051

+¢ (10 = o2 + ||u° — U™+ 1 — Y+ 19° — o™l + IR — R

-l = a® 2 4 2° = 9O 4 [0° — 0% + [15° — S°H2 4 T — TN ),

where C is again a positive constant which does not depend on parameters h and k, and I; and J; are the integration errors
given in (49) and (50), respectively.

We note that the estimates provided in Theorem 6 can be used to derive the convergence order of the approximations
obtained from the fully discrete problem (44)-(48). Thus, as an example, if we assume that the solution to problem
(37)-(41) has the additional regularity:

u, ¢ € CY([0, Tr]; H(0, £)) N H2(0, Ty; H([O, €1)) N H3(0, Ty; Y),
a, R € C¥([0, Tr]; H(0, €)) N H3(0, T; H([0, €1)) N H*(0, Ty; Y),

then there exists a positive constant C, assumed to be independent of the discretization parameters h and k, such that
[max [ rom = o0+ Tt = w0+ 1w = W20+ b — B0+ lltn — @l + 160 — 631
119 = 92 + IRe = RNl + ITo = T4l + 115, — S | < CCh+ k),

that is, the linear convergence of the approximations is achieved under this assumed regularity.
6. Numerical results

In this final section, we present the numerical scheme implemented in MATLAB for solving problem (44)-(48), and
we describe two numerical examples to demonstrate the accuracy of the approximations and the behavior of the discrete
energy in a one-dimensional problem, and the behavior of the solution in a two-dimensional example.

6.1. A one-dimensional example: numerical convergence and discrete energy decay

First, we briefly describe the numerical scheme and then, we show the numerical example.
Given the solution ufk |, vk @hk —yfk gk ~ghk —phk Rk Th"1 and Shk at time t,_, the variables vfik, ylik, hk
and S,’,‘" are obtained by solving the discrete linear system, for all wh, mh, rh Z" € En,

PV, wh) + AR (V1) wh) = p(ul*,, w) — AR(UE )y, w")
14
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—Dk($™, why — a*k(r(9F)y + (O1%),, w™),

JO ")+ A e, m) + SR mt) = J(t m")
FA (B e i) — E(PpE 1, m") — NK(z(SPF)x + (T )y, m")
—Dk((u*),, m") + Fk(zo™ + 0% m"),

n
a(T O™ 4+ ko™ My b k(0 Y — kP ((9), 1) = a(z o™, )
—a* k(W) ™) = FR((W Y, T") = kKO8 D 1)
—i* K™ D + KO s T+ HE(ST)y, ) + HR((REF),, m™),
B(zS 4 kSp, Z") + PK((S1 ). Z¢) + P*IP((S - Z))
+ AR (S, ZM 4 T3Sk Zm) = B(eSt* |, ZM) — Nk((y*),, ZM)

—PK((T™ )y, Z1) — PPR(RE® e 4 K(T™ e, Z8) — KK((61% ), ZM)
—K*k((o®)y, ZM) — AT, Z") — A*K(RE® | + kT]* |, ZM).

n n—-1° n—1°
This numerical scheme was implemented on a 3.2 GHz PC using MATLAB, and a typical run (h = k = 0.001) took about
0.33 s of CPU time.
As a simple example, in order to show the accuracy of the approximations the following problem is considered:

pii = Auy + D¢X - a*(‘fo‘[‘x + le) + Fyq,

J§ = A*§u — N(tRx + R) — Dt — £¢p + F(vd + &) + F,

a(td + &) = —a*ly — F$ + kdine + k¥ xx + HRy + H*Ry + F3,

B(tR + R) = —N¢y + PRy + P*Ry — Kitx — K*ox — AR — A*R + Fy,
with the following initial conditions, for all x € (0, 1),

u%(x) = v°(x) = ¢°(x) = ¥°(x) = &°(x) = 6°(x) = ¥°(x) = x(x — 1),

RO(x) = T%(x) = S°(x) = x(x — 1),
and homogeneous Dirichlet boundary conditions. In the above equations, the (artificial) supply terms F; (i = 1, 2, 3, 4)
are given as, for all (x, t) € (0, 1) x (0, 1),

Fi(x,t) =e'(10x + x(x — 1) = 9), Fx(x,t) = —e'(6x(x — 1) — 8x + 8),

F3(x,t) = —e'(2x — 9x(x — 1) +5), Fa(x,t) = e'(12x + 6x(x — 1) — 12),

and we have used the following data:
¢=1, Ty=1, p=1 A=2, D=1, a=2 J=1 A" =2 §£=2,
F=3, N=1, t=2, a=2, k=2, «*= H=1, H*=2,
B=1, P=1, P*=2, K=2, K*=3, A=2 A*=1.

The exact solution to the above problem can be easily calculated and it has the form, for (x, t) € [0, 1] x [0, 1]:
u(x, t) = ¢(x, t) = a(x, t) = R(x, t) = e'x(x — 1).

Thus, the approximation errors estimated by
max { fon = o+ ltn = ¥l + 19— V250 + o — S50 + Nl — afle + 162 — 61"

19 = 041+ IR — Rl + o = Tkl + S — 241 |

are presented in Table 1 for several values of the discretization parameters h and k. Moreover, the evolution of the error
depending on the parameter h + k is plotted in Fig. 1 by using the diagonal of the previous table. We notice that the
convergence of the algorithm is clearly observed, and the linear convergence, stated in the previous section, seems to be
achieved.

If we assume now that there are not supply terms, and we use the final time Ty = 30, the data

p=01 £=1 A=4, D=2, a=05 J=1 A"=1 &=3,
F=1, N=1, =1 a=1, k=2, «*=1 H=2 H'=1,
B=1, P=2 P‘=1 K=1 K'=2, A=3 A" =1,

and the initial conditions, for all x € (0, 1),

wx) =12x) =x(x—1), ¢°x)=y°x)=0, a°%Kx)=06%%)=0v%x)=0,
RO(x) = T°(x) = S°(x) = 0,
15
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Table 1
Example 1D: Numerical errors for some h and k.
h|k— 0.01 0.005 0.002 0.001 0.0005 0.0002 0.0001
1/23 0.605352 0.586122 0.574727 0.570953 0.569071 0.567944 0.567568
1/24 0.337170 0.309878 0.293825 0.288531 0.285894 0.284316 0.283790
1/2° 0.218431 0.179337 0.156516 0.149024 0.145300 0.143073 0.142332
1/26 0.180697 0.124535 0.091947 0.081309 0.076035 0.072884 0.071837
1727 0.192231 0.112055 0.065443 0.050301 0.042817 0.038356 0.036874
1/28 0.239866 0.126827 0.060429 0.038845 0.028211 0.021888 0.019790
1/2° 0.321173 0.163364 0.069586 0.038877 0.023752 0.014781 0.011810
1/210 0.441580 0.221993 0.090491 0.047044 0.025562 0.012825 0.008615
121 0.613714 0.307612 0.123712 0.062571 0.032182 0.014114 0.008144
1/2"2 0.857719 0.429621 0.172181 0.086357 0.043533 0.017968 0.009506
0.7 . . ! : : :
0.6 1
0.5 —
s
S 0.4 b
g
o
€ 03 |
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z
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Fig. 1. Example 1D: Asymptotic constant error.
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Fig. 2. Example 1D: Evolution in time of the discrete energy (natural and semi-log scales).

30

taking the discretization parameters h = k = 0.001, the evolution in time of the discrete energy defined as

1
B = 2 (PRI + AT IE + I + AT NI + €191 + allo ) P
IO + BISII? + PITRIZ + AITH? ).

is plotted in Fig. 2 (in both natural and semi-log scales). As can be seen, it converges to zero and an exponential decay
seems to be achieved.

6.2. A two-dimensional example

In this section, we will consider the two-dimensional problem for the isotropic case which was defined by system (4)-
(7). The domain £2 is assumed to be the quadrangle (0, 1) x (0, 1), where homogeneous Dirichlet boundary conditions

16



N. Bazarra, J.R. Ferndndez, L. Liverani et al. Journal of Computational and Applied Mathematics 438 (2024) 115571
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Fig. 3. Example 2D: Norm of the displacement and microthermal displacements at final time.
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25 0.05
2
15
1

0.5

Fig. 4. Example 2D: Porosity and porosity speed at final time.

are prescribed for all the variables. Moreover, we have used the following data:

=1, p=1 pu=1/2, A=1/2, D=1, a*=2, J=1 A=2, £=2,
F=3, N=1, t=2 a=2 k=2, «*=1 H=1, H*'=2,

B=1, Po=1, Pi=2, Py+Ps=2 Pj+Pi=3 A=2 A*=1,
K=1 K*=2,

and the initial conditions, for a.e. (x,y) € 92 and i = 1, 2,
W y)=v0xy)=xx—1yy—-1), ¢°=y°=a"=0"=0"=R =T =5 =0.

Taking as a time discretization parameter k = 1073 and a fixed finite element mesh (with a mesh size h less than
1071), in Fig. 3 we plot the norm of the displacements and microthermal displacements at final time. We can observe
that both have a quadratic shape. In light of the chosen initial data, this is expected for the displacements; however, it
is interesting to see that the microthermal displacements, which initially appear only thanks to the coupling, follow the
same pattern. The porosity and porosity speed are shown in Fig. 4 at final time. Some oscillations can be found maybe
because this function depends on the divergence of the displacements. Finally, in Fig. 5 the thermal displacements and
the temperatures are plotted at final time. Again, we note that they are produced only due to the coupling with the
other variables. Moreover, there is a skew symmetric behavior (quadratic for each part) for the thermal displacements,
meanwhile some oscillations appear in the temperatures.

Taking the final time Ty = 100 and parameters p = 10~3 and B = 10, the evolution in time of the discrete energy
defined now as

1
B = 2 (PIV gy + AN Iy gy + IR + AT ISR + €101 + allDI + 0} 1

hk 12 hk 12 hk 12
FBISE gy + PITE I 1 g+ ANTEIZ, 0 )

is plotted in Fig. 6 (in both natural and semi-log scales). As in the one-dimensional example, it converges to zero and an
exponential decay seems to be achieved.
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Fig. 5. Example 2D: Thermal displacements and temperatures at final time.
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Fig. 6. Example 2D: Evolution in time of the discrete energy (natural and semi-log scales).

7. Conclusions

In this paper, we have studied a problem within the theory of poro-thermoelastic materials with microtemperatures,
where the heat and microheat are determined by expression of the MGT type. In particular, the following objectives have
been obtained:

1. We have derived the equations corresponding to this theory from a similar theory when the heat and microheat
depend on the histories of the temperature and microtemperature respectively.

2. We have shown the existence and uniqueness of solutions by means of the theory of semigroups. This result has
been proved in a three-dimensional setting.

3. We have also proved, in the one-dimensional case, the exponential decay of the solutions by using the classical
arguments of the theory of semigroups; however, it is not possible to extend this result to a dimension higher than
one.

4. Applying the classical finite element method and the implicit Euler scheme, we have introduced a fully discrete
approximation, for which we have obtained a discrete stability property and a priori error estimates. It has allowed
us to derive the linear convergence of the approximations under suitable regularity conditions.

5. We have implemented a numerical algorithm by using MATLAB and we have performed some examples to show
the accuracy of the algorithm and the discrete energy decay.
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