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1. Introduction

All the standard models in random walks are based on the hypothesis that in each step 
the walker moves from one node to another different one. Only the so-called lazy random 
walks contemplate the probability of remaining at a state, but this probability is always 
constant and usually equal to 1/2, see [8]. Therefore, they are far away to include all 
the real situations that would be modeled in this context. Assigning a different positive 
transition probability to each node will include the probability to remain in each state, 
depending on the state, and suppose a challenge in random walks theory. In addition, 
by doing that we are also adding a new arbitrary probability of reaching a node. The 
latter is what the so-called biased random walks do [11,17], but without considering 
the possibility of remaining in a node and, furthermore, fixing the value of each of the 
new probabilities assigned to the nodes that respond to a certain property of them. 
Moreover, in our model the lazy term can be considered as a function instead of a 
parameter.

Our experience in the study of discrete potential theory, and in particular of M -
matrices [3], will allow us to consider a generalization of random walks that have 
importance in applications where it is necessary taking into account the possible dif-
ferent properties of each node of the network that model the random walk. To achieve 
that, we must incorporate M -matrices into the analysis of random walks. When we con-
sider a transition probability matrix associated with a symmetric M -matrix (singular or 
not singular), we can erase the diagonally dominant hypothesis and the random walk 
associated with this model will be called Schrödinger random walk since any symmetric 
M -matrix can be interpreted as a positive semi-definite Schrödinger operator on the 
network.

In the two last sections, we consider fundamental parameters such as mean first pas-
sage time and Kemeny’s constant and express them in terms of generalized inverses of 
the consider M -matrix, following the guidelines given by the works of J.J. Hunter [12–15]
and some of the authors in [7] for the standard case. The first author works with general-
ized inverses of the probabilistic laplacian and the second ones with generalized inverses 
of the combinatorial laplacian.

2. Preliminaries

Our work context is a finite connected graph without loops nor multiple edges, with 
vertex set V (with cardinality n) and edge set E, in which each edge {x, y} has been 
assigned a conductance c(x, y) > 0. We call this domain a finite network and it is denoted 
by the triple Γ = (V, E, c). The conductance can be considered as a symmetric function 
c : V × V −→ [0, +∞) such that c(x, x) = 0 for any x ∈ V and moreover, vertex x is 
adjacent to vertex y iff c(x, y) > 0. Being C(V ) the set of real functions, for each x ∈ V , 
we define the degree function k ∈ C(V ) as k(x) =

∑
c(x, y). We call volume of Γ to the 
y∈V
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value vol(Γ) =
∑
x∈V

k(x) =
∑

x,y∈V

c(x, y). A positive function ω ∈ C(V ) is called weight if 
∑
x∈V

ω(x)2 = 1.

If we give a labeling on the vertex set V , then functions can be identified with vectors in 
Rn, and operators can be identified with square n-matrices. For the reader’s convenience, 
matrices will be sans serif mode and vectors will be either sans serif model or boldfaced. 
In particular, k =

(
k1, k2, . . . , kn

)T is the degree column-vector for Γ. Given a vector u, 
Du will denote the diagonal matrix whose elements are given by the vector u and given 
a matrix M, we denote by Md the diagonal matrix whose diagonal elements are given by 
the diagonal of M. Hence, suppose that V =

{
x1, x2, . . . , xn

}
, then we will consider cij =

c(xi, xj). Every u ∈ C(V ) is identified with the vector u =
(
u(x1), u(x2), . . . , u(xn)

)T ∈
Rn and the combinatorial laplacian matrix is the symmetric irreducible matrix

L =

⎡
⎢⎢⎣

k1 −c12 . . . −c1n
−c12 k2 . . . −c2n

...
...

. . .
...

−c1n −c2n . . . kn

⎤
⎥⎥⎦ , (1)

where ki = k(xi), i = 1 . . . , n. This matrix is diagonally dominant and, hence, it is posi-
tive semidefinite. Moreover, it is singular and 0 is a simple eigenvalue whose associated 
eigenvector is constant, L1 =0, where 1 is the all ones vector. The adjacency matrix is 
denoted by Ac =

(
cij

)n
i,j=1. Observe that L = Dk − Ac.

Given a network Γ = (V, E, c) a standard diffusion process can be defined as a time 
invariant ergodic Markov chain with transition probability matrix P = (pij). Each entry 

pij = cij
ki

represents the probability of transition, in one step, from vertex xi to vertex 

xj , and satisfies P1 = 1. It is well known that any ergodic Markov chain has a stationary 

distribution verifying πTP = π, where πi = ki
vol(Γ) , see [9].

In a general setting, in addition to cij , the walker that is at vertex xi moves to one 
of his neighbors xj keeping into account the node property ωj = ω(xj). For instance, 
it can be topological, as the degree information, or another quantity as node spreading, 
see [10]. In this case, the transition probability matrix is given then by

pij = cijωj
n∑

�=1
ci�ω�

(2)

and hence πi =
ωi

n∑
�=1

ci�ω�

n∑
s,t=1

cstωtωs

is the stationary probability at state xi.

Some of the authors considered in [4] a new transition probability associated with a 
random walk that keeps the spirit of the concept of effective resistance with respect to 
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a non–negative value and a weight. Before introducing the definition we need to recall 
some potential theory concepts.

The combinatorial laplacian or simply the laplacian of the network Γ is the endomor-
phism of C(V ) that assigns to each u ∈ C(V ) the function

L(u)(x) =
∑
y∈V

c(x, y)
(
u(x) − u(y)

)
= k(x)u(x) −

∑
y∈V

c(x, y)u(y), x ∈ V.

Given q ∈ C(V ), the Schrödinger operator on Γ with potential q is the endomorphism 
of C(V ) that assigns to each u ∈ C(V ) the function Lq(u) = L(u) +qu, where qu ∈ C(V ) is 
defined as (qu)(x) = q(x)u(x); see for instance [2,6]. It is well-known that any Schrödinger 
operator is self–adjoint and we are interested in those Schrödinger operators that are 
positive semidefinite. In [2], some of the authors answered this question by using a Doob 
h–transform, a very common technique in the framework of Dirichlet forms and Markov 
processes. In this context, if ω is a weight, the function qω = −ω−1L(ω) is called potential 
determined by ω. Then, for any u ∈ C(V ) and any x ∈ V we have the following equality

Lq(u)(x) = 1
ω(x)

∑
y∈V

c(x, y)ω(x)ω(y)
(
u(x)
ω(x) − u(y)

ω(y)

)
+ (q − qω)(x)u(x).

With this terminology the characterization of positive semi–definite Schrödinger op-
erators is given by the following result, see [2, Prop. 3.3].

Proposition 1. The Schrödinger operator Lq is positive semi–definite iff there exist ω ∈
Ω(V ) and λ ≥ 0 such that q = qω + λ. Moreover, ω and λ are uniquely determined. In 
addition, Lq is not positive definite iff λ = 0, in which case 〈Lqω (v), v〉 = 0 iff v = aω, 
a ∈ R. In any case, λ is the lowest eigenvalue of Lq and its associated eigenfunctions 
are multiple of ω.

In the sequel we only consider semidefinite positive Schrödinger operators. Therefore, 
we fix a value λ ≥ 0, a weight ω ∈ Ω(V ) and their associated potential q = qω + λ

and Lq will be denoted by Lλ,ω. The matrix associated with a Schrödinger operator is 
Lλ,ω = Dk+q − Ac; that is, an M -matrix.

Throughout this paper we consider as main tool the matrix

Fλ,ω = Lλ,ω − λωωωωωωT

that is symmetric and positive semidefinite, so Fλ,ω is also an M -matrix. Therefore 0
is a simple eigenvalue of Fλ,ω and ωωω is the unique unitary vector such that Fλ,ωωωω = 0. 
Under these assumptions we shall be concerned with the so-called Poisson equation for 
Fλ,ω on V :

Given f ∈ Rn find u ∈ Rn such that Fλ,ωu = f. (3)
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The general result about the resolubility of the Poisson equations is given in the 
following well-know result. The Poisson equation with data f has solution iff 〈ωωω, f〉 = 0
and moreover the solution is unique up to a multiple of ωωω.

We call Generalized Inverse of Fλ,ω or 1-inverse of Fλ,ω any n-matrix assigning to any 
f ∈ ωωω⊥ a solution of the Poisson equation Fλ,ωu = f. Therefore, due to the multiplicity 
of the solutions for any Poisson equation there exist infinite generalized inverses of Fλ,ω

and it is well known, see for instance [1, Theorem 2.2], that a matrix G is one of them 
iff it satisfies the identity

Fλ,ωGFλ,ω =Fλ,ω. (4)

Identity (4) implies that any generalized inverse of Fλ,ω has rank greater than or equal 
to the rank of Fλ,ω and hence greater than or equal to n − 1. Therefore any generalized 
inverse of Fλ,ω is either invertible or 0 is a simple eigenvalue.

The notion of generalized inverses of Fλ,ω encompasses a special type of 1-inverses 
that are the discrete analogue of the so-called Green matrix for Fλ,ω. Specifically, we call 
Green matrix any 1-inverse, generically denoted by G such that

Fλ,ωG = I −ωωωωωωT; (5)

which is equivalent to the fact Gωωω = αωωω, α ∈ R. In particular, we call orthogonal Green 
matrix the unique Green matrix satisfying F#

λ,ωωωω = 0. Observe that it coincides with the 

group inverse of Fλ,ω and for this reason it is denoted by F#
λ,ω.

Therefore, F#
λ,ω establishes an automorphism of ωωω⊥ such that

Fλ,ωF#
λ,ω =F#

λ,ωFλ,ω = I −ωωωωωωT and F#
λ,ωFλ,ωF#

λ,ω =F#
λ,ω.

3. Schrödinger random walks

In this section we re-encounter the Schrödinger random walks that were introduced 
in [4] by some of the authors. In the mentioned paper, the authors only defined the 
transition probability and proved Foster’s formula. In this work, we attend to give an 
interpretation of these probabilities as well as to study mean first passage time and to 
generalize the concept of Kemeny’s constant.

The probability laws governing the evolution of the random walk are given by the
(one step) transition probability matrix with respect to λ and ω, Pλ,ω ∈ Mn(R), that is 
defined as

Pλ,ω = D−1
kω

(
Ac + λωωωωωωT)Dωωω,

where we denote by kω = (Ac + λI)ωωω, the vector whose components are (ki + qi)ωi.
This definition keeps the spirit of the effective resistance with respect to a parameter 

and a weight, introduced by the authors in [3].
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Observe that for any xi, xj ∈ V

(
Pλ,ω

)
ij

=
(
cij + λωiωj

)
ωj(

ki + qi
)
ωi

(6)

or equivalently

(
Pλ,ω

)
ij

=
(
cij + λωiωj

)
ωj

λωi +
n∑

�=1
ci�ω�

. (7)

As we can see, the main novelty in our definition is the consideration of a non–negative 
probability of remaining at vertex xi given by the term

(
Pλ,ω

)
ii

= λω3
i

λωi +
n∑

�=1
ci�ω�

.

Moreover, for any state xi we are considering an additional jump to any of the other 
states of the network xj , which probability is given by

λωiω
2
j

λωi +
n∑

�=1
ci�ω�

.

In addition, when λ = 0 we recover the definition given in Equation (2).
If we consider ĉij = cij + λωiωj and aij = ĉijωiωj , then

(
Pλ,ω

)
ij

=
(
cij + λωiωj

)
ωj

λωi +
n∑

�=1
ci�ω�

= ĉijωj
n∑

�=1
ĉi�ω�

= ĉijωjωi
n∑

�=1
ĉi�ω�ωi

= aij
n∑

�=1
ai�

,

see Fig. 1. So, in our model, the walker jumps to a neighbor with a probability depending 
on the value of the conductance cij times the factor ωj representing the desired state 
property, but also we add the probability depending on λωiωj . In this way, we can 
interpret our random walk as a random walk on a complete graph in which each edge 
has been assigned the conductance aij , and look at the random walk as a classical one 
but with non-null probability of remaining at a state.
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Fig. 1. Schrödinger random walks.

Consider now πππλ,ω ∈ Rn defined for each xi ∈ V as

(
πλ,ω

)
i
=

λω2
i + ωi

n∑
j=1

cijωj

λ +
n∑

j,�=1
cj�ωjω�

= (ki + qi)ω2
i

λ +
n∑

j,�=1
cj�ωjω�

. (8)

We call volume of Γ, the value vol(Γ) = λ +
n∑

j,�=1
cj�ωjω�. Observe that vol(Γ) = ωωωTkω.

Lemma 1. The transition probability matrix is markovian, reversible and has πππλ,ω as 
stationary distribution.

Proof. It is easy to check that 
n∑

j=1

(
Pλ,ω

)
ij

= 1 for any i = 1, . . . , n, and 
(
πλ,ω

)
i

(
Pλ,ω

)
ij

=
(
πλ,ω

)
j

(
Pλ,ω

)
ji

, for any i, j = 1, . . . , n. �
In the literature we can find specific situations that can be considered as Schrödinger 

random walks:

1. In [11], local-biased random walks on general networks where a Markovian walker 
is defined by different types of biases in each node to establish transitions to its 
neighbors depending on their degrees were considered. In this case, ωj = 1

α
k
βj

j , 
where βββ = (β1, . . . , βn) is the vector defining the local bias, λ = 0 and α is the factor 
of normalization. Then,
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(
P0,ω

)
ij

=
cijk

βj

j
n∑

�=1
cilk

β�

�

.

2. In [17], the author considers core-biased random walks as a way of approximating 
random walks that maximize the entropy. The core-biased random walks also con-
sider the degree sequence for defining the bias. In this case, ωj = 1

α

(
K+

j (k∗) + 1
)
, 

where K+
j (k∗) is the number of links that node xj has with nodes of degree higher 

or equal to k∗, λ = 0 and α is the factor of normalization. Then,

(
P0,ω

)
ij

=
cij

(
K+

j (k∗) + 1
)

n∑
�=1

ci�
(
K+

� (k∗) + 1
) .

Lemma 2. For a Schrödinger random walk, it is verified that

Dkω

(
I − Pλ,ω

)
= Fλ,ωDωωω.

Proof. Observe that,

Dkω

(
I − Pλ,ω

)
=

(
Dkω − DkωPλ,ω

)
=

(
Dkω − AcDωωω − λωωωωωωTDωωω

)

=
(
D(k+q) − Ac − λωωωωωωT

)
Dωωω = Fλ,ωDωωω. �

In order to study mean first passage time and Kemeny’s constant for Schrödinger 
random walks, we are interested in obtaining the expression of any generalized inverse 
of the matrix Fλ,ω, verifying the condition Gkω = gωωω, in terms of its group inverse, 
F#
λ,ω. Moreover, we study these expressions according to the properties verified by the 

generalized inverse. These results are extensions of those obtained in [15] and [7] for the 
case of the generalized inverses related to I − P and L, respectively.

The following result was proved in [5, Theorem 3.3] in terms of operators. Here we 
will translate it to matrix context and we prove only the two first results that are not a 
direct consequence.

Theorem 1. If G is a 1-inverse of Fλ,ω, then Gkω = gωωω, g ∈ R iff there exist τττ ∈ Rn such 
that

G = F#
λ,ω −ωωωτττT − vol(Γ)−1F#

λ,ωkωωωωT,

and g = −〈τττ , kω〉. Moreover the following properties hold:

i) F#
λ,ω = G + 〈Gωωω, ωωω〉ωωωωωωT −ωωωωωωTG − GωωωωωωT.



JID:LAA AID:16563 /FLA [m1L; v1.344] P.9 (1-15)

Á. Carmona et al. / Linear Algebra and its Applications ••• (••••) •••–••• 9
ii) G is invertible iff 〈τττ , kω〉 �= 0 and then G−1 = Fλ,ω − 〈τττ , kω〉−1kωθθθT, where θθθ =
ωωω + Fλ,ωτττ .

iii) G is a symmetric matrix iff there exists a ∈ R such that

G = F#
λ,ω + aωωωωωωT − 1

vol(Γ)

(
ωωωkωTF#

λ,ω + F#
λ,ωkωωωωT

)
;

that is, τττ = vol(Γ)−1F#
λ,ωkω − aωωω. In addition, G is non singular iff a �=

1
vol(Γ)2 〈F

#
λ,ωkω, kω〉 in which case

G−1 = Fλ,ω +
(
avol(Γ)2 − 〈F#

λ,ωkω, kω〉
)−1kωkωT.

iv) G is symmetric and positive semidefinite iff

G = F#
λ,ω + aωωωωωωT − 1

vol(Γ)

(
ωωωkωTF#

λ,ω + F#
λ,ωkωωωωT

)

where a ≥ 1
vol(Γ)2 〈F

#
λ,ωkω, kω〉.

v) Gkω = F#
λ,ω + 1

vol(Γ)2 〈F
#
λ,ωkω, kω〉ωωωωωωT− 1

vol(Γ)

(
ωωωkωTF#

λ,ω +F#
λ,ωkωωωωT

)
is the unique 

symmetric positive semidefinite generalized inverse that assigns to kω the null func-
tion.

Proof. If G is a 1-inverse of Fλ,ω, from [5, Theorem 3.3], there exist τττ , σσσ ∈ Rn such that 
〈σσσ, ωωω〉 = 1 and

G = F#
λ,ω −ωωωτττT − F#

λ,ωσσσωωω
T.

Hence, if Gkω = gωωω, we get that

gωωω = Gkω = F#
λ,ωkω −ωωωτττTkω − F#

λ,ωσσσωωω
Tkω = F#

λ,ωkω − 〈τττ , kω〉ωωω − 〈ωωω, kω〉F#
λ,ωσσσ.

Therefore, multiplying both sides by ωωωT we get that g = −〈τττ , kωωω〉 and σσσ = 〈ωωω, kω〉−1kω =
vol(Γ)−1kω since 〈σσσ, ωωω〉 = 1. Conversely, if

G = F#
λ,ω −ωωωτττT − vol(Γ)−1F#

λ,ωkωωωωT,

then, from [5, Theorem 3.3] G is a 1-inverse and Gkω = −〈τττ , kω〉ωωω.
To prove i), consider again the expression for F#

λ,ω given in [5, Theorem 3.3],

F#
λ,ω = G − 〈τττ ,ωωω〉ωωωωωωT −ωωωωωωTG − GωωωωωωT,

by imposing that Gkω = gωωω and keeping in mind that ωωωTkω = vol(Γ), we get that
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F#
λ,ωkω = −vol(Γ)

(
〈τττ ,ωωω〉ωωω + Gωωω

)
.

Finally, by multiplying both sides of the above equality by ωωωT, we obtain that

0 = 〈F#
λ,ωkω,ωωω〉 = −vol(Γ)

(
〈τττ ,ωωω〉 + 〈Gωωω,ωωω〉

)

and the result follows. �
Corollary 1. The symmetric and nonsingular generalized inverse of Fλ,ω such that Zkω =
ωωω is

Zλ,ω =
(
Fλ,ω + 1

vol(Γ)kωkT
ω

)−1
.

Proof. From Theorem 1 (iii), we know that if Zλ,ω is a nonsingular and symmetric 1-
inverse of Fλ,ω, then there exist a ∈ R such that τττ = vol(Γ)−1F#

λ,ωkω − aωωω. Multiplying 
by kω on both sides and keeping in mind that g = 1, we get that

−1 = 〈kω, τττ〉 = 1
vol(Γ)kT

ωF#
λ,ωkω − avol(Γ).

Finally,

Z−1
λ,ω = Fλ,ω + (vol(Γ))−1kωkT

ω. �
From now on we will call to Zλ,ω the fundamental matrix with respect to λ and ω

associated with the transition probability Pλ,ω. This matrix together with Gkω , the unique 
symmetric positive semidefinite generalized inverse that assigns to kω the null function, 
will be crucial to get simple expressions for the mean first passage time in the next 
section. Observe that for the standard case, these matrices are the ones obtained in [7]
and moreover, Zλ,ω is the analogue of the so-called fundamental matrix for P, Z, see 
[15,16].

4. Mean first passage time for Schrödinger random walks

The short-term behavior of a Schrödinger random walk is also modeled by the mean 
first passage time (with respect to λ and ω)

(
mλ,ω

)
ij

, for i, j = 1, . . . , n, i �= j, which 
gives the expected number of time-steps before the system reaches xj , if it starts in xi, 
then

(
mλ,ω

)
ij

= E
[
t | Xt = xj , X0 = xi

]
,

where E[·] denotes the expected value of the variable. It is well known [16] that, for 
i �= j, 1 ≤ i, j ≤ n,
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(
mλ,ω

)
ij

=
(
pλ,ω

)
ij

+
∑
k �=j

(
pλ,ω

)
ij

((
mλ,ω

)
ij

+ 1
)

= 1 +
∑
k �=j

(
pλ,ω

)
ij

(
mλ,ω

)
ij
. (9)

If we define J as the matrix of order n with all entries equal to 1, assuming that 
(
mλ,ω

)
ii

=
0 we can write (9) in matrix form as,

(
I − Pλ,ω

)
Mλ,ω = J − P(Mλ,ω)d. (10)

Besides, the mean recurrence time for state xi, denoted by 
(
mλ,ω

)
ii
, is the expected 

number of time steps before we return to xi for the first time, for any i = 1, . . . , n. The 

mean recurrence time for state xi also verifies Equation (9) and hence its value is 1
(πλ,ω)i

, 

since multiplying both sides of (10) by πππT
λ,ω, we obtain 000T = πππT

λ,ω (J − Pλ,ω(Mλ,ω)d) or 
000T = 111T − πππT

λ,ω(Mλ,ω)d.
We can use this last expression and Equation (10) to obtain the matrix expression for 

the MFPT.

Proposition 2. Let Γ be a network, then the mean first passage time matrix Mλ,ω, can be 
written as

Mλ,ω = D−1
ωωω GDkωJ − JD−1

ωωω (GDkωJ)d + vol(Γ)
(
D−1
ωωω D−1

kω − D−1
ωωω GD−1

ωωω + JD−1
ωωω GdD−1

ωωω

)
.

In addition, for 1-inverses such that Gkω = gωωω, being g a constant, we obtain

Mλ,ω = vol(Γ)
(
D−1
ωωω D−1

kω − D−1
ωωω GD−1

ωωω + JD−1
ωωω GdD−1

ωωω

)
.

Proof. From Equation (10) and Lemma 2, we get that 
(
I − Pλ,ω

)
= D−1

kω Fλ,ωDωωω and 
hence

Fλ,ωDωωωMλ,ω = Dkω

(
J − Pλ,ωD−1

πππλ,ω

)

= DkωJ − vol(Γ)
(
Ac + λωωωωωωT

)
DωωωD−1

ωωω D−1
kω

= DkωJ − vol(Γ)
(
Ac + λωωωωωωT

)
D−1

kω .

(11)

System (11) has solution because each column of the independent term belongs to ωωω⊥

and the solution is unique up to a multiple of ωωω, since 〈kω, ωωω〉 = vol(Γ) and

((
Ac + λωωωωωωT

)
D−1

kω

)
j

= 1
(kω)j

(
(k + q)jεj − (Lq)j + λωjωωω

)

and multiplying by ωωωT, we get that 1 (
(k + q)jωj − λωj + λωj

)
= 1.
(kω)j
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Therefore, if G is a 1-inverse of Fλ,ω, then

Mλ,ω = D−1
ωωω G

(
DkωJ − vol(Γ)

(
Ac + λωωωωωωT

)
D−1

kω

)
+ JDτττ .

By imposing the condition (Mλ,ω)d = vol(Γ)D−1
ωωω D−1

kω , we get that

Dτττ = −D−1
ωωω (GDkωJ)d + vol(Γ)D−1

ωωω

(
(G(Ac + λωωωωωωT))dD−1

kω + D−1
kω

)
.

Substituting in the above equation, it is verified that

Mλ,ω = D−1
ωωω GDkωJ − JD−1

ωωω (GDkωJ)d

+ vol(Γ)JD−1
ωωω

(
(G(Ac + λωωωωωωT)dD−1

kω + D−1
kω

)

− vol(Γ)D−1
ωωω G

(
Ac + λωωωωωωT

)
D−1

kω .

On the other hand, since G is a 1-inverse of Fλ,ω, there exists τττ ∈ Rn such that

GFλ,ω = I −ωωωτττT =⇒ G − G(Ac + λωωωωωωT)D−1
k+q = D−1

k+q − DωωωJDτττD−1
k+q

and hence

D−1
ωωω D−1

k+q − D−1
ωωω G + D−1

ωωω G(Ac + λωωωωωωT)D−1
k+q = JDτττD−1

k+q.

If we consider the diagonal matrices associated with the matrices involved in the last 
equation and multiply it by J, we get that

JD−1
ωωω D−1

k+q − JD−1
ωωω Gd + JD−1

ωωω (G(Ac + λωωωωωωT))dD−1
k+q = JDτττD−1

k+q.

Therefore,

JD−1
ωωω D−1

k+q − JD−1
ωωω Gd + JD−1

ωωω (G(Ac + λωωωωωωT))dD−1
k+q

= D−1
ωωω D−1

k+q − D−1
ωωω G + D−1

ωωω G(Ac + λωωωωωωT)D−1
k+q

and hence

JD−1
ωωω D−1

k+q + JD−1
ωωω (G(Ac + λωωωωωωT))dD−1

k+q − D−1
ωωω G(Ac + λωωωωωωT)D−1

k+q

= D−1
ωωω D−1

k+q − D−1
ωωω G + JD−1

ωωω Gd.

By multiplying by D−1
ωωω both sides of the above equality we get that
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JD−1
ωωω D−1

kω + JD−1
ωωω (G(Ac + λωωωωωωT))dD−1

kω − D−1
ωωω G(Ac + λωωωωωωT)D−1

kω

= D−1
ωωω D−1

kω − D−1
ωωω GD−1

ωωω + JD−1
ωωω GdD−1

ωωω

and the result follows.
Finally, if Gkω = gωωω, then D−1

ωωω GDkωJ = JD−1
ωωω (GDkωJ)d = gJ, which complete the 

proof. �
5. Kemeny’s constant for Schrödinger random walks

In this section we consider the well-known parameter associated with a random walk, 
Kemeny’s constant. It represents the time for reaching a random state xj, starting from 
an initial state xi according to the stationary distribution. In our case, we define the 
Kemeny’s constant (with respect to λ and ω) as the value

K(Mλ,ω) =
n∑

j=1

(
mλ,ω

)
ij

(πλ,ω)j .

In the standard case, it is a known fact that K does not depend on xi, and hence 
the name Kemeny’s constant. In our case, this fact is also true as we will see. In a 
matrix-vector form, it is written as Mλ,ωπππλ,ω = K(Mλ,ω)111.

Our aim now is to express Kemeny’s constant by using some specific 1-inverses of 
Fλ,ω.

Proposition 3. If G is a 1-inverse of Fλ,ω such that Gkω = gωωω, Kemeny’s constant is 
given by

K(Mλ,ω) = 1 − g + tr(GDq+k). (12)

In particular, K(Mλ,ω) = tr(Zλ,ωDq+k) and K(Mλ,ω) = 1 + tr(GkωDq+k).

Proof. If we consider G a 1-inverse of Fλ,ω such that Gkω = gωωω, then by Proposition 2
we get that

Mλ,ωπππλ,ω =
(
D−1
ωωω D−1

kω − D−1
ωωω GD−1

ωωω + JD−1
ωωω GdD−1

ωωω

)
Dωωωkω =

[
1 − g + tr(GDq+k)

]
111,

and the expression for K(Mλ,ω) follows. In particular, as Zλ,ωkω = ωωω and Gkωkω = 0 the 
last expressions for K(Mλ,ω) hold. �

Under the conditions of the above proposition, we can derive a new equation for 
K(Mλ,ω) involving the group inverse of Fλ,ω. In the case of networks and the combinato-
rial laplacian, a similar formula was deduced by Wang et al. in [18] using different tools 
and by some of the authors in [7].
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Proposition 4. In terms of the group inverse of Fλ,ω, F#
λ,ω, Kemeny’s constant is given 

by

K(Mλ,ω) = 1 + tr(F#
λ,ωDk+q) − vol(Γ)−1kωTF#

λ,ωkω. (13)

Proof. We consider any 1-inverse of Fλ,ω, such that Gkω = −〈τττ , kω〉ωωω, then the relation 
with its group inverse, given in Theorem 1, is G = F#

λ,ω − ωωωτττT − vol(Γ)−1F#
λ,ωkωωωωT. So, 

using Expression (12), we just have to calculate

tr(GDk+q) = tr(F#
λ,ωDk+q) − tr(ωωωτττTDk+q) − vol(Γ)−1tr

(
F#
λ,ωkωωωωTDk+q

)
.

It is easy to see that tr(ωωωτττTDk+q) = 〈τττ , kω〉.
On the other hand, as F#

λ,ωkωωωωTDk+q = F#
λ,ωkωkT

ω. Then,

tr
(
F#
λ,ωkωωTDk+q

)
= kT

ωF#
λ,ωkω.

Hence, we get tr(GDk+q) = tr(F#
λ,ωDk+q) −〈τττ , kω〉 −vol(Γ)−1kωTF#

λ,ωkω and finally Equa-
tion (13) holds. �
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