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Abstract 

This project focuses on implementing a variable grid topology network for simulating an 

inter-satellite links connection to evaluate link failure detection times in a satellite Software-

Defined Networking (SDN) using the Bidirectional Forwarding Detection (BFD) protocol 

(RFC 5880). 

Today, there is significant growth and deployment of LEO satellite networks, and SDN 

technology is being successfully used in these LEO satellite constellation networks due to 

the flexibility that this technology offers in the face of dynamic variation in topology network, 

limited bandwidth and traffic variations.  

An important point for the correct operation of these networks is the reliability and stability 

of the links that interconnect the satellites of the constellation, since this constellation is in 

permanent motion, orbiting the earth. The work developed in this project is directly related 

to this topic and the BFD detection protocol has been used to determine the connectivity 

failures of the test network links.   

The BFD is a protocol which provides fast forwarding path failure detection times and it is 

independent from physical media, routing protocols and data protocols. The BFD protocol 

works in the forwarding plane and is well suited for use with SDN switches. 

The testbed has been built using the "ContainerNet" Python API to implement the network 

topology and link interconnection of each satellite node. The satellite switching service is 

implemented in a docker instance, using OpenVirtualSwitch (OVS) as the internal packet 

switch of each node. OpenVirtualSwitch is an SDN-compliant programmable switching 

network device that has support for the BFD protocol. A transmission scenario is built on 

this switching network. This scenario includes two nodes that work as communication 

endpoints. The nodes have been configured so that between the endpoints there are two 

separate alternative paths. In addition to the datapath configuration, the BFD protocol has 

been configured to monitor the status of each link. A software developed running in all 

intermediate nodes are able to notify a link failure upstream of the datapath until the end 

nodes. An then end nodes can switch to another path. The final results must determine 

which are the BFD parameters to achieve a compromise between the BFD packet signaling 

period and the bandwidth used to keep the VoIP communication parameters within the 

acceptable limits in the event of a link failure with a route update. 
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Resumen  

Este proyecto se centra en implementar una red de topología de red variable para simular 

una conexión de enlaces inter-satélite con el fin de evaluar los tiempos de detección de 

fallos de enlace en una Red de Software Definido (SDN) satelital utilizando el protocolo de 

Detección de Reenvío Bidireccional (BFD) (RFC 5880). 

En la actualidad, hay un crecimiento significativo y despliegue de redes satelitales LEO, y 

la tecnología SDN se utiliza con éxito en estas redes de constelación satelital LEO debido 

a la flexibilidad que esta tecnología ofrece frente a la variación dinámica en la topología de 

red, el ancho de banda limitado y las variaciones del tráfico. 

Un punto importante para el correcto funcionamiento de estas redes es la fiabilidad y 

estabilidad de los enlaces que interconectan los satélites de la constelación, ya que esta 

constelación está en movimiento permanente, orbitando la Tierra. El trabajo desarrollado 

en este proyecto está directamente relacionado con este tema y el protocolo de detección 

BFD se ha utilizado para determinar las fallas de conectividad de los enlaces de la red de 

prueba. 

El BFD es un protocolo que proporciona tiempos rápidos de detección de fallos en la ruta 

de reenvío y es independiente del medio físico, los protocolos de enrutamiento y los 

protocolos de datos. El protocolo BFD funciona en el plano de reenvío y es adecuado para 

su uso con conmutadores SDN. 

El banco de pruebas se ha construido utilizando la API de Python "ContainerNet" para 

implementar la topología de red y la interconexión de enlaces de cada nodo satélite. El 

servicio de conmutación de satélite se implementa en una instancia de Docker, utilizando 

OpenVirtualSwitch (OVS) como el conmutador de paquetes interno de cada nodo.  

OpenVirtualSwitch es un dispositivo de red conmutador programable compatible con SDN 

que tiene soporte para el protocolo BFD. Se construye un escenario de transmisión en esta 

red de conmutación. Este escenario incluye dos nodos que funcionan como puntos de 

comunicación. Se han configurado los nodos para que entre los puntos finales existan dos 

rutas alternativas separadas. Además de la configuración del flujo de datos, se ha 

configurado el protocolo BFD para supervisar el estado de cada enlace.  

Un software desarrollado que se ejecuta en todos los nodos intermedios puede notificar 

una falla en el enlace aguas arriba del flujo de datos hasta los nodos finales. Luego, los 

nodos finales pueden cambiar a otra ruta. Los resultados finales deben determinar cuáles 

son los parámetros BFD para lograr un compromiso entre el período de señalización de 
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paquetes BFD y el ancho de banda utilizado para mantener los parámetros de 

comunicación de VoIP dentro de los límites aceptables en caso de una falla de enlace con 

una actualización de ruta. 
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1. Introduction 

1.1. Object 

 

The objective of this project is to build a testbed to test the detection and signaling of link 

failures using the Bidirectional Forwarding Detection protocol and to analyze the affectation 

suffered by communication routes in a SDN packet-switching satellite network. The testbed 

will be built using the “mininet” tool on a Linux platform. The packet switch used will be 

OpenVirtualSwitch, which support the BFD protocol (RFC 5880) for the detection and 

signaling of link failures. 

 

The results must determine which are the BFD parameters to achieve a compromise 

between the BFD packet signaling period and the bandwidth used to keep the VoIP 

communication parameters within the acceptable limits (150ms one way delay, 30ms jitter, 

loss less than 1%) in the event of a link failure with a route update. 

1.2. Abast  

 

Although this project is about design satellite network.  This project focuses on 

implementing a simulation of a 3 x 3 satellite network to evaluate link failure detection times 

in a satellite Software-Defined Networking (SDN) using the Bidirectional Forwarding 

Detection (BFD) protocol. The constellation Dynamics is excluded from work, as we are not 

interested in emulating the influence of satellite constellation motion but only the BFD 

behaviour.  

 

The work to be carried out will be: 

 

1- Implement a building tool, using ContainerNet API of the grid topology of the switching 

nodes that represents the connection links of a LEO satellite network.  

2- Define a reference of satellite network to understand the connection which each node 

and to know switching tables.    
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3-In each switching node: start an OVS (OpenVirtualSwitch), activating the BFD and 

configuring it appropriately in end nodes. Define and load the primary and secondary 

switching tables needed to run the test 

4- Carry out a test set, sending synthetically generated VoIP traffic and generating pre-

programmed link failures: Define a set of link failures to carry out the different tests 

5- The key performance indicators will be the link failure detection time, the end nodes 

switching time, the latency, the jitter and packet loss suffered by the voice packets during a 

VoIP (Voice-over IP) communication subjected to the defined link failures. Voice traffic 

patterns (VoIP) will be generated by a traffic synthesis tool (WireShark) 

1.3. Requeriments 

 

This project is carried out in a virtual machine. This machine contains Mininet with 

Containernet extension that it is a Python API for deploying large networks on the limited 

resources of a computer or VM in this case. Mininet has been created for enable research 

in Software Defined Networking (SDN).  

 

In order to remote access to the UPC premises, correct external client configurations are a 

requeriment. The requeriments includes:  

- VPN Fortinet client as a UPC external connectivity requirement. 

- X2GO client for remote desktop access to the UPC Linux Servers. 

In each node start an OVS (OpenVirtualSwitch), activating the BFD and configuring it 

appropriately. Each node is connected to another node with north-south traffic and east-

west traffic.  
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1.4. Rationale 

 

This project called Link failure testing project on a satellite SDN network using Bidirectional 

Forwarding Detection, is a subproject of a main project: where routing techniques are 

proposed and tested in a satellite constellation network for ATM services. 

 

In any communication network, link failures are a very important issue because data 

communications are affected by such problems and the quality of the service is reduced.  

 

Currently, satellite networks play a crucial role in global communication, and efficient link 

failure detection is vital to ensure optimal performance and reliable connectivity. The 

adoption of SDN technology in satellite networks offers significant advantages, such as the 

ability to centrally manage and control network operations, as well as the flexibility to adapt 

to dynamic changes in network requirements. 

Some characteristics of SDN (Software-Defined Networking): 

 SDN is a networking approach that separates the control plane from the data plane, 

enabling more centralized and programmable network management. 

 By utilizing SDN, the network infrastructure can be controlled and managed in a 

more flexible and efficient manner through programmable interfaces. 

 SDN allows for the virtualization of network resources, facilitating the creation of 

logical networks and resource allocation based on real-time needs. 

 This approach also enhances network automation capabilities, enabling more 

dynamic and adaptive management of network resources and services. 

 

Characteristics of LEO (Low Earth Orbit): 

 LEO refers to a low-altitude Earth orbit typically situated at an altitude of 2,000 

kilometers or less from the Earth's surface. 

 Satellites in LEO offer advantages such as lower latency, higher bandwidth, and the 

ability to cover larger geographical areas compared to higher orbits. 



 

 

 

14 
 

 LEO-based satellite communication systems have gained interest in applications 

such as the Internet of Things (IoT), mobile communications, and global connectivity. 

 Due to their lower orbit, LEO satellites require efficient and reliable network 

infrastructure to ensure effective communication between the satellites and the 

ground station. 

Geographical location can have a significant impact on the signal strength and availability 

of satellite communication. In certain areas, such as remote or mountainous regions, the 

signal may become weak or even lost, resulting in communication disruptions between the 

satellite network and planes. This can have serious consequences, particularly in situations 

where real-time communication is essential for safety and operational purposes. 

 

By implementing innovative solutions, this project aims to mitigate the impact of 

geographical factors on signal loss. The use of VoIP technology allows for voice 

communication over an internet-based network, providing an alternative communication 

channel that is not solely reliant on satellite connections. This helps to ensure that 

communication between the satellite network and planes remains intact, even in the event 

of signal loss or degradation.  

 

In addition of Bidirection Forwarding Detection, there is another important protocol called 

802.1ag Connectivity Fault Management (CFM). Unlike BFD, CFM is closely tied to the 

Ethernet standard (802) and is specifically used to monitor and diagnose connectivity issues 

in Ethernet networks. 

 

On the other hand, BFD was designed to be independent of the physical medium in which 

it is implemented. It can be used in various network technologies, including Ethernet, MPLS, 

IPv4, and IPv6, making it a flexible and adaptable choice for different network environments. 

 

Possible advantages of the Link failure testing project on a satellite SDN network using 

Bidirectional Forwarding Detection approach are: 

Improved network reliability: The project aims to automatically correct link failures between 

satellites and maintain the connection between the satellite network and the plane. This can 
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lead to improved network reliability, ensuring that the VoIP traffic is transmitted without 

interruption. 

Increased efficiency: The use of Bidirectional Forwarding Detection can help detect link 

failures quickly, allowing for prompt corrective measures. BFD can increase the efficiency 

of the satellite network and minimize downtime. 

Enhanced user experience: VoIP is used by communication for airlines and any 

interruptions or quality issues can lead to a poor user experience. The Link failure testing 

project can ensure that the VoIP connection remains stable and that the voice quality is not 

affected. 

 

However, some possible disadvantages of the approach may include: 

High implementation costs: Setting up a satellite network and implementing Bidirectional 

Forwarding Detection can be more expensive, especially handle this OAM traffic. 

 

Technical complexity: The project involves using advanced networking technologies such 

as SDN and Bidirectional Forwarding Detection. The technical complexity of implementing 

and maintaining these technologies can be a challenge for some organizations. 

 

Overall, the Link failure testing project on a satellite SDN network using Bidirectional 

Forwarding Detection has the potential to improve network reliability and increase efficiency. 

However, the costs, technical complexity, and limited applicability of the approach should 

also be considered. 
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 Background and review of state of the art 

2.1 Current situation of the topic 

 

Bidirectional Forwarding Detection (BFD) is a protocol used to quickly detect and diagnose 

network failures in computer networks. To optimize network management in satellite 

environments, Software-Defined Networking (SDN) is employed. SDN separates the control 

plane from the data plane, with a centralized network controller making routing and 

management decisions while switches handle packet forwarding based on the controller's 

instructions. This approach offers flexibility and dynamic configuration, enabling automation 

and adaptation to changing network demands. 

 

In SDN-based satellite networks, OpenFlow switches are utilized. These switches 

implement the OpenFlow protocol, which is a standardized communication protocol used 

for interaction between the controller and network devices. By utilizing OpenFlow switches, 

the controller can make routing decisions and manage switch behavior effectively. 

 

OpenFlow switches have several distinctive characteristics: 

 Separation of the control plane and data plane, enabling centralized and 

programmable network management. 

 Programmability that allows the controller to implement dynamic routing policies and 

traffic rules on OpenFlow switches. 

 Increased network visibility and control, enabling fine-grained traffic control and 

monitoring. 

 Scalability, facilitating the management of large networks within the SDN 

architecture. 

Mininet is a network emulation tool that enables the creation of virtualized networks on a 

single host. An extension of Mininet, called Containernet, allows the emulation of Docker 

containers within the virtual network environment. Mininet utilizes Network Namespaces, 

virtual containers, to simulate real network behavior and create virtual network topologies. 

Containernet adds the capability to emulate Docker containers on each node of the virtual 
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network, facilitating the execution and communication of applications within the emulated 

environment. 

 

Docker is an application virtualization platform that enables the packaging of applications 

and their dependencies into containers, simplifying deployment and enhancing portability. 

Open vSwitch (OVS) is a high-performance virtual switch commonly used in virtualized 

environments. 

 

LxC (Linux Containers) is an operating system-level virtualization technology that enables 

the execution of isolated Linux instances, referred to as containers, on a single host. LxC 

containers provide lightweight and efficient environments for running applications and 

services, with each container having its isolated file system and resources. LxC allows for 

quick creation and agile deployment of applications in virtualized environments. 

 

The work developed in this project is directed towards ensuring the reliability of the network: 

Link failures can occur due to different reasons, such as hardware failure, natural disasters 

or human errors. When a link failure occurs, it can result in a network outage, causing 

significant disruptions and downtime. By conducting link failure testing using BFD, network 

administrators can identify potential issues and proactively address them, ensuring the 

network’s reliability and minimizing downtime. 

 

Improving network performance: BFD protocol provides fast failure detection, which is 

critical in networks with high traffic and low latency requirements, such as satellite networks. 

Enhancing network security: It is possible that link failures can also be caused by malicious 

attacks, such as denial-of-service (DDoS) attacks or network intrusion attempts. By 

producing link failure testing, network administrators can identify potential security 

vulnerabilities and implement appropriate measures to protect the network from such 

attacks. 

Ensuring compliance with regulatory requirements: Some industries, like healthcare, and 

government, are subject to strict regulatory requirements that mandate the availability and 

reliability of their networks. By conducting link failure testing using BFD, organizations can 

ensure compliance with these requirements and avoid costly penalties for non-compliance. 
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 Complete network design and policies 

 

Before starting development code is necessary to establish certain policies in order to 

create and complete a network design.  

3.1 Traffic Policies 

 

Traffic can be categorizen into two main categories: data traffic and OAM (Operations, 

Administration, and Maintenance) traffic associated with BFD (Bidirectional Forwarding 

Detection). 

 Data traffic.  

 

It refers to the flow of digital information or data packets over a network 

 

 OAM traffic associated to the BFD: 

 

OAM traffic is used to monitor the network and includes two types of monitoring: 

Link monitoring and Path monitoring. Link monitoring helps to ensure that the 

connection between network devices is working correctly, while Path monitoring 

checks that the correct network path is being used for traffic. 

3.2  IP Assignment Policy 

 

Each category of traffic has specific IP address and MAC address assignments to facilitate 

effective network operation and maintenance: 

 

3.2.1 Voice-related Traffic: 

 

Voice-related traffic refers to the communication traffic carrying voice calls and related 

services. 
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For end-to-end traffic, a range of IPs 172.16.NodeNum.IfaceNum/16 will be assigned, with 

NodeNum and IfaceNum. The NodeNum and IfaceNum variables represent the specific 

node and network interface associated with the IP address.  

The assignment of MAC addresses associated with these IPs (assigned to the bridges of 

each docker) will use OUI-data:00:00:NodeNum (for example, OUI-data: 00:02:00), with 

OUI-data less than 255. 

 

3.2.2 OAM Traffic associated with BFD for link monitoring: 

 

A range of IP addresses will be assigned for operations, administration, and maintenance 

(OAM) of the network, for example, 169.254.NodeNum.(IfaceNum+1), where NodeNum is 

the number of nodes (NodeNum< 255) and IfaceNum is the network interface (IfaceNum < 

255). These IPs will be used for network management, such as monitoring and quality 

control.  

The MAC addresses associated with the links for this case will be OUI-

OAM:00:NodeNum:IfaceNum, with the three variables OUI-OAM, NodeNum, and IfaceNum 

less than 255. 

 

3.3 Test and results 

 

A total of 120 tests will be conducted, varying the "mult" factor between 2, 3, and 4. The 

packet transmission rate will be set to 1 packet per second, 2 packets per second, 5 packets 

per second, and 10 packets per second. These tests will evaluate the performance of packet 

transmission under different conditions. The bfd: min_tx values were set to 10, indicating 

that BFD control packets were sent every 10 milliseconds.  

This will enable rapid detection of link failures while maintaining a balance between timely 

detection and the overhead associated with frequent packet transmissions. The results 

table shows the equivalence between bfd_min_rx values, transmission rate, interval, and 

corresponding bandwidth, providing information about the relationship between these 

parameters. 
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The results will be presented in a table. The time values will be measured with a maximum 

precision of milliseconds. In order to avoid having 5 tables for each "mult" value, a single 

multicolumn table will be presented. This table will focus on the change path scenario of 

node N8 and will not include the detection time column. The table format will be as follows, 

with values expressed in milliseconds: 

 

mult 2 3 4 

bfd_min_rx ST | AVG(MST) ST | AVG(MST) ST | AVG(MST) 

Table 1. Structure of results 

 

In this format, each row corresponds to a specific value of "bfd_min_rx," and the columns 

represent the different values of "mult." The values shown in each cell will be the signaling 

time (ST) and the average measured signaling time (AVG (MST)). It is worth noting that the 

signaling time is not the detection time, as it specifically refers to node 8. 

The results will be displayed in a similar table format for the data of nodes 0, 3, 4, and 7. 

 

3.4 G.711: audio codec  

 

Voice traffic patterns, specifically VoIP (Voice over Internet Protocol), can be generated 

using a traffic synthesis tool such as D-ITG. In VoIP, the G.711 audio codec is commonly 

used for telephony applications.  

G.711 is an audio codec that was originally developed for telephony applications. It is 

designed to deliver high-quality audio at a bit rate of 64 kbit/s. The codec operates within 

the frequency range of 300-3400 Hz and samples the audio signal at a rate of 8,000 

samples per second [1]. Each sample is represented using 8 bits of quantization, resulting 

in a 64 kbit/s bit rate. 
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3.5  What happens in each switching node? 

 

3.5.1 Definition of Open Virtual Switch 

 

Open Virtual Switch (OVS) is a software-based virtual 

switch that can be used to connect virtual machines 

(VMs) within a host or across hosts in a network. OVS 

supports standard OpenFlow protocol for controlling 

traffic flows in the network and enables the 

implementation of software-defined networking (SDN) 

in a virtualized environment. 

 

OVS can be used in differents virtualization platforms, 

sush as Xen, KVM, VMware, and VirtualBox. It can 

also be integrated with another container systems like 

Kubernetes and Docker Swarm. 

 

OVS provides features such as Quality of Service (QoS), network isolation, and flow control. 

It also supports network tunneling protocols like VXLAN, GRE, and Geneve, which can be 

used to extend virtual networks across physical boundaries. 

 

Overall, OVS provides a flexible and scalable virtual switching solution for SDN-based 

networks, enabling administrators to manage and control network traffic in a highly 

customizable way. 

 

3.5.2 Definition of Software-defined networking  

 

Software-defined networking (SDN) is then physical separation of the network control plane 

from the data plane, allowing network administrators to manage network traffic flow centrally 

through software-based controllers, rather than configuring individual network devices such 

as switches and routers. 

 

Figure 1 SDN architecture [6] 
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In an SDN architecture, network devices (such as switches and routers) are configured with 

a forwarding table that maps network addresses to the appropriate output port. The 

forwarding table is managed by a central controller, which communicates with the devices 

using a standard protocol such as OpenFlow. This options allows to define policies and 

configure the network centrally, rather than on a per-device basis.  

 

One of the main benefits of SDN is its flexibility and programmability. By abstracting the 

control plane from the data plane, SDN enables network administrators to automate network 

management and orchestration, making it easier to manage complex networks and respond 

quickly to changing network requirements. SDN also enables the creation of virtual 

networks, which can be used to isolate traffic and provide enhanced security. 

 

3.5.3 Definition of Dockers  

 

Dockers are used to emulate and simulate network components in the testing environment. 

They are containers that contain an application and all its dependencies necessary to 

function independently. It is an operating system-level virtualization platform that allows 

packaging an application and its dependencies into a lightweight and portable container. In 

our project, we use Docker containers to emulate routers, switches, and satellite nodes. 

 

It allows us to monitor and analyze the network behavior using tools like BFD and OVS. We 

record and analyze the fault detection messages sent and received by the Docker 

containers, which helps us evaluate the effectiveness of BFD in link failure detection and 

the overall response of the SDN network. 

 

Using Docker containers, we create an isolated and reproducible testing environment where 

we simulate different link failure scenarios and evaluate the behavior of the SDN network in 

response to these events. We configure the Docker containers to emulate specific network 

links, establish failure conditions, and monitor the network behavior using tools like 

Bidirectional Forwarding Detection and Open Virtual Switch.  
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3.6 Definition of Bidirectional Forwarding Detection  

 

Bidirectional Forwarding Detection (BFD) is a protocol used in computer networks to detect 

failures in the forwarding path between two or more network nodes. BFD can detect link 

failures in as little as a few milliseconds, making it useful for rapid failure detection and 

recovery in high-speed networks. 

 

BFD works by exchanging small control packets between the two nodes over the network 

link, at a frequency determined by configurable parameters such as the desired detection 

time and the network latency. Each packet includes a sequence number and a timestamp, 

which are used to detect lost or out-of-order packets and to measure the round-trip delay 

between the nodes. One packet of BFD has 66 bytes, it is formed by header and payload:  

 

BFD =  Hdr_eth +  Hdr_ip +  Hdr_udp +  bfd_payload =  66 bytes 

Formula 1 BFD 

 

Ethernet Header (Hdr_eth): Contains information related to Ethernet framing, such as the 

source and destination MAC addresses. 

IP Header (Hdr_ip): Requires IP routing, including source and destination IP addresses. 

UDP Header (Hdr_udp): Is used for the encapsulation of BFD packets within UDP (User 

Datagram Protocol). It includes source and destination port numbers. 

BFD Payload (bfd_payload): The BFD payload carries the actual BFD control information, 

including session state, timers, and flags related to the detection and monitoring of link 

connectivity. 

If BFD detects a failure in the forwarding path, it can trigger appropriate actions, such as 

switching to a backup path or notifying the network management system.  
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3.7 RFC 5880 

 

RFC 5880 is a document that defines the specifications for the Bidirectional Forwarding 

Detection (BFD) protocol. The BFD protocol is a network diagnostic tool used to detect 

failures in the forwarding path between two network nodes, such as routers or switches, 

and quickly notify the nodes of any detected failures. 

 

The main objective of RFC 5880 is to provide a standardized protocol for detecting faults in 

network paths with low overhead and minimal delay. It specifies the message formats, 

timers, and procedures for initiating, maintaining, and terminating BFD sessions between 

network nodes. 

 

3.7.1 RFC 5880 State Diagram: 

 

RFC 5880 describes the OSPFv3 (Open Shortest Path First version 3) routing protocol, 

which is used in communication networks to exchange topology information and calculate 

the shortest paths between different network nodes. 

 

The state diagram defined in RFC 5880 describes the different states of an Open Shortest 

Path First version 2 (OSPFv2) interface. The states are represented as nodes in the 

diagram, and transitions between states are represented by arrows. Below are descriptions 

of each of the states: 

 

Down: The interface is inactive and the OSPFv2 process has not been initiated on the 

interface. 

Init: The OSPFv2 process has been initiated on the interface, but packet exchange with an 

OSPFv2 neighbor has not yet been completed. 

Waiting: The interface is waiting to receive a Hello packet from an OSPFv2 neighbor. 

Point-to-Point: The interface is connected to a single OSPFv2 neighbor. 

DR: The interface is the designated router on a multicast segment. 
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BDR: The interface is the backup designated router on a multicast segment. 

Full: The interface has established a full OSPFv2 adjacency with a neighbor. 

Timer: A timer that counts the time for which a neighbor’s state remains in a specific state. 

 

 

 

 

 

 

3.8 Bidirectional Forwarding Detection Study 

 

BFD (Bidirectional Forwarding Detection) is a protocol designed to quickly and accurately 

detect network connectivity failures. These are some variables relates with Python program: 

 

bfd_status: bfd_forwarding: The value of this variable indicates the OVS perception of 

the I/O capability of a specific switch port. If the value of this variable is True, it means 

that the port can be used for packet forwarding and basically indicates that the BFD 

session state (bfd_status) is UP and furthermore, the remote system is not signaling any 

“concatenated paths” problems [2]. Otherwise, the value of this variable is False. In the case 

that bfd_status: bfd_forwarding is False, the value of bfd_status: state is UP and bfd_status: 

remote_diagnostic has the value “Concatenated Path Down,” an alternate path (if available) 

should be activated or the bfd: cpath_down variable of the appropriate interfaces should be 

set to True to signal the impossibility of using that path upstream. 

Figure 2 RFC 5880 State Diagram [7] 

Figure 3 RFC 5880 State Diagram 2: nodes 
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bfd_status: state: This parameter provides the current state of the BFD session as defined 

in RFC5880. If the state is “down” or “init,” it is considered that the link has failed, and an 

alternate path (if available) should be activated or the bfd: cpath_down variable of the 

appropriate interfaces should be set to True to signal the link failure upstream. 

bfd: min_rx: This option sets the minimum wait time. This is the minimum interval, in 

milliseconds, between received BFD control packets that this system is capable of 

supporting. It determines the maximum receive rate in packets/second (1/min_rx). In the 

standard (RFC5880), this parameter is defined as “Required Min RX Interval.” The default 

value is “1000 ms” (1 bfd packets/second). 

 

bfd: min_tx: This is the minimum interval, in milliseconds, that the local system would like 

to use when transmitting BFD control packets. The value zero is reserved. The default value 

is “100 ms.” This parameter specifies the frequency at which a network interface sends 

FALSE 
TRUE 

Bfd_status = 
up 

Bfd_status:remote_diagnostic
= Concatenated Path Down 

Bfd_status: state = up 

Alternative path 
( if exists) 

Concatenated path  

Bfd: cpath_down 

Bfd_status: bfd_forwarding 

Figure 4 BFD Status diagram 



 

 

 

27 
 

bidirectional connection detection packets. Incorrectly configuring this parameter could 

result in too many or too few packets being sent. 

 

bfd.DesiredMinTxInterval: The minimum interval, in microseconds, between transmitted 

BFD. Control packets that this system would like to use at the current time, less any jitter 

applied.  The actual interval is negotiated between the two systems.  This must be initialized 

to a value of at least one second (1,000,000 microseconds). 

 

bfd.RemoteMinRxInterval: The last value of Required Min RX Interval received from the 

remote system in a BFD Control packet.  This variable MUST be initialized to one.  

 

The transmission rate of BFD packets in one direction is determined by the local system’s 

bfd: min_tx value and the value of the “Required Min RX Interval” parameter received in the 

bfd packets sent by the remote system. As stated in RFC5880, section 6.8.7 [2], 

“Transmitting BFD Control Packets”. 

 

 

RFC5880, section 6.8.7, Transmitting BFD Control Packets [2] 

 

“ …a system MUST NOT transmit BFD Control packets at an interval less than the 

larger of bfd.DesiredMinTxInterval and bfd.RemoteMinRxInterval, less applied 

jitter (see below).  In other words, the system reporting the slower rate determines the 

transmission rate… ” 

 

Where bfd.DesiredMinTxInterval (the value of the local bfd: min_tx parameter) and 

bfd.RemoteMinRxInterval (the value of the remote bfd: min_rx parameter). Finally, in 

asynchronous mode, the detection time calculated in the local system is equal to the value 

of “Detect Mult” received from the remote system, multiplied by the agreed transmission 

interval of the remote system (the larger between bfd.RequiredMinRxInterval and the last 

received Desired Min TX Interval). The value of Detect Mult is (generally, due to fluctuation) 

the number of consecutive packets that must be lost to declare the session inactive. 
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𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 = 𝐷𝑒𝑡𝑒𝑐𝑡𝑀𝑢𝑙𝑡𝑣𝑎𝑙𝑢𝑒 ∗ 𝑚𝑎𝑥 (𝐵𝐹𝐷𝑅𝑀𝑅𝐼 , 𝐵𝐹𝐷𝐷𝑅𝑀𝑇𝑋𝐼)              

Formula 2 Detection time 

𝐵𝐹𝐷𝑅𝑀𝑅𝐼 = 𝑏𝑓𝑑. 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝑀𝑖𝑛𝑅𝑥𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 

𝐵𝐹𝐷𝐷𝑅𝑀𝑇𝑋𝐼 =  𝑙𝑎𝑠𝑡_𝐷𝑒𝑠𝑖𝑟𝑒𝑑𝑀𝑖𝑛𝑇𝑋𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 

 

For example, when a node A receives a BFD packet from node B, node A will update its 

internal variables upon receiving the min_rx value from the remote system within the BFD 

packet. 

RFC5880, section 6.8.7,  Transmitting BFD Control Packets [2] 

 

   With the exceptions listed in the remainder of this section, a system 

   MUST NOT transmit BFD Control packets at an interval less than the 

   larger of bfd.DesiredMinTxInterval and bfd.RemoteMinRxInterval ..... 

   In other words, the system reporting the slower rate determines the  

   transmission rate. 

 

 

The formula for the transmission rate of BFD packets is determined by: 

𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑟𝑎𝑡𝑒 =
1

𝑚𝑎𝑥 (
𝑏𝑓𝑑. 𝐷𝑒𝑠𝑖𝑟𝑒𝑑𝑀𝑖𝑛𝑇𝑥𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙,
 𝑏𝑓𝑑. 𝑅𝑒𝑚𝑜𝑡𝑒𝑀𝑖𝑛𝑅𝑥𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙

)
− 𝑗𝑖𝑡𝑡𝑒𝑟 

Formula 3 Transmission rate 

                            

If we assume that the configurations are symmetrical, the value will be the same.  

Where “max” represents the function that returns the maximum value between 

bfd.DesiredMinTxInterval and bfd.RemoteMinRxInterval, and “jitter” is the amount of 

fluctuation applied to avoid synchronization with other systems on the same subnet.  
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The bandwidth (BW) is calculated for the transmission rate and size of a 66-byte BFD 

packet:  

𝐵𝑊 = 𝑟𝑎𝑡𝑒 (
𝑝𝑘𝑡

𝑠
) ∗ ( 66 𝑏𝑦𝑡𝑒𝑠 ∗ 8

𝑏𝑖𝑡𝑠

𝑏𝑦𝑡𝑒
) 

Formula 4 BandWidth 

 

bfd: enable: This option indicates whether BFD is enabled on the virtual switch OVS. The 

default value is “false,” which means that BFD is not enabled. If set to “true,” BFD will be 

enabled. 

bfd: mult: This option sets the multiplicative factor applied to BFD timeout values. The 

default value is “3”. This parameter specifies the number of times a network interface should 

attempt to detect bidirectional connectivity before declaring the connection as down. 

Incorrectly configuring this parameter could cause intermittent connectivity issues to be 

ignored, which could affect the effectiveness of the testing project.  

cpath_down: Indicates whether a path should be considered inactive when connectivity 

with the BFD neighbor is lost. The value can be “true” or “false”. When cpath_down is “true” 

it means that the link is down.  

bfd_local_src_mac: Sets the source MAC address of BFD packets sent by this device. 

bfd_local_dst_mac: Sets the destination MAC address of BFD packets sent by this device 

bfd_remote_dst_mac: Sets the destination MAC address of BFD packets received by this 

device. 

bfd_src_ip: Sets the source IP address of BFD packets sent by this device. 

bfd_dst_ip: Sets the destination IP address of BFD packets sent by this device. 

oam: Indicates whether the device is OAM (Operations, Administration, and Maintenance) 

compatible and should be used for BFD packet exchange. The value can be “true” or “false”. 

wait_until : parameter used to specify the wait time before the OVS daemon starts BFD 

negotiation. This parameter is used when configuring BFD on a port and to want to wait until 

another process in the system (such as a routing protocol daemon) has configured the 

remote neighbor before starting BFD negotiation. 
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3.8.1 Example of BFD 

  

This code ( bfd_config.txt ) is a configuration example of BFD in two devices, d1 and d2, 

using Open vSwitch (OVS). 

#in d1: 

ovs-vsctl list interface d1-eth0 

ovs-vsctl set interface d1-eth0 bfd:bfd_dst_ip=169.254.1.2 

ovs-vsctl set interface d1-eth0 bfd:bfd_local_src_mac=00:23:20:00:00:01 

ovs-vsctl set interface d1-eth0 bfd:bfd_local_dst_mac=00:23:20:00:00:02 

ovs-vsctl set interface d1-eth0 bfd:enable=true 

 

#in d2: 

ovs-vsctl set interface d2-eth0 bfd:bfd_src_ip=169.254.1.2 

ovs-vsctl set interface d2-eth0 bfd:bfd_dst_ip=169.254.1.1 

ovs-vsctl set interface d2-eth0 bfd:bfd_local_dst_mac=00:23:20:00:00:01 

ovs-vsctl set interface d2-eth0 bfd:bfd_local_src_mac=00:23:20:00:00:02 

ovs-vsctl set interface d2-eth0 bfd:enable=true 

 

 

 

In d1, the current configuration of the “d1-eth0” interface is first displayed using the 

command “ovs-vsctl list interface d1-eth0”. Specifically, the command “ovs-vsctl list 

interface d1-eth0” is used to list the current configuration of the “d1-eth0” interface in Open 

vSwitch (OVS). 

“ovs-vsctl” is a command-line tool used to manage and configure OVS. 

“list” is a subcommand used to list the current configuration of a specific resource in OVS. 

“interface” is the type of resource that is desired to be listed, in this case, a network interface. 

“d1-eth0” is the name of the network interface that is desired to be listed. 

When this command is executed, the current configuration of the “d1-eth0” interface in OVS 

will be displayed in the terminal output. 
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Next, the interface is configured to use BFD with the destination IP address “169.254.1.2”, 

the local source MAC address “00:23:20:00:00:01”, and the local destination MAC address 

“00:23:20:00:00:02”. Finally, BFD is enabled on the interface with “bfd:enable=true”, this 

expression is an option used to enable BFD on a specific network interface. 

 

When “enable=true” is set in the BFD configuration of an interface, bidirectional connection 

detection is activated for that particular interface. This means that the interface will initiate 

bidirectional connection detection to verify if the network connection through that interface 

is active and operating correctly. 

 

In d2, the “d2-eth0” interface is configured to use BFD with the source IP address 

“169.254.1.2”, the destination IP address “169.254.1.1”, the local destination MAC address 

“00:23:20:00:00:01”, and the local source MAC address “00:23:20:00:00:02”. 

 

To check the BFD configuration, two queries are made using the “ovs-vsctl” command. In 

the first query, the current BFD configuration for the “d1-eth0” interface is listed. In the 

second query, the current BFD status for the same interface is listed, including information 

such as connection status and flap count. 
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 Methodology  

4.1 Developement of methodology 

 

The objective is to implement a grid network. This network is based on switching and does 

not utilize routing. Communication paths are established through Layer 2 in the switching 

tables. Considering an MxN grid network, it is important to define the types of traffic that will 

be used and associate them with the nodes. For this purpose, aspects such as the following 

need to be defined: 

 

IP addresses: IP addresses will be assigned to each node in the network for their 

identification and communication within the context of the grid network. 

 

MAC addresses: MAC addresses will be assigned to each node in the network. These 

addresses are used to uniquely identify each node at the data link layer. 

 

Node identification: Each node in the grid network should have a clear and unique 

identification method. This includes assigning distinct IP addresses to each node. 

 

Audio Codec: Specific characteristics of the G.711 audio codec will be utilized due to its 

audio quality and compression properties. 

 

 

 

 

 

 

 



 

 

 

33 
 

4.2 Definition of the network topology 

 

Mininet is a software emulator that can be used to create virtual networks of hosts, switches, 

controllers and links. Standard Linux network software is used by mininet switches and 

hosts. It is supported by OpenFlow with Software-Defined Networking.  

 

 

 

 

 

 

 

 

 

Using the Mininet/Containernet API, we will implement a Python code that, when executed, 

sets up a set of virtual machines (Docker containers in this case) that configure the network 

nodes. Additionally, it should interconnect each of these nodes with the appropriate links to 

configure the MxN grid topology. 

 

During the construction process, the following will be appropriately configured: 

 The interfaces of each node to carry out the link failure management process. 

 The programming of each corresponding OVS (Open vSwitch) for each node to 

establish end-to-end paths that determine the test routes. 

Figure 5 Grid topology network for 3x3 
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 The corresponding processes for link failure signaling and path switching will be 

started.  

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3 Design of NxM satellite network 

 

A 3x3 satellite network refers to a specific configuration of satellite communication systems 

involving nine satellites. In this network setup, nine satellites are strategically positioned in 

space to establish communication links and provide coverage over a designated area on 

Earth. In this case, the diagram that is used in a simulation of Mininet is a satellite network 

3x3 where node are numbered from zero to eigh. Each node has OAM IP specific policy.   

Figure 6 Workflow diagram of implementation 
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Ethernet network interface are numbered as d_node-interface. In figure1 we can observe 

the diagram of implementation.  

Each node has a interface network for connect with neighbour nodes: 

Node Ethernet network 

d0 Eth0, Eth1 

d1 Eth0, Eth1, Eth2 

d2 Eth0, Eth1 

d3 Eth0, Eth1,Eth2 

d4 Eth0, Eth1,Eth2,Eth3 

d5 Eth0, Eth1,Eth2 

d6 Eth0, Eth1 

d7 Eth0, Eth1,Eth2 

d8 Eth0, Eth1 

Table 2 Node and interface of the grid 

 

Figure 7 Diagram of 3x3 satellite network 
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4.4 Links: 

 

Each node will be connected by links (end-to-end path) to other nodes. Each node will be 

directly connected to adjacent nodes. For example, node 0 will be connected to nodes 1 

and 3, while node 1 will be connected to nodes 0, 2, and 4.  

4.5 IP’s and MAC’s 

 

For IP addresses, the structure used is "172.16.1.origin/destination". Here, "origin" and 

"destination" are numerical values representing the identifiers of the source and destination 

nodes, respectively. For example, if the source node has the identifier 2 and the destination 

node has the identifier 5, the source IP address would be "172.16.1.2" and the destination 

IP address would be "172.16.1.5". 

 

For MAC addresses, the structure used is "00:02:00:00:00:origin/destination". Again, 

"origin" and "destination" are numerical values representing the identifiers of the source and 

destination nodes, respectively. The ":02X" format is used to format the identifier into two 

hexadecimal digits. For example, if the source node has the identifier 2 and the destination 

node has the identifier 5, the source MAC address would be "00:02:00:00:00:02" and the 

destination MAC address would be "00:02:00:00:00:05". 

This code is used to generate the IP and MAC addresses for the source and destination 

nodes in a specific network: 

ip_src = f’172.16.1.{src} 

hw_src = f’00:02:00:00:00:{src:02X} 

ip_dst = f’172.16.1.{dst}’ 

hw_dst = f’00:02:00:00:00:{dst:02X} 
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4.6 End-to-End path selection 

 

The End-to-End path selection refers to the choice of communication routes from a source 

point to a destination point in a communication network. Partially disjoint paths refer to 

routes that share some links along the path, while fully disjoint paths refer to routes that do 

not share any links in the path. 

Within fully disjoint paths, there are two types: paths with link disjointness and paths with 

node disjointness. Link disjoint paths refer to routes that have unique links in common along 

the path, while node disjoint paths refer to routes that do not have any nodes in common 

along the path. 

The selection of partially disjoint and fully disjoint End-to-End paths is important in the 

planning and design of communication networks as it allows for alternative communication 

routes that enable service continuity in case of failures in any point of the network. 

4.7 Preset links and link failures:  

 

If the links fail, Bidirectional Forwarding Detection (BFD) will activate and notify the nodes 

of the connection disruption by cpath_down. Depending on how the network is configured, 

affected nodes may attempt to establish an alternative connection using another available 

path, or they may wait for the original connection to be restored. 

The “cpath_down” option in BFD configuration allows notification to other links that a 

connection disruption has occurred, and a path has dropped. This notification helps other 

nodes adjust their paths and avoid sending traffic to an unavailable system. In other words, 

the “cpath_down” option allows nodes to take preventive measures to ensure traffic is 

efficiently and effectively routed even in case of a connection disruption. 

In this project, packets will be sent and analyzed to see the paths. TCPDump will be used 

to analyze the traffic. To do this, tcpdump must be executed on each node that needs to be 

monitored, and then the capture files generated must be analyzed with a tool like Wireshark. 

On each node, the following will be executed: 

tcpdump –i dx-ethx –w file.dump  

 

Where dx and eth are each node and interface. 
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4.8 Implementation of 3x3 satellite network with Bidirectional Forwarding Detection 

and Open Virtual Switch 

 

The project has been implemented using a Linux Ubuntu virtual machine. The scripts have  

been written in Python and Bash languages, taking into consideration the languages of  

Mininet.  

 

First of all, define 3x3 satellite network to understand the connection which each node and  

to know switching tables ( figure 1 ). Each node ( satellite ) has a policy of IP and MAC to  

identify the node and link.  

 

Then, in each switching node: start an OVS (OpenVirtualSwitch), activating the BFD and  

configuring it appropriately. Define and load the primary and secondary switching tables  

needed to run the test.  

 

The primary switching table, also known as the forwarding table or MAC (Media Access  

Control) table, is a data structure used by network switches to make forwarding decisions.  

It contains information about the MAC addresses and associated ports of connected  

devices in the network.  

 

The secondary switching table, also referred to as the backup switching table or redundant  

table, serves as a backup to the primary table. It provides redundancy and fault tolerance  

in case of primary table failures.  

To obtain the results, a path passing through the 3x3 network will be selected, going from  

node 0 to node 8, traversing the entire satellite network. The main ( primary ) path that the 

traffic will follow is: 

 

Node 0  Node 3  Node 4 Node 7  Node 8. 
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The secondary path that the traffic follow is:  

 

Node 0  Node 1  Node 2 Node 5  Node 8. 

 

A link failure will be induced between two nodes, specifically from node 4 to node 7. 

Based on this test, various parameters will be analyzed, such as the detection time (3.8  

formula 2), path change, notification of link failure to neighboring nodes (nodes 3, 4, 7), and 

to the final nodes (nodes 0, 8). 

 

Figure 8. Grid 3x3: Primary and secondary path 

 

The theoretical transmission rate of BFD packets (packets/sec) was determined earlier in 

the document based on the configuration parameters (3.6 formula 1), following RFC 5880.  

The obtained transmission rate value is used as the "primary key" in the results table. The 

fixed value will be bfd:min_tx at 10, while the bfd:min_rx value will be varied. By setting the 

bfd:min_tx value to 10, it means that BFD control packets are sent every 10 milliseconds. 

This interval is considered relatively frequent, allowing for rapid detection of link failures. It 
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provides a balance between timely failure detection and minimizing the overhead 

associated with frequent packet transmissions.  

 

This table shows the equivalence between the bfd_min_rx, transmission rate, interval and 

bandwidth (using formula 3, Transmission rate and formula 4, BandWidth): 

 

Bfd_min_rx Transmission rate 

(pkt/s) 

Interval (ms) BW (bits/s) 

1 1 1000 528 ( 0.528 Kbps) 

0.5 2 500 1056 (1.056 Kbps) 

0.1 10 100 5280 (5.28 Kbps) 

0.01 100 10 52800 ( 52.8 Kbps) 

Table 3 Default properties of BFD min rx 

 

According to the RFC, the minimum recommended interval for transmitting BFD packets is 

one second. This value is set to ensure sufficient time between packet transmissions, 

especially in larger networks or networks with higher latency.  

However, the RFC also states that the transmission interval should not be lower than the 

value of bfd.RemoteMinRxInterval, which is received from the remote end in BFD packets. 

This means that if the remote end specifies a lower bfd.RemoteMinRxInterval value, the 

transmission interval must be adjusted to meet that restriction.  

Therefore, the used interval values (0.5 seconds, 100 ms, 10 ms) represent cases where 

the remote end specifies a lower bfd.RemoteMinRxInterval than 1 second. These values 

allow evaluating how the system behaves and responds when adjusting the transmission 

interval to meet the received restrictions. 

 

 A total of 120 tests were performed, varying the "mult" factor between 2, 3, and 4. The jitter 

value is not a configurable parameter; it is automatically set by the OVS BFD 

implementation. The packet transmission rate for the default RX ( reception ) and TX 

( transmission) values is one packet per second. The tests were repeated for 2 packets per 
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second, 5 packets per second, and 10 packets per second, which are referred to as "rate 

(pkt/s)" values, to evaluate the packet transmission rate under different conditions. 

 

The timestamps will be relative to the oldest one in each test. If the link-down event occurs  

at time T, the remaining related events will occur at T+DT (after DT seconds). T has been  

set as 0, and the measured times are in units of DT. 

 

The bandwidth has been calculated theoretically, considering that the BFD packet contains  

66 bytes (Hdr_eth + Hdr_ip + Hdr_udp + bfd_payload). The bandwidth will be the size of  

the BFD packet (66 bytes * 8 bits/byte), resulting in 528 bits per second, multiplied by the  

packet transmission rate: 

 

𝐵 𝑎 𝑛 𝑑 𝑊 𝑖 𝑑 𝑡 ℎ = 𝑇 ℎ𝑒 𝑜 𝑟 𝑖 𝑐  𝑝 𝑎 𝑐 𝑘 𝑒 𝑡  𝐵 𝐹 𝐷  ∗ 𝑡 𝑟 𝑎 𝑛 𝑠 𝑚 𝑖 𝑠 𝑠 𝑖 𝑜 𝑛  𝑟 𝑎 𝑡 𝑒                                 

Formula 5 Bandwidth 2 

 

The total bandwidth of a link will be doubled (2 * BandWidth) since traffic will travel in both  

directions. Additionally, the theoretical bandwidth will be compared with the bandwidth  

obtained from the tests. 

 

The results have been obtained by processing the data. All the values read by 

implementation have been transferred to a dedicated directory, which generates a .csv file. 

This automation allows for the measurements to be easily analyzed and compared. 

4.9 Test set sending synthetically generated VoIP traffic 

 

A set of tests has been carried out to analyze voice packets by sending synthetically 

generated VoIP traffic and generating pre-programmed link failures. The G.711 encoding 

method is used for the voice packets, with a packet rate of 50 per second (pps), where each 

packet is generated every 20 milliseconds (ms).  
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The G.711 encoding scheme operates at a sampling frequency of 8 kHz, resulting in 8 

samples per millisecond and 160 samples per 20 ms packet. Each sample is represented 

by 1 byte, giving a total of 160 bytes per packet. By adding the overhead of the IP packet 

(12 bytes), the UDP protocol overhead (8 bytes), and the IP header (20 bytes), the total size 

of the IP packet becomes 200 bytes.  

At an IP packet rate of 50 pps, the data rate can be calculated as follows:  

200 bytes/packet ∗  50 pps =  10,000 bytes per second (80 Kbps) at the IP level.  

 

To capture packets using the ping command, the payload size needs to be adjusted to fit 

within the desired Ethernet packet size of 218 bytes. The ping command is executed with 

the following parameters:  

 

To node 8 from node 0: Ping –D 172.16.1.8 –i 0.02 –s 160 > /mnt/ping_8.log 

To node 0 from node 8: Ping –D 172.16.1.0 –i 0.02 –s 160 > /mnt/ping_0.log 

 

To generate packets of 218 bytes at the Ethernet level, the appropriate payload size for the  

ping command needs to be determined. By subtracting the sizes of the IP and Ethernet  

headers from the total packet size, the payload size is obtained. 

For Ethernet: 

Total packet size = 218 bytes 

IP header size = 20 bytes 

Ethernet header size = 18 bytes 

Payload size for the ping command = Total packet size - IP header size - Ethernet header  

Size:  𝑃𝑎𝑦𝑙𝑜𝑎𝑑 𝑠𝑖𝑧𝑒 =  218 −  20 −  18 =  180 𝑏𝑦𝑡𝑒𝑠 

Therefore, to generate packets of 218 bytes at the Ethernet level, the payload size of the  

ping command should be set to 180 bytes. 

The total number of packets that can be generated can be calculated using the duration  

and the time interval per packet. In this case: 

Total duration = 11 seconds (for starting network, starting controller, starting and stop  
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TCPDump) 

Time interval per packet = 0.02 seconds 

 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 =
𝑇𝑜𝑡𝑎𝑙 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛

𝑇𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑝𝑒𝑟 𝑝𝑎𝑐𝑘𝑒𝑡
=

11

0.02
= 550 𝑝𝑎𝑐𝑘𝑒𝑡𝑠                       

Formula 6 Number of packets 

 

Therefore, a total of 550 packets can be generated within the given duration and time  

interval for the test. 

4.10 Parameters: bandwidth and packet loss suffered by VoIP 

 

The key performance indicators (KPIs) for the test will include a bandwidth and packet loss 

experienced by the voice packets during a VoIP communication under the simulated link 

failures. To generate the voice traffic patterns (VoIP), a traffic synthesis tool such as 

TCPdump will be used. The goal is to analyze and measure the impact of the defined link 

failures on the quality and reliability of the VoIP communication, as indicated by these KPIs. 

 

 Results  

5.1  Test set: Analyze theoretical and practical data 

 

A detailed analysis of the detection times in different nodes of the network is presented 

under certain conditions. Data has been collected from nodes 8, 7, 4, 3, and 0, and both 

the theoretical detection times and the averages of the observed detection times have been 

calculated. 

 

For all nodes, including the endpoint nodes responsible for the change of route (nodes 8 

and 0) as well as the intermediate nodes (nodes 7, 4, and 3), the actual detection times 

have been recorded for different values of bfd_min_rx (10, 100, 500, and 100 milliseconds).  
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Additionally, the average of the practical detection times has been calculated for each 

bfd_min_rx value. These data allow us to evaluate the effectiveness of the detection in these 

nodes and compare it with the expected theoretical values. In the following timing results 

tables, measure detection time values are averaged from a 10 runs measurements, only 

the average is showed, other statistical parameters are presented at appendix 12. 

5.2 Theoretical values  

This table represents the detection time in milliseconds for different values of bfd_min_rx 

and the "mult" parameter ( 2, 3 and 4 ). The detection time has been calculated using 

formula 2 ( Detection Time): 

 

𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 = 𝐷𝑒𝑡𝑒𝑐𝑡𝑀𝑢𝑙𝑡𝑣𝑎𝑙𝑢𝑒 ∗ 𝑚𝑎𝑥 (𝐵𝐹𝐷𝑅𝑀𝑅𝐼 , 𝐵𝐹𝐷𝐷𝑅𝑀𝑇𝑋𝐼)          

Formula 2 Detection time [3] 

   

   Theoric detection time ( seconds ) 

bfd_min_rx 

(milliseconds) 
2 3 4 

10 0.02 0.03 0.04 

100 0.2 0.3 0.4 

500 1 1.5 2 

1000 2 3 4 

Table 4 Theoric values 

 

Regarding the final nodes, such as node 8 and node 0, signal times have been recorded 

for each. Since these nodes are located at the edges of the satellite network, comparing 

their detection time with the theoretical values is not meaningful, as they are the last to 

receive the signal indicating a link failure. However, it is possible to compare the detection 

times of the intermediate nodes with the theoretical values to evaluate their performance 

within the satellite network. 
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5.2.1 Node 8: Timing results 

 

When node 8 receives the cpath down signalling, a change path is performed on node 8 

switching table. The new path is now 0, 1, 2, 5, 8 ( secondary path ) . We call signalling time 

to the time when link failure occurs to when node 8 receives the cpath down notification. 

DT: Detection time ( seconds ) 

MDT: Average of Node 8 when change path.  

bfd_min_rx 

(ms) 

BFD 

BW theoric 

( Kbps) 

MULT 

2 3 4 

DT MDT DT MDT DT MDT 

10 105.6 0.020 0.132 0.030 0.142 0.040 0.151 

100 10.56 0.200 0.298 0.300 0.395 0.400 0.480 

500 2.112 1.000 0.878 1.500 1.466 2.000 1.895 

1000 1.056 2.000 1.754 3.000 2.721 4.000 3.734 

Table 5 Node 8: Timing results 

 

 

 

5.2.2 Node 0: Timing results 

 

In this case, when node 0 receives the cpath down signaling, a route change is performed 

in node 0 switching table. The new route is now 0, 1, 2, 5, 8 . Now, the signaling time refers 

to the time from when the link failure occurs until node 0 receives the cpath down notification. 

 

DT: Detection time ( seconds ) 

MDT: Average of Node 0 when change path.  
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bfd_min_rx 

(ms) 

BFD BW theoric 

( Kbps) 

MULT 

2 3 4 

DT MDT DT MDT DT MDT 

10 105.6 0.020 0.136 0.030 0.144 0.040 0.154 

100 10.56 0.200 0.282 0.300 0.385 0.400 0.480 

500 2.112 1.000 0.903 1.500 1.377 2.000 1.997 

1000 1.056 2.000 1.655 3.000 2.725 4.000 3.778 

Table 6 Node 0: Timing results 

 

 

5.2.3 Node 7: Timing results 

 

Node 7 detects the link failure almost immediately as it is a node directly connected to the 

link which fails ( link from node 4 to node 7). In next table the theoretical detection time (DT) 

and the measured detection time (MDT) in order to compare the real performance.  

bfd_min_rx 

(ms) 

BFD 

BW theoric 

( Kbps) 

MULT 

2 3 4 

DT MDT DT MDT DT MDT 

10 105,6 0,020 0,022 0,030 0,033 0,040 0,041 

100 10,56 0,200 0,165 0,300 0,266 0,400 0,362 

500 2,112 1,000 0,699 1,500 1,291 2,000 1,741 

1000 1,056 2,000 1,568 3,000 2,547 4,000 3,550 

Table 7 Node 7: Timing results 
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5.2.4 Node 4: Timing results 

 

Node 4 also detects the link failure almost immediately because, like Node 7, it is directly 

connected to the failing link. The following table presents the theoretical detection time (DT) 

and the measured detection time (MDT) for comparison of actual performance.  

 

bfd_min_rx 

(ms) 

BFD 

BW theoric 

( Kbps) 

MULT 

2 3 4 

DT MDT DT MDT DT MDT 

10 105.6 0.020 0.025 0.030 0.034 0.040 0.043 

100 10.56 0.200 0.157 0.300 0.253 0.400 0.363 

500 2.112 1.000 0.748 1.500 1.214 2.000 1.828 

1000 1.056 2.000 1.463 3.000 2.557 4.000 3.598 

Table 8 Node 4: Timing results 

 

5.3 Bandwidth and packet loss suffered by VoIP  

 

In the context of the described scenario, a connectivity test is conducted using the ping 

protocol between node 8 and node 0, as well as between node 0 and node 8. This test is 

performed using the G.711 voice codec and simulates the transmission of a 64-byte data 

packet. 

 

The bandwidth required to transmit this packet is calculated by multiplying the packet size 

in bytes by 8, since 1 byte is equivalent to 8 bits. In this case, the packet size is 64 bytes, 

therefore, the required bandwidth is 64 * 8 = 512 bits. 
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5.3.1 Node 8 : Timing results of ping 

 

When node 8 receives the cpath down signalling, a change path is performed on node 8 

switching table.  

bfd_min_rx 

(ms) 

BFD 

BW theoric 

( Kbps) 

MULT 

2 3 4 

DT MDT DT MDT DT MDT 

10 105.6 0.020 0.134 0.030 0.142 0.040 0.154 

100 10.56 0.200 0.291 0.300 2.737 0.400 3.696 

500 2.112 1.000 0.936 1.500 1.430 2.000 2.011 

1000 1.056 2.000 1.715 3.000 2.737 4.000 3.696 

 

 

Table 9 Node 8. Timing results of ping 

 

5.3.2 Node 0 : Timing results of ping 

  

bfd_min_rx 

(ms) 

BFD 

BW theoric 

( Kbps) 

MULT 

2 3 4 

DT MDT DT MDT DT MDT 

10 105.6 0.020 0.242 0.030 0.254 0.040 0.264 

100 10.56 0.200 0.436 0.300 3.043 0.400 3.925 

500 2.112 1.000 1.105 1.500 1.542 2.000 2.064 

1000 1.056 2.000 1.827 3.000 3.043 4.000 3.925 

 

Table 10 Node 0: Timing results of ping 
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5.3.3 Node 7 : Timing results of ping 

 

bfd_min_rx 

(ms) 

BFD 

BW theoric 

( Kbps) 

MULT 

2 3 4 

DT MDT DT MDT DT MDT 

10 105.6 0.020 0.024 0.030 0.033 0.040 0.042 

100 10.56 0.200 0.166 0.300 2.543 0.400 3.510 

500 2.112 1.000 0.763 1.500 1.254 2.000 1.836 

1000 1.056 2.000 1.522 3.000 2.543 4.000 3.510 

 

Table 11 Node 7: Timing results of ping 

 

5.3.4 Node 4 : Timing results of ping 

 

bfd_min_rx 

(ms) 

BFD 

BW theoric 

( Kbps) 

MULT 

2 3 4 

DT MDT DT MDT DT MDT 

10 105.6 0.020 0.024 0.030 0.035 0.040 0.042 

100 10.56 0.200 0.177 0.300 2.694 0.400 3.617 

500 2.112 1.000 0.775 1.500 1.254 2.000 1.732 

1000 1.056 2.000 1.519 3.000 2.694 4.000 3.617 

 

Table 12 Node 4: Timing results of ping 

 

5.3.5 Flow graph 

 

A specific test of ping between node 0 and node 8 is randomly selected. Next, the flow graph 

is extracted from Wireshark to visualize the request and reply process that occurs during 

the execution of the test. 
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The flow graph obtained from Wireshark provides a visual representation of the data 

exchange between different network elements while the test is being conducted. In this 

particular case, the selected test involves communication between two entities, where one 

entity sends a request and the other entity responds to that request. 

 

Upon analyzing the flow graph, it is observed that an echo request is sent from node 0 to 

node 8. Subsequently, node 8 sends an echo request to node 0. Then, node 0 responds to 

the echo request sent by node 8, generating an echo reply.  

 

This exchange of echo requests and echo replies represents the bidirectional 

communication between the nodes, allowing for verification of connectivity and response 

times between them. The flow graph provides a visual representation of the transmission of 

these echo messages, offering valuable information about the behavior and performance 

of the network during the test execution. 

 

 

 

 

 

 

 

 

 

 

 

By analyzing the flow graph, it is possible to examine the sequence, timings, and detect 

possible issues or delays in the request and reply process. 

 

In Figure 9, it can be observed that the ping is exchanging echo requests and replies until 

a point where it no longer receives any responses. At that moment, it indicates that the link 

Figure 9 Ping between node 0 and node 8 (WireShark) 
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has failed or dropped. From this flow graph obtain the value that the ping to be late of 0.226 

milliseconds ( final time – start time).  

 

5.3.6 Packet loss 

 

The ping logs from node 0 and node 8 were examined and stored as .log files for packet 

loss analysis. The tables show the percentage of lost packets out of 550 sent.  

ping_0.log     total=550 packets 

packet loss %       

bfd_min_rx (milliseconds) 2 3 4 

10 6.36% 6.54% 6.54% 

100 7.81% 8.72% 9.27% 

500 13.45% 15.09% 19.81% 

1000 17.45% 26.18% 30.18% 

    

ping_8.log      total=550 packets 

packet loss %       

bfd_min_rx (milliseconds) 2 3 4 

10 6.18% 6.54% 6.36% 

100 7.09% 8.18% 9.27% 

500 12.54% 15.09% 21.27% 

1000 17.81% 27.63% 30.90% 

Table 13 Packet loss: ping 0 and ping 8 

 

Analysis of the log files reveals a clear correlation: higher values of bfd_min and mult result 

in increased packet loss. 

This observation suggests that increasing the bfd_min_rx parameter, which represents the 

minimum time interval between BFD control packets, and increasing the mult parameter, 

which represents the multiplier for the detection time, result in a higher probability of packet 

loss. This can be attributed to the longer intervals between the control packets and the 

extended detection time, potentially allowing more opportunities for packets to be dropped 

or delayed within the network. 
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 Economic feasibility study 

 

The resources used for this project have incurred no expenses. The code developed and 

the libraries employed are open source, resulting in no actual costs. Nevertheless, if we 

consider the wages of the engineers who were committed to this project and informàtic 

material for a duration of 18 weeks, we can determine the total price of the project : 

 

Total price: 6.000+1500+527+10.1 = 8,037.1 €1 

 Analysis and assessment of environmental and social implications  

 

Environmental Impact: The project’s implementation and testing activities may have 

consequences for the satellite network’s ecological footprint. This includes evaluating 

energy consumption, carbon emissions, and any potential environmental risks 

associated with the project’s hardware and software components. 

 

Satellite Operations: Assessing the impact of the Link failure testing project on the normal 

functioning of the satellite network is crucial. This involves understanding how the project 

may affect satellite communications, data transmission, and overall network performance. 

 

Network Reliability and Service Disruptions: Analyzing the implications of link failures 

and the utilization of Bidirectional Forwarding Detection (BFD) on the reliability and 

continuity of network services is essential. This assessment helps identify potential 

vulnerabilities, downtime, and the impact on end-users. 

 

 

 

 

 

                                                

1 The development of the economic feasibility study is in the document attached to the final degree 
project: Economic_feasibility_study.pdf [19] 
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 Conclusions 

 

 Configuration and understanding of the satellite network: The structure of the 3x3 

satellite network in Mininet was successfully defined, incorporating policies for IP, 

MAC, and Ethernet for each node. This allowed for the establishment of connections 

between nodes and the determination of switching tables.  

 

 Implementation of the system: The system was successfully implemented in each 

node using OpenVirtualSwitch (OVS). Furthermore, bidirectional forwarding 

detection (BFD) was activated and configured correctly. The notification of 

bfd_forwarding and cpath_down are configured to analyse the results and the traffic 

in the network.  

 

 Network evaluation: A specific route from node 0 to node 8, passing through two 

disjoint end-to-end paths was selected to evaluate the system's performance. 

Through this evaluation, the impact of deliberately induced link failure from node 4 

to node 7 was analyzed. 

 

 Parameter analysis: Various key parameters were analyzed to evaluate the system's 

behavior. These parameters included fault detection time, theoretical and practical 

bandwidth, transmission rate, notification of link failure to neighboring nodes (nodes 

3, 4, and 7) and to the final nodes (nodes 0 and 8), as well as data analysis of "ping" 

for VoIP simulation in each case. 

 

 Regarding the comparison between the theoretical detection time and the average 

detection time in the node, in general, the theoretical values are very similar to the 

practical values. The comparison of the theoretical bandwidth and the practical 

values, a similar trend is observed, except for the final stage where the practical 

values slightly increase. 

 

 In general, selecting the appropriate values is a complex task as there are multiple 

parameters that influence the selection process. Ideally, a fast detection time is 

desired, leading to the selection of low values for bfd_minrx and Mul. Setting a low 

bfd_minrx value translates to a higher OAM bandwidth. However, it's important to 
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limit OAM traffic as bandwidth is a valuable resource that should be efficiently 

utilized by the destination service. Typically, OAM traffic is kept within 1% of the link's 

total bandwidth. For example, assuming a link bandwidth of 10 Mbps and selecting 

a value of 10 for the bfd_minrx parameter, the resulting OAM bandwidth would be 

105.6 Kbps, which corresponds to 1.056% of the link's total bandwidth. 

 

 

 The mult value becomes significant when the link error packet rate is non-zero. In 

such cases, the system can determine a link failure when a burst of packets is lost. 

Generally, a value of 3 is accepted for the mult parameter.  

 

 Using these values, a voice communication between node 0 and node 8 would 

experience a freeze of 0.266 seconds from the moment of link failure to the rerouting 

process. This duration falls within an acceptable range according to the MOS (mean 

opinion score) E-model [4]. However, it's worth noting that the evaluation depends 

on the number of hops between the source and destination nodes. 

 

 This provides an initial understanding of the BFD protocol and its performance in 

detecting link failures. In actual systems, a combination of various link/path failure 

mechanisms work together to provide different levels of security, detection times, 

and path changes. Some mechanisms rely on BFD link failure detection and cpath 

down, while others employ a probing system to monitor the state of source-to-

destination paths. 
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 Planning and Scheduling of the Proposed Future Work 

 

Expansion of the satellite network: Instead of having a 3x3 network, it is proposed to expand 

the satellite network to have a larger structure. This will allow evaluating the capacity for 

fault detection and recovery in a more complex and realistic network and not only for one 

node. Additional nodes and links can be added, taking into consideration the circular 

topology of the Earth for a more accurate representation. 

 

Consideration of realistic conditions: To obtain more representative results, it is important 

to consider the conditions and limitations of the real environment. For example, the 

communication delay due to the distance in the satellite network can be taken into account, 

as well as possible interferences or signal degradations. These realistic conditions can 

impact the performance and effectiveness of fault detection and recovery techniques. 

 

Evaluation of other protocols and algorithms: In addition to BFD, other protocols and 

algorithms for link fault detection and recovery in satellite SDN networks can be considered. 

Performance comparisons and analyses can be conducted to determine which protocols 

and algorithms are more suitable for different situations and scenarios. 

 

Scalability analysis: With the expansion of the satellite network, it is important to analyze 

the scalability of the system. This involves evaluating how the link fault detection and 

recovery system behaves and adapts as more nodes and links are added to the network. 
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 Attachments 

11.1 Development of the solution  

These are Python scripts for creating a network using the Mininet ( Containernet ). The main 

script (V_containernet_tests.py) code assumes the availability of scripts such as cpath.sh, 

print_bfd_cfg.sh, and switch_path.sh in the specified paths (/mnt/).  

In total, the scripts created to carry out the entire project are:  

o V_containernet_tests.py  

o cpath.sh 

o switch_path.sh  

o tcpdump.sh 

o process_test.sh  

o runs.sh 

11.2 V_containernet_test.py  

 

It is the most important script. Is used to add docker container, create links between nodes, 

create paths and start cpath notifications:  

import argparse 

import re 

import sys 

import time 

 

from mininet.cli import CLI 

from mininet.link import TCLink 

from mininet.log import info, setLogLevel 

from mininet.net import Containernet 

from mininet.node import Controller 

 

 

def nodeName(row_num, col_num, prefix, COLS): 

    idx = col_num + row_num * COLS 

    return f'{prefix}{idx}', idx 
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def configBFD(nodes, net, ROWS, COLS, BFD_params): 

 

    min_rx = BFD_params['min_rx'] 

    min_tx = BFD_params['min_tx'] 

    mult = BFD_params['mult'] 

 

    for i in range(ROWS): 

        for j in range(COLS): 

            _, nodeindex = nodeName(i, j, "d", COLS) 

 

            if j < COLS - 1: 

                nodeNextColNeigh = nodeindex + 1 

                linklst = net.linksBetween(nodes[nodeindex], 

nodes[nodeNextColNeigh]) 

                linkH = linklst[0] 

                iface1 = linkH.intf1.name 

                iface2 = linkH.intf2.name 

                 

                # Configure BFD stuff 

                # oamIP 169.254.NodeNum.(IfaceNum + 1) to avoid 169.254.0.0 

                # oamHw OUI-OAM:00:NodeNum:(IfaceNum + 1) to be coherent 

 

                iface1idx = re.match("d[0-9]+-eth([0-9]+)", iface1) 

                iface2idx = re.match("d[0-9]+-eth([0-9]+)", iface2) 

 

                if iface1idx is not None and iface2idx is not None: 

                    iface1idx = int(iface1idx.group(1)) + 1 

                    oamIP1 = f'169.254.{nodeindex}.{iface1idx}' 

                    oamHw1 = f'00:04:00:00:{nodeindex:02X}:{iface1idx:02X}' 

 

                    iface2idx = int(iface2idx.group(1)) + 1 

                    oamIP2 = f'169.254.{nodeNextColNeigh}.{iface2idx}' 

                    oamHw2 = f'00:04:00:00:{nodeNextColNeigh:02X}:{iface2idx:02X}' 

 



 

 

 

61 
 

                    bfdcmd = '' 

                    bfdcmd = bfdcmd + f'ovs-vsctl set interface {iface1} 

bfd:bfd_src_ip={oamIP1}; ' 

                    bfdcmd = bfdcmd + f'ovs-vsctl set interface {iface1} 

bfd:bfd_dst_ip={oamIP2}; ' 

                    bfdcmd = bfdcmd + f'ovs-vsctl set interface {iface1} 

bfd:bfd_local_src_mac={oamHw1}; ' 

                    bfdcmd = bfdcmd + f'ovs-vsctl set interface {iface1} 

bfd:bfd_local_dst_mac={oamHw2}; ' 

                    bfdcmd = bfdcmd + f'ovs-vsctl set interface {iface1} 

bfd:min_rx={min_rx}; ' 

                    bfdcmd = bfdcmd + f'ovs-vsctl set interface {iface1} 

bfd:min_tx={min_tx}; ' 

                    bfdcmd = bfdcmd + f'ovs-vsctl set interface {iface1} bfd:mult={mult} ' 

                    # Execute command in nodeindex 

                    nodes[nodeindex].cmd(bfdcmd) 

 

                    bfdcmd = '' 

                    bfdcmd = bfdcmd + f'ovs-vsctl set interface {iface2} 

bfd:bfd_src_ip={oamIP2}; ' 

                    bfdcmd = bfdcmd + f'ovs-vsctl set interface {iface2} 

bfd:bfd_dst_ip={oamIP1}; ' 

                    bfdcmd = bfdcmd + f'ovs-vsctl set interface {iface2} 

bfd:bfd_local_src_mac={oamHw2}; ' 

                    bfdcmd = bfdcmd + f'ovs-vsctl set interface {iface2} 

bfd:bfd_local_dst_mac={oamHw1}; ' 

                    bfdcmd = bfdcmd + f'ovs-vsctl set interface {iface2} 

bfd:min_rx={min_rx}; ' 

                    bfdcmd = bfdcmd + f'ovs-vsctl set interface {iface2} 

bfd:min_tx={min_tx}; ' 

                    bfdcmd = bfdcmd + f'ovs-vsctl set interface {iface2} bfd:mult={mult} ' 

                    # Execute command in nodeNextColNeigh 

                    nodes[nodeNextColNeigh].cmd(bfdcmd) 

                                     

                    # Start bfd in both directions in this link 
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                    nodes[nodeindex].cmd(f'ovs-vsctl set interface {iface1} 

bfd:enable=true')              

                    nodes[nodeNextColNeigh].cmd(f'ovs-vsctl set interface {iface2} 

bfd:enable=true') 

 

 

            if i < ROWS - 1: 

                nodeNextRowNeigh = nodeindex + COLS 

                linklst = net.linksBetween(nodes[nodeindex], 

nodes[nodeNextRowNeigh]) 

                linkV = linklst[0] 

                iface1 = linkV.intf1.name 

                iface2 = linkV.intf2.name                 

                # Enable BFD stuff 

                # oamIP 169.254.NodeNum.(IfaceNum + 1) to avoid 169.254.0.0 

                # oamHw OUI-OAM:00:NodeNum:(IfaceNum + 1) to be coherent 

 

                iface1idx = re.match("d[0-9]+-eth([0-9]+)", iface1) 

                iface2idx = re.match("d[0-9]+-eth([0-9]+)", iface2) 

 

                if iface1idx is not None and iface2idx is not None: 

 

                    iface1idx = int(iface1idx.group(1)) + 1 

                    oamIP1 = f'169.254.{nodeindex}.{iface1idx}' 

                    oamHw1 = f'00:04:00:00:{nodeindex:02X}:{iface1idx:02X}' 

 

                    iface2idx = int(iface2idx.group(1)) + 1 

                    oamIP2 = f'169.254.{nodeNextRowNeigh}.{iface2idx}' 

                    oamHw2 = f'00:04:00:00:{nodeNextRowNeigh:02X}:{iface2idx:02X}' 

 

                    bfdcmd = '' 

                    bfdcmd = bfdcmd + f'ovs-vsctl set interface {iface1} 

bfd:bfd_src_ip={oamIP1}; ' 

                    bfdcmd = bfdcmd + f'ovs-vsctl set interface {iface1} 

bfd:bfd_dst_ip={oamIP2}; ' 
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                    bfdcmd = bfdcmd + f'ovs-vsctl set interface {iface1} 

bfd:bfd_local_src_mac={oamHw1}; ' 

                    bfdcmd = bfdcmd + f'ovs-vsctl set interface {iface1} 

bfd:bfd_local_dst_mac={oamHw2}; ' 

                    bfdcmd = bfdcmd + f'ovs-vsctl set interface {iface1} 

bfd:min_rx={min_rx}; ' 

                    bfdcmd = bfdcmd + f'ovs-vsctl set interface {iface1} 

bfd:min_tx={min_tx}; ' 

                    bfdcmd = bfdcmd + f'ovs-vsctl set interface {iface1} bfd:mult={mult} ' 

                    # Execute command in nodeindex 

                    nodes[nodeindex].cmd(bfdcmd) 

 

                    bfdcmd = '' 

                    bfdcmd = bfdcmd + f'ovs-vsctl set interface {iface2} 

bfd:bfd_src_ip={oamIP2}; ' 

                    bfdcmd = bfdcmd + f'ovs-vsctl set interface {iface2} 

bfd:bfd_dst_ip={oamIP1}; ' 

                    bfdcmd = bfdcmd + f'ovs-vsctl set interface {iface2} 

bfd:bfd_local_src_mac={oamHw2}; ' 

                    bfdcmd = bfdcmd + f'ovs-vsctl set interface {iface2} 

bfd:bfd_local_dst_mac={oamHw1}; ' 

                    bfdcmd = bfdcmd + f'ovs-vsctl set interface {iface2} 

bfd:min_rx={min_rx}; ' 

                    bfdcmd = bfdcmd + f'ovs-vsctl set interface {iface2} 

bfd:min_tx={min_tx}; ' 

                    bfdcmd = bfdcmd + f'ovs-vsctl set interface {iface2} bfd:mult={mult} ' 

                    # Execute command in nodeNextColNeigh 

                    nodes[nodeNextRowNeigh].cmd(bfdcmd) 

                                     

                    # Start bfd in both directions in this link 

                    nodes[nodeindex].cmd(f'ovs-vsctl set interface {iface1} 

bfd:enable=true')              

                    nodes[nodeNextRowNeigh].cmd(f'ovs-vsctl set interface {iface2} 

bfd:enable=true')                  
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o import re: imports the Python re module for regular expressions. 

o mininet.cli import CLI: imports the Mininet CLI module for the command-line inter-

face. 

o mininet.link import TCLink: imports the Mininet TCLink module for creating network 

links. 

 

o mininet.log import info, setLogLevel: imports the info and setLogLevel functions from 

the log module of the Mininet library for logging and setting the logging level. 

o mininet.net import Containernet: imports the Containernet class from the Mininet 

library for creating a network. 

o mininet.node import Controller: imports the Controller class from the Mininet library 

for controlling the network. 

The nodeName function takes the row number, column number, prefix, and total number of 

columns as input and returns a unique node name and index based on the provided param-

eters. 

The configBFD function is defined, which configures BFD parameters for the network topol-

ogy. The function takes the following parameters: 

nodes: A list of nodes in the network topology. 

net: The Containernet object representing the network. 

ROWS: The number of rows in the network topology. 

COLS: The number of columns in the network topology. 

BFD_params: A dictionary containing BFD parameters such as min_rx (minimum receive 

interval), min_tx (minimum transmit interval), and mult (multiplier). 

The function iterates over the rows and columns of the network topology. 

For each node, it checks if there is a neighboring node in the next column or next row. 

If there is a neighboring node in the next column, BFD parameters are configured for the 

link between the current node and the neighboring node. 

It extracts the interface names (iface1 and iface2) of the link. 

It extracts the interface indices from the interface names using regular expressions. 
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BFD IP addresses (oamIP1 and oamIP2) and hardware addresses (oamHw1 and oamHw2) 

are generated based on the node index and interface index. 

The BFD parameters are set using the ovs-vsctl command for both interfaces. 

BFD is enabled for both interfaces using the enable=true option. 

If there is a neighboring node in the next row, similar BFD configuration is performed for the 

link between the current node and the neighboring node. 

The BFD configuration is executed by running commands on the respective nodes using 

the cmd method. 

 

 

 

def main(args): 

 

    setLogLevel('info') 

 

    net = Containernet(controller=Controller) 

    info('*** Adding controller\n') 

    net.addController('c0') 

 

    nodes = [] 

 

    COLS = int(args.cols) 

    ROWS = int(args.rows) 

    MINRX = int(args.rx) 

    MULT = int(args.mult) 

    MINTX = int(args.tx) 
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    print("min_rx: ", MINRX) 

    print("mult: ", MULT) 

    print("mintx: ", MINTX) 

 

    info('*** Adding docker containers\n') 

    for i in range(ROWS): 

        for j in range(COLS): 

            #print(f'{nodeName(i,j,"d")}') 

            nodename, nodeindex = nodeName(i, j, "d", COLS) 

            info(f'***  Creating container {nodename}\n') 

       

            dockerNode = net.addDocker(nodename, 

                                    dimage="containernet:OVS", 

                                    volumes=["/home/telematic/dockerfs:/mnt"]) 

            dockerNode.cmd('/etc/init.d/openvswitch-switch start') 

            dockerNode.cmd( 

                '/usr/bin/ovs-vsctl add-br br0 -- set Bridge br0 fail-mode=secure') 

            hwaddr = f'00:02:00:00:00:{nodeindex:02X}' 

            dockerNode.cmd( 

                f'/usr/bin/ovs-vsctl set bridge br0 other-config:hwaddr={hwaddr}') 

            dockerNode.cmd(f'ifconfig br0 172.16.1.{nodeindex}') 

            nodes.append(dockerNode) 

 

    info('*** Creating links\n') 
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    for i in range(ROWS): 

        for j in range(COLS): 

            _, nodeindex = nodeName(i, j, "d", COLS) 

            if j < COLS - 1: 

                nodeNextColNeigh = nodeindex + 1 

                linkH = net.addLink(nodes[nodeindex], 

                                    nodes[nodeNextColNeigh], 

                                    cls=TCLink, 

                                    delay='100ms', 

                                    bw=1) 

                iface1 = linkH.intf1.name 

                nodes[nodeindex].cmd(f'ovs-vsctl add-port br0 {iface1}') 

 

                iface2 = linkH.intf2.name 

                nodes[nodeNextColNeigh].cmd(f'ovs-vsctl add-port br0 {iface2}') 

                print("Link %s <--> %s" % (iface1, iface2)) 

                     

                     

            if i < ROWS - 1: 

                nodeNextRowNeigh = nodeindex + COLS 

                linkV = net.addLink(nodes[nodeindex], 

                                    nodes[nodeNextRowNeigh], 

                                    cls=TCLink, 

                                    delay='100ms', 

                                    bw=1) 
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                iface1 = linkV.intf1.name 

                nodes[nodeindex].cmd(f'ovs-vsctl add-port br0 {iface1}') 

                iface2 = linkV.intf2.name 

                nodes[nodeNextRowNeigh].cmd(f'ovs-vsctl add-port br0 {iface2}') 

                print("Link %s <--> %s" % (iface1, iface2)) 

                 

                # Enable BFD stuff 

                # oamIP 169.254.NodeNum.(IfaceNum + 1) to avoid 169.254.0.0 

                # oamHw OUI-OAM:00:NodeNum:(IfaceNum + 1) to be coherent 

 

    BFD_params = {} 

    BFD_params['min_rx'] = MINRX 

    BFD_params['min_tx'] = MINTX 

    BFD_params['mult'] = MULT 

 

    configBFD(nodes, net, ROWS, COLS, BFD_params) 

 

 

 

 

Sets the log level to 'info' using the setLogLevel function from the Mininet framework. 

Creates a Containernet object net with a controller. Adds a controller named 'c0' to the net-

work. 

Initializes empty list nodes to store the network nodes and extracts command-line argu-

ments cols, rows, rx, mult, and tx. Prints the values of the extracted arguments. 
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Starts adding Docker containers to the network based on the specified number of rows and 

columns. 

For each row and column, a Docker container is created using the addDocker method. 

Some configurations are applied to the Docker container, such as starting the Open vSwitch 

service, creating a bridge (br0), setting hardware address, and configuring the IP address 

of the bridge. 

The Docker container is added to the nodes list and creates links between the Docker con-

tainers. 

For each row and column, it checks if there is a neighboring node in the next column or next 

row. If a neighboring node exists in the next column, a horizontal link is created between 

the current node and the neighboring node using the addLink method. 

The link has a delay of '100ms' and a bandwidth of 1. 

The interface names of the link (iface1 and iface2) are obtained. 

The interfaces are added to the bridge br0 using the ovs-vsctl command. 

If a neighboring node exists in the next row, a vertical link is created between the current 

node and the neighboring node. 

Similar steps as above are performed to create the link. 

Creates a dictionary BFD_params containing the BFD parameters extracted from com-

mand-line arguments. 

Calls the configBFD function to configure BFD parameters for the network topology. 

The nodes, net, ROWS, COLS, and BFD_params are passed as arguments to the function. 

 

 

 

    info('*** Creating Paths\n') 

 

    # Create End-to-End path one: 
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    path = [0, 1, 2, 5, 8] 

 

    #path_3x4 = [0, 1, 2, 3, 7, 11] 

 

    src = path[0] 

    dst = path[-1] 

 

    ip_src = f'172.16.1.{src}' 

    hw_src = f'00:02:00:00:00:{src:02X}' 

    ip_dst = f'172.16.1.{dst}' 

    hw_dst = f'00:02:00:00:00:{dst:02X}' 

 

 

    nodes[src].setARP(ip_dst , hw_dst) 

    nodes[dst].setARP(ip_src , hw_src) 

 

    nodes[src].cmd( 

        f'ovs-ofctl add-flow br0 cookie=0x1,dl_dst={hw_src},actions=output:LOCAL') 

    nodes[dst].cmd( 

        f'ovs-ofctl add-flow br0 cookie=0x1,dl_dst={hw_dst},actions=output:LOCAL') 

 

 

    nodes_ifaces = {} 

    for node in path: 
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        nodes_ifaces[node]=[] 

         

    prev_node = path[0] 

 

    for node in path[1:]: 

        linklst = net.linksBetween(nodes[prev_node], nodes[node]) 

        #print(f'Node A {prev_node} Node B  {node} -- linklist: {linklst}') 

 

        if linklst != []: 

            # We consider only one link between two nodes: 

            link = linklst[0] 

            ifaceA = link.intf1.name 

            nodeIfaceA = ifaceA.split("-")[0] 

            ifaceB = link.intf2.name 

            nodeIfaceB = ifaceB.split("-")[0] 

            #print(f'ifaceA {ifaceA} iface {ifaceB}') 

            if nodeIfaceA == f'd{prev_node}': 

                if prev_node == src or prev_node == dst : 

                    cmd = f'ovs-ofctl add-flow br0 table=1,cookie=0x02,dl_dst={hw_dst},ac-

tions=output:"{ifaceA}"' 

                else: 

                    cmd = f'ovs-ofctl add-flow br0 cookie=0x02,dl_dst={hw_dst},actions=out-

put:"{ifaceA}"'             

                 

                nodes[prev_node].cmd(cmd) 

                nodes_ifaces[prev_node].append(ifaceA) 
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                if node == src or node == dst : 

                    cmd =f'ovs-ofctl add-flow br0 table=1,cookie=0x02,dl_dst={hw_src},ac-

tions=output:"{ifaceB}"' 

                else: 

                    cmd = f'ovs-ofctl add-flow br0 cookie=0x02,dl_dst={hw_src},actions=out-

put:"{ifaceB}"'                

                 

                nodes[node].cmd(cmd) 

                nodes_ifaces[node].append(ifaceB)             

                 

            elif nodeIfaceB == f'd{prev_node}': 

                if prev_node == src or prev_node == dst : 

                    cmd = f'ovs-ofctl add-flow br0 table=1,cookie=0x02,dl_dst={hw_dst},ac-

tions=output:"{ifaceB}"' 

                else: 

                    cmd = f'ovs-ofctl add-flow br0 cookie=0x02,dl_dst={hw_dst},actions=out-

put:"{ifaceB}"'    

                                     

                nodes[prev_node].cmd(cmd)  

                nodes_ifaces[prev_node].append(ifaceB)                    

 

                if node == src or node == dst : 

                    cmd = f'ovs-ofctl add-flow br0 table=1,cookie=0x02,dl_dst={hw_src},ac-

tions=output:"{ifaceA}"' 

                else: 
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                    cmd = f'ovs-ofctl add-flow br0 cookie=0x02,dl_dst={hw_src},actions=out-

put:"{ifaceA}"'      

                                         

                nodes[node].cmd(cmd)  

                nodes_ifaces[node].append(ifaceA)                         

 

        prev_node = node 

 

    # Start cpath notification 

    for node in path: 

        if node == src or node == dst: 

            continue 

        ifa, ifb = nodes_ifaces[node] 

        cmd0 = f'/mnt/print_bfd_cfg.sh {ifa} {ifb} {node}' 

        cmd1 = f'/mnt/cpath.sh {ifa} {ifb} {node} &' 

        cmd2 = f'/mnt/cpath.sh {ifb} {ifa} {node} &' 

        print("%s in node %i" % (cmd1, node)) 

        nodes[node].cmd(cmd0) 

        nodes[node].cmd(cmd1) 

        nodes[node].cmd(cmd2) 

 

    iface_endpoints = {} 

    iface_endpoints[src] = [] 

    iface_endpoints[src].append(nodes_ifaces[src][0]) 

    iface_endpoints[dst] = [] 
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    iface_endpoints[dst].append(nodes_ifaces[dst][0]) 

 

 

    print("nodes_ifaces: ", nodes_ifaces) 

 

Prints an information message indicating the creation of paths. 

Defines a list path representing the end-to-end path between nodes. In this case, it repre-

sents a path from node 0 to node 8. Sets the source (src) and destination (dst) nodes based 

on the first and last nodes in the path list. 

Constructs the source and destination IP addresses (ip_src and ip_dst) and hardware ad-

dresses (hw_src and hw_dst) based on the node indices. 

Configures ARP entries and OpenFlow rules on the source and destination nodes to ensure 

packet forwarding between them. 

Initializes a dictionary nodes_ifaces to store the interfaces used by each node in the path. 

Iterates over the nodes in the path (excluding the source and destination nodes) to deter-

mine the interfaces and configure OpenFlow rules. Retrieves the link between the current 

node (prev_node) and the next node (node) using the linksBetween method. 

Extracts the interface names from the link and identifies which interface belongs to which 

node. Constructs OpenFlow commands based on the interface and node information. 

Executes the OpenFlow commands on the respective nodes and adds the interface to the 

nodes_ifaces dictionary. Sets up the cpath notification for each intermediate node in the 

path. 

Constructs commands to run shell scripts print_bfd_cfg.sh and cpath.sh on each node. 

Executes the commands on the respective nodes and creates a dictionary iface_endpoints 

to store the interfaces used by the source and destination nodes. 

Adds the interface of the source and destination nodes to the dictionary and prints the 

nodes_ifaces dictionary. 

# Add a second path End-to-End with lower priority to avoid deleting previous rules 
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    path = [0, 3, 4, 7, 8] 

 

    #path_3x4 = [0, 4, 8, 9, 10, 11] 

 

    nodes_ifaces = {} 

    for node in path: 

        nodes_ifaces[node]=[] 

         

    prev_node = path[0] 

    for node in path[1:]: 

 

        linklst = net.linksBetween(nodes[prev_node], nodes[node]) 

        print(f'Node A {prev_node} Node B  {node} -- linklist: {linklst}') 

 

        if linklst != []: 

            link = linklst[0] 

            ifaceA = link.intf1.name 

            nodeIfaceA = ifaceA.split("-")[0] 

            ifaceB = link.intf2.name 

            nodeIfaceB = ifaceB.split("-")[0] 

            #print(f'ifaceA {ifaceA} iface {ifaceB}') 

            if nodeIfaceA == f'd{prev_node}': 

                if prev_node == src or prev_node == dst : 

                    cmd = f'ovs-ofctl add-flow br0 table=2,cookie=0x02,dl_dst={hw_dst},ac-

tions=output:"{ifaceA}"' 
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                    cmd = cmd + ";" + f'ovs-ofctl add-flow br0 table=0,cookie=0x0,ac-

tions=goto_table:2'                 

                else: 

                    cmd = f'ovs-ofctl add-flow br0 cookie=0x02,dl_dst={hw_dst},actions=out-

put:"{ifaceA}"'  

                     

                nodes[prev_node].cmd(cmd) 

                nodes_ifaces[prev_node].append(ifaceA)             

                 

 

                if node == src or node == dst : 

                    cmd =f'ovs-ofctl add-flow br0 table=2,cookie=0x02,dl_dst={hw_src},ac-

tions=output:"{ifaceB}"' 

                    cmd = cmd + ";" + f'ovs-ofctl add-flow br0 table=0,cookie=0x0,ac-

tions=goto_table:2'                                 

                else: 

                    cmd = f'ovs-ofctl add-flow br0 cookie=0x02,dl_dst={hw_src},actions=out-

put:"{ifaceB}"' 

                                             

                nodes[node].cmd(cmd) 

                nodes_ifaces[node].append(ifaceB)                         

                 

            elif nodeIfaceB == f'd{prev_node}': 

                if prev_node == src or prev_node == dst : 

                    cmd = f'ovs-ofctl add-flow br0 table=2,cookie=0x02,dl_dst={hw_dst},ac-

tions=output:"{ifaceB}"' 
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                    cmd = cmd + ";" + f'ovs-ofctl add-flow br0 table=0,cookie=0x0,ac-

tions=goto_table:2'                                 

                else: 

                    cmd = f'ovs-ofctl add-flow br0 cookie=0x02,dl_dst={hw_dst},actions=out-

put:"{ifaceB}"'       

                                 

                nodes[prev_node].cmd(cmd) 

                nodes_ifaces[prev_node].append(ifaceB)                                        

 

                if prev_node == src or prev_node == dst : 

                    cmd = f'ovs-ofctl add-flow br0 table=2,cookie=0x02,dl_dst={hw_src},ac-

tions=output:"{ifaceA}"' 

                    cmd = cmd + ";" + f'ovs-ofctl add-flow br0 table=0,cookie=0x0,ac-

tions=goto_table:2'                                 

                else: 

                    cmd = f'ovs-ofctl add-flow br0 cookie=0x02,dl_dst={hw_src},actions=out-

put:"{ifaceA}"'      

                                         

                nodes[prev_node].cmd(cmd) 

                nodes_ifaces[node].append(ifaceA)                         

                             

        prev_node = node 

         

    # Start cpath notification 

    for node in path: 

        if node == src or node == dst: 
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            continue 

             

        ifa, ifb = nodes_ifaces[node] 

        cmd0 = f'/mnt/print_bfd_cfg.sh {ifa} {ifb} {node}' 

        cmd1 = f'/mnt/cpath.sh {ifa} {ifb} {node} &' 

        cmd2 = f'/mnt/cpath.sh {ifb} {ifa} {node} &' 

        #print("%s in node %i" % (cmd1, node)) 

        nodes[node].cmd(cmd0) 

        nodes[node].cmd(cmd1) 

        nodes[node].cmd(cmd2) 

 

     

 

    #commands to start path switching manager 

    iface_endpoints[src].append(nodes_ifaces[src][0]) 

    iface_endpoints[dst].append(nodes_ifaces[dst][0]) 

 

    cmd_src = '/mnt/switch_path.sh {} {} {} > /mnt/switch_node{}.log &'.format(iface_end-

points[src][0],iface_endpoints[src][1],src,src) 

 

    cmd_dst = '/mnt/switch_path.sh {} {} {} > /mnt/switch_node{}.log &'.format(iface_end-

points[dst][0],iface_endpoints[dst][1],dst,dst) 

 

    nodes[src].cmd(cmd_src) 

    nodes[dst].cmd(cmd_dst) 
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    #print("nodes_ifaces: ", nodes_ifaces) 

 

    # Change to PATH two: Change/delete priority rules (Hack: you need to delete and/or 

re-write rules with new priority) 

    # nodes[src].cmd('ovs-ofctl del-flow br0 cookie=0x02/0xff,dl_dst=xx:xx:xx:xx:xx:xx 

    #(ovs-ofctl del-flows br0 cookie=0x2/0xff,dl_dst=00:02:00:00:00:08) 

    # nodes[dst].cmd('ovs-ofctl del-flow br0 cookie=0x02/0xff,dl_dst=xx:xx:xx:xx:xx:xx 

    #(ovs-ofctl del-flows br0 cookie=0x2/0xff,dl_dst=00:02:00:00:00:01) 

 

    # If working with tables: 

    #nodes[src].cmd('ovs-ofctl mod-flows br0 table=0,cookie=0x01/0xff,actions=goto_ta-

ble:2') 

    #nodes[dst].cmd('ovs-ofctl mod-flows br0 table=0,cookie=0x01/0xff,actions=goto_ta-

ble:2') 

 

    info('*** Starting network\n') 

    net.start() 

    #info('*** Testing connectivity\n') 

    #net.ping([d1, d2]) 

    info('*** Running CLI\n') 

    #CLI(net) 

    # Execute commands 

    print("d3: Starting tcpdump and sleeping 10 secs ...") 

    nodes[3].cmd('/mnt/tcpdump.sh start') 
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    nodes[0].cmd('ping -c 550 -D 172.16.1.8 -i 0.02 -s 180 > /mnt/ping_0.log &') 

    #nodes[8].cmd('ping -c 550 -D 172.16.1.0 -i 0.02 -s 180 > /mnt/ping_8.log &') 

    time.sleep(2) 

    time.sleep(8) 

    print("Grab timestamp in down_d4-d7.txt") 

    with open('/home/telematic/dockerfs/down_d4-d7.txt','w') as f : 

        f.write("%s\n" % time.time()) 

    print("Down link d4-d7 and sleep 10 seconds") 

    net.configLinkStatus('d4','d7','down') 

    time.sleep(10) 

    print("d3: Stopping tcpdump ...") 

    nodes[3].cmd('/mnt/tcpdump.sh stop') 

 

 

    info('*** Stopping network') 

    net.stop() 

 

if __name__ == "__main__": 

    parse = argparse.ArgumentParser() 

    parse.add_argument('-c','--cols', help = 'Number of COLS', required = True) 

    parse.add_argument('-r','--rows', help = 'Number of ROWS', required = True) 

    parse.add_argument('-t','--tx', help = 'BFD tx_min', required = True) 

    parse.add_argument('-x','--rx', help = 'BFD rx_min', required = True) 

    parse.add_argument('-m','--mult', help = 'BFD mult', required = True)   
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    args = parse.parse_args() 

    main(args) 

 

 

The first path is created using the nodes 0, 1, 2, 5, and 8. The source and destination IP 

and MAC addresses are set for these nodes. Flows are added to the Open vSwitch (OVS) 

to forward packets based on their destination MAC addresses. These flows ensure that 

packets with the destination MAC addresses of the source and destination nodes are for-

warded to the local port. 

 

Interface information for each node in the path is stored in the nodes_ifaces dictionary. BFD 

(Bidirectional Forwarding Detection) configurations are applied to each node in the path to 

enable path monitoring and switching. Commands are executed on each node to start BFD 

processes and configure the interfaces for BFD. 

 

The second path is created using the nodes 0, 3, 4, 7, and 8. Similar to the first path, flows 

and BFD configurations are applied to this path. The path switching manager is started on 

the source and destination nodes. The manager monitors the BFD status and switches the 

paths based on certain conditions. 

 

The network is started, and ping traffic is initiated from node 0 to node 8. After a delay, the 

link between nodes 4 and 7 is brought down, and another delay is introduced. 

 

Then, the network is stopped, and the execution completes. 

11.3 Script cpath.sh  

This script monitoring the forwarding status of an interface and synchronizing it with another 

interface using bfd:cpath_down attribute updates:  

#!/bin/bash 
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#SIGNALIN_IFACE=”d1-eth1” 

#SIGNALOUT_IFACE=”d1-eth0” 

 

SIGNALIN_IFACE=$1 

SIGNALOUT_IFACE=$2 

NODE=$3 

 

wait_state=”false” 

signal_state=”true” 

logfile=”/mnt/cpath-$3-$1-$2.log” 

 

T=’”true”’ 

F=’”false”’ 

 

echo “cpath logfile node $NODE .... “ > $logfile 

while true  

do 

  dt=$(date +%s.%N) 

  # Get interface forwarding status   

  forwarding=$(ovs-vsctl get interface $SIGNALIN_IFACE bfd_status:forwarding) 

  forwarding_wait=$([ “$forwarding” = $T ] && echo $F || echo $T) 

  #echo “forwarding is $forwarding” >> $logfile  

  #echo “forwarding_wait is $forwarding_wait” >> $logfile  

  echo $dt “: “ ovs-vsctl wait-until interface $SIGNALIN_IFACE bfd_status:forward-

ing=$forwarding_wait >> $logfile  

  ovs-vsctl wait-until interface $SIGNALIN_IFACE  bfd_status:forwarding=$for-

warding_wait >> $logfile  

  dt=$(date +”%D %H:%M:%S”) 

  echo $dt “: “ “Changed bfd_status:forwarding in $SIGNALIN_IFACE to $forward-

ing_wait” >> $logfile 

  ovs-vsctl set interface $SIGNALOUT_IFACE bfd:cpath_down=$forwarding 

  #echo ovs-vsctl set interface $SIGNALOUT_IFACE bfd:cpath_down=$forwarding  

>> $logfile  

  echo $dt “: “ “Notify cpath_down in $SIGNALOUT_IFACE to $forwarding” >> $log-

file   
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  aux=”$signal_state” 

  signal_state=”$wait_state” 

  wait_state=”$aux” 

  #echo “ ---------- wait_state is $wait_state” >> $logfile 

  #echo “----------- signal_state is $signal_state” >> $logfile 

done 

 

The script accepts three command-line arguments: SIGNALIN_IFACE, 

SIGNALOUT_IFACE, and NODE. These arguments specify the input interface, output 

interface, and node for which the script is running. 

It initializes variables such as wait_state and signal_state and sets the logfile path. 

The script enters an infinite loop using the “while true” statement. 

Inside the loop: 

It gets the current forwarding status of the SIGNALIN_IFACE using the ovs-vsctl command 

and stores it in the variable ‘forwarding’. 

It determines the desired forwarding state for the interface (opposite of the current state) 

and stores it in the variable ‘forwarding_wait’. 

It waits until the forwarding attribute of SIGNALIN_IFACE matches the desired state using 

the ovs-vsctl wait-until command. 

It updates the bfd:cpath_down attribute of SIGNALOUT_IFACE with the value of 

‘forwarding’. 

It logs the timestamp, interface changes, and notifications in the logfile. 

It swaps the values of wait_state and signal_state variables for the next iteration of the loop. 
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11.5 switch_path.sh  

 

#!/bin/bash 

 

#SIGNALIN_IFACE=”d1-eth1” 

#SIGNALOUT_IFACE=”d1-eth0” 

 

SIGNALIN_IFACE=$1 

SIGNALOUT_IFACE=$2 

NODE=$3 

 

wait_state=”false” 

signal_state=”true” 

logfile=”/mnt/switch-$3-$1-$2.log” 

 

# Get alternative paths using sdn data: 

# Set up an array with data ... table[output_iface]=table_num 

# output : 

# cookie=0x2, duration=8829.015s, table=1, n_packets=0, n_bytes=0, 

dl_dst=00:02:00:00:00:08 actions=output:”d0-eth0” 

# cookie=0x2, duration=8828.959s, table=2, n_packets=0, n_bytes=0, 

dl_dst=00:02:00:00:00:08 actions=output:”d0-eth1” 

# yields to: 

# table[d0-eth0]=1 

# table[d0-eth1]=2 

 

declare -A tables_if 

declare -A tables_tb 

declare -A FwState 

declare -A pidWait 

 

T=’”true”’ 

F=’”false”’ 

 

killsub() { 
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    pkill -P $$ 

    exit 0 

} 

 

setup_path() { 

    local iface=$1 

     

    FwState[$iface]=$(ovs-vsctl get interface $iface bfd_status:forwarding)  

    forwarding_wait=$([ ${FwState[$iface]} = $T ] && echo $F || echo $T) 

    echo “  setup_path(): ovs-vsctl wait-until interface $iface bfd_status:forwarding=$for-

warding_wait “ 

    ovs-vsctl wait-until interface $iface bfd_status:forwarding=$forwarding_wait & 

    echo “  setup_path(): status $?” 

    echo 

    pidWait[$iface]=$! 

} 

 

get_fwstate() { 

    local iface=$1    

    ovs-vsctl get interface $iface bfd_status:forwarding 

} 

 

change_path() { 

    local iface=$1 

    echo “  change_path():   ovs-ofctl mod-flows br0 table=0,cookie=0x00/0xff,ac-

tions=goto_table:${tables_if[$iface]} “ 

    ovs-ofctl mod-flows br0 table=0,cookie=0x00/0xff,actions=goto_table:${ta-

bles_if[$iface]}  

    current_table=${tables_if[$iface]}     

    echo “  change_path():  Now current table is $current_table”    

    echo   

} 

 

trap killsub EXIT 

 

# read all the tables 
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table_paths=$(ovs-ofctl—names dump-flows br0 cookie=0x02/-1 | grep cookie)  

 

echo “Initializing ...” 

while read line 

do 

  echo $line 

  table=$(echo $line | cut -f3 -d “,” | cut -f2 -d “=”) 

  outiface=$(echo $line | cut -f8 -d “=” | cut -f2 -d “:” | sed -e ‘s/\”//g’) 

  echo $table $outiface 

  tables_if[$outiface]=$table 

  tables_tb[$table]=$outiface 

done < <(echo “$table_paths”) 

 

current_table=$(ovs-ofctl—names dump-flows br0 table=0,cookie=0x0/0xff | cut -f7 -d “=” 

| cut -f2 -d “,” | sed -e ‘s/)//g’) 

 

#Dump info 

echo “tables_if:” 

for iface in ${!tables_if[*]} 

do 

   echo “tables_if[$iface] = ${tables_if[$iface]}”  

done 

echo “tables_tb:” 

for tb in ${!tables_tb[*]} 

do 

   echo “tables_tb[$tb] = ${tables_tb[$tb]}” 

done 

echo 

echo “Current table $current_table”  

 

while true 

do 

    for iface in ${!tables_if[*]} 

    do 

        if [ -z “${pidWait[$iface]}” ]; then 

            setup_path $iface 
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            #Dump info 

            echo “FwState[$iface]=${FwState[$iface]}” 

            echo “pidWait[$iface]=${pidWait[$iface]}” 

            echo  

        fi 

    done 

 

    # Wait for a change  

    echo “wait -n  ${pidWait[*]}” 

    echo  

    wait -n ${pidWait[*]} 

    dt=$(date +%s.%N) 

    echo “Someone dead ... $dt” 

    echo “  Current table  $current_table”  

    # Who is dead 

    for iface in ${!tables_if[*]} 

    do 

        ps -q ${pidWait[$iface]} > /dev/null 

        if [ “$?” -eq 1 ]; then 

            # Delete from pidWait 

            pidWait[$iface]=”” 

            # Get the current state 

            current_fwstate=$(get_fwstate $iface) 

            if [ “$current_fwstate” == $F ]; then 

                # need to change path? 

                if [ “${tables_if[$iface]}” != “$current_table” ]; then 

                    break 

                fi 

                # Reset current table. We can’t use it now. 

                current_table=”” 

                # Now the state is $F, try to find a new path 

                for intf in ${!FwState[*]} 

                do 

                    if [ “$intf” != “$iface” ]; then 

                        if [ “${FwState[$intf]}” == $T ]; then 

                            change_path $intf 
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                            break 

                        fi 

                    fi 

                done 

            fi 

        fi 

    done   

done   

 

 

The bash script expects three command-line arguments: $1, $2, and $3. These arguments 

are assigned to the variables SIGNALIN_IFACE, SIGNALOUT_IFACE, and NODE, 

respectively. 

The variables wait_state and signal_state are initialized with the values “false” and “true”, 

respectively. The variable logfile is set to a specific path and filename based on the values 

of $1, $2, and $3. 

Several associative arrays (tables_if, tables_tb, FwState, and pidWait) are declared using 

the declare -A syntax. These arrays are used to store information about network tables, 

interface states, and process IDs. 

The script defines two functions: killsub() and setup_path(). The killsub() function is a signal 

handler that kills all child processes and exits the script. The setup_path() function is called 

to set up a specific interface.The script sets trap to call the killsub function when it receives 

an EXIT signal. 

The script uses the ovs-ofctl and ovs-vsctl commands to retrieve information about network 

flows and interface states.It initializes an associative array tables_if by parsing the output 

of ovs-ofctl—names dump-flows br0 cookie=0x02/-1. The array stores the mapping of 

output interfaces to their corresponding network tables. 

The current table number is obtained from the output of ovs-ofctl—names dump-flows br0 

table=0,cookie=0x0/0xff.The script enters an infinite loop. Inside the loop, it checks the 

status of each interface and sets up a path if necessary. The script waits for changes in 

interface states by using the wait command. 

When a change is detected, it determines which interface triggered the change, updates 

the network table if needed, and continues monitoring the interface states. 
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11.6 tcpdump.sh  

 

#!/bin/bash 

[ $# -ne 1 ] && exit 1 

 

 

 

mypid=$$ 

progname=$(basename $0) 

dirname=$(dirname $0) 

#echo “PID: $mypid” 

progname=”tcpdump” 

 

check_and_kill() { 

# Check for old running process and kill 

        process_list=$(ps -ax -o pid,cmd | grep “$progname “ | grep -v grep) 

        #echo “$process_list” 

        if [ -n “$process_list” ]; then 

                fmt_list=$(echo “$process_list” | sed -e ‘s/^ *//g’ | tr “ “ “_”) 

                for item in $fmt_list 

                do 

                        pid=$(echo $item | cut -f1 -d “_”) 

                if [ “$1” == “check” ]; then 

                     [ -z “$pid_list” ] && pid_list=$pid || pid_list=”$pid_list $pid” 

                else 

                     kill -9 $pid 2>/dev/null >&2 

                fi 

                done 

        fi 

} 

 

 

if [ “$1” == “start” ]; then 

        # Unpolitely kill all capture running processes 

  check_and_kill 
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  tcpdump -i d3-eth1 -w /mnt/bfd-node3-eth1.dump </dev/null >/dev/null 2>&1 & 

  echo “PID: $!” 

fi 

 

if [ “$1” == “stop” ]; then 

       

        check_and_kill “check” 

        for pid in $pid_list 

        do 

           kill -s SIGTERM $pid 

        done 

        check_and_kill 

fi 

 

if [ “$1” == “status” ]; then 

   check_and_kill “check” 

   if [ -n “$pid_list” ]; then 

        status=”running” 

   else 

        status=”stopped” 

   fi 

   echo “capture status: $status, pid: ${pid_list:-None}, vm:” $(hostname) 

fi 

 

It is a bash script that allows to start, stop, and check the status of the tcpdump.  
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11.7 Process_test.sh  

#!/bin/bash 

 

mkdir -p  $HOME/satellite/TFGNerea/TFG_NEREA/PRUEBAS/results/$1 

down_time=$(cat $HOME/dockerfs/down_d4-d7.txt) 

#status=$(cat $HOME/dockerfs/print_bfd_cfg.sh) 

 

echo -n "node8: " 

node8=$(grep "Someone dead " $HOME/dockerfs/switch_node8.log | cut -f4 -d " " | tail -

n 1) 

echo $node8 

 

echo -n "node7: " 

node7=$(grep " Notify cpath_down in d7-eth2 to \"true\"" $HOME/dockerfs/cpath-7-d7-

eth0-d7-eth2.log | cut -f1 -d ":") 

echo $node7 

 

echo -n "node4: " 

node4=$(grep " Notify cpath_down in d4-eth1 to \"true\"" $HOME/dockerfs/cpath-4-d4-

eth3-d4-eth1.log | cut -f1 -d ":") 

echo $node4 

 

echo -n "node3: " 

node3=$(grep " Notify cpath_down in d3-eth0 to \"true\"" $HOME/dockerfs/cpath-3-d3-

eth1-d3-eth0.log | cut -f1 -d ":") 

echo $node3 

 

echo -n "node0: " 
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node0=$(grep "Someone dead " $HOME/dockerfs/switch_node0.log | cut -f4 -d " ") 

echo $node0 

 

#echo "$1;$down_time;$fault_time;$node3;$node0" > 

$HOME/satellite/TFGNerea/TFG_NEREA/PRUEBAS/results/$1.csv 

DT1=$(echo "$node8 - $down_time" | bc ) 

DT2=$(echo "$node7 - $down_time" | bc ) 

DT3=$(echo "$node4 - $down_time" | bc ) 

DT4=$(echo "$node3 - $down_time" | bc ) 

DT5=$(echo "$node0 - $down_time" | bc ) 

echo "$1;0;$DT1;$DT2;$DT3;$DT4;$DT5" 

echo 

"$1;$down_time;$node8;$node7;$node4;$node3;$node0;;0;$DT1;$DT2;$DT3;$DT4;$D

T5" > $HOME/satellite/TFGNerea/TFG_NEREA/PRUEBAS/results/$1/$1-test.csv 

mv $HOME/dockerfs/bfd-node3-eth1.dump  $HOME/satellite/TFGNerea/ 

 

The script creates a directory to store the results using the first command-line argument 

($1). The downtime of the link between nodes 4 and 7 is extracted from the down_d4-d7.txt 

file. 

 

The script extracts information from the log files generated during the network execution: 

 

The variable node8 captures the last occurrence of "Someone dead" in the 

switch_node8.log file, indicating the last time node 8 detected a failure. The another 

variables captures depending of each interface or node: “Notify cpath_down in node-

interface to true”.  

The variable node0 captures the last occurrence of "Someone dead" in the 

switch_node0.log file, indicating the last time node 0 detected a failure. 

The downtime for each node (in seconds) is calculated by subtracting the downtime 

recorded from the respective node's failure detection time. 
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The calculated downtime values are printed, with a specific format to obtain a table of results. 

The downtime values are also stored in another path. The script moves the bfd-node3-

eth1.dump file to the $HOME/ directory. 

 

11.8 Runs.sh  

 

#!/bin/bash 

 

Num=10 #number of iterations 

min_tx=10 

 

NumMult=4 #max mult 

#nummult=4 

rx_list="500 1000" 

# Clean dockefs 

rm -f $HOME/dockerfs/*.log $HOME/dockerfs/down_d4-d7.txt $HOME/dockerfs/bfd-

node3-eth1.dump 

 

for min_rx in $rx_list  

do 

    mult=2 

    #mult=2 

    while [ $mult -le $NumMult ] 

    do 

        i=0 

        while [ $i -lt $Num ] 
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        do   

            sudo -E env PATH=$PATH python3 V2_JJ_containernet_tests.py -c 3 -r 3 -t 

$min_tx -x $min_rx -m $mult 

            outdir="Test_${min_rx}_${mult}-$i" 

           ./process_test.sh $outdir 

            ((i++)) 

        done 

        ((mult++)) 

    done  

done 

 

The script sets the number of iterations to 10 using the variable Num. The minimum BFD tx 

value is set to 10 using the variable min_tx. 

 

The maximum BFD multiplier value is set to 4 using the variable NumMult. The script defines 

a list of BFD rx values as a space-separated string: "500 1000". 

 

The script cleans up any existing log files, down_d4-d7.txt, and bfd-node3-eth1.dump from 

the $HOME/dockerfs/ directory. The script enters a loop for each min_rx value in the rx_list. 

 

Inside the min_rx loop, the script enters another loop for each mult value from 2 to NumMult. 

Inside the nested loop, the script enters a third loop for Num iterations. 

 

Within the innermost loop, the script executes a Python script (V2_JJ_containernet_tests.py) 

with the specified paràmetres.  

 

The output directory for the test is set as outdir using the format "Test_${min_rx}_${mult}-

$i". 
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The script executes another script (process_test.sh) to process the results of the test for the 

current iteration and output them to the specified output directory. 

 

The innermost loop increments the i variable by 1 after each iteration. The nested loop 

increments the mult variable by 1 after each iteration. The outer loop moves to the next 

min_rx value. The script repeats steps 7-14 for each min_rx value in the rx_list 

 

 

 

 

11.9 Results  

11.9.1 Node 0  

 

 

11.9.2 Node 3 
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11.9.3 Node 4 
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11.9.4 Node 7 
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11.9.5 Node 8 
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