

Author: Nerea González Anguita

Director: Juan José Alins Delgado

Co-director: Jorge Mata Díaz

Document: Bachelor final thesis

Examination session: Summer/2023

Degree: Audiovisual Systems Engineering

Link failure testing project on a

satellite SDN network using

Bidirectional Forwarding

Detection

B
A

C
H

E
L

O
R

 F
IN

A
L

 T
H

E
S

IS

2

Abstract

This project focuses on implementing a variable grid topology network for simulating an

inter-satellite links connection to evaluate link failure detection times in a satellite Software-

Defined Networking (SDN) using the Bidirectional Forwarding Detection (BFD) protocol

(RFC 5880).

Today, there is significant growth and deployment of LEO satellite networks, and SDN

technology is being successfully used in these LEO satellite constellation networks due to

the flexibility that this technology offers in the face of dynamic variation in topology network,

limited bandwidth and traffic variations.

An important point for the correct operation of these networks is the reliability and stability

of the links that interconnect the satellites of the constellation, since this constellation is in

permanent motion, orbiting the earth. The work developed in this project is directly related

to this topic and the BFD detection protocol has been used to determine the connectivity

failures of the test network links.

The BFD is a protocol which provides fast forwarding path failure detection times and it is

independent from physical media, routing protocols and data protocols. The BFD protocol

works in the forwarding plane and is well suited for use with SDN switches.

The testbed has been built using the "ContainerNet" Python API to implement the network

topology and link interconnection of each satellite node. The satellite switching service is

implemented in a docker instance, using OpenVirtualSwitch (OVS) as the internal packet

switch of each node. OpenVirtualSwitch is an SDN-compliant programmable switching

network device that has support for the BFD protocol. A transmission scenario is built on

this switching network. This scenario includes two nodes that work as communication

endpoints. The nodes have been configured so that between the endpoints there are two

separate alternative paths. In addition to the datapath configuration, the BFD protocol has

been configured to monitor the status of each link. A software developed running in all

intermediate nodes are able to notify a link failure upstream of the datapath until the end

nodes. An then end nodes can switch to another path. The final results must determine

which are the BFD parameters to achieve a compromise between the BFD packet signaling

period and the bandwidth used to keep the VoIP communication parameters within the

acceptable limits in the event of a link failure with a route update.

3

Resumen

Este proyecto se centra en implementar una red de topología de red variable para simular

una conexión de enlaces inter-satélite con el fin de evaluar los tiempos de detección de

fallos de enlace en una Red de Software Definido (SDN) satelital utilizando el protocolo de

Detección de Reenvío Bidireccional (BFD) (RFC 5880).

En la actualidad, hay un crecimiento significativo y despliegue de redes satelitales LEO, y

la tecnología SDN se utiliza con éxito en estas redes de constelación satelital LEO debido

a la flexibilidad que esta tecnología ofrece frente a la variación dinámica en la topología de

red, el ancho de banda limitado y las variaciones del tráfico.

Un punto importante para el correcto funcionamiento de estas redes es la fiabilidad y

estabilidad de los enlaces que interconectan los satélites de la constelación, ya que esta

constelación está en movimiento permanente, orbitando la Tierra. El trabajo desarrollado

en este proyecto está directamente relacionado con este tema y el protocolo de detección

BFD se ha utilizado para determinar las fallas de conectividad de los enlaces de la red de

prueba.

El BFD es un protocolo que proporciona tiempos rápidos de detección de fallos en la ruta

de reenvío y es independiente del medio físico, los protocolos de enrutamiento y los

protocolos de datos. El protocolo BFD funciona en el plano de reenvío y es adecuado para

su uso con conmutadores SDN.

El banco de pruebas se ha construido utilizando la API de Python "ContainerNet" para

implementar la topología de red y la interconexión de enlaces de cada nodo satélite. El

servicio de conmutación de satélite se implementa en una instancia de Docker, utilizando

OpenVirtualSwitch (OVS) como el conmutador de paquetes interno de cada nodo.

OpenVirtualSwitch es un dispositivo de red conmutador programable compatible con SDN

que tiene soporte para el protocolo BFD. Se construye un escenario de transmisión en esta

red de conmutación. Este escenario incluye dos nodos que funcionan como puntos de

comunicación. Se han configurado los nodos para que entre los puntos finales existan dos

rutas alternativas separadas. Además de la configuración del flujo de datos, se ha

configurado el protocolo BFD para supervisar el estado de cada enlace.

Un software desarrollado que se ejecuta en todos los nodos intermedios puede notificar

una falla en el enlace aguas arriba del flujo de datos hasta los nodos finales. Luego, los

nodos finales pueden cambiar a otra ruta. Los resultados finales deben determinar cuáles

son los parámetros BFD para lograr un compromiso entre el período de señalización de

4

paquetes BFD y el ancho de banda utilizado para mantener los parámetros de

comunicación de VoIP dentro de los límites aceptables en caso de una falla de enlace con

una actualización de ruta.

5

Table of contents

1. INTRODUCTION ...11

1.1. OBJECT ... 11

1.2. ABAST ... 11

1.3. REQUERIMENTS .. 12

1.4. RATIONALE ... 13

 BACKGROUND AND REVIEW OF STATE OF THE ART .. 16

2.1 CURRENT SITUATION OF THE TOPIC .. 16

 COMPLETE NETWORK DESIGN AND POLICIES .. 18

3.1 TRAFFIC POLICIES .. 18

3.2 IP ASSIGNMENT POLICY .. 18

3.2.1 Voice-related Traffic: ... 18

3.2.2 OAM Traffic associated with BFD for link monitoring: .. 19

3.3 TEST AND RESULTS ... 19

3.4 G.711: AUDIO CODEC .. 20

3.5 WHAT HAPPENS IN EACH SWITCHING NODE? ... 21

3.5.1 Definition of Open Virtual Switch .. 21

3.5.2 Definition of Software-defined networking .. 21

3.5.3 Definition of Dockers .. 22

3.6 DEFINITION OF BIDIRECTIONAL FORWARDING DETECTION ... 23

3.7 RFC 5880 ... 24

3.7.1 RFC 5880 State Diagram: .. 24

3.8 BIDIRECTIONAL FORWARDING DETECTION STUDY ... 25

3.8.1 Example of BFD ... 30

 METHODOLOGY ... 32

4.1 DEVELOPEMENT OF METHODOLOGY ... 32

4.2 DEFINITION OF THE NETWORK TOPOLOGY ... 33

4.3 DESIGN OF NXM SATELLITE NETWORK ... 34

4.4 LINKS: .. 36

4.5 IP’S AND MAC’S ... 36

4.6 END-TO-END PATH SELECTION ... 37

4.7 PRESET LINKS AND LINK FAILURES: ... 37

4.8 IMPLEMENTATION OF 3X3 SATELLITE NETWORK WITH BIDIRECTIONAL FORWARDING DETECTION

AND OPEN VIRTUAL SWITCH .. 38

4.9 TEST SET SENDING SYNTHETICALLY GENERATED VOIP TRAFFIC ... 41

6

4.10 PARAMETERS: BANDWIDTH AND PACKET LOSS SUFFERED BY VOIP... 43

 RESULTS ... 43

5.1 TEST SET: ANALYZE THEORETICAL AND PRACTICAL DATA ... 43

5.2 THEORETICAL VALUES ... 44

5.2.1 Node 8: Timing results .. 45

5.2.2 Node 0: Timing results .. 45

5.2.3 Node 7: Timing results .. 46

5.2.4 Node 4: Timing results .. 47

5.3 BANDWIDTH AND PACKET LOSS SUFFERED BY VOIP .. 47

5.3.1 Node 8 : Timing results of ping ... 48

5.3.2 Node 0 : Timing results of ping ... 48

5.3.3 Node 7 : Timing results of ping ... 49

5.3.4 Node 4 : Timing results of ping ... 49

5.3.5 Flow graph .. 49

5.3.6 Packet loss ... 51

 ECONOMIC FEASIBILITY STUDY ... 52

 ANALYSIS AND ASSESSMENT OF ENVIRONMENTAL AND SOCIAL IMPLICATIONS 52

 CONCLUSIONS ... 53

 PLANNING AND SCHEDULING OF THE PROPOSED FUTURE WORK 55

 REFERENCES ... 56

 ATTACHMENTS ... 59

11.1 DEVELOPMENT OF THE SOLUTION .. 59

11.2 V_CONTAINERNET_TEST.PY .. 59

11.3 SCRIPT CPATH.SH ... 81

11.5 SWITCH_PATH.SH .. 84

11.6 TCPDUMP.SH .. 89

11.7 PROCESS_TEST.SH ... 91

11.8 RUNS.SH .. 93

11.9 RESULTS .. 95

11.9.1 Node 0 .. 95

11.9.2 Node 3 .. 95

11.9.3 Node 4 .. 96

11.9.4 Node 7 .. 97

11.9.5 Node 8 .. 98

7

List of tables

TABLE 1. STRUCTURE OF RESULTS ...20

TABLE 2 NODE AND INTERFACE OF THE GRID ...35

TABLE 3 DEFAULT PROPERTIES OF BFD_MIN_RX ...40

TABLE 4 THEORIC VALUES ..44

TABLE 5 NODE 8: TIMING RESULTS ...45

TABLE 6 NODE 0: TIMING RESULTS ...46

TABLE 7 NODE 7: TIMING RESULTS ...46

TABLE 8 NODE 4: TIMING RESULTS ...47

TABLE 9 NODE 8. TIMING RESULTS OF PING ...48

TABLE 10 NODE 0: TIMING RESULTS OF PING ...48

TABLE 11 NODE 7: TIMING RESULTS OF PING ...49

TABLE 12 NODE 4: TIMING RESULTS OF PING ...49

TABLE 13 PACKET LOSS: PING 0 AND PING 8 ..51

8

List of figures

FIGURE 1 SDN ARCHITECTURE [6] ..21

FIGURE 2 RFC 5880 STATE DIAGRAM [7] ..25

FIGURE 3 RFC 5880 STATE DIAGRAM 2: NODES ..25

FIGURE 4 BFD STATUS DIAGRAM ..26

FIGURE 5 GRID TOPOLOGY NETWORK FOR 3X3 ..33

FIGURE 6 WORKFLOW DIAGRAM OF IMPLEMENTATION ..34

FIGURE 7 DIAGRAM OF 3X3 SATELLITE NETWORK ...35

FIGURE 8. GRID 3X3: PRIMARY AND SECONDARY PATH ...39

FIGURE 9 PING BETWEEN NODE 0 AND NODE 8 (WIRESHARK) ...50

file:///C:/Users/nerep/Desktop/UPC/TFG/Entrega%20final/TFG_Nerea_Gonzalez_Anguita.docx%23_Toc138275834
file:///C:/Users/nerep/Desktop/UPC/TFG/Entrega%20final/TFG_Nerea_Gonzalez_Anguita.docx%23_Toc138275835
file:///C:/Users/nerep/Desktop/UPC/TFG/Entrega%20final/TFG_Nerea_Gonzalez_Anguita.docx%23_Toc138275836
file:///C:/Users/nerep/Desktop/UPC/TFG/Entrega%20final/TFG_Nerea_Gonzalez_Anguita.docx%23_Toc138275837
file:///C:/Users/nerep/Desktop/UPC/TFG/Entrega%20final/TFG_Nerea_Gonzalez_Anguita.docx%23_Toc138275838
file:///C:/Users/nerep/Desktop/UPC/TFG/Entrega%20final/TFG_Nerea_Gonzalez_Anguita.docx%23_Toc138275839
file:///C:/Users/nerep/Desktop/UPC/TFG/Entrega%20final/TFG_Nerea_Gonzalez_Anguita.docx%23_Toc138275842

9

List of formules

FORMULA 1 BFD ...23

FORMULA 2 DETECTION TIME ..28

FORMULA 3 TRANSMISSION RATE ..28

FORMULA 4 BANDWIDTH ..29

FORMULA 5 BANDWIDTH 2 ..41

FORMULA 6 NUMBER OF PACKETS...43

FORMULA 7 DETECTION TIME ..44

10

List of abbreviations / Glossary

VM: Virtual Machine

BFD: Bidirectional Forwarding Detection

VoIP: Voice Over IP

SDN: Software-Defined Networking

RFC-5880: Request for Comments, Bidirectional Forwarding Detection is a network

protocol used to detect faults between two routers or switches connected by a link.

LEO: Low Earth Orbit

D-ITG: Distributed Internal Traffic Generate

OAM : Operations, Administration and Maintenance

MAC: Media Acces Control

IPv: Internet Protocol (version X)

CFM: Connectivity Fault Management

LxC: Linux Containers

VPN: Virtual Point of Network

API: Application Programming Interface

ST: Signaling Time

AVG (MST): average measured signaling time

RX: Reception

TX: Transmission

DT: Detection time

MDT: Average detection time

11

1. Introduction

1.1. Object

The objective of this project is to build a testbed to test the detection and signaling of link

failures using the Bidirectional Forwarding Detection protocol and to analyze the affectation

suffered by communication routes in a SDN packet-switching satellite network. The testbed

will be built using the “mininet” tool on a Linux platform. The packet switch used will be

OpenVirtualSwitch, which support the BFD protocol (RFC 5880) for the detection and

signaling of link failures.

The results must determine which are the BFD parameters to achieve a compromise

between the BFD packet signaling period and the bandwidth used to keep the VoIP

communication parameters within the acceptable limits (150ms one way delay, 30ms jitter,

loss less than 1%) in the event of a link failure with a route update.

1.2. Abast

Although this project is about design satellite network. This project focuses on

implementing a simulation of a 3 x 3 satellite network to evaluate link failure detection times

in a satellite Software-Defined Networking (SDN) using the Bidirectional Forwarding

Detection (BFD) protocol. The constellation Dynamics is excluded from work, as we are not

interested in emulating the influence of satellite constellation motion but only the BFD

behaviour.

The work to be carried out will be:

1- Implement a building tool, using ContainerNet API of the grid topology of the switching

nodes that represents the connection links of a LEO satellite network.

2- Define a reference of satellite network to understand the connection which each node

and to know switching tables.

12

3-In each switching node: start an OVS (OpenVirtualSwitch), activating the BFD and

configuring it appropriately in end nodes. Define and load the primary and secondary

switching tables needed to run the test

4- Carry out a test set, sending synthetically generated VoIP traffic and generating pre-

programmed link failures: Define a set of link failures to carry out the different tests

5- The key performance indicators will be the link failure detection time, the end nodes

switching time, the latency, the jitter and packet loss suffered by the voice packets during a

VoIP (Voice-over IP) communication subjected to the defined link failures. Voice traffic

patterns (VoIP) will be generated by a traffic synthesis tool (WireShark)

1.3. Requeriments

This project is carried out in a virtual machine. This machine contains Mininet with

Containernet extension that it is a Python API for deploying large networks on the limited

resources of a computer or VM in this case. Mininet has been created for enable research

in Software Defined Networking (SDN).

In order to remote access to the UPC premises, correct external client configurations are a

requeriment. The requeriments includes:

- VPN Fortinet client as a UPC external connectivity requirement.

- X2GO client for remote desktop access to the UPC Linux Servers.

In each node start an OVS (OpenVirtualSwitch), activating the BFD and configuring it

appropriately. Each node is connected to another node with north-south traffic and east-

west traffic.

13

1.4. Rationale

This project called Link failure testing project on a satellite SDN network using Bidirectional

Forwarding Detection, is a subproject of a main project: where routing techniques are

proposed and tested in a satellite constellation network for ATM services.

In any communication network, link failures are a very important issue because data

communications are affected by such problems and the quality of the service is reduced.

Currently, satellite networks play a crucial role in global communication, and efficient link

failure detection is vital to ensure optimal performance and reliable connectivity. The

adoption of SDN technology in satellite networks offers significant advantages, such as the

ability to centrally manage and control network operations, as well as the flexibility to adapt

to dynamic changes in network requirements.

Some characteristics of SDN (Software-Defined Networking):

 SDN is a networking approach that separates the control plane from the data plane,

enabling more centralized and programmable network management.

 By utilizing SDN, the network infrastructure can be controlled and managed in a

more flexible and efficient manner through programmable interfaces.

 SDN allows for the virtualization of network resources, facilitating the creation of

logical networks and resource allocation based on real-time needs.

 This approach also enhances network automation capabilities, enabling more

dynamic and adaptive management of network resources and services.

Characteristics of LEO (Low Earth Orbit):

 LEO refers to a low-altitude Earth orbit typically situated at an altitude of 2,000

kilometers or less from the Earth's surface.

 Satellites in LEO offer advantages such as lower latency, higher bandwidth, and the

ability to cover larger geographical areas compared to higher orbits.

14

 LEO-based satellite communication systems have gained interest in applications

such as the Internet of Things (IoT), mobile communications, and global connectivity.

 Due to their lower orbit, LEO satellites require efficient and reliable network

infrastructure to ensure effective communication between the satellites and the

ground station.

Geographical location can have a significant impact on the signal strength and availability

of satellite communication. In certain areas, such as remote or mountainous regions, the

signal may become weak or even lost, resulting in communication disruptions between the

satellite network and planes. This can have serious consequences, particularly in situations

where real-time communication is essential for safety and operational purposes.

By implementing innovative solutions, this project aims to mitigate the impact of

geographical factors on signal loss. The use of VoIP technology allows for voice

communication over an internet-based network, providing an alternative communication

channel that is not solely reliant on satellite connections. This helps to ensure that

communication between the satellite network and planes remains intact, even in the event

of signal loss or degradation.

In addition of Bidirection Forwarding Detection, there is another important protocol called

802.1ag Connectivity Fault Management (CFM). Unlike BFD, CFM is closely tied to the

Ethernet standard (802) and is specifically used to monitor and diagnose connectivity issues

in Ethernet networks.

On the other hand, BFD was designed to be independent of the physical medium in which

it is implemented. It can be used in various network technologies, including Ethernet, MPLS,

IPv4, and IPv6, making it a flexible and adaptable choice for different network environments.

Possible advantages of the Link failure testing project on a satellite SDN network using

Bidirectional Forwarding Detection approach are:

Improved network reliability: The project aims to automatically correct link failures between

satellites and maintain the connection between the satellite network and the plane. This can

15

lead to improved network reliability, ensuring that the VoIP traffic is transmitted without

interruption.

Increased efficiency: The use of Bidirectional Forwarding Detection can help detect link

failures quickly, allowing for prompt corrective measures. BFD can increase the efficiency

of the satellite network and minimize downtime.

Enhanced user experience: VoIP is used by communication for airlines and any

interruptions or quality issues can lead to a poor user experience. The Link failure testing

project can ensure that the VoIP connection remains stable and that the voice quality is not

affected.

However, some possible disadvantages of the approach may include:

High implementation costs: Setting up a satellite network and implementing Bidirectional

Forwarding Detection can be more expensive, especially handle this OAM traffic.

Technical complexity: The project involves using advanced networking technologies such

as SDN and Bidirectional Forwarding Detection. The technical complexity of implementing

and maintaining these technologies can be a challenge for some organizations.

Overall, the Link failure testing project on a satellite SDN network using Bidirectional

Forwarding Detection has the potential to improve network reliability and increase efficiency.

However, the costs, technical complexity, and limited applicability of the approach should

also be considered.

16

 Background and review of state of the art

2.1 Current situation of the topic

Bidirectional Forwarding Detection (BFD) is a protocol used to quickly detect and diagnose

network failures in computer networks. To optimize network management in satellite

environments, Software-Defined Networking (SDN) is employed. SDN separates the control

plane from the data plane, with a centralized network controller making routing and

management decisions while switches handle packet forwarding based on the controller's

instructions. This approach offers flexibility and dynamic configuration, enabling automation

and adaptation to changing network demands.

In SDN-based satellite networks, OpenFlow switches are utilized. These switches

implement the OpenFlow protocol, which is a standardized communication protocol used

for interaction between the controller and network devices. By utilizing OpenFlow switches,

the controller can make routing decisions and manage switch behavior effectively.

OpenFlow switches have several distinctive characteristics:

 Separation of the control plane and data plane, enabling centralized and

programmable network management.

 Programmability that allows the controller to implement dynamic routing policies and

traffic rules on OpenFlow switches.

 Increased network visibility and control, enabling fine-grained traffic control and

monitoring.

 Scalability, facilitating the management of large networks within the SDN

architecture.

Mininet is a network emulation tool that enables the creation of virtualized networks on a

single host. An extension of Mininet, called Containernet, allows the emulation of Docker

containers within the virtual network environment. Mininet utilizes Network Namespaces,

virtual containers, to simulate real network behavior and create virtual network topologies.

Containernet adds the capability to emulate Docker containers on each node of the virtual

17

network, facilitating the execution and communication of applications within the emulated

environment.

Docker is an application virtualization platform that enables the packaging of applications

and their dependencies into containers, simplifying deployment and enhancing portability.

Open vSwitch (OVS) is a high-performance virtual switch commonly used in virtualized

environments.

LxC (Linux Containers) is an operating system-level virtualization technology that enables

the execution of isolated Linux instances, referred to as containers, on a single host. LxC

containers provide lightweight and efficient environments for running applications and

services, with each container having its isolated file system and resources. LxC allows for

quick creation and agile deployment of applications in virtualized environments.

The work developed in this project is directed towards ensuring the reliability of the network:

Link failures can occur due to different reasons, such as hardware failure, natural disasters

or human errors. When a link failure occurs, it can result in a network outage, causing

significant disruptions and downtime. By conducting link failure testing using BFD, network

administrators can identify potential issues and proactively address them, ensuring the

network’s reliability and minimizing downtime.

Improving network performance: BFD protocol provides fast failure detection, which is

critical in networks with high traffic and low latency requirements, such as satellite networks.

Enhancing network security: It is possible that link failures can also be caused by malicious

attacks, such as denial-of-service (DDoS) attacks or network intrusion attempts. By

producing link failure testing, network administrators can identify potential security

vulnerabilities and implement appropriate measures to protect the network from such

attacks.

Ensuring compliance with regulatory requirements: Some industries, like healthcare, and

government, are subject to strict regulatory requirements that mandate the availability and

reliability of their networks. By conducting link failure testing using BFD, organizations can

ensure compliance with these requirements and avoid costly penalties for non-compliance.

18

 Complete network design and policies

Before starting development code is necessary to establish certain policies in order to

create and complete a network design.

3.1 Traffic Policies

Traffic can be categorizen into two main categories: data traffic and OAM (Operations,

Administration, and Maintenance) traffic associated with BFD (Bidirectional Forwarding

Detection).

 Data traffic.

It refers to the flow of digital information or data packets over a network

 OAM traffic associated to the BFD:

OAM traffic is used to monitor the network and includes two types of monitoring:

Link monitoring and Path monitoring. Link monitoring helps to ensure that the

connection between network devices is working correctly, while Path monitoring

checks that the correct network path is being used for traffic.

3.2 IP Assignment Policy

Each category of traffic has specific IP address and MAC address assignments to facilitate

effective network operation and maintenance:

3.2.1 Voice-related Traffic:

Voice-related traffic refers to the communication traffic carrying voice calls and related

services.

19

For end-to-end traffic, a range of IPs 172.16.NodeNum.IfaceNum/16 will be assigned, with

NodeNum and IfaceNum. The NodeNum and IfaceNum variables represent the specific

node and network interface associated with the IP address.

The assignment of MAC addresses associated with these IPs (assigned to the bridges of

each docker) will use OUI-data:00:00:NodeNum (for example, OUI-data: 00:02:00), with

OUI-data less than 255.

3.2.2 OAM Traffic associated with BFD for link monitoring:

A range of IP addresses will be assigned for operations, administration, and maintenance

(OAM) of the network, for example, 169.254.NodeNum.(IfaceNum+1), where NodeNum is

the number of nodes (NodeNum< 255) and IfaceNum is the network interface (IfaceNum <

255). These IPs will be used for network management, such as monitoring and quality

control.

The MAC addresses associated with the links for this case will be OUI-

OAM:00:NodeNum:IfaceNum, with the three variables OUI-OAM, NodeNum, and IfaceNum

less than 255.

3.3 Test and results

A total of 120 tests will be conducted, varying the "mult" factor between 2, 3, and 4. The

packet transmission rate will be set to 1 packet per second, 2 packets per second, 5 packets

per second, and 10 packets per second. These tests will evaluate the performance of packet

transmission under different conditions. The bfd: min_tx values were set to 10, indicating

that BFD control packets were sent every 10 milliseconds.

This will enable rapid detection of link failures while maintaining a balance between timely

detection and the overhead associated with frequent packet transmissions. The results

table shows the equivalence between bfd_min_rx values, transmission rate, interval, and

corresponding bandwidth, providing information about the relationship between these

parameters.

20

The results will be presented in a table. The time values will be measured with a maximum

precision of milliseconds. In order to avoid having 5 tables for each "mult" value, a single

multicolumn table will be presented. This table will focus on the change path scenario of

node N8 and will not include the detection time column. The table format will be as follows,

with values expressed in milliseconds:

mult 2 3 4

bfd_min_rx ST | AVG(MST) ST | AVG(MST) ST | AVG(MST)

Table 1. Structure of results

In this format, each row corresponds to a specific value of "bfd_min_rx," and the columns

represent the different values of "mult." The values shown in each cell will be the signaling

time (ST) and the average measured signaling time (AVG (MST)). It is worth noting that the

signaling time is not the detection time, as it specifically refers to node 8.

The results will be displayed in a similar table format for the data of nodes 0, 3, 4, and 7.

3.4 G.711: audio codec

Voice traffic patterns, specifically VoIP (Voice over Internet Protocol), can be generated

using a traffic synthesis tool such as D-ITG. In VoIP, the G.711 audio codec is commonly

used for telephony applications.

G.711 is an audio codec that was originally developed for telephony applications. It is

designed to deliver high-quality audio at a bit rate of 64 kbit/s. The codec operates within

the frequency range of 300-3400 Hz and samples the audio signal at a rate of 8,000

samples per second [1]. Each sample is represented using 8 bits of quantization, resulting

in a 64 kbit/s bit rate.

21

3.5 What happens in each switching node?

3.5.1 Definition of Open Virtual Switch

Open Virtual Switch (OVS) is a software-based virtual

switch that can be used to connect virtual machines

(VMs) within a host or across hosts in a network. OVS

supports standard OpenFlow protocol for controlling

traffic flows in the network and enables the

implementation of software-defined networking (SDN)

in a virtualized environment.

OVS can be used in differents virtualization platforms,

sush as Xen, KVM, VMware, and VirtualBox. It can

also be integrated with another container systems like

Kubernetes and Docker Swarm.

OVS provides features such as Quality of Service (QoS), network isolation, and flow control.

It also supports network tunneling protocols like VXLAN, GRE, and Geneve, which can be

used to extend virtual networks across physical boundaries.

Overall, OVS provides a flexible and scalable virtual switching solution for SDN-based

networks, enabling administrators to manage and control network traffic in a highly

customizable way.

3.5.2 Definition of Software-defined networking

Software-defined networking (SDN) is then physical separation of the network control plane

from the data plane, allowing network administrators to manage network traffic flow centrally

through software-based controllers, rather than configuring individual network devices such

as switches and routers.

Figure 1 SDN architecture [6]

22

In an SDN architecture, network devices (such as switches and routers) are configured with

a forwarding table that maps network addresses to the appropriate output port. The

forwarding table is managed by a central controller, which communicates with the devices

using a standard protocol such as OpenFlow. This options allows to define policies and

configure the network centrally, rather than on a per-device basis.

One of the main benefits of SDN is its flexibility and programmability. By abstracting the

control plane from the data plane, SDN enables network administrators to automate network

management and orchestration, making it easier to manage complex networks and respond

quickly to changing network requirements. SDN also enables the creation of virtual

networks, which can be used to isolate traffic and provide enhanced security.

3.5.3 Definition of Dockers

Dockers are used to emulate and simulate network components in the testing environment.

They are containers that contain an application and all its dependencies necessary to

function independently. It is an operating system-level virtualization platform that allows

packaging an application and its dependencies into a lightweight and portable container. In

our project, we use Docker containers to emulate routers, switches, and satellite nodes.

It allows us to monitor and analyze the network behavior using tools like BFD and OVS. We

record and analyze the fault detection messages sent and received by the Docker

containers, which helps us evaluate the effectiveness of BFD in link failure detection and

the overall response of the SDN network.

Using Docker containers, we create an isolated and reproducible testing environment where

we simulate different link failure scenarios and evaluate the behavior of the SDN network in

response to these events. We configure the Docker containers to emulate specific network

links, establish failure conditions, and monitor the network behavior using tools like

Bidirectional Forwarding Detection and Open Virtual Switch.

23

3.6 Definition of Bidirectional Forwarding Detection

Bidirectional Forwarding Detection (BFD) is a protocol used in computer networks to detect

failures in the forwarding path between two or more network nodes. BFD can detect link

failures in as little as a few milliseconds, making it useful for rapid failure detection and

recovery in high-speed networks.

BFD works by exchanging small control packets between the two nodes over the network

link, at a frequency determined by configurable parameters such as the desired detection

time and the network latency. Each packet includes a sequence number and a timestamp,

which are used to detect lost or out-of-order packets and to measure the round-trip delay

between the nodes. One packet of BFD has 66 bytes, it is formed by header and payload:

BFD = Hdr_eth + Hdr_ip + Hdr_udp + bfd_payload = 66 bytes

Formula 1 BFD

Ethernet Header (Hdr_eth): Contains information related to Ethernet framing, such as the

source and destination MAC addresses.

IP Header (Hdr_ip): Requires IP routing, including source and destination IP addresses.

UDP Header (Hdr_udp): Is used for the encapsulation of BFD packets within UDP (User

Datagram Protocol). It includes source and destination port numbers.

BFD Payload (bfd_payload): The BFD payload carries the actual BFD control information,

including session state, timers, and flags related to the detection and monitoring of link

connectivity.

If BFD detects a failure in the forwarding path, it can trigger appropriate actions, such as

switching to a backup path or notifying the network management system.

24

3.7 RFC 5880

RFC 5880 is a document that defines the specifications for the Bidirectional Forwarding

Detection (BFD) protocol. The BFD protocol is a network diagnostic tool used to detect

failures in the forwarding path between two network nodes, such as routers or switches,

and quickly notify the nodes of any detected failures.

The main objective of RFC 5880 is to provide a standardized protocol for detecting faults in

network paths with low overhead and minimal delay. It specifies the message formats,

timers, and procedures for initiating, maintaining, and terminating BFD sessions between

network nodes.

3.7.1 RFC 5880 State Diagram:

RFC 5880 describes the OSPFv3 (Open Shortest Path First version 3) routing protocol,

which is used in communication networks to exchange topology information and calculate

the shortest paths between different network nodes.

The state diagram defined in RFC 5880 describes the different states of an Open Shortest

Path First version 2 (OSPFv2) interface. The states are represented as nodes in the

diagram, and transitions between states are represented by arrows. Below are descriptions

of each of the states:

Down: The interface is inactive and the OSPFv2 process has not been initiated on the

interface.

Init: The OSPFv2 process has been initiated on the interface, but packet exchange with an

OSPFv2 neighbor has not yet been completed.

Waiting: The interface is waiting to receive a Hello packet from an OSPFv2 neighbor.

Point-to-Point: The interface is connected to a single OSPFv2 neighbor.

DR: The interface is the designated router on a multicast segment.

25

BDR: The interface is the backup designated router on a multicast segment.

Full: The interface has established a full OSPFv2 adjacency with a neighbor.

Timer: A timer that counts the time for which a neighbor’s state remains in a specific state.

3.8 Bidirectional Forwarding Detection Study

BFD (Bidirectional Forwarding Detection) is a protocol designed to quickly and accurately

detect network connectivity failures. These are some variables relates with Python program:

bfd_status: bfd_forwarding: The value of this variable indicates the OVS perception of

the I/O capability of a specific switch port. If the value of this variable is True, it means

that the port can be used for packet forwarding and basically indicates that the BFD

session state (bfd_status) is UP and furthermore, the remote system is not signaling any

“concatenated paths” problems [2]. Otherwise, the value of this variable is False. In the case

that bfd_status: bfd_forwarding is False, the value of bfd_status: state is UP and bfd_status:

remote_diagnostic has the value “Concatenated Path Down,” an alternate path (if available)

should be activated or the bfd: cpath_down variable of the appropriate interfaces should be

set to True to signal the impossibility of using that path upstream.

Figure 2 RFC 5880 State Diagram [7]

Figure 3 RFC 5880 State Diagram 2: nodes

26

bfd_status: state: This parameter provides the current state of the BFD session as defined

in RFC5880. If the state is “down” or “init,” it is considered that the link has failed, and an

alternate path (if available) should be activated or the bfd: cpath_down variable of the

appropriate interfaces should be set to True to signal the link failure upstream.

bfd: min_rx: This option sets the minimum wait time. This is the minimum interval, in

milliseconds, between received BFD control packets that this system is capable of

supporting. It determines the maximum receive rate in packets/second (1/min_rx). In the

standard (RFC5880), this parameter is defined as “Required Min RX Interval.” The default

value is “1000 ms” (1 bfd packets/second).

bfd: min_tx: This is the minimum interval, in milliseconds, that the local system would like

to use when transmitting BFD control packets. The value zero is reserved. The default value

is “100 ms.” This parameter specifies the frequency at which a network interface sends

FALSE
TRUE

Bfd_status =
up

Bfd_status:remote_diagnostic
= Concatenated Path Down

Bfd_status: state = up

Alternative path
(if exists)

Concatenated path

Bfd: cpath_down

Bfd_status: bfd_forwarding

Figure 4 BFD Status diagram

27

bidirectional connection detection packets. Incorrectly configuring this parameter could

result in too many or too few packets being sent.

bfd.DesiredMinTxInterval: The minimum interval, in microseconds, between transmitted

BFD. Control packets that this system would like to use at the current time, less any jitter

applied. The actual interval is negotiated between the two systems. This must be initialized

to a value of at least one second (1,000,000 microseconds).

bfd.RemoteMinRxInterval: The last value of Required Min RX Interval received from the

remote system in a BFD Control packet. This variable MUST be initialized to one.

The transmission rate of BFD packets in one direction is determined by the local system’s

bfd: min_tx value and the value of the “Required Min RX Interval” parameter received in the

bfd packets sent by the remote system. As stated in RFC5880, section 6.8.7 [2],

“Transmitting BFD Control Packets”.

RFC5880, section 6.8.7, Transmitting BFD Control Packets [2]

“ …a system MUST NOT transmit BFD Control packets at an interval less than the

larger of bfd.DesiredMinTxInterval and bfd.RemoteMinRxInterval, less applied

jitter (see below). In other words, the system reporting the slower rate determines the

transmission rate… ”

Where bfd.DesiredMinTxInterval (the value of the local bfd: min_tx parameter) and

bfd.RemoteMinRxInterval (the value of the remote bfd: min_rx parameter). Finally, in

asynchronous mode, the detection time calculated in the local system is equal to the value

of “Detect Mult” received from the remote system, multiplied by the agreed transmission

interval of the remote system (the larger between bfd.RequiredMinRxInterval and the last

received Desired Min TX Interval). The value of Detect Mult is (generally, due to fluctuation)

the number of consecutive packets that must be lost to declare the session inactive.

28

𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 = 𝐷𝑒𝑡𝑒𝑐𝑡𝑀𝑢𝑙𝑡𝑣𝑎𝑙𝑢𝑒 ∗ 𝑚𝑎𝑥 (𝐵𝐹𝐷𝑅𝑀𝑅𝐼 , 𝐵𝐹𝐷𝐷𝑅𝑀𝑇𝑋𝐼)

Formula 2 Detection time

𝐵𝐹𝐷𝑅𝑀𝑅𝐼 = 𝑏𝑓𝑑. 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝑀𝑖𝑛𝑅𝑥𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙

𝐵𝐹𝐷𝐷𝑅𝑀𝑇𝑋𝐼 = 𝑙𝑎𝑠𝑡_𝐷𝑒𝑠𝑖𝑟𝑒𝑑𝑀𝑖𝑛𝑇𝑋𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙

For example, when a node A receives a BFD packet from node B, node A will update its

internal variables upon receiving the min_rx value from the remote system within the BFD

packet.

RFC5880, section 6.8.7, Transmitting BFD Control Packets [2]

 With the exceptions listed in the remainder of this section, a system

 MUST NOT transmit BFD Control packets at an interval less than the

 larger of bfd.DesiredMinTxInterval and bfd.RemoteMinRxInterval

 In other words, the system reporting the slower rate determines the

 transmission rate.

The formula for the transmission rate of BFD packets is determined by:

𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑟𝑎𝑡𝑒 =
1

𝑚𝑎𝑥 (
𝑏𝑓𝑑. 𝐷𝑒𝑠𝑖𝑟𝑒𝑑𝑀𝑖𝑛𝑇𝑥𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙,
 𝑏𝑓𝑑. 𝑅𝑒𝑚𝑜𝑡𝑒𝑀𝑖𝑛𝑅𝑥𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙

)
− 𝑗𝑖𝑡𝑡𝑒𝑟

Formula 3 Transmission rate

If we assume that the configurations are symmetrical, the value will be the same.

Where “max” represents the function that returns the maximum value between

bfd.DesiredMinTxInterval and bfd.RemoteMinRxInterval, and “jitter” is the amount of

fluctuation applied to avoid synchronization with other systems on the same subnet.

29

The bandwidth (BW) is calculated for the transmission rate and size of a 66-byte BFD

packet:

𝐵𝑊 = 𝑟𝑎𝑡𝑒 (
𝑝𝑘𝑡

𝑠
) ∗ (66 𝑏𝑦𝑡𝑒𝑠 ∗ 8

𝑏𝑖𝑡𝑠

𝑏𝑦𝑡𝑒
)

Formula 4 BandWidth

bfd: enable: This option indicates whether BFD is enabled on the virtual switch OVS. The

default value is “false,” which means that BFD is not enabled. If set to “true,” BFD will be

enabled.

bfd: mult: This option sets the multiplicative factor applied to BFD timeout values. The

default value is “3”. This parameter specifies the number of times a network interface should

attempt to detect bidirectional connectivity before declaring the connection as down.

Incorrectly configuring this parameter could cause intermittent connectivity issues to be

ignored, which could affect the effectiveness of the testing project.

cpath_down: Indicates whether a path should be considered inactive when connectivity

with the BFD neighbor is lost. The value can be “true” or “false”. When cpath_down is “true”

it means that the link is down.

bfd_local_src_mac: Sets the source MAC address of BFD packets sent by this device.

bfd_local_dst_mac: Sets the destination MAC address of BFD packets sent by this device

bfd_remote_dst_mac: Sets the destination MAC address of BFD packets received by this

device.

bfd_src_ip: Sets the source IP address of BFD packets sent by this device.

bfd_dst_ip: Sets the destination IP address of BFD packets sent by this device.

oam: Indicates whether the device is OAM (Operations, Administration, and Maintenance)

compatible and should be used for BFD packet exchange. The value can be “true” or “false”.

wait_until : parameter used to specify the wait time before the OVS daemon starts BFD

negotiation. This parameter is used when configuring BFD on a port and to want to wait until

another process in the system (such as a routing protocol daemon) has configured the

remote neighbor before starting BFD negotiation.

30

3.8.1 Example of BFD

This code (bfd_config.txt) is a configuration example of BFD in two devices, d1 and d2,

using Open vSwitch (OVS).

#in d1:

ovs-vsctl list interface d1-eth0

ovs-vsctl set interface d1-eth0 bfd:bfd_dst_ip=169.254.1.2

ovs-vsctl set interface d1-eth0 bfd:bfd_local_src_mac=00:23:20:00:00:01

ovs-vsctl set interface d1-eth0 bfd:bfd_local_dst_mac=00:23:20:00:00:02

ovs-vsctl set interface d1-eth0 bfd:enable=true

#in d2:

ovs-vsctl set interface d2-eth0 bfd:bfd_src_ip=169.254.1.2

ovs-vsctl set interface d2-eth0 bfd:bfd_dst_ip=169.254.1.1

ovs-vsctl set interface d2-eth0 bfd:bfd_local_dst_mac=00:23:20:00:00:01

ovs-vsctl set interface d2-eth0 bfd:bfd_local_src_mac=00:23:20:00:00:02

ovs-vsctl set interface d2-eth0 bfd:enable=true

In d1, the current configuration of the “d1-eth0” interface is first displayed using the

command “ovs-vsctl list interface d1-eth0”. Specifically, the command “ovs-vsctl list

interface d1-eth0” is used to list the current configuration of the “d1-eth0” interface in Open

vSwitch (OVS).

“ovs-vsctl” is a command-line tool used to manage and configure OVS.

“list” is a subcommand used to list the current configuration of a specific resource in OVS.

“interface” is the type of resource that is desired to be listed, in this case, a network interface.

“d1-eth0” is the name of the network interface that is desired to be listed.

When this command is executed, the current configuration of the “d1-eth0” interface in OVS

will be displayed in the terminal output.

31

Next, the interface is configured to use BFD with the destination IP address “169.254.1.2”,

the local source MAC address “00:23:20:00:00:01”, and the local destination MAC address

“00:23:20:00:00:02”. Finally, BFD is enabled on the interface with “bfd:enable=true”, this

expression is an option used to enable BFD on a specific network interface.

When “enable=true” is set in the BFD configuration of an interface, bidirectional connection

detection is activated for that particular interface. This means that the interface will initiate

bidirectional connection detection to verify if the network connection through that interface

is active and operating correctly.

In d2, the “d2-eth0” interface is configured to use BFD with the source IP address

“169.254.1.2”, the destination IP address “169.254.1.1”, the local destination MAC address

“00:23:20:00:00:01”, and the local source MAC address “00:23:20:00:00:02”.

To check the BFD configuration, two queries are made using the “ovs-vsctl” command. In

the first query, the current BFD configuration for the “d1-eth0” interface is listed. In the

second query, the current BFD status for the same interface is listed, including information

such as connection status and flap count.

32

 Methodology

4.1 Developement of methodology

The objective is to implement a grid network. This network is based on switching and does

not utilize routing. Communication paths are established through Layer 2 in the switching

tables. Considering an MxN grid network, it is important to define the types of traffic that will

be used and associate them with the nodes. For this purpose, aspects such as the following

need to be defined:

IP addresses: IP addresses will be assigned to each node in the network for their

identification and communication within the context of the grid network.

MAC addresses: MAC addresses will be assigned to each node in the network. These

addresses are used to uniquely identify each node at the data link layer.

Node identification: Each node in the grid network should have a clear and unique

identification method. This includes assigning distinct IP addresses to each node.

Audio Codec: Specific characteristics of the G.711 audio codec will be utilized due to its

audio quality and compression properties.

33

4.2 Definition of the network topology

Mininet is a software emulator that can be used to create virtual networks of hosts, switches,

controllers and links. Standard Linux network software is used by mininet switches and

hosts. It is supported by OpenFlow with Software-Defined Networking.

Using the Mininet/Containernet API, we will implement a Python code that, when executed,

sets up a set of virtual machines (Docker containers in this case) that configure the network

nodes. Additionally, it should interconnect each of these nodes with the appropriate links to

configure the MxN grid topology.

During the construction process, the following will be appropriately configured:

 The interfaces of each node to carry out the link failure management process.

 The programming of each corresponding OVS (Open vSwitch) for each node to

establish end-to-end paths that determine the test routes.

Figure 5 Grid topology network for 3x3

34

 The corresponding processes for link failure signaling and path switching will be

started.

4.3 Design of NxM satellite network

A 3x3 satellite network refers to a specific configuration of satellite communication systems

involving nine satellites. In this network setup, nine satellites are strategically positioned in

space to establish communication links and provide coverage over a designated area on

Earth. In this case, the diagram that is used in a simulation of Mininet is a satellite network

3x3 where node are numbered from zero to eigh. Each node has OAM IP specific policy.

Figure 6 Workflow diagram of implementation

35

Ethernet network interface are numbered as d_node-interface. In figure1 we can observe

the diagram of implementation.

Each node has a interface network for connect with neighbour nodes:

Node Ethernet network

d0 Eth0, Eth1

d1 Eth0, Eth1, Eth2

d2 Eth0, Eth1

d3 Eth0, Eth1,Eth2

d4 Eth0, Eth1,Eth2,Eth3

d5 Eth0, Eth1,Eth2

d6 Eth0, Eth1

d7 Eth0, Eth1,Eth2

d8 Eth0, Eth1

Table 2 Node and interface of the grid

Figure 7 Diagram of 3x3 satellite network

36

4.4 Links:

Each node will be connected by links (end-to-end path) to other nodes. Each node will be

directly connected to adjacent nodes. For example, node 0 will be connected to nodes 1

and 3, while node 1 will be connected to nodes 0, 2, and 4.

4.5 IP’s and MAC’s

For IP addresses, the structure used is "172.16.1.origin/destination". Here, "origin" and

"destination" are numerical values representing the identifiers of the source and destination

nodes, respectively. For example, if the source node has the identifier 2 and the destination

node has the identifier 5, the source IP address would be "172.16.1.2" and the destination

IP address would be "172.16.1.5".

For MAC addresses, the structure used is "00:02:00:00:00:origin/destination". Again,

"origin" and "destination" are numerical values representing the identifiers of the source and

destination nodes, respectively. The ":02X" format is used to format the identifier into two

hexadecimal digits. For example, if the source node has the identifier 2 and the destination

node has the identifier 5, the source MAC address would be "00:02:00:00:00:02" and the

destination MAC address would be "00:02:00:00:00:05".

This code is used to generate the IP and MAC addresses for the source and destination

nodes in a specific network:

ip_src = f’172.16.1.{src}

hw_src = f’00:02:00:00:00:{src:02X}

ip_dst = f’172.16.1.{dst}’

hw_dst = f’00:02:00:00:00:{dst:02X}

37

4.6 End-to-End path selection

The End-to-End path selection refers to the choice of communication routes from a source

point to a destination point in a communication network. Partially disjoint paths refer to

routes that share some links along the path, while fully disjoint paths refer to routes that do

not share any links in the path.

Within fully disjoint paths, there are two types: paths with link disjointness and paths with

node disjointness. Link disjoint paths refer to routes that have unique links in common along

the path, while node disjoint paths refer to routes that do not have any nodes in common

along the path.

The selection of partially disjoint and fully disjoint End-to-End paths is important in the

planning and design of communication networks as it allows for alternative communication

routes that enable service continuity in case of failures in any point of the network.

4.7 Preset links and link failures:

If the links fail, Bidirectional Forwarding Detection (BFD) will activate and notify the nodes

of the connection disruption by cpath_down. Depending on how the network is configured,

affected nodes may attempt to establish an alternative connection using another available

path, or they may wait for the original connection to be restored.

The “cpath_down” option in BFD configuration allows notification to other links that a

connection disruption has occurred, and a path has dropped. This notification helps other

nodes adjust their paths and avoid sending traffic to an unavailable system. In other words,

the “cpath_down” option allows nodes to take preventive measures to ensure traffic is

efficiently and effectively routed even in case of a connection disruption.

In this project, packets will be sent and analyzed to see the paths. TCPDump will be used

to analyze the traffic. To do this, tcpdump must be executed on each node that needs to be

monitored, and then the capture files generated must be analyzed with a tool like Wireshark.

On each node, the following will be executed:

tcpdump –i dx-ethx –w file.dump

Where dx and eth are each node and interface.

38

4.8 Implementation of 3x3 satellite network with Bidirectional Forwarding Detection

and Open Virtual Switch

The project has been implemented using a Linux Ubuntu virtual machine. The scripts have

been written in Python and Bash languages, taking into consideration the languages of

Mininet.

First of all, define 3x3 satellite network to understand the connection which each node and

to know switching tables (figure 1). Each node (satellite) has a policy of IP and MAC to

identify the node and link.

Then, in each switching node: start an OVS (OpenVirtualSwitch), activating the BFD and

configuring it appropriately. Define and load the primary and secondary switching tables

needed to run the test.

The primary switching table, also known as the forwarding table or MAC (Media Access

Control) table, is a data structure used by network switches to make forwarding decisions.

It contains information about the MAC addresses and associated ports of connected

devices in the network.

The secondary switching table, also referred to as the backup switching table or redundant

table, serves as a backup to the primary table. It provides redundancy and fault tolerance

in case of primary table failures.

To obtain the results, a path passing through the 3x3 network will be selected, going from

node 0 to node 8, traversing the entire satellite network. The main (primary) path that the

traffic will follow is:

Node 0 Node 3 Node 4 Node 7 Node 8.

39

The secondary path that the traffic follow is:

Node 0 Node 1 Node 2 Node 5 Node 8.

A link failure will be induced between two nodes, specifically from node 4 to node 7.

Based on this test, various parameters will be analyzed, such as the detection time (3.8

formula 2), path change, notification of link failure to neighboring nodes (nodes 3, 4, 7), and

to the final nodes (nodes 0, 8).

Figure 8. Grid 3x3: Primary and secondary path

The theoretical transmission rate of BFD packets (packets/sec) was determined earlier in

the document based on the configuration parameters (3.6 formula 1), following RFC 5880.

The obtained transmission rate value is used as the "primary key" in the results table. The

fixed value will be bfd:min_tx at 10, while the bfd:min_rx value will be varied. By setting the

bfd:min_tx value to 10, it means that BFD control packets are sent every 10 milliseconds.

This interval is considered relatively frequent, allowing for rapid detection of link failures. It

40

provides a balance between timely failure detection and minimizing the overhead

associated with frequent packet transmissions.

This table shows the equivalence between the bfd_min_rx, transmission rate, interval and

bandwidth (using formula 3, Transmission rate and formula 4, BandWidth):

Bfd_min_rx Transmission rate

(pkt/s)

Interval (ms) BW (bits/s)

1 1 1000 528 (0.528 Kbps)

0.5 2 500 1056 (1.056 Kbps)

0.1 10 100 5280 (5.28 Kbps)

0.01 100 10 52800 (52.8 Kbps)

Table 3 Default properties of BFD min rx

According to the RFC, the minimum recommended interval for transmitting BFD packets is

one second. This value is set to ensure sufficient time between packet transmissions,

especially in larger networks or networks with higher latency.

However, the RFC also states that the transmission interval should not be lower than the

value of bfd.RemoteMinRxInterval, which is received from the remote end in BFD packets.

This means that if the remote end specifies a lower bfd.RemoteMinRxInterval value, the

transmission interval must be adjusted to meet that restriction.

Therefore, the used interval values (0.5 seconds, 100 ms, 10 ms) represent cases where

the remote end specifies a lower bfd.RemoteMinRxInterval than 1 second. These values

allow evaluating how the system behaves and responds when adjusting the transmission

interval to meet the received restrictions.

 A total of 120 tests were performed, varying the "mult" factor between 2, 3, and 4. The jitter

value is not a configurable parameter; it is automatically set by the OVS BFD

implementation. The packet transmission rate for the default RX (reception) and TX

(transmission) values is one packet per second. The tests were repeated for 2 packets per

41

second, 5 packets per second, and 10 packets per second, which are referred to as "rate

(pkt/s)" values, to evaluate the packet transmission rate under different conditions.

The timestamps will be relative to the oldest one in each test. If the link-down event occurs

at time T, the remaining related events will occur at T+DT (after DT seconds). T has been

set as 0, and the measured times are in units of DT.

The bandwidth has been calculated theoretically, considering that the BFD packet contains

66 bytes (Hdr_eth + Hdr_ip + Hdr_udp + bfd_payload). The bandwidth will be the size of

the BFD packet (66 bytes * 8 bits/byte), resulting in 528 bits per second, multiplied by the

packet transmission rate:

𝐵 𝑎 𝑛 𝑑 𝑊 𝑖 𝑑 𝑡 ℎ = 𝑇 ℎ𝑒 𝑜 𝑟 𝑖 𝑐 𝑝 𝑎 𝑐 𝑘 𝑒 𝑡 𝐵 𝐹 𝐷 ∗ 𝑡 𝑟 𝑎 𝑛 𝑠 𝑚 𝑖 𝑠 𝑠 𝑖 𝑜 𝑛 𝑟 𝑎 𝑡 𝑒

Formula 5 Bandwidth 2

The total bandwidth of a link will be doubled (2 * BandWidth) since traffic will travel in both

directions. Additionally, the theoretical bandwidth will be compared with the bandwidth

obtained from the tests.

The results have been obtained by processing the data. All the values read by

implementation have been transferred to a dedicated directory, which generates a .csv file.

This automation allows for the measurements to be easily analyzed and compared.

4.9 Test set sending synthetically generated VoIP traffic

A set of tests has been carried out to analyze voice packets by sending synthetically

generated VoIP traffic and generating pre-programmed link failures. The G.711 encoding

method is used for the voice packets, with a packet rate of 50 per second (pps), where each

packet is generated every 20 milliseconds (ms).

42

The G.711 encoding scheme operates at a sampling frequency of 8 kHz, resulting in 8

samples per millisecond and 160 samples per 20 ms packet. Each sample is represented

by 1 byte, giving a total of 160 bytes per packet. By adding the overhead of the IP packet

(12 bytes), the UDP protocol overhead (8 bytes), and the IP header (20 bytes), the total size

of the IP packet becomes 200 bytes.

At an IP packet rate of 50 pps, the data rate can be calculated as follows:

200 bytes/packet ∗ 50 pps = 10,000 bytes per second (80 Kbps) at the IP level.

To capture packets using the ping command, the payload size needs to be adjusted to fit

within the desired Ethernet packet size of 218 bytes. The ping command is executed with

the following parameters:

To node 8 from node 0: Ping –D 172.16.1.8 –i 0.02 –s 160 > /mnt/ping_8.log

To node 0 from node 8: Ping –D 172.16.1.0 –i 0.02 –s 160 > /mnt/ping_0.log

To generate packets of 218 bytes at the Ethernet level, the appropriate payload size for the

ping command needs to be determined. By subtracting the sizes of the IP and Ethernet

headers from the total packet size, the payload size is obtained.

For Ethernet:

Total packet size = 218 bytes

IP header size = 20 bytes

Ethernet header size = 18 bytes

Payload size for the ping command = Total packet size - IP header size - Ethernet header

Size: 𝑃𝑎𝑦𝑙𝑜𝑎𝑑 𝑠𝑖𝑧𝑒 = 218 − 20 − 18 = 180 𝑏𝑦𝑡𝑒𝑠

Therefore, to generate packets of 218 bytes at the Ethernet level, the payload size of the

ping command should be set to 180 bytes.

The total number of packets that can be generated can be calculated using the duration

and the time interval per packet. In this case:

Total duration = 11 seconds (for starting network, starting controller, starting and stop

43

TCPDump)

Time interval per packet = 0.02 seconds

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 =
𝑇𝑜𝑡𝑎𝑙 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛

𝑇𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑝𝑒𝑟 𝑝𝑎𝑐𝑘𝑒𝑡
=

11

0.02
= 550 𝑝𝑎𝑐𝑘𝑒𝑡𝑠

Formula 6 Number of packets

Therefore, a total of 550 packets can be generated within the given duration and time

interval for the test.

4.10 Parameters: bandwidth and packet loss suffered by VoIP

The key performance indicators (KPIs) for the test will include a bandwidth and packet loss

experienced by the voice packets during a VoIP communication under the simulated link

failures. To generate the voice traffic patterns (VoIP), a traffic synthesis tool such as

TCPdump will be used. The goal is to analyze and measure the impact of the defined link

failures on the quality and reliability of the VoIP communication, as indicated by these KPIs.

 Results

5.1 Test set: Analyze theoretical and practical data

A detailed analysis of the detection times in different nodes of the network is presented

under certain conditions. Data has been collected from nodes 8, 7, 4, 3, and 0, and both

the theoretical detection times and the averages of the observed detection times have been

calculated.

For all nodes, including the endpoint nodes responsible for the change of route (nodes 8

and 0) as well as the intermediate nodes (nodes 7, 4, and 3), the actual detection times

have been recorded for different values of bfd_min_rx (10, 100, 500, and 100 milliseconds).

44

Additionally, the average of the practical detection times has been calculated for each

bfd_min_rx value. These data allow us to evaluate the effectiveness of the detection in these

nodes and compare it with the expected theoretical values. In the following timing results

tables, measure detection time values are averaged from a 10 runs measurements, only

the average is showed, other statistical parameters are presented at appendix 12.

5.2 Theoretical values

This table represents the detection time in milliseconds for different values of bfd_min_rx

and the "mult" parameter (2, 3 and 4). The detection time has been calculated using

formula 2 (Detection Time):

𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 = 𝐷𝑒𝑡𝑒𝑐𝑡𝑀𝑢𝑙𝑡𝑣𝑎𝑙𝑢𝑒 ∗ 𝑚𝑎𝑥 (𝐵𝐹𝐷𝑅𝑀𝑅𝐼 , 𝐵𝐹𝐷𝐷𝑅𝑀𝑇𝑋𝐼)

Formula 2 Detection time [3]

 Theoric detection time (seconds)

bfd_min_rx

(milliseconds)
2 3 4

10 0.02 0.03 0.04

100 0.2 0.3 0.4

500 1 1.5 2

1000 2 3 4

Table 4 Theoric values

Regarding the final nodes, such as node 8 and node 0, signal times have been recorded

for each. Since these nodes are located at the edges of the satellite network, comparing

their detection time with the theoretical values is not meaningful, as they are the last to

receive the signal indicating a link failure. However, it is possible to compare the detection

times of the intermediate nodes with the theoretical values to evaluate their performance

within the satellite network.

45

5.2.1 Node 8: Timing results

When node 8 receives the cpath down signalling, a change path is performed on node 8

switching table. The new path is now 0, 1, 2, 5, 8 (secondary path) . We call signalling time

to the time when link failure occurs to when node 8 receives the cpath down notification.

DT: Detection time (seconds)

MDT: Average of Node 8 when change path.

bfd_min_rx

(ms)

BFD

BW theoric

(Kbps)

MULT

2 3 4

DT MDT DT MDT DT MDT

10 105.6 0.020 0.132 0.030 0.142 0.040 0.151

100 10.56 0.200 0.298 0.300 0.395 0.400 0.480

500 2.112 1.000 0.878 1.500 1.466 2.000 1.895

1000 1.056 2.000 1.754 3.000 2.721 4.000 3.734

Table 5 Node 8: Timing results

5.2.2 Node 0: Timing results

In this case, when node 0 receives the cpath down signaling, a route change is performed

in node 0 switching table. The new route is now 0, 1, 2, 5, 8 . Now, the signaling time refers

to the time from when the link failure occurs until node 0 receives the cpath down notification.

DT: Detection time (seconds)

MDT: Average of Node 0 when change path.

46

bfd_min_rx

(ms)

BFD BW theoric

(Kbps)

MULT

2 3 4

DT MDT DT MDT DT MDT

10 105.6 0.020 0.136 0.030 0.144 0.040 0.154

100 10.56 0.200 0.282 0.300 0.385 0.400 0.480

500 2.112 1.000 0.903 1.500 1.377 2.000 1.997

1000 1.056 2.000 1.655 3.000 2.725 4.000 3.778

Table 6 Node 0: Timing results

5.2.3 Node 7: Timing results

Node 7 detects the link failure almost immediately as it is a node directly connected to the

link which fails (link from node 4 to node 7). In next table the theoretical detection time (DT)

and the measured detection time (MDT) in order to compare the real performance.

bfd_min_rx

(ms)

BFD

BW theoric

(Kbps)

MULT

2 3 4

DT MDT DT MDT DT MDT

10 105,6 0,020 0,022 0,030 0,033 0,040 0,041

100 10,56 0,200 0,165 0,300 0,266 0,400 0,362

500 2,112 1,000 0,699 1,500 1,291 2,000 1,741

1000 1,056 2,000 1,568 3,000 2,547 4,000 3,550

Table 7 Node 7: Timing results

47

5.2.4 Node 4: Timing results

Node 4 also detects the link failure almost immediately because, like Node 7, it is directly

connected to the failing link. The following table presents the theoretical detection time (DT)

and the measured detection time (MDT) for comparison of actual performance.

bfd_min_rx

(ms)

BFD

BW theoric

(Kbps)

MULT

2 3 4

DT MDT DT MDT DT MDT

10 105.6 0.020 0.025 0.030 0.034 0.040 0.043

100 10.56 0.200 0.157 0.300 0.253 0.400 0.363

500 2.112 1.000 0.748 1.500 1.214 2.000 1.828

1000 1.056 2.000 1.463 3.000 2.557 4.000 3.598

Table 8 Node 4: Timing results

5.3 Bandwidth and packet loss suffered by VoIP

In the context of the described scenario, a connectivity test is conducted using the ping

protocol between node 8 and node 0, as well as between node 0 and node 8. This test is

performed using the G.711 voice codec and simulates the transmission of a 64-byte data

packet.

The bandwidth required to transmit this packet is calculated by multiplying the packet size

in bytes by 8, since 1 byte is equivalent to 8 bits. In this case, the packet size is 64 bytes,

therefore, the required bandwidth is 64 * 8 = 512 bits.

48

5.3.1 Node 8 : Timing results of ping

When node 8 receives the cpath down signalling, a change path is performed on node 8

switching table.

bfd_min_rx

(ms)

BFD

BW theoric

(Kbps)

MULT

2 3 4

DT MDT DT MDT DT MDT

10 105.6 0.020 0.134 0.030 0.142 0.040 0.154

100 10.56 0.200 0.291 0.300 2.737 0.400 3.696

500 2.112 1.000 0.936 1.500 1.430 2.000 2.011

1000 1.056 2.000 1.715 3.000 2.737 4.000 3.696

Table 9 Node 8. Timing results of ping

5.3.2 Node 0 : Timing results of ping

bfd_min_rx

(ms)

BFD

BW theoric

(Kbps)

MULT

2 3 4

DT MDT DT MDT DT MDT

10 105.6 0.020 0.242 0.030 0.254 0.040 0.264

100 10.56 0.200 0.436 0.300 3.043 0.400 3.925

500 2.112 1.000 1.105 1.500 1.542 2.000 2.064

1000 1.056 2.000 1.827 3.000 3.043 4.000 3.925

Table 10 Node 0: Timing results of ping

49

5.3.3 Node 7 : Timing results of ping

bfd_min_rx

(ms)

BFD

BW theoric

(Kbps)

MULT

2 3 4

DT MDT DT MDT DT MDT

10 105.6 0.020 0.024 0.030 0.033 0.040 0.042

100 10.56 0.200 0.166 0.300 2.543 0.400 3.510

500 2.112 1.000 0.763 1.500 1.254 2.000 1.836

1000 1.056 2.000 1.522 3.000 2.543 4.000 3.510

Table 11 Node 7: Timing results of ping

5.3.4 Node 4 : Timing results of ping

bfd_min_rx

(ms)

BFD

BW theoric

(Kbps)

MULT

2 3 4

DT MDT DT MDT DT MDT

10 105.6 0.020 0.024 0.030 0.035 0.040 0.042

100 10.56 0.200 0.177 0.300 2.694 0.400 3.617

500 2.112 1.000 0.775 1.500 1.254 2.000 1.732

1000 1.056 2.000 1.519 3.000 2.694 4.000 3.617

Table 12 Node 4: Timing results of ping

5.3.5 Flow graph

A specific test of ping between node 0 and node 8 is randomly selected. Next, the flow graph

is extracted from Wireshark to visualize the request and reply process that occurs during

the execution of the test.

50

The flow graph obtained from Wireshark provides a visual representation of the data

exchange between different network elements while the test is being conducted. In this

particular case, the selected test involves communication between two entities, where one

entity sends a request and the other entity responds to that request.

Upon analyzing the flow graph, it is observed that an echo request is sent from node 0 to

node 8. Subsequently, node 8 sends an echo request to node 0. Then, node 0 responds to

the echo request sent by node 8, generating an echo reply.

This exchange of echo requests and echo replies represents the bidirectional

communication between the nodes, allowing for verification of connectivity and response

times between them. The flow graph provides a visual representation of the transmission of

these echo messages, offering valuable information about the behavior and performance

of the network during the test execution.

By analyzing the flow graph, it is possible to examine the sequence, timings, and detect

possible issues or delays in the request and reply process.

In Figure 9, it can be observed that the ping is exchanging echo requests and replies until

a point where it no longer receives any responses. At that moment, it indicates that the link

Figure 9 Ping between node 0 and node 8 (WireShark)

51

has failed or dropped. From this flow graph obtain the value that the ping to be late of 0.226

milliseconds (final time – start time).

5.3.6 Packet loss

The ping logs from node 0 and node 8 were examined and stored as .log files for packet

loss analysis. The tables show the percentage of lost packets out of 550 sent.

ping_0.log total=550 packets

packet loss %

bfd_min_rx (milliseconds) 2 3 4

10 6.36% 6.54% 6.54%

100 7.81% 8.72% 9.27%

500 13.45% 15.09% 19.81%

1000 17.45% 26.18% 30.18%

ping_8.log total=550 packets

packet loss %

bfd_min_rx (milliseconds) 2 3 4

10 6.18% 6.54% 6.36%

100 7.09% 8.18% 9.27%

500 12.54% 15.09% 21.27%

1000 17.81% 27.63% 30.90%

Table 13 Packet loss: ping 0 and ping 8

Analysis of the log files reveals a clear correlation: higher values of bfd_min and mult result

in increased packet loss.

This observation suggests that increasing the bfd_min_rx parameter, which represents the

minimum time interval between BFD control packets, and increasing the mult parameter,

which represents the multiplier for the detection time, result in a higher probability of packet

loss. This can be attributed to the longer intervals between the control packets and the

extended detection time, potentially allowing more opportunities for packets to be dropped

or delayed within the network.

52

 Economic feasibility study

The resources used for this project have incurred no expenses. The code developed and

the libraries employed are open source, resulting in no actual costs. Nevertheless, if we

consider the wages of the engineers who were committed to this project and informàtic

material for a duration of 18 weeks, we can determine the total price of the project :

Total price: 6.000+1500+527+10.1 = 8,037.1 €1

 Analysis and assessment of environmental and social implications

Environmental Impact: The project’s implementation and testing activities may have

consequences for the satellite network’s ecological footprint. This includes evaluating

energy consumption, carbon emissions, and any potential environmental risks

associated with the project’s hardware and software components.

Satellite Operations: Assessing the impact of the Link failure testing project on the normal

functioning of the satellite network is crucial. This involves understanding how the project

may affect satellite communications, data transmission, and overall network performance.

Network Reliability and Service Disruptions: Analyzing the implications of link failures

and the utilization of Bidirectional Forwarding Detection (BFD) on the reliability and

continuity of network services is essential. This assessment helps identify potential

vulnerabilities, downtime, and the impact on end-users.

1 The development of the economic feasibility study is in the document attached to the final degree
project: Economic_feasibility_study.pdf [19]

53

 Conclusions

 Configuration and understanding of the satellite network: The structure of the 3x3

satellite network in Mininet was successfully defined, incorporating policies for IP,

MAC, and Ethernet for each node. This allowed for the establishment of connections

between nodes and the determination of switching tables.

 Implementation of the system: The system was successfully implemented in each

node using OpenVirtualSwitch (OVS). Furthermore, bidirectional forwarding

detection (BFD) was activated and configured correctly. The notification of

bfd_forwarding and cpath_down are configured to analyse the results and the traffic

in the network.

 Network evaluation: A specific route from node 0 to node 8, passing through two

disjoint end-to-end paths was selected to evaluate the system's performance.

Through this evaluation, the impact of deliberately induced link failure from node 4

to node 7 was analyzed.

 Parameter analysis: Various key parameters were analyzed to evaluate the system's

behavior. These parameters included fault detection time, theoretical and practical

bandwidth, transmission rate, notification of link failure to neighboring nodes (nodes

3, 4, and 7) and to the final nodes (nodes 0 and 8), as well as data analysis of "ping"

for VoIP simulation in each case.

 Regarding the comparison between the theoretical detection time and the average

detection time in the node, in general, the theoretical values are very similar to the

practical values. The comparison of the theoretical bandwidth and the practical

values, a similar trend is observed, except for the final stage where the practical

values slightly increase.

 In general, selecting the appropriate values is a complex task as there are multiple

parameters that influence the selection process. Ideally, a fast detection time is

desired, leading to the selection of low values for bfd_minrx and Mul. Setting a low

bfd_minrx value translates to a higher OAM bandwidth. However, it's important to

54

limit OAM traffic as bandwidth is a valuable resource that should be efficiently

utilized by the destination service. Typically, OAM traffic is kept within 1% of the link's

total bandwidth. For example, assuming a link bandwidth of 10 Mbps and selecting

a value of 10 for the bfd_minrx parameter, the resulting OAM bandwidth would be

105.6 Kbps, which corresponds to 1.056% of the link's total bandwidth.

 The mult value becomes significant when the link error packet rate is non-zero. In

such cases, the system can determine a link failure when a burst of packets is lost.

Generally, a value of 3 is accepted for the mult parameter.

 Using these values, a voice communication between node 0 and node 8 would

experience a freeze of 0.266 seconds from the moment of link failure to the rerouting

process. This duration falls within an acceptable range according to the MOS (mean

opinion score) E-model [4]. However, it's worth noting that the evaluation depends

on the number of hops between the source and destination nodes.

 This provides an initial understanding of the BFD protocol and its performance in

detecting link failures. In actual systems, a combination of various link/path failure

mechanisms work together to provide different levels of security, detection times,

and path changes. Some mechanisms rely on BFD link failure detection and cpath

down, while others employ a probing system to monitor the state of source-to-

destination paths.

55

 Planning and Scheduling of the Proposed Future Work

Expansion of the satellite network: Instead of having a 3x3 network, it is proposed to expand

the satellite network to have a larger structure. This will allow evaluating the capacity for

fault detection and recovery in a more complex and realistic network and not only for one

node. Additional nodes and links can be added, taking into consideration the circular

topology of the Earth for a more accurate representation.

Consideration of realistic conditions: To obtain more representative results, it is important

to consider the conditions and limitations of the real environment. For example, the

communication delay due to the distance in the satellite network can be taken into account,

as well as possible interferences or signal degradations. These realistic conditions can

impact the performance and effectiveness of fault detection and recovery techniques.

Evaluation of other protocols and algorithms: In addition to BFD, other protocols and

algorithms for link fault detection and recovery in satellite SDN networks can be considered.

Performance comparisons and analyses can be conducted to determine which protocols

and algorithms are more suitable for different situations and scenarios.

Scalability analysis: With the expansion of the satellite network, it is important to analyze

the scalability of the system. This involves evaluating how the link fault detection and

recovery system behaves and adapts as more nodes and links are added to the network.

56

 References

[1] S. Casner, “IETF,” 2010. [Online]. Available:

https://datatracker.ietf.org/doc/html/rfc4856#page-17.

[2] D. W. Dave Katz, “RFC-5880: Bidirectional Forwarding Detection,” [Online]. Available:

https://www.rfc-editor.org/rfc/rfc5880.html.

[3] T. M. M. N. S. N. E. B. E. Y. Weingarten, “BFD and OAM Tools,” 9 1 2014. [Online].

Available: https://datatracker.ietf.org/doc/html/draft-ietf-opsawg-oam-overview-12.

[4] ITU, “G.114 : Tiempo de transmisión en un sentido,” 12 3 1993. [Online]. Available:

https://www.itu.int/rec/T-REC-G.114-199303-S/es.

[5] H. T. P. C. a. M. K. T. Osiński, “P4rt-OVS: Programming Protocol-Independent,

Runtime Extensions for Open vSwitch with P4,” Paris, France, 2020, pp. 413-421..

[6] T. G. B. R. Manual, “Bash manual,” 19 9 2022. [Online]. Available:

https://www.gnu.org/savannah-checkouts/gnu/bash/manual/bash.html.

[7] P. S. Fundation, “The Python Tutorial,” 2023. [Online]. Available:

https://docs.python.org/3/tutorial/.

[8] “GitHub: Open vSwitch,” [Online]. Available: https://github.com/openvswitch/.

[9] “Mininet,” 2023. [Online]. Available: http://mininet.org/.

[10] “Open Networking Foundation: OpenFlow,” 2022. [Online]. Available:

https://www.opennetworking.org/sdn-resources/onf-specifications/openflow/.

[11] “Open Networking. SDN definition,” 2023. [Online]. Available:

https://opennetworking.org/sdn-definition/.

[12] S.-D. N. (SDN), “Open Networking Foundation,” 2022. [Online]. Available:

https://www.opennetworking.org/sdn-resources/sdn-definition/.

[13] S. G. J. L. a. J. M. F. Bernard, “"Automatic Correction of Link Failures in a Satellite

SDN Network for VoIP Communications",” in An SDN Solution For a GEO and LEO

Satellite, 2021, p. 6.

[14] O. N. Foundation, “Open Networking. SDN definition,” 2023. [Online]. Available:

https://opennetworking.org/sdn-definition/.

57

[15] O. N. Foundation, “OpenFlow,” 2022. [Online]. Available:

https://www.opennetworking.org/sdn-resources/onf-specifications/openflow/.

[16] N. H. B. J. V. &. M. N. Handigol, “Reproducible network experiments using container-

based emulation.,” 2012. [Online]. Available:

https://www.usenix.org/conference/atc12/technical-sessions/presentation/handigol.

[17] S. W. K. a. K. L. J. C. Resendiz, “Software-Defined Networking in Space: A Survey.,”

in Improving Survivability of LEO Satellite Network with Guaranteed Based

Approaches, China, 2020.

[18] M. Kerrisk, “Linux manual page,” 2022. [Online]. Available:

https://man7.org/linux/man-pages/man5/ovs-vswitchd.conf.db.5.html.

[19] M. Kerrisk, “Linux manual page: The Linux Programming Interface,” 2022. [Online].

Available: https://man7.org/linux/man-pages/man5/ovs vswitchd.conf.db.5.html.

[20] H. Y. J. S. S. &. L. S. J. Kim, “Developing SDN applications using Mininet and POX

controller. Proceedings of the 2015 17th Asia-Pacific Network Operations and

Management Symposium,” [Online]. Available:

https://ieeexplore.ieee.org/document/7275365.

[21] “Performance Evaluation of Software Defined Networking (SDN) on Low Earth Orbit

(LEO) Satellite Networks.,” in Dynamic SDN Controller Placement in a LEO

Constellation Satellite Network, IEEE, 2018.

[22] OpenvSwitch, “OpenvSwitch.org,” 2023. [Online]. Available:

https://www.openvswitch.org/.

[23] P. Sayaús Cobos, “Despliegue de Laboratorios virtualizados de SDN utilizando Open

vSwitch (Trabajo de fin de grado). Universidad Politécnica de Madrid,” 2018. [Online].

Available: https://oa.upm.es/51526/1/TFG_PABLO_SAYAUS_COBOS.pdf.

[24] N. G. Anguita, «Economic feasability study,» 2023.

[25] F. N. Communications, “Ethernet-Service-OAM,” 2006. [Online]. Available:

https://www.fujitsu.com/downloads/TEL/fnc/whitepapers/EthernetService-OAM.pdf.

58

59

 Attachments

11.1 Development of the solution

These are Python scripts for creating a network using the Mininet (Containernet). The main

script (V_containernet_tests.py) code assumes the availability of scripts such as cpath.sh,

print_bfd_cfg.sh, and switch_path.sh in the specified paths (/mnt/).

In total, the scripts created to carry out the entire project are:

o V_containernet_tests.py

o cpath.sh

o switch_path.sh

o tcpdump.sh

o process_test.sh

o runs.sh

11.2 V_containernet_test.py

It is the most important script. Is used to add docker container, create links between nodes,

create paths and start cpath notifications:

import argparse

import re

import sys

import time

from mininet.cli import CLI

from mininet.link import TCLink

from mininet.log import info, setLogLevel

from mininet.net import Containernet

from mininet.node import Controller

def nodeName(row_num, col_num, prefix, COLS):

 idx = col_num + row_num * COLS

 return f'{prefix}{idx}', idx

60

def configBFD(nodes, net, ROWS, COLS, BFD_params):

 min_rx = BFD_params['min_rx']

 min_tx = BFD_params['min_tx']

 mult = BFD_params['mult']

 for i in range(ROWS):

 for j in range(COLS):

 _, nodeindex = nodeName(i, j, "d", COLS)

 if j < COLS - 1:

 nodeNextColNeigh = nodeindex + 1

 linklst = net.linksBetween(nodes[nodeindex],

nodes[nodeNextColNeigh])

 linkH = linklst[0]

 iface1 = linkH.intf1.name

 iface2 = linkH.intf2.name

 # Configure BFD stuff

 # oamIP 169.254.NodeNum.(IfaceNum + 1) to avoid 169.254.0.0

 # oamHw OUI-OAM:00:NodeNum:(IfaceNum + 1) to be coherent

 iface1idx = re.match("d[0-9]+-eth([0-9]+)", iface1)

 iface2idx = re.match("d[0-9]+-eth([0-9]+)", iface2)

 if iface1idx is not None and iface2idx is not None:

 iface1idx = int(iface1idx.group(1)) + 1

 oamIP1 = f'169.254.{nodeindex}.{iface1idx}'

 oamHw1 = f'00:04:00:00:{nodeindex:02X}:{iface1idx:02X}'

 iface2idx = int(iface2idx.group(1)) + 1

 oamIP2 = f'169.254.{nodeNextColNeigh}.{iface2idx}'

 oamHw2 = f'00:04:00:00:{nodeNextColNeigh:02X}:{iface2idx:02X}'

61

 bfdcmd = ''

 bfdcmd = bfdcmd + f'ovs-vsctl set interface {iface1}

bfd:bfd_src_ip={oamIP1}; '

 bfdcmd = bfdcmd + f'ovs-vsctl set interface {iface1}

bfd:bfd_dst_ip={oamIP2}; '

 bfdcmd = bfdcmd + f'ovs-vsctl set interface {iface1}

bfd:bfd_local_src_mac={oamHw1}; '

 bfdcmd = bfdcmd + f'ovs-vsctl set interface {iface1}

bfd:bfd_local_dst_mac={oamHw2}; '

 bfdcmd = bfdcmd + f'ovs-vsctl set interface {iface1}

bfd:min_rx={min_rx}; '

 bfdcmd = bfdcmd + f'ovs-vsctl set interface {iface1}

bfd:min_tx={min_tx}; '

 bfdcmd = bfdcmd + f'ovs-vsctl set interface {iface1} bfd:mult={mult} '

 # Execute command in nodeindex

 nodes[nodeindex].cmd(bfdcmd)

 bfdcmd = ''

 bfdcmd = bfdcmd + f'ovs-vsctl set interface {iface2}

bfd:bfd_src_ip={oamIP2}; '

 bfdcmd = bfdcmd + f'ovs-vsctl set interface {iface2}

bfd:bfd_dst_ip={oamIP1}; '

 bfdcmd = bfdcmd + f'ovs-vsctl set interface {iface2}

bfd:bfd_local_src_mac={oamHw2}; '

 bfdcmd = bfdcmd + f'ovs-vsctl set interface {iface2}

bfd:bfd_local_dst_mac={oamHw1}; '

 bfdcmd = bfdcmd + f'ovs-vsctl set interface {iface2}

bfd:min_rx={min_rx}; '

 bfdcmd = bfdcmd + f'ovs-vsctl set interface {iface2}

bfd:min_tx={min_tx}; '

 bfdcmd = bfdcmd + f'ovs-vsctl set interface {iface2} bfd:mult={mult} '

 # Execute command in nodeNextColNeigh

 nodes[nodeNextColNeigh].cmd(bfdcmd)

 # Start bfd in both directions in this link

62

 nodes[nodeindex].cmd(f'ovs-vsctl set interface {iface1}

bfd:enable=true')

 nodes[nodeNextColNeigh].cmd(f'ovs-vsctl set interface {iface2}

bfd:enable=true')

 if i < ROWS - 1:

 nodeNextRowNeigh = nodeindex + COLS

 linklst = net.linksBetween(nodes[nodeindex],

nodes[nodeNextRowNeigh])

 linkV = linklst[0]

 iface1 = linkV.intf1.name

 iface2 = linkV.intf2.name

 # Enable BFD stuff

 # oamIP 169.254.NodeNum.(IfaceNum + 1) to avoid 169.254.0.0

 # oamHw OUI-OAM:00:NodeNum:(IfaceNum + 1) to be coherent

 iface1idx = re.match("d[0-9]+-eth([0-9]+)", iface1)

 iface2idx = re.match("d[0-9]+-eth([0-9]+)", iface2)

 if iface1idx is not None and iface2idx is not None:

 iface1idx = int(iface1idx.group(1)) + 1

 oamIP1 = f'169.254.{nodeindex}.{iface1idx}'

 oamHw1 = f'00:04:00:00:{nodeindex:02X}:{iface1idx:02X}'

 iface2idx = int(iface2idx.group(1)) + 1

 oamIP2 = f'169.254.{nodeNextRowNeigh}.{iface2idx}'

 oamHw2 = f'00:04:00:00:{nodeNextRowNeigh:02X}:{iface2idx:02X}'

 bfdcmd = ''

 bfdcmd = bfdcmd + f'ovs-vsctl set interface {iface1}

bfd:bfd_src_ip={oamIP1}; '

 bfdcmd = bfdcmd + f'ovs-vsctl set interface {iface1}

bfd:bfd_dst_ip={oamIP2}; '

63

 bfdcmd = bfdcmd + f'ovs-vsctl set interface {iface1}

bfd:bfd_local_src_mac={oamHw1}; '

 bfdcmd = bfdcmd + f'ovs-vsctl set interface {iface1}

bfd:bfd_local_dst_mac={oamHw2}; '

 bfdcmd = bfdcmd + f'ovs-vsctl set interface {iface1}

bfd:min_rx={min_rx}; '

 bfdcmd = bfdcmd + f'ovs-vsctl set interface {iface1}

bfd:min_tx={min_tx}; '

 bfdcmd = bfdcmd + f'ovs-vsctl set interface {iface1} bfd:mult={mult} '

 # Execute command in nodeindex

 nodes[nodeindex].cmd(bfdcmd)

 bfdcmd = ''

 bfdcmd = bfdcmd + f'ovs-vsctl set interface {iface2}

bfd:bfd_src_ip={oamIP2}; '

 bfdcmd = bfdcmd + f'ovs-vsctl set interface {iface2}

bfd:bfd_dst_ip={oamIP1}; '

 bfdcmd = bfdcmd + f'ovs-vsctl set interface {iface2}

bfd:bfd_local_src_mac={oamHw2}; '

 bfdcmd = bfdcmd + f'ovs-vsctl set interface {iface2}

bfd:bfd_local_dst_mac={oamHw1}; '

 bfdcmd = bfdcmd + f'ovs-vsctl set interface {iface2}

bfd:min_rx={min_rx}; '

 bfdcmd = bfdcmd + f'ovs-vsctl set interface {iface2}

bfd:min_tx={min_tx}; '

 bfdcmd = bfdcmd + f'ovs-vsctl set interface {iface2} bfd:mult={mult} '

 # Execute command in nodeNextColNeigh

 nodes[nodeNextRowNeigh].cmd(bfdcmd)

 # Start bfd in both directions in this link

 nodes[nodeindex].cmd(f'ovs-vsctl set interface {iface1}

bfd:enable=true')

 nodes[nodeNextRowNeigh].cmd(f'ovs-vsctl set interface {iface2}

bfd:enable=true')

64

o import re: imports the Python re module for regular expressions.

o mininet.cli import CLI: imports the Mininet CLI module for the command-line inter-

face.

o mininet.link import TCLink: imports the Mininet TCLink module for creating network

links.

o mininet.log import info, setLogLevel: imports the info and setLogLevel functions from

the log module of the Mininet library for logging and setting the logging level.

o mininet.net import Containernet: imports the Containernet class from the Mininet

library for creating a network.

o mininet.node import Controller: imports the Controller class from the Mininet library

for controlling the network.

The nodeName function takes the row number, column number, prefix, and total number of

columns as input and returns a unique node name and index based on the provided param-

eters.

The configBFD function is defined, which configures BFD parameters for the network topol-

ogy. The function takes the following parameters:

nodes: A list of nodes in the network topology.

net: The Containernet object representing the network.

ROWS: The number of rows in the network topology.

COLS: The number of columns in the network topology.

BFD_params: A dictionary containing BFD parameters such as min_rx (minimum receive

interval), min_tx (minimum transmit interval), and mult (multiplier).

The function iterates over the rows and columns of the network topology.

For each node, it checks if there is a neighboring node in the next column or next row.

If there is a neighboring node in the next column, BFD parameters are configured for the

link between the current node and the neighboring node.

It extracts the interface names (iface1 and iface2) of the link.

It extracts the interface indices from the interface names using regular expressions.

65

BFD IP addresses (oamIP1 and oamIP2) and hardware addresses (oamHw1 and oamHw2)

are generated based on the node index and interface index.

The BFD parameters are set using the ovs-vsctl command for both interfaces.

BFD is enabled for both interfaces using the enable=true option.

If there is a neighboring node in the next row, similar BFD configuration is performed for the

link between the current node and the neighboring node.

The BFD configuration is executed by running commands on the respective nodes using

the cmd method.

def main(args):

 setLogLevel('info')

 net = Containernet(controller=Controller)

 info('*** Adding controller\n')

 net.addController('c0')

 nodes = []

 COLS = int(args.cols)

 ROWS = int(args.rows)

 MINRX = int(args.rx)

 MULT = int(args.mult)

 MINTX = int(args.tx)

66

 print("min_rx: ", MINRX)

 print("mult: ", MULT)

 print("mintx: ", MINTX)

 info('*** Adding docker containers\n')

 for i in range(ROWS):

 for j in range(COLS):

 #print(f'{nodeName(i,j,"d")}')

 nodename, nodeindex = nodeName(i, j, "d", COLS)

 info(f'*** Creating container {nodename}\n')

 dockerNode = net.addDocker(nodename,

 dimage="containernet:OVS",

 volumes=["/home/telematic/dockerfs:/mnt"])

 dockerNode.cmd('/etc/init.d/openvswitch-switch start')

 dockerNode.cmd(

 '/usr/bin/ovs-vsctl add-br br0 -- set Bridge br0 fail-mode=secure')

 hwaddr = f'00:02:00:00:00:{nodeindex:02X}'

 dockerNode.cmd(

 f'/usr/bin/ovs-vsctl set bridge br0 other-config:hwaddr={hwaddr}')

 dockerNode.cmd(f'ifconfig br0 172.16.1.{nodeindex}')

 nodes.append(dockerNode)

 info('*** Creating links\n')

67

 for i in range(ROWS):

 for j in range(COLS):

 _, nodeindex = nodeName(i, j, "d", COLS)

 if j < COLS - 1:

 nodeNextColNeigh = nodeindex + 1

 linkH = net.addLink(nodes[nodeindex],

 nodes[nodeNextColNeigh],

 cls=TCLink,

 delay='100ms',

 bw=1)

 iface1 = linkH.intf1.name

 nodes[nodeindex].cmd(f'ovs-vsctl add-port br0 {iface1}')

 iface2 = linkH.intf2.name

 nodes[nodeNextColNeigh].cmd(f'ovs-vsctl add-port br0 {iface2}')

 print("Link %s <--> %s" % (iface1, iface2))

 if i < ROWS - 1:

 nodeNextRowNeigh = nodeindex + COLS

 linkV = net.addLink(nodes[nodeindex],

 nodes[nodeNextRowNeigh],

 cls=TCLink,

 delay='100ms',

 bw=1)

68

 iface1 = linkV.intf1.name

 nodes[nodeindex].cmd(f'ovs-vsctl add-port br0 {iface1}')

 iface2 = linkV.intf2.name

 nodes[nodeNextRowNeigh].cmd(f'ovs-vsctl add-port br0 {iface2}')

 print("Link %s <--> %s" % (iface1, iface2))

 # Enable BFD stuff

 # oamIP 169.254.NodeNum.(IfaceNum + 1) to avoid 169.254.0.0

 # oamHw OUI-OAM:00:NodeNum:(IfaceNum + 1) to be coherent

 BFD_params = {}

 BFD_params['min_rx'] = MINRX

 BFD_params['min_tx'] = MINTX

 BFD_params['mult'] = MULT

 configBFD(nodes, net, ROWS, COLS, BFD_params)

Sets the log level to 'info' using the setLogLevel function from the Mininet framework.

Creates a Containernet object net with a controller. Adds a controller named 'c0' to the net-

work.

Initializes empty list nodes to store the network nodes and extracts command-line argu-

ments cols, rows, rx, mult, and tx. Prints the values of the extracted arguments.

69

Starts adding Docker containers to the network based on the specified number of rows and

columns.

For each row and column, a Docker container is created using the addDocker method.

Some configurations are applied to the Docker container, such as starting the Open vSwitch

service, creating a bridge (br0), setting hardware address, and configuring the IP address

of the bridge.

The Docker container is added to the nodes list and creates links between the Docker con-

tainers.

For each row and column, it checks if there is a neighboring node in the next column or next

row. If a neighboring node exists in the next column, a horizontal link is created between

the current node and the neighboring node using the addLink method.

The link has a delay of '100ms' and a bandwidth of 1.

The interface names of the link (iface1 and iface2) are obtained.

The interfaces are added to the bridge br0 using the ovs-vsctl command.

If a neighboring node exists in the next row, a vertical link is created between the current

node and the neighboring node.

Similar steps as above are performed to create the link.

Creates a dictionary BFD_params containing the BFD parameters extracted from com-

mand-line arguments.

Calls the configBFD function to configure BFD parameters for the network topology.

The nodes, net, ROWS, COLS, and BFD_params are passed as arguments to the function.

 info('*** Creating Paths\n')

 # Create End-to-End path one:

70

 path = [0, 1, 2, 5, 8]

 #path_3x4 = [0, 1, 2, 3, 7, 11]

 src = path[0]

 dst = path[-1]

 ip_src = f'172.16.1.{src}'

 hw_src = f'00:02:00:00:00:{src:02X}'

 ip_dst = f'172.16.1.{dst}'

 hw_dst = f'00:02:00:00:00:{dst:02X}'

 nodes[src].setARP(ip_dst , hw_dst)

 nodes[dst].setARP(ip_src , hw_src)

 nodes[src].cmd(

 f'ovs-ofctl add-flow br0 cookie=0x1,dl_dst={hw_src},actions=output:LOCAL')

 nodes[dst].cmd(

 f'ovs-ofctl add-flow br0 cookie=0x1,dl_dst={hw_dst},actions=output:LOCAL')

 nodes_ifaces = {}

 for node in path:

71

 nodes_ifaces[node]=[]

 prev_node = path[0]

 for node in path[1:]:

 linklst = net.linksBetween(nodes[prev_node], nodes[node])

 #print(f'Node A {prev_node} Node B {node} -- linklist: {linklst}')

 if linklst != []:

 # We consider only one link between two nodes:

 link = linklst[0]

 ifaceA = link.intf1.name

 nodeIfaceA = ifaceA.split("-")[0]

 ifaceB = link.intf2.name

 nodeIfaceB = ifaceB.split("-")[0]

 #print(f'ifaceA {ifaceA} iface {ifaceB}')

 if nodeIfaceA == f'd{prev_node}':

 if prev_node == src or prev_node == dst :

 cmd = f'ovs-ofctl add-flow br0 table=1,cookie=0x02,dl_dst={hw_dst},ac-

tions=output:"{ifaceA}"'

 else:

 cmd = f'ovs-ofctl add-flow br0 cookie=0x02,dl_dst={hw_dst},actions=out-

put:"{ifaceA}"'

 nodes[prev_node].cmd(cmd)

 nodes_ifaces[prev_node].append(ifaceA)

72

 if node == src or node == dst :

 cmd =f'ovs-ofctl add-flow br0 table=1,cookie=0x02,dl_dst={hw_src},ac-

tions=output:"{ifaceB}"'

 else:

 cmd = f'ovs-ofctl add-flow br0 cookie=0x02,dl_dst={hw_src},actions=out-

put:"{ifaceB}"'

 nodes[node].cmd(cmd)

 nodes_ifaces[node].append(ifaceB)

 elif nodeIfaceB == f'd{prev_node}':

 if prev_node == src or prev_node == dst :

 cmd = f'ovs-ofctl add-flow br0 table=1,cookie=0x02,dl_dst={hw_dst},ac-

tions=output:"{ifaceB}"'

 else:

 cmd = f'ovs-ofctl add-flow br0 cookie=0x02,dl_dst={hw_dst},actions=out-

put:"{ifaceB}"'

 nodes[prev_node].cmd(cmd)

 nodes_ifaces[prev_node].append(ifaceB)

 if node == src or node == dst :

 cmd = f'ovs-ofctl add-flow br0 table=1,cookie=0x02,dl_dst={hw_src},ac-

tions=output:"{ifaceA}"'

 else:

73

 cmd = f'ovs-ofctl add-flow br0 cookie=0x02,dl_dst={hw_src},actions=out-

put:"{ifaceA}"'

 nodes[node].cmd(cmd)

 nodes_ifaces[node].append(ifaceA)

 prev_node = node

 # Start cpath notification

 for node in path:

 if node == src or node == dst:

 continue

 ifa, ifb = nodes_ifaces[node]

 cmd0 = f'/mnt/print_bfd_cfg.sh {ifa} {ifb} {node}'

 cmd1 = f'/mnt/cpath.sh {ifa} {ifb} {node} &'

 cmd2 = f'/mnt/cpath.sh {ifb} {ifa} {node} &'

 print("%s in node %i" % (cmd1, node))

 nodes[node].cmd(cmd0)

 nodes[node].cmd(cmd1)

 nodes[node].cmd(cmd2)

 iface_endpoints = {}

 iface_endpoints[src] = []

 iface_endpoints[src].append(nodes_ifaces[src][0])

 iface_endpoints[dst] = []

74

 iface_endpoints[dst].append(nodes_ifaces[dst][0])

 print("nodes_ifaces: ", nodes_ifaces)

Prints an information message indicating the creation of paths.

Defines a list path representing the end-to-end path between nodes. In this case, it repre-

sents a path from node 0 to node 8. Sets the source (src) and destination (dst) nodes based

on the first and last nodes in the path list.

Constructs the source and destination IP addresses (ip_src and ip_dst) and hardware ad-

dresses (hw_src and hw_dst) based on the node indices.

Configures ARP entries and OpenFlow rules on the source and destination nodes to ensure

packet forwarding between them.

Initializes a dictionary nodes_ifaces to store the interfaces used by each node in the path.

Iterates over the nodes in the path (excluding the source and destination nodes) to deter-

mine the interfaces and configure OpenFlow rules. Retrieves the link between the current

node (prev_node) and the next node (node) using the linksBetween method.

Extracts the interface names from the link and identifies which interface belongs to which

node. Constructs OpenFlow commands based on the interface and node information.

Executes the OpenFlow commands on the respective nodes and adds the interface to the

nodes_ifaces dictionary. Sets up the cpath notification for each intermediate node in the

path.

Constructs commands to run shell scripts print_bfd_cfg.sh and cpath.sh on each node.

Executes the commands on the respective nodes and creates a dictionary iface_endpoints

to store the interfaces used by the source and destination nodes.

Adds the interface of the source and destination nodes to the dictionary and prints the

nodes_ifaces dictionary.

Add a second path End-to-End with lower priority to avoid deleting previous rules

75

 path = [0, 3, 4, 7, 8]

 #path_3x4 = [0, 4, 8, 9, 10, 11]

 nodes_ifaces = {}

 for node in path:

 nodes_ifaces[node]=[]

 prev_node = path[0]

 for node in path[1:]:

 linklst = net.linksBetween(nodes[prev_node], nodes[node])

 print(f'Node A {prev_node} Node B {node} -- linklist: {linklst}')

 if linklst != []:

 link = linklst[0]

 ifaceA = link.intf1.name

 nodeIfaceA = ifaceA.split("-")[0]

 ifaceB = link.intf2.name

 nodeIfaceB = ifaceB.split("-")[0]

 #print(f'ifaceA {ifaceA} iface {ifaceB}')

 if nodeIfaceA == f'd{prev_node}':

 if prev_node == src or prev_node == dst :

 cmd = f'ovs-ofctl add-flow br0 table=2,cookie=0x02,dl_dst={hw_dst},ac-

tions=output:"{ifaceA}"'

76

 cmd = cmd + ";" + f'ovs-ofctl add-flow br0 table=0,cookie=0x0,ac-

tions=goto_table:2'

 else:

 cmd = f'ovs-ofctl add-flow br0 cookie=0x02,dl_dst={hw_dst},actions=out-

put:"{ifaceA}"'

 nodes[prev_node].cmd(cmd)

 nodes_ifaces[prev_node].append(ifaceA)

 if node == src or node == dst :

 cmd =f'ovs-ofctl add-flow br0 table=2,cookie=0x02,dl_dst={hw_src},ac-

tions=output:"{ifaceB}"'

 cmd = cmd + ";" + f'ovs-ofctl add-flow br0 table=0,cookie=0x0,ac-

tions=goto_table:2'

 else:

 cmd = f'ovs-ofctl add-flow br0 cookie=0x02,dl_dst={hw_src},actions=out-

put:"{ifaceB}"'

 nodes[node].cmd(cmd)

 nodes_ifaces[node].append(ifaceB)

 elif nodeIfaceB == f'd{prev_node}':

 if prev_node == src or prev_node == dst :

 cmd = f'ovs-ofctl add-flow br0 table=2,cookie=0x02,dl_dst={hw_dst},ac-

tions=output:"{ifaceB}"'

77

 cmd = cmd + ";" + f'ovs-ofctl add-flow br0 table=0,cookie=0x0,ac-

tions=goto_table:2'

 else:

 cmd = f'ovs-ofctl add-flow br0 cookie=0x02,dl_dst={hw_dst},actions=out-

put:"{ifaceB}"'

 nodes[prev_node].cmd(cmd)

 nodes_ifaces[prev_node].append(ifaceB)

 if prev_node == src or prev_node == dst :

 cmd = f'ovs-ofctl add-flow br0 table=2,cookie=0x02,dl_dst={hw_src},ac-

tions=output:"{ifaceA}"'

 cmd = cmd + ";" + f'ovs-ofctl add-flow br0 table=0,cookie=0x0,ac-

tions=goto_table:2'

 else:

 cmd = f'ovs-ofctl add-flow br0 cookie=0x02,dl_dst={hw_src},actions=out-

put:"{ifaceA}"'

 nodes[prev_node].cmd(cmd)

 nodes_ifaces[node].append(ifaceA)

 prev_node = node

 # Start cpath notification

 for node in path:

 if node == src or node == dst:

78

 continue

 ifa, ifb = nodes_ifaces[node]

 cmd0 = f'/mnt/print_bfd_cfg.sh {ifa} {ifb} {node}'

 cmd1 = f'/mnt/cpath.sh {ifa} {ifb} {node} &'

 cmd2 = f'/mnt/cpath.sh {ifb} {ifa} {node} &'

 #print("%s in node %i" % (cmd1, node))

 nodes[node].cmd(cmd0)

 nodes[node].cmd(cmd1)

 nodes[node].cmd(cmd2)

 #commands to start path switching manager

 iface_endpoints[src].append(nodes_ifaces[src][0])

 iface_endpoints[dst].append(nodes_ifaces[dst][0])

 cmd_src = '/mnt/switch_path.sh {} {} {} > /mnt/switch_node{}.log &'.format(iface_end-

points[src][0],iface_endpoints[src][1],src,src)

 cmd_dst = '/mnt/switch_path.sh {} {} {} > /mnt/switch_node{}.log &'.format(iface_end-

points[dst][0],iface_endpoints[dst][1],dst,dst)

 nodes[src].cmd(cmd_src)

 nodes[dst].cmd(cmd_dst)

79

 #print("nodes_ifaces: ", nodes_ifaces)

 # Change to PATH two: Change/delete priority rules (Hack: you need to delete and/or

re-write rules with new priority)

 # nodes[src].cmd('ovs-ofctl del-flow br0 cookie=0x02/0xff,dl_dst=xx:xx:xx:xx:xx:xx

 #(ovs-ofctl del-flows br0 cookie=0x2/0xff,dl_dst=00:02:00:00:00:08)

 # nodes[dst].cmd('ovs-ofctl del-flow br0 cookie=0x02/0xff,dl_dst=xx:xx:xx:xx:xx:xx

 #(ovs-ofctl del-flows br0 cookie=0x2/0xff,dl_dst=00:02:00:00:00:01)

 # If working with tables:

 #nodes[src].cmd('ovs-ofctl mod-flows br0 table=0,cookie=0x01/0xff,actions=goto_ta-

ble:2')

 #nodes[dst].cmd('ovs-ofctl mod-flows br0 table=0,cookie=0x01/0xff,actions=goto_ta-

ble:2')

 info('*** Starting network\n')

 net.start()

 #info('*** Testing connectivity\n')

 #net.ping([d1, d2])

 info('*** Running CLI\n')

 #CLI(net)

 # Execute commands

 print("d3: Starting tcpdump and sleeping 10 secs ...")

 nodes[3].cmd('/mnt/tcpdump.sh start')

80

 nodes[0].cmd('ping -c 550 -D 172.16.1.8 -i 0.02 -s 180 > /mnt/ping_0.log &')

 #nodes[8].cmd('ping -c 550 -D 172.16.1.0 -i 0.02 -s 180 > /mnt/ping_8.log &')

 time.sleep(2)

 time.sleep(8)

 print("Grab timestamp in down_d4-d7.txt")

 with open('/home/telematic/dockerfs/down_d4-d7.txt','w') as f :

 f.write("%s\n" % time.time())

 print("Down link d4-d7 and sleep 10 seconds")

 net.configLinkStatus('d4','d7','down')

 time.sleep(10)

 print("d3: Stopping tcpdump ...")

 nodes[3].cmd('/mnt/tcpdump.sh stop')

 info('*** Stopping network')

 net.stop()

if __name__ == "__main__":

 parse = argparse.ArgumentParser()

 parse.add_argument('-c','--cols', help = 'Number of COLS', required = True)

 parse.add_argument('-r','--rows', help = 'Number of ROWS', required = True)

 parse.add_argument('-t','--tx', help = 'BFD tx_min', required = True)

 parse.add_argument('-x','--rx', help = 'BFD rx_min', required = True)

 parse.add_argument('-m','--mult', help = 'BFD mult', required = True)

81

 args = parse.parse_args()

 main(args)

The first path is created using the nodes 0, 1, 2, 5, and 8. The source and destination IP

and MAC addresses are set for these nodes. Flows are added to the Open vSwitch (OVS)

to forward packets based on their destination MAC addresses. These flows ensure that

packets with the destination MAC addresses of the source and destination nodes are for-

warded to the local port.

Interface information for each node in the path is stored in the nodes_ifaces dictionary. BFD

(Bidirectional Forwarding Detection) configurations are applied to each node in the path to

enable path monitoring and switching. Commands are executed on each node to start BFD

processes and configure the interfaces for BFD.

The second path is created using the nodes 0, 3, 4, 7, and 8. Similar to the first path, flows

and BFD configurations are applied to this path. The path switching manager is started on

the source and destination nodes. The manager monitors the BFD status and switches the

paths based on certain conditions.

The network is started, and ping traffic is initiated from node 0 to node 8. After a delay, the

link between nodes 4 and 7 is brought down, and another delay is introduced.

Then, the network is stopped, and the execution completes.

11.3 Script cpath.sh

This script monitoring the forwarding status of an interface and synchronizing it with another

interface using bfd:cpath_down attribute updates:

#!/bin/bash

82

#SIGNALIN_IFACE=”d1-eth1”

#SIGNALOUT_IFACE=”d1-eth0”

SIGNALIN_IFACE=$1

SIGNALOUT_IFACE=$2

NODE=$3

wait_state=”false”

signal_state=”true”

logfile=”/mnt/cpath-$3-$1-$2.log”

T=’”true”’

F=’”false”’

echo “cpath logfile node $NODE “ > $logfile

while true

do

 dt=$(date +%s.%N)

 # Get interface forwarding status

 forwarding=$(ovs-vsctl get interface $SIGNALIN_IFACE bfd_status:forwarding)

 forwarding_wait=$([“$forwarding” = $T] && echo $F || echo $T)

 #echo “forwarding is $forwarding” >> $logfile

 #echo “forwarding_wait is $forwarding_wait” >> $logfile

 echo $dt “: “ ovs-vsctl wait-until interface $SIGNALIN_IFACE bfd_status:forward-

ing=$forwarding_wait >> $logfile

 ovs-vsctl wait-until interface $SIGNALIN_IFACE bfd_status:forwarding=$for-

warding_wait >> $logfile

 dt=$(date +”%D %H:%M:%S”)

 echo $dt “: “ “Changed bfd_status:forwarding in $SIGNALIN_IFACE to $forward-

ing_wait” >> $logfile

 ovs-vsctl set interface $SIGNALOUT_IFACE bfd:cpath_down=$forwarding

 #echo ovs-vsctl set interface $SIGNALOUT_IFACE bfd:cpath_down=$forwarding

>> $logfile

 echo $dt “: “ “Notify cpath_down in $SIGNALOUT_IFACE to $forwarding” >> $log-

file

83

 aux=”$signal_state”

 signal_state=”$wait_state”

 wait_state=”$aux”

 #echo “ ---------- wait_state is $wait_state” >> $logfile

 #echo “----------- signal_state is $signal_state” >> $logfile

done

The script accepts three command-line arguments: SIGNALIN_IFACE,

SIGNALOUT_IFACE, and NODE. These arguments specify the input interface, output

interface, and node for which the script is running.

It initializes variables such as wait_state and signal_state and sets the logfile path.

The script enters an infinite loop using the “while true” statement.

Inside the loop:

It gets the current forwarding status of the SIGNALIN_IFACE using the ovs-vsctl command

and stores it in the variable ‘forwarding’.

It determines the desired forwarding state for the interface (opposite of the current state)

and stores it in the variable ‘forwarding_wait’.

It waits until the forwarding attribute of SIGNALIN_IFACE matches the desired state using

the ovs-vsctl wait-until command.

It updates the bfd:cpath_down attribute of SIGNALOUT_IFACE with the value of

‘forwarding’.

It logs the timestamp, interface changes, and notifications in the logfile.

It swaps the values of wait_state and signal_state variables for the next iteration of the loop.

84

11.5 switch_path.sh

#!/bin/bash

#SIGNALIN_IFACE=”d1-eth1”

#SIGNALOUT_IFACE=”d1-eth0”

SIGNALIN_IFACE=$1

SIGNALOUT_IFACE=$2

NODE=$3

wait_state=”false”

signal_state=”true”

logfile=”/mnt/switch-$3-$1-$2.log”

Get alternative paths using sdn data:

Set up an array with data ... table[output_iface]=table_num

output :

cookie=0x2, duration=8829.015s, table=1, n_packets=0, n_bytes=0,

dl_dst=00:02:00:00:00:08 actions=output:”d0-eth0”

cookie=0x2, duration=8828.959s, table=2, n_packets=0, n_bytes=0,

dl_dst=00:02:00:00:00:08 actions=output:”d0-eth1”

yields to:

table[d0-eth0]=1

table[d0-eth1]=2

declare -A tables_if

declare -A tables_tb

declare -A FwState

declare -A pidWait

T=’”true”’

F=’”false”’

killsub() {

85

 pkill -P $$

 exit 0

}

setup_path() {

 local iface=$1

 FwState[$iface]=$(ovs-vsctl get interface $iface bfd_status:forwarding)

 forwarding_wait=$([${FwState[$iface]} = $T] && echo $F || echo $T)

 echo “ setup_path(): ovs-vsctl wait-until interface $iface bfd_status:forwarding=$for-

warding_wait “

 ovs-vsctl wait-until interface $iface bfd_status:forwarding=$forwarding_wait &

 echo “ setup_path(): status $?”

 echo

 pidWait[$iface]=$!

}

get_fwstate() {

 local iface=$1

 ovs-vsctl get interface $iface bfd_status:forwarding

}

change_path() {

 local iface=$1

 echo “ change_path(): ovs-ofctl mod-flows br0 table=0,cookie=0x00/0xff,ac-

tions=goto_table:${tables_if[$iface]} “

 ovs-ofctl mod-flows br0 table=0,cookie=0x00/0xff,actions=goto_table:${ta-

bles_if[$iface]}

 current_table=${tables_if[$iface]}

 echo “ change_path(): Now current table is $current_table”

 echo

}

trap killsub EXIT

read all the tables

86

table_paths=$(ovs-ofctl—names dump-flows br0 cookie=0x02/-1 | grep cookie)

echo “Initializing ...”

while read line

do

 echo $line

 table=$(echo $line | cut -f3 -d “,” | cut -f2 -d “=”)

 outiface=$(echo $line | cut -f8 -d “=” | cut -f2 -d “:” | sed -e ‘s/\”//g’)

 echo $table $outiface

 tables_if[$outiface]=$table

 tables_tb[$table]=$outiface

done < <(echo “$table_paths”)

current_table=$(ovs-ofctl—names dump-flows br0 table=0,cookie=0x0/0xff | cut -f7 -d “=”

| cut -f2 -d “,” | sed -e ‘s/)//g’)

#Dump info

echo “tables_if:”

for iface in ${!tables_if[*]}

do

 echo “tables_if[$iface] = ${tables_if[$iface]}”

done

echo “tables_tb:”

for tb in ${!tables_tb[*]}

do

 echo “tables_tb[$tb] = ${tables_tb[$tb]}”

done

echo

echo “Current table $current_table”

while true

do

 for iface in ${!tables_if[*]}

 do

 if [-z “${pidWait[$iface]}”]; then

 setup_path $iface

87

 #Dump info

 echo “FwState[$iface]=${FwState[$iface]}”

 echo “pidWait[$iface]=${pidWait[$iface]}”

 echo

 fi

 done

 # Wait for a change

 echo “wait -n ${pidWait[*]}”

 echo

 wait -n ${pidWait[*]}

 dt=$(date +%s.%N)

 echo “Someone dead ... $dt”

 echo “ Current table $current_table”

 # Who is dead

 for iface in ${!tables_if[*]}

 do

 ps -q ${pidWait[$iface]} > /dev/null

 if [“$?” -eq 1]; then

 # Delete from pidWait

 pidWait[$iface]=””

 # Get the current state

 current_fwstate=$(get_fwstate $iface)

 if [“$current_fwstate” == $F]; then

 # need to change path?

 if [“${tables_if[$iface]}” != “$current_table”]; then

 break

 fi

 # Reset current table. We can’t use it now.

 current_table=””

 # Now the state is $F, try to find a new path

 for intf in ${!FwState[*]}

 do

 if [“$intf” != “$iface”]; then

 if [“${FwState[$intf]}” == $T]; then

 change_path $intf

88

 break

 fi

 fi

 done

 fi

 fi

 done

done

The bash script expects three command-line arguments: $1, $2, and $3. These arguments

are assigned to the variables SIGNALIN_IFACE, SIGNALOUT_IFACE, and NODE,

respectively.

The variables wait_state and signal_state are initialized with the values “false” and “true”,

respectively. The variable logfile is set to a specific path and filename based on the values

of $1, $2, and $3.

Several associative arrays (tables_if, tables_tb, FwState, and pidWait) are declared using

the declare -A syntax. These arrays are used to store information about network tables,

interface states, and process IDs.

The script defines two functions: killsub() and setup_path(). The killsub() function is a signal

handler that kills all child processes and exits the script. The setup_path() function is called

to set up a specific interface.The script sets trap to call the killsub function when it receives

an EXIT signal.

The script uses the ovs-ofctl and ovs-vsctl commands to retrieve information about network

flows and interface states.It initializes an associative array tables_if by parsing the output

of ovs-ofctl—names dump-flows br0 cookie=0x02/-1. The array stores the mapping of

output interfaces to their corresponding network tables.

The current table number is obtained from the output of ovs-ofctl—names dump-flows br0

table=0,cookie=0x0/0xff.The script enters an infinite loop. Inside the loop, it checks the

status of each interface and sets up a path if necessary. The script waits for changes in

interface states by using the wait command.

When a change is detected, it determines which interface triggered the change, updates

the network table if needed, and continues monitoring the interface states.

89

11.6 tcpdump.sh

#!/bin/bash

[$# -ne 1] && exit 1

mypid=$$

progname=$(basename $0)

dirname=$(dirname $0)

#echo “PID: $mypid”

progname=”tcpdump”

check_and_kill() {

Check for old running process and kill

 process_list=$(ps -ax -o pid,cmd | grep “$progname “ | grep -v grep)

 #echo “$process_list”

 if [-n “$process_list”]; then

 fmt_list=$(echo “$process_list” | sed -e ‘s/^ *//g’ | tr “ “ “_”)

 for item in $fmt_list

 do

 pid=$(echo $item | cut -f1 -d “_”)

 if [“$1” == “check”]; then

 [-z “$pid_list”] && pid_list=$pid || pid_list=”$pid_list $pid”

 else

 kill -9 $pid 2>/dev/null >&2

 fi

 done

 fi

}

if [“$1” == “start”]; then

 # Unpolitely kill all capture running processes

 check_and_kill

90

 tcpdump -i d3-eth1 -w /mnt/bfd-node3-eth1.dump </dev/null >/dev/null 2>&1 &

 echo “PID: $!”

fi

if [“$1” == “stop”]; then

 check_and_kill “check”

 for pid in $pid_list

 do

 kill -s SIGTERM $pid

 done

 check_and_kill

fi

if [“$1” == “status”]; then

 check_and_kill “check”

 if [-n “$pid_list”]; then

 status=”running”

 else

 status=”stopped”

 fi

 echo “capture status: $status, pid: ${pid_list:-None}, vm:” $(hostname)

fi

It is a bash script that allows to start, stop, and check the status of the tcpdump.

91

11.7 Process_test.sh

#!/bin/bash

mkdir -p $HOME/satellite/TFGNerea/TFG_NEREA/PRUEBAS/results/$1

down_time=$(cat $HOME/dockerfs/down_d4-d7.txt)

#status=$(cat $HOME/dockerfs/print_bfd_cfg.sh)

echo -n "node8: "

node8=$(grep "Someone dead " $HOME/dockerfs/switch_node8.log | cut -f4 -d " " | tail -

n 1)

echo $node8

echo -n "node7: "

node7=$(grep " Notify cpath_down in d7-eth2 to \"true\"" $HOME/dockerfs/cpath-7-d7-

eth0-d7-eth2.log | cut -f1 -d ":")

echo $node7

echo -n "node4: "

node4=$(grep " Notify cpath_down in d4-eth1 to \"true\"" $HOME/dockerfs/cpath-4-d4-

eth3-d4-eth1.log | cut -f1 -d ":")

echo $node4

echo -n "node3: "

node3=$(grep " Notify cpath_down in d3-eth0 to \"true\"" $HOME/dockerfs/cpath-3-d3-

eth1-d3-eth0.log | cut -f1 -d ":")

echo $node3

echo -n "node0: "

92

node0=$(grep "Someone dead " $HOME/dockerfs/switch_node0.log | cut -f4 -d " ")

echo $node0

#echo "$1;$down_time;$fault_time;$node3;$node0" >

$HOME/satellite/TFGNerea/TFG_NEREA/PRUEBAS/results/$1.csv

DT1=$(echo "$node8 - $down_time" | bc)

DT2=$(echo "$node7 - $down_time" | bc)

DT3=$(echo "$node4 - $down_time" | bc)

DT4=$(echo "$node3 - $down_time" | bc)

DT5=$(echo "$node0 - $down_time" | bc)

echo "$1;0;$DT1;$DT2;$DT3;$DT4;$DT5"

echo

"$1;$down_time;$node8;$node7;$node4;$node3;$node0;;0;$DT1;$DT2;$DT3;$DT4;$D

T5" > $HOME/satellite/TFGNerea/TFG_NEREA/PRUEBAS/results/$1/$1-test.csv

mv $HOME/dockerfs/bfd-node3-eth1.dump $HOME/satellite/TFGNerea/

The script creates a directory to store the results using the first command-line argument

($1). The downtime of the link between nodes 4 and 7 is extracted from the down_d4-d7.txt

file.

The script extracts information from the log files generated during the network execution:

The variable node8 captures the last occurrence of "Someone dead" in the

switch_node8.log file, indicating the last time node 8 detected a failure. The another

variables captures depending of each interface or node: “Notify cpath_down in node-

interface to true”.

The variable node0 captures the last occurrence of "Someone dead" in the

switch_node0.log file, indicating the last time node 0 detected a failure.

The downtime for each node (in seconds) is calculated by subtracting the downtime

recorded from the respective node's failure detection time.

93

The calculated downtime values are printed, with a specific format to obtain a table of results.

The downtime values are also stored in another path. The script moves the bfd-node3-

eth1.dump file to the $HOME/ directory.

11.8 Runs.sh

#!/bin/bash

Num=10 #number of iterations

min_tx=10

NumMult=4 #max mult

#nummult=4

rx_list="500 1000"

Clean dockefs

rm -f $HOME/dockerfs/*.log $HOME/dockerfs/down_d4-d7.txt $HOME/dockerfs/bfd-

node3-eth1.dump

for min_rx in $rx_list

do

 mult=2

 #mult=2

 while [$mult -le $NumMult]

 do

 i=0

 while [$i -lt $Num]

94

 do

 sudo -E env PATH=$PATH python3 V2_JJ_containernet_tests.py -c 3 -r 3 -t

$min_tx -x $min_rx -m $mult

 outdir="Test_${min_rx}_${mult}-$i"

 ./process_test.sh $outdir

 ((i++))

 done

 ((mult++))

 done

done

The script sets the number of iterations to 10 using the variable Num. The minimum BFD tx

value is set to 10 using the variable min_tx.

The maximum BFD multiplier value is set to 4 using the variable NumMult. The script defines

a list of BFD rx values as a space-separated string: "500 1000".

The script cleans up any existing log files, down_d4-d7.txt, and bfd-node3-eth1.dump from

the $HOME/dockerfs/ directory. The script enters a loop for each min_rx value in the rx_list.

Inside the min_rx loop, the script enters another loop for each mult value from 2 to NumMult.

Inside the nested loop, the script enters a third loop for Num iterations.

Within the innermost loop, the script executes a Python script (V2_JJ_containernet_tests.py)

with the specified paràmetres.

The output directory for the test is set as outdir using the format "Test_${min_rx}_${mult}-

$i".

95

The script executes another script (process_test.sh) to process the results of the test for the

current iteration and output them to the specified output directory.

The innermost loop increments the i variable by 1 after each iteration. The nested loop

increments the mult variable by 1 after each iteration. The outer loop moves to the next

min_rx value. The script repeats steps 7-14 for each min_rx value in the rx_list

11.9 Results

11.9.1 Node 0

11.9.2 Node 3

0

1

2

3

4

5

10 100 500 1000

BFD_min_rx VS Node 0: Change Path

2

3

4

0

1

2

3

4

5

0
,1

3
0

4
3

3
0

4

0
,1

3
6

4
2

3
2

7

0
,1

4
2

2
2

2
0

3

0
,1

4
7

7
6

6
9

5

0
,1

5
4

7
1

7
6

8

0
,2

3
2

1
4

8
1

1

0
,3

0
0

0
0

9
5

7

0
,3

5
2

1
8

2
0

8

0
,4

2
4

0
9

6
5

7

0
,4

7
9

1
2

1
3

7

0
,7

1
1

7
5

9
5

5

0
,9

5
6

0
6

5
6

1

1
,2

5
8

8
6

1
5

9

1
,4

2
7

6
4

7
2

1

1
,7

2
5

3
6

4
6

7

1
,8

9
1

0
9

0
9

5

2
,0

5
2

0
6

3
8

2

2
,4

6
0

0
5

2
0

7

3
,0

7
3

3
9

7
1

6

3
,8

5
2

4
1

5
8

4

Promedio de Node 3: Notify to
node 0

Promedio de Detection time
(seconds)

96

11.9.3 Node 4

0

1

2

3

4

5

0
,1

3
0

4
3

3
0

4

0
,1

3
6

4
2

3
2

7

0
,1

4
2

2
2

2
0

3

0
,1

4
7

7
6

6
9

5

0
,1

5
4

7
1

7
6

8

0
,2

3
2

1
4

8
1

1

0
,3

0
0

0
0

9
5

7

0
,3

5
2

1
8

2
0

8

0
,4

2
4

0
9

6
5

7

0
,4

7
9

1
2

1
3

7

0
,7

1
1

7
5

9
5

5

0
,9

5
6

0
6

5
6

1

1
,2

5
8

8
6

1
5

9

1
,4

2
7

6
4

7
2

1

1
,7

2
5

3
6

4
6

7

1
,8

9
1

0
9

0
9

5

2
,0

5
2

0
6

3
8

2

2
,4

6
0

0
5

2
0

7

3
,0

7
3

3
9

7
1

6

3
,8

5
2

4
1

5
8

4

Promedio de Detection time
(seconds) - 2

Promedio de Detection time
(seconds) - 3

Promedio de Detection time
(seconds) - 4

Promedio de Node 3: Notify to node
0 - 2

0

1

2

3

4

5

0
,0

1
9

9
9

8
5

7

0
,0

2
6

5
4

8
2

9

0
,0

3
1

1
6

0
6

6

0
,0

3
7

2
2

3
6

0

0
,0

4
2

7
2

4
3

4

0
,1

2
4

8
4

7
4

4

0
,1

5
8

6
7

6
4

9

0
,2

2
4

2
0

5
1

7

0
,3

0
1

6
8

2
2

8

0
,3

6
7

1
7

1
9

6

0
,5

8
1

6
2

7
0

3

0
,8

3
6

1
0

8
5

5

1
,0

9
2

1
1

7
6

2

1
,2

2
8

0
1

3
2

9

1
,5

2
5

9
2

0
4

6

1
,7

2
3

1
6

4
6

9

1
,9

2
2

5
5

5
2

8

2
,3

2
2

7
0

3
6

2

2
,9

6
4

2
3

0
9

5

3
,6

7
1

2
1

6
5

1

Promedio de Detection time
(seconds)

Promedio de Node 4: Notify to
node 3

0
1
2
3
4
5

0
,0

1
9

9
9

8
5

7

0
,0

2
5

0
5

9
6

3

0
,0

2
8

8
9

6
7

1

0
,0

3
3

1
2

9
4

5

0
,0

3
7

9
6

0
4

4

0
,0

4
5

0
0

1
2

9

0
,1

2
4

8
4

7
4

4

0
,1

4
6

2
4

4
0

0

0
,2

1
1

3
1

3
6

3

0
,2

5
2

4
1

7
3

7

0
,3

0
9

6
7

6
2

6

0
,3

7
4

8
4

7
5

1

0
,5

8
1

6
2

7
0

3

0
,7

4
6

9
4

1
7

6

1
,0

3
0

3
0

4
9

7

1
,1

1
6

7
6

7
9

2

1
,3

1
7

4
6

8
6

6

1
,5

2
8

4
2

4
1

8

1
,7

2
3

1
6

4
6

9

1
,9

0
8

0
4

7
4

0

2
,1

7
9

3
7

0
3

1

2
,6

0
8

0
7

1
2

9

3
,1

5
1

7
2

9
1

5

3
,6

8
6

2
9

4
6

9

97

11.9.4 Node 7

0

1

2

3

4

5

0
,0

1
8

4
4

4
0

5

0
,0

2
4

1
5

8
8

7

0
,0

3
1

4
9

7
7

1

0
,0

3
6

8
0

8
1

1

0
,0

4
1

6
2

6
7

3

0
,1

1
9

0
1

1
5

0

0
,1

8
7

8
4

4
4

2

0
,2

5
3

0
4

4
3

4

0
,2

9
4

9
2

8
7

2

0
,3

6
3

5
9

1
7

4

0
,5

8
9

7
2

6
7

2

0
,6

9
5

3
3

7
8

7

1
,1

2
5

9
6

0
2

6

1
,3

3
6

2
7

5
8

2

1
,5

0
3

3
8

7
2

8

1
,7

0
3

3
2

7
8

5

1
,9

0
2

5
1

0
1

7

2
,2

9
0

5
5

3
6

1

2
,8

7
8

7
9

6
5

4

3
,4

8
1

9
9

4
4

8

Detection time theoric vs Detection time Node 7

Promedio de Node 7: Notify to
node 8

Promedio de Detection time
(seconds)

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

0
,0

1
8

4
4

4
0

5

0
,0

2
4

1
5

8
8

7

0
,0

3
1

4
9

7
7

1

0
,0

3
6

8
0

8
1

1

0
,0

4
1

6
2

6
7

3

0
,1

1
9

0
1

1
5

0

0
,1

8
7

8
4

4
4

2

0
,2

5
3

0
4

4
3

4

0
,2

9
4

9
2

8
7

2

0
,3

6
3

5
9

1
7

4

0
,5

8
9

7
2

6
7

2

0
,6

9
5

3
3

7
8

7

1
,1

2
5

9
6

0
2

6

1
,3

3
6

2
7

5
8

2

1
,5

0
3

3
8

7
2

8

1
,7

0
3

3
2

7
8

5

1
,9

0
2

5
1

0
1

7

2
,2

9
0

5
5

3
6

1

2
,8

7
8

7
9

6
5

4

3
,4

8
1

9
9

4
4

8
Promedio de Detection time
(seconds) - 2

Promedio de Detection time
(seconds) - 3

Promedio de Detection time
(seconds) - 4

Promedio de Node 7: Notify to node
8 - 2

Promedio de Node 7: Notify to node
8 - 3

Promedio de Node 7: Notify to node
8 - 4

98

11.9.5 Node 8

0

5

10

15

20

25

30

35

40

10 100 500 1000

BFD_min_rx VS Node 8: Change path

2

3

4

