
Performance Characterization of Multi-Container
Deployment Schemes for Online Learning Inference

Peini Liu
Barcelona Supercomputing Center

Universitat Politècnica de Catalunya
Barcelona, Spain
peini.liu@bsc.es

Jordi Guitart
Barcelona Supercomputing Center

Universitat Politècnica de Catalunya
Barcelona, Spain

jordi.guitart@bsc.es

Amir Taherkordi
University of Oslo, Norway
NTNU, Trondheim, Norway

amirhost@ifi.uio.no

Abstract—Online machine learning (ML) inference services
provide users with an interactive way to request for predictions
in real-time. To meet the notable computational requirements
of such services, they are increasingly being deployed in the
Cloud. In this context, the efficient provisioning and optimization
of ML inference services in the Cloud is critical to achieve
the required performance and meet the dynamic queries by
end-users. Existing provisioning solutions focus on framework
parameter tuning and infrastructure resources scaling, without
considering deployments based on containerization technologies.
The latter promises reproducibility and portability features for
ML inferences services. There is limited knowledge about the
impact of distinct deployment schemes at the container-level on
the performance of online ML inference services, particularly
on how to exploit multi-container deployments and its relation
with processor and memory affinity. In light of this, in this
paper we investigate experimentally the containerization of ML
inference services and analyze the performance of multi-container
deployments that partition the threads belonging to an online
learning application into multiple containers in each node. This
paper shares the findings and lessons learned from conducting
realistic client patterns on an image classification model across
numerous deployment configurations, especially including the
impact of container granularity and its potential to exploit
processor and memory affinity. Our results indicate that fine-
grained multi-container deployments and affinity are useful
for improving performance (both throughput and latency). In
particular, our experiments on single-node and four-node clusters
show up to 69% and 87% performance improvement compared
to the single-container deployment, respectively.

Index Terms—Machine Learning Inference, Kubernetes, De-
ployment Schemes, Multi-container, Affinity.

I. INTRODUCTION

Machine Learning (ML) is increasingly becoming popular
in various data analysis tasks such as image classification,
machine translation, recommendation systems, and speech
recognition [1] [2] [3] [4]. ML inference is an important
phase that uses trained ML models to make predictions from
new data. From a runtime perspective, ML inference can be
conducted either as a batch process, where predictions can be
generated asynchronously from a batch of samples with no
specific time limit to receive the results, or more interactively,
through an online ML inference service, which receives dy-
namic queries from end-users and serves the predictions in
real-time (subject to a latency bound) [5] [6] [7] [8].

To meet the notable computational requirements of ML
inference services, especially in the prediction step of the
pipeline, those services are increasingly being deployed in
the Cloud, which provides access to countless computational
resources and allows to automatically scale the services by
elastically deploying more or fewer instances to meet the
changing demand. In this context, the objective of online ML
inference service provisioning in the Cloud must be to find
suitable deployment schemes such that inference services use
the hardware efficiently and achieve the required performance
(e.g., throughput) to meet the dynamic queries by end-users.

To address this challenge, existing work considers online
ML inference services provision and optimizations at different
layers. In the application layer, different serving frameworks
used by online ML inference services support configuration
settings [9] [10]. Experienced Data Engineers could tune the
best parameter settings of these serving runtimes to improve
the service performance [11]. In the infrastructure layer, the
backends of a ML inference service can be horizontally- or
vertically-scaled to use more resources [12]. These autoscaling
frameworks [7] [8] [13] provide efficient ways for ML infer-
ence services to use resources while meeting Service Level
Agreements (SLAs).

On top of that, current Cloud deployments are tightly cou-
pled with containerization technology, which makes services
easily reproducible and portable by encapsulating the code and
dependencies. Furthermore, it isolates services so that they can
be scaled or updated individually and failures do not affect the
entire workload. Online ML inference services also aim to ben-
efit from these features, to enable a seamless transition from
training environments or to retrain (and redeploy) new models
with the incoming new data, while meeting the performance
requirements for the predictions. A typical application, in this
context, is monitoring the performance of networks through
analyzing the network traffic streams, which call for real-time
and online learning data analytics and predictions [14].

However, there is limited knowledge about the impact of
containerization on the performance of online ML inference
services. In addition, there are no well-defined guidelines
on proper deployment schemes in terms of exploiting the
potential of containerization and constraining containers easily
to a single NUMA (Non-Uniform Memory Access) domain

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI 10.1109/CLOUD60044.2023.00046

or pinning them to specific processors. In particular, multi-
container deployments which partition the processes that be-
long to each application into multiple containers in each
node are worth considering. Those deployments have been
demonstrated to improve the performance of some multi-
process HPC throughput workloads, which consist of the
execution of loosely-coupled CPU-intensive processes [15]
[16]. These characteristics resemble ML inference services,
as numerous serving frameworks can exploit request-level
parallelism to execute independent computationally-intensive
prediction queries performed by various end-users through
parallel threads.

In this paper, we investigate suitable deployment schemes
for allocating online ML inference services in the Cloud,
focusing on container-level considerations (i.e., fine-grained
multi-container deployments and CPU/memory affinity set-
tings). Our contributions are as follows:

• We define multiple deployment schemes for online ML
inference services that feature different degrees of con-
tainer granularity and we set the corresponding distribu-
tion of working threads and resources to each container
to serve the model.

• We enable the definition of the CPU/memory affinity
for each container belonging to an online ML inference
service, as part of the former deployment schemes.

• We establish an evaluation system on a Kubernetes clus-
ter and evaluate our multi-container deployments using
typical ML inference benchmarks (i.e., MLPerf) with
different realistic client patterns.

• We present a systematic performance comparison, fo-
cusing on container-level considerations, to guide the
Data Engineers on how to deploy their ML workloads
to optimize the performance.

The paper is organized as follows: Section II discusses
the related work. Section III describes the architecture of the
evaluated system and shows the detailed container granularity
and affinity setting schemes. The results of enabling multi-
container and affinity deployments are reported in Section IV.
The conclusions and future work are described in Section V.

II. RELATED WORK

A. Enabling Online ML Inference Services

ML inference systems are complex due to the hardware and
software diversity in the ML world [17]. From the hardware
side, ML inference systems can utilize different hardware
processors and accelerators such as CPUs, GPUs, or FPGAs.
From the software side, the operating system used on each
machine may vary. In addition, ML models are trained through
diverse ML frameworks and libraries, thus, the runtime frame-
works supporting the ML inference services are also different.
Early works on ML inference systems such as Clipper [18]
and Rafiki [19] deployed models in containers using custom
runtime and implemented an abstract layer between clients
and models to achieve model selection and request batching.
Currently, there are several open-sourced runtime for online

ML inference services in production and most of them support
containerization, such as Tensorflow serving [10], TorchServe
[9], Kserve [20], or Seldon [21]. These runtime may vary
but they contain similar functionalities (e.g., model version
management and model warmup) and configuration settings
(e.g., parallel threading model, batching, and caching) [10].

While deploying the ML inference services in the Cloud,
experienced Data Engineers could tune the parameter settings
of the model serving runtime to improve the performance. For
instance, [11] studied how to auto-tune the threading model
for Tensorflow serving and Intel Math Kernel Library (MKL)
[22] CPU backends.

The objective of our paper is not to test the diversity of
ML model inference systems described above or tune runtime
parameters to improve the performance. In our experiments,
we aim to analyze the performance of multi-container deploy-
ment schemes for deploying online ML inference services on
a Kubernetes cluster with multi-core machines, and we take
Tensorflow serving as a representative runtime to serve ML
models. Nevertheless, understanding the runtime and some of
the server settings (i.e., threading model) is still relevant and
complimentary to this work.

B. Deployment Schemes for Online ML Inference Services

Online communities have shared some lessons regarding
how different settings can impact the performance of online
ML inference services deployments. Park and Paul tested a
Tensorflow Serving deployment of an image classification
model across numerous deployment configurations, such as
different infrastructures, trade-offs between more or fewer
servers (but by using different sizes of the virtual machines),
number of threads for deployments, and dynamic batching
considerations [23]. Morgan et al. studied the batch size and
core count scaling for the BERT-like model, as well as man-
ually tuned multi-stream and affinities [24] [25]. These works
consider different deployment and scaling options, but they
do not directly assess multi-container deployments. Moreover,
their evaluation does not consider realistic client scenarios.

General approaches for infrastructure-layer autoscaling of
online services on the Cloud have been also proposed [12]
[26]. Moreover, some works have focused specifically on
the deployment and scaling of online ML inference services.
MArk (Model Ark) [7], a low-latency, cost-effective inference
serving system on the Cloud, used predictive scaling to mask
the instance provisioning latency. PRETZEL [8] opened a
black box of a model-serving application and enabled model-
specific optimization with resource sharing. Nexus [27] per-
formed detailed scheduling of GPUs for DNNs. Its design
enabled several optimizations in batching and allowed more
efficient resource allocation. Swayam [13] derived a global
state estimate from the local state and employed a globally
consistent protocol to proactively scale-out service instances
for SLA compliance, and passively scale-in unused backends
for resource efficiency. However, all these works mainly focus
on infrastructure resource scaling to satisfy the SLAs and save
costs, not considering container count scaling in a host.

MLPerf Inference Client

LoadGen
Runtime

QSL

Node Kubernetes Node

k-proxy kubelet

SUT

ML Serving

ML Serving

ML Serving

...

Service(Real Server)

validation dataset

image/
model

repository

load

NodeIP/Port
(Virtual Server) load

predict

physical
network

(http)

http://172.30.0.50:31931/
v1/models/resnet:predict

QDL

Kubernetes
Pod

Components

Database

Fig. 1. Evaluation system architecture of multi-container deployment schemes for ML model inference.

The containerized deployment and affinity schemes studied
in this paper provide an additional dimension of deployment
configurations at the container level. Therefore, these schemes
could be seen as complementary to infrastructure-layer scal-
ing approaches and could be used together to optimize the
performance of online ML inference services.

C. Multi-container Deployment Schemes

Multi-container deployments have been studied by some au-
thors, although they have not considered online ML inference
services. In particular, Medel et al. [28] conducted a perfor-
mance analysis over Kubernetes considering the deployment
and initialization overhead as well as understanding the per-
formance of different pod settings. Moreover, they provided a
rule to decide the number of containers per pod by considering
the characteristics of the application. Liu and Guitart [15] [16]
demonstrated through standalone executions that some types
of containerized HPC applications achieve better performance
when exploiting multi-container deployments. Their multi-
container deployments partition the processes that belong to
each application into multiple containers in each node, and
constrain each of those containers to a single NUMA (Non-
Uniform Memory Access) domain or pin them to specific
processors. Moreover, their latest work [29] has enabled fine-
grained scheduling in a real Cloud orchestrator (Kubernetes),
showing these multi-container deployment schemes are useful
when deploying containerized HPC workloads in real multi-
programmed and multi-tenant Cloud environments.

Those multi-container deployments have been demonstrated
to improve the performance of HPC workloads comprising
loosely-coupled CPU-intensive processes, which resemble the
characteristics of ML inference services. This served as in-
spiration to explore as well these schemes for online ML
inference services.

The multi-container deployment paradigm can appropriately
fulfill the need for distributed learning of relevant online ML
services, for instance, monitoring the performance of networks

through analyzing the network traffic streams (e.g., discovering
hidden traffic stream patterns, and fault and security man-
agement). The high-speed data streaming nature of networks
requires real-time (or near real-time) and online data analytics
and prediction [14].

III. EVALUATION METHODOLOGY

Our multi-container deployment schemes for containerized
ML inference services are evaluated on a Kubernetes platform.
This section describes the architecture of the evaluated system
and the container granularity and affinity settings.

A. Evaluation System

The complete picture of the architecture of this system is
depicted in Fig. 1.

MLPerf Inference Client (LoadGen): MLPerf Inference
is a benchmark suite for measuring how fast systems can run
models in a variety of deployment scenarios [17]. LoadGen
is the MLPerf client, which generates traffic for scenarios as
formulated by a diverse set of experts, and efficiently and
fairly measures the performance of ML inference systems.
LoadGen is not dataset or model aware, thereby we had
to implement custom versions of the Query Sample Library
(QSL) and the Query Dispatch Library (QDL) tailored to the
datasets/models used in the paper. QSL is responsible for
loading the data and includes untimed preprocessing. QDL
is used to dispatch queries to the System Under Test (SUT)
over a physical network, receive the responses, and pass them
back to LoadGen.

System Under Test (SUT): The System Under Test refers
to the ML inference system which provides an online ML in-
ference service through several real server backends receiving
queries from the client. In our experiments, SUT is established
on a multi-core Kubernetes cluster, and models are served by
Tensorflow Serving instances running inside multiple contain-
ers, each one wrapped as a Kubernetes Pod. Kubelet and Kube-

proxy components from Kubernetes generate Pods on each
node and distribute the queries among those Pods, respectively.

We consider various deployment options for the SUT de-
pending mainly on two factors. First, the container granu-
larity of the online ML inference service. In this paper, we
assess the impact of deploying an online ML model inference
service with different numbers of containers per host, that
is, different multi-container deployment scenarios. Second,
the resource affinity of the containers running the online
ML inference service. In this paper, we assess the impact of
different CPU/memory affinity settings for each container.

B. Granularity Settings
Granularity settings define how we partition the online ML

inference service into multiple containers (i.e., increasing the
number of containers but decreasing the threads and resources
on each container). A given SUT can have a single or multiple
servers (each deployed within a container and with its own
inference model), but the number of working threads and
resources for the SUT are kept constant. We assume each
SUT requires a number of CPU cores Scpu and some amount
of memory Smem in GB. Tensorflow Serving running within
the SUT contains multiple working threads inside the server,
namely tensorflow_inter_op_parallelism,
tensorflow_intra_op_parallelism, and
rest_api_num_threads. For each SUT, we define
these numbers of threads as Ninter, Nintra, and Nrest.

(I) Multi-container deployments: Each SUT runs on a set
of containers CTN = {ctni|i = 1, ..., Nctn} which use re-
sources from a set of hosts HOST = {hosth|h = 1, ..., Nh}.
Each container i has resources requirements Ri

Scpu
Nctn

,Smem
Nctn

and a threading model T i
Ninter
Nctn

,
Nintra
Nctn

,
Nrest
Nctn

, so that the total

number of working threads and resources for the SUT are
kept constant. Therefore, a multi-container deployment can be
expressed as a set of containers each containing a subset of
the threads and requiring a share of the resources.

SUTNcph
=

Nctn⋃
i=1

ctni →

Ri
Scpu
Nctn

,Smem
Nctn

T i
Ninter
Nctn

,
Nintra
Nctn

,
Nrest
Nctn

(1)

where Ncph refers to the number of containers per host and
is calculated as Nctn/Nh.

(II) Baseline: This is the default strategy to deploy a SUT
running Tensorflow Serving on Kubernetes. The baseline is
deployed as a single-container-per-host deployment, thus, it
has Ncph = Nctn

Nh
= 1. The resources requirements for

each container are calculated in the same way as with multi-
container deployments. However, the threading model of Ten-
sorflow Serving is decided by default: the threading pool size
will be set to the number of visible cores within each server.

SUTbaseline =

Nctn⋃
i=1

ctni →

Ri
Scpu
Nctn

,Smem
Nctn

T i
default

s.t. Ncph = 1

(2)

C. Affinity Settings

Affinity settings define the exact resources from the hard-
ware perspective that the containers of the online ML inference
service will use. The affinity settings for our multi-container
deployment scenarios are called ANY and CPUMEM. We
assume a number of hosts Nh, and a number of containers
Nctn. The number of containers per host (i.e., Ncph) is
calculated as Ncph = Nctn

Nh
. The hardware platform provides

a number of CPU cores and MEM nodes from one or
several sockets S = {sockets|s = 0, ..., Nsocket − 1}, where
each socket has P cores. Hence, for a set of containers
CTN = {ctni|i = 1, ..., Nctn} which run on a set of hosts
HOST = {hosth|h = 1, ..., Nh}, each affinity setting defines
a mapping Maph,i → CPUh,s,[x,y] + MEMh,s where h, s,
and [x, y] = {n ∈ Z|x ≤ n ≤ y} denote the assigned host,
socket, and set of cores, respectively. In particular, affinity
settings ANY and CPUMEM are defined as follows:

(I) ANY: Containers do not have any processor or memory
affinity and all of them could access all the resources provided
to this service. The actual distribution of the resources is
decided by the operating system. Thus, the mapping of ANY
scenarios could be expressed as:

Maph,i →

⋃Nsocket−1

s=0 CPU
h,s,[s×P,s×P+

Ncpu×Ncph
Nsocket

−1]⋃Nsocket−1
s=0 MEMh,s

(3)
(II) CPUMEM: We define a specific processor and memory

affinity for each container to a set of cores belonging to a
single socket and to the corresponding local memory node.
The mapping of CPUMEM scenarios could be calculated as
follows, provided that the number of cores requested by each
container is lower than the cores each socket provides.

Maph,i →

{
CPUh,si,[xi,yi]

MEMh,si

(4)

si = ⌈ i

Ncps
⌉ − 1 (5)

xi = si × P +Ncpu × ((i− 1)− si ×Ncps) (6)

yi = si × P +Ncpu × (i− si ×Ncps)− 1 (7)

where Ncps refers to the number of containers per socket and
is calculated as Ncph/Nsocket.

IV. EVALUATION

In this section, we present an empirical performance evalua-
tion of multi-container deployments of ML inference services
on Kubernetes clusters. In this evaluation, we consider several
schemes where we increase the number of containers serving
the model but decrease the number of parallel working threads
of the model per container. In addition, we consider different
affinity settings and several real-world client scenarios.

A. Experimental Setup
Hardware: Our experiments are executed on a five-

node K8s cluster. Each host consists of 2 x Intel 2697v4
CPUs (18 cores each, hyperthreading disabled, CPU fre-
quency scaling governor is set to max performance (i.e.,
scaling governor=performance)), 256 GB RAM, 60 TB GPFS
file system, and 1-Gigabit Ethernet network.

Software: For all the hosts, we use CentOS release 7.7.1908
with host kernel 3.10.0-1062.el7.x86 64. The Kubernetes plat-
form uses Kubernetes v1.19.16 (with Docker 19.03.11, Etcd
3.4.9, Flannel 0.15.0, CNI 0.8.6, and CoreDNS 1.7.0). We use
Tensorflow Serving v2.8.2 as the backend server and MLPerf
Inference Client v0.7 (LoadGen) to emulate the clients.

Kubernetes Cluster Settings: Our Kubernetes cluster com-
prises five nodes. For each node, we reserve 4 cores for system
and Kubernetes components, thus, 32 cores (16 from each
socket) can be used for the allocation of ML inference services.

By default, K8s Kubelet sets the CPU manager policy as
’none’, so all the containers can use all the allocatable CPU
resources within the resident node. For those experiments that
require enabling CPU/memory affinity for containers, we con-
figure Kubelet using --cpu-manager-policy=static,
which starts the containers on dedicated CPUs, and
--topology-manager-policy=best-effort, which
stores the preferred NUMA affinity for the containers attempt-
ing to align resources optimally on NUMA nodes if possible.

Kube-proxy is set to the IPVS (IP Virtual Server) mode,
which can direct requests for TCP- and UDP-based services
to the real servers and make real services appear as virtual
services on a single IP address. The IPVS load balancing
algorithm is kept as the default round-robin algorithm.

Tensorflow Serving Granularity Settings: Table I shows
the different container granularity scenarios considered to
deploy the online ML inference service, and the corresponding
resources and thread pool size settings of each container.

SUTbaseline is the baseline scenario which represents the
basic deployment scheme of a Tensorflow Serving service. It
normally contains one container per host and the container
uses all the resources of the host. Each container also chooses
its own thread settings, by default Tensorflow Serving will set
the number of inter, intra, and rest threads as the number of
visible cores within the container. In our case, even though the
container can only use 32 CPUs (maximum available CPUs
within one host), the threads will be set to 36 because the
container can see all the cores in the host.

SUTNcph
refers to the various multi-container deployments

of the Tensorflow serving service. For different granularity
scenarios, we select a different number of containers to deploy
the ML inference service, while partitioning the number of
working threads and resources for each container. Thus, the
total number of resources and threads for the inference service
are kept constant in all the scenarios.

Affinity Settings: We consider two affinity settings: ANY
and CPUMEM. The former means that all the containers can
run on any CPUs and any memory node within hosts. The
latter means that the containers will use dedicated CPUs and

TABLE I
SERVER SCENARIOS SETTINGS.

Scenarios
(SUTNcph

)
of CTNs

(Nctn)
Resources/CTN

(Ri)
Threads/CTN

(T i)

SUTbaseline 1 ∗Nh
CPU=32cores

MEM=128GiB

inter=36
intra=36
rest=36

SUT1 1 ∗Nh
CPU=32cores

MEM=128GiB

inter=32
intra=32
rest=64

SUT2 2 ∗Nh
CPU=16cores
MEM=64GiB

inter=16
intra=16
rest=32

SUT4 4 ∗Nh
CPU=8cores

MEM=32GiB

inter=8
intra=8
rest=16

SUT8 8 ∗Nh
CPU=4cores

MEM=16GiB

inter=4
intra=4
rest=8

SUT16 16 ∗Nh
CPU=2cores
MEM=8GiB

inter=2
intra=2
rest=4

SUT32 32 ∗Nh
CPU=1core
MEM=4GiB

inter=1
intra=1
rest=2

Fig. 2. The timing and number of queries from LoadGen [17]

be bound to a specific memory node. These affinity settings
are configured by an agent running on each node. For ANY,
the agent will change all the containers’ CPUSETs to a range
of CPUs within a host, being the number of CPUs in the
range equal to the number of requested CPUs per host. For
CPUMEM, the CPU Manager and the Topology Manager in
the Kubelet are set with the appropriate modes as discussed
before. In addition, the agent will check the range of CPUs
allocated to each container and set the corresponding memory
node for this container after its deployment.

MLPerf Inference Benchmark: As mentioned in Section
III, our evaluation uses the MLPerf Inference Benchmark,
which is a suite specifically designed to measure the perfor-
mance of ML models during inference. It includes standard
models, datasets, and evaluation metrics of different client
scenarios, which enables fair and comparable measurements.

i) Model and Dataset: MLPerf provides computer vision
applications with its associated reference model (i.e., a clas-
sifier network takes an image and selects the class that best

TABLE II
CLIENT SCENARIOS SETTINGS.

Scenarios Query Generation Metric Sample/Query Parameters
Single-Stream (SS) Sequential 90th-percentile Latency 1 min query count=1664

Multi-Stream (MS) Arrival Interval With Dropping Number of Streams
Subject to Latency Bound N

min query count=2000
target qps=32

max async queries=256
target latency=8s

Server (S) Poisson Distribution Queries per Second
Subject to Latency Bound 1

min query count=12800
target qps=200

target latency=20s

Offline (O) Batch Throughput ≥ 24576
min query count=32768

target qps=200
max batchsize=1,2,4,8

Baseline ANY CPUMEM
0.00

0.04

0.08

0.12

0.16

90
-th

 P
er

ce
nt

ile
 L

at
en

cy
 (s

ec
) (a) SingleStream

SUTNcph

SUT1
SUT2
SUT4
SUT8
SUT16
SUT32

Baseline ANY CPUMEM
0

2

4

6

8

N
um

be
r o

f S
tre

am
s

(N
)

 s
.t.

 la
te

nc
y<

8s

(b) MultiStream

SUTNcph

SUT1
SUT2
SUT4
SUT8
SUT16
SUT32

Baseline ANY CPUMEM
0

50

100

150

Q
ue

rie
s

Pe
r S

ec
on

d
(q

ps
)

 s
.t.

 la
te

nc
y<

20
s

(c) Server

SUTNcph

SUT1
SUT2
SUT4
SUT8
SUT16
SUT32

Baseline ANY CPUMEM
0

50

100

150

Sa
m

pl
es

 P
er

 S
ec

on
d

(d) Offline

SUTNcph

SUT1
SUT2
SUT4
SUT8
SUT16
SUT32

Fig. 3. Impact of container granularity and affinity in SUT performance on different client scenarios on a Kubernetes cluster.

describes it). In particular, for image classification, it provides
a well-known vision model: the computationally-intensive
Resnet50 [1], which accepts base64-encoded JPEG images as
input and decodes them within the inference stage. We use
the ImageNet 2012 dataset, crop the images to 224x224 in
preprocessing, and send the strings of base64-encoded images
through the physical network using REST APIs.

ii) Client Scenarios: MLPerf LoadGen provides four re-
alistic end-user scenarios, namely Single-Stream (SS), Multi-
Stream (MS), Server (S), and Offline (O), which represent
many critical inference applications. Fig. 2 shows how Load-
Gen generates queries for each scenario and Table II sum-
marizes their settings in our experiments, which we describe
briefly below. Additional details can be found in [17].

• SS: The Single-Stream scenario represents the client send-
ing inference-query streams one by one (i.e., the client
waits for the completion of one query before issuing
another) with a query sample size of 1. The objective
is to assess the responsiveness of the SUT by means of
the 90th percentile latency.

• MS: The Multi-Stream scenario represents the client send-

ing inference-query streams with a fixed time interval.
It assesses the maximum query sample size of each
inference-query stream subject to a latency bound. No
more than 1% of queries may exceed the latency bound.

• S: The Server scenario represents an application where
the one sample-sized inference-query streams are arriving
randomly at the SUT with a Poisson distribution. The
SUT responds to each query within a benchmark-specific
latency bound. No more than 1% of queries may exceed
the latency bound. The performance metric is the Poisson
parameter that indicates the queries-per-second (QPS)
achievable while meeting the latency QoS requirement.

• O: The Offline scenario represents batch-processing appli-
cations where all the data are sent to the SUT as soon as
possible and latency is unconstrained. The performance
metric is the throughput measured in samples per second.

B. Experiment 1: Multi-container deployment and affinity
evaluation on a single host

Fig. 3 shows the impact of container granularity and affinity
in SUT performance on different client scenarios on a Ku-

bernetes cluster with a single node. The results are derived
from 10 executions. Additionally, for some scenarios, we also
analyze the inference time and the issue delay time for each
individual sample.

1) SingleStream: This scenario generates low load because
the client sends queries one by one, thus, every time only
one query is being processed at one of the containers of the
SUT. From SUT1 to SUT32, that is, when deploying more
containers per host (i.e., from 1 to 32), each one has lower
allocated resources (i.e., from 32 CPUs/128 GiB to 1 CPU/4
GiB) and working threads (i.e., from 32 to 1). SingleStream
does not fully show the benefits of using multiple containers to
deploy the online ML inference service, because always only
one backend is used at a time, that is, we can only exploit
parallelism within a request, not among requests.

Fig. 3 (a) SingleStream shows the 90th percentile latency
of different SUT deployments. For ANY scenario, running
more containers per host increases the 90th latency (i.e.,
SUT2–SUT32 increase by 4%–25%–46%–122%–271% with
respect to SUT1). This increment is caused by the lower
amount of resources and threads for each container as we
increase the number of containers. On the other side, SUT2

with CPUMEM settings shows 13% 90th latency improvement
regarding SUT1, because running two containers, one in each
socket, improves the cache usage and avoids remote memory
accesses between two NUMA nodes. However, SUT4–SUT32

still show 7%–67%–140%–303% degradation regarding SUT1

because the better locality cannot compensate for the lower
parallelism as we increase the number of containers (due to
the reduction of resources and threads per container).

Similarly, when comparing CPUMEM and ANY settings, the
former shows better performance in coarse-grained scenarios
SUT2 − SUT4 because each container has enough resources
and threads to exploit the parallelism of the NUMA node
to which they are assigned while getting the corresponding
locality benefits. However, CPUMEM shows worse perfor-
mance in finer-grained scenarios SUT8–SUT32 because each
container has less resources and threads but, still, CPUMEM
allocates them in dedicated CPUs from two NUMA nodes.
Contrariwise, ANY settings allow the containers to be allocated
in the entire range of available CPUs, and due to the lower
amount of resources each container needs, the scheduler is
able to consolidate all of them in a single NUMA node.

2) MultiStream, Server, and Offline: The impact of con-
tainer granularity and affinity in SUT performance on Multi-
Stream (MS), Server (S), and Offline (O) client scenarios is
shown in Fig. 3 (b) MultiStream, which displays the maximum
number of streams (subject to 99th latency < 8s), Fig. 3 (c)
Server, which displays the Queries per Second (qps) (subject
to 99th latency < 20s), and Fig. 3 (d) Offline, which displays
the samples per second (the max batch size is set to 8 to
optimize the performance in this scenario). For comparison
purposes, we also display detailed qps of MultiStream scenario
in Fig. 4. The three client scenarios show different patterns to
send queries, but all of them generate a high load to the SUT,
which consumes high computation resources, and allows to

evaluate the impact of multi-container deployments.

Baseline ANY CPUMEM
0

50

100

150

Q
ue

rie
s

Pe
r S

ec
on

d
(q

ps
)

 s
.t.

 la
te

nc
y<

8s

SUTNcph

SUT1
SUT2
SUT4
SUT8
SUT16
SUT32

Fig. 4. Queries Per Second in MultiStream ANY and CPUMEM scenarios.

Baseline: SUT1 ANY and CPUMEM have roughly the same
performance improvement up to 8%, 6%, and 6% compared
to the baseline in client scenarios MS (see Fig. 4), S (see Fig.
3(c)), and O (see Fig. 3(d)), respectively. This is because a
single container in the baseline starts on all the CPUs within
the host and Tensorflow Serving creates as many threads as
visible CPUs (i.e., 36) within this container, whereas there are
effectively only 32 CPUs available for ML inference in the
host (we reserve 4 cores for Kubernetes and system). Thus,
the baseline has more CPU migrations and context switches
among more threads than SUT1 with ANY or CPUMEM,
which start a single container on 32 cores and threads.

Granularity: Regarding the container granularity, in MS
(see Fig. 4), SUT2–SUT32 have 32%–32%–32%–36%–40%,
and 38%–39%–38%–42%–45% performance improvement re-
garding SUT1 with ANY and CPUMEM, respectively; in S
(see Fig. 3(c)), SUT2–SUT32 have 40%–45%–45%–56%–
66% and 49%–55%–55%–69%–67% performance improve-
ment regarding SUT1 with ANY and CPUMEM, respectively;
in O (see Fig. 3(d)), SUT2–SUT32 have 28%–29%–28%–
27%–31%, 31%–32%–31%–30%–31% performance improve-
ment regarding SUT1 with ANY and CPUMEM, respectively.
All the client scenarios show better performance with multi-
container deployments. The difference is greater as we in-
crease the number of containers for MultiStream and, espe-
cially, for Server scenarios. As shown in Fig. 5, which displays
the mean latency in Server scenarios, multi-container deploy-
ments show up to 90% latency improvement with respect to
SUT1, and finer-grained containers (from SUT2 to SUT32)
show increasingly better performance.

Baseline ANY CPUMEM
0

5

10

15

20

25

30

M
ea

n
La

te
nc

y
(s

) SUTNcph

SUT1
SUT2
SUT4
SUT8
SUT16
SUT32

Fig. 5. Mean latency in Server ANY and CPUMEM scenarios.

In Server scenarios, the overall latency of a sample can

be broken down into the sample waiting time before the
sample is processed (i.e., issue delay time) and the actual
sample inference time. Fig. 6 and Fig. 7 show the inference
time of individual samples in this scenario with ANY and
CPUMEM settings, respectively, finer-grained multi-container
deployments can use better the resources, and thus process
the samples quicker, reducing their inference time (and con-
sequently, their latency). Note how, in any case, the inference
time is kept below the allowed latency bound (i.e., 20 s). In
the same manner, finer-grained multi-container deployments
also reduce the waiting time of the samples, as shown in Fig.
8 and Fig. 9. They display the issue delay time of individual
samples with ANY and CPUMEM, respectively. In particular,
the plots show that the saturation point, i.e., when the samples
start to wait resulting in some delay time, appears later for
finer-grained multi-container deployments.

Fig. 6. Inference time of individual samples in Server-ANY scenario.

Fig. 7. Inference time of individual samples in Server-CPUMEM scenario.

Fig. 8. Issue delay time of individual samples in Server-ANY scenario.

The better performance of the multi-container deployment
schemes is a consequence of their ability to optimize the

Fig. 9. Issue delay time of individual samples in Server-CPUMEM scenario.

scheduling of the serving threads onto the available resources
(processors and memory nodes), mainly by favouring proces-
sor affinity, which reduces context switches and migrations
and memory affinity exploits data locality, thus improving
cache usage and reducing remote memory accesses in NUMA
systems. With CPUMEM settings, the affinity for each con-
tainer is enforced explicitly by the deployment scheme, which
allocates dedicated CPUs to each of them. With finer-grain
deployments, each container is allocated with fewer CPUs (and
from a single NUMA node), thus, there are fewer chances for
the serving threads to migrate. With ANY settings, the affinity
for each container is not enforced explicitly, but indirectly
encouraged through the scheduling of cgroups done by the
Linux Completely Fair Scheduler (CFS). The processes within
each container are grouped together in a cgroup, so they will
be viewed by the scheduler as a single unit. CFS applies the
principle of sharing the resources fairly among these cgroups
at the same level of the hierarchy, which means it will first
divide CPU time equally between all entities at the same level,
and then proceed by doing the same in the next level [30].
In multi-container deployment scenarios, first, the CPUs are
evenly distributed across cgroups. Then, the threads on each
cgroup are scheduled on those CPUs. As a higher number of
containers contain a lower number of threads, this scheduling
within the group is simpler, allowing to exploit processor
affinity better. Notably, in SUT32, the sole thread in each
container runs on a single CPU, akin to being pinned to it.

Baseline ANY CPUMEM
0

20

40

60

80

100

120

M
ea

n
La

te
nc

y
(s

) SUTNcph

SUT1
SUT2
SUT4
SUT8
SUT16
SUT32

Fig. 10. Mean latency in Offline ANY and CPUMEM scenarios.

ANY/CPUMEM affinity: Regarding the affinity settings,
SUT1 behaves similarly with both ANY and CPUMEM set-
tings because the single container deployed in both cases
uses the same range of CPUs and memory from the two

ANY CPUMEM
0

50

100

150

200
Sa

m
pl

es
 P

er
 S

ec
on

d
Offline - batch size 1

SUTNcph

SUT1
SUT2
SUT4
SUT8
SUT16
SUT32

ANY CPUMEM
0

50

100

150

200

Sa
m

pl
es

 P
er

 S
ec

on
d

Offline - batch size 2

SUTNcph

SUT1
SUT2
SUT4
SUT8
SUT16
SUT32

ANY CPUMEM
0

50

100

150

200

Sa
m

pl
es

 P
er

 S
ec

on
d

Offline - batch size 4

SUTNcph

SUT1
SUT2
SUT4
SUT8
SUT16
SUT32

Fig. 11. Impact of container granularity and affinity in the Offline scenario with different client batch size.

sockets. SUT2–SUT32 with CPUMEM settings show better
performance than ANY up to 4%, 9%, and 3% in scenarios MS
(see Fig 4), S (see Fig 3(c)), and O (see Fig 3(d)), respectively.
This improvement is also observed when considering the mean
latency. As shown in Fig. 5, SUT2–SUT32 with CPUMEM
settings in Server scenario have 23%–29%–35%–58%–23%
mean latency improvements, respectively, with respect to ANY.
Similarly, SUT2–SUT32 with CPUMEM settings in Offline
scenario also show 3%–3%–3%–4%–1% improvements on the
mean latency regarding ANY, as shown in Fig. 10.

CPUMEM has better performance than ANY because it
enforces CPU affinity, which restricts the number of assigned
CPUs within each container. Hence, the threads running in
finer-grained containers have fewer available CPUs where they
could migrate. More importantly, memory affinity improves
the cache utilization and prevents the remote memory accesses
as well, thus reducing the memory latency. Note that the
improvement of SUT32 with CPUMEM regarding SUT32

with ANY is less noticeable than in the rest of SUT2–SUT16

scenarios because in SUT32 each container runs only on one
CPU and containers are already well-distributed among cores,
thus, the benefit of CPUMEM settings on SUT32 only comes
from the memory access.

C. Experiment 2: Multi-container deployment evaluation with
different client batch size on a single host

Batching calls to a remote service is a well-known technique
to increase the performance. There are fixed processing costs
for any interaction with a remote service, such as serialization,
network transfer, and deserialization. Packaging many samples
into a single batch minimizes the cost per sample.

Fig. 11 shows the impact of container granularity and
affinity in the Offline scenario with various client batch sizes,
namely 1, 2, and 4. By comparing this figure with Fig. 3(d),
which set the batch size as 8, the overall performance is
increased with larger batch sizes. For instance, the throughput
of SUT1 increases up to 26% from batch size 1 to 8.

Regarding the impact of container granularity, Fig. 11 shows
that multi-container deployment schemes outperform the sin-
gle container deployment for all the batch sizes. In particular,
for batch size 1, SUT2–SUT32 have 43%–47%–48%–57%–
67% and 53%–59%–59%–72%–70% performance improve-
ment regarding SUT1 with ANY and CPUMEM settings; for
batch size 2, SUT2–SUT32 have 42%–45%–43%–43%–49%
and 48%–51%–49%–50%–52% improvement regarding SUT1

with ANY and CPUMEM; and for batch size 4, SUT2–SUT32

have 33%–34%–33%–36%–41% and 38%–39%–39%–43%–
44% improvement regarding SUT1 with ANY and CPUMEM.
Interestingly, smaller batch sizes can benefit more from multi-
container deployments. As for affinity, CPUMEM also outper-
forms ANY for all the batch sizes, providing, again, a higher
benefit for smaller ones. Notably, the throughput increases up
to 10%–7%–6%–4% for batch sizes 1, 2, 4, and 8, respectively.

D. Experiment 3: Multi-container deployment and affinity
evaluation on a four-node cluster

Experiments in the previous sections were run in a single
node. Nevertheless, we anticipate that most of the performance
insights obtained in those sections would still hold for multi-
container deployment schemes in a larger cluster.

Fig. 12 (top) shows the impact of container granularity
and affinity in the Offline scenario on a four-node cluster.
SUT2–SUT32 have 13%–35%–49%–55%–69% and 15%–
24%–27%–27%–36% throughput and mean latency improve-
ment, respectively, regarding SUT1 with ANY settings. SUT2–
SUT32 have 87%–86%–84%–80%–78% and 32% (for all the
SUTi) throughput and mean latency improvement, respec-
tively, regarding SUT1 with CPUMEM. Latency improve-
ments with ANY and CPUMEM are comparable, but through-
put improvements are considerably higher with CPUMEM
affinity, as it shows up to 68% improvement with respect
to ANY. As anticipated, the performance observations and
conclusions described in Experiment 1 also apply here.

Fig. 12 (bottom) shows the 99th and 99.9th tail latencies.
For ANY, finer-grained containers have better tail latency.
In particular, 99th latency of SUT2–SUT32 improves 13%–
28%–35%–37%–44% regarding SUT1 and 99.9th latency of
SUT2–SUT32 improves 12%–26%–33%–36%–42% regard-
ing SUT1. Fig. 13 shows the individual inference time of each
sample at ANY, where the last samples up to 3% show a tail
latency increase in all the scenarios. This is because the tail is
less CPU-intensive and all the containers are about to finish
their tasks. When tasks in one container (i.e., one cgroup)
become idle and are not using any CPU time, the leftover
time is collected in a global pool of CPU cycles that can be
used by other containers (i.e., other cgroups) from this pool.
Finer-grained deployments show a better tail latency because
they have more cgroups, thus, each container releases fewer
CPU cycles when it finishes, causing fewer CPU migrations
for the rest of running containers.

Baseline ANY CPUMEM
0

200

400

600

Sa
m

pl
es

 P
er

 S
ec

on
d SUTNcph

SUT1
SUT2
SUT4
SUT8
SUT16
SUT32

Baseline ANY CPUMEM
0

10

20

30

M
ea

n
La

te
nc

y
(s

) SUTNcph

SUT1
SUT2
SUT4
SUT8
SUT16
SUT32

Baseline ANY CPUMEM
0

20

40

60

80

99
-th

 P
er

ce
nt

ile
 L

at
en

cy
 (s

)

SUTNcph

SUT1
SUT2
SUT4
SUT8
SUT16
SUT32

Baseline ANY CPUMEM
0

20

40

60

80

99
.9

-th
 P

er
ce

nt
ile

 L
at

en
cy

 (s
)

SUTNcph

SUT1
SUT2
SUT4
SUT8
SUT16
SUT32

Fig. 12. Impact of container granularity and affinity in the Offline scenario at scale.

Fig. 13. Inference time of individual samples in Offline-ANY scenario.

For CPUMEM, multi-container deployments show up to
47% and 46% improvement on 99th and 99.9th latency,
respectively, regarding SUT1, but there is a minor difference
among the various multi-container schemes on 99th latency
(less than 1%) and 99.9th latency (2% difference). Multi-
container deployments in CPUMEM show almost no overhead
in the tail latency because each container has its own cgroup
without the CPUs overlap.

V. CONCLUSION AND FUTURE WORK

This paper presented multi-container deployment schemes
for containerized online ML inference services on Kubernetes.
We focused on the container layer to understand how the
container granularity and its combination with CPU/memory
affinity impact the performance of online ML inference ser-
vices. We concluded that multi-container deployments show
significant performance improvements up to 69% and 87%
regarding the single-container deployment on single-node and
four-node clusters, respectively. Finer-grained deployments
show better performance because they favour process affin-
ity in a similar way to when threads are pinned explicitly.
Consequently, these deployments fit very well with explicit

CPU/memory affinity settings for each container. As demon-
strated in our experiments, those settings can sum up to
9% and 68% to the granularity gains on single-node and
four-node clusters, respectively. The benefit of multi-container
deployment schemes with affinity also shows up with different
client batch sizes and in larger clusters.

All in all, we demonstrated that it is worth considering (and
optimizing) the containerization dimension when provisioning
ML inference services to benefit not only from its encapsula-
tion, security, and fault isolation, but also gain performance.
Moreover, the granularity/affinity settings at the container-level
are complimentary to other optimizations such as batching and
autoscaling and, therefore, can be combined to derive better
deployment and scheduling policies for ML inference services.
In addition, we anticipate that the performance insights about
our proposed schemes are platform-independent, hence, other
containerization/orchestration platforms can also take advan-
tage of multi-container deployment schemes and CPU/memory
affinity to improve the performance of ML inference services.

In the future, we plan to further expand our research by eval-
uating other diverse ML models and conducting experiments
on GPUs. We will also consider the performance insights in
this paper about the container-level settings (i.e., container
granularity and affinity) to derive placement policies integrated
within the Kubernetes scheduler/Kubelet agent for the efficient
deployment of online multi-model ML inference services in a
multi-programmed and multi-tenant Cloud environment.

ACKNOWLEDGMENT

We thank Lenovo for providing the infrastructure to run the
experiments in this paper. This work was partially supported
by Lenovo as part of Lenovo-BSC collaboration agreement, by
the Spanish Government under contract PID2019-107255GB-
C22, and by the Generalitat de Catalunya under contract 2021-
SGR-00478 and under grant 2020 FI-B 00257.

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” 2015. [Online]. Available: https://arxiv.org/abs/1512.03385

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Commun. ACM, vol. 60, no. 6,
pp. 84–90, may 2017.

[3] T. Luong, H. Pham, and C. D. Manning, “Effective approaches to
attention-based neural machine translation,” in 2015 Conference on
Empirical Methods in Natural Language Processing. Lisbon, Portugal:
Association for Computational Linguistics, Sep. 2015, pp. 1412–1421.

[4] P. Covington, J. Adams, and E. Sargin, “Deep neural networks for
youtube recommendations,” in 10th ACM Conference on Recommender
Systems, ser. RecSys’16. ACM, 2016, pp. 191–198.

[5] P. Liu, G. Bravo-Rocca, J. Guitart, A. Dholakia, D. Ellison, and M. Ho-
dak, “Scanflow: An end-to-end agent-based autonomic ML workflow
manager for clusters,” in 22nd International Middleware Conference:
Demos and Posters, ser. Middleware’21. ACM, 2021, pp. 1–2.

[6] ——, “Scanflow-k8s: Agent-based framework for autonomic manage-
ment and supervision of ML workflows in kubernetes clusters,” in 2022
22nd IEEE International Symposium on Cluster, Cloud and Internet
Computing (CCGrid), 2022, pp. 376–385.

[7] C. Zhang, M. Yu, W. Wang, and F. Yan, “Enabling cost-effective,
SLO-aware machine learning inference serving on public cloud,” IEEE
Transactions on Cloud Computing, vol. 10, no. 3, pp. 1765–1779, 2022.

[8] Y. Lee, A. Scolari, B.-G. Chun, M. D. Santambrogio, M. Weimer, and
M. Interlandi, “PRETZEL: Opening the black box of machine learning
prediction serving systems,” in 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI’18). USENIX Association,
oct 2018, pp. 611–626.

[9] PyTorch, “Torchserver,” 2020. [Online]. Available: https://pytorch.org/
serve/

[10] TensorFlow, “Tensorflow - serving models,” 2021. [Online]. Available:
https://www.tensorflow.org/tfx/guide/serving

[11] N. Hasabnis, “Auto-tuning tensorflow threading model for cpu backend,”
in 2018 IEEE/ACM Machine Learning in HPC Environments (MLHPC).
IEEE Computer Society, nov 2018, pp. 14–25.

[12] T. Lorido-Botran, J. Miguel-Alonso, and J. A. Lozano, “A review of
auto-scaling techniques for elastic applications in cloud environments,”
Journal of Grid Computing, vol. 12, no. 4, pp. 559–592, oct 2014.

[13] A. Gujarati, S. Elnikety, Y. He, K. S. McKinley, and B. B. Brandenburg,
“Swayam: Distributed autoscaling to meet SLAs of machine learning
inference services with resource efficiency,” in 18th ACM/IFIP/USENIX
Middleware Conference, ser. Middleware’17. ACM, 2017, pp. 109–120.

[14] A. Shahraki, M. Abbasi, A. Taherkordi, and A. D. Jurcut, “A comparative
study on online machine learning techniques for network traffic streams
analysis,” Computer Networks, vol. 207, p. 108836, 2022.

[15] P. Liu and J. Guitart, “Performance comparison of multi-container
deployment schemes for HPC workloads: an empirical study,” Journal
of Supercomputing, vol. 77, pp. 6273–6312, 2020.

[16] ——, “Performance characterization of containerization for HPC work-
loads on InfiniBand clusters: an empirical study,” Cluster Computing,
vol. 25, pp. 847–868, 2022.

[17] V. J. Reddi, C. Cheng, D. Kanter, P. Mattson, G. Schmuelling, C.-J.
Wu, B. Anderson, M. Breughe, M. Charlebois, W. Chou, R. Chukka,
C. Coleman, S. Davis, P. Deng, G. Diamos, J. Duke, D. Fick, J. S.
Gardner, I. Hubara, S. Idgunji, T. B. Jablin, J. Jiao, T. S. John, P. Kanwar,
D. Lee, J. Liao, A. Lokhmotov, F. Massa, P. Meng, P. Micikevicius,
C. Osborne, G. Pekhimenko, A. T. R. Rajan, D. Sequeira, A. Sirasao,
F. Sun, H. Tang, M. Thomson, F. Wei, E. Wu, L. Xu, K. Yamada,
B. Yu, G. Yuan, A. Zhong, P. Zhang, and Y. Zhou, “Mlperf inference
benchmark,” in 2020 ACM/IEEE 47th Annual International Symposium
on Computer Architecture (ISCA), 2020, pp. 446–459.

[18] D. Crankshaw, X. Wang, G. Zhou, M. J. Franklin, J. E. Gonzalez, and
I. Stoica, “Clipper: A Low-Latency online prediction serving system,”
in 14th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI’17). USENIX Association, mar 2017, pp. 613–627.

[19] W. Wang, J. Gao, M. Zhang, S. Wang, G. Chen, T. K. Ng, B. C. Ooi,
J. Shao, and M. Reyad, “Rafiki: Machine learning as an analytics service
system,” Proc. VLDB Endow., vol. 12, no. 2, pp. 128–140, oct 2018.

[20] Kserve, “Highly scalable and standards based model inference
platform on kubernetes for trusted AI,” 2021. [Online]. Available:
https://kserve.github.io/website/master/

[21] Seldon, “Machine learning deployment for enterprise,” 2021. [Online].
Available: https://www.seldon.io/

[22] Intel, “Math kernel library,” 2018. [Online]. Available: https:
//software.intel.com/en-us/mkl

[23] C. Park and S. Paul, “Load-testing TensorFlow Serving’s REST
Interface,” July 2022. [Online]. Available: https://blog.tensorflow.org/
2022/07/load-testing-TensorFlow-Servings-REST-interface.html

[24] Morgan Funtowicz, “Scaling up BERT-like model Inference on
modern CPU - Part 1,” April 2021. [Online]. Available: https:
//huggingface.co/blog/bert-cpu-scaling-part-1

[25] ——, “Scaling up BERT-like model Inference on modern CPU - Part
2,” November 2021. [Online]. Available: https://huggingface.co/blog/
bert-cpu-scaling-part-2

[26] S. Wang, Z. Ding, and C. Jiang, “Elastic scheduling for microservice
applications in clouds,” IEEE Transactions on Parallel and Distributed
Systems, vol. 32, no. 01, pp. 98–115, jan 2021.

[27] H. Shen, L. Chen, Y. Jin, L. Zhao, B. Kong, M. Philipose, A. Kr-
ishnamurthy, and R. Sundaram, “Nexus: A GPU cluster engine for
accelerating DNN-based video analysis,” in 27th ACM Symposium on
Operating Systems Principles, ser. SOSP’19. ACM, 2019, pp. 322–337.

[28] V. Medel, R. Tolosana, J. A. Bañares, U. Arronategui, and O. F.
Rana, “Characterising resource management performance in Kuber-
netes,” Computers & Electrical Engineering, vol. 68, pp. 286–297, 2018.

[29] P. Liu and J. Guitart, “Fine-grained scheduling for containerized
hpc workloads in kubernetes clusters,” 2022. [Online]. Available:
https://arxiv.org/abs/2211.11487

[30] Google, “Cgroups-cpus.” [Online]. Available: https:
//kernel.googlesource.com/pub/scm/linux/kernel/git/glommer/memcg/+/
cpu stat/Documentation/cgroups/cpu.txt

https://arxiv.org/abs/1512.03385
https://pytorch.org/serve/
https://pytorch.org/serve/
https://www.tensorflow.org/tfx/guide/serving
https://kserve.github.io/website/master/
https://www.seldon.io/
https://software.intel.com/en-us/mkl
https://software.intel.com/en-us/mkl
https://blog.tensorflow.org/2022/07/load-testing-TensorFlow-Servings-REST-interface.html
https://blog.tensorflow.org/2022/07/load-testing-TensorFlow-Servings-REST-interface.html
https://huggingface.co/blog/bert-cpu-scaling-part-1
https://huggingface.co/blog/bert-cpu-scaling-part-1
https://huggingface.co/blog/bert-cpu-scaling-part-2
https://huggingface.co/blog/bert-cpu-scaling-part-2
https://arxiv.org/abs/2211.11487
https://kernel.googlesource.com/pub/scm/linux/kernel/git/glommer/memcg/+/cpu_stat/Documentation/cgroups/cpu.txt
https://kernel.googlesource.com/pub/scm/linux/kernel/git/glommer/memcg/+/cpu_stat/Documentation/cgroups/cpu.txt
https://kernel.googlesource.com/pub/scm/linux/kernel/git/glommer/memcg/+/cpu_stat/Documentation/cgroups/cpu.txt

	Introduction
	Related Work
	Enabling Online ML Inference Services
	Deployment Schemes for Online ML Inference Services
	Multi-container Deployment Schemes

	Evaluation Methodology
	Evaluation System
	Granularity Settings
	Affinity Settings

	Evaluation
	Experimental Setup
	Experiment 1: Multi-container deployment and affinity evaluation on a single host
	SingleStream
	MultiStream, Server, and Offline

	Experiment 2: Multi-container deployment evaluation with different client batch size on a single host
	Experiment 3: Multi-container deployment and affinity evaluation on a four-node cluster

	Conclusion and Future Work
	References

