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Abstract

This thesis explores the role of MLOps in providing efficiency and productiv-
ity in the deployment, monitoring and management of machine learning models in
production environments. The report has a theoretical part that aims to provide
details on the operation of MLOps practices and related technologies. This serves
as a complement for the practical part, which is considered the main contribution.
It consists of the development of a framework that aims to collect some of the main
functionalities of MLOps. This helps to meet the main objective of demonstrate its
usefulness and to understand why MLOps is increasingly important. The develop-
ment of the framework involves the use of Python, Docker, Streamlit and Airflow,
each one necessary to provide different MLOps features.

Keywords: MLOps; DevOps; machine learning; framework; continuous train-
ing; continuous monitoring; production environment.



Resum

Aquesta tesi explora el paper de MLOps per a proporcionar eficiència i pro-
ductivitat en el desplegament, monitoratge i gestió de models d’aprenentatge au-
tomàtic en entorns de producció. L’informe compta amb una part teòrica que pretén
aportar detalls sobre el funcionament de les pràctiques de MLOps i les tecnologies
relacionades. Això serveix de complement per a la part pràctica, la qual es con-
sidera la principal contribució. Consisteix en el desenvolupament d’un framework
que pretén recollir algunes de les principals funcionalitats de MLOps. Això ajuda
a complir l’objectiu principal de demostrar la seva utilitat i comprendre per què
MLOps és cada vegada més important. El desenvolupament del framework implica
l’ús de Python, Docker, Streamlit i Airflow, cadascun necessari per a proporcionar
diferents funcionalitats de MLOps.

Paraules clau: MLOps; DevOps; aprenentatge automàtic; framework; entre-
nament continu; monitoratge continu; entorn de producció.



Resumen

Esta tesis explora el papel de MLOps para proporcionar eficiencia y productivi-
dad en el despliegue, monitorización y gestión de modelos de aprendizaje automático
en entornos de producción. El informe cuenta con una parte teórica que pretende
aportar detalles sobre el funcionamiento de las prácticas de MLOps y las tecnoloǵıas
relacionadas. Esto sirve de complemento para la parte práctica, la cuál se considera
la principal contribución. Consiste en el desarrollo de un framework que pretende
recoger algunas de las principales funcionalidades de MLOps. Esto ayuda a cumplir
el objetivo principal de demostrar su utilidad y comprender por qué MLOps es cada
vez más importante. El desarrollo del framework implica el uso de Python, Docker,
Streamlit y Airflow, cada uno necesario para proporcionar diferentes funcionalidades
de MLOps.

Palabras clave: MLOps; DevOps; aprendizaje automático; framework; entre-
namiento continuo; monitorización continua; entorno de producción.
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introducing me to a very interesting area of artificial intelligence, MLOps. Besides gen-
erating me new opportunities, thanks to you I have had the occasion to present this
thesis.

Thanks to all of you,

Iago.



Contents

Abstract i

Resum ii

Resumen iii

Acknowledgments iv

1 Introduction 1

1.1 Objectives & Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Previous Work 6

3 Background 14

3.1 DevOps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 MLOps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Specification & Design of the MLOps Framework 21

4.1 Task & Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 MLOps Framework Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2.1 Data Generation & Preparation . . . . . . . . . . . . . . . . . . . . 23

4.2.2 Orchestration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2.3 Dashboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Development of the MLOps Framework 30

5.1 Project Architecture & Content . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2 Data Generation & Preparation . . . . . . . . . . . . . . . . . . . . . . . . 32

5.3 Orchestration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.3.1 Evaluation DAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.3.2 Training DAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.3.3 DAG Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.4 Dashboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.4.1 Managing Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39



5.4.2 Monitoring Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.4.3 Training Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.4.4 Exceptions & Error Handling . . . . . . . . . . . . . . . . . . . . . 41

6 Experimentation of the MLOps Framework 44

7 Conclusions & Assessment 48

8 Future Work 50

A Appendix: Planning & Time Management 51

References 52



List of Figures

1 Continuous Delivery for Machine Learning end-to-end process. [30] . . . . 7

2 Iterative-incremental process in MLOps. [39] . . . . . . . . . . . . . . . . . 8

3 CodeReef.ai: An open platform to keep track of ML systems research with

portable workflows and reproducible crowd-benchmarking. [17] . . . . . . . 10

4 Typical DevOps workflow. [34] . . . . . . . . . . . . . . . . . . . . . . . . 14

5 CI/CD pipeline with continuous deployment. [19] . . . . . . . . . . . . . . 16

6 Generic MLOps workflow in relation with DevOps components. [34] . . . . 16

7 Processes of Continuous Training (CT). [38] . . . . . . . . . . . . . . . . . 19

8 Machine Learning Model Decay Monitoring. [39] . . . . . . . . . . . . . . . 19

9 Structure of the M5 Forecasting-Accuracy Dataset. [22] . . . . . . . . . . . 21

10 Data generation and preparation pipeline. . . . . . . . . . . . . . . . . . . 23

11 Example of a group of related tasks forming a DAG. [9] . . . . . . . . . . . 24

12 Available cron expressions in Apache Airflow. [1] . . . . . . . . . . . . . . 25

13 MLOps introduction in Main page. . . . . . . . . . . . . . . . . . . . . . . 26

14 Managing page. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

15 Monitoring page. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

16 Training page. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

17 Structure and content of the MLOps Airflow folder. . . . . . . . . . . . . . 30

18 Structure and content of the shared volume folder. . . . . . . . . . . . . . . 31

19 Structure and content of the MLOps Frontend folder. . . . . . . . . . . . . 32

20 Definition of the DAG for data generation and data preparation. . . . . . . 32

21 Definition of the DAG for data generation and data preparation. . . . . . . 34

22 Definition of the DAG for models evaluation. . . . . . . . . . . . . . . . . . 36

23 Definition of the DAG for model training. . . . . . . . . . . . . . . . . . . 37

24 Order of execution and scheduling of DAGs. . . . . . . . . . . . . . . . . . 38

25 Main back-end processes and actions of the dashboard. . . . . . . . . . . . 39

26 Airflow connection error message. . . . . . . . . . . . . . . . . . . . . . . . 41

27 Warning messages when there are no models. . . . . . . . . . . . . . . . . . 42

28 Warning message when the model is involved in the evaluation DAG. . . . 42

29 Warning message when training a model that has recently been deleted. . . 43

30 Message informing that training is in queue. . . . . . . . . . . . . . . . . . 43



31 Warning messages when waiting time is exceeded in the DAG generation. . 43

32 Initial data (top). Data after DAG execution (bottom). . . . . . . . . . . . 44

33 The retraining action is being performed. . . . . . . . . . . . . . . . . . . . 44

34 Model information before retraining (top) and after (bottom). . . . . . . . 45

35 MAE metric added after retraining model. . . . . . . . . . . . . . . . . . . 45

36 Dashboard view of the DAG pausing process (top). Airflow view of the

paused DAG (bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

37 Trained models table of the dashboard (top). Airflow view of the DAGs

(bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

38 MAE metric graph after the model evaluation. . . . . . . . . . . . . . . . . 47

39 MAE metric graph after the model deletion. . . . . . . . . . . . . . . . . . 47

40 Airflow DAGs final view. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

41 Master thesis planning Gantt chart. . . . . . . . . . . . . . . . . . . . . . . 51





1 Introduction

Machine learning is a powerful tool capable of solving problems in a large number of dif-
ferent fields, such as healthcare, finance, marketing, robotics, etc. Its ability to accurately
predict outcomes from historical data is what makes it such a widely used tool. Moreover,
machine learning is becoming more and more important day by day in a society that is
becoming increasingly data-driven. Many of today’s leading companies, such as Facebook,
Google and Uber, make machine learning a central part of their operations, which is an
indicator that machine learning has become a significant competitive differentiator for
many companies [8].

Data preparation, model training and model evaluation are some of the tasks involved
in the complex process of creating machine learning models in a development environment.
The goal of a machine learning project is for the generated model to work in a production
(real world) environment, which makes the deployment of the model also part of the pro-
cess. It is common to find situations where the model works correctly during development
and testing, but when deployed to a production environment the desired behavior is not
achieved. This can be caused by different reasons, such as data drift, where the data that
the model receives in production does not accurately reflect the data it has been trained
with. The management and deployment of models in production environments must be
done in an efficient manner in order to help solve these issues. This is where MLOps
comes in.

MLOps, or Machine Learning Operations, is an extension of the DevOps methodol-
ogy, which is a continuous software engineering practice [15]. DevOps, or Development
Operations, is a set of practices that brings together development and IT operations. A
key aspect is that it provides continuous delivery and continuous deployment so that the
software is delivered faster with short delivery cycles [4]. DevOps frameworks also ensure
reliability and repeatability through automation. With code-centric applications, where
it is simple to test whether they work as expected, DevOps is used since it is able to per-
form tasks like ensuring data integrity and validity. The data-centric nature of machine
learning and artificial intelligence models, in contrast, adds new problems that conven-
tional DevOps cannot address [27]. In these situations, MLOps is applied, which imitates
DevOps procedures while adding extra steps that are unique to the machine learning field.

MLOps is a set of practices that aims to maintain and deploy machine learning code
and models with high reliability and efficiency. In a general way, it is able to manage the
ML lifecycle, which refers to the complete process of developing, deploying and maintain-
ing the ML application. The main objective of MLOps is to achieve faster development
and deployment of machine learning models with high quality, reproducibility and end-
to-end tracking [34]. Automated testing and retraining are examples of actions provided
by MLOps, which in this case help monitor and update models continuously so that they
can evolve with the data. Overall, implementing an MLOps framework can provide a
number of benefits such as increased productivity, reliability, data and model quality,
among others.

The origin of DevOps dates back to 2007 and 2008, when the IT operations and soft-
ware development model communities objected to the fact that the teams in charge of
writing code and those in charge of deploying and supporting that code were organiza-
tionally and functionally separated [7]. On the other hand, MLOps is a more recent set
of practices, taking into account that it is considered to be the “natural progression of
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DevOps in the context of AI”, which was mentioned by Samir Tout who is a professor
of cybersecurity at the Eastern Michigan University’s School of Information Security and
Applied Computing (SISAC) [35]. The MLOps movement began in 2015 with the publica-
tion of a paper called ”Hidden Technical Debt in Machine Learning”, which discusses and
analyzes the costs of maintaining real-world machine learning systems [31]. Since then,
MLOps has grown considerably in the market, although its largest growth is predicted
to occur in the next few years. Furthermore, the current trend of machine learning and
artificial intelligence accompanies and contributes to this growth [32].

The paper entitled ”Who Needs MLOps: What Data Scientists Seek to Accomplish
and How Can MLOps Help?” [23], mentions a type of organization that has diverse
models in production and is increasingly business-critical. The paper categorizes these
organizations as pipeline-centric, which constantly consider how to scale and do continuous
development while at the same time maintaining the quality of production models. The
authors mention that these organizations are the ones where MLOps can bring the most
value at the level of daily operations. However, interest in MLOps exists in other types of
organizations that are, for example, focused on developing their first model and deploying
it in production.

The increasing number of platforms and technologies that are available to enable
MLOps illustrates how important it is. They include both commercial platforms like
AWS SageMaker and Microsoft Azure Machine Learning as well as open-source solu-
tions like Kubeflow, MLflow, and Metaflow. Model serving, pipeline orchestration, auto-
mated testing, and model versioning are just a few of the features and functionalities that
these solutions offer to assist MLOps (host machine learning models on the cloud or on
premises).

1.1 Objectives & Methodology

The main purpose of this thesis is to design and develop an MLOps framework that
addresses the challenges of managing and maintaining machine learning models in a pre-
production environment. The framework will integrate various practices such as data
engineering, monitoring, evaluation and model training to ensure continuous improve-
ment. The framework development is intended to demonstrate the effectiveness of MLOps
practices. Is composed of three main components, being the first one a data generation
and preparation module, which generates new data to simulate a real-world scenario. The
second one is an orchestration module, which coordinates and automates tasks and opera-
tions related to monitoring, evaluating and training models. The last one is an user-facing
dashboard, which provides visibility and control over the pipeline for the user.

The developed framework handles models that are trained with a particular dataset,
called M5 Forecasting. The dataset is static, but is modified to add simulated instances
over time. In this way, the performance of the models can be observed as the dataset gen-
erates new instances. In these cases, the monitoring provided by the MLOps framework
is essential. Since the dataset is continually updated over time, it requires the implemen-
tation of preprocessing pipeline together with its periodical trigger. This implies a data
engineering procedure to perform the dataset preprocessing. It is worth mentioning that
it is not the main objective to perform a good preprocessing to properly train the models,
since the thesis is focused on the performance of the MLOps framework. Anyway, the
data engineering exercise is developed in a justified way according to the dataset and the
task to be solved.
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The user dashboard is an essential component of the proposed MLOps framework
as it provides a user-friendly interface for monitoring, evaluating and controlling the
pipeline. From the dashboard, the user is able to train the available models with new
hyperparameters, evaluate the performance of different models, and monitoring them.
The monitoring component helps the user to determine the most suitable model to run in
production at any given time. The dashboard will also facilitate the visualization of the
performance metrics of the models, making it easy for the user to identify any issues or
opportunities for improvement. Additionally, the user will be able to schedule and execute
tasks such as evaluation, training, and retraining, either automatically or manually. This
possibility avoids a closed automated pipeline.

To implement this framework, a set of tools that includes Python, Airflow, Docker
and Streamlit are used. Python is used for building the MLOps pipeline and the prepro-
cessing pipeline, Airflow for scheduling and orchestration of the MLOps pipeline, Docker
for containerization, and Streamlit for building the user dashboard. No cloud providers
that offer MLOps solutions such as AWS SageMaker or Azure MLOps are used in the
development. The objective is to develop a framework that works locally with the set
of tools mentioned above. The introduction and theoretical explanation about MLOps
are the complement to understand the context of the thesis and give importance to the
development of the framework.

In order to develop the MLOps framework, a specific methodology has been followed.
The first step consists of understanding the usefulness and functionality of MLOps, by
consulting different sources of information. From here, an example case is defined in which
MLOps is applicable. For this thesis, a series of trained models are working to solve the
same task on a dataset that is updated over time, which is specifically a time series.
In this situation, the monitoring and maintenance offered by an MLOps framework is a
considerable advantage. Taking into account the casuistry that it is work with, the desired
functionalities of MLOps are defined. For instance, one of the features to be implemented
is the monitoring of the performance of each model, accompanied by automatic testing
that is executed in an orchestrated manner.

After defining the scope and objectives of the framework, the necessary tools with
which the implementation is carried out are selected. As previously mentioned, these
are Python, Docker, Streamlit and Airflow. Before starting with the development of
the code, different sources of information are consulted and the use of Docker, Streamlit
and Airflow is put into practice, since they are the tools with which I personally had no
previous experience.

Following the previous steps, which consist of organizing and planning the develop-
ment of the MLOps framework and learning about new tools, the next step consists of
developing the Python code. Starting with the most basic and essential, an analysis of the
dataset is performed in order to build a preprocessing pipeline. From this task, a series
of simple models are trained and everything is checked to ensure that it works correctly.
By means of this basic functionality, the features provided by the tools used are added.
For example, with the use of Streamlit a dashboard is built for the user and with the
implementation of Airflow the orchestration of different tasks is achieved.
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1.2 Motivation

During my curricular internship, I learned about MLOps together with the AI team, as
it was a tool that all the team members had not yet used. It was an enriching experience
for all participants and proved to be a beneficial tool, with the potential to propose a
greater number of projects to possible clients. It is worth mentioning that part of the
thesis methodology explained in the previous section was carried out in the internship,
specifically the knowledge acquired about MLOps alongside the rest of the tools and the
analysis and preprocessing pipeline of the dataset. This last task is not a main objective
of the framework development, but it is used as a basis to show how it works.

From the knowledge acquired about MLOps, I have considered that it is a good
opportunity to expand them in my master thesis, with the aim of developing a work that
demonstrates to the community its usefulness. I think it is a favourable moment for the
development of this work, as it is beneficial to expand my knowledge and skill in a field
that is being recognized nowadays and, at the same time, to bring more recognition of it
to the community. Also, for this same reason I believe that the timing for this thesis is
appropriate.

In my personal experience, during my course in the master’s degree in artificial intel-
ligence, I have learned in a theoretical and practical way about different types of models
and algorithms used in different fields such as natural language processing, deep learning,
etc. In all cases, we have worked in a development environment as it is the best option
for educational purposes. Doing a thesis related to the production environment is a good
complement to completing the master’s degree, as I become aware of the importance its
importance.

The fact of giving more recognition to these practices is a motivation to develop the
thesis, since initially data science was approached from an experimental and scientific
perspective. Today, due to the great advances made in this science, the ability to solve
complex real-life problems has increased [16]. After all, machine learning is able to de-
liver commercial and industrial value, being the ultimate purpose of a model to work
properly in a production environment, a task that can prove to be far from simple. This
follows the philosophy of Luigi Patruno, Senior of Data Science at 2U and founder of
the MLinProduction blog [28], that states that no machine learning model is valuable,
unless it’s deployed to production. It is important for data scientists to keep in mind that
production deployment and maintenance is an important process and that tools exist to
handle these tasks. Keeping in mind the existence of MLOps can help and facilitate this
process. Having a data scientist in the team with the required knowledge, will help to
efficiently and effectively complete a machine learning project that works in a production
environment.

1.3 Thesis Outline

The thesis outline provides a brief description of each of the sections that comprise this
thesis. The document has been divided into a total of eight sections including the intro-
duction to the subject. The structure of the report is as follows:

• Section 1: Introduction. Includes a brief description of MLOps and related topics
such as Machine Learning (ML) and DevOps. In addition, the objectives and work-
ing methodology of the thesis are detailed along with the personal motivation for
its development.
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• Section 2: Previous Work. Collects a series of articles and reports associated with
the topic in question, i.e., MLOps. These documents range from the year of origin
of the topic to the present day. They are analyzed and explained in order to learn
more about the context of MLOps.

• Section 3: Background. More detailed explanation of how DevOps and MLOps
functionalities. The first of these concepts is considered the origin of MLOps, so it
provides context to the main topic.

• Section 4: Specification & Design of the MLOps Framework. Introduces the pro-
posed MLOps framework. The design of the framework is explained as well as the
task and the dataset that the models must deal with.

• Section 5: Development of the MLOps Framework. Explains in detail how the
MLOps framework has been developed, describing the architecture and operation
of the code. The techniques used for preprocessing, model evaluation and training
process, among others, are discussed.

• Section 6: Experimentation of the MLOps Framework. From the user’s perspective,
an example of use of the developed framework is shown. This helps to introduce
the reader to the framework from a practical point of view. The main processes and
actions are triggered to expose the framework’s usefulness.

• Section 7: Conclusions & Assessment. Conclusion on the work done and objectives
achieved. The proposed MLOps framework is also compared and evaluated.

• Section 8: Future Work. Lists some aspects of the developed framework that can
be improved, extended or added as future work.
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2 Previous Work

The main objective of this section is to select and analyze a number of papers related to
the field of MLOps in order to provide context for the thesis. The reviewed literature is
comprised between 2015 and 2022, taking into account that the first of these is considered
the year of origin of MLOps. Having a selection of articles available over the years helps
to represent the evolution of the literature in this field.

The first paper in relation to the field of MLOps is called ”Hidden Technical Debt in
Machine Learning Systems” and was published in 2015 by researchers at Google [31]. The
goal of this paper is not to provide new functionalities, but to raise community awareness
of the consequences of technical debt in machine learning systems. The concept is based on
the metaphor introduced by Ward Cunningham in 1992, which helps to reason about the
long term costs that occur by taking shortcuts in the development process. The authors
mention that machine learning systems have a special capacity for incurring technical
debt, since it has to deal with traditional code maintenance problems plus an additional
set of ML-specific issues. They refer to this technical debt as ‘hidden’ since it is difficult
to detect given that it often exists at the system level (data, processes, design) and not
at the code level. Some examples of good practices provided in the paper are the use of
modular system architectures, system testing and live monitoring of system behavior in
real time, which is a critical aspect to achieve long-term reliability. The importance of this
paper is enormous, since it is considered the origin of MLOps in the scientific literature.
Overall, it seeks to raise awareness of technical debt in order to reduce as much as possible
future problems in the maintenance of real-world machine learning systems.

”ModelDB: A System for Machine Learning Model Management” is a paper published
in 2016 by authors from the Massachusetts Institute of Technology (MIT), in which they
present an end-to-end system for the management of machine learning models called Mod-
elDB [37]. As mentioned by the authors, ModelDB automatically tracks machine learning
models in their native environment allowing data scientists to manage and explore models
that have been built over time. The system architecture developed is based on three key
components. The first component is a set of native client libraries for different machine
learning environments (e.g. scikit-learn), which allows data scientists to experiment and
build models with the machine learning environment of their choice. The second compo-
nent is a front-end that allows visual exploration and analysis of models and pipelines.
The third and last component is the back-end, which is based on a SQL database. This
database can store all aspects of each machine learning experiment, including the pipeline
and the models used. Overall, the paper proposes a MLOps framework, although the au-
thors do not use this concept. This framework contains some of the key elements of
MLOps such as monitoring, pipeline management and a visual interface for the user.

In 2018 a paper was published in relation with the release of MLFlow, one of the most
popular open source platforms covering the needs of MLOps today. The paper is called
”Accelerating the Machine Learning Lifecycle with MLFlow” and is written by members
of the company called Databricks Inc [40]. The paper discusses the challenges around
machine learning development and it also describes the MLFlow platform. As stated by
the authors, this platform covers three key key ML development challenges: experimen-
tation, reproducibility and model deployment. Most MLFlow features can be accessed
through REST APIs, which can be called from any programming language. The main
components of MLFlow are the tracking component (API for recording experiment runs,
including code used, parameters, metrics, etc.), the project component (generic format
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for packaging code into reusable projects) and the model component (standardized format
for packaging trained models which makes them easily deployable). The authors provide
several examples of how MLflow has provided benefits in real-world scenarios, mention-
ing some of the companies and teams in the industry. In conclusion, this paper presents
a platform that makes it easy for users to use their own machine learning algorithms,
software libraries and development processes.

One of the most established formalizations of MLOps was introduced in 2019 and is
referred to as Continuous Delivery for Machine Learning (CD4ML) [30]. CD4ML was
proposed by ThoughtWorks and aims to automate the end-to-end lifecycle of machine
learning applications. The authors define this approach as a software engineering approach
in which a cross-functional team produces machine learning applications based on code,
data and models in small and safe increments that can be reproduced and reliably released
at any time, in short adaptation cycles. Short cycles means development cycles are in the
order of days or even hours, not weeks, months or years. Automation of the process with
quality built in is key to achieve this. The authors divide the CD4ML approach into three
main steps. The first one consists of identifying and preparing the data for training, a
task that is performed by data engineers. The second step consists of experimenting with
different models until the candidate with the best performance is found, a task that is
performed by data scientists. The third and last step consists of the deployment and use of
the selected model in production, a task that is performed by the application developers.
The following image shows the representation of the CD4ML end-to-end process:

Figure 1: Continuous Delivery for Machine Learning end-to-end process. [30]

Due to the variations in machine learning methodologies, it is a challenge to generalize
MLOps components and that is why numerous designs with different components have
been proposed. Another popular design in MLOps, apart from the CD4ML discussed
above, is the iterative-incremental process [39]. This MLOps process is divided into three
phases: design, model development and operations. The first phase consists of identifying
the potential user, designing the machine learning solution to solve his problem and
evaluating the future development of the project. In the design of the machine learning
solution where one of the tasks is to inspect the available data that will be necessary to
train the model, it is fundamental to establish the requirements of the architecture that the
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machine learning application will have. The second phase iteratively executes different
steps, such as data engineering and model engineering tasks, which aims to deliver a
quality model to be executed in production. The third phase consists of a production
deployment of the developed model, using DevOps practices such as testing, versioning,
continuous delivery and monitoring. The following image shows the different phases of
the iterative-incremental process in MLOps:

Figure 2: Iterative-incremental process in MLOps. [39]

“ModelOps: Cloud-based lifecycle management for reliable and trusted AI” is a paper
published in 2019 by authors from the AI research group at IBM [20]. The paper proposes
a cloud-based framework for managing the lifecycle of artificial intelligence applications
in the cloud. The proposed platform is called ModelOps and allows for managing and
executing model training and continuous learning pipelines while infusing trusted AI prin-
ciples. The authors comment that the cloud plays a key role in bringing AI to the masses
as they eliminate the need for owning expensive infrastructure to start experimenting with
AI techniques. An important aspect of ModelOps is a language that allows for easy rep-
resentation of the various artifacts involved in artificial intelligence (AI) solutions, such as
datasets, model definitions, trained models, applications, monitoring events, algorithms,
and platforms used for processing data, training models and deploying applications. All of
these artifacts are versioned and their lineage is tracked for reproducibility and auditabil-
ity. Another key component of ModelOps mentioned by the authors is flexibility, which
allows for easy integration of proprietary model deployment platforms or customized data
processing services into the ModelOps pipeline. Also thanks to this pluggable design
it is possible to easily infuse quality control checks into the lifecycle of an AI applica-
tion. In conclusion, the authors aim to enable users to evolve and continuously improve
their AI models across the lifecycle, systematically reduce and manage the risks of model
deployments, and ultimately create more reliable and trusted AI applications.

A paper called ”Continuous Training for Production ML in the Tensorflow Extended
(TFX) Platform” was published in 2019 by researchers at Google [6]. The authors use
Tensorflow Extended (TFX), one of the tools commonly used in MLOps frameworks, to
implement continuous machine learning pipelines. These pipelines aim to keep the models
continuously up-to-date with respect to the data. The tool is a Google-production-scale
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ML platform based on TensorFlow. It provides a configuration framework and shared
libraries to integrate pipeline components to define, launch and monitor machine learning
systems. The article describes how continuous pipeline support has been implemented in
the TFX platform and the main mechanisms to support this type of pipelines in produc-
tion. Continuous pipelines need to maintain state in order to detect when new inputs
appear and infer how they affect the generation of updated models. There are examples
where deep learning models need to reinitialize the model weights from a previous run
to avoid retraining on all the data accumulated up to that point. To manage this state,
TFX has an ontology of artifacts which model the inputs and outputs of each component
of the pipeline (data, models, statistics, etc.) and it also maintains the lineage between
artifacts. Another key mechanism of TFX is orchestration, which allows asynchronous
operation of components at different iteration intervals, enabling models to be produced
as soon as possible. Finally, TFX employs several validation checks at different stages
of the pipeline to prevent unsuitable models from being uploaded to production. These
checks ensure that the models are trained on high-quality data (data validation), that
they are at least equal to or better than the current production model (model validation)
and that they are compatible with the deployment environment (serving infrastructure
validation). In conclusion, the authors demonstrate the support capability around the
continuous pipelines of one of the many MLOps tools, which is of interest since in the
development of this thesis it is also desired to keep the models up-to-date with respect to
data.

In 2020, authors belonging to the company VMware Inc. published a paper called
“Challenges and Experiences with MLOps for Performance Diagnostics in Hybrid-Cloud
Enterprise Software Deployments” [5]. The paper aims to explain how VMware addresses
a number of challenges in operationalizing their machine learning-based performance di-
agnostics in enterprise hybrid-cloud environments. The main challenges facing the devel-
opment of this ML system are the following: handling system performance drifts, feature
engineering, model training, setting an appropriate alarm threshold and explainability.
To tackle these challenges, the authors develop a fully automated MLOps pipeline that
continuously trains new models based on the newly arrived batch of data. Models are
maintained and version controlled in a model store. The pipeline evaluates a large number
of feature sets by combining various preprocessing techniques and different ensembles of
ML algorithms. In addition, continuous learning and deployment ensure that the model
in production always learns the latest performance behaviors. In developing this pipeline,
the authors conclude that they have learned a number of lessons, including the importance
of monitoring and automation.

“CodeReef: an open platform for portable MLOps, reusable automation actions and
reproducible benchmarking” is a paper published in 2020 that introduces an open MLOps
platform that enables automated deployment of ML models across diverse systems in
an efficient way [17]. For this reason, they refer to the platform as an MLOps cross-
platform. The solution offered by CodeReef is a way to package and share models as
non-virtualized, portable, customizable and reproducible archive files. As the authors say,
such ML packages include JSON meta description of models with all dependencies, Python
APIs, CLI actions and portable workflows necessary to automatically build, benchmark,
test and customize models across diverse platforms, AI frameworks, libraries, compilers
and datasets. With CodeReef, the user could create his own customized package with
his own task to solve (object detection, object classification, etc.), dataset, model type,
software (TensorFlow, PyTorch, MLFlow, etc.) and hardware (GPU, CPU, TPU, etc.)
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used. The author’s idea is to help researchers share their techniques as packages that are
ready for production in order to compare different machine learning systems and select
the most efficient ones. In conclusion, it is an initiative that demonstrates the evolution in
the adaptability of MLOps frameworks, due to the fact that these are usually developed
around a single task, dataset, software, etc.

Figure 3: CodeReef.ai: An open platform to keep track of ML systems research with portable workflows
and reproducible crowd-benchmarking. [17]

In the year 2021 a paper is presented called “Towards MLOps: A Framework and
Maturity Model”, in which an MLOps framework is derived from a systematic review of
the literature [21]. From this review, the authors extract insights to give an overview
of the state-of-the-art of MLOps in practice. They mention that the MLOps systems in
practice are divided into three parts, where the first part consists of the provision of data
for the development of machine learning. The second part consists of the development
of machine learning models where different experiments are run in order to optimize the
selected model with hyperparameters and evaluate it to ensure that it fits the business
case. The models and their information are saved in the model repository. The last
part consists of the packaging, validation and deployment to production of the models,
where once realized, the monitoring of its performance in production is important for
its maintenance (retraining). The framework derived by the authors from this literature
review consists of three pipelines: data, modeling and release. In addition, the paper
also presents a maturity model (level of automation in each step) based on the analysis
of different situations encountered in companies when adopting MLOps in practice. This
model shows an evolution of the model towards a fully automated MLOps system, starting
with automation of data collection, automation of model deployment, semi-automation
of model monitoring and finally fully-automation of model monitoring. In conclusion,
they present an interesting paper due to their previous literature review, as it means that
the presented MLOps framework is based on generalized MLOps practices and therefore
important.

A paper called ”Edge MLOps: An Automation Framework for AIoT Applications”
was presented in 2021 and aims to present an MLOps framework for artificial intelligence
of things (AIoT) applications [29]. This framework is based on the concept of edge com-
puting, which enables IoT devices to process data locally and not externally. The function
of Edge MLOps is to automate machine learning at the edge, enabling continuous model
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training, deployment, delivery and monitoring. The authors mention that to achieve this
they have synergized cloud and edge environments. Distributed edge devices can offer
a number of advantages over a centralized cloud, as they can process data in real-time,
minimize the need for communication and improve data privacy protection. On the other
hand, they also have a number of disadvantages, such as low processing power or small
storage capacity. For this reason, the authors decided to use a cloud platform to satisfy
the computational requirements in different tasks like training models, storing data, etc.
The edge device will handle other tasks such as continuous integration and data streaming
with IoT devices and hyper-personalization. The authors performed a validation of their
framework in a forecasting air quality situation, where the framework showed stability
and also the ability to automatically retrain models when their performance deteriorated.
In conclusion, this paper demonstrates the evolution of MLOps, in this case expanding
into other fields such as the Internet of Things.

In 2022 a paper is presented on Jenkins, an open-source continuous integration tool
that can be used to build pipelines to define and automate workflows in MLOps do-
main. It is titled “Jenkins Pipelines: A Novel Approach to Machine Learning Operations
(MLOps)” [13]. The objective of the paper is to propose the design and implementation of
pipelines for various stages of MLOps, namely data analysis, data preparation, training,
testing and deployment on a single platform. Jenkins pipelines have a number of advan-
tages, such as they can be easily edited and modified by the user. Another advantage
is that even if the system where the pipeline is running loses power or shuts down, the
pipelines can resume progress from where they left off. The key advantage according to
the authors is that pipelines can be run in parallel on many systems simultaneously, which
favors the speed of processes such as model preprocessing and model training. In addition,
if for example the user decides to modify the data preparation stage, Jenkisn’s continuous
integration (CI) pipeline would build and execute all the following stages automatically,
which would considerably reduce time and manual efforts. Overall, the paper provides a
tool for MLOps that is highly adaptable for use in other projects without the need for
extensive modifications.

The last paper discussed in this section is called ”Towards MLOps in Mobile Devel-
opment with a Plug-in Architecture for Data Analytics” and was published in 2022 [12].
The authors mention that both the use of mobile devices as IoT in industrial applications
and the use of MLOps practices are increasing in practice. Despite this, support tools
for MLOps are limited on mobile applications, mainly due to the unsuitability of native
programming languages that must support machine learning tasks. The objective of the
paper is to reduce this gap by means of a plug-in architecture to develop, deploy and
execute machine learning modules on Android. The main feature is to allow adding new
functionalities as plug-ins to the core application, providing extensibility, flexibility, cus-
tomization and isolation of the application logic. In this architecture there are two core
services that are composed of different plug-ins. The first one is called LoadDataService
and is based on the collection of data from different sources (web, device, SQLite and
files). The second one is called ProcessDataService and is in charge of executing data
processing and analysis tasks, being able to invoke machine learning inference scripts as
a way of executing Python code. Thanks to this, the ML engineer only has to upload
the ML components (Python script, trained model, data labels) without modifying the
plug-in part, which is written in Java. The authors conclude that this system provides
benefits such as modularity, extensibility, customization and parallel development. In
conclusion, this work is an indicator of the evolution of MLOps as it seeks to improve its
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expansion to other IoT devices such as smartphones.

Finally, as a summary, a table of all the scientific papers and articles mentioned in
this section is presented in terms of the problem they wish to address and what they
propose to solve it.

Table 1: Summary of the reviewed scientific papers and articles related to MLOps.

Paper Adressed Problem Proposal

[31] Hidden technical debt in machine learning systems. Raise awareness of the problem and provide advice.

[37]
Model building is ad-hoc. No practical way to

manage models that are built over time.
ModelDB, a novel end-to-end system for

management of ML models.

[40]
Machine learning development creates new

challenges: experimentation, reproducibility and
model deployment.

Implementation of MLflow, an open source platform.
It uses generic APIs that work with any ML library,

algorithm and programming language.

[30]
Developing, deploying and continuously improving
ML applications is more complex compared to

traditional software.

Introduction of CD4ML, the discipline bringing
continuous delivery practices to ML.

[39]
Lack of established best practices and tools for

MLOps components.
Proposal of the iterative-incremental process design

of an MLOps system.

[20]
New challenges when moving ad-hoc ML experiments

to automated operationalized pipelines.

ModelOps, a cloud-base framework and platform for
end-to-end development and lifecycle management of

AI applications.

[6]
Disruptions in continuous ML pipelines can increase

model staleness and degrade the quality of the
derived services from these models.

Implementation of the main mechanisms of
TensorFlow Extended (TFX) for supporting

continuous ML pipelines.

[5]
Operationalizing ML solutions is challenging across

the industry.

Presents how VMware addresses a set of challenges in
operationalizing an ML application in an

hybrid-cloud environment.

[17]
Research and advances in MLOps are not unified due

to the diversity of methodologies in ML.

CodeReef: Open MLOps platform that enables
automated deployment of ML models across diverse
systems. It offers a way to package and share models.

[21]
The adoption of MLOps in practice is still in its

infancy and there are few common guidelines on how
to effectively integrate it.

An MLOps framework and a maturity model derived
from a literature review.

[29]
Traditional ML in IoT devices has limitations. ML
models are often trained centrally and deployed

manually which reduces scalability.

Edge MLOps framework for automating ML in IoT
devices, enabling model training, deployment,

delivery and monitoring.

[13]
Developing a ML lifecycle is very complex and takes

a lot of time and manual effort.

Jenkins: Open-source continuous integration tool
used to build pipelines to define/automate workflows

in MLOps.

[12]
In mobile app development there is limited tooling

support for MLOps.

A plug-in architecture for developing, deploying and
running ML modules for data analytics on the

Android platform.
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In conclusion, it can be noticed how different papers in the list share the same ob-
jectives but provide different solutions, reflecting the dispersion of the community in the
evolution of MLOps. The paper proposing CodeReef [17] is an example of the attempt
of unification in MLOps advances. Although research continues to propose different ar-
chitectures, frameworks and pipelines with the same intent, each offers different benefits
and drawbacks, making them particular in their own way. With this in mind, despite not
having a unified way of building MLOps frameworks, all the advances provide their own
contribution that helps in the advancement of the field.

13



3 Background

This section provides an overview of DevOps and MLOps to know in more detail about
how these sets of practices work. As mentioned in the introduction, DevOps is the main
basis of MLOps, which is why a detailed explanation of DevOps is included to serve as
context.

3.1 DevOps

In an article that provides an overview of recent DevOps technologies at the time of
publication [14], Christofer Ebert, one of its authors, provides a brief and interesting defi-
nition of DevOps: “DevOps is about fast, flexible development and provisioning business
processes. It efficiently integrates development, delivery, and operations, thus facilitat-
ing a lean, fluid connection of these traditionally separated silos”. Overall, DevOps is a
set of practices that tries to bridge the gap between development and operational teams
through automation. For instance, miscommunication problems between team members
are avoided, which accelerates problem resolution. In addition, cross-functional team-
work and automation improves the speed, optimization and quality of software delivery.
Automation is key to provide quality deliveries with short cycle time.

Automating the software delivery process ensures continuous delivery and feedback
loop of the software. Development, testing and deployment processes are part of the
continuous delivery, which combines all of them into one streamlined operation. The
main goal of DevOps is to speed up this entire process through automation. In this way,
users will avoid excessively long waits for the software release cycle and will be able to
test and give feedback on the software faster. All DevOps core processes are defined in a
workflow, which in turn defines a set of tools and practices. It defines the processes from
development to maintenance, helping teams to build, test and deploy software quickly
and efficiently [34].

Figure 4: Typical DevOps workflow. [34]

The DevOps workflow is composed of the following phases in sequence: planning,
coding, building, testing, releasing, deploying, operating and monitoring. The workflow
starts with the planning phase, where the project lifecycle to be developed is planned,
defining the requirements and creating an initial execution plan. In the next phase, i.e.,
the coding phase, the developers write the code in accordance with the requirements
established in the planning phase [11]. One of the important features of this phase that is
not always implemented is code versioning. This makes the software easier to maintain and
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helps with workflow automation. The building phase involves the packaging of the entire
software (business logic, software dependencies and the environment) and the guarantee of
the code integrity maintenance by evaluating the correctness and quality of the software.
In the case of a new code modification, a rebuild of the project is performed at this stage.

The workflow continues with the testing phase, where continuous automated testing
is performed to ensure the quality of the software and that it executes as planned. This
phase is also used to find problems or bugs that may arise in certain circumstances. After
testing comes the releasing phase, where a final check of the code is performed to verify
that it is ready to enter a production environment. Once the approval has been given, it
proceeds to deployment, the phase in which the software finally goes into production. It
is a process that can be automated to achieve a continuous deploying or redeploying of
the software. The next phase is the operation phase, which focuses on the maintenance
and testing of the application in the production environment, ensuring system reliability
and high availability [34]. The last phase consists of monitoring the application in order
to have a control of its performance and thus be able to plan the next iteration of the
workflow.

These components do not operate individually in practice, but are connected sequen-
tially in a so-called pipeline. A DevOps pipeline is a set of processes that are automated
and tools that assist in the operation of these processes. Each pipeline is unique depend-
ing on the characteristics of the application, but the most common elements in a pipeline
are: continuous integration (CI), continuous delivery (CD), continuous deployment and
continuous monitoring [34]. These pipeline elements contain the DevOps components ex-
plained previously and can be combined to form larger pipelines or work as pipelines on
their own (e.g. continuous monitoring).

Continuous integration (CI) is the practice of integrating code changes into existing
code base so that any conflicts between different code changes made by developers are
quickly identified and solved [18]. The building and testing phase are DevOps components
that are involved in continuous integration, since after each code commit, automated code
building is performed, followed by the corresponding automated tests. As the planning
and coding phases are carried out before the building phase, they can be considered to
be related to continuous integration. CI prepares new code changes for deployment, this
practice is therefore critical to increase deployment efficiency.

Continuous delivery (CD) involves the release phase of DevOps, since its objective
is to keep the application ready for deployment to the production environment. It is
common for continuous deployment to be executed later, as it automates the deployment
of the code. If this element is not available, the deployment to production would be
performed manually by the user. Continuous deployment is not usual, as it is only useful
when a large number of developers work together to provide numerous releases every day
[18]. Whether with or without the use of continuous deployment, these pipeline elements
follow continuous integration, forming a larger pipeline called CI/CD. A schematic of this
pipeline is shown in Figure 5.

Lastly, another important pipeline element is continuous monitoring (CM), which au-
tomatically monitors the performance and health of the deployed application in production
[34]. CM also helps to detect complications while the application works in production. It
comes in at the end of the DevOps pipeline.
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Figure 5: CI/CD pipeline with continuous deployment. [19]

3.2 MLOps

In most real-world applications, data is constantly changing, implying that In order to run
models in production environments, it is valuable to keep them updated and maintained.
It is therefore vital that the efforts and times for their deployment and maintenance are
reduced as much as possible, which is some of the benefits that MLOps provides. As
explained in the introduction section, MLOps is an extension of the DevOps methodol-
ogy that seeks to provide automation and monitoring at all steps of the ML lifecycle,
which refers to the complete process of developing, deploying and maintaining the ML
application. It also offers communication and collaboration between data scientists while
automating and productizing machine learning algorithms. DevOps has had a major
impact on MLOps, where the main links between them are the concepts of continuous
integration (CI) and continuous delivery (CD), which allows software to be produced in
short cycles, ensuring that it can be reliably released at any time [36].

The idea of MLOps is to adapt DevOps concepts to be implemented in the ML lifecy-
cle development. However, there are DevOps tools and pipelines that cannot be applied
to machine learning systems because they must work with other software assets, which
causes MLOps to add additional steps in its process. Due to variations in machine learn-
ing methodologies, it is difficult to generalize the components of MLOps workflow. As
mentioned in the previous work section, designs with different components have been pro-
posed, such as iterative-incremental processes [39] and Continuous Delivery for Machine
Learning (CD4ML) [30]. The following figure shows a generic MLOps workflow in relation
to the DevOps components previously explained.

Figure 6: Generic MLOps workflow in relation with DevOps components. [34]

Compared to the DevOps workflow shown in Figure 4, model and data appear as two
new components. In addition, the existing components such as testing, deployment and
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monitoring are different from those used in the DevOps workflow [34]. In addition, it
should be noted that most of the steps in MLOps, unlike DevOps, are experimental
and may vary during implementation, e.g. hyperparameter optimization. As in the
DevOps workflow, the MLOps workflow starts with the planning and coding processes.
The objective of these components are the same, to define the initial requirements and
code based on them. In the iterative-incremental process [39], this part of the workflow
would be in the design phase.

The next component is unique to the MLOps workflow. It is related to data and
can be divided into four sub-processes: data extraction, data validation, data analysis
and data preparation [34]. The data extraction process is the first to be carried out. It
consists of collecting data from different sources, e.g. from files such as CSV, or also from
a data warehouse in the cloud, among other sources. Extracting data properly can avoid
problems in the future, since, for example, in the case of classification tasks, care must be
taken to ensure that the data is balanced. To make sure that the data is adequate, the
following process called data validation is carried out, where data quality problems are
detected and solved. Some common problems that may be encountered are the presence of
null values or problems related to the data type, among others. The next process is data
analysis, where the objective of the data scientists is to understand the characteristics of
the data, which is vital for the subsequent model building and feature engineering process.
Finally, data preparation is performed, where one of the main actions consists of splitting
the data into three different datasets: training, test and validation. The feature selection
is also performed and extra features are added if deemed appropriate in the analysis, in
addition to fixing quality problems that may remain to be solved. Once the three datasets
are prepared, they are sent to the model.

The next phase in the MLOps workflow is related to the model. In this stage, the
data scientists define the structure of the model to be used to subsequently perform the
model training and model validation operations. In the model training phase, several
experiments are performed in order to optimize the selection of hyperparameters, i.e. the
model is trained once or several times with different variable values and with the same
training dataset. In each of these experiments, model evaluation and model validation is
performed. The former returns the performance measurement of the model based on the
use of the validation dataset, which allows the comparison between different experiments
performed with the model [34]. Model validation consists of validating the predictions of
the new model by using the old or new data and comparing it with the predictions of the
old model.

Once the desired model or models have been developed, we move on to the build and
testing phase. The building process shares the same objective as in DevOps, to perform
a packaging of the software involved in the machine learning system. The next process
executed is testing, which is important to ensure the quality of software systems supported
by machine learning. Although researchers have applied some traditional software testing
concepts, there are a number of challenges in testing ML-based systems that make these
techniques ineffective [24]. In the testing process of the machine learning system, unit
and integration tests related to the convergence of models and other variables related to
them must be performed. Also the testing of the code that involves the development of
the model and the format of the data in the input and output is performed.

The next phases are the release and deployment of the machine learning application.
The releasing phase, as in the DevOps workflow, consists of performing a final check of
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the application to verify that it is ready to go into production. On the other hand, the
deployment of a machine learning application is not straightforward as in DevOps, since
the retraining and deployment of models can be triggered by the arrival of new data
[34]. To perform these actions, an automated pipeline is created, which will evaluate
the performance of the models over time to decide whether they have to be retrained
and deployed. Triggers for automated model training and deployment can be calendar
events, messaging, monitoring events, as well as changes on data, model training code,
and application code [39].

Finally, there are the operation and monitoring phases. The operation process, in the
same way as in DevOps, is focused on maintaining the machine learning application in
production, detecting and resolving the appearance of problems to ensure its reliability.
In the monitoring process, the performance of existing machine learning models working
on the same dataset is controlled. Through the monitoring feedback, it is possible to
perform the required triggers to retrain the models, in order to keep them updated when
new data arrives or when necessary.

The MLOps pipeline involves the workflow components explained above and can be
divided into three main elements: continuous integration (CI), continuous deployment
(CD), continuous training (CT) and continuous monitoring (CM). The continuous inte-
gration (CI) in machine learning is based on the building and testing components. It
consists of the validation of the data and models that are being added, as well as unit
tests and integration tests of the surrounding code. This automatic integration must be
triggered when adding new data or models, including when adding or modifying code. It
is common to apply this pipeline in a versioned and reproducible way, since with version
control it is possible to make a comparison in production [25]. The continuous deployment
(CD) element involves the release and deployment of components. It consists of verifying
the compatibility of the models with the production environment as they evolve and then
deploying them in production, all in an automated manner.

As in DevOps, it is common to refer to CI and CD elements as the same general
CI/CD pipeline. In the case of machine learning, they are complemented by a pipeline
element specific to MLOps called continuous training (CT). This element consists of au-
tomatically retraining the machine learning model in order to keep it updated as the data
changes. Retraining will be triggered whenever a condition is met, such as a deteriora-
tion in performance or the entry of new data. In the latter case, there are multiple ways
to decide the timing of model training: incremental training (training with new data as
the data comes in), batch training (training once a significant amount of new data is
available) and retraining (retraining the model from scratch once a significant amount
of data is available) [38]. The continuous training (CT) element involves the data and
model components, so it also includes the processes of data extraction, validation and
preparation, as well as model evaluation and model validation.
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Figure 7: Processes of Continuous Training (CT). [38]

Finally, in MLOps it is essential the element of continuous monitoring (CM), which
is in charge of monitoring the production model to control that it performs as expected.
This is a vital process since model performance is affected by the input of new data
over time. Continuous monitoring (CM) includes the operate and monitor components of
the MLOps workflow, so, in addition to monitoring model performance, it also monitors
possible risks that may affect the correct functioning of the system. The monitoring can
help, for instance, in the detection of inconsistency problems and errors in the data or also
in the detection of concept drift. The latter case occurs when the statistical properties
of the target variable vary over time, causing the predictions to be less accurate [25].
Continuous monitoring (CM) may be a necessary complement to continuous training
(CT) when the retraining trigger is based on the performance decay of the model. Below
is a schematic of the retraining triggered by performance decay, in which retraining of the
model is performed when the F-1 score is below a specified threshold.

Figure 8: Machine Learning Model Decay Monitoring. [39]

Not all elements of the pipeline need to be implemented, they can be selected depend-
ing on the requirements of the desired machine learning system. The more elements are
included in the pipeline, the higher level of automation is achieved. The level of automa-
tion determines the maturity of the machine learning process. Google cloud proposes
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three levels of maturity for MLOps processes [10], starting from the initial level with
manual training and deployment, up to running the entire pipeline fully automatically.

• Level 0 of MLOps is the traditional data science process, which is experimental
and iterative in nature. All steps of the pipeline are executed manually, i.e., from
data preparation to model training and validation. This process focuses only on the
implementation of the trained model as a prediction service.

• Level 1 of MLOps includes the execution of the model training automatically, i.e. the
continuous training (CT) element is included. When new data becomes available,
the training process will be triggered. The data and model validation processes are
also included in an automated way. Continuous monitoring (CM) can be included
in this level of automation, as it can be vital to monitor the performance and status
of the models over time.

• Level 2 of MLOps, i.e. the last level, introduces the CI/CD pipeline for a complete
automation of the system. It includes the elements of continuous integration, de-
ployment, training and monitoring. This level of maturity achieves fast and reliable
model deployments in production due to the automation. The system automatically
builds, tests and deploys the data, model and training pipeline components.

In conclusion, MLOps facilitates the entire machine learning procedure related to
the deployment and maintenance of models in a production environment by avoiding
development and operations bottlenecks. In this section, components of MLOps workflow,
elements of the MLOps pipeline and levels at which the MLOps system can be automated
have been described. These are the pillars of MLOps, which can also include other
important features and functionalities such as versioning of data, models and code, registry
to store trained models or model metadata store.
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4 Specification & Design of the MLOps Framework

In the previous sections different works and papers on MLOps over the years have been
provided, as well as a more detailed introduction to this set of tools that is evolving over
time and is increasingly used. This theoretical introduction serves as the basis of the
project, where the ultimate goal is the development and design of an MLOps framework
based on the knowledge acquired. The design and specification of the developed MLOps
framework in question is explained below along with the related task to be solved by the
models and the used dataset.

4.1 Task & Dataset

The MLOps framework developed is based on the maintenance and management of models
that perform a regression task. Specifically, the models work with a dataset called ’M5
Forecasting-Accuracy’ which is a time series. The dataset stores the number of units sold
of a series of different Walmart products in different states of USA for each day from
2011 to 2016. Specifically, these are products from four different stores in the state of
California, three stores in the state of Texas and three stores in the state of Wisconsin.
The products are categorized into three different groups: hobbies, foods and households.
Below is a diagram that facilitates the explanation of the dataset:

Figure 9: Structure of the M5 Forecasting-Accuracy Dataset. [22]

Due to the large number of records in this dataset, it has been decided to reduce it
in order to reduce the computation time significantly. In this way, the different tasks
performed in the MLOps framework can be executed faster. Thanks to this, it has been
possible to perform the tests more effectively during development, in addition to facil-
itating the exemplification of the MLOps system. In order to reduce the dataset, two
measures have been taken, the first one is to use only the records of the first Walmart
store in each of the US states. The second measure consists of covering the years between
2013 and 2016, discarding the first two years which are 2011 and 2012.
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The task consists of estimating the point forecasts of the unit sales of various products
sold. Therefore, the target variable is the unit of products sold for each store in each state.
Specifically, the objective is to predict sales for the next 28 days. To achieve this, the
models must perform a regression task. The task specifications were set by the University
of Nicosia through the Kaggle website [26], in the form of a competition with a financial
prize that was published in 2020. To participate in the competition, the authors offer
a number of 5 csv files with the necessary data to perform the exercise. In the case of
this project, the necessary information offered by each of the files has been gathered in a
general dataset that has been used to work with.

The objective of the project is to develop an MLOps framework around this task. This
framework will facilitate a number of processes related to the machine learning lifecycle,
such as model training and evaluation. Through automation and the dashboard used as
a user interface, greater control and efficiency is gained over the use of several models in
a common task. It should be noted that existing MLOps frameworks are usually focused
on a single task, since they seek the maintenance, management and monitoring of models
working on the same task. The use of the same framework for models that work in
different tasks does not fulfill its purpose, which is to deploy the most appropriate model
to work in production, where the task is unique. Anyway, as mentioned in the previous
work section, there are advances in technologies that allow the adaptability of MLOps
frameworks in different tasks (not simultaneously), as is the case of CodeReef [17], which
facilitates the customization of a framework depending on the task, dataset and models
used among other features.

4.2 MLOps Framework Design

In the background section it has been commented that there are three maturity levels pro-
posed by Google cloud [10], which are indicators of the level of automation of an MLOps
framework. The framework proposed in this project coincides with the characteristics of
maturity level 1, where continuous training (CT), model evaluation and continuous mon-
itoring (CM) are available, all of them being automated processes. On the other hand,
there is no CI/CD pipeline like in level 2, which is composed of continuous integration (CI)
and continuous deployment (CD) elements. With this pipeline, a complete automation
of the framework would be achieved, which would allow a fast and reliable deployment
of models in production. In the case of the project there is no production environment,
so this functionality has not been added. Instead, the framework simulates a complete
pre-production environment, where all existing models are maintained and controlled. In
a real case, where a production environment is available, one of these models would be
automatically selected from the pre-production environment for deployment, following a
specific condition to select the most suitable one.

In the proposed framework, a functionality has been added that consists in the manual
execution of certain processes, such as training and evaluation of the models. This manual
execution can be ordered by the user when necessary, providing greater control over
the system. In general, an MLOps framework has been developed that can work in an
automated way once a series of models are available, but avoiding a closed automated
pipeline by adding a functionality that allows user intervention. This framework can
be divided into three main blocks: data generation and preparation, orchestration and
dashboard. Each of these blocks deals with certain functionalities that in general make
up the complete framework. The following is a detailed explanation of what the blocks
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consist of.

4.2.1 Data Generation & Preparation

The data generation and preparation block involves two main tasks, the first one being
the generation of new data batches, and the second one the preprocessing of the data
taking into account the new batches added. This system basically consists of simulating
the growth of a dataset with new data over time, assimilating it to a real case. Due
to its characteristics, MLOps offers certain advantages in these cases, since the models
will vary their performance over time due to the growth of the data. The maintenance
and monitoring of the models is vital to work in a production environment. The original
M5 dataset is static, so new data is not being generated. To show the usefulness of the
developed MLOps framework, it has been decided to simulate the input of new data. This
will make it possible to appreciate the change in the performance of the models as they
are monitored.

The data generation and preparation process it is automated to run every day. The
first task that this process performs is the generation of a new batch of data, which
corresponds to the next day of the dataset. In this case, the last day for which there is a
record is May 22, 2016, so the next batch of data that will be created will correspond to
May 23, 2016. The values of this new batch of data are generated with certain conditions,
which are different for each of the features of the dataset. The new data is not real, but
the conditions are intended to ensure that the generated data does not differ significantly
from the pattern of the original data.

The second and last task performed by this block is the preprocessing of the data
and its splitting in the test and train set, so that it can be used for model evaluation
and training. For this purpose, a preprocessing pipeline has been created that must be
executed with the entire dataset. Each time a new batch of data is added, the batch is
not preprocessed and then added, but first added to the dataset and then preprocessed.
The time involved is clearly longer, but due to some preprocessing techniques, it requires
all the information that the dataset provides, which does not allow to preprocess only
one day’s batch of data. Once the data has been preprocessed, the last 28 days of the
dataset are selected to create the test data, since the objective is to make a prediction
of the sales units of the products in the next 28 days. The rest of the days make up the
training data. Below is a diagram summarizing the pipeline of the data generation and
preparation block:

Figure 10: Data generation and preparation pipeline.

Later in this report (section 5), it will be explained in more detail how the feature
values of the new data are decided, and which techniques the preprocessing pipeline uses.
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4.2.2 Orchestration

The orchestration module is the main element of the MLOps framework, since it provides
the necessary tools to automate the desired tasks. Thanks to this element, it is possible
to implement the continuous monitoring process (CM), as well as the continuous training
process (CT). Additionally, it is responsible for scheduling the execution of the data
generation and preparation pipeline, which is useful to simulate the entry of new data
over time. Due to the decision to offer manual control to the user over most of the tasks
that are performed automatically, the orchestration module will be ready to receive orders
instantaneously regardless of the time the task is scheduled.

For the development of this project, it has been chosen to use Apache Airflow as
the orchestration module of the framework. It is an open-source tool that allows the
orchestration of workflows or pipelines. In addition, it has several functionalities that
provide useful information to the user, e.g. about the progress of the execution, the status
of the scheduled workflow, the logs and the code behind the workflow. Apache Airflow
also allows manual triggering of tasks that are scheduled for execution, functionality that
has been considered for implementation in the developed framework.

In Airflow, workflows are represented as DAGs (Directed Acyclic Graph), which are
composed of several tasks. A DAG consists of a python file built with a specific structure.
The first step in building this file would be the definition of tasks, which are the basic
unit of execution of Airflow. In total, there are three basic types of tasks [2]:

• Operators, predefined task templates that can be used to build most parts of the
DAGs.

• Sensors, a special subclass of operators that waits for an external event to happen.

• TaskFlow-decorated @task, a custom Python function packaged as a task.

When defining the DAG for a series of tasks, the order in which they are executed
must be indicated. This is known as the relationships between tasks, which define how
they relate to each other, i.e., their dependencies. Once the execution of all the tasks
has been completed in the established order, the workflow defined by the DAG will have
finished its execution. As an example, below is a figure representing a directed acyclic
graph composed of a series of interrelated tasks.

Figure 11: Example of a group of related tasks forming a DAG. [9]

In this figure, the tasks are represented with rectangles and the relationships between
them are represented with arrows. The execution flow goes from left to right, where the
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task ’op-1’ and ’op-2’ would be the first to be executed in parallel, since they are the tasks
connected to the beginning of the DAG. The next task to be executed is ’some-other-task’,
which will not be executed until the two previous tasks finish, since it is dependent on
both of them. Once ‘some-other-task’ is finished, the execution of ’op-3’ and ’op-4’ will
start in parallel, which will mark the end of the DAG.

Airflow allows scheduling DAGs to be executed every certain period of time, which
can be decided by the user through the use of cron expressions. A cron expression consists
of a coded string describing the details of the schedule, i.e. how often the DAG will be
executed and at what time of the day. This is not the only method to define the scheduling
of the DAGs, since the user can also use the cron ’preset’ or even a datetime.timedelta
object. Below is a summary table of the cron expressions and cron ’presets’ available in
Airflow:

Figure 12: Available cron expressions in Apache Airflow. [1]

Summarizing, DAGs can be defined by three main components: tasks, task relation-
ships and task scheduling. These elements make up the structure of the python file used
to create the DAG. In section 5, the different DAGs generated and how they have been
defined will be explained in more detail.

Finally, the Airflow installation must be performed in order to implement it as the
project orchestration module. There are different ways to do it, but a procedure for
learning and exploration has been chosen (recommended by the official Airflow website).
The disadvantage of this installation method is that the adaptation for the use of real-
world situations can be complicated, but that is not included in the project scope. This
installation method involves the use of a platform known as Docker, which is an open
source platform that allows developers to build, test and deploy applications quickly [3].
Its functionality consists of packaging software in units called containers, which have the
necessary software to run, such as libraries, code, tools, etc. Docker is similar to a virtual
machine which virtualizes the server hardware, only that containers virtualize a server’s
operating system. Airflow can be installed using Docker Compose, which is a Docker
plug-in that allows the definition and customization of application services through a
YAML file. Upon installation, Airflow can be run and started through a series of simple
commands.
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4.2.3 Dashboard

The dashboard is the user interface of the MLOps framework. Airflow also offers an UI,
but the goal is to focus the entire framework on a single interface capable of obtaining
information from different files stored in the Python project and being able to interact
with the orchestrator in turn. In general, there will be an interface where the information
and actions needed to manage and monitor the machine learning models are provided.

The dashboard is designed using Streamlit, an open-source Python library that allows
developers to build user interfaces quickly and effectively. Basically, it turns data scripts
into shareable web apps, all using Python. Streamlit provides a number of functions that
allows the developer to add different elements such as tables, graphs, messages among
others [33]. Adding these types of elements is as simple as declaring a variable, so there
is no need to write a back-end, define routes, write HTML, CSS, JavaScript, etc.

The interface will be divided into four pages with which the user will be able to con-
sult information and interact: Main, Managing Models, Monitoring Models and Training
Models. The first page, called Main, consists of a summary of the proposed MLOps
framework. It contains some of the information discussed in this section 4, i.e., the type
of task solved by the models, the dataset used and the three main blocks that make up
the designed framework.

Figure 13: MLOps introduction in Main page.

The next page is called Managing Models, which offers two actions with respect to
existing models. The user can consult the ‘Model Repository Table’ to find out which
models exist in the system and whether they are paused or active. If the model is active,
it means that it will be automatically retrained according to the schedule. If the model is
paused, the automatic retraining will not be performed until it is active again. The first
action offered in the Managing Page, allows the user to pause or activate the continuous
training (CT) of any existing model in the system. The second action removes the model
from the system, deleting the DAG in Airflow and the corresponding records in Python.
Both actions can be activated by using two different buttons: Activate/Pause CT and
Delete Model. The user can select the model to which the action is to be applied from a
list of possible selections. Each action requires Airflow communication in order to make
a request. Furthermore, by pressing either button, the user will be kept informed of the
status of the process through a series of messages. In addition, a button is added to
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refresh the information provided in the table, which can help to update the information
after having executed an action. The following figure shows the page layout:

Figure 14: Managing page.

The Monitoring Models page is vital for visualizing the performance of the models
over time. The main component is an overall visual space that is divided into four graphs,
one of each for a different metric calculated when evaluating the models. Through these
graphs it is possible to observe the value of the metrics for each evaluation, training or
retraining that has been performed on the models over time. It has an interactive legend
where all models are listed, in which the user can select those they want to visualize in the
graph. This page has two buttons, one of them is used to refresh the information of the
graph, while the remaining is used to execute an evaluation process of the models. When
activating this last button, a trigger of the correspondent DAG in Airflow is performed,
which is in charge of evaluating and obtaining the metrics of each of the existing models
in the system. At the start of the system execution, the user will be informed about the
status of the process through the use of messages. The following figure shows the page
layout:

Figure 15: Monitoring page.
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Finally, the Training Models page is where the user can train new models or retrain
previously generated models. On this page there is the ’Trained Models Table’, where
the information of the last record of each of the existing models is displayed. A record
of a model is generated when it is evaluated, trained for the first time or retrained. In
this table the user can see when was the date of its last training and its last evaluation,
together with the metrics obtained and the hyperparameters of the model. The table can
be refreshed by activating the ’Refresh’ button, useful when an action has been previously
performed on any model.

In the ’Train Your Model’ section, the user can select the type of model and its
hyperparameters. In the case of this framework, a limited number of model types from
scikit-learn (Python library) are available, namely three different ones: linear regression,
decision tree and gradient boosting. For each of them the user can select the desired
value for different hyperparameters, which are also limited. The ranges of values for each
hyperparameter and the hyperparameters available have been decided on the basis of their
importance, justifying this choice. The selected hyperparameters for each type of model
are as follows:

• Linear Regression: fit intercept and n jobs.

• Decision Tree: max depth, max leaf nodes and max features.

• Gradient Boosting: learning rate, n estimators, max depth and max features.

In the case of a linear regression model, there is a small number of hyperparameters
which are not usually used for fine tuning and performance improvement, but rather
to indicate the modus operandi and configuration of the model. For this reason, two
parameters have been selected that can be useful for the user.

In the case of decision trees and gradient boosting, there is a larger number of useful
hyperparameters to perform fine tuning, so some of them have been selected. In both
cases, hyperparameters have been chosen to help reduce the computation time. This type
of hyperparameters allows to limit the maximum depth of the tree, the maximum number
of features considered to perform a split, etc. It is worth remembering that the main
objective of the development of this MLOps framework is to show the usefulness of this
tool, so it is not focused on achieving the best performance of the models trained on the
task. For this reason, selecting hyperparameters that allow to reduce the computation
time is appropriate in this case, as it allows experimentation to be faster and efficient.

Finally, two of the hyperparameters selected for the gradient boosting model affect
the boosting operation of the model (learning rate and n estimators), while the other two
affect each tree individually (max depth and max features). In this case, all hyperparam-
eters except learning rate have been selected in order to have the possibility of reducing
the computation time. The learning rate hyperparameter has been added additionally as
it is a great option to improve the performance in the fine tuning of the model.

The user can train the desired model by selecting the type model and values of its
hyperparameters. Once selected, the ’Train’ button must be activated to train the model.
In case the model does not exist in the system, a DAG will be created in Airflow cor-
responding to that model, which means that it will be trained every certain period of
time automatically (continuous training). In addition, a first training and evaluation is
performed to know its performance. When a model is generated, it will be stored in the
Python model repository with a coded name, such as ’linear T 1’. This name indicates
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the type of model followed by the value of its hyperparameters. In case the model already
exists, a retraining of the model would be ordered by making a request to Airflow to
trigger the corresponding DAG. As in the rest of the pages, during the execution of the
training, the user will be kept informed of its status through the use of messages. The
following figure shows the page layout:

Figure 16: Training page.

The back-end processes that are carried out with each action on each of the pages
will be explained in more detail in section 5.
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5 Development of the MLOps Framework

A superficial explanation of the MLOps framework developed has been made in the pre-
vious section, with the purpose of giving the reader a general idea of how it has been
designed and which functionalities have been implemented. In the current section, we
will go into more detail regarding the operation of the code developed in the different
blocks that comprise the framework: data generation and preparation, orchestration and
dashboard. Techniques used in the preprocessing, the definition of DAGs and the back-
end processes that the user can initiate through the dashboard are detailed. Prior to that,
a brief clarification of the project architecture is made, highlighting the main folders and
files.

5.1 Project Architecture & Content

The project has been developed in Python, where on one side there is the part correspond-
ing to Airflow and on the other side the part corresponding to the dashboard. Therefore,
the project is structured in two main folders: MLOps Airflow and MLOps Frontend.
First, the MLOps Airflow folder, where the Airflow installation is performed by using
Docker Compose, is discussed. Next, the contents of this folder can be observed:

Figure 17: Structure and content of the MLOps Airflow folder.

The MLOps Airflow folder has content that comes from the Airflow installation. The
’dags’, ’logs’ and ’plugins’ folders are the main folders in relation to the orchestrator. As
developers, files have been generated in the ’dags’ folder, as this is the location where the
DAGs that will be executed periodically by Airflow should be stored. Both the ’logs’ and
’plugins’ folders are not used, since the former is where the Airflow execution logs are
generated, and the latter is where plugins are added, which have not been required in the
case of this project. Other files that appear with the installation are the ’.env’ and ’docker-
compose.yaml’ files, fundamental to define the Airflow services (docker-compose.yaml)
and to define the correct Airflow user (.env), which must match the host user to avoid
permission conflicts.

On the other hand, the MLOps Airflow folder is composed of additional folders and
files that have been developed manually. On the one hand, there are the ’Dockerfile’ and
’requirements.txt’ files that have the purpose of adding dependencies to Airflow in order
to execute the tasks defined in the DAGs. The ’.airflowignore’ file is created to indicate
to Airflow the folders that it should ignore, since the orchestrator only needs to access
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the ‘dags’, ‘logs’ and ‘plugins’ folders. The ignored folders correspond to those generated
manually for the development of the framework: ’shared volume’, ’test’ and ’utils’. On
the one hand, the ’test’ and ’utils’ folders are complementary because the framework can
work without them. These folders, respectively, contain files to perform tests (unittest)
of some of the functions related to the DAGs and the initial versions of the data among
other files that are not used. On the other hand, the ‘shared volume’ could be considered
the core folder of the project. Its contents are shown below:

Figure 18: Structure and content of the shared volume folder.

The ’shared volume’ folder is the location where the dashboard related code and the
orchestrator related code access to read or write required information. In other words,
it is considered to be the intermediary folder between the two parties. The following is
a brief explanation of the contents of this folder, as it will be important to explain the
development of the framework:

• The ’coms’ folder contains shell files in charge of making requests to Airflow, and
that its execution can be ordered from the dashboard by the user. In this same
folder, ’.json’ files are generated to store the status of the process or the result of
the executions performed, which are also accessed from the dashboard to inform the
user through the use of messages.

• The ’data’ folder contains the ’.csv’ files that store the data used by the models,
i.e. the dataset, the preprocessed data, the train set, the test set, etc. There is also
an important file named ’historical dataset.csv’, which stores the information about
the training and evaluations of the models over time.

• The ’models’ folder is the model repository of the framework, where each model is
stored once it has been generated for the first time by the user from the dashboard.
The models stored in the repository will be accessed by the orchestrator for the
execution of the DAGs.

• The ’scripts’ folder stores a series of python files related to the process of generating
new DAGs when the user creates a new model, which will be explained in detail
later.

• The ’config.yaml’ file stores a series of paths used in the code related to the orches-
trator and dashboard, making the project more adaptable by allowing paths to be
changed directly throughout the project.

Next, the contents of the remaining main folder named MLOps Frontend are detailed.
MLOps Frontend is responsible for all the dashboard functionality. It contains the code
that organizes the elements of the different dashboard pages, such as tables showing
important information or graphs showing the metrics of the models performances. It
also provides buttons to order different tasks such as training or evaluating a model, and
informs the user about the state of the running task. The main files in this folder are
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Python files and each of them corresponds to one of the dashboard pages explained in the
previous section. The following image shows these files and the rest of the folder contents:

Figure 19: Structure and content of the MLOps Frontend folder.

The ’images’ folder contains a series of images used in the ’Main’ page, where a brief
introduction of the framework is made in order to inform the user. The ’config.toml’
file has the function of defining the dashboard design in terms of text font, primary
color, secondary color, etc. The rest of the files correspond to the different pages of the
dashboard and except for the ’Main’ page, they are all located in the ’pages’ folder. It
is required to leave the ’Main’ page out of the folder, since it is the page with which the
dashboard is initialized through a command. By initializing it this way, the rest of the
files inside the ’pages’ folder will be automatically detected as different pages inside the
dashboard.

5.2 Data Generation & Preparation

The data generation and preparation block is considered the first block of the designed
MLOps pipeline. As previously explained, the models work with a dataset called M5 of
time series type, which is static. In order to simulate the growth of the dataset, a data
generation and preparation system has been developed. This simulation helps to visualize
more effectively the change in model performance over time. This process is defined as
an Airflow DAG, since it is scheduled to be executed periodically. A diagram of the tasks
that make up the DAG is shown below:

Figure 20: Definition of the DAG for data generation and data preparation.
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The DAG in charge of the execution of the data generation and preparation process
is composed of two tasks. The first one consists of the generation of new data, where
the function called ’generate data’ is the main process. This function is developed in a
python file inside the ’scripts’ folder, which in turn is located in the ’dags’ folder. This
’scripts’ folder contains a series of python files with functions used in the different DAGs
defined, among them, the ’preprocessing pipeline’ function used in the second task of the
DAG.

The ’generate data’ function generates a new batch of data corresponding to the next
day of the dataset, where each row corresponds to a different product from Walmart
stores. To begin with, a complementary ’.csv’ file was created containing all the rows
corresponding to the last recorded day of the dataset. From this file, the function generates
the corresponding data for the next day following a series of norms for each of the existing
features. A summary table of these norms for each of the features of the dataset is shown
below:

Table 2: Summary of feature norms used to generate new values.

Feature Description Norm

‘id’ related Define product id, store and state among others. Remains the same.

’d’ Count of days recorded in the dataset. Add 1 to the previous batch.

’sales’ Unit of sales of the product on that day.
Select the number of units sold randomly

according to a probability. The probability is
obtained using the previous batch of data.

’date’ Date of sale of the products. Add one day to the previous date.

‘wm yr wk’ Count of weeks recorded in the dataset. Add 1 every seven days.

‘wday’
Day of the week indicator using a range from 1 to

7.
Add 1 with respect to the previous batch. Back to

1 when the previous batch is 7 (maximum).

‘weekday’ Name of the day of the week.
Select the week name that corresponds to the new

number indicated by ’wday’.

‘month’ Corresponding number of the month. Extract the month number from the ‘date’ feature.

‘year’ Corresponding number of the year. Extract the year number from the ‘date’ feature.

‘event’
related

Indicates 1 or 2 events corresponding to each day
of the year, e.g. New Year’s Eve, Christmas, etc.

The type of event is also indicated.

From a dictionary where the event and its
corresponding day are stored, obtain the event

from the day that is being generated.

‘snap’
related

3 binary flags for whether the stores in each state
allowed purchases with SNAP food stamps at this

date (1) or not (0)

From a dictionary where the binary flags and its
corresponding day are stored, obtain the snap
flags from the day that is being generated.

‘sell price’
The store and item IDs together with the sales

price of the item as a weekly average.

Choose a number at random that has a difference
of -0.1/+0.1 with respect to the value of the
previous batch, only when the week is over

(wday=0).

33



Once the ’generate data’ function is executed, it returns the new batch generated from
the rules indicated in the previous table. This batch is saved in the ’batch data.csv’ file,
performing an overwrite of the previous batch stored, which corresponds to the previous
day of the dataset. The last step of the first DAG task is the addition of the new batch
in the ’extracted.csv’ file, updating the general dataset with the new batch generated.

Figure 21: Definition of the DAG for data generation and data preparation.

In the first stage of the preprocessing pipeline, a fill method is performed on the
’sell price’ feature, which indicates the average sales value of a product in a given week.
The ’sell price’ feature contains several missing values, which it has been decided should
be replaced by numeric values avoiding the elimination of these rows, since it would mean
a considerable loss of data and information (this feature has more than 19% of NaN
values). To perform the fill, it has been decided to carry out a backward fill method
without taking into account the possible special prices on event days. A backward fill is
necessary because missing values are only found in the first recorded days of each of the
existing products. With the backward fill, it is ensured that all NaNs disappear. The
event-related features also have a high ratio of missing values, which have been replaced
by the ’NoEvent’ category. In this way, when performing the backward fill, only those
rows where the event category is ’NoEvent’ are selected. For days with events, the NaN
values are replaced by the mean of the correspondent product price.

The second stage, called ’Categorical Encoder’, converts the values of categorical
features into numerical values by using encoding techniques. Only the features that will
finally be kept in the dataset are considered, avoiding the preprocessing of features that
will be discarded in the ’Delete Selected Features’ stage. The first action carried out
at this stage is not categorical encoding, but the unification of the three snap-related
features by using logical operators, thus reducing the total number of features. The first
categorical encoding technique carried out is with respect to the ’item id’ feature, by
which the original ids of the different items are converted into numerical ids.

The rest of categorical features have been differentiated into two different types, those
with a low number of categories and those with a high number of categories. Only the
features that will finally be kept in the dataset are considered, avoiding the preprocessing
of features that will be discarded in the ’Select Important Features’ stage. The features
with a low number of categories are: ’cat id’, ’state id’, ’event type 1’ and ’event type 2’.
In this case, the one hot encoding technique is applied, where for each different category,
a new column with binary values is generated. The features related to the event type are
two in total, since two different events can coexist on the same day. These two features
can share the same category (e.g. religious or cultural), thus generating two new columns
(event type 1 Religious and event type 2 Religious). In these cases, the columns will be
unified into a single one by means of a logical operator ’or’, getting a single column for
each category that exists in both features. The only exception is the ’NoEvent’ category,
which will be unified by an ’and’ operator, since both features must indicate that there
is no event on that day.

34



The features with a high number of categories are: ’event name 1’ and ’event name 2’.
In these cases the target encoding technique is applied., which is the process of replacing
the categorical value with the mean of the target variable, i.e., the ‘sales’ feature. At this
stage of the DAG the data is not divided into train and test data, so the target encoding
cannot be applied to all the data, since the future train set would be collecting information
from the test set. To avoid this, the separation is made (taking the last 28 days for the
test set) to apply target encoding on both sets and join them again afterwards.

In the next stage of the preprocessing pipeline, a series of lag features are added to
the dataset. Lag features correspond to past values of the target value, in this case, past
values of product sales units. They are useful in time series cases, since information about
product sales in previous days can help in training the model. In this stage called ’Add
Lag Features’, five lag features are added with the sales of 5, 10, 15, 20 and 28 days ago.
Two features indicating the mean sales of the last 7 and 14 days of the corresponding
product are also added. Finally, apart from the lag features, it is decided to create a new
binary feature in the dataset that indicates whether it is a weekend or not. This step is
easily adaptable, since the user can intervene to change the number of past days on which
the lag features and mean lag features are created, as well as deciding whether to create
the feature indicating the weekend. Adding only 1 or 2 day lag features could also be a
good option for training models.

The last two stages of the pipeline are called ’Delete Selected Features’ and ’Drop
NaN Values’. The first one consists of the elimination of a series of features that are
selected according to the importance of the information they provide. In the case of this
dataset, the features that provide the same information as others (’id’, ’dept id’, ’store id’
and ’weekday’) or that increase sequentially over time (’d’, ’wm yr wk’ and ’year’) are
deleted. In the first case, the features related to the id of the products are deleted because
it has been decided to represent the id with the features ’item id’, ’cat id’ and ’state id’,
which already provide the necessary information to distinguish between products. As for
the last stage of the pipeline, it consists of eliminating the possible remaining missing
values from the dataset, namely those that have appeared after adding the lag features.

These are all the stages that make up the preprocessing pipeline, which once executed,
the DAG task will split it into the train and test dataset. The split is simple, the last 28
days of the dataset comprise the test set, while the rest of the days will form the train set.
The reason why the split is performed in this way is because the task to be performed
by the models is the prediction of sales for the next 28 days. Since the test set is data
that the model has not seen in its training, it is useful to evaluate the performance of the
model when making the prediction. Once the split is done, both sets are saved in ’.csv’
files.

5.3 Orchestration

Airflow is the orchestrator of the developed framework, and is in charge of the program-
ming and execution of the existing DAGs. In the previous section, the DAG corresponding
to the generation and preparation of new data has been explained, while in this section
the DAGs corresponding to the evaluation and training of models are the main topic. In
addition, it is also detailed how the execution of the DAGs has been programmed and for
what purpose, including the one corresponding to the creation of new data.
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5.3.1 Evaluation DAG

The evaluation DAG forms the process of predicting the models of the number of sales of
the products in the future 28 days. Specifically, the evaluation of the existing models in
the model repository of the project, located in the ’models’ folder within ’shared volume’,
is performed. Each of the models performs its prediction and then a series of metrics are
computed: MAE, RMSE, WMAPE and Tweedie. A diagram of the tasks that make up
the DAG is shown below:

Figure 22: Definition of the DAG for models evaluation.

The evaluation DAG is composed of two tasks, where the first one consists of an
external sensor. Sensors in Airflow are types of tasks designed to wait for an event
to occur, in this case, it waits for the last execution of the dataset generation DAG
to complete successfully. Once it waits for the above DAG to be completed, the task
corresponding to the evaluation of the models is executed. This is a way to ensure that
the evaluation will be performed with the latest version of the data available.

The second task calls the ’evaluation’ function located in the additional ’scripts’ folder.
This function is executed for each of the models in the repository. First, it reads the test
set, separating the target variable to be used as ground truth when making predictions.
Subsequently, the model prediction is performed and the predicted sales are obtained,
which together with the ground truth are used to calculate the different metrics by means
of their corresponding equations. Finally, a row is generated in ’historical dataset.csv’
with the results of the metrics among other information, such as the name of the model, its
hyperparameters and the date on which the evaluation was carried out. This information
is used to monitor the models over time, since each time they are evaluated, a new row is
created with the results.

5.3.2 Training DAG

The training DAG consists of the training process of the model with the hyperparameters
that the user has selected in the dashboard. Once trained, it is immediately evaluated to
obtain the value of the metrics and record it in the ’historical dataset.csv’. The diagram
of the training DAG is shown below:
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Figure 23: Definition of the DAG for model training.

The training DAG has a similar composition to the evaluation DAG, where the first
task consists of a sensor and the second task in this case consists of training the model. The
sensor waits for the last DAG run of the dataset generation to be successfully completed,
so that the model will be trained with the latest version of the data.

The model training task defines the model with the hyperparameters selected by the
user. Once the model is defined, the ’train’ function defined in the ’scripts’ folder is called,
which reads the data used for training. Then, the target variable is separated from the
data and the training is executed using it as ground truth. Once the training is finished,
the ’evaluation’ function is called to obtain the metrics of the trained model. All this
information is written in a new row of the ’historical dataset.csv’ that will include the
date of the training along with the metrics obtained among other information.

It should be noted that each training DAG is specific for each model, since the model
and its hyperparameters are defined according to the user’s selection on the dashboard.
To achieve this, a python file has not been created for each possible model since it is
unfeasible, so a system of automatic generation of python files that define the DAG
according to the selected model has been developed. This system will be explained in
detail in the 5.4 section.

5.3.3 DAG Scheduling

The scheduling of the DAGs is the key to the automation of the MLOps framework. Each
of the three DAGs presented in the previous sections is scheduled to run periodically.
The DAG corresponding to model evaluation and dataset creation are scheduled to be
executed every day at midnight. It is decided to run them once a day because the dataset
is a time series that records each passing day with the units that have been sold of the
products. In this case, the data generation DAG must be run every day to simulate the
input of the new product sales of the day. On the other hand, whenever new data is
added, all existing models are evaluated to have a continuous and automatic monitoring
of their performance over time. In contrast, the DAGs corresponding to model training
are scheduled to run once a week, specifically on Sundays at midnight. It is not considered
necessary to train the models every day, since in a case where the number of models is
high, this could lead to a large consumption of resources. In addition, it is possible that
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the difference in the performance of the models would not be significant if only one day’s
data had been added. For this reason, it was decided to schedule the training to run once
a week, so that seven days of data would have been added. Considering also that the user
can order the training of a model at any time, it is a viable option.

All DAGs are scheduled to run at 12pm, which means that at midnight on a Sunday,
all three DAGs would be run at the same time. Training and evaluation can be run in
parallel without any conflict. The important thing is that the data creation DAG is run
before the others so that the models work with the updated data. To achieve this, the two
sensors have been added to the evaluation and training DAGs as the first task of each, so
that when they start running all at once, they will always wait for the new data creation
to finish first. A diagram of the order of execution of the DAGs is shown below:

Figure 24: Order of execution and scheduling of DAGs.

5.4 Dashboard

The dashboard is the last block that makes up the designed MLOps framework. As
mentioned in the design section, it is composed of four pages: Main, Managing Models,
Monitoring Models and Training Models. Except for the Main page, which is used to give
the user a short introduction to the framework, the rest of the pages have a series of back-
end processes that are carried out in each of the available actions. These actions, such
as model training or evaluation, can be manually ordered by the user through buttons,
which have already been explained in section 4. Below is a diagram that summarizes the
main processes that occur on each of the dashboard pages:
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Figure 25: Main back-end processes and actions of the dashboard.

The diagram shows the fundamental processes of the dashboard, all of which are
related to Airflow. Each of these processes requires communication with the orchestrator
to request the trigger of a DAG or to request other types of information. The requests
are made through Airflow’s own REST API service. To request the trigger of a DAG
or information, a series of shell scripts have been generated and programmed with the
correspondent command to perform all the requests that are used. When the requests
are made through shell scripts, the information returned is stored in ’.json’ files, which
are temporary. All ’.json’ files and shell scripts are located in the ’coms’ folder inside
’shared volume’, as they must be accessible from the dashboard.

5.4.1 Managing Models

As mentioned in section 4, the Managing Models page contains two buttons, one of which
is used to delete models (’delete model’) and the other to pause or activate the models’
DAGs (’pause/activate CT’). When selecting a model and activating the ’delete model’
button, the ’.sav’ file is removed from the repository alongside with the python file that
defines the DAG and the rows of the ’historical dataset.csv’ that correspond to the model.
In addition to deleting the python file that defines the DAG, Airflow is requested to delete
the DAG from its system to ensure its removal. Once the process is completed, the user
is informed by a message.

The page contains a table indicating whether the DAGs corresponding to the models
are paused or active. To include this information in the table, a request is made to Airflow
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which returns the DAG status of each model. By selecting a model and activating the
’pause/activate CT’ button, a check is made to see if the corresponding DAG is paused or
not based on the information previously stored in the table. In case it is active, Airflow
is requested to change its status to paused, so that the model will not be retrained every
week, pausing its continuous training (CT). In case it is paused, Airflow is requested to
change its status to active.

5.4.2 Monitoring Models

The Monitoring Models page has an evaluation button that can be activated by the user,
as well as a graph that shows the historical performance of the existing models. When the
evaluation button is pressed, Airflow is requested to trigger the evaluation DAG through
the corresponding shell script. As mentioned before, this DAG performs the prediction of
each of the existing models in the model repository, calculating the performance metrics
and adding them to the historical graph. Once the trigger is requested, it enters a loop
where the execution status is requested to Airflow every two seconds. The status of the
ordered DAG execution can be success, failed, running or queued. This loop sends a
message to the user on the dashboard with the execution status to keep the user informed
during the process. When finished, the user can activate the refresh button to display the
results on the graph.

5.4.3 Training Models

The Training Models page, like the Monitoring Models page, also has only one main
button, which in this case triggers the training of the model. The model type and its
hyperparameters are selected by the user before activating the training button. The user
has a table with the information of the existing models to take into account when ordering
the training. When the training button is activated, it checks whether the model exists or
not in order to inform the user about the situation, by checking the existence of the ’.sav’
file in the repository and that of the python file that defines the DAG of the corresponding
model. If the user has chosen to train a model that already existed in the table, he is
informed that it is going to be retrained, while if it did not exist he is informed that
the new model is going to be generated. It is important to check both files because an
exception may occur where the DAG exists but the ’.sav’ file does not, which will be
explained in the next section.

Each model has a unique DAG, so it has been necessary to develop a DAG generation
system. This system consists of three main python files located in the ’scripts’ folder
in ’shared volume’ named ’dag generation.py’, ’file creation.py’ and ’dag template.py’.
After having informed the user about the existence of the template and the process to
be carried out, the file ’dag generation.py’ is executed, which is prepared to run the
corresponding actions depending on whether the model exists or not. In case the DAG
file corresponding to the selected model already exists in the system, Airflow is requested
to trigger it. The information about the trigger is saved in a temporary ’.json’ file that
will be read back in the ’Training Models.py’ file in the dashboard section. From this
temporary file, the run id of the trigger that has been ordered is read to enter a loop
in which Airflow is asked for its status. Every two seconds the user is shown a message
about the status of the execution until it is finished. Once finished, the new ’.sav’ file
that has been generated in the retraining will overwrite the previous version of the model
in the repository.
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Back in the ’dag generation.py’ file, in case the DAG file and the ’.sav’ file of the
model do not exist, a new DAG must be generated with the model selected by the user.
First of all, the function ’create dag’ found in the ’file creation.py’ file is called. This
function has as input the type of model and the hyperparameters selected by the user,
and consists of copying this information in the template of the DAG to be generated.
This template is defined in the file ’dag teamplate.py’, which is structured and prepared
to define the training DAG, but the information about the model has to be entered. Once
the information is copied, the new DAG is saved in the ’dags’ folder to be detected by
Airflow. This process can be slow, so Airflow is asked for the status of the DAG every
two seconds, in order to know if it has been detected or not and to inform the user. This
request asks for information about the DAG, which will only be obtained when it exists.
When it detects that it already exists, the trigger is performed on this DAG through
REST API. Finally, it returns to the ’Training Models’ file to enter a loop in which the
status of the trigger is continuously requested to keep the user informed.

5.4.4 Exceptions & Error Handling

The framework is prepared to deal with a number of exceptions and errors that may occur
in the execution of DAGs or in the back-end processes that are initiated when interacting
with the dashboard. This section discusses how these cases are detected and how the
situation is dealt with.

In all dashboard pages except ’Main’, connection to Airflow is required for the execu-
tion of the different processes. A handling error case has been added in the code where the
execution of processes is prevented unless Airflow is connected. If there is no connection
to Airflow, the process is stopped and a message is sent to the user. To know that there
is no connection to Airflow, the first request made to Airflow is used to check if there is
a response. If there is no response, it means that there is no connection with Airflow, so
the execution is stopped. The following is a list of situations in which this error occurs:

• On the Managing Models page, when trying to load the table that provides infor-
mation on whether the DAG of the models are paused or active.

• When the ’Evaluate’ button on the Monitoring Models page is activated.

• When the ’Train’ button on the Training Models page is activated.

Figure 26: Airflow connection error message.

In the Managing Models and Monitoring Models pages, it is not possible to execute
the available actions in case there are no models in the repository (’models’ folder in
’shared volume’). In these cases, before carrying out the process, the first thing to do
is to check the number of models and stop the execution in case the number is zero. If
this happens, the user is informed that there are no models by a warning message. The
following is a list of situations in which this error occurs:

• In the Managing Models page, this warning will appear when trying to build the
models table.
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• In Monitoring Models, it will appear when the evaluation button is activated.

Figure 27: Warning messages when there are no models.

In the Managing Models page, when selecting a model and activating the ’delete
model’ button it is possible that the model is involved in the execution of the evaluation
DAG, since this DAG evaluates all existing models. To check it, a request is made to
Airflow using the corresponding shell script, in which the list of all the executions of the
evaluation DAG is requested. From this list, the last run is selected and checked to see if
it is finished or in progress. In case it is in progress, the model deletion is canceled, since
it could cause a conflict with the execution of the evaluation DAG. In this situation, the
user is informed that he/she must request the model deletion again in a few minutes.

Figure 28: Warning message when the model is involved in the evaluation DAG.

The ’delete model’ button on the Managing Models page can also cause conflicts when
ordering training on the Training Models page of the model that has been deleted. When
requesting the deletion of a model, its DAG must be deleted from Airflow, which is a
time-consuming process. When deleting this model and then requesting training for it,
different cases may occur for which the framework should be prepared:

• The user gives a sufficient time margin for the DAG to be removed correctly. In
this case, when training the model again, the DAG will be generated following the
established process.

• The user does not give a sufficient time margin for the DAG to be correctly removed.
Two different situations can occur:

– The DAG deletion has not been completed. Airflow can detect it quickly and
request the training trigger.

– The DAG removal has not been completed. Airflow can detect it immediately,
but an error occurs when requesting the DAG trigger.

This last case is an exception that could not be replicated. It has happened repeatedly
during the experiments that have been carried out with the framework throughout its
development, since the deletion and training of models has been very recurrent. This has
only happened when experimenting with the framework, in the case of using it correctly
and consistently, it is a case that would have a very low probability of occurring. Although
it is not a common case, it has been decided to treat this possible error to prevent it from
causing problems. Only when the DAG that has been previously removed and it is
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detected immediately, i.e. on the first attempt, the execution will be stopped in order
to inform the user that the procedure is being unexpected. In this case, the error that
occurs when ordering the trigger is avoided, but the generation of the DAG to be trained
is still in process. The user is informed with the following message:

Figure 29: Warning message when training a model that has recently been deleted.

The ’pause/activate CT’ button on the Managing Models page may cause an exception
of which the user should be informed. By ordering a particular model to be paused, the
corresponding DAG in Airflow is paused, causing the model not to be trained every certain
period of time. If a model is paused and training is ordered from the Training Models
page, a message will appear indicating that the status of the process is queued. The user
is prompted to check if the model in question is paused, which can be easily checked in
the Managing Models table. The training order remains in queue indefinitely until the
DAG of the model is activated again.

Figure 30: Message informing that training is in queue.

The last exception is related to the generation of new DAGs when requesting the
training of models that do not exist in the system. As discussed above, DAG generation
is a slow process, specifically because of the time involved in detecting in Airflow the new
DAG generated by means of a python file. In the ’dag generation.py’ file, a request is
made to Airflow for information about the DAG in question. If no information is received,
it means that the DAG has not yet been detected by Airflow. To avoid making the user
wait in cases where the detection takes too long, it has been decided to request for the
DAG information a maximum of 150 times, once every two seconds. When the maximum
number of attempts is reached, the user is informed that the maximum waiting time has
been exceeded. The DAG generation is still active but the training of the model has been
canceled, so it will have to be reordered once the DAG exists in Airflow. If the training
is reordered and the DAG has still not been detected, the user will be prompted to try
again later.

Figure 31: Warning messages when waiting time is exceeded in the DAG generation.
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6 Experimentation of the MLOps Framework

In the previous sections, the basics of the operation, design and development of the MLOps
framework proposed in this thesis have been explained. In this section, a summary of the
main operation of the framework from the user’s point of view is given. The objective is
to experiment with the framework, using two models and interacting with all the options
offered by the dashboard.

As a starting point, we begin with a linear regression model in the repository, being
the only one in operation. The model is identified by the name ’linear T 1’, where the first
element refers to the type of model and the rest to the values of the hyperparameters. In
this case, ’T’ corresponds to the value ’True’ of the hyperparameter ’fit intercept’, while
’1’ corresponds to the value of the hyperparameter ’n jobs’. When starting the framework
and going to the Training Models page, the user will see the screen shown in the figure
16. Once the dashboard is started, the user must start Airflow to train and evaluate
models among other actions. The DAGs that have not been executed at midnight as
scheduled are executed when Airflow is started. In the case of this experiment, all the
DAGs have been executed as scheduled, but in order to show all the functionalities, the
data generation DAG is executed again. Remember that this DAG adds a batch of data
corresponding to the next day of the dataset. The following image shows the before and
after of the original dataset when executing the data generation DAG:

Figure 32: Initial data (top). Data after DAG execution (bottom).

Once the original data is modified, it is preprocessed and divided into the train set
and test set. At the end of the process, the user decides that he/she wants to retrain
the existing model. To do so, the user selects the model type and the corresponding
hyperparameters and then presses the ”Train” button.

Figure 33: The retraining action is being performed.
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At the end of the retraining, the ’.sav’ file of the model in the repository will have
been overwritten by the new trained model, and the training will be recorded in a new row
of the ’historical dataset.csv’. This new row allows the user to observe the last training
and evaluation date along with the resulting metrics.

Figure 34: Model information before retraining (top) and after (bottom).

As can be seen in the image above, both the evaluation date and the training date
have been updated. It is worth remembering that after ordering a training, an evaluation
is also performed in order to calculate the metrics obtained by the new model instantly.
The result of the metrics obtained can be seen in the graphs on the Monitoring Models
page. The point added in the graph corresponding to the MAE metric is shown below:

Figure 35: MAE metric added after retraining model.

Now the user decides to pause the training DAG of the model ’linear T 1’. To do so,
he/she goes to the Managing Models page, where the table of existing models and the
status of its DAG (paused or active) will appear. In this case, the model is active, so the
user selects it and presses the ’pause/activate CT’ button to pause it. In the following
image, it can be seen the dashboard message informing the user that the DAG (top) has
been paused, together with the image of the DAGs in Airflow (bottom), the DAG of the
model ’linear T 1’ is paused:
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Figure 36: Dashboard view of the DAG pausing process (top). Airflow view of the paused DAG
(bottom).

The user then decides to generate a new decision tree model. To do so, he/she goes
back to the Training Model page and selects the decision tree as the model type along
with the desired hyperparameters. When the ’Train’ button is pressed, the dashboard
will inform the user that the model is completely new, so the Airflow detection of the
newly generated DAG may take a few minutes. At the end of the process, a new DAG
will appear in Airflow and a new ’.sav’ file will be created in the model repository located
in the ’models’ folder in ’shared volume’. Below, is an image of the table on the Training
Models and Airflow page, where there is evidence that the new model has been registered:

Figure 37: Trained models table of the dashboard (top). Airflow view of the DAGs (bottom).

Since the training of the new model, a day has passed in which a new batch of data
has been added. For this reason, the user decides to order the evaluation of the two
existing models in the system from the Monitoring Models page. To do so, he simply
clicks on the ’Evaluation’ button available on that page. The metrics obtained by each
model are recorded in a row within the ’historical dataset.csv’, from which the information
is extracted to build the graph with these metrics. In this way, the user will be able
to observe the evolution of the model’s performance. Below is the image of the graph
corresponding to the MAE metric, where the new points added after completing the
evaluation of the models can be observed:
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Figure 38: MAE metric graph after the model evaluation.

Due to the poor performance of the new model, the user has decided that it is not
worth keeping it and that it is better to delete it. To do this, the user returns to the
Managing Models page, where he/she selects the new model and presses the ’Delete
Model’ button. Once the deletion process is completed, you can see how the information
regarding the model disappears from the dashboard, including the metrics added in the
graph.

Figure 39: MAE metric graph after the model deletion.

Finally, the user decides to keep the model ’linear T 1’, so he activates again the
automatic executions of its corresponding DAG. To do so, he/she selects the model and
activates the ’Pause/Activate CT’ button in the Managing Models page. The final list of
DAGs will be as follows:

Figure 40: Airflow DAGs final view.
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7 Conclusions & Assessment

The thesis has focused on MLOps, a set of practices and tools that allow the automation
and monitoring of the machine learning lifecycle. Within the field of machine learning, it
is a practice that is having a considerable evolution and consideration in recent years. This
is thanks to the usefulness and efficiency offered by its tools in a production environment,
where time is a very valuable resource. This thesis aims to contribute to the dissemination
of MLOps, studying and working in a field with a great future projection.

To meet this objective, the report has been structured in two main parts. The first
part, consisting of sections 1, 2 and 3, provides a detailed introduction to the scope of
MLOps, explaining what it is and how it has evolved from its origin to the present day
through the publication of a series of papers. The second part, composed by sections 4,
5 and 6, explains the developed MLOps framework, which aims to collect some of the
functionalities of MLOps and demonstrate its usefulness in a practical way. Together,
they form a solid structure to enter this field that is becoming more and more recognized
lately.

Regarding the MLOps framework developed, it is considered to have a maturity level
1 according to [10], since it includes the element of continuous training (CT) and continu-
ous monitoring (CM). Compared to other current MLOps frameworks and platforms, the
one developed in this thesis is a simpler case, since it has some of the basic MLOps func-
tionalities. The most similar framework in terms of architecture of those that have been
presented in the literature in section 2 is the one called ModelDB, which is introduced in
the paper [37] published in 2016, being one of the earliest papers on MLOps. The frame-
work they propose focuses on the management and exploration of models that have been
built over time by data scientists through the use of a visual interface (front-end). Due
to the evolution in the field of MLOps, the frameworks developed are becoming more and
more complete, providing much more effective and efficient solutions and functionalities
over time (Amazon SageMaker, S3, MLflow, etc.).

The proposed MLOps framework has the CT and CM elements, allowing the auto-
matic training and monitoring of the models. Since we are not working directly in a
production environment and due to the project scope, the continuous integration and
continuous deployment (CI/CD) element has not been included. Instead, it has been
decided to integrate the Managing Models page, which offers two additional actions that
can be useful for the user (pause/activate TC and delete models). Furthermore, it of-
fers the possibility for the user to order manual training and evaluation of the models,
avoiding having a closed loop where all actions are scheduled to be executed in a certain
time. In section 6 of the thesis, a brief practical example of the use of the functionalities
offered by the proposed framework is shown. The performance of this MLOps framework
demonstrates the usefulness of this set of tools in a simulated production environment,
since for a data scientist to carry out monitoring by evaluating models and also training
them manually in a situation where the data evolves over time takes considerable time.
In addition, MLOps has the capacity to cover a considerable number of models at the
same time, making it an excellent choice in such situations.

In short, the proposed MLOps framework provides a basic idea about the functioning
of this set of practices. It is a development that has been carried out with the purpose
of knowing, investigating and experimenting in a field that is growing significantly in
the last few years. Until this recent growth, MLOps has gone unnoticed among the
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data scientist community, so the work in this thesis has provided me, on a personal
level, with new knowledge. The publication of this thesis is intended to contribute to the
dissemination of MLOps, so that more people in the community are aware of its usefulness
and effectiveness.
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8 Future Work

The MLOps framework developed has a number of aspects that can be improved and
others that can be added as future work. The first of these is the limitation regarding the
selection of models and hyperparameters. In this sense, the framework is not prepared to
give total freedom to the user to build their models, unlike more advanced and professional
MLOps platforms and frameworks. This is an advanced functionality but it would bring
enormous value to the framework. It should be noted that if implemented, it could be
considered an MLOps framework that could be used in practice and not only as a means
of experimentation. For example, frameworks such as ModelDB [cite] allow the user to
build a model thanks to the availability of three libraries: ’spark.ml’, ’scikit-learn’ and
’R’. Nowadays, there are platforms that offer freedom when building models, such as
Amazon SageMaker. This platform provides an exploration mode where the user can
train different models and measure their performance. It is possible to work with a wide
variety of libraries, since the user can install the one he/she desires.

Another aspect of future work is regarding the model repository, data storage and
model activity logs, since they are all stored in folders and ’.csv’ files. Nowadays, in more
advanced frameworks, a cloud data storage such as the one offered by Amazon S3 or even
SQL could be used, where model logs could also be stored. As future work, it is proposed
to add a version control that stores the versions of the different models and data used
over time. This functionality is dependent on a more efficient use of storage, since it
implies a higher use of memory. Version control allows the user to consult old data or
models at any time, as it can be a great source of information. Finally, adding a CI/CD
element to the pipeline would increase the level of automation of the framework and make
it more suitable for a production environment. The continuous deployment element can
be configured to automate the deployment of the best performing model at the time. The
inclusion of all these aspects would form a complete and professional MLOps framework.
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A Appendix: Planning & Time Management

This appendix includes the planning and time management that has been carried out with
respect to the development of the report and the MLOps framework. The master’s thesis
has been divided into five major tasks that have been accomplished sequentially between
the months of January and June. Below is a Gantt chart showing the tasks mentioned
and their corresponding dates between which they have been developed:

Figure 41: Master thesis planning Gantt chart.

The last task to be performed is the preparation of the thesis defense before an
examination committee. The completion date of this task is approximate, as it could be
set between June 26 and 30, pending official confirmation. Below is a table that includes
a brief description of the tasks and the approximate total hours spent on each task:

Table 3: Tasks description and time approximation.

Task Description Hours

Design & Develop
Framework

Design of the dashboard pages and which functionalities should include. Begins
the development of the dashboard pages and the Airflow DAGs.

170 h.

Writing 1-3
Sections

Write the first sections of the report, which correspond to the theoretical part
that introduces the reader to the topic of MLOps. Based on the reviewed

references.
110 h

Finish Framework
Development

The framework is completed and tested. The Managing Models page,
exceptions of the framework and dataset generation process has been added. In
addition, malfunctions in preprocessing and other processes have been fixed.

130 h

Finish Report
Write the sections corresponding to the design and development of the practical

part, that is, the MLOps framework. Conclusions, future work,
acknowledgements and appendix are included.

90 h.

Prepare
Presentation

Prepare the slides, explanation and demonstration video to be shown to the
thesis tribunal.

50 h

All Tasks - 550 h
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