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a b s t r a c t

Embedding graphs in a geographical or latent space, i.e. infer-
ring locations for vertices in Euclidean space or on a smooth
manifold or submanifold, is a common task in network analysis,
statistical inference, and graph visualization. We consider the
classic model of random geometric graphs where n points are
scattered uniformly in a square of area n, and two points have
an edge between them if and only if their Euclidean distance is
less than r . The reconstruction problem then consists of inferring
the vertex positions, up to the symmetries of the square, given
only the adjacency matrix of the resulting graph. We give an
algorithm that, if r = nα for any 0 < α < 1/2, with high
probability reconstructs the vertex positions with a maximum
error of O(nβ ) where β = 1/2−(4/3)α, until α ≥ 3/8 where β =

0 and the error becomes O(
√
log n). This improves over earlier

results, which were unable to reconstruct with error less than
r . Our method estimates Euclidean distances using a hybrid of
graph distances and short-range estimates based on the number
of common neighbors. We extend our results to the surface of the
sphere in R3 and to hypercubes in any constant fixed dimension.
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1. Introduction

Graph embedding is the art of assigning a position in some smooth space to each vertex, so that
he graph’s structure corresponds in some way to the metric structure of that space. If vertices with
dges between them are geometrically close, this embedding can help us predict new or unobserved
inks, devise efficient routing strategies, and cluster vertices by similarity—not to mention (if the
mbedding is in two dimensions) give us a picture of the graph that we can look at and perhaps
nterpret. In social networks, this space might correspond literally to geography, or it might be
‘‘latent space’’ whose coordinates measure ideologies, affinities between individuals, or other

ontinuous demographic variables (e.g. [1]). In some applications the underlying space is known;
n others we wish to infer it, including the number of dimensions, whether it is flat or hyperbolic,
nd so on.
The literature on graph embedding is vast, and we apologize to the many authors who we will

ail to cite. However, despite the broad utility of graph embedding in practice (see [2] for a recent
xperimental review) many popular heuristics lack rigorous guarantees. Here we pursue algorithms
hat reconstruct the position of every vertex with high accuracy, up to a symmetry of the underlying
pace.
Many versions of the reconstruction problem, including recognizing whether a graph has a

ealization as a geometric graph, are NP-complete [3–5] in the worst case. Thus we turn to
istributions of random instances, and design algorithms that succeed with high probability in the
nstance. For many inference problems, there is a natural generative model where a ground truth
tructure is ‘‘planted’’, and the instance is then chosen from a simple distribution conditioned on
ts planted structure. For community detection a.k.a. the planted partition problem, for instance, we
an consider graphs produced by the stochastic block model, a generative model where each vertex
as a ground-truth label, and each edge (u, v) exists with a probability that depends on the labels
f u and v. Reconstructing these labels from the adjacency matrix then becomes a well-defined
roblem in statistical inference, which may or may not be solvable depending on the parameters
f the model (e.g. [6–8]). In the same spirit, a series of papers has asked to what extent we can
econstruct vertex positions from the adjacency matrix in random geometric graphs, where vertex
ositions are chosen independently from a simple distribution.

.1. Random geometric graph models

Let n be an integer and let r > 0 be real. Let V = {vi}
n
i=1 be a set of points chosen uniformly at

andom in the square
[
0,

√
n
]2. Then the random geometric graph G ∈ G(n, r) has vertex set V and

dge set E = {(u, v) : ∥u − v∥ < r} where ∥u − v∥ denotes the Euclidean distance. (We will often
buse notation by identifying a vertex with its position.)
This is simply a rescaling of the unit disk model where (u, v) ∈ E if the unit disks centered at u

nd v intersect, [9]. However, we follow previous authors in changing the density of the graph by
arying r rather than varying the density of points in the plane. Since the square has area n, the
ensity is always 1: that is, the expected number of points in any measurable subset is equal to its
rea.
It is also natural to consider a Poisson model, where the points are generated by a Poisson point

rocess with intensity 1. In that case the number of vertices fluctuates but is concentrated around
, and the local properties of the two models are asymptotically the same. We will occasionally
efer to the Poisson model below.

Note that the number of points in a region of area A is binomially distributed in the uniform
odel, and Poisson distributed with mean A in the Poisson model. In both cases, the probability

hat such a region of area is empty is at most e−A; this is exact in the Poisson model, and is an
pper bound on the probability (1 − A/n)n in the uniform model.
Random geometric graphs (RGGs) were first introduced by Gilbert in the early 1960s to model

ommunications between radio stations [10]. Since then, RGGs have been widely used as models for
ireless communication, in particular for wireless sensor networks. Moreover, RGG have also been
xtensively studied as mathematical objects, and much is known about their asymptotic properties,
2
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see for example [11,12]. One well-known result is that rc =
√
log n/π is a sharp threshold for

onnectivity for G ∈ G(n, r) in the square in both the uniform and Poisson models: that is, for
ny ε > 0, with high probability (i.e., with probability tending to 1 as n → ∞) G is connected if
> (1 + ε)rc and disconnected if r < (1 − ε)rc .
More generally, we can define RGGs on any compact Riemannian submanifold, by scattering n

oints uniformly according to the surface area or volume. We then define the edges as E = {(u, v) :

u − v∥g ≤ r} where ∥ · ∥g is the geodesic distance, i.e. the arc length of the shortest geodesic
etween u and v. On the sphere in particular this includes the cosine distance, since ∥u − v∥g is a
onotonic function of the angle between u and v.

.2. The reconstruction problem

Given the adjacency matrix A of a random geometric graph defined on a smooth submanifold
, we want to find an embedding φ : V → M which is as close as possible to the true positions of

he vertices. We focus on the max distance maxv ∥φ(v) − v∥ where we identify each vertex v with
ts true position. (In the sequel we sometimes say ‘‘distortion’’ or ‘‘error’’ for subsets of vertices or
ingle vertices.)
However, if we are only given A, the most we can ask is for φ to be accurate up toM ’s symmetries.

n the square, for instance, applying a rotation or reflection to the true positions results in exactly
he same adjacency matrix. Thus we define the distortion d∗(φ) as the minimum of the maximum
rror achieved by composing φ with some element of the symmetry group Sym(M),

d∗(φ) = min
σ∈Sym(M)

max
v∈V

∥(σ ◦ φ)(v) − v∥ . (1)

s in previous work, our strategy is to estimate the distances between pairs of vertices, and then use
eometry to find points with those pairwise distances. We focus on the case where M =

[
0,

√
n
]2

nd ∥ · ∥ is the Euclidean distance. However, many of our results apply more generally, both in
higher dimensions and on curved manifolds.

For those who enjoy group theory, if M is the square then Sym(M) is the dihedral group D8.
or the sphere, Sym(M) is the continuous group O(3) of all rotations and reflections, i.e., all 3 × 3
rthogonal matrices.

.3. Our contribution and previous work

An intuitive way to estimate the Euclidean distance ∥u − v∥ in a random geometric graph is to
elate it to the graph distance dG(u, v), i.e., the number of edges in a shortest path in the graph from
to v. The upper bound ∥u − v∥ ≤ rdG(u, v) is obvious. Moreover, if the graph is dense enough,

hen shortest paths are fairly straight geometrically and most of their edges have Euclidean length
lmost r , and this upper bound is not too far from the truth, e.g. [13–16].
As far as we know, the best upper and lower bounds relating Euclidean distances to graph

istances in RGGs are given in [17]. In [18] these bounds were used to reconstruct with distortion
1 + o(1))r when r is sufficiently large, namely if r = nα for some α > 3/14.

However, since the graph distance dG is an integer, so the bound ∥u − v∥ ≤ rdG(u, v) cannot
istinguish Euclidean distances that are between two multiples of r . Thus, as discussed after the
tatement of Theorem 3.9 below, the methods of [18] cannot avoid a distortion that grows as Ω(r).
ntuitively, the opposite should hold: as r grows the graph gets denser, neighborhoods get smoother,
nd more precise reconstructions should be possible.
We break this Ω(r) barrier by using a hybrid distance estimate. First we note that rdG(u, v) is a

ather good estimate of ∥u−v∥ if ∥u−v∥ is just below a multiple of r , and we improve the bounds
f [17] using a greedy routing analysis. Then, we combine rdG with a more precise short-range
stimate based on the number of neighbors that u and v have in common. In essence, we use a
uantitative version of the popular heuristic that two vertices are close if they have a large Jaccard
oefficient (see e.g. [19] for link prediction, and [20] for a related approach to small-world graphs).
3
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Fig. 1. Our results (solid) compared to those of [18] (dotted). If r = nα , our reconstruction has distortion O(nβ ) where
β = 1/2 − (4/3)α, except for α > 3/8 where the distortion is O(

√
log n). The algorithm of [18] applies when α > 3/14

nd gives β = α, i.e. distortion O(r). Our results apply for any constant 0 < α < 1/2 and give lower distortion when
> 3/14.

As a result, we obtain distortion d∗ that decreases with r: namely, if r = nα for α > 0, then
∗

= O(nβ ) where β =
1
2 −

4
3α, until for α ≥ 3/8 where d∗

= O(
√
log n). (Note that any α > 0

uts us well above the connectivity threshold.) Since it uses graph distances, the running time of
ur algorithm is essentially the same as that of All-Pairs Shortest Paths. To our knowledge, this is
he smallest distortion achieved by any known polynomial-time algorithm. We compare our results
ith those of [18] in Fig. 1.
We show that our results extend to higher dimensions and some curved manifolds as well. With

mall modifications, our algorithm works in the m-dimensional hypercube for any fixed m (the
istortion depends on m, but the running time does not). We also sketch a proof that it works
n the surface of the sphere, using spherical geometry rather than Euclidean geometry, solving an
pen problem posed in [18]. Our techniques are designed to be easy to apply on a variety of curved
anifolds and submanifolds, although we leave the fullest generalizations to future work.
We also show that our results can be extended to ‘‘soft’’ random geometric graphs, i.e., random

eometric graphs in which a fraction of the edges are independently deleted from the adjacency
ist representation before it is shown to us. Perhaps surprisingly, our techniques work very well in
his setting, with only minor modifications.

We use N(u) = {w : (u, w) ∈ E} to denote the graph neighborhood of a vertex u, and B(u, r) to
enote the geometrical ball of radius r around it. Our results, as well as many of the cited results,
old with high probability (w.h.p.) in the random instance G ∈ G(n, r), i.e. with probability tending
o 1 as n → ∞. When we consider randomized algorithms, the probability is over both G(n, r) and
he randomness of the algorithm.

.4. Other related work

In the statistics community there are a number of consistency results for maximum-likelihood
ethods (e.g. [21]) but it is not clear how the accuracy of these methods scales with the size or
ensity of the graph, or how to find the maximum-likelihood estimator efficiently. There are also
esults on the convergence of spectral methods, using relationships between the graph Laplacian
nd the Laplace–Beltrami operator on the underlying manifold (e.g. [22]). This approach yields
ounded distortion for random dot-product graphs in certain regimes.
We assume that parameters of the model are known, including the underlying space and

ts metric structure (in particular, its curvature and the number of dimensions). Thus we avoid
4
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questions of model selection or hypothesis testing, for which some lovely techniques have been
proposed (e.g. [23–25]). We also assume that the parameter r is known, since this is easy to estimate
rom the typical degree.

.5. Organization of the paper

In Section 2 we present some concentration results and define the concept of a deep vertex.
ntuitively, a vertex is deep if it is more than r from the boundary of the square, so that its ball
f potential neighbors is entirely in the interior. However, since we are only given the adjacency
atrix of the graph, we base our definition on the number of vertices two steps away from v, and
how that these graph neighborhood and geometric properties are closely related.
Section 3 shows that we can closely approximate Euclidean distances ∥u−v∥ given the adjacency

atrix whenever v is deep. We do this in two steps: we give a precise short-range estimate of
u− v∥ when u, v have graph distance 2, and also a long-range estimate that uses the existence of
greedy path. By ‘‘hybridizing’’ these two distance estimates, switching from long to short range at
carefully chosen intermediate point, we obtain a significantly better estimate of ∥u−v∥ than was
iven in [17]. We believe these distance estimation techniques may be of interest in themselves.
In Section 4, we use this new estimate of Euclidean distances to reconstruct the vertex positions

p to a symmetry of the square, by starting with a few deep ‘‘landmarks’’ and then triangulating
o the other vertices. This gives smaller distortion than the algorithm in [18], achieving the scaling
hown in Fig. 1.
In Section 5, we extend our method to random geometric graphs in the m-dimensional hyper-

ube for fixed m and the 3-dimensional sphere.
In Section 6, we discuss extensions to ‘‘soft’’ random geometric graphs, in which a fraction of

he edges have been randomly deleted from the graph before its adjacency matrix is shown to us.
Finally, in Section 7 we give some conclusions and pose a set of open research problems.

. Preliminaries

.1. Concentration of measure

We will use the following version of Chernoff’s bound, which applies to both Poisson and
inomial random variables, and in which the statement of the result has been ‘‘inverted’’ to describe
confidence interval for the outcome of the experiment, for a given confidence parameter δ.

emma 2.1. Let X be either a Poisson or binomial random variable with mean µ. Then, for every δ > 0,

P

[
|X − µ| > max

{
3 log

1
δ
,

√
3µ log

1
δ

}]
≤ δ.

roof. We use standard tail bound arguments. The moment generating function of a binomial
andom variable is bounded above by that of a Poisson variable with the same mean,

EX∼Bin(n,p=µ/n)
[
eλX]

=

(
1 +

µ

n
(eλ

− 1)
)n

≤ eµ(eλ−1)
= EX∼Poi(µ)

[
eλX] .

We then apply Markov’s inequality. For the upper tail bound,

P [X > µ + t] = P
[
eλX > eλ(µ+t)]

≤ E[eλX
]/eλ(µ+t)

≤ eµ(eλ−1)−λ(µ+t) .

The right-hand side is minimized by setting λ = log(1 + t/µ), which gives

P [X > µ + t] ≤ eµf (t/µ) where f (x) = x − (1 + x) log(1 + x) .

y inspection we have

f (x) ≤ max(−x/3, −x2/3) ,

and setting x = (3/µ) log(1/δ) completes the proof of the upper tail bound; the two cases
correspond to x ≥ 1 and 0 ≤ x ≤ 1. The proof of the lower tail bound is similar. □
5



V. Dani, J. Díaz, T.P. Hayes et al. European Journal of Combinatorics xxx (xxxx) xxx

g

F
o

2

s
a
e
p
d

g

b
h
f

L
o
c

a

P
b
l

B

We will apply this lemma to derive a confidence interval for the number of vertices within a
iven region of the square [0,

√
n]2 = [0,

√
n] × [0,

√
n].

Corollary 2.2. Let R ⊆ [0,
√
n]2 be a region of area A. Then, for any C ≥ 1, with probability at least

1 − 1/nC , the number X of vertices in R satisfies

|X − A| ≤ max
{
4C log n, 2

√
CA log n

}
.

urthermore, for sufficiently large n, this bound still holds even if we have conditioned on the positions
f a constant number of vertices, and R is allowed to depend on these.

.2. Conditioning on positions

In several places we find it convenient to condition on the event that a vertex appears at a
pecific position. Readers accustomed to discrete probability may find the idea of conditioning on
zero-probability event jarring. However, in a continuous measure this makes perfect sense, since
xpectations can be written as integrals over a given vertex’s position. Formally, the conditional
robability density with which an event E occurs given the value of a continuous variable X is the
erivative of the probability conditioned on X lying in a suitable interval:

P [E | X = x] =
∂

∂x
P [E | X ∈ [0, x)] .

In our setting, we can define conditional versions of the model where there is a vertex at a specific
position v. In the uniform case, this model consists of scattering n−1 additional vertices uniformly in
the square (or whatever manifold we are working in). The probability of any event in the uniform
model is then the uniform average over v of its probability in these conditional models. In the
Poisson case, the conditional model consists of v and additional vertices generated by a Poisson
point process with intensity 1 as before.

2.3. Deep vertices

In what follows we assume that we are working with random geometric graphs in the square
[0,

√
n]2. Because some of our arguments will break down for vertices near the boundary of this

square, it will be useful to have an easy way to tell these vertices apart from the rest. To this end,
we introduce the following notion of ‘‘deep’’ vertex.

Definition 2.3. Let r be fixed. We say that a vertex v ∈ V is deep if at least 11r2 vertices have
raphical distance 2 or less from v.

Note that being deep is a property of the graph, rather than its embedding in the plane. This will
e important for our algorithms, which are only given access to the adjacency matrix. On the other
and, the following observation shows that being deep with high probability implies being fairly
ar from the boundary,

emma 2.4. For every n ≥ 1, r > 0, with probability at least 1 − n exp(−r2/50), every deep vertex
f G is located in the square [r,

√
n − r]2, that is, the entire ball of radius r centered at the vertex is

ontained in [0,
√
n]2.

Corollary 2.5. For every C > 0, there exists C ′ > 0 such that, whenever r > C ′
√
log n, with probability

t least 1 − n−C , all deep vertices of G are located in the square [r,
√
n − r]2.

roof. Suppose v is a vertex located within distance r of the boundary of [0,
√
n]2. Let B = B(v, 2r)

e the ball of radius 2r centered at v. Then B \ [0,
√
n]2 contains a circular segment of height at

east r , and therefore central angle at least 2π/3, and area at least
(

4
3π −

√
3
)
r2. It follows that

∩ [0,
√
n]2 has area at most

(
8π +

√
3
)
r2 ≈ 10.1r2.
3

6
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Fig. 2. The ‘‘flower’’ of the proof of Lemma 2.6. The hexagon is centered at v, its side length is 0.99r , and its corners
re x1, . . . , x6 . With high probability, each of the balls of radius 0.01r (not shown to scale) centered on the xj contains
t least one point wj; these are neighbors of v since 0.99r + 0.01r = r . Moreover, each wj is a neighbor of every point
n the ball of radius 0.99r centered at xj . Therefore, every point in the gray region has graph distance at most 2 from v.

Since every vertex within distance 2 of v is located within B ∩ [0,
√
n]2, in expectation the

umber of such vertices is at most 10.1r2. Since each vertex other than v is independently in B
ith probability vol(B∩[0,

√
n]2)

vol([0,
√
n]2)

, we can apply Chernoff’s bound to conclude that, with probability at
east 1 − exp(−r2/50), fewer than 11r2 vertices are in B ∩ [0,

√
n]2, and therefore v is not deep. A

nion bound over the n possibilities for vertex v concludes the proof. □

On the other hand, we will also need a large supply of deep vertices. Fortunately, this follows
from another observation, which we now state and prove.

Lemma 2.6. There exist constants C1, C2 > 0 such that, if r ≥ C1
√
log n, with probability at least

− C2/n2 every vertex located in [2r,
√
n − 2r]2 is deep.

roof. Let v be located in [2r,
√
n− 2r]2. Let x1, . . . , x6 be the corners of a regular hexagon whose

enter is at v, and whose side length is 0.99r .
We claim that, with high probability, there exist vertices w1, . . . , w6 ∈ V such that ∥wj − xj∥ ≤

.01r for each j. To see this, note that the ball of radius 0.01r centered at xj has area A = 0.0001πr2.
ince r ≥ C1

√
log n, the probability that a given one of these balls is empty is at most e−A

≤ 1/6n3

if C1 is sufficiently large. We then apply a union bound over these six events.
By the triangle inequality, ∥wj−v∥ ≤ 0.99r+0.01r = r , so these wj are neighbors of v. To see that

he wj in turn have many neighbors, which have graph distance 2 from v, we apply Corollary 2.2 to
he ‘‘flower’’ formed by the union of the six balls of radius 0.99r centered at each of the xj’s, shown
in gray in Fig. 2. Any point in one of these balls is a neighbor of the corresponding wj, again by the
triangle inequality. Thus this region contains only vertices at distance 2 or less from v.

An easy exercise in geometry shows that the area of this flower equals (0.99)2(2π + 3
√
3)r2 ≈

1.25r2. Corollary 2.2 then implies that, with high probability,
⏐⏐⏐⋃6

j=1 N(wj)
⏐⏐⏐ ≥ 11r2 and hence v

s deep. Finally, we take the union bound over all vertices in [2r,
√
n − 2r]2, of which there are at

ost n. □

. Distance estimation: Breaking the Ω(r) barrier

.1. Estimating short-range distances: Lunes and lenses

In this section given two vertices v, uwith dG(v, u) ≤ 2, we show how to estimate their Euclidean
istance x = ∥v − u∥ ≤ 2r . In Fig. 3, we have two balls centered at v and u and with radius r ,
7
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Fig. 3. We can estimate the Euclidean distance ∥u − v∥ = x of two vertices with dG(u, v) ≤ 2 using the area of the lune
L = B(u, r) \ B(v, r) ̸= ∅. Denoting this area F (x), we can estimate x by applying the inverse F−1 to the number of points
in N(v) \ N(u). For the case x > r we consider the lens B(u, r) ∩ B(v, r), which has area πr2 − F (x).

B(v, r) and B(u, r). In the case x < r we will consider the lune defined by each half of the symmetric
difference between B(u, r) and B(v, r) (that is the case reflected in the figure). In the case r ≤ x < 2r ,
we will consider the lens defined by the intersection of the balls.

Let 0 ≤ x ≤ 2r . We define the function F (x) = F (x, r) to be one half of the area of the symmetric
difference of two balls of radius r whose centers are at distance x, that is, the area of the lune
L = B((x, 0), r)\B((0, 0), r), here for concreteness u and v are located at (0, 0) and (x, 0)) respectively.
A little calculus shows that F is given by the following formula:

F (x) = πr2 − 2r2 arccos
x
2r

+
x
2

√
4r2 − x2 . (2)

here are several ways to derive this. One is to integrate the following differential equation:

F ′(x) =

√
4r2 − x2 , (3)

ith boundary condition F (0) = 0. This differential equation follows because increasing x by an
nfinitesimal dx increases L with an arc-shaped area of width dx, stretching along the right side of
the red circle between the two intersections between the red and blue circles in Fig. 3. This arc has
height 2

√
r2 − (x/2)2 =

√
4r2 − x2 and width dx, so the area increases by

√
4 − x2 dx. Since F ′(x)

is decreasing on the interval [0, 2r), (3) also implies that, if x ∈ [0, r], we have

F ′(x) ≥ F ′(r) =
√
3r . (4)

We will need the following concavity-like fact about F .

Lemma 3.1. Let 0 ≤ x1 ≤ x2 ≤ 2r. Then

F (x2) ≥ F (x1) + (x2 − x1)
F ′(x1) + F ′(x2)

2
.

Proof. Since F ′(x) =
√
4r2 − x2, differentiating twice more, we find that

F ′′′(x) =
−4r2

(4r2 − x2)3/2
≤ 0 ,

so F ′ is concave.
Sample X uniformly from the interval [x1, x2], then sample Y uniformly from the two endpoints,

{x , x }, such that its conditional expectation is X . Note that this implies that Y is uniform over
1 2

8
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{x1, x2}. Then we have:
F (x2)−F (x1)

x2−x1
= E(F ′(X)) by the Fundamental Theorem of Calculus
= E(F ′(E (Y | X))) by definition of Y
≥ E(E

(
F ′(Y ) | X

)
) by Jensen’s Inequality

= E(F ′(Y )) by the Law of Total Probability
=

F ′(x1)+F ′(x2)
2 since Y is uniform over {x1, x2}.

earranging, this completes the proof. □

Now, for a random geometric graph, G, and two adjacent vertices v, w, the neighbors of v that are
non-neighbors of w are exactly the vertices in the lune B(v, r) \B(w, r), which has area F (∥v −w∥).
Assuming v is deep, this lune is entirely within the domain [0,

√
n]2, so, intuitively, |N(v) \ N(w)|

should be close to F (∥v − w∥). With this in mind, we define

d̃(v, w) = F−1 (min{|N(v) \ N(w)|, F (r)}) , (5)

with the hope that d̃(v, w) will be a good approximation to the true Euclidean distance, ∥v − w∥,
most of the time. Note that d̃(v, w) is a function of the adjacency matrix and r .

The following Lemma makes the above intuition precise.

Lemma 3.2. Let G be a random geometric graph with parameters r, n. With probability at least 1−1/n2

we have, for all (v, w) ∈ E(G) such that v is deep,⏐⏐⏐∥v − w∥ − d̃(v, w)
⏐⏐⏐ ≤ 100max

{
log n
r

,

√
∥v − w∥ log n

r

}
. (6)

roof. Fix a pair of vertices v, w, and condition on their positions. Let d = ∥v − w∥. Assume that
∈ [r,

√
n − r]2, so that the ball of radius r centered at v is entirely within the domain, [0,

√
n]2.

y Lemma 2.4, with high probability, this assumption will not cause us to miss any deep vertices.
lso assume that d ≤ r , so that v and w are neighbors, since otherwise there is nothing to prove.
Observe that N(v) \ N(w) consists of w, together with exactly those vertices located within the

une L = B(v, r) \ B(w, r). Since L has area F (d) and is contained within the domain, [0,
√
n]2, it

ollows by Corollary 2.2 that with probability at least 1−
1
n4
, the number of vertices, X , in L satisfies

|X − F (d)| ≤ max
{
16 log n, 4

√
F (d) log n

}
,

and hence

||N(v) \ N(w)| − F (d)| ≤ 1 + max
{
16 log n, 4

√
F (d) log n

}
.

Now, since we saw in (4) that F satisfies F ′(x) ≥ r
√
3 for 0 ≤ x ≤ r , it follows by the Inverse

Function Theorem that 0 ≤ (F−1)′(y) ≤
1

√
3r

for 0 ≤ y ≤ F (r), and hence that

|d̃(v, w) − d| ≤
1 + 16

(
log n +

√
F (d) log n

)
√
3r

.

Since F (d) ≤ 2dr , this implies

|d̃(v, w) − d| ≤
1 + max

{
16 log n, 4

√
2dr log n

}
√
3r

,

hich is (6), only with slightly better constants. Taking a union bound over all possible choices of
, w completes the proof. □

Remark 3.3. Notice Eq. (6) is only useful when r is at least a constant factor greater than the
connectivity threshold. In particular, for r ≤ 10

√
log n, the conclusion of Lemma 3.2 becomes trivial,

ecause the right-hand side of (6) exceeds r .
9
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So far we have only defined d̃(v, w) for adjacent pairs of vertices where one is deep. We now
xtend this definition to pairs of vertices at graphical distance 2. Once again, we will require that
t least one of them is deep.
Let v, w ∈ V be such that v is deep, and dG(v, w) = 2. Let d = ∥v − w∥. Note that r < d ≤ 2r .

This time, rather than using the number of vertices in B(v, r) \ B(w, r) to estimate the distance, we
ill instead use the intersection of the balls, which has area πr2 − F (d).
N(v)∩N(w) is the set of vertices of V \{v, w} that are located within the lens-shaped intersection

(v, r)∩B(w, r). Since v is deep, B(v, r)∩B(w, r) ⊂ [0,
√
n]2. Therefore, conditioned on the positions

f v and w,

E [|N(v) ∩ N(w)|] =
(n − 2)

(
πr2 − F (d)

)
n

.

ith this in mind, we will write down the distance estimate as

d̃(v, w) = F−1 (
max

{
F (r), πr2 − |N(v) ∩ N(w)|

})
(7)

nd we will now prove that in this case also, d̃(v, w) ≈ ∥v − w∥ with high probability.

emma 3.4. Let G = (V , E) be a random geometric graph with parameters r, n. Then, with probability
t least 1 − 1/n2 we have, for all v, w ∈ V such that v is deep and dG(v, w) = 2,⏐⏐⏐∥v − w∥ − d̃(v, w)

⏐⏐⏐ ≤ 100max

{
(log n)2/3

r1/3
,

(
2r − ∥v − w∥

r

)1/4 √
log n

}
. (8)

Remark 3.5. Similarly to Lemma 3.2, we note that (8) is only useful when r is at least a constant
actor greater than the connectivity threshold. In particular, for r ≤ 10

√
10 log n, the conclusion of

emma 3.4 becomes trivial, because the right-hand side of (8) exceeds r .

Proof. In light of the Remark, assume r ≥ 10
√
10 log n, since otherwise there is nothing to

rove. Fix a pair of vertices v, w, and condition on their positions. Let d = ∥v − w∥. Assume
hat B(v, r) ⊂ [0,

√
n]2, since otherwise by Lemma 2.4 v is not deep with probability at least

−n exp(−r2/50) ≥ 1−n−19, so we would have nothing to prove. Also assume that r < ∥v−w∥ ≤

r , since otherwise dG(v, w) cannot be 2, and we would again have nothing to prove.
Observe that, since d(v, w) > r , N(v)∩N(w) consists of exactly those vertices located within the

lens L = B(v, r)∩B(w, r). Since L has area πr2−F (d) and is contained within the domain, [0,
√
n]2, it

ollows by Corollary 2.2 that with probability at least 1−
1
n4
, the number of vertices, X , in L satisfies

|X − (πr2 − F (d))| ≤ max
{
16 log n, 4

√
(πr2 − F (d)) log n

}
,

nd hence⏐⏐|N(v) ∩ N(w)| − (πr2 − F (d))
⏐⏐ ≤ max

{
16 log n, 4

√
(πr2 − F (d)) log n

}
.

By Lemma 3.1 applied with {x1, x2} = {d, d̃}, we have

|F (d) − F (d̃)| ≥ |d − d̃|
F ′(d) + F ′(d̃)

2

10
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We change variables, using ε = 2r − d, ε̃ = 2r − d̃, and apply the definition of F ′ to find

|d − d̃| ≤
2|F (d) − F (d̃)|

F ′(d) + F ′(d̃)

=
2|F (d) − max{F (r), πr2 − |N(v) ∩ N(w)|}|

F ′(d) + F ′(d̃)

=
2|F (d) − max{F (r), πr2 − |N(v) ∩ N(w)|}|

√
4rε − ε2 +

√
4r̃ε − ε̃2

≤

2max
{
16 log n, 4

√
(πr2 − F (d)) log n

}
√
4rε − ε2 +

√
4r̃ε − ε̃2

≤

2max
{
16 log n, C

√
ε3/2r1/2 log n

}
√
4rε − ε2 +

√
4r̃ε − ε̃2

= O
(ε

r

)1/4 √
log n ,

ssuming ε3r > C(log n)2. For the other case, we may as well treat ε as zero, in which case we get

|d − d̃| = ε̃ ≤
16 log n

√
4r̃ε − ε̃2

≈
16 log n
√
3r̃ε

,

which implies

ε̃ ≤

(
16 log n
√
3r

)2/3

,

as desired. □

The results of Lemmas 3.2 and 3.4 are summarized in the following theorem.

Theorem 3.6. Let G = (V , E) be a random geometric graph with parameters r, n, where r ≥

00
√
log n. With probability at least 1 − 2/n2 we have, for all vertices v ̸= w such that dG(v, w) ≤ 2

and v is deep,⏐⏐⏐∥v − w∥ − d̃(v, w)
⏐⏐⏐ ≤ 100η(∥v − w∥)

√
log n , (9)

where η : [0, 2r] → [0, 1] is defined by

η(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

√
log n
r for 0 ≤ x ≤

log n
r ,√ x

r for log n
r ≤ x ≤ r,( 2r−x

r

)1/4
for r ≤ x ≤ 2r −

(log n)2/3

r1/3
,

(log n)1/6

r1/3
for 2r −

(log n)2/3

r1/3
≤ x ≤ 2r.

3.2. Estimating long-range distances

Next we show a fairly tight relationship between Euclidean and graph distance for all pairs
of vertices, including distant ones. This is a slightly sharper version of [17, Thm 1.1]. The main
difference in the proof is that, where before, a short path between two given vertices is found
by finding vertices close to a straight line between the endpoints, our proof instead analyzes a
greedy algorithm generating a path that may deviate further from the straight line. We start with
the following geometrical lemma.
11
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Lemma 3.7. Let B1, B2 be two overlapping Euclidean balls in R2 of radius r1 and r2 respectively, and
et d be the distance between their centers. Consider the lens L = B1 ∩ B2. Let δ denote the width of L,
hat is,

δ = min{r1 + r2 − d, 2r1, 2r2} .

hen the area A of L satisfies

A = Θ
(
δ3/2 min{r1, r2}1/2

)
.

roof. There are many ways to see this, and we prove an m-dimensional generalization in
emma 5.1 below. Here we give a proof using the function F (x) from the previous section.
Let r = min{r1, r2}. Without loss of generality, we can assume δ < r/10. Otherwise, L includes

constant fraction of the ball of radius r , and A = Θ(δ3/2 r1/2) = Θ(r2) as stated.
Now note that A is between 1/2 and 1 times the area of a lens of width δ formed by two balls

1, B2 of radius r whose centers are x = 2r − δ apart. This lens is B1 minus the lune B1 \ B2, so its
rea is

A≬(δ) = πr2 − F (2r − δ) .

here F is defined as in (2). From (3) we have the following differential equation for A≬,

A′

≬(δ) = −F ′(2r − δ) =

√
4r2 − x2 =

√
4δr − δ2 = Θ(δ1/2 r1/2) .

ntegrating this from the boundary condition A≬(0) = 0 to a given δ gives A = Θ(δ3/2 r1/2) and
ompletes the proof. □

emark 3.8. Note in the definition of δ the cases 2r1 and 2r2 refer to the situation when one ball
s totally inside the other ball. In our random geometric graphs, all the neighborhood balls have
he same radius. But as it will be the case in the proof of Theorem 3.9, we also argue about lunes
etween balls with different radii, therefore the need to define δ in full generality.

The main result of this section is the following theorem,

heorem 3.9. There exist absolute constants C1, C2, C3 such that, for all n ≥ 1, all r ≥ C1
√
log n, with

robability at least 1 − C2/n, all pairs of vertices u, v satisfy⌈
∥u − v∥

r

⌉
≤ dG(u, v) ≤

⌈
∥u − v∥ + κ

r

⌉
, (10)

where

κ = C3

(
∥u − v∥

r4/3
+

log n
r1/3

)
. (11)

Proof. The first inequality is easy: since every edge has Euclidean length at most r , we have
u − v∥ ≤ dG(u, v)r by the Triangle Inequality. Since dG(u, v) is an integer, rounding it up does
ot change its value, so⌈

∥u − v∥

r

⌉
≤ dG(u, v) .

We now turn our attention to the second inequality of (10), the upper bound on dG(u, v). In an
attempt to find a short path from u to v, we consider the following greedy algorithm, (see Fig. 4).
Let x0 = u. For i ≥ 1, we define xi+1 to be the neighbor of xi that has minimal Euclidean distance
to v (note that xi+1 is unique with probability 1). The algorithm terminates if no neighbor of xi is
loser to v than xi is. Hopefully this is because xi = v, in which case we say there exists a greedy
path from u to v. However, it may instead happen that the greedy algorithm gets stuck in a local
minimum, and never reaches v.
12
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Fig. 4. The greedy routing analysis of Theorem 3.9. At each step we go from xi to the neighbor xi+1 closest to v. In the
analysis, we consider the intersections of xi ’s neighborhood with balls centered at v, with the radii of the latter chosen so
that these intersections have area ln 2, 2 ln 2, 3 ln 2, and so on. Each of these intersections contains a point with constant
probability, so that most steps make significant progress towards v.

We will prove that, with probability 1− O(n−3), a greedy path exists from u to v, and its length
is at most the desired upper bound. Taking a union bound over all pairs u, v completes the proof.
otice this greedy algorithm has nothing to do with our reconstruction algorithm: it is purely for
ur analysis, i.e., to prove that short paths probably exist.
We will discuss our solution in terms of a sequence of independent fair coin flips. These coin flips

re the outcomes of a sequence of experiments of the form ‘‘Is ∥xi+1 − v∥ ≤ a?’’, where x1, . . . , xℓ

is our greedy walk from u to v. The values a are chosen adaptively to make each of these coin flips
fair, conditioned on previously revealed steps of the greedy walk, and on previous coin flips.

Specifically, assume that xi has just been revealed. Our first coin flip asks whether xi+1 lies in
the lens L1 defined as the intersection of the ball of radius r centered at xi with the ball of radius a1
centered at v, with a1 chosen so that L1 has area ln 2. Working in the Poisson model, the probability
that L1 contains at least one vertex is exactly 1/2. If the coin comes up ‘‘no’’, i.e., L1 is empty, we
ask the same question, while increasing the radius of the ball around v to a2, and then a3, and so
on, with at chosen so that the resulting lens Lt has area t ln 2. Each time we increment t , we gain an
additional region Lt \Lt−1 of area ln 2, which corresponds to another coin flip. We continue until the
tth coin comes up ‘‘yes’’, i.e., Lt contains at least one point. At that point we know that xi+1 ∈ Lt \Lt−1
and therefore ∥xi+1 − v∥ ≤ at as shown in Fig. 5. We then reveal xi+1 (note that it might be one of
several points in that region).

We then repeat the whole process with xi+1 in place of xi. This continues until xi is within the
disk of radius r around v, after which xi+1 = v and we are done.

Note that the above argument breaks down if the sequence of lenses examined in stage i + 1
overlaps the lenses examined in stage i. In this case, since the planar regions being examined are
not disjoint, the second sequence of coin flips is no longer conditionally independent of the first.
Fortunately, this can only happen if there is a very long sequence of consecutive ‘‘no’’ answers in
stage i, which is unlikely in a sequence of fair coin flips. Specifically, we are only worried about
the event that ∥xi − v∥ ≥ ∥xi−1 − v∥ − r/2, which, since the area of the lens of width r/2 with
centers at xi−1 and v and radii r and ∥xi − v∥ − r/2, respectively, is Θ(r2) by Lemma 3.7. Choosing
the constants carefully, we can ensure that the probability of this lens being empty is O(1/n4), and
hence with high probability it does not happen at any stage of the greedy algorithm.

The next step in the analysis is to relate the number of ‘‘no’’ answers received in the aforemen-
tioned sequence of fair coin flips to the progress made by the greedy algorithm. Note that each
sequence of k−1 ‘‘no’’ answers followed by one ‘‘yes’’, corresponds to xi+1 being in the lens of area
k ln 2, which has, by Lemma 3.7, width Θ(k2/3r−1/3), which is O(kr−1/3). Thus

∥xi+1 − v∥ ≤ ak = ∥xi − v∥ − r + O(kr−1/3) .

It follows that, if the total number of coins flipped on the journey from u to v is m, we necessarily
have ∥u − v∥ ≥ r(d (u, v) − 1) − O(mr−1/3).
G

13
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Fig. 5. The analysis of greedy routing in Theorem 3.9. We consider the intersections of the neighborhood of the current
point xi with balls centered at v, with the radius of the latter chosen so that these intersections have area ln 2, 2 ln 2,
ln 2, and so on. Each additional region of area ln 2 is nonempty with probability 1/2, creating a fair coin flip. When this
oin gives ‘‘yes’’, i.e., that region is nonempty, we reveal xi+1 in that region.

Setting m =
4∥u−v∥

r + 48 log n, Chernoff’s bound tells us that the probability of getting fewer
han m/4 heads in a sequence of m coin flips is at most exp(−m/16) = O(n−3). The second kind of
ad event is getting a sequence of more than 4 log n consecutive tails. Since the chance of having
particular set of k coin flips be all tails is 2−k, and there are at most m = O(

√
n/r) possible

ositions for a run to start, a union bound shows that the combined probability of having such a
un is O(n−4√n/r) = O(n−3).

Putting all of the above together, except for an O(n−3) probability of failure, we have

∥u − v∥ ≥ r(dG(u, v) − 1) − O(mr−1/3)

= r(dG(u, v) − 1) − O
(

∥u − v∥

r4/3
+ r−1/3 log n

)
,

r equivalently, for some constant C3

dG(u, v) ≤ 1 +
∥u − v∥(1 + O(r−4/3)) + O(r−1/3 log n)

r

≤ 1 +
∥u − v∥

r
+ C3

(
∥u − v∥

r7/3
+

log n
r4/3

)
= 1 +

∥u − v∥ + κ

r
.

Since dG(u, v) is an integer, and ∥u−v∥+κ

r being an integer is a measure zero event, it follows that

dG(u, v) ≤

⌈
∥u − v∥ + κ

r

⌉
. □

Let us discuss how we will use Theorems 3.6 and 3.9 to break the Ω(r) barrier in distance
stimation, and thus in reconstruction. Suppose r = nα where 0 < α < 1/2 is a constant. Then
ince ∥u − v∥ = O(n1/2), we have from (11)

κ

r
= O

(
max

(
n

1
2 −

7
3 α, n−

4
3 α log n

))
, (12)

and since 1
2 −

7
3α > −

4
3α we have

κ = O(nβ ), where β =
1

−
4

α . (13)

2 3
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If α > 3/14, then β < α and κ = o(r). In this case the upper and lower bounds on dG(u, v) differ by
at most 1, and moreover are equal for most pairs of vertices, making dG(u, v) a nearly-deterministic
function of ∥u − v∥. Using ⌈x⌉ ≤ x + 1 and multiplying through by r gives the bounds

dG(u, v)r − (r + κ) ≤ ∥u − v∥ ≤ dG(u, v)r ,

so that dG(u, v)r is an estimate of ∥u − v∥ with error r + κ = (1 + o(1))r . Previous work [17,18]
used this bound to reconstruct the graph with a distortion of (1+ ε)r for arbitrarily small constant
ε. This gives the performance shown by the dotted line in Fig. 1.

But in fact dG(u, v)r is a much more accurate estimate of ∥u − v∥ for certain pairs of vertices.
Namely, if ∥u − v∥ is just below a multiple of r , then rounding up the left and right sides of (10)
does not change either very much. We state this with the following corollary.

Corollary 3.10. With κ = κ(∥u−v∥) defined as in (11), suppose that for some δ and some non-negative
integer t we have

tr − (κ + δ) < ∥u − v∥ < tr − κ .

Then

dG(u, v)r − (κ + δ) ≤ ∥u − v∥ ≤ dG(u, v)r .

Proof. We have⌈
∥u − v∥ + κ

r

⌉
≤

∥u − v∥ + κ + δ

r
,

nd (10) then gives the stated result. □

Thus, if ∥u − v∥ is in one of these intervals, Theorem 3.9 lets us estimate ∥u − v∥ from the
adjacency matrix with error δ + κ instead of r + κ . Below we will combine this with the more
precise estimate of short-range distances from Lemma 3.2 to achieve this error for all pairs u, v of
ertices where v is deep, not just those for which ∥u− v∥ is almost a multiple of r . As a result, the
rror in our distance estimates and the distortion of our reconstruction is O(rβ ) where β decreases
rom 1/2 to 0 as α increases as shown by the solid line in Fig. 1. Specifically, we obtain a nontrivial
esult for any α > 0 and a more accurate reconstruction than [18] in the range α > 3/14 where
heir theorem applies. At α = 3/8, where β = 0 another source of error takes over, leaving us with
(
√
log n) distortion.

.3. Hybrid estimates of long-range distances

In order to combine the long-range estimates of Theorem 3.9 with the more precise short-range
stimates of Lemma 3.2, it will be helpful to set up some general machinery.

efinition 3.11. Suppose V ⊂ R2. Let d : V 2
→ [0, ∞] and ε : R → [0, ∞] be two functions

satisfying, for all u, v ∈ V ,

d(u, v) − ε(u, v) ≤ ∥u − v∥ ≤ d(u, v) .

Then we say d is an upper bound on Euclidean distance with error function ε.

These error functions will often be bounded by functions of the Euclidean distance, in which
case we will write ε(∥u− v∥) rather than ε(u, v). In our application, V consists of all vertices in the
eometric graph, but we will achieve particularly small ε(u, v) when v is deep.
A basic tool for combining distance estimates is the following:

emma 3.12. If d1 and d2 are upper bounds on Euclidean distance with error functions ε1, ε2
espectively, then min{d , d } is an upper bound on Euclidean distance with error min{ε , ε }.
1 2 1 2
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Fig. 6. For any intermediate point w, the hybrid distance estimate d1(u, w)+d2(w, v) is an upper bound on ∥u−v∥ with
error bounded by Lemma 3.13.

Fig. 7. Figure for the proof in Lemma 3.13.

roof. For any u, v we have ∥u − v∥ ≤ min{d1, d2}. On the other side, assume without loss of
enerality that ε1 ≤ ε2. Then ∥u − v∥ ≥ d1 − ε1 ≥ min{d1, d2} − ε1. □

The next lemma shows another way to combine two upper bounds on ∥u − v∥. We choose a
ertex w between u and v and use the triangle inequality, using d1 to bound ∥u − w∥ and d2 to
ound ∥w − v∥ (see Fig. 6). Finally, we minimize over all intermediate vertices w. This hybrid is
specially useful when, as with our long-range and short-range estimates, d1 and d2 have different
anges of ∥u − v∥ in which they achieve small error.

Lemma 3.13. Suppose d1 and d2 are upper bounds on Euclidean distance with error functions ε1 and
2 respectively. Define the hybrid distance estimate d̂ by

d̂ = min
w

(
d1(u, w) + d2(w, v)

)
,

here w ranges over all vertices. Then d̂ is an upper bound on Euclidean distance with error

ε̂(u, v) ≤ min
w

[
ε1(u, w) + ε2(w, v) + ∥u − w∥ + ∥w − v∥ − ∥u − v∥

]
.

roof. Fix a pair of vertices u, v. For any vertex w, by the triangle inequality we have

∥u − v∥ ≤ ∥u − w∥ + ∥v − w∥ ≤ d1(u, w) + d2(w, v) ,

o d̂ is an upper bound on Euclidean distance. On the other hand, as shown in Fig. 7 we have

∥u − v∥ = ∥u − w∥ + ∥v − w∥ −
(
∥u − w∥ + ∥w − v∥ − ∥u − v∥

)
≥ d1(u, w) + d2(v, w) −

(
ε1(u, w) + ε2(w, v) + ∥u − w∥ + ∥w − v∥ − ∥u − v∥

)
.

sing Lemma 3.12 to minimize the error over w completes the proof. □
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Fig. 8. The lens L(x) of Lemma 3.14. If δ is large enough, this lens is nonempty with high probability, in which case we
can use any point w in it as an intermediate point for Lemma 3.13.

Next, we will use the fact that if a lens is large enough to contain at least one point w with high
probability, this yields an upper bound on the minimum in Lemma 3.13.

Lemma 3.14. Suppose G is a random geometric graph, and that with high probability, d1 and d2 are
pper bounds on Euclidean distance with errors ε1(u, v) = ε1(∥u − v∥) and ε2(u, v) = ε2(∥u − v∥).
efine the hybrid distance d̂ as in Lemma 3.13. Then there is a constant C such that, with high probability,
is also an upper bound on Euclidean distance, with error ε̂(u, v) = ε̂(∥u − v∥) where

ε̂(∥u − v∥) ≤ min
0<x<∥u−v∥

max
0≤δ1,δ2≤δ(x)

[
ε1(x + δ1) + ε2(∥u − v∥ − x − δ2) + δ(x)

]
, (14)

where

δ(x) = C(log n)2/3 (min{x, ∥u − v∥ − x})−1/3 . (15)

Proof. Fix a pair u, v with 0 < x < ∥u − v∥, and consider the lens L(x) of width δ(x) consisting
of the intersection of the balls centered at u and v of radius r1 = x + δ(x) and r2 = ∥u − v∥ − x
espectively as shown in Fig. 8. Lemma 3.7 and x ≤ r1 implies that the area of L(x) is proportional to
(x)3/2 r1/21 ≥ C3/2(log n) x−1/2 r1/21 ≥ C3/2 log n, which is w.h.p. nonempty if C is sufficiently large.
While x takes an infinite number of values, for all x we have

δ(x) ≥ δmin = Ω
(
(log n)3/2∥u − v∥

−1/3) .

ow consider 2∥u−v∥/δmin lenses of width δmin/2, where x is an integer multiple of δmin/2. For any
, L(x) contains one of these smaller lenses, so if they are all nonempty, so is L(x) for all x. Each of
hese small lenses also has area Ω(log n), and there are O(∥u − v∥/δmin) = O(∥u − v∥

4/3) = O(n2/3)
f them. Thus if we set the constant C large enough for the area of the smaller lenses to be 3 log n,
ay, the probability that any of them are empty, for any pair u, v, is o(1).
Hence L contains at least one vertex w with high probability. Applying Lemma 3.13 to w, writing

u−w∥ = x+δ1 and ∥w−v∥ = ∥u−v∥−x−δ2 as shown in Fig. 8, and pessimistically maximizing
1(u, w) and ε2(w, v) over the lens yields the desired upper bound on the error of d̂. □

We use the previous lemma to break the Ω(r) barrier for the error in estimating Euclidean
istances in G ∈ G(n, r).
Now assume v is deep, and define d1 and d2 as follows:

d (u, v) = rd (u, v),
1 G

17
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d2(u, v) =

{
d̃(u, v) + C2

√
log n if dG(u, v) ≤ 2 ,

+∞ otherwise ,

here d̃ is defined as in Eq. (5) and C2 is the constant in Eq. (6). Thus d1 is the upper bound of
orollary 3.10, and d2 is the precise short-range estimate d̃ of Lemma 3.2 with a small increment
o make it an upper bound on Euclidean distance with high probability.

emark 3.15. Given this choice of d1 and d2, the hybrid estimate d̂(u, v) is the shortest path
istance from u to v in a weighted graph Gv with vertices V and edges Ev = E∪{(w, v) : dG(w, v) ≤

} where each edge (w, v) with dG(w, v) ≤ 2 has weight d̃(w, v) + C2
√
log n and all other edges

ave weight r . Below we invoke Dijkstra’s algorithm to compute these shortest paths. Alternatively,
or any fixed v, we can compute d̂(u, v) for all u using a modified breadth-first search algorithm
n O(n + m + ∆ log∆) steps, where ∆ is the degree of vertex v. The only modification to the
tandard queue-based implementation of BFS is to sort the level-one nodes by increasing order of
˜ , before placing them in the queue. Since all other edges have the same weight, r , which exceeds
he difference between any two vertices in the queue, it follows by induction that all vertices will
e discovered in increasing order of d̂.

We bound the errors ε1 and ε2 as follows. As discussed after Theorem 3.9, for most values of
u − v∥ we have ε1(∥u − v∥) = Θ(r). However, we will choose the lens in Lemma 3.14 so that
u − w∥ is almost a multiple of r , in which case Corollary 3.10 shows that ε1(∥u − w∥) is much
maller.
For ε2, Lemma 3.2 implies that, for some absolute constant C4, with high probability

ε2(∥u − v∥) ≤

{
C4

√
log n if ∥u − v∥ ≤ 2r − C4r−1/3 log n,

+∞ otherwise .
(16)

ere we used equation (11) and the upper bound of Theorem 3.9 to show that with high probability
G(u, v) ≤ 2 whenever

∥u − v∥ ≤ 2r − κ(2r) = 2r − C3r−1/3(2 + log n) ,

nd we set C4 > max{C3, 2C2}.
Having gathered these facts, we will apply Lemma 3.14 to d1 and d2 with a judicious choice of

ens L(x). First note that, since d2(w, v) = +∞ if dG(w, v) > 2, we can write the hybrid distance
stimate as,

d̂(u, v) = min
w:dG(w,v)≤2

d1(u, w) + d2(w, v) . (17)

Theorem 3.16. Let r = nα for a constant 0 < α < 1/2. For all pairs u, v where v is deep, define
d(u, v) as in Eq. (17). Then with high probability, d̂ is an upper bound on the Euclidean distance ∥u−v∥

with error

ε̂(u, v) ≤ C ′

{
n

1
2 −

4
3 α α < 3/8,

√
log n 3/8 ≤ α < 1/2,

(18)

for some absolute constant C ′. That is,

d̂(u, v) − ε̂(u, v) ≤ ∥u − v∥ ≤ d̂(u, v) .

Proof. Below we will bound the error of d̂ as ε̂ = κ +O(
√
log n). Recall that if 0 < α < 1/2, Eq. (11)

ives

κ = (1 + o(1))C3nβ where β =
1
2

−
4
3

α .

If α < 3/8 then β > 0 and ε̂ = (1 + o(1))κ . If α ≥ 3/8 then β ≤ 0, κ = O(1), and ε̂ = O(
√
log n).
18
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We can upper bound equation (14) with any choice of x between 0 and ∥u − v∥, i.e. any lens
etween u and v that w.h.p. contains an intermediate point w. We choose this lens as follows. First
et t be the largest integer such that ∥u− v∥ > tr + r/2. We assume without loss of generality that
≥ 1, since if t = 0 we have ∥u − v∥ < 3r/2 and Eq. (16) gives ε̂ ≤ ε ≤ ε2 = O(

√
log n).

Let C be the constant required by Lemma 3.14. If we define

δ = C(log n)2/3(r/2)−1/3 (19)

nd set x = tr − (κ + δ), we have min{x, ∥u− v∥− x} ≥ r/2, and δ satisfies the condition (15). That
s, the lens L(x) of width δ shown in Fig. 8 contains at least one point w with high probability.

Now we can bound the errors in d1(u, w) and d2(w, v). First, we have chosen L(x) so that ∥u−w∥

s almost an integer, i.e. tr − (κ + δ) < ∥u − w∥ < tr − κ . Then Corollary 3.10 tells us that d1(u, w)
as error bounded by ε1 ≤ κ + δ. Thus, for all 0 ≤ δ1 ≤ δ, the first term of Eq. (14) is bounded by
1(x + δ1) ≤ κ + δ.
Second, we have ∥v − w∥ ≤ ∥u − v∥ − x ≤ 3r/2 + κ + δ, so w.h.p. dG(w, v) ≤ 2 and Eq. (16)

ives ε2(w, v) ≤ C4
√
log n. Thus, for all 0 ≤ δ2 ≤ δ, the second term of Eq. (14) is bounded by

2(∥u − v∥ − x − δ2) ≤ C4
√
log n.

Combining all of this, Lemma 3.14 tells us that with high probability

ε̂(∥u − v∥) ≤ κ + δ + C4

√
log n + δ = κ + C4

√
log n + o(1) .

etting C ′ > max{C3, C4} completes the proof. □

. The reconstruction algorithm

In this section we use our distance estimates to reconstruct the positions of the points up
o a symmetry of the square. Our global strategy is similar to [18]: we first fix a small number
f ‘‘landmark’’ vertices v whose positions can be estimated accurately up to a symmetry of the
lane. Then for each vertex u we use the estimated distances d̂(u, v) to reconstruct u’s position by
riangulation. In [18], the landmarks are vertices close to the corners of the square. Here they will
nstead be a set of three deep vertices that are far from collinear, forming a triangle which is acute
nd sufficiently large.

emma 4.1. Let x, y, z, u be four points in the plane. Suppose x, y, z form an acute triangle with
inimum side length at least ℓ. Then, if we know the positions of x, y, z with error at most η, and we
ave upper bounds d̂(u, v) on the Euclidean distances ∥u − v∥ for all v ∈ {x, y, z} with error ε̂, and all
f these distances are at most D, we can determine the position of u relative to x, y, z with error at most

C5
D(̂ε + η)

ℓ
, (20)

or an absolute constant C5.

roof. First, let us assume fixed positions for x, y, z within η of their estimated positions (which
we can always do so that they form an acute triangle). By the triangle inequality, this changes the
distances ∥u − v∥ for v ∈ {x, y, z} by at most ±η. Thus u is in the intersection U of three annuli,

U =

⋂
v∈{x,y,z}

B(v, d̂(u, v) + η) \ B(v, d̂(u, v) − η − ε̂) . (21)

Any point u′ in U gives an approximation of u’s position with error at most the Euclidean diameter
of U , namely maxu,u′∈U ∥u − u′

∥. We will show this diameter is bounded by Eq. (20).
We use some basic vector algebra. Let ε′

= ε̂ + 2η ≤ 2(̂ε + η). For any u, u′
∈ U we have, for all

v ∈ {x, y, z},

−ε′
≤ ∥u − v∥ − ∥u′

− v∥ ≤ ε′ .
19
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Since the triangle x, y, z is acute, at least one of its sides makes an angle ϕ with the vector u − u′

here 0 ≤ ϕ ≤ π/4. Taking this side to be (x, y) we have, without loss of generality,

(y − x) · (u − u′) = ∥y − x∥ ∥u − u′
∥ cosϕ ≥

√
1
2

∥y − x∥ ∥u − u′
∥ .

ext, we rewrite this dot product as follows,

2(y − x) · (u − u′) = ∥x − u∥2
− ∥x − u′

∥
2
− ∥y − u∥2

+ ∥y − u′
∥
2

= (∥x − u∥ − ∥x − u′
∥)(∥x − u∥ + ∥x − u′

∥)
− (∥y − u∥ − ∥y − u′

∥)(∥y − u∥ + ∥y − u′
∥)

≤ ε′(∥x − u∥ + ∥x − u′
∥ + ∥y − u∥ + ∥y − u′

∥) ,

here the first line is a classical polarization identity. Putting these together, we have

∥u − u′
∥ ≤

√
2

∥y − x∥
ε′

(
∥x − u∥ + ∥x − u′

∥ + ∥y − u∥ + ∥y − u′
∥
)

≤
4
√
2Rε′

ℓ
,

completing the proof with C5 = 8
√
2. □

emark 4.2. In our application, D is at most the diameter
√
2n of the square, ℓ = Ω(

√
n), and

= O(̂ε). Thus we can reconstruct u’s position relative to x, y, z with error O(̂ε).

Theorem 4.3. Let r = nα for a constant 0 < α < 1/2. There is an algorithm with running time
O(n2) that with high probability reconstructs the vertex positions of a random geometric graph, modulo
symmetries of the square, with distortion an absolute constant times ε̂ as defined in (18), i.e.

d∗
= C ′′

{
n

1
2 −

4
3 α if α < 3/8,

√
log n if 3/8 ≤ α < 1/2,

or some absolute constant C ′′.

roof. We use the fact, proved in [18], that w.h.p. the true positions of the lowest-degree vertices
re within

√
log n of the corners of the square, and we can find those lowest degree vertices in

O(n2). Call these vertices a, b, c, d.
We construct a good triple, i.e., deep vertices x, y, z that form an acute triangle with a minimum

ide length at least ℓ = 0.1
√
n. Recall that by the bounds of Theorem 3.9, with high probability any

triple of deep vertices whose graph distances are in the range [0.1
√
n/r, 0.14

√
n/r] qualifies.

There are many ways to find such a triple. One is to find a vertex x deep inside the square,
.g., with a graph distance at least 0.65

√
n/r from a, b, c, d. We can then take y to be any vertex

such that dG(x, y) is in the interval [0.1
√
n/r, 0.14

√
n/r], and z to be any vertex such that dG(x, z)

and dG(y, z) are both in this interval. At each stage of this process such a vertex exists with very
high probability, and by Theorem 3.9 and Lemma 2.6 all of them are deep. Finding x takes O(n)
ime by breadth-first search from a, b, c, d, and finding y and z similarly takes O(n) time each. (A
andomized algorithm can simply sampling triples uniformly at random: since a constant fraction
f triples qualify, this succeeds with high probability within O(log n) tries.)
Theorem 3.16 gives us estimated side lengths d̂(x, y), d̂(y, z), d̂(x, z) that have error ε̂. This lets us

stimate the positions of x, y, z modulo an isometry of R2, i.e. a translation, rotation, or reflection
f the plane. Equivalently, it lets us construct a triangle x, y, z which is congruent to their true
ositions up to distortion η = O(̂ε). Then we use Lemma 4.1 to reconstruct the position of each

vertex u relative to this triangle. Given d̂(u, v) for all v ∈ {x, y, z}, in (20) we have D ≤
√
2n and

ℓ ≥ 0.1
√
n, Lemma 4.1 gives us u’s position relative to x, y, z with error 10

√
2C5(ε + η) = O(̂ε).

This gives us a reconstruction up to an isometry as shown in Fig. 9. Finally, we rotate and
ranslate this reconstruction to the square [0,

√
n]2. It is easy to compute an isometry that sends

{a, b, c, d} to the corners [0,
√
n]2 with error d∗

= O(
√
log n): for instance, translate a to (0, 0) and
20
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Fig. 9. Our reconstruction is built around a triangle x, y, z of deep vertices. It may be translated, rotated, or reflected
in R2 by an isometry, but it can then be shifted to the square [0,

√
n]2 . Then it will be a good reconstruction up to a

otation or reflection of the square.

hen rotate one of the closer corners to (0,
√
n). This gives a reconstruction which, up to a rotation

r reflection of the square, has distortion d∗
= O(̂ε +

√
log n) = O(̂ε).

Step 1 can be done by breadth-first search, first from a, b, c, d and then from x and y, and thus
akes O(n) time. The bulk of the running time comes from computing the graph distances. Notice
e have a few real-valued and geometric calculations to do. In order to compute d̂(u, v) for all u
nd all v ∈ {x, y, z}, we need d̃(w, v) for all v ∈ {x, y, z} and all w with dG(w, v) ≤ 2. There are
(n2) such w. Inverting the function F in Eq. (5) is a matter of arithmetic; we need to do this to
(log r) ≤ O(log n) bits of precision, which can be done in polylog(n) time. Thus computing these d̃
an be done in time O(r2 polylog(n)), which is o(n) since α < 1/2.
Once we have the distance estimates d̂(u, v), finding estimated positions u in each region U

efined in Eq. (21) is a geometric calculation which can be done to O(log n) bits of precision in
olylog(n) time as in [18]. The same is true of computing the angle by which we need to rotate the
econstruction to [0,

√
n]2 after translating one corner to the origin.

Since the typical degree of a vertex is πr2 = Θ(n2α), the number of edges in G is w.h.p.
= Θ(n2α+1), which gives m = ω(n) and m = o(n2) since 0 < α < 1/2. Dijkstra’s algorithm

n a graph with n vertices and m edges runs in time O(m + n log n), so the running time is w.h.p.
(m). Thus the total running time is dominated by that of Dijkstra’s algorithm, which for simplicity
e bound as O(n2). □

emark 4.4. After we have reconstructed the positions of all vertices, i.e. their coordinates, we can
xtend our distance estimates to all the pairs u, v of vertices that are not deep, simply by estimating
u − v∥ as the distance between the reconstructed positions of u and v.

. Extensions to other domains

Our results can be generalized from the square to a number of alternative domains for random
eometric graphs, including to higher-dimensional Euclidean space and to some curved manifolds.
ere we show that our results extend to the m-dimensional hypercube and the 3-dimensional

phere, solving an open problem posed in [18].

21
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Fig. 10. The figure illustrates how we can bound the area of a lens using inscribed and circumscribed cylinders.

5.1. Reconstruction in higher-dimensional Euclidean space

The simplest generalization is where the underlying domain is [0, n1/m
]
m

⊂ Rm, i.e., an m-
imensional hypercube with volume n. Where m is fixed, i.e., it does not vary with n. Let the radius
f G be r . Then, n points are selected at random from the hypercube and pairs of them are adjacent
f they are within Euclidean distance r . As before, the goal is to reconstruct the points’ positions
ased on the adjacency matrix of the graph.
The following lemma generalizes Lemma 3.7, and relates the width of a lens defined as the

ntersection of two balls of radius r to its m-dimensional volume.

emma 5.1. Let B1, B2 be two overlapping Euclidean balls of radius r1 ≤ r2, respectively, in Rm. Consider
he lens L = B1 ∩ B2. Let ε denote the width of L, that is,

ε = min{r1 + r2 − d, 2r1},

here d is the distance between the two centers. Then the volume V of L satisfies

V = Θ

(√
εm+1rm−1

1

)
,

here the hidden constant depends only on m.

roof. Assume ε ≤ r1, since otherwise the upper bound follows trivially from the volume of the
all. Our lower bound for the case ε > r1 will follow from the case ε ≤ r1.
Let C be the cylinder circumscribed around L, with axis of symmetry the line joining the centers

of B1 and B2. Then C has height ε, and radius
√
r21 − (r1 − ε1)2 =

√
r22 − (r2 − ε2)2 = O(

√
r1ε1) =

(
√
r2ε2), where ε1, ε2 are the heights of the two spherical segments comprising L. Since ε1 ≤ ε,

e find that the volume of this cylinder is O(ε(
√
r1ε)m−1), as desired.

Similarly, if we scale down the height and radius of C by a factor of 2, and translate it
ppropriately, we can place this re-scaled cylinder completely within the lens L. This follows from
he fact that half the circumscribed rectangle can fit inside a two-dimensional lens (see Fig. 10) and
hat the lens and cylinders in question are volumes of revolution. Since this changes the volume
f the cylinder by a factor of 2−m this establishes the desired lower bound with a constant that
epends only on m. □

Given this relation between the width and volume of the lens, analogously to the work in
ection 3, we can compute both short and long range estimates of the distance, and then combine
hem into a hybrid estimate. The error in the hybrid estimate is given by the following theorem.

heorem 5.2. Let r = nα for a constant 0 < α < 1/m. For all pairs u, v where v is deep, define d̂(u, v)
e the hybrid estimate of the distance. Then with high probability, d̂ is an upper bound on the Euclidean
22
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distance ∥u − v∥ with error

ε̂(u, v) ≤ Cm

{
n

1
m −

2m
m+1 α

α < m+1
2m2 ,

√
log n m+1

2m2 ≤ α < 1
m ,

(22)

for some dimension-dependent constant Cm.

We omit the details of the proof except to comment that it closely follows the steps in Section 3.
In order to use the hybrid estimates for reconstruction, we need to find an appropriate number

of deep landmarks. By standard linear algebra, it suffices to have m + 1 landmarks that form a
non-degenerate simplex. As in the proof of Theorem 4.3, we can find an approximately equilateral
m-simplex in quadratic time, directly from the adjacency matrix of the graph. Finally, once we have
reconstructed the relative positions of all the points, it is easy to compute an isometry that shifts
the reconstructed hypercube to the origin.

In order to use the hybrid estimates for reconstruction, we need to find an appropriate number
of deep landmarks. By standard linear algebra, it suffices to have m + 1 landmarks that form a
non-degenerate simplex. As in the proof of Theorem 4.3, we can find an approximately equilateral
m-simplex in quadratic time, directly from the adjacency matrix of the graph. Finally, once we have
reconstructed the relative positions of all the points, it is easy to compute an isometry that shifts
the reconstructed hypercube to the origin.

Putting it all together we have the following theorem for reconstruction of RGGs in [0, n1/m
]
m.

Theorem 5.3. Let r = nα for a constant 0 < α < 1/m. There is an algorithm with running time
(n2) that with high probability reconstructs the vertex positions of a random geometric graph, modulo
ymmetries of the hypercube, with distortion

d∗
≤ Cm

{
n

1
m −

2m
m+1 α for α < m+1

2m2 ,
√
log n for m+1

2m2 ≤ α < 1
m ,

or some dimension-dependent constant Cm.

.2. Reconstruction on the sphere

Finally, we argue that our algorithm also works on some curved manifolds and submanifolds
here the geometric graph is defined in terms of geodesic distance. In particular we claim this for
he m-dimensional spherical (hyper)surface Sm of a ball in Rm+1. Here we sketch the proof for the
two-dimensional surface of a sphere in R3 (see Fig. 11). Note that the distortion is now defined by
minimizing over the sphere’s continuous symmetry group, i.e., over all rotations and reflections of
the sphere.

In previous work, the authors of [25] gave a procedure to distinguish random geometric graphs
on Sm from Erdős-Rényi random graphs. In addition, [22] gave a spectral method for reconstructing
random graphs generated by a sparsified graphon model on the sphere, but this does not include
the geodesic disk model we study here.

We define random geometric graphs on the sphere as follows. We scale the sphere so that its
surface area is n, setting its radius to R =

√
n/(4π ). We scatter n points uniformly at random on

t, or generate them with a Poisson point process with intensity 1. In either model the expected
umber of points in a patch of surface is equal to its area. We define the graph as (u, v) ∈ E if and
nly if ∥u − v∥g < r where ∥u − v∥g is the geodesic distance, i.e., the length of the shorter arc of a
reat circle that connects u and v. If we associate each point u with a unit vector u⃗ ∈ R3 that points
owards it from the center of the sphere, ∥u − v∥g is R times the angle between u⃗ and v⃗.

heorem 5.4. Let r = nα for a constant 0 < α < 1/2. There is an algorithm with running time
O(n2) that with high probability reconstructs the vertex positions of a random geometric graph, modulo
a rotation or reflection of the sphere, with distortion an absolute constant times n

1
2 −

4
3 α if α < 3/8 and√

log n if α ≥ 3/8.
23
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Proof Sketch. First note that objects of size o(R) act nearly as they do in the flat plane. In particular,
the neighborhood B(u, r) of each point u is a spherical cap with angular radius r/R. The area of this
ap is

2πR2 (1 − cos(r/R)) = πr2
(
1 − O(r2/R2)

)
= πr2

(
1 − O(r2/n)

)
.

f r = nα where α < 1/2, the area of this neighborhood is 1 − o(1) times the area πr2 of the
orresponding ball in the flat Euclidean plane. Similarly, Lemma 3.7 for the area of a lens-shaped
ntersection between two caps holds as long as r1, r2 = o(R).

The area of the lune B(u, r) \ B(v, r) is a continuous function F (∥u − v∥) analogous to Eq. (2),
nd if we define the short-range distance estimate d̃ as in Eq. (5) then Lemma 3.2 holds unchanged.
heorem 3.9 holds as well: the only significant change to the regions shown in Fig. 5 occurs if v is
early antipodal to x0 = u, but this only helps us since the greedy routing algorithm can get closer
o v by moving in any direction on its first step. Thus we can compute hybrid distance estimates
(u, v) as before, with error ε̂ as defined in (18).
If anything, the triangulation of Lemma 4.1 is easier on the sphere than on the plane. We can

asily find three points x, y, z whose pairwise geodesic distances are within O(
√
log n) of (π/2)R,

o that the vectors x⃗, y⃗, z⃗ are nearly perpendicular. We can start with any point x (conveniently, all
ertices are deep) and finding y and z takes O(n) time each: they exist with high probability since,
s in flat space, a spherical cap with radius Ω(

√
log n) is nonempty with high probability.

We start our reconstruction by assuming that x⃗, y⃗, z⃗ are the three orthonormal basis vectors in
R3. Then we can estimate u⃗ as

u⃗ ≈

∑
v∈{x,y,z}

v⃗(u⃗ · v⃗) =

∑
v∈{x,y,z}

v⃗ cos
∥u − v∥

R
≈

∑
v∈{x,y,z}

v⃗ cos
d̂(u, v)

R
,

ormalizing if we like so that ∥u⃗∥ = 1. This gives u⃗ with error O(̂ε/R), and mapping to the sphere
f radius R reconstructs u’s position relative to x, y, z with error O(̂ε). The right spherical triangle
ormed by our assumed positions for x, y, z is congruent to their true positions up to O(

√
log n).

o, up to some rotation or reflection of the sphere, this yields a reconstruction with distortion
(̂ε +

√
log n) = O(̂ε). □

Remark 5.5. We have taken advantage of the fact that the 2-sphere has a convenient embedding
in R3. A more general approach, which we claim applies to any compact Riemannian submanifold
with bounded curvature, would be to work entirely within the manifold itself, building a sufficient
mesh of landmarks and then triangulating using geodesic distance. In particular, in the popular
model of hyperbolic embeddings (e.g. [26–28]) where the submanifold is a ball of radius ℓ in a
egatively curved space with radius of curvature R, we believe similar algorithms will work as long
s ℓ/R = O(1). We leave this for future work.

. Missing edges

In this section, we will briefly address a variant of the random geometric graph model, in which,
efore we are given the adjacency matrix, each edge is, independently, kept with probability p,

and otherwise dropped. We will show that, in this setting, we can still accurately reconstruct the
positions of the vertices, as long as p is not too small.

There are several reasons for considering this sort of generalization of random geometric graphs.
It is a special case of a more general model in which, after placing the vertices in the plane, each
edge (v, w) is included with probability f (∥v −w∥) where f is an arbitrary function, often required
to be nonincreasing. For example

• The usual RGG model is a special case where f (x) = ⊮(x ≤ r).
• The model currently under discussion corresponds to f (x) = p ⊮(x ≤ r). This so-called ‘‘soft
RGG’’ model was studied by Penrose in [29].
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Fig. 11. Using three landmarks x, y, z on the sphere to triangulate to other points in Theorem 5.4.

• Kleinberg’s [30] small-world graph corresponds to f (x) = max{1, x−C
}, where C is a constant,

although in his model only the edges are random; the vertices form an n × n square array.
He also uses ℓ1 distance rather than ℓ2. An earlier small-world graph model due to Watts and
Strogatz [31] corresponds to f (x) = ⊮(x ≤ r)+p ⊮(x > r), although in that case, the underlying
graph is an n-cycle.

In the soft RGG model, since the average degree is now pπr2 except for vertices close to the
oundary of the square, and we clearly cannot reconstruct the location of an isolated vertex, we
an only hope to reconstruct locations when pr2 = Ω(log n). Let us make the somewhat stronger
ssumption that

p2r2 = Ω(log n) . (23)

his will ensure that whenever ∥u − v∥ ≤ r they almost surely have a common neighbor,
o dG(u, v) ≤ 2. Moreover, this condition will be sufficient to allow our short-range distance
econstruction procedure to succeed, with slight modifications. Under these assumptions, our main
rguments still work, with only minor modifications. The main technical issue is that, whereas
efore, for a region A ⊂ B(v, r) ∩ B(w, r), we could confidently predict that

|N(v) ∩ N(w) ∩ A| ≈ |N(v) ∩ A| ≈ |V ∩ A| ≈ area(A),

fter a 1 − p fraction of the edges have been dropped, we expect instead that

|N(v) ∩ N(w) ∩ A| ≈ p|N(v) ∩ A| ≈ p2|V ∩ A| ≈ p2area(A). (24)

y our assumption, (23), the above expectation is large enough to ensure that as long as the area of
is not too much smaller than πr2, |N(v) ∩ N(w) ∩ A| is concentrated near its expectation. For the

arger quantity |N(v) ∩ A|, the expected size is much larger, and, broadly speaking, we can handle
uch smaller regions, A.
25
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Proposition 6.1. Given the adjacency matrix of a graph G = G(n, r, p), where p and r are not given,
there is an efficient algorithm which estimates p and r accurately with error probability O(n−C ′

), for a
onstant C ′ > 0.

Proof Sketch. We can use the fact that for a deep vertex v, the expected degree is pπr2. And for
pair of deep vertices whose distance is x ≤ r , their expected co-degree, |N(v) ∩ N(w)| is p2F (x),
here F is the area of B(v, r)∩B(w, r), for which a formula was given in the proof of Lemma 3.2. This

can be used to deduce that the average co-degree of two adjacent vertices is, with high probability,
Cp2πr2, where C is a known constant. Combining this with the above prediction for the average
degree, we can recover accurate estimates for p and r . □

Short range distance estimates
Let G = G(n, r, p), where r p ≥ 100

√
log n. Suppose v, w are vertices for which dG(v, w) ≤ 2. We

ant to accurately estimate ∥v − w∥ as a function of |N(v) ∩ N(w)|. In light of (24), we can set

d̃(v, w) = F−1
(
max

{
F (r), πr2 −

|N(v) ∩ N(w)|
p2

})
here F , defined just before the statement of Lemma 3.1, is the function determining the area of
he lune B(v, r) \ B(w, r), so that πr2 − F is the area of the corresponding lens B(v, r) ∩ B(w, r).

heorem 6.2. Let G = G(n, r, p) where r p ≥ 100
√
log n. With probability at least 1 − 2/n2 we have,

or all vertices v ̸= w such that dG(v, w) ≤ 2 and v is deep,⏐⏐⏐∥v − w∥ − d̃(v, w)
⏐⏐⏐ ≤ Cη(∥v − w∥) log n , (25)

here C > 0 is a constant and η : [0, 2r] → [0, 1] is defined by

η(x) =

⎧⎨⎩
1
p

( 2r−x
r

)1/4
for 0 < x ≤ 2r −

(log n)2/3

r1/3
,

(log n)1/6

p r1/3
for 2r −

(log n)2/3

r1/3
≤ x ≤ 2r.

n particular, η(x) ≤
21/4
p < 1.2

p for all 0 ≤ x ≤ 2r.

Note that, because the asymmetric difference sets, N(v) \ N(w) are no longer contained within
he lune B(v, r) \ B(w, r), we are now basing our distance estimations only on the intersections
(v) ∩ N(w), which are still contained within the lens B(v, r) ∩ B(w, r). Consequently, our error
stimate η(x) no longer approaches zero as x → 0.

ong range distance estimates:
Here is our main theorem about long-range distance estimates with missing edges.

heorem 6.3. Let G = G(n, r, p), where r p ≥ 100
√
log n. There exist absolute constants C1, C2, C3

uch that, for all n ≥ 1, all r ≥ C1
√
log n, with probability at least 1 − C2/n2, all pairs of vertices u, v

atisfy⌈
∥u − v∥

r

⌉
≤ dG(u, v) ≤ max

{
2,

⌈
∥u − v∥ + κp−2/3

+ κ2p−4/3

r

⌉}
(26)

where κ is the same as in Theorem 3.9, namely,

κ = C3

(
∥u − v∥

r4/3
+

log(n)
r1/3

)
(27)

nd κ2 is given by

κ2 =
C4(log n)2/3

.

r1/3

26
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There are three differences between the conclusion of Theorem 6.3 and the original Theorem 3.9.
irstly, the original error term, κ , is now scaled by a factor of p−2/3, because the greedy algorithm

now makes less progress per step on average, due to the culled edges. There is also a second error
term, κ2 due to the possibility that the final edge for the greedy algorithm may have been dropped.
To avoid this, we stop running the greedy algorithm once the distance to the target vertex gets
a little smaller than 2r , and directly verify that almost surely only two more hops are required.
Finally, in case we start out at Euclidean distance less than r , we still may need two hops, hence
the ‘‘max’’ in the formula.

Hybrid distance estimates:
Finally we use the framework of Section 3.3 to create hybrid estimates of long-range distances.

That is, we set

d̂(u, v) = min
w:dG(w,v)≤2

d1(u, w) + d2(w, v) (28)

where d1 is the long range estimate and d2 is the short-range estimate defined above. Then, our
main result is to compute the region of r and p for which reconstruction is possible. Specifically,

Theorem 6.4. Let r = nα and p = n−γ for constants 0 ≤ γ ≤ α ≤ 1/2. For all pairs u, v where v

is deep, define d̂(u, v) as in Eq. (17). Then with high probability, d̂ is an upper bound on the Euclidean
distance ∥u − v∥ with error

ε̂(u, v) ≤ Cnλ/6 log(n), where λ = max {6γ , 3 − 8α + 4γ } (29)

and C is a constant.

For this result, we use our previously established hybrid distance construction, based on Theo-
rems 6.2 and 6.3. For the short-distance estimates, we have error uniformly upper-bounded by 1/p,
which is O(r

√
log n). For the long-range estimate, the error is smallest when the Euclidean distance

is close to a multiple of r , in which case it is approximately κ

p2/3
+

κ2
p4/3

. So the hybrid distance is
ikely to select a waypoint close to a multiple of r units from the landmark, and have total error

1.2
p

+
κ

p2/3
+

κ2

p4/3
.

lugging in r = nα and p = n−γ , and doing a case analysis to identify the largest of the above three
rror terms, we deduce the result.

orollary 6.5. For p = Θ(1) and r ≥ n3/8, d̂ is an upper bound on the Euclidean distance ∥u − v∥

ith error O(log n). For r = nα and p = n−γ , where 3 + 4γ ≤ 14α and γ ≤ α < 1/2, d̂ is an upper
ound on ∥u − v∥ with error O(r log n).

. Conclusions and further work

We have shown how a combination of geometric and analytic ideas can be used to reconstruct
andom geometric graphs with lower distortion than in previous work [18], achieving a distortion
f o(r) whenever r = nα for α > 3/14. Here we pose several questions for further work.
First, let us call a reconstruction φ consistent if its distances are consistent with the graph: that

s, if (u, v) ∈ E if and only if ∥φ(u) − φ(v)∥ ≤ r . Even if φ has small distortion d∗, it might not be
onsistent: some edges (u, v) ∈ E might have ∥φ(u) − φ(v)∥ between r and r + 2d∗, and similarly
ome non-neighboring pairs might have ∥φ(u) − φ(v)∥ between r − 2d∗ and r . To the best of our
nowledge, even finding a single consistent embedding for random geometric graphs is an open
uestion. It might be possible to refine our embedding to make it consistent, by using ‘‘forces’’ to
ove neighbors slightly closer together, and push non-neighbors farther away.
Secondly, a natural question is whether we can prove a significant lower bound on the distortion.

n information-theoretic approach to this question would be to show that even the Bayesian
lgorithm, which chooses from the uniform measure on all consistent embeddings, has a typical
27
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distortion. We have been unable to prove this. However, here we sketch an argument that there
exist consistent embeddings with a certain distortion by applying a continuous function f to the
square [0,

√
n]2 that ‘‘warps’’ the true embedding. If f ’s derivatives are at most δ in absolute value,

hen for each v, points close to the edge of v’s neighborhood may move O(δr) closer or farther
way. However, a typical v has some ε = O(1/r) for which there are no points whose distance is
etween r − ε and r + ε, since the area of the corresponding annulus is O(1). This suggests that if
= O(ε/r) = O(1/r2), the warped embedding is still consistent (except for a few vertices where
e need to be more careful). On other hand, even if f does not change the distance between nearby
ertices very much, it can still move some vertices δ

√
n from their true positions, giving a distortion

d∗
= Ω(

√
n/r2). If r = nα this gives Ω(n1/2−2α).

Even if this lower bound can be made rigorous, and even if it applies to typical consistent
mbeddings rather than just a few, there is a large gap between it and our upper bounds. Thus
t is tempting to think that our algorithm can be improved, reducing the distortion still further.
ne approach would be to try to extend the geometry of overlapping disks in Theorem 3.6 to larger
raph distances. Another would be to combine them with the spectral ideas of e.g. [22].
Thirdly, we would like to extend the results of Section 6 to other soft RGG models where

u, v) ∈ E with probability f (∥u − v∥) for some known function f . It is fairly easy to generalize our
rguments to families of functions where f (x) = 0 for x > r so that the bound dG(u, v) ≥ ∥u− v∥/r

still holds, although things change if f (x) tends to zero as x approaches r from below. For instance,
if f (x) = (1 − x/r)ζ for some constant ζ > 0, the expected number of edges from u to a lens of
idth δ and area A just inside B(u, r) is Θ((δ/r)ζA) = Θ(δ3/2+ζ r1/2−ζ ). In order for there to be

Θ(1) such edges, so that the greedy routing of Theorem 3.9 can succeed, we need to use lenses of
width δ = Θ(r−(1−2ζ )/(3+2ζ )) rather than Θ(r−1/3), altering the exponent in one of our error terms.
Similarly, while we can carry out short-range estimates by replacing F (x) in (2) with an appropriate
integral, the error bounds in Theorem 3.6 would change when ∥u − v∥ is close to zero or close to
2r .

Perhaps the more interesting question is how to reconstruct vertex positions when f (x) > 0
for all x ∈ R+: for instance, if f (x) = e−x/r . In that case, there are a small number of ‘‘long-
range’’ edges (u, v) in the graph where ∥u − v∥ ≫ r . As a consequence, for some pairs we have
dG(u, v) ≪ ∥u−v∥/r . Our intuition is that in this case, a greedy routing will not always give a good
upper bound on dG(u, v), since it may be worth going ‘‘out of your way’’ to use these long-range
edges in your path. At the same time, spectral methods may continue to perform well in this context.
We leave this as a challenge for the future.

Finally, we would like to see how far these techniques can be extended to curved manifolds and
submanifolds with boundary. In Theorem 5.4 we took advantage of the fact that the 2-sphere has
a convenient embedding in R3. A more general approach, which we claim applies to any compact
Riemannian submanifold with bounded curvature, would be to work entirely within the manifold
itself, building a sufficiently dense mesh of landmarks and then triangulating within mesh cells. In
particular, in the popular model of hyperbolic embeddings (e.g. [26–28]) where the submanifold
is a ball of radius ℓ in a negatively curved space with radius of curvature R, we believe similar
algorithms will work as long as ℓ/R = O(1). We leave this for future work.
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