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Abstract: Freshwater scarcity has driven the integration of technological advancements and au-
tomation systems in agriculture in order to attempt to improve water-use efficiency. For irrigation
canals, water-use efficiency is, in great measure, limited by the performance of management systems
responsible for controlling the flow and delivering water to the farmers. Recent studies show a signif-
icant sensitivity of the results obtained from irrigation canal control algorithms with respect to the
Manning’s roughness coefficient value, thus, highlighting the importance of its correct estimation to
ensure an accurate and efficient water delivery service. This is the reason why the friction coefficient
algorithm was developed, to monitor the real behaviour of any irrigation canal by calculating the
Manning’s roughness coefficient constantly. The friction coefficient algorithm was conceived as a
powerful offline tool that is integrated in a control diagram of any irrigation canal, concretely in an
optimization control algorithm, which can reconfigure canal gates according to the current crop water
demand and the real Manning’s roughness coefficient values. The friction coefficient algorithm has
been applied in several irrigation canals and different scenarios, with accurate results obtaining an
average Manning coefficient deviation among 2 × 10−4 and 4.5 × 10−4.

Keywords: agricultural demands; irrigation canal control; Manning’s roughness coefficient; parame-
ter identification; open channel flow; optimization algorithms

1. Introduction

Though water covers approximately 71% of Earth’s surface, only a small percentage
(2.5% of the total water) is deemed profitable by the great majority of living organisms,
which is generally referred to as freshwater. In fact, only 1.2% of fresh water (0.03% of
total water on Earth) is considered to be easily accessible surface water and is, for the most
part, found in ground ice, lakes, rivers, swamps, and the atmosphere, while the remaining
98.8% of freshwater is either located in glaciers and ice caps or composed of groundwater
(see, Figure 1). The scarcity of reachable freshwater may be further aggravated by the
current prospects of future human water consumption. The world population is rapidly
growing, with expectations of reaching 8 billion people in 2030 and just shy of 10 billion
people in 2050 according to United Nations [1], both of which are figures that suggest an
imminent drive in global food demand. More precisely, recent studies place estimations of
food consumption at an increase of 50% by 2030 and 70% by 2050 as a result of population
growth, higher income per capita, and structural changes in diets, according to Alexandros
and Bruinsma [2].

Bearing in mind the fact that agriculture is one of the main sources for providing food
to the population and that 70% of the global freshwater is destined for irrigated agriculture
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purposes according to United Nations [3], it becomes evident that freshwater demand will
inevitably escalate to an unprecedented level.
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Figure 1. Water distribution on Earth [4].

This is the reason why governments realized that they must face freshwater scarcity
by driving the integration of technological advancements and automation systems in
agriculture in order to attempt to improve water-use efficiency [5]. In that sense, control
algorithms aid us to increase the efficiency in canal management [6,7]. Many algorithms, in
particular open-loop algorithms, have difficulties and failures in the implementation in real
canals [8]. These difficulties are due to deviations between the predictive/control model
and the reality frequently because disturbances are quite difficult to be considered.

The disturbances introduced into the canal lead to important deviations between the
model and the reality. In that sense, Manning’s roughness coefficient values are behind
the deviations between models and reality, in the case of these values not being carefully
identified. For instance, Manning’s roughness coefficient does not change suddenly but
progressively, introducing an important accumulated water level error along the canal.

The main problem in an irrigation canal is the disturbances caused by climatic vari-
ations (rainfalls and associated runoff), unscheduled demands by farmers (due to soil
moisture and crop water requirements), and Manning roughness coefficient value errors,
which are more difficult to mitigate by a controller. In such a case, an overall control
diagram was proposed regarding the CSE algorithm [9] (see Figure 2), which is an excel-
lent tool to approach the unscheduled demands in a canal (in real time), and the friction
coefficient algorithm (FC algorithm), proposed in this paper, is a useful tool to identify the
real Manning roughness coefficients in a canal (off-line), which is actually the research gap,
and several authors have introduced different approaches to solve the issue [10–12].

In case such disturbances are identified, feedforward controllers such as GoRoSo [13,14]
and/or feedback controllers such as GoRoSoBo [15], and predictive control [16], could provide
canal gate trajectories to reach the water management objective, that is, keep the water level at
cross-sections at the target water level.

In this paper, the FC algorithm has been described and tested in several practical
examples. First at all, the algorithm was tested in a canal with two single pools; the
geometry of the canal is based on previous works [9]. In a second example, the algorithm
was also tested with the tests cases [17] introduced by the ASCE task committee on canal
automation algorithms.
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2. Materials and Methods
2.1. Control System Scheme

Control systems for irrigation canals were developed with the purpose of improving
water operation tasks by providing the water demands at specific cross-sections in a period
of time. In that sense, the main tools of a control system in irrigation canals are online
and offline control algorithms, which are able to set operations (mainly gate movements)
regarding water demands and redress pre-established operations in the case of unexpected
disturbances (unknown flow disturbance or Manning roughness coefficient changes); see
Figure 2.

All these operations are based on several tools and control algorithms, where all of
them are synchronized, working together to fulfil a same objective, that is, water sav-
ings, efficiency, and sustainability. For this reason, the constitution of any modern online
predictive control model requires the contribution of multiple different algorithms. The
coordination and order of succession of the algorithms is indispensable for the performance
of the off-line and online predictive control, since each algorithm develops a specific task,
see [18,19].

The specific task and process developed by each algorithm in the overall control
diagram is out of the scope of this paper (see E. Bonet Gil (2015) [19]).

In this paper, we focus on off-line parameter identification, because a small error in the
estimation of any of these empirical parameters may introduce larger errors in the system.
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Precisely, the objective of “Off-line Parameter Identification” algorithms is to avoid this
kind of errors by regularly providing an updated estimation of their values.

«Crop needs and desired hydrographs for canal outlets»: the hydrographs at the
lateral diversion points of the main canal are calculated on the basis of the water demands.
They are fixed considering the farmer requirements and others demands accepted by the
watermaster. The behaviour of the canal supplying these hydrographs determines the
“desired behavior” (Y*) at several cross sections.

«Off-line Computation of the reference trajectories»: the desired behavior (Y*) must
be transmitted to the “Reference Trajectories Calculation” algorithm that determines the
positions of each gate. This algorithm calculates the optimum behavior (YR (reference water
level)), which is the one most similar to the desired behavior that is physically possible.
We call “UR” the optimum gate trajectories calculated to obtain the optimum behavior
(YR). They must be calculated off-line (e.g., with an anticipated irrigation cycle). There is
an extensive bibliography of feedforward control algorithms that compute the reference
trajectories, such as GoRoSo [13].

The FC algorithm, presented in this paper, is conceived as an algorithm that forms
part of the “Off-line Parameter Identification” process in the overall control diagram of an
irrigation canal. In particular, out of all the existing physical parameters, the algorithm
focuses on estimating the Manning roughness coefficient of irrigation canals, which has
proven to be the most influential in terms of the sensitivity of the outcome of any control
algorithm with respect to canal behavior.

The FC algorithm solves an inverse problem, shown in Equation (1), implemented
as an unconstrained nonlinear optimization problem using the Levenberg–Marquardt
method, whose solution is the partial derivatives of water level versus Manning roughness
coefficients at several points in the canal, usually next to the canal offtakes.

∆Y = [HIM′(n)]∆n

∆n = [HIM′(n)]−1∆Y

[HIM′(n)] = ∂Y
∂n

[HIM(n)] =
(

∂Y
∂n , ∂V

∂n

) (1)

where ∆Y represents the changes in water level at selected points of the canal, ∆n represents
a change in the Manning’s roughness coefficient, HIM(n) is the hydraulic influence matrix
that represents the influence of Manning’s roughness coefficient on the water level and
velocity along the canal, and HIM’(n) is the simplified hydraulic influence matrix that
represents the influence of a Manning’s roughness coefficient on the water level at different
points of the canal, see [18,19].

2.2. The HIM Matrix

The HIM matrix defines the influence of the Manning’s roughness coefficient of any
canal reach [20,21] over the hydraulic behaviour of canal cross-sections, generally limited
to checkpoint sections. It is established using the full Saint-Venant equations, which are
based on the conservation of mass and momentum and represent the governing equations
in unsteady open canal flow. In their non-conservative form, they constitute a non-linear,
second-order, hyperbolic system of partial differential equations (PDE), see [19].

As with any hyperbolic system, it can be transformed into its characteristic form.
Such transformation of the Saint-Venant equations provides an ordinary system of four
equations (2).

dv
dt +

g
c(y)

dy
dt = g

[
S0 − S f (y, v)

]
dv
dt −

g
c(y)

dy
dt = g

[
S0 − S f (y, v)

]


dx+
dt = v + c(y)

dx−
dt = v− c(y)

 S f (y, v) = n2 v|v|

R
4
3
H

c(y) =

√
gA(y)
T(y)

(2)
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where y is the level of the free surface with reference to the canal bottom, v is the weighted
average velocity of all the particles in a canal cross-section, t is the time, S0 is the canal
bottom slope, Sf (y, v) is the friction slope, and c is the celerity of a gravity wave, where
A(y) is the area of the wetted surface or a cross-section of the flow and T(y) is the top width
of the free surface.

Equation (2) cannot be solved analytically, thus, the use of numerical techniques
becomes indispensable, with a wide range of methods being able to be used. In hopes of
achieving the largest possible integration time-steps without loss of accuracy, a particular
discretization in finite differences of the second order has been adopted, referred to as
the discretization method of characteristic curves in [22]. Applying the cited method to
Equation (2), and taking into account the characteristics curves that contain the points P–R
and Q–R (Figure 3), the ensuing equations can be obtained.
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Figure 3. The steps for the interpolation onto a structured grid: (a) overlapping of the family of
characteristic curves, (b) introducing the variables for every point (for instance P’ and Q’) to a
structured mesh, (c) variables are interpolated at a particular mesh points P and Q.

The way of calculating the influences shown in this section is closely linked to the
numerical scheme followed by the characteristic curves. However, this specific scheme
is not employed, since it results in the solution at a point R whose coordinates (xR,tR)
are unknown a priori. These coordinates form part of the solution corresponding to the
previous numerical scheme, although knowing the solution of the flow conditions at specific
point and at specific time instants tends to be more useful, which, in the present case, would
translate into treating (xR,tR) as input variables as opposed to solution variables. In order
to overcome this problem, a new approach centered on first interpolating and then solving
the system is introduced (Figure 3).

A structured grid such as this one (Figure 3) creates a new nomenclature. Indeed,
every variable is denoted by a double index, where k refers to time and i to space. As
such, yik and vik represent the values for water level and average velocity at the coordinates
xi = i∆x and tk = k∆t where ∆x and ∆t are selected by the user.

Furthermore, there are many control structures in canals. The individual study of each
one is not feasible in this work, hence, only the most usual structures are introduced. A
common characteristic is a checkpoint structure (Figure 4), which is a target point where
the water level is measured with a depth gage, and it comprises a sluicegate, a lateral weir
outlet, and an offtake orifice or a pump (shown in [23,24]). The interaction of this control
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structure with the flow may be described according to the mass and energy conservation
equations, shown in Equation (3).

S(ye)
dye
dt = A(ye)ve − qb − qs(ye)− A(ys)vs − qo f f take(ye)

A(ys)vs = kcu
√

ye − ys + d

qs(ye) = CSaS(ye − y0)
3
2

qo f f take(ye) = C0 A0
√

2gye
kc =

√
2gCdac

(3)
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• ve is the weighted average velocity of all the particles in a canal cross-section;
• ye is the water level of all the particles in a canal cross-section;
• S(ye) is the horizontal surface of the reception area in the checkpoint;
• A(ye)*ve is the incoming flow to checkpoint, defined in terms of water level and velocity;
• A(ys)*vs is the outflow from the checkpoint that continues along the canal, described

in terms of water level and velocity;
• Cd is the discharge coefficient of the sluicegate and ac is the sluicegate width;
• d is the checkpoint drop, and u is the gate opening;
• qb is the pumping offtake;
• qs(ye) is the outgoing lateral flow through the weir where Cs is the discharge coefficient,

as is the weir width, and y0 is the weir height measured from the bottom, called
weir equation;

• Qofftake(ye) is the outflow orifice flow where C0 is the discharge coefficient, A0 is the
area of the offtake orifice, called orifice offtake equation;

• u is the open gate height

The presence of checkpoints (target points) or control structures along the canal leads
to its sub-division into canal pools, in a way that there is always a canal pool between
two checkpoints, and there is a checkpoint between two pools. By discretizing the control
structure equations in a structured grid, taking into account the previous characteristic
Equation (2) and adopting a common nomenclature, the control structure Equation (3)
are re-written as indicated in the following system, composed of six equations, shown in
Equation (4); see Figure 5.
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Figure 5. Graph with discretization of the control structure equation.

In that way, yn
k+1 represents the water level at node n at the section upstream of the

control structure at time k + 1, that is, the incoming water level yi. In the same way, y1
k+1

is defined as the existing water level at the first node of the downstream pool from the
checkpoint at the same time k + 1, and yo the outgoing water level at the control structure.
The same terminology reasoning may be applied for the velocities vn

k+1 and v1
k+1.

f1 ≡ xn − xP − 1
2 ∆t
[
vk+1

n + ck+1
n + vP + cP

]
= 0

f2 ≡
(

vk+1
n − vP

)
+ g

2
ck+1

n +cP
ck+1

n cP

(
yk+1

n − yP

)
− g∆t

(
S f

k+1
n +S fP

2 − S0

)
= 0

f3 ≡
(

vk+1
1 − vQ

)
− g

2
ck+1

1 +cQ

ck+1
1 cQ

(
yk+1

1 − yQ

)
− g∆t

(
S f

k+1
1 +S fQ

2 − S0

)
= 0

f4 ≡ xk+1
1 − xQ − 1

2 ∆t
[
vk+1

1 − ck+1
1 + vQ − cQ

]
= 0

f5 ≡ A
(

yk+1
n

)
vk+1

n − qb − qs

(
yk+1

n

)
− A

(
yk+1

1

)
vk+1

1 − qo f f take

(
yk+1

n

)
= 0

f6 ≡ A
(

yk+1
1

)
vk+1

1 − kcu
√

yk+1
n − yk+1

1 + d = 0



(4)

where
∆t = tk+1−tP = tk+1−tQ;
yP(xP) = s(xP,yn-2

k,yn-1
k,yn

k); yQ(xQ) = s(xQ,y1
k,y2

k,y3
k);

vP(xP) = s(vP, vn-2
k,vn-1

k,vn
k); vQ(xQ) = s(xQ,v1

k,v2
k,v3

k);
cn

k+1 = c(yn
k+1); c1

k+1 = c(y1
k+1);

Sfn
k+1 = Sf(yn

k+1,vn
k+1); Sf1

k+1 = Sf(y1
k+1,v1

k+1).
On the other hand, xP, yn

k+1, vn
k+1, y1

k+1, v1
k+1, and xQ remain as the unknown

variables of the problem, which consists of finding the influences of the Manning roughness
coefficient (n) on the flow conditions along the canal.

In (5), the Manning roughness coefficient (n) explicitly appears in the description
for the first time. Despite the fact that the specific form of this function is still unknown,
(5) shows that the influence of the parameter n on flow conditions at time k + 1 is the sum of
the indirect influence of the conditions at instant k and the direct influence at instant k + 1
through the term “L”, which represents the variation in the Manning roughness coefficient.
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Here

M
∂

∂n



xP
yk+1

1
vk+1

1
yk+1

n
vk+1

n
xQ


= NS

∂

∂n



yk
n−2

vk
n−2

yk
n−1

vk
n−1
yk

n
vk

n
yk

1
vk

1
yk

2
vk

2
yk

3
vk

3



+ L (5)

where
M = ∂( f1, f2, f3, f4, f5, f6)

∂(xP ,yk+1
n ,vk+1

n ,yk+1
1 ,vk+1

1 ,xQ)

N = − ∂( f1, f2, f3, f4, f5, f6)

∂(xP ,yP ,vP ,yQ ,vQ ,xQ)

L =
(

0 ∂ f2
∂n

∂ f3
∂n 0 0 0

)T

S =
∂(xP ,yP ,vP ,yQ ,vQ ,xQ)

∂(xP ,yk
n−2,vk

n−2,yk
n−1,vk

n−1,yk
n ,vk

n ,yk
1,vk

1,yk
2,vk

2,yk
3,vk

3,xQ)
As a summary, the method of characteristics is applied to the Saint-Venant equations

in order to obtain a set of algebraic equations that establish a relationship between the
influence parameter n and the hydrodynamic canal state, lumping all the influences together
in a global matrix, which is referred to as HIM(n). Based on this system of equations and
employing the first derivative (∂y/∂n, ∂v/∂n) in an analytical process, the changes in flow
behavior (water level and velocity) due to a change in Manning’s roughness coefficient at a
point at a certain time instant may be determined.

2.3. The Optimization Problem

The inverse problem shown in Equation (1) is formulated as an unconstrained opti-
mization problem. It is the classical non-linear least-squares problem without constraints
and is solved, in this case, by means of the Levenberg–Marquardt method, which consists
of an iterative algorithm.

To introduce the optimization problem, some vectors used in the development must
be evaluated. As explained before, the FC algorithm requires, as input data, the water level
measured at some points (checkpoints) for a past-time horizon fixed by the watermaster.
Now, consider a vector (measured water-level vector), which contains the water-level
measurements at the checkpoints from the time instant 1 to kF (6) whose dimension is ny,
where ny = kF × nc, where kF is the final instant of the past-time horizon, and nc is the
number of checkpoints. The measured water-level vector is then defined as:

Y∗ =
[
y1
∗(1), y1

∗(2), . . . , ync
∗(kF − 1), ync

∗(kF)
]T (6)

The corresponding values to this vector may be checked in a computational grid in
Figure 6 (big red dots).
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“K” with capital letter denotes time interval of control and “k” with small letter denotes time instant
of simulation.

Similarly, the “predicted output vector” Y(k) may be obtained, which is defined as
the vector containing the simulating water level (small yellow dots) from the output data
predicted by the FC algorithm at the time instant k for all the discretization points in
the canal:

YkF
1 = [y1(1), y1(2), . . . , ync(kF − 1), ync(kF)]

T (7)

The predicted output vector at the current time defines the simulated water level in a
computational grid in Figure 6 (small yellow points).

Due to the fact the optimization process only considers the differences in water level
between the measured and simulated values at target points, it is necessary to gather these
corresponding values resulting from the algorithm.

As previously anticipated, the FC algorithm calculates the resulting Manning rough-
ness coefficient trajectories at several points (for instance, canal pools) during a past-time
horizon. In that case, as illustrated in Figure 7, it is assumed that the friction coefficient of a
canal pool value may be susceptible to variations at every operation period K. In that way,
the Manning roughness coefficient trajectories can be approached by piecewise functions.
The Manning roughness coefficient trajectories vector is defined by lumping together all
the roughness coefficient trajectories during the past-time horizon, as follows:

n =
[
n1(1), . . . , nnp(1), . . . , . . . , n1(KF), . . . , nnp(KF)

]T
(8)
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Figure 7. Mathematical representation of a Manning roughness coefficient trajectory.

With the dimension of this vector being nn = np × KF, where np is the number of canal
pools and KF is the final operation period of the past-time horizon.

To sum up, the FC algorithm calculates the Manning roughness trajectories (∆n), which
reduce the error (∆Y) between measured and simulated water levels at specific cross-section
in a period of time.

In terms of the optimization problem, the objective is to make the simulated water-
level vector as similar as possible to the measured water-level vector by manipulating
the Manning roughness coefficient trajectories vector, see [24,25]. In mathematical terms,
the objective is to obtain the Manning roughness coefficient trajectories vector (n) that
minimizes the following performance criterion:

Minimize J(n) =
1
2
(YKF

1 (n)−Y∗)
T
[Q]
(

YKF
1 (n)−Y∗

)
(9)

where J(n) is the objective function, Y(n) is the prediction output vector, Y* is the mea-
sured water-level vector, Q is a weighting matrix, and n contains the Manning roughness
coefficient trajectories (8).

3. Practical Examples, Results, and Discussion
3.1. Practical Example: A Canal with Two Pools

In this example, we proposed several scenarios in order to test the FC algorithm in
a canal that has two pools separated by sluicegates (Figure 8). The flow is controlled by
a gate downstream from the reservoir. Water is delivered through gravity outlets at the
downstream end of each pool, where the checkpoints are located. There are pumping
stations at the end of each pool, which can introduce disturbances in the system in space
and time.
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Figure 8. Canal profile of a canal with two pools (the arrows represent the outlet flow for the
offtake orifice).

The canal with a trapezoidal section is represented in Figure 8, and the general data
(Mannings coefficient, canal depth, pool length, bottom slope, side slopes, and bottom
width) are shown in Table 1. The characteristics of checkpoint, sluicegate, pump station,
and orifice offtake are shown in Table 2:

Table 1. General canal features.

Pool Number Pool Length
(km)

Bottom Slope
(%)

Side Slopes
(H:V)

Manning’s
Coefficient

(n)

Bottom Width
(m)

Canal Depth
(m)

I 2.5 0.1 1.5:1 0.025 1 2.5

II 2.5 0.1 1.5:1 0.025 1 2.5

Table 2. Checkpoints and sluicegate/pump station/orifice offtake features (control structure).

Number of
Control

Structure or
Checkpoint

Gate
Discharge
Coefficient

Gate Width
(m)

Gate Height
(m)

Step
(m)

Discharge
Coef./Diameter
Orifice Offtake

(m)

Orifice
Offtake

Height (m)

Lateral
Spillway

Height (m)

Lateral Spillway
Width

(m)/Discharge
Coefficient

0 0.61 5.0 2.5 0.6 - - - -
1 0.61 5.0 2.5 0.6 0.6/0.77 1.0 2.3 500/1.99
2 - - - - 0.6/0.77 1.0 2.3 500/1.99

In this test, an upstream large reservoir is considered, whose water level Hreservoir is
constantly 3 m throughout the test. At the end of the last pool, there is a control structure
with an orifice offtake and a pump station. The flow through the orifice offtake depends on
the upstream water level of the orifice and the gate position and water demands depend on
the scenario. In any case, there is an orifice offtake, pump station, and checkpoint at the end
of every pool. This example starts from an initial steady state, where the upstream boundary
condition is a flow rate through gate one of 10 m3/s, and the checkpoint condition (at the
end of each pool) is a water level of 2.0 m, which involves a constant flow rate (scheduled
demand) of 5 m3/s by the orifice offtake regarding the initial canal conditions (Manning’s
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coefficient [26,27], gate position, etc.). Furthermore, the water level is measured at every
checkpoint every 5 min during an operational horizon of 4 h.

These initial conditions are established in a way that an initial steady state is exhib-
ited in the canal considering a Manning’s roughness coefficient equal to nobj = 0.025 for
both pools.

The main objective on this test is to check the FC algorithm performances and accuracy.
For this reason, we test a two-pool canal using the FC algorithm in order to identify its
real Manning coefficient (nobj = 0.025). This test is performed using two different scenarios
in an irrigation canal under unsteady flow conditions, as irrigation canals are frequently
operating under unsteady flow conditions so the algorithm must be able to obtain the
Manning coefficient under these conditions. In that sense, we are testing two scenarios. In
the first, the gate position changes during the operating time horizon and in the second,
that water demand changes during the operating time horizon.

In order to evaluate the accuracy of the FC algorithm, we use a performance in-
dicator that examines the deviations in the absolute value between those calculated by
the algorithm and the objective Manning’s roughness coefficient trajectories (n and nobj,
respectively), which is mathematically expressed as the norm of the vector difference:

ε(n) =
∥∥∥n− nobj

∥∥∥ (10)

3.1.1. Scenario One: Changes in Gate Position

This scenario stars from an initial canal steady state. However, this steady state is
disrupted by the introduction of a known disturbance in the canal by changing the initial
gate position (gate one) during the simulating time horizon of 4 h. In particular, the opening
of the first gate of the canal is increased by 30% for 25 min, from minute 45 until minute 70,
while the opening of the second gate remains in the same position during the simulating
time horizon.

The initial Manning’s roughness coefficient trajectories considered by the FC algorithm
is 0.035 during the simulating time horizon.

Results

The water level measurements at checkpoints resulting from scenario one is shown in
Figure 9. Up until minute 45, the canal presents the initial steady state. Then, the sluicegate
located at the upstream node of the canal opens up more, which increases the water level
from 2 m to 2.21 m at checkpoint one.

3.1.2. Scenario One: Results

After completing the input of the inverse problem (water level measurements, gate
trajectories, pump flow trajectories, and scheduled deliveries), the FC algorithm is tested
regarding scenario one. The results of the Manning’s roughness coefficient trajectories
predicted by the algorithm are displayed in Figure 10.
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Figure 10. Manning’s roughness coefficient trajectories at pools one (red line) and two (blue line) in
scenario one.

The estimated Manning’s roughness coefficient trajectory corresponding to the second
pool fits exactly with the real trajectory for all regulation periods. Instead, the determined
Manning’s roughness coefficient trajectory of the first pool does exhibit slight differences
with respect to the real values of nobj = 0.025 during the middle part of the simulation,
although the biggest Manning coefficient deviation (among real and calculated) is around
1 × 10−3 and the average Manning roughness coefficient for the second canal pool is 0.02498
(that is, a Manning coefficient deviation of 2 × 10−4). In this scenario, the performance
indicator value (ε(n)) is equal to 4.69 × 10−3.
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3.1.3. Scenario Two: Changes in Water Demand

The following scenario is built upon the premise that the scheduled deliveries of
water are no longer constant throughout the simulation while the rest of variables remain
the same. The water demand through the first gravity outlet increases from 5 m3/s to
6.5 m3/s, only from minute 45 until minute 70, which is also the time interval used in the
previous scenario.

The initial Manning’s roughness coefficient trajectory considered by the FC algorithm
is 0.035 during the simulating time horizon.

The water level at the first checkpoint is 2 m until the scheduled delivery suddenly
increases at minute 45 due to changes in water demand. From there, the water level drops
down to a minimum of 1.73 m and quickly starts to recover once the water demand reverts
to 5 m3/s, returning to the initial steady state (see Figure 11).
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Figure 11. Water level at the checkpoints one (red line) and two (blue line) in scenario two.

3.1.4. Scenario Two: Results

After completing the input of the inverse problem (water level measurements, gate
trajectories, pump flow trajectories, and scheduled deliveries), the FC algorithm is tested in
scenario two. The results of the Manning’s roughness coefficient trajectories predicted by
the algorithm are displayed in Figure 12.

The FC algorithm is nearly able to produce perfect results as both pool trajectories
show values very close to nobj = 0.025. The biggest Manning coefficient deviation is lower
than 1 × 10−3 and the average Manning coefficient for the second canal pool is almost
the objective Manning’s roughness coefficient. In scenario two, the performance indicator
(ε(n)) of the Manning’s roughness coefficient is equal to 2.691 × 10−3. Therefore, the FC
algorithm is able to obtain the Manning’s roughness coefficient for the two-pool canal with
a high accuracy.

The robustness of the algorithm is quite high because the results in every different sce-
nario show accurate Manning’s roughness coefficients. In any case, the average Manning’s
roughness coefficient deviations (among real and calculated) only introduce water level
errors at the cross-sections that are less than 2 mm.
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3.2. Practical Example: A Canal with Multiple Disturbances at the Same Time: ASCE
TEST CASE

In this practical example, we introduce the test cases that were proposed by the ASCE
committee to evaluate control algorithms [19]. These test cases were originally devised to
evaluate feedforward and feedback control algorithms that recalculate the gate trajectories
at each regulation period in a predictive horizon in order to adjust the water levels at
the checkpoints. In spite of the fact that this is not the aim of the FC algorithm, the FC
algorithm should be able to obtain the most accurate Manning’s roughness coefficient, as
these results will support a feedback or feedforward control algorithm, such as GoRoSo [13]
and GoRoSoBo simplified [27], which would calculate the most accurate gate trajectories
from the most accurate Manning’s roughness coefficient.

In that sense, the FC algorithm estimates Manning’s n values based on the known
basic canal control variables for a past-time horizon: scheduled deliveries, gate trajectories,
pump flow trajectories, and water-level measurements at the checkpoints of the canal.

In particular, the performance of the FC algorithm is assessed in one of the previous
test cases suggested by the ASCE. The selected test case, denoted as test 2-1 for Example
Canal 2 in [17], considers the introduction of a series of scheduled and unscheduled flow
disturbances in the Corning canal, which is one of the two canals contemplated by the
ASCE. The gate trajectory parameters, which are now assumed to be an input parameter
instead of an output parameter, will be obtained from the available results of feedback
real-time controllers [27] that have already performed the original test case 2-1 for the
Corning canal.

3.2.1. ASCE TEST CASE: Canal Features

The Corning canal tested herein is based on the upstream portion of the real Corn-
ing Canal in California, which is characterized by being long, having a mild slope, and
presenting a significant storage capacity. The length of the canal considered is 28 km and
its cross-sections are trapezoidal. It is divided into eight pools that are separated by eight
rectangular gates and delimited by a total of nine points (identified by numbers from 0 to
8). The first point (0) is not a checkpoint as it solely contains the first sluicegate that sepa-
rates the canal from a large reservoir. Other hydraulic structures along the canal include
orifice offtakes, emergency lateral spillways, and pump stations, which are all found at
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the checkpoints or targets points located at the downstream end of each pool where the
water-level measurements are taken.

The canal geometry is shown in Figure 13 along with the number scheme of the pools
and nodes employed, while the general features of the canal pools are represented in Table 3
and the characteristics of the hydraulic control structures at each node are displayed in
Table 4.
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Table 3. Features of Corning canal pools.

Pool Number Pool Length
(Km) Bottom Slope

Side
Slopes
(H:V)

Manning’s
Coefficient (n)

Bottom Width
(m)

Canal
Depth

(m)

I 7 10 × 10−4 1.5:1 0.02 7 2.5
II 3 10 × 10−4 1.5:1 0.02 7 2.5
III 3 10 × 10−4 1.5:1 0.02 7 2.5
IV 4 10 × 10−4 1.5:1 0.02 6 2.3
V 4 10 × 10−4 1.5:1 0.02 6 2.3
VI 3 10 × 10−4 1.5:1 0.02 5 2.3
VII 2 10 × 10−4 1.5:1 0.02 5 1.9
VIII 2 10 × 10−4 1.5:1 0.02 5 1.9

As shown in Table 3, the Manning’s roughness coefficient value of each pool in the
Corning canal is equal to n = 0.020. Therefore, the objective Manning’s n value that must
be achieved by the FC algorithm is nobj = 0.020 for the eight pools considered. At the start
of the simulation run, Manning’s n value will be assumed to be equal to an initial guess
value, equal to 0.035.
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Table 4. Corning canal control structures.

Target Points
Gate

Discharge
Coefficient

Gate Width
(m)

Gate Height
(m) Step (m) Length from

Gate 1 (km)

Orifice
Offtake

Height (m)

Lateral
Spillway

Height (m)

0 0.61 7 2.3 0.2 0 - 3
1 0.61 7 2.3 0.2 7 1.05 2.5
2 0.61 7 2.3 0.2 10 1.05 2.5
3 0.61 7 2.3 0.2 13 1.05 2.5
4 0.61 6 2.1 0.2 17 0.95 2.3
5 0.61 6 2.1 0.2 21 0.95 2.3
6 0.61 5 1.8 0.2 24 0.85 1.9
7 0.61 5 1.8 0.2 26 0.85 1.9
8 - - - - 28 0.85 1.9

The past-time horizon of the simulation is 12 h (43,200 s), as prescribed by the ASCE for
test cases 2-1 regarding the second part of a complete irrigation cycle (24 h). Once the overall
control diagram (on-line computation) has completed an irrigation cycle (so we know the
gate trajectories, scheduled and unscheduled water demands, etc.) regarding output values
from GoRoSoBo simplified and CSE, it is time to check the Manning’s roughness coefficient
of the different pools of the canal during the last irrigation cycle. In that sense, the FC
algorithm calculates the Manning’s roughness coefficient trajectories for the second part
(12 h) of a complete irrigation cycle. In this manner, the Manning’s roughness coefficient
trajectories will be checked for the next irrigation cycle and introduced in off-line and
on-line controllers. The time step between successive control actions is determined to be
equal to T = 900 s (15 min).

3.2.2. ASCE TEST CASE: Initial and Boundary Conditions

The upper boundary condition is established by the constant water level provided by
the large reservoir upstream of the first gate in the Corning canal, which is imposed to be
equal to 3 m over the entire simulation. On the other hand, the boundary conditions for
every pool are given by the discharge through the orifice offtake and the flow extracted by
the pump, both of which are located downstream of the eighth pool.

The pump at the end of the canal extracts a constant water flow of 3 m3/s. The
initial conditions of the test case, shown in Table 5, correspond to the initial steady state of
the canal.

Table 5. Initial and unscheduled offtake changes in test case 2-1.

Pool Number Offtake Initial Flow (m3/s)
Check Initial Flow

(m3/s)
Unscheduled Offtake
Changes at 2 h (m3/s) Check Final Flow (m3/s)

Heading - 13.5 - 11.5
I 1.0 12.5 - 10.5
II 1.0 11.5 - 9.5
III 1.0 10.5 - 8.5
IV 1.0 9.5 - 7.5
V 2.5 7.0 - 5.0
VI 2.0 5.0 −2.0 5.0
VII 1.0 4.0 - 4.0
VIII 1.0 3.0 - 3.0

With respect to the offtake flows, the initial and unscheduled changes considered in
test case 2-1 are also presented in Table 5.

Furthermore, the canal is required to maintain certain values of water levels at the
checkpoints so that the flows through the orifice offtakes match exactly the scheduled
delivery demands during the whole irrigation cycle, which in this test case that lasts 12 h.
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The desired water levels to be accomplished in the canal are revealed in Table 6 for each
checkpoint in the Corning canal, and they constitute the water-level measurements of the
analyzed past-time horizon.

Table 6. Target depth values in test case 2-1.

Checkpoint Target Water Level (m)

Heading -
I 2.1
II 2.1
III 2.1
IV 1.9
V 1.9
VI 1.7
VII 1.7
VIII 1.7

3.2.3. ASCE TEST CASE: Scenario

The sluicegate trajectories were obtained from GoRoSoSo simplified [27], that is, an
online controller across the predictive horizon, and the unscheduled water demands were
obtained from CSE algorithm [9] regarding the overall control diagram.

As anticipated before, many feedback control algorithms have undergone the sim-
ulation of test 2-1 for the Corning canal, highlighting amongst them the performance of
GoRoSoBo simplified, which, in cooperation with CSE, was able to produce very competent
gate trajectory results for this test case [19].

The gate trajectories obtained by GoRoSoBo simplified in test 2-1 for the Corning
canal are shown in Figures 14 and 15, from which the complexity and extent of the gate
movements required in each pool to maintain the target values at the checkpoints at all
times due to the introduction of unscheduled off-take changes can be appreciated. These
gate trajectories are, by a large margin, the most complicated gate movements in respect to
last example, both in terms of number of parameters, number of pools, pumps, etc.
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3.2.4. ASCE TEST CASE: Results

Once all the necessary variables and parameters that describe the Corning canal and
conditions of test 2-1 have been introduced in the input of the friction coefficient algorithm,
the inverse problem is ready to be solved. The initial guess value of Manning’s roughness
coefficients employed by the algorithm to begin the iterative optimization process was
set equal to n = 0.035 for all Manning’s trajectory parameters of the eight pools, therefore,
initially assuming constant behavior of the roughness throughout the past-time horizon.
The simulation of this ASCE test case took considerably longer time to execute than any
of the previous practical test cases performed beforehand, which is completely expected
as the number of pools, structures, and trajectory parameters implied in this test case is
far greater.

The results of the Manning’s roughness coefficient trajectories predicted by the FC
algorithm are displayed in Figure 16 for each pool in the Corning canal. From the estimation
results shown, it is deduced that in general terms, and considering that the Manning’s
roughness coefficient objective is to be equal to nobj = 0.020 for all pools during the 12 h
simulation, the FC algorithm successfully achieves greats results for the eight pools in the
Corning canal. The average value of the computed Manning’s trajectory parameters for
each pool is equal to n = 0.020 when rounded to three significant digits, thus, proving the
estimations performed actually accomplish the objective roughness values of the Corning
canal. In that sense, the biggest Manning coefficient deviation is around 1.1 × 10−3 and
the average Manning coefficient is 0.02045 (that is a Manning coefficient deviation of
4.5 × 10−4). In addition, the order of magnitude of these deviations is in line with the
ones obtained in the previous example. As we have mentioned before, the FC algorithm
estimates the Manning’s roughness coefficient with high accuracy, because an average
Manning coefficient deviation of 4.5 × 10−4 represents water level errors less than 3.5 mm.

With regard to the Manning’s coefficient estimation differences between pools, it is
recognized that the estimated Manning’s trajectories for some pools stand out from the rest
in terms of goodness of their solution. For instance, the first pool exhibits the most accurate
estimated Manning’s trajectory while the second and third pools represent the opposite.
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Figure 16. Manning’s roughness coefficient trajectories obtained by FC algorithm in test 2-1 for the
Corning canal (every color in the graph represent the Manning roughness coefficient calculated at
every pool).

It is also interesting to note how the initial part of the predicted Manning’s trajectory
is consistently accurately estimated for every pool until a time instant where the predicted
values start to present slight errors. This time instant is different for every pool and
corresponds to the time instant when each pool starts noticing the perturbation wave
generated by the introduction of unknown offtake change that propagates along the canal.
This reasoning is in congruence with the time at which Manning roughness coefficient
deviations appear in the estimation of the trajectories for each pool: for instance, the
Manning’s roughness coefficient deviations appear in pool VI around minute 180 (2 h into
the simulation), which is precisely when the unscheduled offtake change occurs.

Tending to the performance indicator that compares the estimation of Manning’s n
trajectories with the objective values, it becomes evident that its value for this test case,
ε(n) = 1.286 × 10−2, is not as promising as the performance indicator values from the
previous practical examples. This is because the value of performance indicator (ε(n))
becomes larger with an increasing number of parameters, even if the differences between
computed and objective values are the same for all parameters. In this sense, weighing
in the magnitude factor of the problem analyzed, primarily, the 384 Manning’s trajectory
parameters to be identified in this test case (a canal with eight pools) in contrast with
the 96 parameters identified in the canal with two pools, although the biggest Manning
coefficient deviation and the average Manning coefficient have similar results in both
practical examples.

All scenarios in this practical example show good results, so this is also a test of
robustness of the algorithm.
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4. Conclusions

The Manning’s roughness coefficient is a highly sensitive variable in the flow behavior
of any canal. In that sense, several authors have published different methodologies in order
to calibrate the Manning’ coefficient [10–12], which is actually the research gap.

The Manning’s roughness coefficient constitutes an essential physical parameter in
the behavior of open canals. The poor estimation of the value of this roughness coefficient
may induce important errors in the operations established by predictive control systems in
irrigation canals. This was the reason to develop the friction coefficient algorithm, which
precisely aims to address this issue by developing a numerical method for estimating
Manning’s roughness coefficients of irrigation canals. The FC algorithm is formulated as a
traditional inverse problem solver, in which the unknown parameters of the model (that is,
Manning’s roughness coefficients) are identified on the basis of comparing the deviations
between the water levels computed by the model and a set of water-level measurements.
The FC algorithm makes use of the hydraulic influence matrix (HIM), which is a matrix
that establishes the influence of the Manning’s roughness coefficients on the changes in the
hydrodynamic state of the canal (water level and flow velocity) at all points of the canal
during a past-time horizon. In that regard, the HIM is the matrix to be inverted, solving the
optimization problem in order to calculate the Manning’s roughness coefficient trajectories.

The optimization problem proposed by the FC algorithm is solved by means of the
Levenberg–Marquardt method, which specializes in non-linear least-square problems such
as the one in the FC algorithm.

The FC algorithm is tested under a wide variety of scenarios and circumstances includ-
ing changes in the canal control variables, such as gate trajectories, scheduled deliveries,
and pump flow trajectories. The first example is conducted in a canal with two pools with
several scenarios such as changing gate position and scheduled water demands during the
time horizon. In these scenarios, the FC algorithm was able to obtain a Manning roughness
coefficient trajectory close to the objective Manning roughness coefficient trajectory. Regard-
ing scenario one, the biggest Manning coefficient deviation (among real and calculated) is
around 1 × 10−3, the average Manning coefficient is 0.02498 (that is, a Manning coefficient
deviation of 2 × 10−4), and there is a performance indicator value (ε(n)) equal to 4.69 × 103.
Regarding scenario two, the biggest Manning coefficient deviation is lower than 1 × 10−3,
the average Manning coefficient for the second canal pool is lower than 1 × 10−4, and the
performance indicator (ε(n)) is equal to 2.691 × 103. In all these scenarios, the algorithm
accuracy is quite high because a Manning coefficient deviation of 2 × 10−4 represents a
water level deviation of less than 2 mm.

A canal simulation was performed in an adapted version of one of the test cases pro-
posed by the ASCE task committee on canal automation algorithms, that is, test case 2-1 [17],
which considers a portion of a real irrigation canal formed by eight pools. Regarding this
test case, the biggest Manning coefficient deviation is around 1.1 × 10−3, the average
Manning coefficient is 0.02045 (that is, a Manning coefficient deviation of 4.5 × 10−4), and
there is a performance indicator value (ε(n)) equal to 1.286 × 10−2, thus, demonstrating
the robustness of the algorithm developed. Tending to the performance indicator that
compares the estimation of Manning’s n trajectories with the objective values, it becomes
evident that its value for this test case, ε(n) = 1.286 × 10−2, is not as promising as the perfor-
mance indicator values from the previous practical examples. This is because the value of
performance indicator (ε(n)) becomes larger with an increasing number of parameters, even
if the differences between computed and objective values are the same for all parameters.
In this sense, weighing in the magnitude factor of the problem analyzed, primarily the
384 Manning’s trajectory parameters to be identified in this test case (a canal with eight
pools) in contrast with the 96 parameters identified in the canal with two pools (so it is
not possible to compare performance indicators of both practical examples), although the
biggest Manning coefficient deviation and the average Manning coefficient have similar
results in both practical examples. In this scenario, the algorithm accuracy is quite high
because a Manning coefficient deviation of 4.5 × 10−4 represents a water level deviation of
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less than 3.2 mm. On the other hand, the FC algorithm shows high robustness values due
to the fact that the FC algorithm presents low Manning’s roughness coefficient deviations
in several cases and scenarios.

In light of the results obtained, it is concluded that the friction coefficient algorithm has
proven to be a competent and robust algorithm for the estimation of Manning’s roughness
coefficients. Subsequently, its implementation in the control scheme of irrigation canals
(overall control diagram) as part of the online and offline computation should be regarded.
In that sense, the FC algorithm could be applied in a real irrigation canal, as the FC
algorithm does not have a direct interaction with the canal actuators (which reduces the
implementation issues with canal controllers) as it only estimates the changes in Manning’s
roughness coefficient.
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Abbreviations

A(y) The area of the wet section which depends on the water level “y”;
c The gate width;

b Vector of dimension (2 × nS), b
[

xk+1, q(K)
]

obtained defining the HIM(Q);

bj The j-gate width;
c(y) Water wave celerity which is dependent on the water level “y”;
Cc Contraction coefficient of the gate;
Cd Discharge coefficient of the gate;
cT Local losses coefficient in the canal;
Cw Discharge coefficient of a weir;
dj Drop at j-gate;
f (k) Input function at time step k;
g Gravity;
HIM(n) Hydraulic influence matrix (derivative parameter n);
Hup Constant upstream water level at upstream boundary condition (canal header);
I Identity matrix;
J(n) Performance criterion (Manning coefficient trajectory) (objective function);
J Matrix obtained deriving the output water level vector by a variable;

kF
Number of sections in which the prediction horizon is divided depending on the CFL
condition/time frequency of measuring data;

KF
Number of operation periods defined by the watermaster in which the simulating
horizon is divided;

ko(k) Orifice coefficient depending on its overture of the gravity i-offtake at time instant k;

M
Matrix obtained from the Saint-Venant equation to represent the influence between
parameters at different sections (in a structured mesh);

N
Matrix obtained from the Saint-Venant equation to represent the influence between
parameters at points P and Q;

n Manning coefficient;
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nc Number of checkpoints;
np Number of pools;
ns Number of sections in which the canal is discretized;
nx Dimension of prediction vector (nX = (2 × nS) × kF);
ny Dimension of prediction output vector (nY = kF × nC);
P(y) The wet perimeter which is function of the water level “y”;
Q Weighting matrix;
qofftake Discharge through the orifice offtake;
qs Discharge through the lateral spillway;
RH The hydraulic radius is a measure of a channel flow efficiency;
rkF

k1
Residual vector between the desired water level and the computed water level;

S
Matrix obtained from the Saint-Venant equation to represent the influence
between parameters;

S(y) Horizontal surface of the reception area in the checkpoint;
S0 Bottom slope;
Sf Friction slope;
TK Operation instant when the Manning coefficient could be changed;
T(y) The maximum width dependent on the water level “y”;

nij(K)
Manning coefficient of the pool i during the operation period K at the prediction
horizon j;

n Manning roughness coefficient value;

n0
Vector with the Manning coefficient at the first regulation period for the previous
predictive horizon;

u The open gate height
vi(k) Mean velocity at time instant k at canal section i;
x(k) State vector at time instant k;
y(k) Subset of water depths of the state vector at time instant k at checkpoints;
YkF

1 Predictive output vector from 1 to kF;
Y* (k) Subset of measurement water levels at checkpoints at time instant k;
ydw Downstream j-gate water depth;
yi(k) Water depth at time instant k at canal section i;
yo Height of the center of the orifice from bottom of the gravity offtake;
ys Downstream water level of the reservoir;
yup Upstream j-gate water depth;
z Variable used to interpolate values with the Lagrange factors;
∆n Perturbed input/output Manning vector;
∆t Numerical discretization time according to CFL condition;
∆T Operation period defined by the watermaster;
∆Y Water level perturbation;
∆x Numerical discretization space cell length;
∆X Perturbed state vector obtained when a perturbation is introduced into the system;
ε(n) Norm vector error between the computed and desired Manning coefficient;
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