
id177413

DEVSECOPS: S-SDLC

ORIOL PORTELL PARERAS

Thesis supervisor: FEDERICO PÉREZ MARINA (PUNTO-FA, SL)

Tutor: RENÉ SERRAL GRACIÀ (Department of Computer Architecture)

Degree: Bachelor Degree in Informatics Engineering (Software Engineering)

Thesis report

Facultat d'Informàtica de Barcelona (FIB)

Universitat Politècnica de Catalunya (UPC) - BarcelonaTech

28/06/2023

Resum

L’objectiu principal d’aquesta tesis és veure com s’incorpora la seguretat a
DevOps en un entorn corporatiu. En concret, aquesta tesis busca veure com
implementar S-SDLC. A més a més, la tesis mostra la implementació d’un
CI/CD ben fet.

Durant el projecte s’han implementat noves eines que faciliten el
desenvolupament segur i de qualitat al programador durant la fase de
desenvolupament.

Resumen

El objetivo principal de esta tesis es examinar cómo se incorpora la seguridad
a DevOps en un entorno corporativo. Específicamente, esta tesis busca ver
cómo implementar S-SDLC (Ciclo de Vida de Desarrollo de Software Seguro).
Además, la tesis muestra la implementación de un CI/CD (Integración
Continua/Entrega Continua) bien realizado.

Durante el proyecto, se han implementado nuevas herramientas que
facilitan el desarrollo seguro y de calidad para el programador durante la fase
de desarrollo.

Abstract

The main objective of this thesis is to examine how security is incorporated
into DevOps in a corporate environment. Specifically, this thesis aims to
explore how to implement S-SDLC (Secure Software Development Life Cycle).
Additionally, the thesis demonstrates the implementation of a well-executed
CI/CD (Continuous Integration/Continuous Delivery).

During the project, new tools have been implemented to facilitate secure and
high-quality development for the programmer during the development phase

2

Contents
1 Context and Justification 7

1.1 Introduction . 7
1.2 Mango . 7
1.3 DevSecOps . 7
1.4 Devops . 8

1.4.1 Agile . 8
1.4.2 Devops and Agile . 9

1.5 S-SDLC . 9
1.6 Sec in DevSecOps . 10
1.7 Problem . 10
1.8 Actors Involved . 11

2 Justification 12
2.1 Existing Solutions . 12
2.2 Justification of the choice . 12

3 Outreach 14
3.1 Objectives . 14
3.2 Non-functional requirements . 15
3.3 Risks . 15

4 Methodology 16
4.1 Kanban . 16
4.2 Version tracking and control . 17
4.3 Tool to mange Agile projects . 17

5 Time planning 18

6 Project estimation 19
6.1 Task definition . 19

6.1.1 Project Management . 19
6.1.2 Analyze and explain the Security of Mango 20
6.1.3 Automatic Static Analysis 21
6.1.4 Automatic Dynamic Analysis 23
6.1.5 Securing Kubernetes Deploys 25
6.1.6 Final documentation . 26

6.2 Gantt chart . 28

7 Risk management 30
7.1 Tasks and risks . 30

3

8 Budget 33
8.1 Identification of costs . 33

8.1.1 Human resources . 33
8.1.2 Material resources . 34
8.1.3 Indirect resources . 35
8.1.4 Contingency Costs . 36
8.1.5 Unforeseen costs . 36
8.1.6 Final budget . 36

8.2 Management control . 37

9 Sustainability report 38
9.1 Economic dimensions . 38
9.2 Environmental dimensions . 38
9.3 Social dimensions . 38

10 Integration of knowledge 40

11 Identification of laws and regulations 41

12 Technologies and concepts 42
12.1 Jenkins . 42
12.2 Kubernetes . 43
12.3 Sonarqube . 44
12.4 Zap . 45
12.5 Sonatype . 46
12.6 Elasticsearch . 46
12.7 Kibana . 47
12.8 Grafana . 48
12.9 NPM . 48
12.10Maven . 49
12.11Gitflow . 50
12.12Gitops . 51
12.13Version Control . 52
12.14Webhooks . 52
12.15Observability . 53
12.16Monitoring . 53

13 Analyze and explain the security of Mango 54
13.1 Document the current security 54

13.1.1 CI/CD Implementation 54
13.1.2 Security implementation 59
13.1.3 ArgoCD . 61
13.1.4 Monitoring . 62

13.2 Explain possible improvements in the Security of Mango 64

4

14 Automatic Static Analysis 65
14.1 Set up Sonarqube Credentials in Jenkins 65
14.2 Create new methods in the Jenkins library 65
14.3 Import the SSL certificate in the necessary Docker 66
14.4 Investigate how Sonarqube quality gate works 67
14.5 Create a method in Jenkins library to implement the quality gate 68
14.6 Create a method in the Jenkins library to write messages in

bitbucket PRs . 70
14.7 Implement an API to obtain security vulnerabilities from Sonar . 70
14.8 Create confluence to allow execute Sonarqube9 locally 71
14.9 Problems related to Sonarqube 71

15 Automatic Dynamic Analysis 73
15.1 Test in local Zap . 73
15.2 Create a new dockerfile to run zap and a script to obtain the result 73
15.3 Figure out how to get an actualized list of all the project that

must be analyzed . 74
15.4 Create a Jenkins job that is executed every night 74
15.5 Create a script to collect all the vulnerabilities information . . . 75

16 Securing Kubernetes Deploys 77
16.1 New stage gitops pipeline . 78
16.2 Kibana dashboard with vulnerabilities 78

17 Security Score Card 80
17.1 CronJob to Insert SSC information in ELK 80
17.2 Create dashboard in Kibana . 82

18 Showcase Desgin System DevOps Configuration 84
18.1 Showcase Design System Configuration 85
18.2 Showcase Design System Kubernetes 85

19 Changes in the planification 88

20 Final budget 91

21 Achievement of technical competencies 93
21.1 Relationship of the project with the degree 93

22 Conclusions 94

23 Next steps 95
23.1 Prisma Cloud . 95

5

List of Figures
1 Agile cycle [14] . 9
2 Backend security considerations [15] 11
3 Kanban board [16] . 16
4 Gantt diagram . 29
5 Jenkinsfile of a specific project. 55
6 Common Jenkinsfile. 55
7 Frontend and backend pipeline CI CD 57
8 Frontend and backend pipeline CI CD 57
9 Frontend and backend pipeline CI CD 58
10 Node pod template . 59
11 Jenkins credentials . 65
12 Jenkins stage . 66
13 Quality gate conditions . 68
14 Overall code in sonarqube . 69
15 New code in sonarqbue . 69
16 Dashboard Kibana Sonarqube . 71
17 Dockerfile zap . 74
18 Jenkins Job Zap . 75
19 Zap podtempalte. 76
20 Zap Kibana dashboard. 77
21 Checkov Kibana dashboard. 79
22 Cronjob security scorecard. 81
23 Dockerfile security-score-card . 82
24 Dockerfile security-score-card . 83
25 Virtualservice showcase . 86

6

1 Context and Justification

1.1 Introduction
The final degree thesis "DevSecOps: S-SDLC" belongs to the company Mango
and the bachelor’s in Computer Engineering is offered by the Facultat
Informatica de Barcelona, with a specialization in Software Engineering.

This project pretends to analyze the whole DevSecOps system of Mango and
to expand it by implementing new tools that improve the quality of the code
and make it easier for So:ftware Engineers to develop projects.

1.2 Mango
As I said above, I am going to do my thesis on Mango, a big retail Spanish
Company focused on implementing new technologies such as RFID and
improving its online business.

Particularly I am going to be part of the Software Engineering Department
in the DevSecOps team. This team is formed by three persons apart from me.
The whole department is formed by over forty software Engineers that
program mainly using Spring Boot - Kotlin and Angular - Typescript.

1.3 DevSecOps
DevSecOps is the combination of the words Development, Security and
Operations, but the first methodology used was just DevOps. Among what a
lot of people think DevOps is, it is a methodology used to produce faster and
higher-quality developments.

DevOps is a methodology used to speed the delivery of higher-quality
software. It allows the software team to automate the majority of the steps of
software development and IT operations teams.
It permits the integration of the efforts of development and IT operations
teams into one unique team, two groups that traditionally worked separately
from each other.

In practice, DevOps permit developers to work effectively with agile
methodologies, since it speeds up the amount of time to deploy, so
programmers can produce multiple releases every day, instead of producing
only one big release every several months or even years. [12]

7

1.4 Devops
1.4.1 Agile

The Agile methodology is a way to manage a project by breaking it up into
several phases and iterate over them. It involves constant collaboration
between business part and developers.

When using Agile teams won’t try to develop the whole project in a unique
iteration. They will split the whole project into sprints and work in every
sprint on different use cases and problems of the development of the project.
After every sprint, the development team will present what they have been
working on to the business part to check if they are meeting the requirements
presented initially. If they are not fitting all the requirements or requirements
have changed programmers will make a note and produce the necessary
improvements.

In every sprint the developer team will iterate over the next steps:

• Planning: In the planning stage the developer team imagined the whole
project and made the sprint backlog. Furthermore they calculated the
average time of release product and determined the necessary technologies.

• Building: During this phase the team focuses on making the planned tasks
during the Planning phase. It can involve developing use cases or provide
solutions to specific problems.

• Testing: This step is the most vital. During this phase the developer
team will ensure that all they have been producing work as it means to
be. Furthermore this phase permit teams to check the quality of the code
and find vulnerabilities.

• Delivery: After performing a series of testing, user training, enhancing
system functionalities developers team release the software.

• Feedback: In this step the software team present to the client the product
produced during the sprint. This phase permit a continuous flow of review
and up-gradation of the software.

Agile is more open to changes than waterfall because if a concrete
functionality of the application is not meeting the requirements, it will be
noticed in the feedback of the sprint and the development team will be able to
change it for the following sprint.

To sum up, Agile methodology has multiple advantages compared to
Waterfall, it increases the alignment between stakeholders and developers,
increase the quality of the product, since it is reviewed every sprint in small

8

Figure 1: Agile cycle [14]

portions and permits companies to test new functionalities in the market
without implementing them completely, if an initial test fit in the customers
they will finish the development in future sprints. [3]

1.4.2 Devops and Agile

When in the early 2000, companies started to notice the multiple advantages
of developing software projects using Agile a new need was born. Development
teams noticed the necessity of a team that focuses on solving specific problems
and performing specific tasks such as deploying the project and mantain them.
DevOps permit to increase the velocity of developers teams when producing
new releases and functionalities.

1.5 S-SDLC
The goal of the S-SDLC is to ensure that security is integrated into every
aspect of the software development process, from design to deployment and
beyond. By taking a proactive and comprehensive approach to security,
organizations can reduce the risk of security breaches and other
security-related incidents. S-SDLC includes several stages, including planning,
design, development, testing, deployment, and maintenance. Each stage
includes specific activities and controls that are designed to ensure that
security is integrated into every aspect of the development process.

9

1.6 Sec in DevSecOps
DevSecOps, as its name suggests, involves the integration of security practices
into the DevOps process. This means that security is no longer an
afterthought, but is instead integrated into every stage of the development
lifecycle. This includes designing and building secure systems, testing and
verifying the security of these systems, and deploying them in a secure manner.

One of the key aspects of DevSecOps is the use of automatic security
checks. This means that before code is merged or deployed to specific git
branches, it undergoes a series of automated security checks. These checks can
include everything from vulnerability scanning and penetration testing to code
analysis and static code analysis. By performing these checks automatically,
developers can identify and address security issues more quickly, reducing the
risk of security vulnerabilities making their way into production systems.

1.7 Problem
When developing most of the teams use to leave for last Security. That is
because usually programmers don’t have much time to focus on this problem
instead they have to focus on developing new functionalities. Furthermore not
all security can be considered as part of the developer team, in a lot of cases
operation team should take into consideration how to protect the system to
avoid hackers accessing servers, or accessing the company network. Moreover,
security vulnerabilities are not static, hackers always find new ways to access
servers or new ways to take advantage, so every time that a release is
performed vulnerabilities must be checked. Also, vulnerabilities must be
checked routinely.
For example, if we want to check all the vulnerabilities of an API we should

access a database that contains all the possible vulnerabilities and check one
by one that we are accomplishing all the security recommendations. Also, we
should check the vulnerabilities related to the language and framework that is
used to program the API. Furthermore, when we deploy the API we must
ensure that a hacker can’t access the server where is deployed. Moreover, we
must check all the URIs related to the API to ensure that all of them are
correctly secured and no one can access to sensitive information.

As we can observe, preventing someone to hack our system and our
applications can be really tedious if it has to be performed manually. That is
why DevSecOps make sense, integrate technologies and tools that can perform
this process automatically can speed up the process of developing new releases
and also raise the quality of the product.

10

Figure 2: Backend security considerations [15]

1.8 Actors Involved
In this section i am going to talk about all the stakeholders, we have to take
into consideration that this thesis is going to be done in Mango, a retail
company focused on improve its online business and implement new systems
such as RFID. Specifically, this thesis is going to be developed in the software
engineering department. It is mainly focused on developing software for the
company, i.e RFID, clock in application or tickets application.

• Developers: Software developers that develop new functionalities in the
department. They are going to use the implemented tools to increase the
quality of the code.

• Operation team: They are going to prepare the necessary machines to
implement the new tools.

• Security squad: This team is going to participate in the selection of the
tools and will help the team to understand vulnerabilities.

• Business team: Developments will be faster and better, so they will get a
better product.

• Thesis director: Director of the thesis is going to be Rene Serral. He is
going to supervise the thesis.

11

2 Justification

2.1 Existing Solutions
Nowadays exists multiple tools that allow you to automatically check the quality
of the code and the different vulnerabilities depending on the technology you
are using. The most common and important are:

• Sonarqube: [10] This technology is used for a lot of companies to analyse
their applications. It has a free version that permits software teams to
obtain information about vulnerabilities, code smells, coverage, bugs and
more. Allow teams to perform static analysis.

• Coverity[6]: Coverity is a software testing tool that provides static code
analysis to help identify defects and vulnerabilities in code. Coverity
provides a range of metrics that can be used to evaluate the quality and
security of software code, including: Defect density, Code coverage, Code
complexity, Security vulnerabilities, Code maintainability.

• Zap[8]: OWASP ZAP (short for "Zed Attack Proxy") is a popular open
source web application security testing tool. It is designed to help
developers and security professionals identify vulnerabilities and security
flaws in web applications. OWASP ZAP provides a range of features for
security testing: Automated scanning, Manual testing, Extensibility.

• Acunetix [1]: Acunetix is a powerful web vulnerability scanner that helps
identify security vulnerabilities in web applications. Accunetix include a
lot of features: Detect vulnerabilities, prevent SQL injection, fast analysis,
easy integration with multiple tools such as Jenkins Jira or AWS.

• Checkov [41]: Checkov is an open-source static analysis tool for
infrastructure as code that helps developers and DevOps teams identify
security and compliance issues in their cloud infrastructure code.

2.2 Justification of the choice
I am going to use multiple technologies of the presented above. I could create
a tool that automatically generates analysis but this would take me a lot of
time and some of the technologies presented are already really good.

For static analysis of the different applications I am going to implement
Sonarqube 9, I could use Coverity but nowadays Sonar seems to be better
because it’s a really easy tool to integrate with Jenkins. Moreover, lately,
Sonarqube has been working on improving its vulnerability database so now
it’s capable of detecting many vulnerabilities that Coverity isn’t. Furthermore,
Sonar includes more information in its reports and automatically generates
graphs that permit tracking the evolution of the different projects. Also,
Sonarqube takes into account more rules when analyzing projects looking for

12

bugs or code smells. Additionally, the Sonarqube community is bigger than
the Coverity community.

For dynamic analysis I am going to implement Zap, probably Acunetix
could offer the best features and more power to analyze and find
vulnerabilities but is a commercial tool, so it requires a license to use. Since
the company doesn’t want to invest in these tools I will have to use Zap. It
also offers support for APIs and a range of plugins and add-ons, allowing users
to customize the tool to suit their specific needs. Moreover, Zap might not be
as powerful as Acunteix but it also provides automated testing, reporting and
extensibility features.

Last but not least, I am going to use Checkov to analyze Kubernetes YAML
and Dockerfiles, not only automating the process of analyzing but also creating a
tool that will allow backends and the DevSecOps team to automatically generate
standards yaml’s that contain the smallest possible number of vulnerabilities.

13

3 Outreach
In this section, I am going to be talking about the main objectives of this thesis.
Also, I’m going to explain the possible risks and non-functional requirements.

3.1 Objectives
• Improve the security of Mango

– Improve the quality of the developments in Mango.

– Ensure that it’s really hard for a hacker to access vulnerability
information

– Protect data from hackers.

• Automate a static analysis of the code of the projects

– Automate a static analysis of all the projects to improve the quality
of the developments.

– Print the vulnerabilities in some kind of graph to facilitate
programmers detection of vulnerabilities.

• Automate a dynamic analysis of the code of the projects

– Automate a dynamic analysis of all the projects to improve the
quality of the developments.

– Print the vulnerabilities in some kind of graph to facilitate
programmers detection of vulnerabilities.

• Securing the server’s deploy

– Create a tool that allows backends to create Kubernetes yaml’s

– Generate standard Kubernetes yaml’s using Checkov to reduce the
number of vulnerabilities.

14

3.2 Non-functional requirements
Non functional requirements that all implemented tools should accomplish:

• Usability: All tools should be easy to use and understand for software
developers.

• Availability: Tools should always be available to use and it should be easy
to access them.

• Scalability: It should permit an increment of the number of projects to
analyze.

• Security: Tools should only permit access to the information of the project
to software developers of the department Software Engineering.

3.3 Risks
Possible risks and problems that could appear during the realization of this
thesis.

• Inexperience with the different tools and technologies: I am going to use a
lot of tools that I have never used such as Jenkins, Sonarqube, Kubernetes
etc. My inexperience with them could be a problem to plan how much
time I am going to spend on each part of the thesis.

• Fixed entry Date: If there is a setback it is going to be hard to improvise
and might cause that I can’t finish the whole proposed project.

• Dependence on others: I might have a task that depends on another
programer.

15

4 Methodology
The development of the project is going to be done using the methodology
Agile Kanban. I’m going to use this specific version of Agile because it is
the methodology used by the team DevSecOps and also because it would be
really hard for me to plan how much time a specific task is going to take, as a
consequence it would be tricky to plan sprints.

4.1 Kanban
Kanban methodology is a lean manufacturing approach to managing workflow.
The methodology focuses on visualizing work, limiting work in progress, and
continuously improving the process. In Kanban methodology, kanban cards are
used to signal the need for work to be done and to track the progress of work
through a process. The kanban board is a visual representation of the workflow
and is divided into columns that represent different stages of the process, such
as "To Do", "In Progress", and "Done".

Figure 3: Kanban board [16]

Kanban methodology provides a flexible and adaptable approach to
managing workflow that emphasizes visual management, limiting work in
progress, and continuous improvement. It can be used in a variety of industries
and applications, from software development to manufacturing and logistics.

16

4.2 Version tracking and control
To make possible the implementation of all the technologies and tools that
automatically analyze code I am going to be working with:

• Git [9]: Is a popular version control system used in software development
to manage changes to source code and other files. It allows multiple
developers to work on the same project simultaneously, and provides a
structured approach to tracking changes, collaborating, and merging
code changes.

• Bitbucket: Is a web-based version control system that is primarily used
for hosting and managing software development projects. One of the key
benefits of Bitbucket is its integration with other development tools, such
as Jira and Confluence

• Gitflow [30]: Is a popular branching model for software development
using Git version control system. It provides a structured approach to
managing code changes and releases, and is especially well-suited for
larger development teams and complex projects.

4.3 Tool to mange Agile projects
• Jira [2]: Is a popular project management tool that is primarily used

by software development teams to track and manage their work. Allows
users to create and manage tasks, which can be organized into projects
and workflows.

17

5 Time planning
The duration of my thesis going to be about 4 months approximately, from 14
February 2023 to 30 June 2023. I am going to be investing about 30 hours per
week. This period contains 85 working days and 48 non-working days taking
into consideration Saturdays, Sundays, Holy Week and other festivities.

From 19 February to 14 march the project management. During this time I
am going to be, contextualizing my project, producing the time planning,
defining my objectives making an analysis of risks and costs and doing the
final sustainability report. Furthermore, I will be implementing necessary
technologies to reach my objectives.

From 14 March to 20 June, I will be implementing, programming and
configuring all the necessary technologies to reach my thesis goals. Also I am
going to document all the work I do in this thesis memory.

From 20 June to 30 June i will have 10 days to finish my final document and
prepare my thesis presentation. In total I will be investing in this thesis about
570 hours.

18

6 Project estimation
My project is going to be divided in 6 stages. The initial stage is the management
of the project. After the initial stage, the following 4 stages are going to be about
the implementation of the necessary technologies to achieve my thesis goal. The
last one is to finish the documentation and prepare the thesis presentation.
To develop a software project it is very common to use Scrum, but since it would
be really difficult to plan how much effort it is going to take to implement and
develop each stage I am going to be using Kanban. Furthermore, the team were
I am developing my thesis is working using this Agile methodology.

It is important to understand that I started my internship with Mango on
22-06-2022 as a software engineer backend. I will change my position to
DevSecOps Engineer on 27-02-2023. Also, I will be working 30 hours per week
in the company. Moreover, it is important to take into consideration that not
all the hours that I am working in the company I am programming or
implementing. There are dailys, plannings, etc.

As said above I can not exactly predict when I am going to finish each stage
except the first and last one. But, I spoke with the senior DevSecOps Engineer
of the team and made the following predictions:

Stage Initial date End Date
Project Management 20-02-2023 14-03-2023
Analyze and explain the Security
of Mango 27-02-2023 10-03-2023

Automatic Static Analysis 13-03-2023 14-04-2023
Automatic Dynamic Analysis 17-04-2023 12-05-2023
Securing Kubernetes Deploys 15-05-2023 20-06-2023
Final documentation 21-06-2023 30-06-2023

Table 1. Different stages of the project and duration. Source: own
compilation

6.1 Task definition
For all the tasks I will need at least, a Lenovo ThinkPad, a Lenovo screen, two
mouses and two keyboards, one for the office and one for my own home and
sony headphones.

It is important to take into consideration in the task description that when
I am talking about the duration of the task it is the natural amount of hours
that a task will take to be completed. That means that maybe there is an hour
where I am reviewing my task with the senior but it is only one hour.

6.1.1 Project Management

• PM1 - Context and outreach: Explain context and outreach of the
thesis

19

Duration: 20h
Dependencies: -
Human resources: Project manager
Material resources: Computer with internet, Overleaf, Grammarly

• PM2 - Explain time planificaiton: Definition of tasks and time
planification
Duration: 20h
Dependencies: GP1
Human resources: Project manager
Material resources: Computer with internet, Overleaf, Grammarly,
Ganttproject

• PM3 - Economic and sustainability management: Define the
economic and sustainability plan
Duration: 20h
Dependencies: GP2
Human resources: Project manager
Material resources: Computer with internet, Overleaf, Grammarly

• PM4 - Final document project management: Review all the
provided feedback from the previous stages and make the necessary
changes to the final document.
Duration: 20h
Dependencies: GP1, GP2, GP3
Human resources: Project manager
Material resources: Computer with internet, Overleaf, Grammarly

6.1.2 Analyze and explain the Security of Mango

• AS1 - Document the current security: Explain the initial state of
the Mango’s security.
Duration: 30h
Dependencies: -
Human resources: security senior, DevSecOps Senior, DevSecOps
intern
Material resources: Computer with internet, Overleaf, Grammarly,
access to the Mango system

• AS2 - Propose improvements to the security of Mango system:
Try to find possible solutions to the current problems in the security of
Mango and propose them to the Security and DevSecOps team.

20

Duration: 30h
Dependencies: -
Human resources: security senior, DevSecOps senior, DevSecOps
intern
Material resources: Computer with internet, Overleaf, Grammarly,
access to the Mango system

6.1.3 Automatic Static Analysis

• SO1 - Set up Sonarqube credentials in Jenkins: Introduce in
Jenkins the correct Sonarqube credentials to use it in the Jenkins library.
Duration: 4h
Dependencies: -
Human resources: DevSecOps senior, DevSecOps intern
Material resources: Computer with internet, Overleaf, Grammarly,
access to the Mango system, Server with Jenkins, Server with Sonarqube
9

• SO2 - Create new methods in the Jenkins library: Create
methods in the Jenkins library that permit the execution of Sonarqube
for each type of project in the corresponding pipeline.
Duration: 10h
Dependencies: -
Human resources: DevSecOps senior, DevSecOps intern
Material resources: Computer with internet, Overleaf, Grammarly,
access to the Mango system, Server with Jenkins, Server with Sonarqube
9, Visual studio code, Bitbukcet, Jira

• SO3 - Import the SSL certificate in the necessary Docker: Each
pipeline is executed in a specific docker depending on the technology
used to develop the project, it is compulsory to import the Sonarqube
SSL certificate to execute from the specific docker the method
implemented before.
Duration: 10h
Dependencies: -
Human resources: DevSecOps senior, DevSecOps intern
Material resources: Computer with internet, Overleaf, Grammarly,
access to the Mango system, Server with Jenkins, Server with Sonarqube
9, Visual studio code, Docker Desktop, Sonatype, Bitbukcet, Jira

• SO4 - Test and make the necessary modifications: Test that the
corresponding methods work, and if they don’t execute it local to figure
out which is the error and make the necessary modifications.

21

Duration: 40h
Dependencies: -
Human resources: DevSecOps senior, DevSecOps intern
Material resources: Computer with internet, Overleaf, Grammarly,
access to the Mango system, Server with Jenkins, Server with Sonarqube
9, Visual sutdio code, Docker Desktop, Sonatype, Bitbukcet, Jira

• SO5 - Investigate how Sonarqube quality gate works: Investigate
if it is possible to stop Jenkins pipelines with Sonarqube 9 and how to
implement it.
Duration: 10h
Dependencies: -
Human resources: DevSecOps senior, DevSecOps intern
Material resources: Computer with internet, Overleaf, Grammarly,
access to the Mango system, Server with Jenkins, Server with Sonarqube
9, Bitbukcet, Jira

• SO6 - Create a method in the Jenkins library to implement the
quality gate : Create a method to execute the quality gate and set the
necessary parameters.
Duration: 10h
Dependencies: -
Human resources: DevSecOps senior, DevSecOps intern
Material resources: Computer with internet, Overleaf, Grammarly,
access to the Mango system, Server with Jenkins, Server with Sonarqube
9, Visual studio code, Docker Desktop, Sonatype, Bitbukcet, Jira

• SO7 - Create a method in the Jenkins library to write
messages in bitbucket PRs: Implement a method that writes a
comment in the Bitbucket PR, with the information of the quality
gate(passed, failed, code coverage, vulnerabilities, etc)
Duration: 20h
Dependencies: -
Human resources: DevSecOps senior, DevSecOps intern
Material resources: Computer with internet, Overleaf, Grammarly,
access to the Mango system, Server with Jenkins, Server with Sonarqube
9, Visual studio code, Docker Desktop, Sonatype, Bitbukcet, Jira

• SO8 - Implement an API to obtain security vulnerabilities
from Sonar: Create a Kubernetes cronjob that creates a pod with a
script that collects from Sonarqube all the vulnerabilities information
from all the projects and inserts that information in Kibana.
Duration: 20h

22

Dependencies: -
Human resources: DevSecOps senior, DevSecOps intern
Material resources: Computer with internet, Overleaf, Grammarly,
access to the Mango system, Server with Jenkins, Server with Sonarqube
9, Intellij, Bitbukcet, Jira

• SO9 - Create confluence to allow execute Sonarqube9 locally :
Create a confluence to allow developers to execute Sonarqube 9 locally.
Duration: 10h
Dependencies: -
Human resources: DevSecOps senior, DevSecOps intern
Material resources: Computer with internet, Overleaf, Grammarly,
access to the Mango system, Confluence

6.1.4 Automatic Dynamic Analysis

• ZAP1 - Test in local zap : Test zap with the desktop version to
discover what it can be done using this tool.
Duration: 10h
Dependencies: -
Human resources: DevSecOps senior, DevSecOps intern
Material resources: Computer with internet, Overleaf, Grammarly,
access to the Mango system, Server with Jenkins, Zap, Visual studio
code, Docker Desktop, Sonatype, Bitbukcet, Jira

• ZAP2 - Create a new dockerfile to run zap and a script to
obtain the result : Create a dockerfile and a script to be able to
analyze all the webs of the department software engineering of Mango.
Duration: 40h
Dependencies: -
Human resources:DevSecOps senior, DevSecOps intern
Material resources: Computer with internet, Overleaf, Grammarly,
access to the Mango system, Server with Jenkins, Zap, Visual studio
code, Docker Desktop, Sonatype, Bitbukcet, Jira

• ZAP3 - Figure out how to get an actualized list of all the
projects that must be analyzed : Figure out how to get an
actualized list of all the projects that must be analyzed.
Duration: 4h
Dependencies: -
Human resources: DevSecOps senior, DevSecOps intern
Material resources: Computer with internet, Overleaf, Grammarly,
access to the Mango system, Server with Jenkins, Zap, Visual studio

23

code, Bitbukcet, Jira

• ZAP4 - Investigate how to analyze all the urls with zap and
not only the introduced: Discover how we can analyze all the URLs
of a webpage instead of only analyzing the introduced.
Duration: 20h
Dependencies: -
Human resources: DevSecOps senior, DevSecOps intern
Material resources: Computer with internet, Overleaf, Grammarly,
access to the Mango system, Server with Jenkins, Zap, Visual studio
code, Bitbukcet, Jira

• ZAP5 - Investigate how to create contexts: Discover how we can
introduce in zap the credentials for webpages that need a log in.
Duration: 20h
Dependencies: -
Human resources: DevSecOps senior, DevSecOps intern
Material resources: Computer with internet, Overleaf, Grammarly,
access to the Mango system, Server with Jenkins, Zap, Visual studio
code, Bitbukcet, Jira

• ZAP6 - Create a Jenkins job that is executed every night :
Create a job in Jenkins that is executed every night and analyze all the
projects of the department.
Duration: 10h
Dependencies: -
Human resources: DevSecOps senior, DevSecOps intern
Material resources: Computer with internet, Overleaf, Grammarly,
access to the Mango system, Server with Jenkins, Zap, Visual studio
code, Bitbukcet, Jira

• ZAP7 - Create a script to collect all the vulnerabilities
information: Implement a script that is capable of collecting all the
vulnerabilities detected by the Zap, and introduce them in a Dashboard
in Kibana.
Duration: 20h
Dependencies: -
Human resources: DevSecOps senior, DevSecOps intern
Material resources: Computer with internet, Overleaf, Grammarly,
access to the Mango system, Server with Jenkins, Zap, Visual studio
code, Bitbukcet, Jira

24

6.1.5 Securing Kubernetes Deploys

• SKD1 - Analyze vulnerabilities detected by checkov: A member
of the security team has already implemented checkov to analyze yamls,
check which are the most common vulnerabilities.
Duration: 20h
Dependencies: -
Human resources: security senior, DevSecOps senior, DevSecOps
intern
Material resources: Computer with internet, Overleaf, Grammarly,
access to the Mango system, Server with Jenkins, Zap, Visual studio
code, Bitbukcet, Jira

• SKD2 - Create template for deployment yaml: Based on the
previous analysis create a standard deployment yaml.
Duration: 30h
Dependencies: -
Human resources: DevSecOps senior, DevSecOps intern
Material resources: Computer with internet, Overleaf, Grammarly,
access to the Mango system, Server with Jenkins, Zap, Visual studio
code, Bitbukcet, Jira

• SKD3 - Think if it’s necessary to create more templates:
Investigate if more templates can be created, such as configmaps,
services or virutal services, and create them.
Duration: 30h
Dependencies: -
Human resources: DevSecOps senior, DevSecOps intern
Material resources: Computer with internet, Overleaf, Grammarly,
access to the Mango system, Server with Jenkins, Zap, Visual studio
code, Bitbukcet, Jira

• SKD4 - Generator of yaml’s: Create a program where you can
introduce your variables and it generates a standard yaml.
Duration: 40h
Dependencies: -
Human resources: DevSecOps senior, DevSecOps intern
Material resources: Computer with internet, Overleaf, Grammarly,
access to the Mango system, Server with Jenkins, Zap, Visual studio
code, Bitbukcet, Jira

25

6.1.6 Final documentation

• FD1 - Final document and presentation: Finish my final document
and prepare my thesis presentation.
Duration: 30h
Dependencies: -
Human resources: DevSecOps senior, DevSecOps intern
Material resources: Computer with internet, Overleaf, Grammarly,
access to the Mango system, Server with Jenkins, Zap, Visual studio
code, Bitbukcet, Jira

Task Duration Dependencies Human Resources

PM1 20h - Project Manager
PM2 20h PM1 Project Manager
PM3 20h PM1, PM2 Project Manager

PM4 20h PM1, PM2,
PM3 Project Manager

AS1 30h -
Security senior,
DevSecOps Senior,
DevSecOps intern

AS2 30h -
Security senior,
DevSecOps Senior,
DevSecOps intern

SO1 4h - DevSecOps Senior,
DevSecOps intern

SO2 10h - DevSecOps Senior,
DevSecOps intern

SO3 10h - DevSecOps Senior,
DevSecOps intern

SO4 40h - DevSecOps Senior,
DevSecOps intern

SO5 10h - DevSecOps Senior,
DevSecOps intern

SO6 10h - DevSecOps Senior,
DevSecOps intern

SO7 20h - DevSecOps Senior,
DevSecOps intern

SO8 20h - DevSecOps Senior,
DevSecOps intern

SO9 10h - DevSecOps Senior,
DevSecOps intern

ZAP1 10h - DevSecOps Senior,
DevSecOps intern

26

ZAP2 40h - DevSecOps Senior,
DevSecOps intern

ZAP3 4h - DevSecOps Senior,
DevSecOps intern

ZAP4 20h - DevSecOps Senior,
DevSecOps intern

ZAP5 20h - DevSecOps Senior,
DevSecOps intern

ZAP6 10h - DevSecOps Senior,
DevSecOps intern

ZAP7 20h - DevSecOps Senior,
DevSecOps intern

SKD1 20h - DevSecOps Senior,
DevSecOps intern

SKD2 30h - DevSecOps Senior,
DevSecOps intern

SKD3 30h - DevSecOps Senior,
DevSecOps intern

SKD4 40h - DevSecOps Senior,
DevSecOps intern

FD1 30h - DevSecOps Senior,
DevSecOps intern

Table 2. Table summarising tasks. Source: own compilation

27

6.2 Gantt chart
In the figure below we can see how tasks are spread out temporarily. As you can
see in the Figure 4, the different stages are represented with different colors: blue
for Project Management, green for Analyze and explain the Security of Mango,
purple for Automatic Static Analysis, red for Automatic Dynamic Analysis,
yellow for Securing Kubernetes Deploys, dark green for Final documentation.

28

Figure 4: Gantt diagram

29

7 Risk management
In the table 3 we can see the diferent risks and obstacles that we can find during
the realization of the project. Also we can find an alternative plan.

Risk Impact Probability Alternative plan

Inexperience with
technologies High High

All the tasks that involve
technologies that i have
never used have been
overestimated.

Fixed entry Date Low Medium

Since I am using Kanban
if a task is not correctly
scheduled because another
took too much time it
can be rescheduled without
trouble.

Dependence on
others Low High

Start another task that is
not ralted to the current
task.

Table 3. Risks and alternative plan. Source: own compilation

7.1 Tasks and risks
In this subsection I am going to be talking about which tasks can be affected
by specfic risks.

I am going to refer to the risk Inexperience with technologies as ITWT, to
fixed entry date with FD and to Dependence on others as DO.

Task Risk Timeline
delays Alternative plan

PM1 - -
PM2 - - -
PM3 - - -
PM4 - - -

AS1 DO 6h

If the security senior is occupied
maybe it is going to take a while
to obtain feedback from the analysis
current system. I can start with
another task if this happens.

30

AS2 DO 6h

If the security senior is occupied
maybe it is going to take a while to
obtain an answer of my proposals. I
can start with another task if this
happens.

SO1 - - -

SO2 ITWT 2h

My inexperience with Jenkins might
be a problem. To solve the problem I
can make pair programming with the
senior.

SO3 ITWT 2h

My inexperience with Docker and
SSL certificates might be a problem.
To solve the problem I can make pair
programming with the senior

SO4 ITWT,
DO 8h

My inexperience with Jenkins and
dockermight be a problem. To
solve the problem I can make
pair programming with the senior.
The senior must ensure that what
i have programmed is correctly
implemented, so if he is occupied
it might take a while to obtain a
feedback. I can start with another
task.

SO5 - - -

SO6 ITWT 2h

My inexperience with Jenkins and
quality gates might be a problem. To
solve the problem I can make pair
programming with the senior

SO7 ITWT 4h

My inexperience with the API of
Bitbucket and Jenkins might be a
problem. To solve the problem I
can make pair programming with the
senior

SO8 - - -

SO9 FD - If something is blocking I can start
with the next task.

ZAP1 - - -

ZAP2 ITWT 8h

My inexperience with Docker and
Zap might be a problem. To
solve the problem I can make pair
programming with the senior

ZAP3 - - -
ZAP4 - - -

31

ZAP5 - - -

ZAP6 ITWT,
DO 2h

My inexperience with Docker and
Jenkins might be a problem. To
solve the problem I can make pair
programming with the senior. In this
task the senior must ensure that all
the previous steps and also this one
is working properly, this might take a
while so if the senior is not available
i can start with another task.

ZAP7 FD - If something is blocking I can start
with the next task.

SKD1 - - -

SKD2 ITWT 4h

My inexperience with Kubernetes
might be a problem. To solve
the problem I can make pair
programming with the senior

SKD3 ITWT 6h

My inexperience with Kubernetes
might be a problem. To solve
the problem I can make pair
programming with the senior

SKD4 DO 6h

In this task, the senior must ensure
that all the previous steps have been
performed correctly, so if the senior
is occupied it is going to take i while.
I can use this time to review the
previous steps.

FD1 - - -

Table 4. Table explaining possible delays per task. Source: own compilation

32

8 Budget

8.1 Identification of costs
To correctly develop this thesis it is necessary some human and material
resources. The material resources are the hardware and software that I am
going to use to develop the project, and the human resources are the personal
expenses. Furthermore, there are indirect resources, such as the price of the
offices where I am going to develop the project. Also, there are unforeseen
costs. To calculate all the costs I have rounded up all the results.

8.1.1 Human resources

Since i can not provide the exact salary of my cowokers I am going to be using
GlassDoor[18] to estimate the salary of the poeple that is going to be part of
the project. We can see all the information related to salary in the table 5.

Role Salary/hour(net
salary)

Salary/hour (gross
salary)

Project Manager 20.85 27.105
DevSecOps senior 21.74 28.26
Security senior 22.4 29.12
DevSecOps intern 10 12.2

Table 5. Salaries per role. Source: own compilation

Taking into consideration the cost provided in table 5 we can calculate the cost
of every task of the planification, due to each one having a different amount of
hours assigned to each role. The computation can be seen in Table 6.

33

Task Project
Manager

DevSecOps
senior

Security
senior

DevSecOps
intern

Total(euros)

PM1 542.1 542.1
PM2 542.1 542.1
PM3 542.1 542.1
PM4 542.1 542.1
AS1 141.3 145.6 366.4 653.3
AS2 141.3 145.6 366.4 653.3
SO1 28.26 48.8 77.06
SO2 28.26 122 150.26
SO3 28.26 122 150.26
SO4 141.3 488 629.3
SO5 28.26 122 150.26
SO6 28.26 122 150.26
SO7 56.52 244 300.52
SO8 56.52 244 300.52
SO9 28.26 122 150.26

ZAP1 28.26 122 150.26
ZAP2 141.3 488 629.3
ZAP3 28.26 48.8 77.06
ZAP4 84.78 244 328.78
ZAP5 84.78 244 328.78
ZAP6 28.26 122 150.26
ZAP7 84.78 244 328.78
SKD1 84.78 244 328.78
SKD2 113.04 366 479.04
SKD3 113.04 366 479.04
SKD4 141.3 488 629.3
FD1 542.1 542.1

TOTAL 2,710.5 1,640 291.2 5,344.4 9,986.1
Table 6. Amount of money human resources. Source: own compilation

8.1.2 Material resources

The project is going to last 5 months. I am going to be using some office
material and some specific software. Also, to move to the office I am going to
be using the bus. The amount of money required for the materials used in the
project can be seen in detail in table 7.

Hardware materials have a finite life so in the case of this kind of materials
I am going to calculate the amortization using the following formula:

Cost(euros) ∗ duration project(months)

Life span

34

Material Price(euros) Life span Amortization(euros)
Lenovo
thinkpad

1000 4 years 104.16

Lenovo screen 600 4 years 62.5
Acer screen 350 4 years 36.45
Mouse home 40 4 years 4.16
Mouse office 40 4 years 4.16
Keyboard office 40 4 years 4.16
Keyboard home 80 4 years 8.32
Sony
headphones

200 4 years 20.83

Total 647.24
Table 7. Amount of money materials. Source: own compilation

In addition to the materials listed in the table below, we have to add IntelliJ
ultimate which have a cost of 72.5€ per month(362.5 euros per 5 months) and
bus transport which has a cost of 1 euro per trip(40 euros 5 months).

Total: 647.24

8.1.3 Indirect resources

In the table 7 we can observe the cost related to the indirect resources. We have
to take into consideration that the project is going to be developed in the offices
of Mango in Palau Solita i Plegamans and at my home. In both places rent,
electricity and wifi must be paid to allow de the development of the project.
Also, when moving to the offices I am going to move using the bus.

Resource Price(euros) Months Amortization(euros)
Rent office 60 per person 5 300
Rent apartment 350 5 1750
Wifi apartment 30 5 150
Wifi office 0.8 per

person
5 4

Electricity
office

14 per person
[17]

5 70

Electricity
apartment

40 5 200

Total 2,374
Table 8. Amount of money indirect resources. Source: own compilation

The rent of the office is a estimation based in the mean price of the offices in
Palau Solita i Plegamans. Also, the electricity office is based on a study that
indicates that most offices use 100kWh/m2.

35

8.1.4 Contingency Costs

I will assign an extra 10% for contingency costs. In table 9 we can observe the
computation for each type of cost.

Cost type Cost(euros) Contingency(%) Final cost(euros)
Human
resources

9,986.1 10% 10,984.71

Material
resources

647.24 10% 711.7

Indirect
resources

2,344 10% 2,578.4

Table 9. Amount of money indirect resources. Source: own compilation

8.1.5 Unforeseen costs

The unforeseen costs related to risks has been already taken into
consideration, as said in the section risk management, by overestimating the
amount of time that i will have to invest in each task.

The unforeseen costs related to material resources can be seen in table 10.

Material Repair
Price(euros)

Probability

Lenovo
thinkpad

100 10%

Lenovo screen 50 10%
Acer screen 50 10%
Mouse home 10 10%
Mouse office 5 10%
Keyboard office 10 10%
Keyboard home 20 10%
Sony
headphones

40 10%

Total 285
Table 10. Amount of money materials. Source: own compilation

8.1.6 Final budget

To sum up, the final budget can be seen in table 11.

36

Type cost Cost + contingencies
Human
resources

10,984.71

Material
resources

711.7

Indirect
resources

2,578.4

Total 14,274.2
Unforeseen
costs

285

Total with
unforeseen
costs

14,559.2

Table 11. Final budget. Source: own compilation

8.2 Management control
To have control over the deviation of the budget, at the moment that a task is
finished I am going to recalculate the budget in function of the hours invested
and the Unforeseen costs. I am going to use the following formulas:

• Deviation of hours used per task

(Estimated hours - Real hours) * Estimated Cost

• Deviation of costs by the total hours used

(Estimated hours - Real hours) * Real cost

• Deviation of costs in human resources per task

(Estimated cost - Real cost) * Real Hours

• Deviation of materials costs

Estimated materials cost - Real materials cost

• Deviation of indirect costs

Estimated materials cost - Real materials cost

• Deviation of unforeseen costs

Estimated unforeseen cost - Real unforeseen cost

• Total deviation of hours

Estimated hours - Real hours

• Total deviation of costs

Total estimated costs - Total real costs

37

9 Sustainability report
There are a lot of aspects to take into consideration when we talk about
sustainability in the software engineering industry and the retail industry. The
most common is environmental.
Another important aspect when talking about sustainability is the social
aspect. In this ambit, we have to take into consideration the type of software
we are using and the quality of the conditions of the people that work on the
project. Even though it’s hard to measure. The last aspect to take into
consideration is the economic.

9.1 Economic dimensions
I have estimated the human resources and materials that i will need to develop
this project. The cost estimate of this thesis includes only the necessary
resources to correctly develop this project, as a consequence i can ensure that I
am not going to be wasting resources.

This project will allow Mango developers to save a lot of time when
developing new functionalities. That is because it is going to focus on
automating the check of the quality and security of the multiple projects of
Mango. As a consequence, programmers won’t have to waste time anymore by
manually checking if they are developing a secure code. Saving time is also
saving money and resources, because software developers instead of investing
time in checking the quality of the project, they can invest their time in
developing better and new features.

9.2 Environmental dimensions
The only negative aspect that this project can have is the amount of electricity
and resources, such as servers or computers, used to develop this thesis. Also,
the servers will be running after the end of the thesis. But, for sure the automatic
programs that I am going to use to analyze the projects are going to be faster
than programers, so we will be saving a lot of energy that they would consume
checking from their computers all the projects. Sadly, the only thing i can reuse
is the software used to analyze the projects, it would be a waste of time and
resources to remake the programs from zero.

9.3 Social dimensions
I think that throught this project I am going to learn a lot about how to develop
software, and how to automate quality checks. Furthermore I am sure i will meet
amazing people in Mango that will help me a lot to develop the project and will
teach me a lot of useful staff. Also, I am sure i will share with these people good
moments and will help me grow not only as a developer, but as person. This
thesis is going to improve the quality of life of Software developers of Mango

38

since they won’t have to check anymore manually the possible vulnerabilities
and the quality of the code of the different projects.

39

10 Integration of knowledge
The main goal of this thesis is to integrate all the knowledge that I have learned
during my Bachelor’s Degree and apply them to the project. Furthermore, I
want to point out that for me it has been also a great opportunity to incorporate
many concepts that I have not learned during my Bachelor’s or that might be
related to other specializations that are not Software Engineering. Furthermore,
learnt many concepts that probably are not taught in the University nowadays.
In this section I am going to be explaining the subjects related to my project:

• Web Applications and Services(ASW): This subject helped me to
clearly understand how to build a web project. Dividing the application
into at least two parts, backend and frontend. Furthermore, provided
information about how to create a great architecture for both parts and
how to develop quality code. This subject helped me to understand how
the different projects of the Mango department work.

• Software Project Management(GPS): This subject introduced the
Agile methodology and explained the difference between using agile and
using cascade. Furthermore, explained the different variations of Agile.
This subject helped me to understand the different methodologies that
the company uses.

• Computer Networks(XC): During this subject, I had the opportunity
to learn the basic protocols in networking such as IP, TCP, and UDP. This
was really helpful to understand some parts of the security of Mango as
well as some parts of the CI/CD implementation.

• Operating systems(SO): During this subject I managed to learn
basics in Main Functions of an Operating System, Internal Management
of Services and Capabilities, Interaction with Interfaces and
Components. It has been really helpful to work using different operating
systems.

• Business and Economic Environment(EEE): This subject explained
some basics of macroeconomics including how taxes work in Spain and
some basic explanation about Business Economics. This subject was really
helpful to make the economic part of this thesis.

40

11 Identification of laws and regulations
In this subsection I am going to explain the main laws and regulations that may
affect in some way to my thesis and that I should take into consideration when
implementing and documenting my thesis.

• The General Data Protection Regulation (GDPR): is a European
Union (EU) regulation that sets the rules for the protection of personal
data. It applies to organizations that process personal data of
individuals within the EU, regardless of whether the organization is
located within or outside the EU. The GDPR establishes fundamental
principles, such as transparency, purpose limitation, data minimization,
accuracy, storage limitation, and data security. It strengthens
individuals’ rights regarding their personal data, including the right to
be informed, access, rectify, erase, data portability, object to processing,
and not be subject to automated decision-making.

• Intellectual Property Law: it is a legal framework that regulates the
rights and protections related to intellectual property. The LPI
encompasses various forms of intellectual property, including copyright,
neighboring rights, and industrial property rights. It defines the rights of
creators and owners of intellectual works, such as literary, artistic, and
scientific works, as well as software, databases, and trademarks. The law
establishes the scope of these rights, including reproduction, distribution,
public communication, and transformation of protected works. It also
outlines the limitations and exceptions to these rights, such as fair use
for educational or research purposes.

• Organic Law on the Protection of Personal Data and
Guarantee of Digital Rights: it complements the GDPR and
provides specific regulations and guidelines for the protection of personal
data within the country. The LOPDGDD establishes the rights of
individuals in relation to their personal data, including the right to
access, rectify, erase, and object to the processing of their data. It also
introduces provisions for the protection of digital rights, such as the right
to digital privacy, freedom of expression, and the right to digital
disconnection. The law sets out obligations for organizations handling
personal data and establishes the Spanish Data Protection Agency as the
supervisory authority.

41

12 Technologies and concepts
In this section, I am going to be explaining the technologies and concepts I
will be using to reach my objectives and complete my tasks. It is really
important to have a general understanding of the technologies explained in the
following subsections to understand the thesis.

The technologies that I am going to explain in the following subsections
are: Jenkins, Kubernetes, Sonarqube, Zap, Sonatype, Docker, Elasticsearch,
Kibana, Grafana, NPM, Maven.

Concepts I will be explaining in the following subsections are: gitflow,
gitops, version control, webhooks, observability, monitoring.

12.1 Jenkins
Jenkins[21] is an open-source automation server that is used to build, test, and
deploy software applications. It is a popular tool used by software
development teams to automate their build and deployment processes, and it
is known for its flexibility, scalability, and ease of use.

Jenkins provides a web-based user interface that allows developers to
create and manage pipelines, which are a series of steps that define how an
application is built, tested, and deployed. These pipelines can be configured to
automatically trigger builds based on changes to the source code repository,
and they can be customized to include various types of testing, such as unit
tests, integration tests, and end-to-end tests.

Jenkins supports a wide range of plugins that allow it to integrate with
other tools and services, such as Git, Docker, Kubernetes, AWS, and many
others. This makes it easy to create complex and sophisticated build and
deployment workflows that are tailored to the needs of the organization.

In addition to its automation capabilities, Jenkins also provides extensive
reporting and monitoring features, which allow developers to track the
progress of builds and deployments, identify errors and issues, and quickly
resolve them.

Overall, Jenkins is a powerful tool that helps software development teams
streamline their build and deployment processes, reduce errors and downtime,
and improve the overall quality of their applications.

42

12.2 Kubernetes
At a high level, Kubernetes [?] provides a platform for running containerized
applications. It allows developers to deploy and manage containers across a
distributed infrastructure, and provides a unified API for managing resources
like pods, services, and volumes.

A Kubernetes cluster is a set of nodes (physical or virtual machines) that
run containerized applications and are managed by a control plane. The
control plane is responsible for managing the state of the cluster, including
scheduling applications, scaling resources, and monitoring health.

• Master nodes: The master nodes are responsible for managing the state
of the cluster. They run the control plane components, such as the API
server, etcd, the scheduler, and the controller manager. The master nodes
are usually highly available and are managed as a cluster themselves.

• Worker nodes: The worker nodes are responsible for running the containers
that make up the application. They run the Kubernetes runtime, which
manages the containers and ensures that they are healthy and available.
It provides the computing resources, such as CPU and memory, needed to
run the containers.

• Networking: Kubernetes provides a networking model that allows
containers to communicate with each other and with the outside world.

• Storage: Kubernetes provides a variety of storage options, including local
storage, network-attached storage (NAS), and cloud-based storage.

• Control Plane: The control plane is a set of components that manage the
Kubernetes cluster. It includes components like the API server, etcd, the
scheduler, and the controller manager.

Some of the key concepts and components of worker nodes:

• Pods: A pod is the smallest deployable unit in Kubernetes. It is a logical
host for one or more containers, and it provides a shared network
namespace and storage volumes.

• Replication Controllers: A replication controller ensures that a specified
number of pod replicas are running at any given time. It can automatically
scale up or down based on demand, and it can replace failed pods with
new ones.

• Services: A service is an abstraction that provides a stable IP address
and DNS name for a set of pods. It allows clients to access a group of
pods with a single endpoint, and it provides load balancing and automatic
failover. If we didn’t have this the pod would have each time a differnt
IP address and would be hard to manage connections with the pod and
between pods.

43

• Volumes: A volume is a directory that is accessible to one or more
containers in a pod. It can be used to store data that needs to persist
across pod restarts, or to share data between containers.

• ConfigMaps and Secrets: ConfigMaps and Secrets are Kubernetes objects
that can be used to store configuration data and sensitive information,
respectively. They allow developers to manage application configuration
and secrets separately from application code.

The API server is the central management point for Kubernetes, and it
exposes a RESTful API that allows developers to manage resources like pods,
services, and volumes. etcd is a distributed key-value store that is used to
store cluster state information. The scheduler is responsible for assigning pods
to nodes based on resource availability and constraints. The controller
manager includes a set of controllers that watch for changes to cluster state
and take actions to reconcile the state with the desired state.

To imagine the whole process, whenever we create a Deployment.yaml, it’s
assigned to a node, then to a replicaset and then that replicaset creates a pod
with the specified objects and information.

12.3 Sonarqube
SonarQube[22] is a popular open-source tool for continuous code quality
management. It provides a centralized platform for measuring and analyzing
code quality across multiple languages and projects, and it integrates
seamlessly with popular CI/CD tools like Jenkins and GitLab.

Key features of SonarQube:

• Code Quality Analysis: SonarQube provides a variety of code quality
metrics, such as complexity, duplications, code coverage, and security
vulnerabilities. It uses static code analysis techniques to identify issues
in the code and provides actionable feedback to developers.

• Integration with CI/CD Tools: SonarQube can be integrated with popular
CI/CD tools like Jenkins and GitLab, allowing developers to automate
code quality analysis as part of their build and deployment processes.

• Customizable Rules and Profiles: SonarQube allows developers to define
custom rules and quality profiles, tailoring the analysis to the specific
needs of their project.

• Dashboard and Reporting: SonarQube provides a centralized dashboard
and reporting interface, allowing developers and project managers to track
code quality metrics across multiple projects and teams.

• Language Support: SonarQube supports a wide range of programming
languages, including Java, C/C++, JavaScript, Python, and many more.

44

• Security Analysis: SonarQube provides a set of security rules to detect
vulnerabilities like SQL injection, Cross-Site Scripting (XSS), and other
types of security issues.

• Quality gates: Permits the definition of a standard that all the projects
should pass. It allows stopping pipelines if the code analyzed doesn’t
accomplish the quality gate.

SonarQube is an essential tool for software development teams that value code
quality and maintainability. By providing a centralized platform for code
analysis and reporting, it helps teams identify and address issues in their
codebase, leading to more maintainable and secure software.

12.4 Zap
ZAP[23], short for "Zed Attack Proxy," is an open-source web application
security testing tool. It is designed to help developers and security
professionals identify vulnerabilities and security issues in web applications
during the development and testing stages. ZAP is developed and maintained
by the Open Web Application Security Project (OWASP), a nonprofit
organization focused on improving the security of software.

ZAP functions as a proxy server that sits between the user’s web browser
and the target application. It intercepts the communication between the
browser and the application, allowing it to analyze and manipulate the traffic
for security testing purposes. By acting as a "man-in-the-middle," ZAP can
identify potential security vulnerabilities by examining requests and responses,
performing various security tests, and providing detailed reports on the
findings.

Zap gives the opportunity to automate the process of pentesting. It has a
desktop version and a dockerfile version with a python file containing the
basics analysis. Also it provides some key features like contexts.

In the context of ZAP (Zed Attack Proxy), a "context" refers to a specific
configuration or environment within which security tests are performed. It
allows you to define the scope and constraints for testing a particular web
application or a set of related applications. Key things that you can define in
Zap:

• Scope definition: By creating a context, you can specify the starting
URL(s) for testing. ZAP will consider only the URLs within the defined
context during the scanning and testing process. This allows you to
isolate specific areas of a web application or focus on particular
applications when testing a larger environment.

• Session management: ZAP maintains session information for each context,
which helps it handle stateful applications. It manages cookies and session

45

tokens within the defined context, ensuring that requests and responses
are correctly associated with the corresponding session.

Zap has many other features, but for this project we are going to use mainly
the explained above.

12.5 Sonatype
Sonatype[24] is a company that specializes in providing software supply chain
management solutions and tools. One of the primary offerings from Sonatype is
the Nexus Platform, which is a comprehensive suite of tools designed to address
the challenges associated with managing software artifacts, dependencies, and
vulnerabilities. We are going to use mainly the nexus repository manager:

The primary function of the Nexus Repository Manager is to act as a
centralized hub for storing and organizing software artifacts, making them
easily accessible to development teams. Some key features about the Nexus
Repository Manager:

• Artifact Repository Management: The Nexus Repository Manager
supports multiple repository formats, including Maven, npm, Docker,
and more. It provides a unified platform for hosting and managing
software components in these formats. Developers can publish their own
artifacts to the repository and retrieve dependencies required for their
projects.

• Deployment and Distribution: The Nexus Repository Manager enables the
distribution of artifacts to downstream environments or external users. It
provides mechanisms for promoting artifacts through different stages of
the software development lifecycle, facilitating seamless collaboration and
deployment.

• Integration with Build Tools: The Repository Manager seamlessly
integrates with popular build tools such as Apache Maven, Gradle, and
others. This integration simplifies the build process by automatically
resolving dependencies from the repository and ensuring consistent
access to required components.

We are going to use that tool mainly to save and get docker images as well as
store all the libraries created by the department, i.e. the design system (Atreyu)
and the authentication library.

12.6 Elasticsearch
Elasticsearch is a highly scalable and distributed search and analytics engine.
It is designed to handle large volumes of data and perform real-time search,
analysis, and visualization of that data. Elasticsearch is part of the Elastic
Stack, which also includes other components like Kibana for data visualization.
The most important features in Elasticsearch are:

46

• Distributed and Scalable: Elasticsearch is designed to be distributed,
meaning it can be spread across multiple nodes to handle large datasets
and provide high availability and fault tolerance. It can scale
horizontally by adding more nodes to the cluster, allowing for increased
storage capacity and query throughput.

• Near Real-Time Search: Elasticsearch provides near real-time search
capabilities, allowing you to index and search data with very low latency.
This makes it suitable for applications that require fast and responsive
searches.

• Schemaless JSON Documents: Elasticsearch stores and indexes data as
JSON documents. It is schemaless, meaning you can index and search
documents without explicitly defining a schema upfront. This flexibility
allows for dynamic mapping and easy handling of evolving data structures.

• Powerful Querying and Aggregation: Elasticsearch provides a rich query
language that allows you to perform complex searches, combining criteria
like text matching, filtering, and aggregations. Aggregations enable data
summarization and statistical analysis, allowing you to extract meaningful
insights from your data.

Elasticsearch is widely used in various applications, including log analysis,
monitoring, e-commerce search, content discovery, and enterprise search.

12.7 Kibana
Kibana [26] is an open-source data visualization and exploration platform that
works alongside Elasticsearch. Is designed to provide a user-friendly interface for
visualizing, analyzing, and interacting with data stored in Elasticsearch. Most
important features for this project:

• Data Visualization: Kibana allows you to create rich visualizations of your
data, such as line charts, bar charts, pie charts, maps, and more. You can
customize the appearance and styling of the visualizations to suit your
needs.

• Dashboards: Kibana enables you to build interactive dashboards by
combining multiple visualizations into a single view. Dashboards provide
a consolidated and holistic view of your data, allowing you to monitor
key metrics and perform real-time analysis.

• Integration with Elasticsearch: Kibana seamlessly integrates with
Elasticsearch, allowing you to leverage the power of Elasticsearch’s
search and analytics capabilities. You can directly access and visualize
data stored in Elasticsearch indices without the need for complex data
transformations or exports.

47

• Aggregations: Aggregations in Kibana are used to calculate and
summarize metrics based on the data stored in Elasticsearch. They
enable you to perform calculations, statistical operations, and other
computations on your data. Aggregations operate on a set of documents
and generate results that can be visualized or further analyzed.

• Buckets: Buckets in Kibana are containers that group documents based
on specific criteria. They act as a way to partition data into subsets or
categories for further analysis. Buckets can be created based on fields or
certain conditions, and each bucket contains a subset of documents that
satisfy the defined criteria.

By combining aggregations and buckets, you can gain a deeper
understanding of your data, identify patterns, trends, and correlations, and
generate meaningful insights for decision-making and analysis in Kibana.

12.8 Grafana
Grafana[27] is an open-source data visualization and monitoring tool used to
create interactive and customizable dashboards. It allows users to connect to
various data sources, collect and analyze data, and visualize it in real-time
through a web-based interface. Grafana supports a wide range of data sources,
including popular databases.

Most important features of Grafana for this project:

• Data Visualization: Grafana offers a rich set of visualization options,
including graphs, charts, tables, and gauges. Users can create visually
appealing dashboards by customizing the appearance, colors, and layout
of the visual elements.

• Data Source Integration: Grafana can connect to numerous data sources,
allowing users to fetch data from different systems and databases. It
supports popular data sources like Graphite, Prometheus, Elasticsearch,
InfluxDB, MySQL, PostgreSQL, and many more.

• Alerting and Notifications: Grafana allows users to set up alerts based
on defined thresholds or conditions. When certain metrics breach the
configured limits, Grafana can send out notifications via various channels,
such as email, Slack, or other external services.

Grafana is widely used for monitoring and observability purposes, including
infrastructure monitoring, application performance monitoring, cloud
monitoring, network monitoring, and business intelligence.

12.9 NPM
NPM[28] stands for Node Package Manager. It is a package manager for
JavaScript programming language and is the default package manager for

48

Node.js, a popular runtime environment for executing JavaScript code outside
of a web browser.

NPM allows developers to discover, install, and manage reusable code
packages, also known as "packages" or "modules," which contain JavaScript
code and other related assets. These packages can range from small utility
libraries to complete frameworks or applications.

Key aspects of NPM for this project:

• Package Management: NPM provides a command-line interface (CLI)
that allows developers to interact with the NPM registry, a vast online
repository of open-source JavaScript packages.

• Dependency Management: NPM helps manage dependencies between
JavaScript packages. A package may require other packages to function
correctly, and NPM automatically resolves and installs those
dependencies.

• Publishing and Sharing Packages: NPM allows developers to publish their
own packages to the NPM registry, making them available for others to
discover and use. This fosters collaboration and code sharing within the
JavaScript community.

• Scopes and Organizations: NPM supports scoped packages, allowing
developers to group related packages under a specific scope. Scopes
provide a way to namespace packages and differentiate them from others.

It empowers developers to leverage the vast array of open-source libraries
available, saving time and effort in building robust JavaScript applications.

12.10 Maven
Maven[29] is a powerful build automation and project management tool
primarily used for Java projects. It provides developers with a structured and
standardized approach to building, packaging, and managing software
projects. Maven simplifies the development process by automating repetitive
tasks and managing project dependencies, making it widely adopted in the
Java ecosystem. Important aspects of spring boot for the project:

• Project Object Model (POM): Maven uses a Project Object Model, which
is an XML file called pom.xml, to define the project’s configuration and
dependencies. The POM specifies project metadata, such as the project’s
name, version, dependencies, build plugins, and more.

• Dependency Management: Maven handles project dependencies by
automatically resolving and managing them. Developers specify the
dependencies in the POM file, and Maven retrieves them from remote

49

repositories or local caches. It ensures that all required libraries and
modules are available during the build process, simplifying dependency
management.

• Build Lifecycle: Maven defines a standard build lifecycle consisting of
phases and goals. The build lifecycle represents a sequence of steps that
are executed in a predefined order. Examples of build lifecycle phases
include compile, test, package, install, and deploy. Each phase can execute
one or more goals, which are specific tasks such as compiling code, running
tests, generating documentation, or creating a JAR file.

The most important for this project it’s probably the Build Lifecycle since it
simplifies a lot the scripting in the pipelines.

12.11 Gitflow
Gitflow[30] is a branching model and workflow that defines a specific structure
and process for managing branches in a Git repository. It provides a clear set of
guidelines and rules for branching, merging, and releasing code. When we use
Gitflow we have at least 2 branches always alive:

• Master Branch: The master branch represents the mainline or stable
codebase. It should always contain the production-ready code. Commits
in the master branch typically correspond to releases.

• Develop Branch: serves as the integration branch for ongoing development.
It acts as a base branch for creating feature branches and is used to collect
and test new features.

In addition, we have supporting branches(feature branches, release branches,
hotfix branches):

• Feature Branches: Feature branches are created from the develop branch
and are used for implementing new features or changes. Each feature
branch should be focused on a specific task or feature.

• Release Branches: Release branches are created from the develop branch
when preparing for a new release. They provide a stable environment for
final testing, bug fixes, and release-related activities.

• Hotfix Branches: Hotfix branches are used to address critical issues or
bugs in the production code. They are created from the master branch,
allowing for immediate fixes to be applied.

• Bugfix Branches: This branches are used to fix bugs detected in the release
branches.

Imagine that we want to implement a new functionality and we want to use
git-flow. The first thing we have to do is create a new feature branch where we

50

are going to develop that new functionality. After developing and testing we are
going to open a PR from our branch to develop. Once our code is in develop
we are going to create a Release Branch to make the final tests. If we detect a
bug or error during the test in the release branch we can create a bugfix branch
to solve it and merge it to our release branch. After all the test is done we
have to open a pr from our release branch to master. Once the code is merged
if a critical error is detected we can create a hotfix to quickly resolve it. After
the merge between the hotfix and the branch master is done, we have to merge
master to develop to avoid conflicts.

12.12 Gitops
GitOps[31] is a software development methodology and operational model that
leverages Git as the single source of truth for both application code and
infrastructure configuration. It brings the principles of version control and
collaboration to the management of infrastructure and deployments.
Furthermore, GitOps promotes the use of infrastructure-as-code principles,
enabling infrastructure and configurations to be treated as code and
version-controlled. Key concepts of Gitops:

• Git as the Single Source of Truth: In a GitOps workflow, the desired state
of the entire system, including both infrastructure and application code,
is stored in a Git repository. This repository acts as the single source of
truth for the entire system’s configuration.

• Declarative Configuration: The desired state of the system is defined
declaratively in files stored in the Git repository. These files can include
infrastructure-as-code templates (e.g., Kubernetes manifests, Terraform
scripts) and application configuration files.

• Continuous Deployment and Synchronization: GitOps relies on
continuous synchronization between the desired state defined in Git and
the actual state of the system. This is typically achieved using an
automated reconciliation process or an orchestration tool that
continuously monitors the Git repository for changes and applies them to
the target environment.

• Infrastructure Provisioning and Deployment: The infrastructure and
application deployments are managed by an orchestration tool (e.g.,
Argo CD, FluxCD) that reads the desired state from the Git repository
and applies it to the target environment. This includes provisioning
infrastructure resources, deploying applications, and configuring any
necessary components.

GitOps has gained popularity as a reliable and efficient approach for managing
infrastructure and deployments, especially in cloud-native and containerized
environments. By centralizing configuration and leveraging Git’s version control
capabilities, teams can achieve greater control, visibility, and collaboration in
their software delivery processes.

51

12.13 Version Control
Version control[32], also known as revision control or source control, is a
system that tracks and manages changes to files and code over time. It allows
multiple developers to work collaboratively on a project, keeping track of
modifications, and enables efficient management of different versions or
revisions of the project’s files. Version control systems provide a history of
changes, facilitate collaboration, enable branching and merging of code, and
help ensure the integrity and traceability of software development projects.

Key concepts of version Control:

• Repository: A version control system organizes files and code in a
repository. The repository stores the complete history of changes made
to the project, including additions, modifications, and deletions.

• Branches: Branching allows for the creation of independent lines of
development. Branches are separate copies of the project’s codebase that
can be worked on simultaneously. They enable developers to work on
different features or bug fixes independently without affecting the main
codebase.

• Merging: Merging combines changes from one branch into another,
typically integrating the changes made in a feature branch back into the
main branch. Merging ensures that the latest changes from different
branches are incorporated into the main codebase.

• Conflict Resolution: When changes made in different branches conflict
with each other, version control systems provide tools to help resolve
conflicts. Developers can compare conflicting versions, manually edit and
merge code, and choose the desired outcome.

For this project we are going to use Git.

12.14 Webhooks
Webhooks[33] are a mechanism used for real-time communication between web
applications. They allow one application to send automatic notifications or
trigger actions in another application by sending HTTP requests to a
predefined URL (callback URL) when a specific event occurs.

First of all an event has to ocurre in the source application, it can be from a
user action or data update, that the source application wants to notify to other
applications. The target application provide a URL where wants to receive
notifications from the source application. When the specified event occurs in
the source application, it triggers the generation of a webhook payload. This
payload contains relevant data about the event. The source application sends an
HTTP POST request to the webhook URL of the target application, carrying
the webhook payload as the request body. The target application receives the

52

incoming HTTP request at the specified webhook URL. It extracts and processes
the payload, performing the necessary actions based on the received information.

12.15 Observability
The primary objective of observability[34] is to gain a holistic understanding
of a system’s behavior, performance, and dependencies. It aims to provide
insights into the system’s internal workings, identify root causes of issues, and
enable effective troubleshooting and performance optimization.

Observability has a broader scope and aims to understand and analyze the
system’s internal state, behavior, and performance by collecting and analyzing
various signals, including logs, metrics, and traces. It encompasses the ability
to gain insights into the system’s behavior, even for unknown or unexpected
issues.

It focuses on capturing all relevant data and signals, allowing for deeper
analysis and understanding of the system’s behavior. Observability aims to
answer questions and investigate issues that might not have been anticipated in
advance.

12.16 Monitoring
The primary objective of monitoring is to ensure that a system is functioning
within expected boundaries and to identify any deviations from normal
behavior. Monitoring is often used for early detection of issues, triggering
alerts, and ensuring predefined service level agreements (SLAs) are met.
Monitoring typically follows a predefined set of metrics or thresholds that
indicate the system’s health or performance. It involves setting up monitoring
tools, defining alert conditions, and collecting specific data points regularly.
Monitoring focuses on collecting and analyzing predefined metrics and
indicators that provide specific information about the health, performance,
and availability of a system. It typically involves monitoring specific
components, resources, or metrics of interest.

53

13 Analyze and explain the security of Mango
In this section I am going to explain the current state of the security of mango
related to DevOps since my project is focusing on DevSecOps: S-SDLC. First
of all, I am going to analyze all the current systems of DevOps and then explain
how is currently considered security. After this explanation, I am going to point
out the possible improvements to the current system.

13.1 Document the current security
In this subsection you are going to find a explanation of the current state of
security in Mango related to DevOps. The next subsection I am going to point
out the possible improvements.

13.1.1 CI/CD Implementation

To implement the CI/CD system in the software department we are using,
Jenkins, Kubernetes, Sonatype, Docker and ArgoCD. Jenkins is mostly used
to implement pipelines to automate multiple processes. We have multiple
pipelines depending on the type of project. Furthermore, we are using a
multi-branch system so depending on the version of the code we execute
different steps for the same project.

A Jenkins pipeline is a set of stages that are executed one after another, each
stage is responsible for one specific task i.e. (building the project, executing
tests, etc). Jenkins pipelines can be implemented in many different ways, a
really common one is having a Jenkinsfile in the project files that contains all
the stages of the pipeline. But, that’s a very tough way to work, since when
you have to update a part of the file of all the backends projects you have
to modify multiple files. To avoid that problem, the DevOps team decided to
create a library that contains the specific stages for all the backends and all the
frontends. So now a Jenkinsfile looks like figure 5 instead of figure 6.

As can be seen in figure 6, we are specifying the library from where we are
going to get the groovy script that has to be executed for that specific project
in this case is mango-jenkins-shared-library. After specifying the library we
specify the pipeline that we want to execute, in this case k8sNodePipeline.
Furthermore, the necessary variables for the correct execution of the pipeline
are set:

• dockerImageName: Name that we are going to assign to the docker
image.

• namespace: Namespace in Kubernetes where the application is running.

• deploymentName: Name of the deployment in Kubernetes.

• containerName: Name of the container.

54

Figure 5: Jenkinsfile of a specific project.

Figure 6: Common Jenkinsfile.

55

For frontend projects that use Node and Angular to develop we have a
specific pipeline that perform the following stages, in the specific case of a pr:

• Checkout: In this stage the code is downloaded from a repository in
bitbucket and the version is controlled.

• Install Dependencies: During this stage the necessary dependencies
for the build of the project are installed. Mainly using npm install, also
Jenkins has access to the Mango’s Sonatype to download a package from
there if necessary.

• Unit test quality: During this stage the tests of the code are executed.

• Scan vulnerabilities: In this stage the vulnerabilities of the code and
dependencies are detected using a specific tool. Will go in deep when
talking about how Security is integrated in all the Devops process.

• Build: During this stage the application is built.

• Sonarqube: During this stage the code is statically analized using
Sonarqube 6. No quality gate implemented.

• Post Actions: Nothing.

Specific stages develop, release, master(apart from the specified below it also
executes stages previously described: checkout, version control, install
dependencies and build.):

• Build Docker Image: During this stage the docker image is built.

• Publish Docker Image: During this stage de Docker image built in the
previous state is published to a repository in Sonatype.

• Update GitOps deployment: During this stage the repository of
Gitops of the project is updated.

• Deploy: During this stage the kubernetes context is set, due to Mango
has different Clusters for different applications and the image of the
application on the deployment is changed using kubectl.

Aside of the pipeline that we use to build the front and back projects, we have
other pipelines related to devops projects. For example, many of the tools and
packages are developed using python so we have the following pipeline:

• Checkout: In this stage the code is downloaded from a repository in
bitbucket and the version is controlled.

• Install dependencies: During this stage the necessary dependencies for
the build of the project are installed. Mainly using npm install, also
Jenkins has access to the Mango’s Sonatype to download a package from
there if necessary

56

Figure 7: Frontend and backend pipeline CI CD

Figure 8: Frontend and backend pipeline CI CD

57

Figure 9: Frontend and backend pipeline CI CD

• Unit tests: During this stage the tests of the code are executed.

• Build package: During this stage the python package is build and
prepared to be published in a private repository in Sonatype.

• Publish package: During this stage the package built previously is
published to Sonatype.

There is another pipeline implemented related to devops projects, the one
that is used to manage the repositories with all the kubernetes objects. There
is a repository of gitops containing all the Kubernetes objects per project. The
pipeline has the following stages:

• Checkout: Get the code from the gitops repository.

• Check linter: Check if the .yaml are in the correct format, if not the
pipeline stops.

• Security check: Check and generate a report of the vulnerabilities
detected by a certain tool (checkov). I am going to dig in this tool later.

• Check image on sonatype: Check if the docker image contained in the
deployment exist.

• Sync appset: This stage is synchronizing argoCD. That’s like a Kubectl
apply of all the files contained.

We have to take into consideration how Jenkins is executing the different
projects. There are many different ways of managing the slaves in Jenkins. A
slave is basically a virtual machine or pod that is controlled by Jenkins to
execute the different pipelines. One way to set slaves is having multiple virtual
machines that are only used to execute pipelines but in Mango, we are using a
different way, that is because executing pipelines in virtual machines has many
side effects as taking too much time to execute the different pipelines and

58

Figure 10: Node pod template

harder scalability.

In Mango, we are using a plugin from Jenkins that allow us to execute the
different pipelines in Kubernetes. We have a specific cluster in Kubernetes
that is only used to execute tools related to DevOps and Jenkins pipelines. So
that plugin allows us to specify a deployment.yaml from where create new
pods depending on the type of pipeline.

In figure 10, we can observe an example of a pod template, were we get
multiple docker images of the repository in Sonatype. Each image has been
specifically created to run a type of pipeline, so we can have a better control of
the vulnerabilities and dependencies of each docker image.

13.1.2 Security implementation

During the complete execution of the pipelines the security is implemented in
many ways. First of all, all the passwords used by the different applications
are in sealed-secrets in kubernetes.

A Sealed Secret in Kubernetes is an extension to the concept of a regular
Secret that provides an additional layer of encryption and security. It is a
Kubernetes custom resource that allows you to encrypt and store sensitive

59

data in a way that only authorized parties can decrypt and access.

The Sealed Secrets project is an open-source tool created by Bitnami that
implements this concept. It provides a controller and a command-line tool to
create Sealed Secrets and a controller that runs within your Kubernetes cluster
to decrypt and create regular Secrets from the sealed data. To decrypt the
information locally you need to have the key.

Furthermore, all the passwords of the different systems, wild cards, and
public certificates are stored in a vault of secrets. So, if a programmer need to
access Jenkins or Sonarqube can get the credentials from that vault, instead of
having that information in their PC.

The vulnerabilities of the OS are taken into consideration, since all the
backends are running using the same base docker image, as well as frontend
images. All the vulnerabilities of this two images are analyzed and taken into
consideration. Also, it is really easy to control it since we only have to control
2 different images. In these days the total number of vulnerabilities is 0.
Furthermore, the vulnerabilities of the image built from the dockerfile of each
project are controlled using the same tool and reported to programmers to
allow them fix this specific vulnerabilities. The tool used is Grafeas Image
Scanner.

Grafeas Image Scanner (Grafeas + trivy) or simply "Grype"[35] is an
open-source vulnerability scanner specifically designed for container images. It
is developed by Anchore, Inc. Grype helps to identify security vulnerabilities
within container images by analyzing their software components and their
associated metadata.

Here are some key features and functionalities of Grype:

• Container Image Scanning: Grype scans container images, such as
Docker images or images used in Kubernetes deployments, to detect known
vulnerabilities in the software packages and dependencies within those
images.

• Vulnerability Database: Grype uses a comprehensive vulnerability
database, which is regularly updated, to compare the versions of software
packages in the scanned container images against known vulnerabilities.
It provides accurate and up-to-date information about the security
issues.

• Multiple Image Formats: Grype supports scanning different container
image formats, including Docker images, OCI (Open Container Initiative)
images, and ACI (App Container Image) images.

• Easy Integration: Grype can be easily integrated into container security
workflows, CI/CD pipelines, or vulnerability management systems. It

60

provides a command-line interface (CLI) and a JSON-based output format
that can be consumed by other tools or scripts.

In mango, we are also checking all the possible vulnerabilities generated by the
dependencies of the projects. For this specific task, we are also using Grype.
The analysis is performed in every pull request that is created in back and
front projects. The vulnerabilities are reported to the developer by attaching a
message in the pr in Bitbucket.

13.1.3 ArgoCD

To implement the gitops concept in the software department we are using
ArgoCD[36].

Argo CD is an open-source continuous delivery (CD) tool specifically
designed for Kubernetes-based applications. It enables automated deployment,
configuration management, and synchronization of applications in Kubernetes
clusters.

To implement it there are three pods in the Jenkins Cluster that are
capable of applying, managing, and comparing all the objects of the
Kubernetes cluster. That is a huge benefit since we don’t need to add new
pods in all the Clusters.

When the team started to implement ArgoCD, they decided to create a
new repository per every single project, and in every repository, there are
three folders at least: master, int, and dev. In every folder, there are the same
Kubernetes objects when no one is making changes. It can be implemented in
many other ways but that is the one they chose.

It is important to understand that ArgoCD can compare the state of the
repository and the state of the Kubernetes objects and is going to consider the
truth whatever is in the repository.

ArgoCD has many functionalities but the most important are:

• Prune: ArgoCD by default will never erase an object even if you have
erased in the repository. Only when you active this funcionality will erase
it.

• Dry Run: This functionality allows to verify that the changes sucessfully
work without applying them.

• Refresh: This functionality fetch the changes made in the git repository.

• Sync: Apply whatever is in the git repository.

61

To make it clear how ArgoCD works, lets explain how someone would
make a change in a deployment.yaml using ArgoCD.

• Pull Repository: The developer needs to pull the repository where the
deployment.yaml is.

• New Branch: The developer must create a new branch to push the
changes made.

• Make a change: The developer would make the change first in the
dev folder. After checking that everything is working he can add the
modifications in int and master.

• Push change: Push a change to the repository and create a pull request
to master and add as a reviewer someone from DevOps. Once the pr is
approved he can merge the code to the master.

• Refresh and Sync: Once the code is in master he must go to ArgoCD
and click the refresh and sync buttons.

That is a big improvement compared to how the workflow used to be.
Everyone used to have all the Kubernetes context with admin access. That
means that anyone could make a change in the objects. Furthermore, if
someone did a change in the objects there was no way to go back, and you
couldn’t know who was doing the change. Now you can easily go back to the
previous state, you can control who applies the objects and you can limit what
certain teams can apply.

To sum up, ArgoCD is not only an improvement in Kubernetes management,
but it is also an improvement in Security.

13.1.4 Monitoring

To monitore the resources in Kubernetes Mango is using mainly three
technologies, Prometheus[37], Grafana and APM[38].

Prometheus is an open-source monitoring and alerting system designed for
gathering and analyzing metrics from applications, systems, and services. It
was created by SoundCloud and is now maintained by the Cloud Native
Computing Foundation (CNCF).

Prometheus collects metrics from various sources, such as application code
instrumentation, exporters, and service discovery mechanisms. It supports
multiple data formats, including a simple plain text format and a more
efficient binary format for high-volume data.

62

Prometheus provides a powerful query language called PromQL
(Prometheus Query Language) to retrieve and analyze metrics data. It allows
you to perform complex queries, aggregations, and transformations on the
collected data. Additionally, Prometheus supports defining alerting rules to
trigger notifications based on specific conditions or thresholds.

Prometheus provides built-in service discovery mechanisms to
automatically discover and monitor targets, such as Kubernetes services,
Consul services, or static configurations. This simplifies the process of adding
and removing monitoring targets dynamically.

Prometheus follows a flexible data model based on time-series data. It
stores metrics as time-stamped series of numerical values, along with labels
that allow for multi-dimensional querying and filtering. This enables efficient
storage and retrieval of metrics data.

In every node, some pods collect all the information from the node and
insert it into Prometehus. Once the data is in Prometheus it can be used to
create Dashboards in Grafana to monitor the amount of memory or CPU used
by every pod.

APM stands for Application Performance Monitoring. It is a software
practice and a set of tools designed to monitor and manage the performance
and behavior of applications in production environments. APM provides
insights into application performance, resource usage, and end-user experience
to identify issues, optimize performance, and ensure efficient operation.

The tools provided by APM monitor and capture errors and exceptions
that occur within the application. They collect stack traces, error messages,
and contextual information to help identify and prioritize issues for resolution.
Error tracking enables faster troubleshooting and proactive issue resolution.

It helps development and operations teams gain insights into the behavior
and performance of their applications in production environments. It
facilitates proactive monitoring, troubleshooting, and optimization of
applications, ensuring that they meet performance expectations and provide a
positive user experience

The tools provided by APM collect and analyze various performance
metrics and indicators from applications in real-time. This includes metrics
like response time, throughput, error rates, CPU and memory usage, database
queries, and more. By monitoring these metrics, APM helps identify
bottlenecks, performance degradation, and resource issues.

63

13.2 Explain possible improvements in the Security of
Mango

To explain the possible improvements in the security of Mango first we have to
see what is the objective. For Mango, the objective is to completely work in
S-SLCD.

The Secure Software Development Life Cycle (SSDLC), also known as
Secure SDLC or Secure Development Life Cycle, is an approach to software
development that emphasizes incorporating security considerations throughout
the entire software development process. It aims to proactively identify and
address security vulnerabilities and risks at each stage of the development life
cycle.

The SSDLC typically consists of the following key phases:

• Security Policy: This step consist into the creation of a security Policy
that all workers have to accomplish. Already created.

• Application Secret Security: Save passwords in a save mode. In the
case of Mango, we are using a vault were we save all the passwords and
vulnerable information.

• Scan OS Vulnerabilities: This step consist on analyzing the
vulnerabilities of the operating systems that are used by the applications
and programmers.

• Scan Lib Dependency Vulnerabilities:

• IDE Security Tools: Install and use a plugin in the IDE, related to
security. This plugin will help developers to detect possible vulnerabilities.

• SAST Analysis: Static Application Security Testing. Introduce a tool
in the environment of the developer to perform static analysis.

• DAST Analysis: Introduce a tool in the environment of the developer
to perform dynamic analysis.

• Security Dashboard: Create a Security Dashboard to take control of
the current situation and set goals and objectives.

Now we have set an objective we can see what we can do to improve the
security of Mango. There are many steps that has been already acomplished
as we can observe in the figure above. But there are 3 steps that remains to
do, SAST Analysis, DAST Analysis and Security Dashboard. During my thesis
I am going to implement this three last steps that will complete the Secure
Software Development Life Cycle.

64

Figure 11: Jenkins credentials

14 Automatic Static Analysis
During this section I am going to explain how I have implemented Sonarqube
in the current system of Mango and how this implementation it’s improving the
overall code.

14.1 Set up Sonarqube Credentials in Jenkins
First thing I had to do is get familiarized in how Jenkins treat the credentials,
since to access the Sonarqube server of Mango I will need to use specific
credentials. To add new credentials we have to follow this steps:

• In the management section of Jenkins access the credentials subsection.

• Once you are in the credentials page you have to click add credentials.

• Now you can chose which type of credentials you want to add such as
Username and Password, SSH Username with private key, Certificate,
Secret text, etc.

• Once you have created the credentials in the management you can access
them from any jenkinsfile executed in that server using: withCredentials,
and specifying the id generated by Jenkins in that function.

14.2 Create new methods in the Jenkins library
This subtask mainly consists in create the mango-shared-jenkins-library, the
library that contains all the pipelines and methods used by the pipelines, a

65

Figure 12: Jenkins stage

new method that allows us to execute Sonarqube 9 no matter which project or
technology is used.

To perform that specific task the solution was to create in each Jenkins
pipeline a new stage. As can be seen in Figure 12, the stage is only executed
during PR and never executed when the pr it’s a hotfix. We decided to not
execute the Sonarqube in a hotfix because we are going to implement the
quality gate, and whenever you use a hotfix it’s because you need to urgently
fix a bug in production. Sonarque script is going to be executed in a specific
docker container from the pod where the pipeline is running. In this case, it is
going to run in the maven container.
It is also important to take into consideration that the Sonarqube stage is
executed after the build and test stages because Sonarqube needs a specific
report generated by the test execution to run the analysis.

Inside the method updateMavenSonar, we are going to execute the following
command:
./mvnw sonar:sonar - Dsonar.login=script.password−Dsonar.organization =
default−Dsonar.projectKey =gitRepository -Dsonar.qualitygate.wait=true

14.3 Import the SSL certificate in the necessary Docker
To be able to execute the sonar command in each pipeline we need to use the
Sonarqube public SSL certificate since the Sonarqube server is using SSL. As
we have seen in the previous task, the Sonarqube command is executed in a
specific docker container depending on the technology we are using. Since
every pipeline is going to be executed in a different image we have to import
the certificate to multiple docker images. Furthermore, we have to take into
consideration that every docker image used to execute pipelines has its own
repository in bitbucket with the necessary files and its own Dockerfile.

66

To install an SSL certificate in Java we have to:

• Obtain the SSL certificate: In my case, this step consist into getting
from the vault of secrets the correct certificate

• Prepare the certificate file: Convert it to PEM.

• Install Certificate: Use the keytool provided by java to install the
certificate in the cacerts.

The task consisted on adding in each repository the corresponding docker
image and adding a command in the docker file to copy the certificate as well
as a command to insert the certificate in the cacerts.

14.4 Investigate how Sonarqube quality gate works
During this task I have been investigating what is a quality gate in Sonarqube
and how to communicate to Jenkins the status of the quality gate.

In SonarQube, a quality gate is a set of predefined criteria or conditions
that your project’s code must meet to be considered of acceptable quality. It
acts as a gatekeeper that checks the quality of your code and determines
whether it can be considered "good" or "bad" based on the specified criteria.

When you analyze your code with SonarQube, it evaluates the code against
the defined quality gate conditions. The analysis results are then compared to
the thresholds set in the quality gate. If the analysis meets all the defined
conditions, the quality gate status is "passed." If any of the conditions are not
met, the quality gate status is "failed."

Quality gates in SonarQube are defined using a combination of static code
analysis rules, metrics, and thresholds. They help enforce coding standards,
promote best practices, and ensure that your code meets certain quality
standards.

The communication of the quality gate to Jenkins is done using a webhook.
A webhook is a mechanism that allows two applications or systems to
communicate with each other in a real-time or near-real-time manner. It
enables one application to send a notification or trigger an action in another
application whenever a specific event or data change occurs. While I was doing
this task realized that Sonarqube was not able to reach Jenkins since both
servers where in two different firewall zones.

Furthermore, during the realization of this task I communicated to the
developers the necessity of reaching an agreement on what was going to be the
standard implemented in the quality gate.

67

Figure 13: Quality gate conditions

14.5 Create a method in Jenkins library to implement the
quality gate

During this task my job was to create a new method in Jenkins to use the
quality gate. After looking carefully to the current implementation of sonar,
realized that the only necessary thing to do was to add a quality gate flag in
the command executed by Sonarqube: -Dsonar.qualitygate.wait=true The
-Dsonar.qualitygate.wait=true command in SonarQube is a parameter that
can be used during the analysis of your code to make the analysis process wait
for the quality gate evaluation to complete before proceeding.

By default, when you run the SonarQube analysis, the analysis itself is
performed asynchronously, and the analysis task is submitted to the
SonarQube server for processing. The analysis task is queued for execution,
and the analysis process on the server starts immediately, while the quality
gate evaluation runs in parallel.

When you include the -Dsonar.qualitygate.wait=true parameter during the
analysis, it changes the behavior. The analysis process will wait for the quality
gate evaluation to complete before continuing. This means that the analysis
will not complete until the quality gate status is determined.

The purpose of using this parameter is to ensure that the analysis result
reflects the final quality gate status. It allows you to have more accurate and
consistent analysis reports, as you will know whether the code meets the defined
quality gate criteria or not.

68

Figure 14: Overall code in sonarqube

Figure 15: New code in sonarqbue

69

14.6 Create a method in the Jenkins library to write
messages in bitbucket PRs

During this task, my objective is to create a new method in the Jenkins
library that attaches a new message in the PRs comments with all the quality
gate information generated by Sonarqube. To perform that task I have created
a script that gets the result from Sonarqube of the execution of the quality
gate. To get the result I use the API provided by Sonarqube. Once I have this
information I generate the URL of the pr based on some parameters provided
by the pipeline environment. After that I make a request using the API from
bitbucket to attach in the specific PR, all the information collected by
Sonarqube.

14.7 Implement an API to obtain security vulnerabilities
from Sonar

The backend was previously implemented when I started the project. But I
had to make some modifications. The API is implemented in a Cronjob in a
Kubernetes cluster.

A cron job[39] is a type of resource that allows you to schedule and
automate the execution of tasks or jobs at specified time intervals or based on
a cron-like schedule. It is designed to handle recurring, time-based operations
within a Kubernetes cluster.

A cron job is defined by a schedule, which follows the same format as
traditional cron expressions. It consists of specific time and date fields that
define when the job should be executed. For example, a cron expression of 0 0
* * * would schedule the job to run once every day at midnight.

The job template defines the task or workload that should be executed
according to the cron schedule. It specifies the container image, command,
arguments, and other details required to run the job. The job template is
similar to a regular Kubernetes job but with the addition of the schedule.

The cronjob is basically deploying the backend and getting all the
information from all the projects analyzed by sonarqube using its API. Once it
has all the information it is inserted in an Index in Elasticsearch. Once the
information is in the Index, Elasticsearch updates the information of a
Dashboard in Kibana.

The backend has been developed using Kotlin, Maven, and Spring boot and
during this task, I have updated all the necessary endpoints to the new ones
from the new sonarqube server API. Furthermore, added some new information
generated by the new Sonarqube9.

70

Figure 16: Dashboard Kibana Sonarqube

14.8 Create confluence to allow execute Sonarqube9
locally

The purpose of this task is to create a tutorial in confluence explaining how
people can analyze locally, without the necessity of creating a new pr, the code
with Sonarqube. To perform the task I have created the following confluence,
explaining how to import the certificate and the command and necessary changes
depending on the technology the developer is using.

14.9 Problems related to Sonarqube
During the implementation of Sonarqube, I faced many problems, in the
previous task I avoided explaining most of them, as you may know developing
and implementing new tools doesn’t use to be as easy as planned, but I wanted
to highlight a specific challenge that I faced during the implementation.

It is important to know that in Mango we are using the free tier of
Sonarqube, so some functionalities as analyzing by branches are not available.
Also, as previously mentioned, it is important to take into consideration that
Sonarqube generates two reports, one for the new code and one for the overall
code.

By default, the reference to consider if something is new code or is
something that previously was in the project is the last analysis. That resulted
in a big issue since we can face the following situation:

Two developers are working on the same code and created two different
branches from development. Both have created a pull request to develop and
are running the analysis in Sonarqube. The first developer executes the
pipeline and the code is correctly compared, and the new code report is
correctly generated since it is comparing to develop, but the second developer
executes the pr and the new code is not correctly generated, that is because
after the first programmer made the analysis the reference to get the new code

71

is the code on his pull request.

The solution to that problem was to investigate how Sonarqube manages the
references, after some time I find out that Sonarqube gives you the following
three options:

• Compare to Branch: Compare the code to a specific branch, can not be
used in the free tier.

• Compare to a previous day: Compare to a previous day analysis.

• Compare to a previous analysis: Compare to a analysis generated before.

The solution was to use the third option. During the execution of the
pipeline on master it executes in the post actions, a Sonarqube analysis, and
sets it as a reference. That reference is only changed now whenever the build
of master is executed. But, that is also generating other problems, when a new
project comes up there is nothing on master so defining what is the reference
code it’s tricky.

I would also strongly recommend the creation of a command to set the
reference code for new code from the local environment, which would help a
lot with the derived problem explained before.

Another problem is that we are not executing hotfix the quality gate since
we consider it an emergency tool, only used to make the necessary changes to
fix the master. But, we are not controlling the quality of the code introduced
by hotfix. Probably, the best way to fix this is to set a quality gate for the
overall code.

An additional problem is related to false positives. There are many cases
where Sonarqube is detecting code smells, bugs or duplicated code that are
not. Sonarqube gives the option to disable specific code smells or erase the
coverage. Even though I would strongly recommend creating in confluence a
document explaining how to avoid false positives to make easier the
onboarding process in the team.

I want to mention, that probably the whole success of Sonarqube in the
Mango department it’s completely related to the mindset of everyone related
to the development process. It is really easy to figure out for a developer why
quality code is really important, and why tech debt must be avoided, but it is not
that easy for a business or a product owner with no background in development.

72

15 Automatic Dynamic Analysis
During this section I am going to explain how I have implemented in Mango a
tool to perform automatic dynamic analysis.

15.1 Test in local Zap
The first thing to do when using new technology is to get familiarized with it.
For that, I downloaded and installed the newest version of Zap[40] on my
laptop and tested the basic functionalities. The basic analysis of zap consists
in:

• Scanning and Spidering: ZAP can scan web applications to discover
and analyze potential vulnerabilities. It has a built-in spidering
functionality that navigates through the application, crawling and
mapping its structure and functionalities.

• Vulnerability Detection: ZAP performs various security tests to
identify common vulnerabilities, including but not limited to Cross-Site
Scripting (XSS), SQL injection, Cross-Site Request Forgery (CSRF),
security misconfigurations, and more. It analyzes input points,
parameters, and responses to detect potential security weaknesses.

• Active and Passive Scanning: ZAP offers both active and passive
scanning capabilities. Active scanning involves actively sending malicious
payloads and checking the application’s response for potential
vulnerabilities. Passive scanning, on the other hand, observes and
analyzes the application’s traffic to identify security issues without
actively interacting with the application.

• API Testing: ZAP can also be used for testing RESTful APIs and web
services. It supports the analysis of API endpoints, request and response
structures, authentication mechanisms, and potential security
vulnerabilities specific to APIs.

All this information is reported in many ways, in the application there is a
fancy screen where the user can read the report. Furthermore, Zap allows you
to download the report in various formats, including JSON and XML.

15.2 Create a new dockerfile to run zap and a script to
obtain the result

The purpouse of this task is to create a dockerfile that allows to run an analysis
in Zap. The technology has its own dockerfile with an specific python script to
run a base analysis. This will help me a lot to automate the process.

73

Figure 17: Dockerfile zap

As can be seen in Figure 17 the base image is going to be created from the
image provided by Owasp. The docker file is creating a new directory inside
because it is necessary to run the analysis, it is the directory where the report
is saved. Furthermore, I am installing Python and coping a script in Zap that
in the future is going to generate and insert a report in an index in
Elasticsearch.

15.3 Figure out how to get an actualized list of all the
project that must be analyzed

Since we want to analyze all the URLs in the software department we want a
method to automatically get all the URLs. We could have a file with all the
URLs but it is not the best solution since it would have to be updated every
time a new URL is added.

The final solution was to get the URLs from the kubernetes context. The
command executed is the following: kubectl get ingresses -n istio-system.

15.4 Create a Jenkins job that is executed every night
When we were discussing the automation of the Zap, one of the options was to
add it in the pipelines, but it was not possible since the Zap analysis takes to
much time. So, we decided to implement it as a job in Jenkins.

A job is a fundamental unit of work and represents a task or a set of tasks
that Jenkins performs. Jobs in Jenkins are used to automate various processes
in the software development lifecycle, such as building, testing, and deploying
applications.

As can be seen in Figure 18, the script executes the command explained
above to get all the URLs. It is executed in the integration context since we
want to analyze all the URLs in that cluster. After that, we are executing the
analysis in the container implemented before and throw a script that scraps the
report and inserts the information in an index in Elasticsearch.

It is important to explain that we implemented a new pod template in
Jenkins and this specific script is being executed with that pod template. The
pod template can be observed in figure 19. As can be seen, I am using

74

Figure 18: Jenkins Job Zap

multiple docker images, k8s-tools, zap, and jnlp. Also, it is providing the
credentials to insert in Elasticsearch.

15.5 Create a script to collect all the vulnerabilities
information

The purpose of this task is to create a script in Python that takes the report
generated by Zap and scraps the necessary information as well as inserting it
in Kibana. In addition, we want to create a Dashboard that can be used by
anyone in the company to quickly find out where are we in terms of security
and how we have evolved in the past times.

The script is inserting in Kibana more information that is not shown in
Figure 20, that is because most of the information is about specific
vulnerabilities what is confidential.

In figure 20 can be seen that the script is collecting the number of
vulnerabilities by severity and the total number of vulnerabilities. Also, there
is a dropdown in the dashboard that allows the user to select which
vulnerabilities are shown in the dashboard by the general URL.

75

Figure 19: Zap podtempalte.

76

Figure 20: Zap Kibana dashboard.

16 Securing Kubernetes Deploys
Initially, the purpose of this section was to implement from the ground up a
new security system in Kubernetes using Checkov. But, most of the epic was
deleted after the creation of this section, since the team realized that many
things related to the task didn’t make sense or couldn’t be done. The only
part implemented is Checkov in the Gitops pipeline. Even though most of the
tasks has been erased and won’t be done I think it is important to take at
least a quick look at how the technology works and how has been
implemented, since securing infrastructure is a key part of the S-SLDC.

Checkov[41] is an open-source static analysis tool that helps you ensure the
security and compliance of your infrastructure as code (IaC) templates. It is
commonly used in cloud environments, such as AWS, Azure, and Google
Cloud Platform, but it can also be applied to other IaC tools like Terraform
and Kubernetes. In our case we are going to use it for Kubernetes yaml.

Checkov analyzes IaC files and scans them for potential security issues or
misconfigurations. It uses a set of predefined rules or policies to evaluate your
code against security best practices and compliance standards, such as CIS
(Center for Internet Security) benchmarks. These policies cover a wide range
of areas, including authentication, network security, encryption, logging, and
more.

When you run Checkov on your IaC templates, it examines the code and
provides a detailed report of any security issues it finds. Each issue is
associated with a rule ID and includes information about the problem, the
location in the code, and recommendations on how to fix it. This enables you
to identify and rectify security vulnerabilities early in the development process.

Checkov follows the next steps to run an analysis:

77

• Parsing: Checkov starts by parsing the input files or directories
containing infrastructure as code (IaC) templates. It supports various
IaC formats, including Terraform (.tf), Kubernetes (.yaml or .yml),

• Rule Evaluation: Checkov applies a set of predefined rules or policies
to the parsed IaC templates. These rules are based on industry best
practices, security standards, and compliance benchmarks. Each rule
defines a specific security check or a misconfiguration to look for within
the code.

• Issue Identification: Checkov evaluates the IaC templates against the
applied rules and identifies any security issues or misconfigurations. If a
particular rule is violated, Checkov generates an issue report indicating
the rule ID, severity level, location of the issue in the code, and additional
information about the problem.

• Results Reporting: Checkov presents the analysis results in a readable
format. The report includes details about each identified issue, such as
the rule violated, a description of the problem, and recommendations for
remediation. The severity level associated with each issue helps prioritize
the necessary fixes.

Even though I didn’t make the implementation, I am going to explain it
since I feel it is interesting and key to document since the goal of this thesis is
to explain how to implement a S-SDLC.

16.1 New stage gitops pipeline
In this subsection, I am going to explain how Checkov has been implemented
in the CI/CD. I explained when talking about the pipelines in Jenkins that we
had a specific one for the Gitops repositories. This task consisted in creating a
new stage in that pipeline.

The new stage is executed in a specific container (gitops-scanner-security).
This container has the tool preinstalled and performs a basic analysis of the
objects cloned.

16.2 Kibana dashboard with vulnerabilities
The purpose of this task was to create a Dashboard in Kibana to have an
overview of the state of the Kubernetes objects’ security.

It is implemented through a Cronjob that is executed every night, the
Cronjob executes a docker container specifically created through a docker file
to execute a script that will execute and collect all the vulnerabilities of all the
Gitops repositories. Once it has all the information it inserts the information

78

Figure 21: Checkov Kibana dashboard.

into an Elasticsearch Index.

As can be seen in the figure above, the script collects the total number of
flaws and the flaws by project. The flaws per project are shown in the diagram
each color represents a project.

79

17 Security Score Card
When I talked about how to improve the security of Mango, one was to create
Security Dashboard. In this section, I am going to focus on creating a Security
Dashboard using data provided by Security Score Card.

SecurityScorecard[42] is a cybersecurity company that offers a platform
and services to assess and monitor the security posture and risk of
organizations. The SecurityScorecard platform provides insights into an
organization’s security practices, vulnerabilities, and potential risks.

SecurityScorecard assigns a security rating to an organization based on
various factors such as network security, patching cadence, endpoint security,
and more. This rating helps businesses understand their security posture and
compare it to industry benchmarks.

The platform continuously monitors an organization’s digital footprint,
including its network infrastructure, web applications, and third-party
vendors. It collects data from various sources, such as public information,
threat intelligence feeds, and proprietary sensors.

SecurityScorecard assesses the risk associated with an organization’s digital
assets. It identifies vulnerabilities, misconfigurations, and potential weaknesses
that could be exploited by cyber attackers.

The platform also evaluates the security posture of an organization’s
third-party vendors or partners. It helps organizations identify and mitigate
potential risks arising from their relationships with external entities.

We have to consider that security scorecard is used to evaluate the company
for assurance companies. Based on the mark as well as vulnerabilities provided
by SSC, the price of cybersecurity insurance is going to vary a lot.

17.1 CronJob to Insert SSC information in ELK
During this task, I am going to implement a brand new cronjob to get the
data from Security Score Card and insert it in Kibana every night.

We can observe in figure 21 the final result of the security Score Card
cronjob. I have configured a docker Container named security-score-card, this
one is generated by a docker file that will be explained above. Furthermore, I
specified the Elasticsearch credentials to insert the data generated by the
script and the security-score-card-token to retrieve the data.

It can be seen in figure 23 the structure of the Dockerfile is used to
generate the container that the cronjob is running. Explanation of the docker

80

Figure 22: Cronjob security scorecard.

81

Figure 23: Dockerfile security-score-card

commands used:

• FROM: This command retrieves from a private sonatype repository the
base image of the Dockerfile.

• WORKDIR: Is used to set the working directory for instructions that
follow it in the Dockerfile.

• COPY: Used to copy a file or folder to the Docker image generated. In
this case, we are coping requirments.txt and src/.

• RUN: Runs a specific command inside the Docker image. In this case,
we are installing all the requirements specified by the document
requirements.txt.

• ENTRYPOINT: This command is used to specify a command that must
be run once the docker container is created.

The folder src copied to the container, has a script named main.py that is
executed by the container. This script has been generated by me to retrieve all
the necessary data from the security scorecard. This data consist in all the
vulnerabilities detected as well as the score provided by SSC. Furthermore, the
script is transforming the data and scrapping only the necessary information
that lately is going to be inserted in Kibana by this script.

17.2 Create dashboard in Kibana
Once all the data is inserted into an index in Elastisearch, the last thing we
have to do is to create a Dashboard in Kibana. During this task, I generated
the Dashboard that can be seen in Figure 24. To generate it I used aggregations
and buckets. The main purpose of this Dashboard is to give a quick overview
of the current situation of Mango Security, but also it pretends to be a way to
easily discover vulnerabilities. That is why in the Dashboard we can observe the

82

Figure 24: Dockerfile security-score-card

current grade, the evolution of the grade, the top 5 vulnerabilities that have more
impact on the score, and the evolution of the total number of vulnerabilities by
severity.

83

18 Showcase Desgin System DevOps
Configuration

During the summer of 2022, Software Engineering decided to start the
development and implementation of a Design System that will be used to
implement new functionalities by all the frontends of the department. The
Design system has been implemented from the perspective of the User
Experience and frontends since they have a better overview and understanding
of the components that are used and can be reused.

A design system[43] in software development is a collection of reusable
components, guidelines, and standards that ensure consistency and cohesion in
the design and development of software applications. It provides a centralized
and unified approach to design, enabling teams to create user interfaces (UIs)
that are visually consistent, intuitive, and efficient.

Benefits of using a Design System:

• Consistency: A design system establishes a consistent visual language,
including typography, colors, spacing, and UI components. It ensures
that all UI elements across different parts of an application or multiple
applications within an organization maintain a cohesive look and feel.

• Efficiency: By providing pre-defined and reusable components, a design
system enables developers to build UIs more efficiently. Instead of
reinventing the wheel for each UI element, they can leverage existing
components and design patterns, reducing development time and effort.

• Maintenance: With a design system, making design updates or
implementing design changes becomes more manageable. Since
components are centralized and reusable, making changes at the system
level automatically propagates to all instances where those components
are used, reducing the effort required for maintenance.

• Accessibility: Design systems often prioritize accessibility by
incorporating inclusive design principles and ensuring that components
are usable by individuals with disabilities. This helps to create more
inclusive software applications that can be accessed by a diverse range of
users.

It is important to consider that the Disgn System is implemented in a
Monorepo that must contain at the end three different projects; A project
with all the code of the components, another project containing the code of
the storybook and a project containing the code for the showcase.

A monorepo refers to a version control system where multiple projects or
software components are stored within a single repository. Instead of having

84

separate repositories for each project or component, all of them are managed
together in a unified codebase.

Nowadays they have already implemented a web application that is a book
store where developers can discover as well as obtain information about all the
components implemented in the Design System. Now they want to implement
a showcase, an application that is implemented from the ground up only using
components from the library. The showcase can be used by all the
programmers as an example of how to use the library.

18.1 Showcase Design System Configuration
During this task I have created from the ground up the project in Bitbucket as
well as configuring Karma, all the dependencies needed, and Jenkins. Also, I
want to point out that we figure out during the realization of this task that
wasn’t a good idea to develop the showcase inside the monorepo. At the very
beginning, it seemed like a good idea to implement it inside, mainly because it
allowed developers to test the new components developed in the Design
System without the necessity to publish a new version. But, after struggling a
lot with how dependencies were managed in the monorepo we decided to move
the application to a new repository.

18.2 Showcase Design System Kubernetes
I created a different subsection to explain the configuration done in
Kubernetes since it is a bit tricky. Since in the very beginning, the project was
meant to be a mono repo we only have a single URL for all the projects, so we
are in a strange situation where we are going to use a single URL for two
different web applications.

The base configuration for any application in Kubernetes consist into
having a deployment.yaml, a service.yaml and a virtual service. This
Kubernetes objects has been explained before when talking about technolgies
that were going to be used. To do this task I have created all this objects in a
gitops repository.

I want to highlight some specific modifications in terms of the virutalservice
to allow that two different projects work using a unique URL. The showcase it’s
only meant to be accessed when you add in the url /showcase/*, so we have to
specify in the virtual service that whenever someone tries to access /showcase/*
it has to be redirected to the pod showcase instead of being redirected to the
pod book store.

Another necessary modification is to add and rewrite some new commands
in the default.conf of the showcase.

85

Figure 25: Virtualservice showcase

86

The default.conf[44] file contains configuration directives that specify how
NGINX should handle incoming requests and serve web content.

The default.conf file defines the server-level configuration for NGINX. It
includes directives such as server name, listening port, SSL/TLS settings,
request handling rules, and more.

NGINX supports virtual hosts, which allow multiple websites or
applications to be hosted on the same server. The default.conf file may contain
multiple server blocks, each representing a virtual host with its own
configuration settings.

The configuration in default.conf determines how NGINX should route
incoming requests to the appropriate backend servers or services. This
includes rules for proxying requests, load balancing, caching, and other
advanced routing mechanisms.

First of all, we have to modify the location to /showcase/ since all the
requests done to the server must contain that prefix. Also, we have to change
where the root of our server is, now it is going to be in a specific folder named
/showcase/. Last but not least, we have to add the following command:
rewrite /showcase/(.*) /1 break. This command will rewrite the URL
used to get the main folders when accessing the server, so now when the
browser tries to get the main.html, main.js will use that specific prefix and will
be correctly redirected.

87

19 Changes in the planification
In this section I am going to explain which tasks has been erased an which tasks
are new compared to the initial report provided to the thesis tutor. A new task
has been created in the Sonarqube part:

• SO10 - Sonarqube old Jenkins: Implement Sonarqube in the old
Jenkins used by some legacy applications..
Duration: 20h
Dependencies: -
Human resources: DevSecOps senior, DevSecOps intern
Material resources: Computer with internet, Overleaf, Grammarly,
access to the Mango system, Server with Jenkins, Server with Sonarqube
9

In the Securing Kubernetes Deploy the task 4 (SKD4 - Generator of yaml’s)
has been eliminated.

Created new 2 new tasks to get the information of Security Score Card and
put it nicely in a Kibana Dashboard.

• SSC1 - CronJob to Insert SSC information in ELK: Create a new
CronJob in Kubernetes and develop a new script to collect the
information from SSC and insert it to an index in Elasticsearch.
Duration: 10h
Dependencies: -
Human resources: DevSecOps senior, DevSecOps intern
Material resources: Computer with internet, Overleaf, Grammarly,
access to the Mango system, Visual Studio Code, Elasticsearch,
Kubernetes

• SSC2 - Create dashboard in Kibana: Create the dashboard in
kibana with the data inserted in the index and make the necessary
changes to the script that generates the information.
Duration: 10h
Dependencies: SSC1
Human resources: DevSecOps senior, DevSecOps intern
Material resources: Computer with internet, Overleaf, Grammarly,
access to the Mango system, Visual Studio Code, Elasticsearch,
Kubernetes

Created 2 new tasks to configure a new project in bitbucket, Jenkins and
Kubernetes to develop a showcase for a Design System.

88

• SDSC1 - Showcase Design System Configuration: Create a new
repository in bitbucket with the correct version of angular and all the
necessary dependencies.
Duration: 5h
Dependencies: -
Human resources: DevSecOps senior, DevSecOps intern
Material resources: Computer with internet, Overleaf, Grammarly,
access to the Mango system, Bitbucket, Visual Studio Code, Kubernetes

• SDSC2 - Showcase Design System Kubernetes: Create the
necessary configuration of Kubernetes for this new project. Going to use
a url already used for another part of the Design System.
Duration: 5h
Dependencies: -
Human resources: DevSecOps senior, DevSecOps intern
Material resources: Computer with internet, Overleaf, Grammarly,
access to the Mango system, Bitbucket, Visual Studio Code, Kubernetes

Task Duration Dependencies Human Resources

PM1 20h - Project Manager
PM2 20h PM1 Project Manager
PM3 20h PM1, PM2 Project Manager

PM4 20h PM1, PM2,
PM3 Project Manager

AS1 30h -
Security senior,
DevSecOps Senior,
DevSecOps intern

AS2 30h -
Security senior,
DevSecOps Senior,
DevSecOps intern

SO1 4h - DevSecOps Senior,
DevSecOps intern

SO2 10h - DevSecOps Senior,
DevSecOps intern

SO3 10h - DevSecOps Senior,
DevSecOps intern

SO4 40h - DevSecOps Senior,
DevSecOps intern

SO5 10h - DevSecOps Senior,
DevSecOps intern

SO6 10h - DevSecOps Senior,
DevSecOps intern

89

SO7 20h - DevSecOps Senior,
DevSecOps intern

SO8 20h - DevSecOps Senior,
DevSecOps intern

SO9 10h - DevSecOps Senior,
DevSecOps intern

SO10 20h - DevSecOps Senior,
DevSecOps intern

ZAP1 10h - DevSecOps Senior,
DevSecOps intern

ZAP2 40h - DevSecOps Senior,
DevSecOps intern

ZAP3 4h - DevSecOps Senior,
DevSecOps intern

ZAP4 20h - DevSecOps Senior,
DevSecOps intern

ZAP5 20h - DevSecOps Senior,
DevSecOps intern

ZAP6 10h - DevSecOps Senior,
DevSecOps intern

ZAP7 20h - DevSecOps Senior,
DevSecOps intern

SKD1 20h - DevSecOps Senior,
DevSecOps intern

SSC1 10h - DevSecOps Senior,
DevSecOps intern

SSC2 10h - DevSecOps Senior,
DevSecOps intern

SDSC1 5h - DevSecOps Senior,
DevSecOps intern

SDSC2 5h - DevSecOps Senior,
DevSecOps intern

FD1 30h - DevSecOps Senior,
DevSecOps intern

Table 12. Table summarising tasks. Source: own compilation

90

20 Final budget
Changes in the budget due to changes in the management plan:

Task Project
Manager

DevSecOps
senior

Security
senior

DevSecOps
intern

Total(euros)

PM1 542.1 542.1
PM2 542.1 542.1
PM3 542.1 542.1
PM4 542.1 542.1
AS1 141.3 145.6 366.4 653.3
AS2 141.3 145.6 366.4 653.3
SO1 28.26 48.8 77.06
SO2 28.26 122 150.26
SO3 28.26 122 150.26
SO4 141.3 488 629.3
SO5 28.26 122 150.26
SO6 28.26 122 150.26
SO7 56.52 244 300.52
SO8 56.52 244 300.52
SO9 28.26 122 150.26
SO10 28.26 122 272.26
ZAP1 28.26 122 150.26
ZAP2 141.3 488 629.3
ZAP3 28.26 48.8 77.06
ZAP4 84.78 244 328.78
ZAP5 84.78 244 328.78
ZAP6 28.26 122 150.26
ZAP7 84.78 244 328.78
SKD1 84.78 244 328.78
SSC1 28.26 122 150.26
SSC2 28.26 122 150.26

SDSC1 28.26 61 89.26
SDSC2 28.26 61 89.26
FD1 542.1 542.1

TOTAL 2,710.5 1,640 291.2 5,344.4 9,028.02
Table 13. Table with human resources expenses. Source: own compilation

The total ammount has changed since I have added 50 hours to the project
and eliminated 90.

To sum up, the final budget can be seen in table 13.

91

Type cost Cost + contingencies
Human
resources

9,028.02

Material
resources

711.7

Indirect
resources

2,578.4

Total 12,317.42
Unforeseen
costs

285

Total with
unforeseen
costs

12,602.42

Table 14. Final budget. Source: own compilation

92

21 Achievement of technical competencies
• CES1.1 To develop, maintain and evaluate complex and/or

critical software systems and services. It has been accomplished
since I have been maintaining and evaluating with differnt tools critcial
corporate software.

• CES1.2 To solve integration problems in function of the
strategies, standards and available technologies. I have solved and
faced many problems using and thinking many strategies. Also
implemented new technologies to solve specific problems.

• CES1.3 To identify, evaluate and manage potential risks related
to software building which could arise. Done in the initial
report(GEP) were I talked about risks.

• CES1.8 o develop, mantain and evaluate control and real-time
systems. Accomplished, explained how to monitor a real time system.

• CES1.9 To demonstrate the comprehension in management and
government of software systems. Explained in deep how to manage
a software project and also how to develop using specific methodolodgies
such as gitflow.

• CES2.2 To design adequate solutions in one or more application
domains, using software engineering methods which integrate
ethical, social, legal and economical aspects. During the initial
report(GEP) took into consideration all this aspects.

21.1 Relationship of the project with the degree
• Usage of an Agile methodology to manage large software projects.

• Usage of git and a specific methodology, Gitflow, to successfully manage
software projects.

• Automated processes related to software applications with Jenkins and
Kubernetes.

• Development and deployment of infrastructure using Docker and
Kubernetes.

• Used design patters to develop new code using python.

• Understood how a real web application works. Also saw how the
development process works and what is important to the developer to
easily implement quality and safe code.

93

22 Conclusions
We can say that the project has accomplished the objective. Explain and
implement in a real scenario S-SDLC.

The development of this thesis has taught me many new concepts as well
as allowed me to meet new people. Through this thesis, I have discovered a
new branch of Computer Science not much covered during my bachelor,
DevSecOps. It has been a big challenge due to I did not have much experience
with most of the technologies I have been working with (Jenkins, Docker,
Kubernetes, Sonatype, Sonarqube, Zap). Furthermore, this thesis allowed me
to understand how important is to have a friendly environment in a company,
since this thesis and all the knowledge acquired wouldn’t be possible without
my teammates.

I am really happy with the experience. I have acquired much new
knowledge that is valuable for my future. Also, I am sure that the Software
Department is really happy with the technologies and systems implemented by
me during the realization of the thesis.

Also, this thesis has discovered to me a career path, that I will continue in
Nice(France) as a DevOps junior.

94

23 Next steps
There are many things that can me be made to improve the system already
implemented, even thought the current system could be probably used as a
reference on how to implement properly a DevSecOps system.

Improve the security of Kubernetes infrastructure using a technology like
Prisma Cloud.

Change the tier of Sonarqube to the pay tier. This would increase the
quality of the analysis and simplify the current implementation.

Lose dependency on Jenkins. Jenkins is probably not the best technology
for the scripting part of DevOps. Losing dependency will allow us to change
easily in the future to another technology like GitLab.

Implement a technology like RAM or Lighthouse to have metrics and
traceability of the frontend part. It would be nice to know how much time
takes for a web to charge and improve the time if necessary.

23.1 Prisma Cloud
Prisma Cloud offers a wide range of security capabilities that help
organizations address various aspects of cloud security.

Prisma Cloud enables organizations to assess and manage the security
posture of their cloud environments. It helps identify misconfigurations,
vulnerabilities, and compliance violations across cloud accounts and services.
By continuously monitoring the cloud infrastructure, CSPM helps maintain a
strong security foundation.

Protects cloud workloads, such as virtual machines (VMs) and containers,
against threats and vulnerabilities. It includes capabilities like vulnerability
management, runtime protection, network segmentation, and threat
intelligence to safeguard cloud-based applications and data.

It offers network security capabilities to protect cloud networks and
applications. It includes features like network segmentation, firewalling,
intrusion detection and prevention, and secure web gateways to enforce
security policies and prevent unauthorized access.

95

References
[1] Acunetix. (2021, June 22). Acunetix | Web Application Security Scanner.

https://www.acunetix.com/

[2] Atlassian. (n.d.-a). Jira | Software de seguimiento de proyectos e incidencias.
https://www.atlassian.com/es/software/jira

[3] Atlassian. (n.d.-b). What is Agile? https://www.atlassian.com/agile

[4] B. (n.d.). checkov. https://www.checkov.io/

[5] B. (2022, April 26). The Phases Of Agile Software Development
Life Cycle Workflow And Project Management. Bitbytesoft.com.
https://bitbytesoft.com/phases-of-agile-software-development-life-cycle/

[6] Coverity Scan - Static Analysis. (n.d.). https://scan.coverity.com/

[7] Lynn, R. (2020, March 9). Benefits of Agile. Planview.
https://www.planview.com/resources/guide/agile-methodologies-a-
beginners-guide/benefits-agile/

[8] OWASP ZAP – Documentation. (n.d.). https://www.zaproxy.org/docs/

[9] Perveez, S. H. (2023, January 30). What is Git:
Features, Command and Workflow in Git. Simplilearn.com.
https://www.simplilearn.com/tutorials/git-tutorial/what-is-git

[10] SonarQube 9.9. (n.d.). https://docs.sonarqube.org/latest/

[11] Team, K. (2022, July 21). ¿Qué es GitFlow? KeepCoding Tech School.
https://keepcoding.io/blog/que-es-gitflow/

[12] What is DevSecOps? | IBM. (n.d.).
https://www.ibm.com/topics/devsecops

[13] Kissflow, Inc. (2022, 24 agosto). What is Kanban
Methodology | Introduction to Kanban Framework.
https://kissflow.com/project/agile/kanban-methodology/

[14] Johnivan, J. R. (2023, 29 enero). Agile Software Development
Methodology Principles. Project-Management.com. https://project-
management.com/agile-software-development-methodologies/

[15] API Security | Wininovative. (s. f.). https://winovative.com/services/enterprise-
security-solution/api-security/

[16] Johnivan, J. R. (2023, 29 enero). Agile Software Development
Methodology Principles. Project-Management.com. https://project-
management.com/agile-software-development-methodologies/

96

[17] Offices Electricity consumption | Power consumption in offices | ODYSSEE-
MURE. (s. f.). https://www.odyssee-mure.eu/publications/efficiency-by-
sector/services/offices-specific-energy-and-electricity-consumption.html

[18] Security | Glassdoor. (s. f.). https://www.glassdoor.es/member/home/index.htm

[19] Buy IntelliJ IDEA Ultimate: Pricing and Licensing, Discounts
- JetBrains Toolbox Subscription. (2021, 1 junio). JetBrains.
https://www.jetbrains.com/idea/buy/?section=commercial

[20] Jenkins User Documentation. (s.f.). Jenkins User Documentation.
https://www.jenkins.io/doc/

[21] Learn Kubernetes Basics. (s. f.). Kubernetes.
https://kubernetes.io/docs/tutorials/kubernetes-basics/

[22] SonarQube 10.0. (s. f.). https://docs.sonarqube.org/latest/

[23] OWASP ZAP – Getting Started. (s. f.). https://www.zaproxy.org/getting-
started/

[24] What Is Software Composition Analysis (SCA Security) | Sonatype. (s. f.).
https://www.sonatype.com/launchpad/what-is-software-composition-
analysis

[25] ¿Qué es Elasticsearch? (s. f.). Elastic. https://www.elastic.co/es/what-
is/elasticsearch

[26] ¿Qué es Kibana? (s. f.). Elastic. https://www.elastic.co/es/what-is/kibana

[27] Introduction to Grafana | Grafana documentation. (s. f.). Grafana Labs.
https://grafana.com/docs/grafana/latest/introduction/

[28] What is npm. (s.f.). https://www.w3schools.com/whatis/whatis-npm.asp

[29] Gaba, I. (2023). What is Maven: Here’s What You Need to
Know. Simplilearn.com. https://www.simplilearn.com/tutorials/maven-
tutorial/what-is-maven

[30] https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-
workflow

[31] GitLab. (2023). What is GitOps? GitLab.
https://about.gitlab.com/topics/gitops/

[32] Atlassian. (s. f.). What is version control | Atlassian Git Tutorial.
https://www.atlassian.com/git/tutorials/what-is-version-control

[33] Guay, M. (2022). What are webhooks? zapier.com.
https://zapier.com/blog/what-are-webhooks/

97

[34] Bigelow, S. J., Nolle, T. (2022). What is
observability? A beginner’s guide. IT Operations.
https://www.techtarget.com/searchitoperations/definition/observability

[35] Wallen, J. (2022, 12 mayo). Scan Container Images for Vulnerabilities with
Grype. The New Stack. https://thenewstack.io/scan-container-images-for-
vulnerabilities-with-grype/

[36] Codefresh. (s.f.). Understanding Argo CD: Kubernetes GitOps Made
Simple. https://codefresh.io/learn/argo-cd/

[37] Prometheus. (s. f.). Overview | Prometheus.
https://prometheus.io/docs/introduction/overview/

[38] Brush, K., Lockhart, E., Demaitre, E., Brunelli, M. (2022). What is
APM? Application performance monitoring guide. Enterprise Desktop.
https://www.techtarget.com/searchenterprisedesktop/definition/Application-
monitoring-app-monitoring

[39] CronJob. (2023, 7 marzo). Kubernetes.
https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/

[40] Dizdar, A. (2023b). OWASP ZAP: 8 Key Features and How to Get Started.
Bright Security. https://brightsec.com/blog/owasp-zap/

[41] Bridgecrew. (s.f.-b). What is Checkov? - checkov.
https://www.checkov.io/1.Welcome/What

[42] How SecurityScorecard calculates your scores. (2023, 5 enero). Help Center.
https://support.securityscorecard.com/hc/en-us/articles/8366223642651-
How-SecurityScorecard-calculates-your-scores

[43] Design Systems: Step-by-Step Guide to Creating Your Own. (s.f.).
https://www.uxpin.com/create-design-system-guide/

[44] config | npm Docs. (s.f.). https://docs.npmjs.com/cli/v9/using-
npm/config/

98

	Context and Justification
	Introduction
	Mango
	DevSecOps
	Devops
	Agile
	Devops and Agile

	S-SDLC
	Sec in DevSecOps
	Problem
	Actors Involved

	Justification
	Existing Solutions
	Justification of the choice

	Outreach
	Objectives
	Non-functional requirements
	Risks

	Methodology
	Kanban
	Version tracking and control
	Tool to mange Agile projects

	Time planning
	Project estimation
	Task definition
	Project Management
	Analyze and explain the Security of Mango
	 Automatic Static Analysis
	 Automatic Dynamic Analysis
	 Securing Kubernetes Deploys
	 Final documentation

	Gantt chart

	Risk management
	Tasks and risks

	Budget
	Identification of costs
	Human resources
	Material resources
	Indirect resources
	Contingency Costs
	Unforeseen costs
	Final budget

	Management control

	Sustainability report
	Economic dimensions
	Environmental dimensions
	Social dimensions

	Integration of knowledge
	Identification of laws and regulations
	Technologies and concepts
	Jenkins
	Kubernetes
	Sonarqube
	Zap
	Sonatype
	Elasticsearch
	Kibana
	Grafana
	NPM
	Maven
	Gitflow
	Gitops
	Version Control
	Webhooks
	Observability
	Monitoring

	Analyze and explain the security of Mango
	Document the current security
	CI/CD Implementation
	Security implementation
	ArgoCD
	Monitoring

	Explain possible improvements in the Security of Mango

	Automatic Static Analysis
	Set up Sonarqube Credentials in Jenkins
	Create new methods in the Jenkins library
	Import the SSL certificate in the necessary Docker
	Investigate how Sonarqube quality gate works
	Create a method in Jenkins library to implement the quality gate
	Create a method in the Jenkins library to write messages in bitbucket PRs
	Implement an API to obtain security vulnerabilities from Sonar
	Create confluence to allow execute Sonarqube9 locally
	Problems related to Sonarqube

	Automatic Dynamic Analysis
	Test in local Zap
	Create a new dockerfile to run zap and a script to obtain the result
	Figure out how to get an actualized list of all the project that must be analyzed
	Create a Jenkins job that is executed every night
	Create a script to collect all the vulnerabilities information

	Securing Kubernetes Deploys
	New stage gitops pipeline
	Kibana dashboard with vulnerabilities

	Security Score Card
	CronJob to Insert SSC information in ELK
	Create dashboard in Kibana

	Showcase Desgin System DevOps Configuration
	Showcase Design System Configuration
	Showcase Design System Kubernetes

	Changes in the planification
	Final budget
	Achievement of technical competencies
	Relationship of the project with the degree

	Conclusions
	Next steps
	Prisma Cloud

