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TRIPLE SOLIDS AND SCROLLS

ANTONIO LANTERI AND CARLA NOVELLI

dedicated to Enrique Arrondo on the occasion of his 60th birthday

Abstract. Let Y be a smooth projective variety of dimension n ≥ 2 endowed with a finite

morphism φ : Y → Pn of degree 3, and suppose that Y , polarized by some ample line bundle, is a

scroll over a smooth variety X of dimension m. Then n ≤ 3 and either m = 1 or 2. When m = 1,

a complete description of the few varieties Y satisfying these conditions is provided. When m = 2,

various restrictions are discussed showing that in several instances the possibilities for such a Y

reduce to the single case of the Segre product P2 × P1. This happens, in particular, if Y is a Fano

threefold as well as if the base surface X is P2.

Introduction

As observed by Fujita in his book [12, (10.9.1), (10.11)], and reaffirmed in the supplementary

note circulating as a manuscript “Problems on Polarized Varieties”, the problem of classifying the

triple covers of Pn is still open, in particular for n = 2 and 3, in which cases such coverings are

not necessarily of triple section type [13]. Moreover, as far as we know, there has been no recent

contribution in this direction, except for [11], where the authors consider a special class of surfaces

represented as triple planes. Actually, in spite of several general results on triple covers existing

in the literature (e.g. see [23], [29]), nothing seems explicitly aimed at the study of 3-dimensional

triple solids and, more specifically, of threefolds which admit at the same time a projective bundle

structure. The unsolved case left open in [19, Sec. 4] exactly reflects this lack of knowledge.

More generally, let Y be a projective n-fold and let φ : Y → Pn be a finite morphism of degree

d. Suppose that d = 2 or 3 and that Y is a scroll for some polarization at the same time. Then,

a classical result of Lazarsfeld [22] implies that n = 2 if d = 2 and that n = 2 or 3 if d = 3. In

this paper we investigate the possible varieties occurring precisely in this setting. In Section 2 we

present some concrete examples to illustrate this situation. The hearth of the paper is Section 3 in

which we provide their description, which is complete as far as scrolls over a curve are concerned.

The crucial remark is that if Y is a scroll with respect to some polarizing line bundle, then it is also

a scroll, via the same projection, with respect to the ample and spanned line bundle H := φ∗OPn(1).

This allows us to work with the ample and spanned vector bundle obtained by pushing down H via

the scroll projection. According to this, the case of double solids is easily settled by Proposition 3.1,

while the more delicate case of triple solids that are scrolls over a curve is dealt with in Theorem

3.2. The last three Sections are devoted to discussing the case of triple solids that are scrolls over a
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surface, which looks even more interesting and intriguing. More specifically, in Section 4 we exhibit

several different situations in which the only possibility for Y is given by the Segre product P2 ×P1;

in particular, this is the case if we assume in addition that Y is a Fano manifold. Furthermore, we

have the opportunity to amend a flaw in a result of Ballico [3, Theorem]. Moreover, in Section 5 we

provide further restrictions on Y deriving from the consideration of the triple plane induced by φ

on the general element S ∈ φ∗|OP3(1)| and of its Tschirnhaus bundle. Finally, in Section 6 we focus

on scrolls whose base surface is P2. Proposition 6.1 shows the extremely severe conditions that this

hypothesis entails on the various numerical characters involved in the discussion. Comparing the

Tschirnhaus bundle of φ with that of the triple plane induced on S in a special situation arising from

our analysis, we finally succeed to prove that necessarily Y = P2 × P1, even in this case (Theorem

6.2).

However, from a complementary point of view suggested by this result, we would like to emphasize

that also for scrolls Y over P2 with respect to some ample line bundle L, distinct from the product,

it may happen that Y contains a smooth surface S with the structure of a triple plane even as a

very ample divisor, but with OY (S) 6= L (see Remark 6.3).

Throughout the whole paper a relevant role is played by Miranda’s formulas, which allow to

express the invariants of a triple plane by means of the Chern classes of its Tschirnhaus bundle.

1. Background material

We work over the field of complex numbers and we use the standard notation from algebraic

geometry. By a little abuse we make no distinction between a line bundle and the corresponding

invertible sheaf. Moreover, the tensor products of line bundles are denoted additively. The pullback

i∗E of a vector bundle E on X by an embedding of projective varieties i : Y →֒ X is denoted by EY .
We denote by KX the canonical bundle of a smooth variety X .

A polarized manifold is a pair (X,L) consisting of a smooth projective variety X and an ample

line bundle L on X . The sectional genus and the ∆-genus of a polarized manifold (X,L) are defined
as g(X,L) = 1 + 1

2

(
KX + (dimX − 1)L

)
· LdimX−1 and ∆(X,L) = dimX + LdimX − h0(X,L),

respectively. A polarized manifold (X,L) is said to be a scroll (over W ) if it is a classical scroll,

namely if there exist a smooth projective varietyW of positive dimension and a surjective morphism

π : X →W such that (F,LF ) ∼=
(
Pm,OPm(1)

)
with m = dimX − dimW for any fiber F of π. This

condition is equivalent to saying that X = PW (F) for some ample vector bundle F of rank ≥ 2 on

W , and L is the tautological line bundle. If L is a line bundle on a projective manifold X , we denote

by ϕL the rational map X −− → Ph0(L)−1 associated with the complete linear system |L|.
We will use the symbol Fe to denote the Segre–Hirzebruch surface P

(
OP1 ⊕OP1(−e)

)
of invariant

e(≥ 0), and σ and f will denote the section of minimal self-intersection −e and a fiber respectively.

2. Some covers of Pn admitting a scroll structure

Let Y be a smooth projective variety with dimY = n and let d ≥ 2 be an integer: if Y is endowed

with a d-uple branched covering of Pn we will refer to Y as a d-uple n-solid. Any smooth projective
2
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variety Y of dimension n embedded in some projective space can be regarded as a d-uple n-solid,

where d = deg Y , by projecting it onto a Pn from a suitable linear space. This is true in particular

when Y is a scroll over a positive dimensional projective variety. In this case, however, the integers

n and d are not completely unrelated, due to the following general fact.

Lemma 2.1. Let Y be any projective bundle over a smooth positive dimensional projective variety

and a d-uple n-solid at the same time. Then d ≥ n ≥ 2.

Proof. Clearly n ≥ 2. Suppose that d ≤ n − 1. Since Y has Picard number ρ(Y ) ≥ 2, we get a

contradiction by a well known result of Lazarsfeld (see [22, Proposition 3.1]). �

Example 2.2. Let Y = PP1(V), where

(2.2.1) V = OP1 ⊕OP1(α1)⊕ · · · ⊕ OP1(αn−1)

with 0 ≤ α1 ≤ · · · ≤ αn−1 and let α =
∑n−1

i=1 αi = deg V . Let ξ be the tautological line bundle,

let F be a fiber of the projection π : Y → P1 and let L = ξ + bF for some integer b. Due to the

normalization (2.2.1), we know that L is ample if and only if it is very ample if and only if b > 0

([5, Lemma 3.2.4]). So let b > 0; then the morphism ϕL embeds Y in PN as a scroll of degree

(2.2.2) d := Ln = deg
(
V ⊗OP1(b)

)
= α+ nb

by the Chern–Wu relation, where N + 1 = h0(L) = h0
(
V ⊗ OP1(b)

)
= n + nb + α = n + d. Let Λ

be a general linear subspace of PN of dimension N − 1 − n. Then, projecting ϕL(Y ) from Λ onto

a Pn ⊂ PN skew with Λ, we get a map φ : Y → Pn, which is a finite morphism of degree d and

L = φ∗OPn(1). On the other hand, (Y, L) is a scroll over P1. Clearly d ≥ n, according to Lemma

2.1. In this specific case this simply follows from (2.2.2), taking into account that b > 0 and α ≥ 0.

Remark 2.3. If (Y, L) is an n-dimensional scroll as in Example 2.2 and d = n, then (Y, L) =
(
P1 × Pn−1,OP1×Pn−1(1, 1)

)
. Actually, equality d = n implies b = 1 and α = 0 by (2.2.2), and the

latter in turn implies that V = O⊕n
P1 .

In particular, according to Example 2.2, we get: for (n, d) = (2, 2) the smooth quadric surface of

P3 described as a double plane via projection from a general point; for (n, d) = (2, 3) the rational

cubic scroll of P4 described as a triple plane via projection from a general line; for (n, d) = (3, 3)

the Segre product P1 × P2 ⊂ P5 described as a triple solid via projection from a general line. In all

these cases, of course, the line bundle L making Y a scroll is very ample.

Example 2.4. Let B ⊂ P2 be an irreducible projective curve whose dual B∨ ⊂ P2∨ is a smooth

curve of degree d. The following construction is inspired by [8, §3]. In P2×P2∨ consider the incidence

variety T = {(x, ℓ) ∈ P2 × P2∨ | x ∈ ℓ}. Then T is a smooth threefold which is endowed with two

P1-bundle structures p : T → P2, q : T → P2∨ via the projections of P2 × P2∨ onto the factors.

Now consider the smooth curve B∨ and let S = q−1(B∨). Clearly S is a smooth surface and

π := q|S : S → B∨ makes S a P1-bundle over B∨. On the other hand, since S is a divisor on T

3
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belonging to the linear system |q∗OP2∨(d)|, we see that f := p|S : S → P2 is a finite morphism of

degree deg f = p−1(x) · S where x ∈ P2 is any point. We thus get

deg f =
(
p∗OP2(1)

)2 · q∗OP2∨(d) = d.

Looking at the construction more closely, we can note that the branch locus of the d-uple plane

f : S → P2 is B. To see this, note that S = {(x, ℓ) | x ∈ ℓ, ℓ ∈ B∨}, while, p−1(x) = {(x, ℓ) | ℓ ∋
x} = {(x, ℓ) | ℓ ∈ Lx}, for any x ∈ P2, where Lx is the line in P2∨ corresponding to the pencil of

lines through x. Now fix x ∈ P2: then

f−1(x) = p−1(x) ∩ S = {(x, ℓ) | ℓ ∋ x, ℓ ∈ B∨} = {(x, ℓ) | ℓ ∈ Lx ∩B∨}.

This shows that the pre-images of x via f : S → P2 correspond to the intersections of Lx with B∨.

As B∨ is smooth those pre-images are not d distinct points if and only if the line Lx is tangent to

B∨. By biduality, this is equivalent to saying that x ∈ B.

Let L = f∗OP2(1). Then L is an ample and spanned line bundle on S. Note that L =
(
p∗OP2(1)

)
S
.

Moreover, for any fiber f of π : S → B∨ we have L · f = p∗OP2(1) ·
(
q∗OP2∨(1)

)2
= 1. This says that

(S,L) is a scroll over B∨, a smooth curve of genus
(
d−1
2

)
.

Set L = OP2×P2∨(1, 1) and recall that (P2 × P2∨,L) is the del Pezzo fourfold of degree six. Since

T ∈ |L|, (T,LT ) is the following del Pezzo threefold of degree six: T = PP2∨(TP2∨), with LT being

the tautological line bundle [12, Chapter I, §8 (8.7), (8.8)]. Furthermore,

LS = (LT )S =
(
p∗OP2(1) + q∗OP2∨(1)

)
S
= f∗OP2(1) + π∗OB∨(1) = L+ π∗OB∨(1).

This shows that S = PB∨

(
(TP2∨(−1))B∨

)
, with L being the tautological line bundle.

In particular this gives

Example 2.5. Set d = 3. Then the previous construction exhibits a smooth surface which is a

triple plane and a scroll over an elliptic curve at the same time. We can show that
(
TP2∨(−1)

)
B∨

=

U ⊗OB∨(z), where z ∈ B∨, and U is an indecomposable vector bundle of degree one on the elliptic

curve B∨. Thus, letting M = L + f0, where f0 is any fiber of π, we see that M is very ample [15,

Exerc. 2.12, p. 385] and ϕM embeds S as an elliptic quintic scroll in P4. Since L = M − f0, we can

regard the triple plane f : S → P2 as the projection of the quintic elliptic scroll from its fiber f0 onto

a plane skew with it. Note that here L is ample and spanned but not very ample.

3. Double and triple solids admitting a scroll structure

In this Section we slightly change the perspective. Let φ : Y → Pn be a d-uple n-solid, where

d = 2 or 3: we wonder when Y admits an ample line bundle L such that (Y, L) is a scroll over a

projective manifold of dimension m ≥ 1. Let us consider the line bundle H = φ∗OPn(1), which, of

course, is ample and spanned (in principle, it could also be very ample, as some examples in Section

2 show). Let π : Y → X be the projection of the scroll (Y, L): since Pic(Y ) is generated by L and
4



Triple solids and scrolls

π∗Pic(X) we can write H = aL+ π∗OX(D), where a is a positive integer and D is a divisor on X .

Then

d = Hn = (aL+ π∗D)n(3.0.1)

= anLn + nan−1Ln−1 · π∗D + · · ·+
(
n

m

)
an−mLn−m · (π∗D)m

= aK,

since n ≥ m+ 1, where

(3.0.2) K = an−1Ln + nan−2Ln−1 · π∗D + · · ·+
(
n

m

)
an−m−1Ln−m · (π∗D)m.

Now, if d (≥ 2) is prime, we deduce from (3.0.1) that either a = 1 (and then K = d), or a = d,

which implies that 1 = K = dn−m−1K ′, where K ′ is an integer, and this is impossible if n ≥ m+2.

On the other hand, if a = 1, then the pair (Y,H) itself is a scroll over X , hence we can suppose

that Y = P(E), where E = π∗H is a vector bundle on X of rank n −m + 1, which is ample and

spanned, so being its tautological line bundle H . In particular, let d = 2; then n = 2 by Lemma

2.1, hence m = 1, i.e. X is a curve. Then necessarily a = 1; otherwise we would get a = 2, and

then 1 = K = 2
(
L2 + deg(D)

)
by (3.0.2), which is absurd. Similarly, let d = 3; then n = 2 or 3 by

Lemma 2.1, hence either n = 2 and m = 1, or n = 3 and m = 1, 2. If n = 3, i.e. Y is a threefold,

then we obtain that necessarily a = 1. Otherwise, we would get a = 3 and

1 = K =




9L3 + 9L2 · π∗D if m = 1,

9L3 + 9L2 · π∗D + 3L · (π∗D)2 if m = 2,

by (3.0.2), which is clearly impossible. Therefore, a = 1 in all these cases, hence the problem

becomes determining when (Y,H) itself is a scroll. Note that case d = 3 with n = 2 is not covered

by the previous analysis; it will be discussed in the proof of Theorem 3.2. For d = 2 the answer is

very easy and is given by the following

Proposition 3.1. Let φ : Y → Pn be any smooth double n-solid with n ≥ 2. Then there is no

polarization on Y making it a scroll over a smooth projective variety of positive dimension except

for
(
Y, φ∗OPn(1)

)
=

(
P1 × P1,OP1×P1(1, 1)

)
.

Proof. Let φ : Y → Pn be the finite morphism of degree 2 making Y a double n-solid and consider

the ample and spanned line bundle H := φ∗OPn(1). If π : Y → X is a scroll for some polarization,

then n = 2, X is a curve and (Y,H) itself is a scroll via π in view of the above discussion. Then

E := π∗H is an ample and spanned rank-2 vector bundle on X . Let B ∈ |OP2(2b)|, b ≥ 1, be the

branch locus of φ. Comparing the expression of

KY = −2H + π∗(KX + det E)

with that given by the ramification formula

KY = φ∗OP2(b− 3) = (b− 3)H
5



A. Lanteri, C. Novelli

we conclude that b = 1 and KX + det E = OX , because H and π∗OX(1) are linearly independent

in Pic(Y ). This shows that X = P1 and det E = OP1(2), which in turn implies E = OP1(1)⊕2.

Equivalently, (Y,H) =
(
P1 × P1,OP1×P1(1, 1)

)
. �

As to case d = 3 is concerned, here let us start assuming that m = 1.

Theorem 3.2. Let φ : Y → Pn be any smooth triple n-solid with n ≥ 2. Then there is no

polarization on Y making it a scroll over a smooth projective curve except for the following three

pairs
(
Y, φ∗OPn(1)

)
:

(1)
(
P2 × P1,OP2×P1(1, 1)

)
;

(2) (F1, [σ + 2f ]), where σ is the (−1)-section and f is a fiber;

(3)
(
PC(U), L

)
, where U is an indecomposable vector bundle of degree one on an elliptic curve

C and L is the tautological line bundle of U ⊗OC(z), z being a point of C.

Proof. Let φ : Y → Pn be the finite morphism of degree 3 making Y a triple n-solid and consider the

ample and spanned line bundle H := φ∗OPn(1) again. Assume that (Y, L) is a scroll over a smooth

curve X of genus q := g(X) for some ample line bundle L and let π : Y → X be the scroll projection.

From Lemma 2.1 we know that n = 2 or 3.

First suppose that n = 3. Then, according to the discussion at the beginning of this Section,

(Y,H) itself is a scroll over X . By [22, Theorem 1] we know that φ induces an isomorphism

0 = H1(P3,C) ∼= H1(Y,C). Therefore h1(OY ) = 0, and then the scroll structure of (Y,H) over X

implies that q = 0. Thus (Y,H) is a scroll over P1, so Y = PP1

(
⊕3

i=1OP1(ai)
)
. Since H is ample and

H3 = 3, we derive Y = PP1

(
OP1(1)⊕3

)
, hence (Y,H) =

(
P2 × P1,OP2×P1(1, 1)

)
(see Remark 2.3).

Next, let n = 2. In this case what we observed at the beginning of this Section implies that a = 1,

unless in the following case:

(3.2.1) a = 3 and K = 1.

Claim. Case (3.2.1) cannot occur.

To prove the claim, consider the scroll (Y, L) again, set E ′ = π∗L, so that L2 = deg E ′, and recall

that H = aL+ π∗OX(D) for some divisor D on X . If (3.2.1) holds, then (3.0.2) gives

(3.2.2) 1 = K = 3deg E ′ + 2degD.

Let’s prove that (3.2.2) does not occur. We can write φ∗OY = OP2 ⊕ T , where T , the Tschirnhaus

bundle of φ, is a vector bundle of rank 2 on P2. Then the branch locus of φ is an element of |2 det T ∨|
[23, Proposition 4.7]. Set bi = ci(T ). By applying the Riemann–Hurwitz formula to the curve φ−1(ℓ)

where ℓ ⊂ P2 is a general line, we get

(3.2.3) 2g(Y,H)− 2 = 3(−2) + (−2b1).

On the other hand, since KY = −2L + π∗(KX + det E ′), taking into account the expression of H

and condition (3.2.2), the genus formula shows that

2g(Y,H)− 2 = (KY +H) ·H = 2 (3 deg E ′ + 2degD) + 6 (q − 1) = 6q − 4.
6
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Combining this with (3.2.3) we get

(3.2.4) −b1 = 3q + 1.

Now, since Y is a P1-bundle overX , we know that K2
Y = 8(1−q) and the topological Euler–Poincaré

characteristic is e(Y ) = 4(1− q). Thus, eliminating b2 from Miranda’s formulas for the triple plane

φ : Y → P2 [23, Proposition 10.3]

(3.2.5) K2
Y = 27 + 12b1 + 2b21 − 3b2 and e(Y ) = 9 + 6b1 + 4b21 − 9b2,

and using (3.2.4) we obtain the following equation 9q2−29q+12 = 0, which has no integral solution.

This proves the claim.

Therefore a = 1 even if n = 2, hence (Y,H) itself is a scroll over X ; so g(Y,H) = q and then the

Riemann–Hurwitz formula applied to the curve φ−1(ℓ) now gives

(3.2.6) −b1 = q + 2,

Moreover, K2
Y = 8(1 − q) and e(Y ) = 4(1 − q) again. In this case, eliminating b2 from Miranda’s

formulas, we get q(q − 1) = 0. If q = 0, from Example 2.2 we see that α = b = 1, hence Y =

P
(
OP1(1)⊕OP1(2)

)
: this gives case (2) in the statement. On the other hand, for q = 1 we get case

(3). This is a consequence of the following lemma. �

Lemma 3.3. Let (Y,H) be a surface scroll over a smooth curve C of genus one, for some ample

and spanned line bundle H. If H2 = 3, then Y = PC(U), U being the nontrivial extension

0 → OC → U → OC(p) → 0,

with p ∈ C, and H = [σ + f ], where σ denotes the tautological section on Y .

Proof. Write Y = PC(V), where V is a rank-2 vector bundle on C, that we can suppose to be

normalized as in [15, p. 373]. Denote by σ and f the tautological section and a fiber, respectively.

Then σ2 = −e, where e = − degV is the invariant of Y . Since (Y,H) is a scroll, up to numerical

equivalence, we can write H = [σ + bf ] for some integer b. Thus H2 = −e+ 2b, and then condition

H2 = 3 gives b = 1
2 (e+3), which implies that e is odd. Moreover, the ampleness conditions say that

b > e if e ≥ 0 and b ≥ 0 if e = −1 [15, Propositions 2.20 and 2.21, p. 382]. This, combined with the

above expression of b shows that there are only two possible cases, namely:

(3.3.1) (e, b) = (−1, 1) or (1, 2).

In the latter case, H = [σ + 2f ] is clearly not spanned, since its restriction to the elliptic curve σ

has degree degHσ = (σ + 2f) · σ = 1. On the contrary, in the former case, V = U [15, pp. 376–377]

and we can check the spannedness of H by using Reider’s theorem [26]. Set M = H − KY , then

M = 3σ, up to numerical equivalence. In particular M2 = 9 > 5, hence Reider’s theorem applies.

Suppose, by contradiction, that H = KY +M is not spanned; then there exists an effective divisor

D on Y such that either

(3.3.2) D ·M = 0 and D2 = −1,
7
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or

(3.3.3) D ·M = 1 and D2 = 0.

Up to numerical equivalence we can write D = xσ + yf for suitable integers x, y, and then we get

D ·M = 3(x+ y), while D2 = x(2y + x). Clearly, the expression of D ·M rules out the possibility

in (3.3.3). Suppose (3.3.2) holds. Then x = 1 and y = −1. So D = [σ − f ] and therefore D · σ = 0.

However, since e = −1, the elliptic curve σ moves in an algebraic family (parameterized by the base

curve C itself), sweeping out the whole surface Y . Thus the equality D · σ = 0 would imply that D

cannot be effective, a contradiction. Therefore H is spanned in the former case of (3.3.1). �

4. Scrolls over surfaces

Consider triple n-solids again. According to Lemma 2.1, apart from scrolls over curves, there

is only one more possibility for Y being a scroll for some polarization, namely, that n = 3 and

dimX = 2. In this Section and the following ones we focus precisely on this case, showing that Y

must satisfy several restrictions. A further motivation for this study is provided by an unresolved

situation in [19, p. 687]. So, let φ : Y → P3 be a triple solid, and suppose that (Y, L) is a scroll over

a smooth surface X via π : Y → X , for some ample line bundle L. In this case the argument at the

beginning of Section 3 says that

(4.0.1) (Y,H) itself is scroll over X via π, where H = φ∗OP3(1).

We can thus suppose that E := π∗H is an ample and spanned rank-2 vector bundle on X and

Y = PX(E), with tautological line bundle H . When we refer to (4.0.1), implicitly we also mean that

E is as above. In this case, since π∗OY = OX [15, Proposition 7.11, p. 162], we have

(4.0.2) hi(OY ) = hi(OX) i = 0, . . . , 3

[15, Exerc. 4.1, p. 222]. In particular, χ(OY ) = χ(OX).

Notice that the pair (Y,H) as in case (1) of Theorem 3.2 can also be regarded as a scroll over

a surface by taking (X, E) =
(
P2,OP2(1)⊕2

)
. We will refer to this case as the obvious case in the

subsequent discussion. First of all, given any smooth triple solid φ : Y → P3 and H = φ∗OP3(1), we

have h0(H) ≥ 4; on the other hand H3 = 3, hence the ∆-genus of (Y,H) is ∆(Y,H) = 6−h0(H) ≤ 2.

In our setting (i.e. taking into account the additional scroll structure of Y ), the situation is simpler.

In fact we have

Proposition 4.1. Either ∆(Y,H) = 2, or ∆(Y,H) = 0 and (Y,H) is as in the obvious case; in

particular, if H is very ample, then (Y,H) is as in the obvious case.

Proof. Suppose that ∆(Y,H) < 2; since Y is a scroll over a surface, its Picard number is ρ(Y ) ≥ 2,

so combining this with Fujita’s classification of polarized manifolds of low ∆-genus [12, Theorem

5.10 and Corollary 6.7] we immediately get what is stated. In particular, if H is very ample then

|H | embeds our threefold Y in PN , with N = h0(H)− 1 ≥ 4, hence it cannot be ∆(Y,H) = 2. �

8
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Remark 4.2. In particular, the fact that in the setting (4.0.1) it can be ∆(Y,H) = 2 amends a result

of Ballico [3, Theorem] (actually, the assertion that H3 = 3 would imply the obvious case is not

proved there). However, assuming in our setting that either Y is Fano or X = P2, we will see that

the obvious case is the only possibility (cf. Proposition 4.10 and Theorem 6.2).

More generally, with an eye to the characterization of projective manifolds admitting a given

variety as a hyperplane section, Proposition 4.1 suggests the following.

Proposition 4.3. Let X ⊂ PN be a regular projective n-fold, with n ≥ 3. If a general surface

section Y of X is a triple plane via the hyperplane bundle map, then either

(1) X ⊂ Pn+1 is a smooth cubic hypersurface, or

(2) n = 3 and X ⊂ P5 is the Segre product P2 × P1.

Proof. Let Z be a general 3-dimensional linear section of X and set H = OPN (1)|Z , so that Y ∈ |H|.
Clearly, h0(Z,H) = 1 + h0(Y,HY) since h

1(OZ) = h1(OX ) = 0, by the Lefschetz theorem. Hence

∆(Z,H) = 3 +H3 − h0(Z,H) = 3 +H2
Y − 1− h0(Y,HY) ≤ 1,

since H2
Y = 3 and h0(Y,HY) ≥ 4, HY being a very ample divisor on Y. If ∆(Z,H)=1, then Z ⊂ P4

is a smooth cubic threefold by [12, Corollary 6.7] and then X is as in (1). On the other hand, if

∆(Z,H) = 0, then Z is the Segre product P2 × P1 ⊂ P5, which, however, cannot ascend to higher

dimensions. Actually, X is a scroll over P1 and then (2.2.2) shows that n = 3, i.e, X = Z, as in

(2). �

From now on we will assume that our triple solid Y has the additional structure of a scroll over

a smooth surface. So we will always refer to the setting (4.0.1).

The structure of triple solid given by φ, combined with the Chern–Wu relation implies:

(4.0.3) 3 = H3 = c1(E)2 − c2(E)

ci(E) denoting the i-th Chern class of E . So we have

Remark 4.4. E is Bogomolov stable unless (Y,H) is as in the obvious case. Actually, (4.0.3) says

that c1(E)2−4c2(E) = 3
(
1−c2(E)

)
≤ 0, because c2(E) > 0 due to the ampleness of E [6]; therefore E

is Bogomolov semistable. Moreover it is properly semistable if and only if c2(E) = 1 and this occurs

only for (X, E) =
(
P2,OP2(1)⊕2

)
by [20]. Hence, apart from the obvious case, E is Bogomolov stable.

Here we collect some properties of Y .

Proposition 4.5. We have:

(a) h1(OY ) = 0;

(b) X is a regular surface;

(c) a general element S in the linear subsystem φ∗|OP3(1)| ⊆ |H | is a smooth regular surface;

(d) the ramification divisor R of φ is very ample;
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(e) (Y,R) is a conic fibration over X via π, with empty discriminant locus. In particular,

letting P := PX(F), where F = π∗R and denoting by ξ the tautological line bundle and by

π̃ : P → X the bundle projection, Y is contained in P as a smooth divisor of relative degree

2, belonging to the linear system |2ξ − 2π̃∗(KX + 2det E)| and ξY = R.

Proof. (a) follows from [22, Theorem 1], and then equation (4.0.2) implies (b). As H is ample and

φ∗|OP3(1)| is base-point free, its general element S is a smooth surface by the Bertini theorem: the

fact that h1(OS) = 0 follows from the Lefschetz theorem [27]. This proves (c). The ramification

formula says that

KY = φ∗KP3 +R = −4H +R,

hence R = KY +4H . Since H is ample and spanned with H3 = 3 it thus follows from [21, Theorem

3.1] that R is a very ample divisor. This gives (d). Finally, by the canonical bundle formula, we

have

KY = −2H + π∗(KX + det E),
and by comparing the two expressions of KY we get the relation

R = 2H + π∗(KX + det E).

The first assertion in (e) follows from the fact that R restricts to every fiber of π as OP1(2): the

discriminant is empty since every fiber is irreducible. Furthermore, as a conic fibration over X , Y is

contained as a smooth divisor of relative degree 2 inside P := PX(F), where F = π∗R; more precisely,

letting ξ denote the tautological line bundle and π̃ : P → X the bundle projection extending π, we

have that Y ∈ |2ξ + π̃∗B| for some line bundle B on X and ξY = R. Recalling that π∗H = E , from
the expression of R we get

F = π∗
(
2H + π∗(KX + det E)

)
= S2E ⊗ (KX + det E),

where S2 stands for the second symmetric power. Since rk(F) = 3, this gives

c1(F) = 3c1(E) + 3(KX + det E) = 3(KX + 2det E).

The condition expressing the fact that the discriminant locus of (Y,R) is empty is given by 2c1(F)+

3B = OX [7, p. 76]. Therefore we get B = − 2
3c1(F) = −2(KX + 2det E), and this concludes the

proof. �

Proposition 4.6. Suppose that (Y,H) is not as in the obvious case. Then KX +det E is ample and

spanned.

Proof. Suppose that KX +det E is not ample. Then, according to [14, Main Theorem], (X, E) is one
of the following pairs:

(a) X is a P1-bundle over a smooth curve C and Ef = OP1(1)⊕2, for every fiber of the bundle

projection p : X → C;

(b)
(
P2,OP2(2)⊕OP2(1)

)
;

(c) (P2, TP2) (tangent bundle);
10
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(d)
(
Q2,OQ2(1)⊕2

)
.

Note that the right hand term in equality (4.0.3) is equal to 7 in case (b) and 6 in cases (c) and

(d), a contradiction. In case (a) we can set X = PC(V) where V is a rank-2 vector bundle over C of

degree v := deg V , and up to a twist by a line bundle we can suppose that v = 0 or −1 according

to whether it is even or odd, respectively; moreover, letting ξ denote the tautological line bundle

and p : X → C the projection we have E = ξ ⊗ π∗G for some rank-2 vector bundle G on C. Set

γ := deg G. Then ξ2 = v, c1(E)2 = (2ξ+γf)2 = 4(v+γ), and c2(E) = ξ2+γ = v+γ. Then equality

(4.0.3) gives v + γ = 1. But c2(E) = 1 implies that (X, E) =
(
P2,OP2(1)⊕2

)
by [20]. Thus (Y,H) is

as in the obvious case, a contradiction. Therefore KX +det E is ample. Moreover, it is also spanned

in view of [18, Theorem A], since E = π∗H is ample and spanned. �

Recall that the triple cover φ : Y → P3 is said to be of triple section type if Y is contained in the

total space of an ample line bundle on P3 as a triple section [13]. As a consequence of Proposition

4.6 we get the following conclusion (compare with [19, Proposition 4.4]).

Corollary 4.7. φ is not of triple section type. In particular, φ is not a cyclic cover.

Proof. If φ is of triple section type, then KY = φ∗OP3(k) = kH for some integer k, [22, Proposition

3.2] (see also [13, Theorem 2.1]). Taking into account the canonical bundle formula we thus get

kH = −2H + π∗(KX + det E). Therefore k = −2 and KX + det E = OX , due to the injectivity of

the homomorphism π∗ : Pic(X) → Pic(Y ). This conclusion, however, contradicts Proposition 4.6.

Note also that it is not satisfied even when (Y,H) is as in the obvious case. �

Proposition 4.8. If E fits into an exact sequence

0 →M → E → N → 0,

where M and N are ample line bundles, then (Y,H) can only be as in the obvious case. In particular,

except for that case, E is indecomposable.

Proof. Assuming that E fits into an exact sequence as above, we have that c1(E) = M + N and

c2(E) =M ·N . Thus (4.0.3) becomes

3 = H3 = c1(E)2 − c2(E) =M2 +M ·N +N2,

and M2 = M · N = N2 = 1, because both M and N are ample. But then (M − N) ·M = 0 and

(M − N)2 = 0, hence the Hodge index theorem implies that M and N are numerically equivalent.

As E is spanned, N is spanned too and then (X,N) is a surface polarized by an ample and spanned

line bundle with N2 = 1. Therefore X = P2 and M = N = OP2(1); then E = M ⊕ N since

Ext1(N,M) = H1(P2,OP2) = 0. �

Here is a consequence of Proposition 4.8.

Corollary 4.9. If (Y,H) is not as in the obvious case, then c2(E) ≥ 3.
11
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Proof. Since E is ample and spanned we know that c2(E) ≥ 1 with equality occurring only in the

obvious case, as already said. Let c2(E) = 2. Then a result of Noma [24, Theorem 6.1] shows that

either E is decomposable, which is impossible by Proposition 4.8, or X is not a regular surface, which

contradicts Proposition 4.5 (b). �

Finally, we can prove

Proposition 4.10. Suppose that Y is a Fano threefold; then (Y,H) is as in the obvious case.

Proof. Due to the assumption, E is a Fano bundle on X [28]. Let F be another rank-2 vector

bundle on X such that Y = PX(F). Denoting by ξ its tautological line bundle, from the fact that

E = F ⊗OX(D) for some divisor D on X , we see that H = ξ+π∗D. Since c1(E) = c1(F)+ 2D and

c2(E) = c2(F) + c1(F) ·D +D2, we get from (4.0.3) that

(4.10.1) 3 = H3 = c1(F)2 − c2(F) + 3D ·
(
c1(F) +D

)
,

hence ξ3 = c1(F)2 − c2(F) is also divisible by 3. Moreover, the fact that Y is Fano implies that

X is a del Pezzo surface [28, Proposition 1.5]. We can therefore assume that F is normalized in

an appropriate way. Suppose that (Y,H) is not as in the obvious case. Then, checking the list

of the rank-2 Fano bundles on surfaces [28, Theorem] and taking into account Proposition 4.8 and

(4.10.1) we see that if our (X,F) is in that list, then the possibilities for (X, E), if any, restrict to
the following:

(1) X = P2 and E is a stable spanned bundle fitting in an exact sequence

0 → OP2(−2) → O⊕3
P2 → E → 0 (case 7 in [28, Theorem]; here E = F(1));

(2) X = P1 × P1 and E is a stable spanned bundle fitting in an exact sequence

0 → OP1×P1(−1,−1) → O⊕3
P1×P1 → E → 0 (case 12 in [28, Theorem]; here E = F(1, 1)).

However, in these cases the vector bundle E is not ample. To see this suppose we are in case (1),

consider the inclusion of Y = PP2(E) in P2 ×P2 = P(O⊕3
P2 ) corresponding to the surjection O⊕3

P2 → E
and call ρ : Y → P2 the restriction of the second projection p2 of P2 × P2 to Y (note that π is

the restriction of the first projection). Then, for the tautological line bundle of E we have that

H = ρ∗OP2(1). Fix a point x ∈ P2: then γ := ρ−1(x) = p−1
2 (x) ∩ Y is a curve inside Y and clearly

if ℓ ⊂ P2 is a general line, we get H ∩ γ = ρ−1(ℓ)∩ ρ−1(x) = ∅. Therefore H , hence E , is not ample.

The same argument applies to case (2) and this concludes the proof. �

5. Further constraints on Y deriving from S as triple plane

Let Y , H and E be as in (4.0.1), and let S be a general element of the linear subsystem

φ∗|OP3(1)| ⊆ |H | (recall that equality holds except when (Y,H) is as in the obvious case). Then

S is a smooth regular surface, by Proposition 4.5 (c), and the polarized surface (S,HS) inherits

from (Y,H) the structure of a triple plane ϕ := φ|S : S → P2, where HS = ϕ∗OP2(1). Moreover,

referring to the scroll structure of (Y,H), by restricting the projection π : Y → X to S we get

a birational morphism r = π|S : S → X . More precisely, the pair (S,HS) has (X, det E) as its

adjunction theoretic minimal reduction, the reduction morphism being r. This means that S is a
12
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meromorphic non-holomorphic section of π which contains s > 0 fibres e1, . . . , es of π : Y → X ,

and these curves, which are lines of (S,HS), are contracted by the birational morphism r to a finite

subset of X ; in addition, X can contain no line with respect to det E , E being ample of rank 2.

Hence (X, det E) is the minimal reduction of (S,HS). In particular, S is not minimal; moreover,

HS = r∗ det E −∑s

i=1 ei, so that (det E)2 = c1(E)2 = 3+ s, which combined with (4.0.3) shows that

(5.0.1) s = c2(E).

We have also KS = r∗KX +
∑s

i=1 ei, hence KS + HS = r∗(KX + det E), which has the following

consequence on the sectional genus:

(5.0.2) g(Y,H) = g(S,HS) = g(X, det E).

We set g := g(Y,H). Furthermore, K2
S = K2

X − s and e(S) = e(X)+ s. Consider the exact sequence

(5.0.3) 0 → OY → H → HS → 0.

By pushing (5.0.3) down via π we get the sequence

0 → OX → E → det E ⊗ JZ → 0,

defined by the multiplication by θ, the section of E that corresponds to the section of H defining S

in the isomorphism H0(Y,H) ∼= H0(X, E). Here Z stands for the zero locus of θ and JZ for its ideal

sheaf. Recall that Z consists of s = c2(E) points of X , by (5.0.1). Clearly,

h0(det E ⊗ JZ) = h0(det E)− t

where t is the number of linearly independent linear conditions to be imposed on an element of

| det E| to contain Z. Of course, t ≤ Card(Z) = s. On the other hand, recalling that X is regular

by Proposition 4.5 (b), we see from the cohomology of the exact sequence above that

h0(det E ⊗ JZ) = h0(E)− 1 = h0(H)− 1 = 3,

provided that (Y,H) is not as in the obvious case. So we have

Proposition 5.1. Suppose that (Y,H) is not as in the obvious case. Then ϕ : S → P2 factors

through r and the rational map defined by the linear subsystem of | det E| of curves passing through

c2(E) points of X that impose only h0(det E)− 3 linearly independent linear conditions on them.

The following result will have relevant consequences.

Proposition 5.2. Suppose that (Y,H) is not as in the obvious case. Then g ≥ 3, equality implying

X = P2 and E indecomposable of generic splitting type (2, 2), in particular semistable, with c2(E) =
13.

Proof. Look at (X, det E). Polarized surfaces with sectional genus ≤ 1 are well known [12]. By

Proposition 4.6 we know that KX + det E is ample and spanned, since (Y,H) is not as in the

obvious case. We can thus exclude that (X, det E) is such a pair. Therefore g ≥ 2. However, it

cannot be g = 2, since every ample and spanned rank 2 vector bundle of c1-sectional genus 2 (i.e.,
13
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g(X, det E) = 2) on a surface is decomposable [10, proof of the Theorem in the appendix], but this

is in contrast with Proposition 4.8. Finally, suppose that g = 3. Then a close check of the list in [10,

Theorem 2.1, (III)] combined with Proposition 4.8 again confines the possibilities to the following

single case: X = P2 and E indecomposable with det E = OP2(4). Now, let (a1, a2), with a1 ≥ a2,

be the generic splitting type of E (i.e., Eℓ = Oℓ(a1) ⊕ Oℓ(a2) for the general line ℓ ⊂ P2). Clearly

(a1, a2) = (3, 1) or (2, 2), due to the ampleness. Suppose that (a1, a2) = (3, 1). Then E has no

jumping lines [25, p. 29], so that it is uniform. Thus, according to a theorem of Van de Ven [25, p.

211], E is either OP2(3)⊕OP2(1), or a twist of the tangent bundle. Both cases, however, have to be

excluded: the former would contradict Proposition 4.8, while in the latter det E could not be OP2(4).

Therefore (a1, a2) = (2, 2). It thus follows from [25, Lemma 2.2.1, p. 209] that E is semistable.

Finally, (4.0.3) implies c2(E) = 13. �

Remark 5.3. Note that spanned rank-2 vector bundles on P2 with Chern classes (c1, c2) = (4, 13)

do exist according to [9, Theorem 0.1]. Anyway, the general stable rank-2 vector bundle with these

Chern classes is certainly not spanned, since its invariants do not satisfy the conditions in [16,

Theorem 2.6]. As a consequence, [16, Theorem 5.1] is not applicable to establish the ampleness.

Moreover, for a vector bundle like E , giving rise to a pair (Y,H) with g = 3, if any, we know

that h0(E) = 4 and by the Riemann–Roch theorem combined with the exact cohomology sequence

induced by (5.0.3) it follows easily that h1(E) = 1. Therefore, such an E , if any, would be quite

special in moduli by the Weak Brill–Noether theorem for P2 [16, Theorem 2.4]. In fact, such a vector

bundle does not exist, according to what we will prove in Section 6.

Now let us focus on the triple plane ϕ : S → P2 induced by φ, deriving further restrictions on Y .

Let B be the branch locus and let T be the rank 2 vector bundle on P2 such that ϕ∗OS = OP2⊕T , i.e.

the Tschirnhaus bundle of ϕ. Set bi = ci(T ). Then B ∈ |2 detT ∨| so that b := degB = −2b1 > 0;

moreover, if ϕ is general in the sense of [23, p. 1154], then B is irreducible and has only cusps as

singularities, their number being c = 3b2 [23, Lemma 10.1]. Furthermore, the Riemann–Hurwitz

theorem applied to ϕ−1(ℓ), where ℓ ⊂ P2 is a general line, gives

(5.0.4) b = 2g + 4.

As an immediate consequence of Proposition 5.2 we have

Remark 5.4. If (Y,H) is not as in the obvious case, then b ≥ 10, equality implying g = 3.

Consider the equalities hi(OS) = hi(OP2) + hi(T ) coming from the definition of T . For i = 1,

since S is regular we get h1(T ) = 0. On the other hand we know that h0(T ) = 0, hence letting i = 2

we see that h2(OS) = h2(T ) = χ(T ), which can be computed with the Riemann–Roch theorem [4,

p. 26]. In conclusion, we obtain pg(S) =
1
8b(b− 6) + 2− c

3 , hence

χ(OS) = 1 + pg(S) =
1

8
b(b− 6) + 3− c

3
.
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On the other hand, Miranda’s formulas (3.2.5), rewritten for S in terms of b and c, provide the

following values of K2
S and e(S):

(5.0.5) K2
S = 27− 6b+

1

2
b2 − c and e(S) = 9− 3b+ b2 − 3c.

Recalling that r : S → X is a birational morphism which factors through s blowing-ups, this

immediately gives the corresponding numerical characters of X .

It is useful to recall that for (Y,H) as in the obvious case, the pair (S,HS) is as in (2) of Theorem

3.2. In particular, we have g = 0; moreover, for the triple plane ϕ : S → P2 induced by φ, the

Tschirnhaus bundle is T = OP2(−1)⊕2 [23, Table 10.5]. Then the branch curve B of ϕ is a quartic,

since b = −2b1 = 4, and (5.0.5) shows that c = 3. Furthermore, ϕ maps the only (−1)-line of (S,HS)

(namely the only fiber of π : Y → X that S contains), isomorphically to a line ℓ ⊂ P2, which is

bitangent to B (there is only one bitangent line in this case, by Plücker formulas).

Coming back to the general case, a natural question concerning the Tschirnhaus bundle of ϕ is

what happens when T is decomposable, namely T = OP2(−m)⊕OP2(−n) for some positive integers

m, n, as in [23, p. 1156]. As we have seen, (m,n) = (1, 1) corresponds to (Y,H) being as in the

obvious case. We have b = 2(m + n), c = 3mn and we can rewrite the invariants of S in terms

of m,n as in [23, Corollary 10.4]. In particular, we have pg(S) = (12 )(m
2 + n2 − 3m − 3n) + 2,

K2
S = 2(m+ n− 3)2 − 3(mn− 3), e(S) = 4(m+ n)2 − 6(m+ n)− 9(mn− 1). Then we immediately

obtain the following result.

Proposition 5.5. If T is decomposable and X is a surface with pg(X) = 0, then (Y,H) is necessarily

as in the obvious case.

Proof. Since pg is a birational invariant, we have pg(S) = 0. Hence (m,n) must be an integral point

of the curve Γ represented in the (m,n)-plane by the equation

m2 + n2 − 3m− 3n+ 4 = 0.

Note that Γ is a circle centered at (32 ,
3
2 ) with radius 1√

2
; hence its integral points are (1, 1), (1, 2),

(2, 1), (2, 2) only. In view of the symmetry between m and n we can confine to consider the three

pairs (m,n) = (1, 1), (1, 2), (2, 2). In all these cases we have b = 2(m + n) ≤ 8, hence the assertion

follows from Remark 5.4. �

Still about the branch curve B, we have

Proposition 5.6. Let things be as in the setting (4.0.1), let S be a smooth element of φ∗|OP3(1)|,
and suppose that ϕ : S → P2 is a general triple plane, then

1

6
b2 < c ≤ min

{ 1

16
b(5b− 6)− s

2
,
3

8
b(b− 6) + 6

}
.

Proof. To prove the lower bound for c, note that the ramification divisor of ϕ is RS := R∩S, R being

the ramification divisor of φ. So, ϕ(RS) = B. As HS = ϕ∗OP2(1) we have HS · RS = degB = b.

Hence the Hodge index theorem gives the inequality b2 = (RS ·HS)
2 ≥ H2

SR
2
S = 3R2

S . On the other
15
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hand RS = KS + 3HS by the ramification formula. Having all the ingredients, recalling (5.0.4) and

the expression of K2
S, we can thus compute

R2
S = (KS + 3HS)

2 = K2
S + 6(2g − 2) + 3H2

S =
1

2
b2 − c.

Then the above inequality says that c ≥ 1
6 b

2 (compare with [11, Corollary 2.7]) Now suppose that

equality holds. Then RS and HS are linearly dependent in NS(S)⊗Q. But this implies that either

HS ≡ tKS for some rational t or KS ≡ 0. The latter case cannot occur, since S is not minimal. In

the former case, for a (−1)-curve e ⊂ S we have 0 < HSe = tKSe = −t, hence t is negative. Then

−KS ≡ p
q
HS for some positive p

q
∈ Q. This means that S is a del Pezzo surface: in particular we

have that −KS = p

q
HS . By combining the classification of these surfaces with the fact that S is

not minimal we argue that −KS is not divisible in NS(S). Note that the same is true for HS , since

H2
S = 3. Thus the above equality allows us to conclude that −KS = HS , hence g = 1. But this

is impossible in view of Proposition 5.2, taking also into account that g = 0 if (Y,H) is as in the

obvious case. Therefore the inequality we obtained above is strict.

As to the upper bounds for c, the one with respect to the second term in the min derives from

the obvious inequality pg(S) ≥ 0 combined with the expression of pg(S). To prove the other bound

we use the inequality K2
X ≤ 3e(X). Recall that if X is a surface of general type, this is just the

Bogomolov–Miyaoka–Yau inequality [4, p. 275], while if X has Kodaira dimension ≤ 1 then the

above inequality follows immediately from the theory of minimal models, simply recalling that X is

regular, due to Proposition 4.5 (b). On the other hand, since S is obtained from X via s blowing-ups

we have that 3e(S) −K2
S = 4s+

(
3e(X)−K2

X

)
≥ 4s, Due to the expression of both K2

S and e(S)

provided by (5.0.5) we can immediately convert this inequality into the bound with respect to the

first term in the min. �

Comments. i) Concerning the upper bound with respect to the first term of the min in Proposition

5.6 one can say a bit more if X is not of general type, since instead of looking at 3e(S)−K2
S one

can use better lower bounds for 2e(S)−K2
S in terms of s, according to the Kodaira dimension. In

particular, if S is rational, then the upper bound for c in Proposition 5.6 can be improved. Actually,

S 6= P2, hence, there exists a birational morphism S → S0, where S0 is a Segre–Hirzebruch surface

(either a minimal model or F1). Then K2
S = 8 − t, e(S) = 4 + t for some t ≥ 0 (the number

of blow-ups factoring this birational morphism). Thus 2e(S) − K2
S = 3t. Moreover, s ≤ t since

X is not necessarily minimal, unless X = P2, in which case s = t + 1. So, apart from this case,

s ≤ t = 1
3

(
2e(S)−K2

S

)
and taking into account (5.0.5), this gives c ≤ 3

10b
2 − 3

5 (s+ 3).

ii) According to [11, Corollary 2.7] the inequality c ≥ 1
6b

2 holds for any general triple plane. We

emphasize that the inequality proved in Proposition 5.6 is strict because it refers only to triple planes

deriving from a triple solid as in (4.0.1).

We conclude this Section with a general property that the pair (X, E) has to satisfy if Y is as

in our setting. Recall that E is ample and spanned of rank 2, and h0(E) ≥ 4 (with equality except

when (Y,H) in the obvious case); so let V be a 4-dimensional vector subspace of H0(X, E) spanning
E and let G := G(1, 3) be the grassmannian of the codimension 2 vector subspaces of V . According

16



Triple solids and scrolls

to [1, Remark 2.6], since E is ample and spanned by V , E defines a morphism ψ : X → G, finite to

its image W := ψ(X), such that E = ψ∗Q, where Q is the universal rank-2 quotient bundle of G.

Proposition 5.7. Consider the morphism ψ : X → G defined by E, and write W = αΩ(0, 3) +

βΩ(1, 2), as a linear combination of the usual Schubert cycle classes with integral coefficients α =

W · Ω(0, 3) and β = W · Ω(1, 2) in the cohomology ring of G. Then s = c2(E) = β degψ and

3 = α degψ. In particular, if s and 3 are coprime, then ψ is birational and W has bidegree (3, s).

Moreover, if ψ is an embedding, then the following relation holds, connecting c2(E) with the Chern

classes of the Tschirnhaus bundle of ϕ:

(s− 2)(s− 3) = −2b21 − 2b1 + 6b2.

Proof. Writing W = αΩ(0, 3) + βΩ(1, 2) as we said, and recalling that c1(Q) = OG(1) and c2(Q) =

Ω(1, 2), by the functoriality of the Chern classes we get

c2(E) = ψ∗c2(QW ) = degψ
(
Ω(1, 2) ·

(
αΩ(0, 3) + βΩ(1, 2)

))
= β degψ.

and

c1(E)2 = ψ∗(OG(1)W
)2

= degψ deg(W ) = (α+ β) degψ.

Therefore, (4.0.3) gives 3 = α degψ and this, in turn, combined with (5.0.1) proves the assertion

on the birationality of ψ and the bidegree of W . Finally, if ψ is an embedding, the “formule clef ”

applied to the smooth congruence X ∼=W in G [2, Proposition 2.1] implies

9 + s2 = 3(3 + s) + 4(2g − 2) + 2K2
X − 12χ(OX).

Taking into account (5.0.4) and the expressions of K2
X and χ(OX) deriving from (5.0.5) in view of

the birationality between S and X , this proves the final relation. �

Remark 5.8. We emphasize that ψ : X → G can be an embedding although E is not very ample (see

[1, Proposition 2.4 and Remarks 2.5 and 2.6]). However, if (Y,H) is as in the obvious case, then E
is very ample, ψ is in fact an embedding, and W is the Veronese surface; in this case both sides of

the equality in the last display are equal to 10.

6. Scrolls over P2

Let (Y,H), π : Y → X , and E be as in our setting (4.0.1) again and let ϕ : S → P2 be the triple

plane induced by φ as in Section 5. When X = P2, the possibilities for E , b and c are extremely

restricted.

Proposition 6.1. Let things be as above and suppose that ϕ : S → P2 is a general triple plane. If

X = P2, then either (Y,H) is as in the obvious case or it has the following characters:

(6.1.1) c1(E) = OP2(4), s = 13, b = 10, c = 21.

Proof. For X = P2 we have 3e(S) − K2
S = 3e(X) − K2

X + 4s = 4s. Then (5.0.5) combined with

the expression c = 3
8 b(b − 6) + 6 deriving from the condition pg(S) = 0 leads to the equation

b2− 30b+8(12+ s) = 0. Hence b = 15±
√
D, where D = 129− 8s. Imposing that D is non-negative

17
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we get the bound s ≤ 16 and then the list of the admissible values of s follows by requiring that D

is the square of an integer. These values, together with the corresponding b and c deriving from the

above relations, are summarized in Table 1 below.

case 1 2 3 4 5 6 7 8 9 10 11 12

s 1 6 10 13 15 16 16 15 13 10 6 1

b 4 6 8 10 12 14 16 18 20 22 24 26

c 3 6 12 21 33 48 66 87 111 138 168 201

Table 1.

Clearly case 1 corresponds to (Y,H) being as in the obvious case while case 4 corresponds to the

further possibility mentioned in the statement. So, it is enough to show that all remaining cases

cannot occur. Clearly cases 2 and 3 are ruled out by Remark 5.4. Consider the remaining cases

5–12 and set c1(E) = OP2(a). Recalling (5.0.4), (5.0.2) and the fact that
(
P2,OP2(a)

)
is the minimal

reduction of (S,HS), Clebsch formula implies that g = 1
2b − 2 = 1

2 (a − 1)(a − 2). This rules out

all cases except cases 7 and 11, in which we get a = 5 and 6 respectively. However, computing

c1(E)2 − c2(E) = a2 − s in these cases we see that condition (4.0.3) is not satisfied. �

Now suppose that (Y,H) is a scroll over X = P2 with the characters as in (6.1.1). For the

description of the triple plane ϕ : S → P2 in this case we refer to [11, 2.2 and 3.4]. We have

T = TP2(−4) = Ω1
P2(−1), in view of the natural identification Ω1

P2
∼= TP2 ⊗ det Ω1

P2 = TP2(−3).

In particular, T is stable. Moreover, we can observe that in this case the triple plane ϕ : S →
P2 is general, regardless of the assumption made in Proposition 6.1. Actually, the vector bundle

S3T ∨ ⊗ det T = S3
(
TP2(−1)

)
⊗OP2(1) is spanned, due to the Euler sequence. Thus by combining

[23, Theorem 1.1] and [29, Theorem 2.1 and Theorem 3.2] with the fact that Corollary 4.7 prevents

ϕ from being totally ramified, we conclude that ϕ : S → P2 is general. By (5.0.4) we get g = 3,

since b = 10, and then Proposition 5.2 applies. We know that (X, det E) =
(
P2,OP2(4)

)
, hence

h0(det E) = 15 and therefore Proposition 5.1 tells us that the triple plane ϕ : S → P2 is defined

via the linear system of plane quartics passing through 13 points that impose only 12 independent

linear conditions on them (see also [11, Proposition 3.7] and [23, p. 1158]). Clearly, such a triple

plane exists. However, it cannot derive from a pair (Y,H) as in our setting. To see this, let T̃ be the

Tschirnhaus bundle of φ, i.e. φ∗OY = OP3 ⊕ T̃ . If Π = P2 ⊂ P3 is the plane such that S = φ−1(Π),

then

OP2 ⊕ T = ϕ∗OS = φ∗(OY |S) = (OP3 ⊕ T̃ )|Π = OΠ ⊕ T̃ |Π,
hence T̃ |P2 = T , and therefore ci(T ) = ci(T̃ )|P2 . We know that b1 = − b

2 = −5, b2 = 1
3c = 7 by

Proposition 6.1. As a consequence, T̃ has Chern classes−5h and 7h2, respectively, where h = OP3(1).

But this contradicts the Schwarzenberger condition c1 · c2 ≡ 0 (mod. 2), necessary for the existence

of a rank 2 vector bundle on P3 [25, p. 113].

In conclusion, we have the following result.
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Theorem 6.2. Let φ : Y → P3 be a triple solid, H = φ∗OP3(1) and suppose that ϕ : S → P2 is a

general triple plane. If Y is a scroll over P2 for some polarization, then (Y,H) is necessarily as in

the obvious case.

The above result does not mean that the pair (Y,H) as in the obvious case is the only scroll

over P2 containing a smooth surface which is a triple plane. From this perspective we would like to

emphasize the following fact.

Remark 6.3. Given a scroll (Y, L) over P2 for some ample line bundle L, which is not as in the obvious

case, it may happen that Y contains a smooth surface S such that: i) S has the structure of a triple

plane, ii) M := OY (S) is a very ample line bundle, and iii) M 6= L. To give an example, consider

Y := P(TP2). Recalling that Y is contained in P := P2
1 × P2

2 as a smooth element of |OP (1, 1)|, we
see that Y has two distinct structures of P1-bundle over P2, πi : Y → P2

i (i = 1, 2), induced by

the projections of P onto the two factors. Set L :=
(
OP (1, 1)

)
Y
; then L is very ample, and we can

regard (Y, L) as a scroll over P2, e.g. via π1. As is well-known, the general element Σ ∈ |L| is a del

Pezzo surface of degree 6 and π1|Σ : Σ → P2
1 is a birational morphism consisting of the blow-up a

three general points. Now look at Pic(Y ), which can be generated by L and h := π∗
1OP2

1

(1). The line

bundle M := L + 2h is clearly very ample. Let S ∈ |M | be a general element: then S is a smooth

surface, and ϕ := π2|S : S → P2
2 is a triple plane. Actually, ϕ is a finite morphism and recalling that

OP (1, 0)
3 = OP (0, 1)

3 = 0 and OP (1, 0)
2 · OP (0, 1)

2 = 1, we see that its degree is computed by

S ·
(
OP (0, 1)Y

)2
= (L+ 2h) ·

(
OP (0, 1)Y

)2
= OP (3, 1) · OP (1, 1) ·

(
OP (0, 1)

)2
= 3.

Finally, restricting our attention to triple solids with sectional genus 3, we want to stress that

Theorem 6.2 constitutes a significant progress compared with [17, Proposition 3.3].
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