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Abstract 
Accurately measuring a crack length is a crucial aspect of experimental fracture tests. In this work, we present 
an innovative application of the A* (A-star) shortest path methodology to track different shapes of cracks 
from numerical simulations. This approach is highly efficient, significantly improving the speed and accuracy 
of crack length measurements. Furthermore, we introduce a modified weight cost function that follows the 
crack path in the damage field, enhancing the accuracy of our method. The effectiveness of the proposed 
procedure is shown by fabricating damage fields with different geometry and good agreement when 
compared to the exact values. In addition, we evaluate a time-dependent crack propagation case, achieving 
high accuracy. We present all features and steps of the procedure to showcase its efficacy in accurately 
measuring the length of a crack path. Finally, we validate our method using a phase-field fracture framework 
and compare it with the compliance technique. The results show that the proposed method is applicable in 
finite element analyses with recovering accurate results. 
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1 INTRODUCTION 

The fracture of materials has been of concern in the industry and academia over the years. In response to this issue, 
experimental studies have been conducted to better understand this phenomenon and develop strategies to mitigate 
catastrophic failures. 

The introduction and subsequent widespread utilization of material parameters and their correlation, such as 
fracture toughness, 𝐾𝐾, and crack propagation rate, 𝐷𝐷𝐷𝐷/𝐷𝐷𝐷𝐷 (obtained from the Paris curve), have made the investigation 
of crack behavior simpler and the prediction of potential mechanical failure of materials. These parameters are closely 
linked to crack length, for which precise measurement is crucial. 

Numerous crack length measurement methods are available for data obtained from experimental tests. Examples 
include the compliance technique (Saxena and Hudak, 1978; Kanters et al., 2015), the direct length measurement using an 
optical microscope (Lee et al., 2015), and the direct current potential drop (Bär, 2020). These methods rely on force and 
displacement measurements, which require accurate experimental equipment. However, alternative methods have been 
developed to address this challenge that requires no experimental output. These methods include thermoelasticity 
(Díaz et al., 2004), photoelasticity (Jobin et al., 2020), and digital image correlation (DIC) (Mokhtarishirazabad et al., 2018). 

Researchers have developed new methods and improvements for measuring crack length over the years. In a study 
conducted by Creel et al. (2009), compliance parameters for fracture testing of an anisotropic biological material were 
calibrated. Fünfschilling et al. (2010) compared crack length measurements obtained using optical and compliance 
methods when applied to R-curves. In more recent years, Yuan et al. (2021) utilized artificial intelligence based on 
convolution neural networks (CNN) and digital image processing to monitor crack length. Similarly, Farahani et al. (2022) 
combined electronic speckle pattern interferometry (ESPI) with digital image correlation (DIC) to obtain the displacement 
field, calculate the stress intensity factor (SIF), and monitor the crack opening evolution. 

Recently, phase field-based methods have been developed for modeling fracture phenomena. They use a continuous 
damage variable, usually denoted by 𝜑𝜑 with range from 0 for undamaged material and 1 for fully fractured material, 
to represent physical crack discontinuity. Many publications have reported good qualitative and quantitative agreement with 
experimental tests. However, measuring crack length in numerical simulations using a predetermined threshold damage 
remains challenging. Klinsmann et al. (2015), Zhang et al. (2018), Carrara et al. (2020), and Liu et al. (2020) used a damage 
threshold of φ = 0.95 and emphasize that the uncertainty in measuring the crack length contributes significantly to the 
discrepancy of results. This method becomes inaccurate when dealing with general shape cracks under mixed-mode loading 
(Zhang et al., 2017) or dynamic crack propagation cases with crack branching (Bleyer et al., 2017). For accurate numerical 
analysis, better numerical methodologies are required to follow experimental tests and evaluate crack propagation 
(ASTM E647, 2016) and fracture toughness (ASTM E399, 2017). Recently, Gehri et al. (2020) introduced innovative techniques 
that use digital image correlation (DIC) and image processing to measure cracks experimentally, resulting in improvements in 
multiple crack detection. Nonetheless, it is important to note that the use of image filters can substantially increase 
computational costs, which is dependent on the analysis periodicity and the total number of image pixels. 

A-Star (𝐴𝐴∗) is a popular shortest-path method with numerous applications, including map routing (Wang et al., 2014), 
autonomous vehicle path planning (Erke et al, 2020), movement of military troops (Dawid and Pokonieczny, 2021), and 
commercial video games (Lawande et al, 2022). This method was introduced by Peter Hart, Nils Nilsson, and Bertram 
Raphael (Hart et al, 1968) and can be seen as an extension of Dijkstra's algorithm (Dijkstra, 1959). Considering heuristics 
in 𝐴𝐴∗ leads to improved performance and efficiency in finding the shortest path with low cost and fast implementation. 

This work proposes a novel application of the 𝐴𝐴∗ pathfinding algorithm to numerically measure the crack length 
using the finite element method (FEM) and a phase field fracture model. The key concept is to adapt the 𝐴𝐴∗ method, 
typically associated with graph analysis, to the finite element mesh and use the damage scalar field as a guide to track 
the crack path. For this purpose, the vertices, edges, and faces of graphs are associated, respectively, to the nodes, edges, 
and elements of the finite element meshes to make possible the adequate operation of the 𝐴𝐴∗ method. 

This paper is structured as follows. Firstly, we provide a concise introduction to the phase field fracture model and 
the equations system to be solved. Subsequently, we present the typical 𝐴𝐴∗ pathfinding method, followed by the novel 
weighted cost function and the procedure for measuring the crack length. Finally, we illustrate the effectiveness of our 
approach by presenting the path length results for artificially fabricated damage fields and a crack resulting from fracture 
simulation with the phase field methodology. 

2 PHASE FIELD MODELLING 

Phase field methodology utilizes the continuous variable 𝜑𝜑 (see Figure 1) to describe an interface problem. It was 
initially introduced to solidification (Boettinger et al., 2002) and material phase transformation (Penrose and Fife, 1990). 
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More recently, this methodology has found applications in material modelling for fracture analysis, fatigue 
(Boldrini et al, 2016; Alessi et al, 2018 and Haveroth et al, 2020), anisotropy (Petrini et al, 2021), and hydrogen 
embrittlement (Martínez-Pañeda et al, 2018). 

 
Figure 1 Damage phase field where φ ≈ 1 represents a physical crack. 

A phase field model with thermodynamic consistency is derived using the balance equations of continuum mechanics, 
resulting in a general and robust framework. In this work, the formulation is given according to Boldrini et al. (2016) and 
Haveroth et al. (2020). 

The conservation of mass is given by 

�̇�𝜌 + 𝜌𝜌 𝑑𝑑𝑑𝑑𝑑𝑑(𝒗𝒗) = 0, (1) 

where ρ is the volumetric mass density and 𝒗𝒗 is velocity vector field given by time derivative of the displacement field, 
𝒖𝒖, both represented in the Eulerian description. 

The principle of virtual power (PVP) is applied to obtain the following equilibrium equation at the macro scale for 
an arbitrary part 𝒟𝒟𝓉𝓉 for the body ℬ at time 𝑡𝑡: 

�𝜌𝜌�̇�𝒗 = 𝑑𝑑𝑑𝑑𝑑𝑑(𝑻𝑻) + 𝜌𝜌𝒇𝒇 𝑑𝑑𝑖𝑖   𝒟𝒟𝓉𝓉
𝑻𝑻𝑻𝑻 = 𝒕𝒕 𝑑𝑑𝑖𝑖   𝜕𝜕𝒟𝒟𝓉𝓉

, (2) 

where 𝑻𝑻 is the Cauchy stress tensor field, 𝒇𝒇 is the body load vector field and 𝑻𝑻 is the normal vector field to the boundary 
∂𝒟𝒟𝓉𝓉. 

The PVP is also used at the microscale resulting in the following equilibrium equation: 

�𝑑𝑑𝑑𝑑𝑑𝑑
(𝒉𝒉) − 𝑏𝑏 + 𝜌𝜌𝐷𝐷 = 0 𝑑𝑑𝑖𝑖   𝒟𝒟𝓉𝓉

𝒉𝒉 ⋅ 𝑻𝑻 = 𝑡𝑡ℎ  𝑑𝑑𝑖𝑖   𝜕𝜕𝒟𝒟𝓉𝓉
, (3) 

where ℎ is the microstress vector field, 𝑏𝑏 is the microforce scalar field, and 𝐷𝐷 is the density of external body microforce. 
The balance of energy, or the first principle of thermodynamics, is given by 

𝜌𝜌�̇�𝑒 = 𝑻𝑻 :  𝐷𝐷 + 𝑏𝑏�̇�𝜑 + 𝒉𝒉 ⋅ ∇�̇�𝜑 − 𝑑𝑑𝑑𝑑𝑑𝑑(𝒒𝒒) + 𝜌𝜌𝜌𝜌    𝑑𝑑𝑖𝑖  𝒟𝒟𝓉𝓉, (4) 

where 𝑒𝑒 is the specific internal energy density, 𝒒𝒒 is the heat flux vector field, and 𝜌𝜌 is the specific heat source density. 
Finally, the second law of thermodynamics, stated by the generalized Clausius-Duhem inequality, is 

𝜌𝜌�̇�𝜂 ≥ −𝑑𝑑𝑑𝑑𝑑𝑑 �𝒒𝒒
𝜃𝜃

+ 𝒌𝒌� + 𝜌𝜌 �𝑟𝑟
𝜃𝜃

+ 𝜔𝜔�    𝑑𝑑𝑖𝑖  𝒟𝒟𝓉𝓉, (5) 

where η is the specific entropy density, 𝒌𝒌 is the entropy flux due to microscopic evolution, θ is the absolute temperature, 
𝜌𝜌/θ is the specific entropy production, and ω is the entropy production due to microscopic evolution. 
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To obtain thermodynamically consistent relations, the constitutive properties of the material are expressed in terms 
of the free-energy potential, ψ, and the pseudo-potential of dissipation, ψ𝑑𝑑

𝑛𝑛. Using the balance of energy of Eq. 4, 
the entropy inequality, Eq. 5, is rewritten in terms of the specific free-energy ψ =  𝑒𝑒 − θη by 

−𝜌𝜌��̇�𝜓 + 𝜂𝜂�̇�𝜃� + 𝑻𝑻 :  𝑫𝑫 + 𝑏𝑏�̇�𝜑 + 𝒉𝒉 ⋅ ∇�̇�𝜑 − 1
𝜃𝜃
𝒒𝒒 ⋅ ∇𝜃𝜃 + 𝜃𝜃 𝑑𝑑𝑑𝑑𝑑𝑑(𝒌𝒌) − 𝜌𝜌𝜔𝜔𝜃𝜃 ≥ 0. (6) 

The free energy potential depends on the internal variables as 

� 𝜓𝜓 = 𝜓𝜓(Γ) 
Γ = (𝜌𝜌,𝜃𝜃,𝜑𝜑,∇𝜌𝜌,∇𝜃𝜃,∇𝜑𝜑,𝑬𝑬). (7) 

Moreover, the terms 𝑻𝑻, 𝑏𝑏, 𝒉𝒉 and 𝒒𝒒 are split in their reversible (non-dissipative) and irreversible (dissipative) parts 
and represented as (⋅)𝑟𝑟and (⋅)𝑖𝑖𝑟𝑟 respectively. In addition, it is assumed that 𝒉𝒉(𝑖𝑖𝑟𝑟) ≡ 0 and 𝒒𝒒(𝑟𝑟) ≡ 0. 

For the sake of brevity, some manipulations from the previous equations will be omitted here. Further details can 
be found in Boldrini et al. (2016). 

Reversible terms are chosen such that, for any admissible process, there is no entropy increase. Considering 
irreversible terms, and after some simplifications, we have the following equations: 

𝑏𝑏(𝑖𝑖𝑟𝑟)�̇�𝜑 + 𝑻𝑻(𝑖𝑖𝑟𝑟) :  𝑫𝑫 − 1
𝜃𝜃
𝒒𝒒(𝑖𝑖𝑟𝑟) ≥ 0. (8) 

To satisfy the previous inequality, we define the pseudo-potential of dissipation by 

𝜓𝜓𝑑𝑑𝑛𝑛 = 𝜓𝜓𝑑𝑑𝑛𝑛��̇�𝜑,𝑫𝑫,∇𝜃𝜃, Γ�� (9) 

with 

Γ� = (𝜌𝜌,𝜃𝜃,𝜑𝜑,∇𝜌𝜌,𝑬𝑬). (10) 

If 𝜓𝜓𝑑𝑑𝑛𝑛�φ̇,𝑫𝑫,∇θ, Γ�� ≥ 0,    ∀   �φ̇,𝑫𝑫,∇θ, Γ��, ψ𝑑𝑑
𝑛𝑛�0,0,0, Γ�� ≥ 0 and ψ𝑑𝑑

𝑛𝑛 is continuous and convex with respect to the 
variables φ̇,𝑫𝑫 and ∇θ, Eq. 8 is satisfied. 

Collecting the previous equations and after some simplifications, the system of governing equations is expressed by 

⎩
⎪⎪
⎨

⎪⎪
⎧

�̇�𝜌 + 𝜌𝜌 𝑑𝑑𝑑𝑑𝑑𝑑(𝒗𝒗) = 0 
�̇�𝒖 = 𝒗𝒗 

𝜌𝜌�̇�𝒗 = 𝑑𝑑𝑑𝑑𝑑𝑑(𝑻𝑻) + 𝜌𝜌𝒇𝒇 
𝑻𝑻 = 𝜌𝜌𝜕𝜕𝑬𝑬𝜓𝜓 − 𝜌𝜌2𝜕𝜕𝜌𝜌𝜓𝜓𝜓𝜓 − 𝜌𝜌 𝑠𝑠𝑠𝑠𝑠𝑠(∇ℱ ⊗ 𝜕𝜕∇ℱ𝜓𝜓 + ∇𝜑𝜑⊗ 𝜕𝜕𝜃𝜃𝜓𝜓) + 𝜕𝜕𝑫𝑫𝜓𝜓𝑑𝑑𝑛𝑛 

𝜕𝜕�̇�𝜑𝜓𝜓𝑑𝑑𝑛𝑛 = 𝑑𝑑𝑑𝑑𝑑𝑑(𝜃𝜃𝜕𝜕∇𝜃𝜃𝜓𝜓𝑑𝑑𝑛𝑛) + 𝑻𝑻 :  𝑫𝑫 + �𝜌𝜌𝜕𝜕𝜑𝜑𝜓𝜓 + 𝜕𝜕�̇�𝜑𝜓𝜓𝑑𝑑𝑛𝑛��̇�𝜑 + 𝜌𝜌𝜕𝜕∇𝜑𝜑𝜓𝜓 ⋅ ∇�̇�𝜑 + 𝜌𝜌𝜌𝜌
𝑒𝑒 = 𝜓𝜓 − 𝜃𝜃𝜕𝜕𝜃𝜃𝜓𝜓 

. (11) 

This system of equations is very general. Changing the free energy ψ and the pseudo-potential ψ𝑑𝑑
𝑛𝑛, different 

thermodynamically consistent models that account for fracture phenomena can be obtained for many materials. 
Let us consider the particular case of an isothermal, isotropic, and linear elastic material with damage. 
The volumetric free-energy density for a material subjected to damage is given by the sum of the elastic energy 

density ℰ and the energy density related to damage 𝒥𝒥 as 

𝜌𝜌0𝜓𝜓(𝜑𝜑,∇𝜑𝜑,𝑬𝑬) = ℰ + 𝒥𝒥, (12) 

where a nearly-incompressible material is such that 

𝜌𝜌(𝒙𝒙, 𝑡𝑡) = 𝜌𝜌0. (13) 
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The elastic strain energy density of the damaged material is obtained from the respective energy of the undamaged state by 

ℰ = 𝑔𝑔𝑒𝑒ℰ0. (14) 

where 𝑔𝑔𝑒𝑒 is the degradation function and ℰ0 is the elastic strain energy density of the undamaged material. 
The degradation function may depend on several variables. In this work, we assume that 

𝑔𝑔𝑒𝑒(𝜑𝜑) = (1 − 𝜑𝜑)𝜅𝜅, (15) 

where κ is a material dependent real constant. 
Moreover, we split the elastic strain energy density, as proposed by Amor et al. (2009), into its volumetric and 

deviatoric (volume-preserving) contributions such that 

ℰ(𝑬𝑬,𝜑𝜑) = 𝑔𝑔𝑒𝑒+ ℰ0+(𝑬𝑬) + 𝑔𝑔𝑒𝑒− ℰ0−(𝑬𝑬), (16) 

where 

ℰ0+ = 1
2
𝐾𝐾⟨𝑡𝑡𝜌𝜌(𝑬𝑬)⟩+2 + 𝐺𝐺(𝑬𝑬dev:𝑬𝑬dev), (17) 

and 

ℰ0− = 1
2
𝐾𝐾⟨𝑡𝑡𝜌𝜌(𝑬𝑬)⟩−2 , (18) 

where 𝐺𝐺 and 𝐾𝐾 are the shear and the bulk modulus of the material, respectively. The operator ⟨⋅⟩± is defined as 
⟨ξ⟩± = (ξ ± |ξ|)/2. 

The crack energy density 𝒥𝒥 is the sum of the energy density associated with the transition layers and the total bulk 
energy density. Therefore, 

𝒥𝒥(𝜑𝜑,∇𝜑𝜑) = 𝐺𝐺𝑐𝑐 �
𝛾𝛾
2

|∇𝜑𝜑|2 + 𝜑𝜑2

2𝛾𝛾
�, (19) 

where γ is a parameter related to the width of the fracture layers and 𝐺𝐺𝑐𝑐 is the Griffith fracture energy parameter. 
The non-plastic pseudo-potential of dissipation is defined by 

𝜓𝜓𝑑𝑑𝑛𝑛��̇�𝜑,∇𝜃𝜃, Γ�� = 1
2
�̃�𝜆�Γ��|�̇�𝜑|2, (20) 

where λ� controls the damage change rate, see Boldrini et al. (2016). 
A quasi-static process is here considered for the motion equation. General thermodynamically consistent equations 

are expressed in the following way: 

�
0  =   1

𝜌𝜌0
𝑑𝑑𝑑𝑑𝑑𝑑 𝜎𝜎  − 𝛾𝛾𝐺𝐺𝑐𝑐

𝜌𝜌0
 𝑑𝑑𝑑𝑑𝑑𝑑(∇ 𝜑𝜑  ⊗  ∇ 𝜑𝜑)  + 𝑓𝑓

�̇�𝜑  = 𝛾𝛾𝐺𝐺𝑐𝑐
𝜆𝜆�
Δ𝜑𝜑 − 1

𝜆𝜆�
�𝜕𝜕𝜑𝜑𝑔𝑔𝑒𝑒+ℰ0+ + 𝜕𝜕𝜑𝜑𝑔𝑔𝑒𝑒−ℰ0−� −

1
𝜆𝜆�𝛾𝛾
𝐺𝐺𝑐𝑐𝜑𝜑

, (21) 

with 

𝜎𝜎 = 𝜕𝜕𝑬𝑬ℰ, (22) 

1
𝜆𝜆�

= 𝑐𝑐̃
(1−𝜑𝜑+𝛿𝛿), (23) 

where �̃�𝑐 is a constant that controls the damage growth rate and δ a small constant to avoid numerical singularity. 
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3 DETERMINATION OF CRACK PATH 

This section describes the proposed procedure for tracking crack paths using a modified version of the 𝐴𝐴∗ method. 
The 𝐴𝐴∗ based methods require prior knowledge of the starting and ending points of the path. While the crack 

nucleation position 𝒜𝒜 is generally known from experimental tests, finding the respective initial node of the mesh can be 
challenging in complex geometries. However, it can be estimated using the damage phase field variable and the 
maximum von Mises stress. Once 𝒜𝒜 is found, it remains constant along the procedure to determine the crack path. 

Similarly, the crack tip ℬ is chosen to be located at the point with the maximum local von Mises stress. 
Its position must be updated at every load step of the simulation to track the crack path. 

3.1 Weighted 𝑨𝑨∗ Method 

The 𝐴𝐴∗ algorithm is a commonly used informed search approach in pathfinding problems. The algorithm aims to 
find the path from a starting point 𝒜𝒜 (crack nucleation site) to a goal point ℬ (crack tip) with the minimum value of the 
cost function 𝑓𝑓 for moving between 𝒜𝒜 and ℬ, which are both known positions. 

The path 𝒫𝒫 is defined as a set of consecutive nodes, denoted by 𝑖𝑖, in the finite element mesh, where 𝑖𝑖 is a positive integer. 
The path 𝒫𝒫 connects 𝒜𝒜 and ℬ with the minimum cost by selecting the nodes with the least accumulated cost. 

The shortest path between points 𝒜𝒜 and ℬ are described in terms of mesh nodes denoted by the set 𝑆𝑆𝒜𝒜𝑛𝑛𝑝𝑝  of parent 
nodes which start at point 𝒜𝒜. Variables with superscript (⋅)𝑛𝑛 denote values computed at node 𝑖𝑖, while those variables 
with superscript (⋅)𝑝𝑝 represent the corresponding values for a parent node. 

A cost function is typically used at each node 𝑖𝑖 and expressed as 

𝑓𝑓𝑛𝑛 = 𝑔𝑔𝑛𝑛 + ℎ𝑛𝑛. (24) 

Term 𝑔𝑔𝑛𝑛 represents the accumulated distances between the previous parent nodes and the distance between node 
𝑖𝑖 and its parent node 𝑖𝑖𝑝𝑝; term ℎ𝑛𝑛 is an estimated heuristic cost that approximates the distance between node 𝑖𝑖 and the 
final goal point ℬ (Tortora and Francese, 2003). 

Specifically, 𝑔𝑔(𝑖𝑖) can be expressed as 𝑔𝑔(𝑖𝑖) = 𝑆𝑆𝒜𝒜𝑛𝑛𝑝𝑝 + �|𝑖𝑖𝑝𝑝 − 𝑖𝑖|�2, where $|| ⋅ ||2 is the Euclidean norm. 
Similarly, ℎ(𝑖𝑖) = �|ℬ − 𝑖𝑖|�2. 

Data for each considered node is allocated in the structure called OPEN, which stores the node number and its 
parent node number. The cost function 𝑔𝑔 is recursively calculated using Algorithm 1, while the cost function ℎ is 
calculated using the Euclidean distance mentioned before. 

Algorithm 1: Recursive function for 𝒈𝒈 

Initialize: 𝑔𝑔 = 0 

Input: 𝑂𝑂𝑂𝑂𝑂𝑂𝐷𝐷, 𝑔𝑔, 𝑖𝑖, 𝑀𝑀𝑒𝑒𝑠𝑠ℎ 
Output: 𝑔𝑔,𝑖𝑖 
1: Identify the parent node of the actual node in 𝑂𝑂𝑂𝑂𝑂𝑂𝐷𝐷 
2: Calculate: 𝑔𝑔 = 𝑔𝑔 + �|𝑖𝑖 − 𝑖𝑖𝑝𝑝|�2 

3: if Current node is the start node, then 
4: Return to the main program 
5: end if 
6: Update: 𝑖𝑖 = 𝑖𝑖𝑝𝑝 
7: Call this function 

The method involves tracking nodes with the minimum cost from point 𝒜𝒜 to ℬ in order to find the shortest 
path between them. At each iteration, the program allocates information for the neighboring nodes 𝑖𝑖1, 𝑖𝑖2, …, 𝑖𝑖η 
for the current node 𝑖𝑖 also in the OPEN structure. These neighboring nodes can be chosen from the adjacent nodes 
(i.e., nodes connected by an element edge) or the nodes that belong to the neighboring elements (see Figure 2). 
When searching for adjacent nodes in a quadrilateral element, the path length will depend on both the element 
edges and the crack directions. 
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Figure 2 Finite element mesh with a central node 𝑖𝑖 (black) and its neighboring nodes connected by an edge (red) and the nodes of 

the neighboring elements (blue). 

Node 𝑖𝑖 is appended to the CLOSED matrix, which contains the nodes already analyzed. The OPEN matrix must be 
sorted in ascending order of the cost function 𝑓𝑓 before the new iteration. The loop criterion is achieved when the 
analyzed node is the goal node. The 𝐴𝐴∗ procedure is summarized in the Algorithm 2. 

The nodes in CLOSED matrix are sequenced backward for building the nodal path sequence. For example, starting from 
the goal node (the first position) then the parent node provides the next node in the series, and so forth, up to the start node. 

Algorithm 2: Weighted 𝑨𝑨∗ 

Input: Mesh, damage field 

Output: Nodal path 
1: Allocate the start node at 𝑂𝑂𝑂𝑂𝑂𝑂𝐷𝐷 
2: while Node ≠ Goal Node, do 
3: for Every neighbor node by edge or by element, do 
4: if node is not in 𝑂𝑂𝑂𝑂𝑂𝑂𝐷𝐷 or not in 𝐶𝐶𝐶𝐶𝑂𝑂𝑆𝑆𝑂𝑂𝐷𝐷, then 
5: Calculate 𝑔𝑔, ℎ, and 𝑓𝑓 
6: Store the node information in 𝑂𝑂𝑂𝑂𝑂𝑂𝐷𝐷 
7: end if 
8: end for 
9: Store Node in 𝐶𝐶𝐶𝐶𝑂𝑂𝑆𝑆𝑂𝑂 

10: Remove Node From 𝑂𝑂𝑂𝑂𝑂𝑂𝐷𝐷 
11: Sort 𝑂𝑂𝑂𝑂𝑂𝑂𝐷𝐷 in ascending order of cost function 𝑓𝑓 
12: end while 

The previous procedure is efficient in searching for the shortest path in a finite element mesh. However, it does not 
guarantee that the path will pass through the crack. To enforce this condition, the cost functions 𝑔𝑔 and ℎ are weighted 
by the damage parameter, φ(𝑖𝑖), as 

𝑓𝑓(𝑖𝑖) = 𝑤𝑤�𝜑𝜑(𝑖𝑖)��𝑔𝑔(𝑖𝑖) + ℎ(𝑖𝑖)�. (25) 

where 𝑤𝑤�φ(𝑖𝑖)� is the weight function, which reduces the cost functions where the nodal damage, φ𝑛𝑛, approaches 1, as 
indicated by the considered degradation function 

𝑤𝑤�𝜑𝜑(𝑖𝑖)� = (1 − 𝜑𝜑)𝛼𝛼 (26) 

where α ∈  ℝ+. 
There are different weight functions, 𝑤𝑤�φ(𝑖𝑖)�, proposed in the literature. In this case, it is crucial to ensure that 

the total cost decreases as the damage increases, forcing the path to pass through the most damaged nodes. 
Consequently, the weighted cost function no longer searches for the globally shortest path. It should be noted that the 
classical 𝐴𝐴∗ method is recovered when φ = 0 or α = 0. 
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3.2 Approximation of the crack length 

We propose a simple and effective method for calculating the length of the crack path based on a line integral. 
The parametrization of the curve 𝐶𝐶 in terms of the local coordinate ξ ∈ [−1,1] from one node with coordinates [𝑥𝑥𝑖𝑖 ,𝑠𝑠𝑖𝑖] 

to another node with coordinates �𝑥𝑥𝑓𝑓 ,𝑠𝑠𝑓𝑓� is given by 

𝜓𝜓 = ∫ 𝑓𝑓�𝑥𝑥(𝜉𝜉),𝑠𝑠(𝜉𝜉)�1
−1  �𝒓𝒓′�𝑥𝑥(𝜉𝜉),𝑠𝑠(𝜉𝜉)�� 𝑑𝑑𝜉𝜉 (27) 

where 

⎩
⎨

⎧𝒓𝒓
𝑇𝑇(𝜉𝜉) = [𝑥𝑥(𝜉𝜉)  𝑠𝑠(𝜉𝜉)]
𝑥𝑥(𝜉𝜉) = 𝑥𝑥𝑖𝑖+𝑥𝑥𝑓𝑓

2
+ 𝑥𝑥𝑓𝑓−𝑥𝑥𝑖𝑖

2

𝑠𝑠(𝜉𝜉) = 𝑦𝑦𝑖𝑖+𝑦𝑦𝑓𝑓
2

+ 𝑦𝑦𝑓𝑓−𝑦𝑦𝑖𝑖
2

 (28) 

In the finite element mesh, the scalar field φ is interpolated using the one-dimensional linear nodal shape functions 
𝐷𝐷𝑖𝑖  expressed in the local coordinates. Eq. 27 is then rewritten for an element that contains two consecutive nodes of the 
path 𝒫𝒫 as 

𝜓𝜓 = ∫𝐷𝐷𝑖𝑖�𝑥𝑥(𝜉𝜉),𝑠𝑠(𝜉𝜉)�𝜑𝜑𝑖𝑖  �𝒓𝒓𝑗𝑗′�𝑥𝑥(𝜉𝜉),𝑠𝑠(𝜉𝜉)�� 𝑑𝑑𝜉𝜉 (29) 

Since 𝒓𝒓𝑗𝑗′�𝑥𝑥(ξ),𝑠𝑠(ξ)� is independent of ξ, Eq.29 is rewritten as 

𝜓𝜓  =   �𝒓𝒓′𝑗𝑗�𝑥𝑥(𝜉𝜉),𝑠𝑠(𝜉𝜉)�������������
L

  ∫𝐷𝐷𝑖𝑖�𝑥𝑥(𝜉𝜉),𝑠𝑠(𝜉𝜉)�𝜑𝜑𝑖𝑖  𝑑𝑑𝜉𝜉���������������
M

 (30) 

where 𝐶𝐶 is the curve length and 𝑀𝑀 is the nodal damage weighted by the nodal shape function. 
Finally, the crack length is given by 

𝐷𝐷𝐴𝐴∗ = ∑ 𝐶𝐶 ⋅ 𝑀𝑀𝒫𝒫  (31) 

For elements with 𝑀𝑀 ≥ φ𝑡𝑡, i.e., almost fully cracked, $𝑀𝑀 is considered 1. 

4 RESULTS 

This section presents fabricated solution examples to illustrate the capabilities and features of the proposed 
method. Additionally, a time-dependent case that utilizes the phase-field crack solution is presented to validate the 
effectiveness of the method. 

4.1 Fabricated damage fields 

To illustrate the influence of the weight function and validate the proposed 𝐴𝐴∗ method, the following fabricated 
damage field is considered: 

𝜑𝜑(𝒙𝒙, 0) = 𝑠𝑠𝐷𝐷𝑥𝑥 �𝜑𝜑(𝒙𝒙, 0) ,  0.99 ⋅ exp{−1 ⋅ 102 �𝑥𝑥 − 𝑥𝑥𝜑𝜑�
2} ⋅ exp{−1 ⋅ 102 �𝑠𝑠 − 𝑠𝑠𝜑𝜑�

2}� (32) 

where 𝑥𝑥φ and 𝑠𝑠φ are the coordinates of the nodes at a critical damage state. 
We analyze the two crack configurations of Figure 3 to test the effectiveness of the proposed method. The first 

configuration, 𝐶𝐶1 (Figure 3a), represents a curved crack configuration, while the second configuration 𝐶𝐶2 (Figure 3b), 
depicts a branched crack configuration. Circular shapes were chosen for the crack configurations motivated by the fact 
that approximating circular geometry using straight lines is particularly challenging. Consequently, obtaining good results 
for these cases ensures that simpler cases can also be accurately approximated. 
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The critical damage nodes coordinates are defined as 

𝐶𝐶1: (𝜌𝜌 − 𝛿𝛿)2 ≤ �𝑥𝑥𝜑𝜑2 + 𝑠𝑠𝜑𝜑2� ≤ (𝜌𝜌 + 𝛿𝛿)2 (33) 

𝐶𝐶2:�
𝑥𝑥𝑖𝑖 ≤ 𝑥𝑥𝜑𝜑 ≤ 𝑥𝑥𝑓𝑓 
𝑠𝑠𝑖𝑖 ≤ 𝑠𝑠𝜑𝜑 ≤ 𝑠𝑠𝑓𝑓 

(𝜌𝜌 − 𝛿𝛿)2 ≤ �𝑥𝑥𝜑𝜑2 + 𝑠𝑠𝜑𝜑2� ≤ (𝜌𝜌 + 𝛿𝛿)2
 (34) 

where 𝜌𝜌 is the radius of the circumference and δ is a small increment. 

The starting and goal points coordinates (𝑥𝑥φ,𝑠𝑠φ) are, respectively, (0.0,0.6) and (0.6,0.0) for 𝐶𝐶1. The geometry 𝐶𝐶2 
represents a straight crack followed by branching and described by two paths. The starting point coordinate is (0.0,0.5) 
and the two goal points coordinates are (1.0,0.8) and (1.0,0.2).The mesh domain is defined in the interval [0 1] for both 
𝑥𝑥 and 𝑠𝑠 coordinates and discretized using 𝑠𝑠 equally spaced elements in each direction. 

The resulting paths for two different choices of 𝑤𝑤(φ) are presented in Figure 4 and 5 using Algorithms 1 and 2. 
Firstly, the usual 𝐴𝐴∗ method is recovered for 𝑤𝑤(φ) = 1 and the shortest path 𝒫𝒫𝓈𝓈 using Eq. 24 is obtained and illustrated 
in Figs. 4b and 5b. For the weighted 𝐴𝐴∗ method using Eq. 26, the path 𝒫𝒫𝓌𝓌  pass through the nodes with the largest values 
of φ as shown in Figs. 4c and 5c. 

 

Figure 3 Two-dimensional domains: (a) 𝐶𝐶1 and (b) 𝐶𝐶2, illustrating the starting points (blue) and goal points (red) associated with each domain. 

 

Figure 4 (a) Scalar field for the 𝐶𝐶1 curve and the obtained paths associated to the weigh function 𝑔𝑔 where (b) 𝛼𝛼 = 0 and (c) 𝛼𝛼 = 1. 
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Figure 5 (a) Scalar field for the 𝐶𝐶2 curve and the obtained paths associated to the weigh function 𝑔𝑔 where (b) 𝛼𝛼 = 0 and (c) 𝛼𝛼 = 1. 

The proposed method showed qualitative agreement compared to the original shape. However, a quantitative analysis must 
be considered to validate the methodology. For this purpose, the method presented in Section 3.2 is applied, and the crack length 
is obtained for different mesh refinements (𝑠𝑠 = 50,100,200) and different neighbor search options (by edge or by element). 

The results are summarized in Table 1 and the accuracy depends on the path shape and on the choice of searching 
for neighbor nodes (by edge or by element). Evidently, a circular shape in a mesh with squared elements will present 
lower accuracy when compared to a straight line. In this case, searching for neighbors by node provides more possible 
nodes and directions improving the path length result.   

Table 1 Convergence analysis for the examples with fabricated damage fields. 

Geometry Exact Length 
Path Length [m] (% error) 

𝒎𝒎 = 𝟓𝟓𝟓𝟓 𝒎𝒎 = 𝟏𝟏𝟓𝟓𝟓𝟓 𝒎𝒎 = 𝟐𝟐𝟓𝟓𝟓𝟓 
By edge By element By edge By element By edge By element 

𝑪𝑪𝟏𝟏 0.942478 0.80 0.989 1.200000 0.989117 1.200000 0.986188 

 (15.12%) (4.95%) (27.32%) (4.64%) (27.32%) (4.64%) 

𝑪𝑪𝟐𝟐 1.171239 1.294416 1.182843 1.300000 1.188701 1.300000 1.185772 

 (10.52%) (0.99%) (10.99%) (1.49%) (10.52%) (1.24%) 

4.2 Crack under propagation 

The proposed method has a practical application in tracking the path of a stable crack over time. Specifically, the 
crack path is measured at regular intervals during the simulation, between the initial time 𝑡𝑡𝑖𝑖  and final time 𝑡𝑡𝑓𝑓. 
This technique is commonly used in fatigue crack propagation tests to determine the propagation velocity of a stable 
crack under a given stress intensity factor. The resulting data is represented by the Paris-Erdogan curve, which provides 
valuable material properties, including the threshold stress intensity factor and stable propagation parameters. 

The considered square domain with side 1 𝑠𝑠 is discretized into structured meshes with 𝑠𝑠2 elements. Again, the 
damage scalar field is given by Eq. 32 and updated every time step. The simulation time ranges from 𝑡𝑡𝑖𝑖 = 0 to 𝑡𝑡𝑓𝑓 = 50 𝑠𝑠 
with time step ∆𝑡𝑡 =  1  𝑠𝑠. 

A straight crack pattern is here considered. The nodal positions are constant for every time step and the critical 
damaged nodal coordinates are given by the curve 

𝐶𝐶3: �
𝑥𝑥𝑖𝑖 ≤ 𝑥𝑥𝜑𝜑 ≤ 𝑥𝑥𝑓𝑓(𝑡𝑡)
𝑠𝑠𝑖𝑖 ≤ 𝑠𝑠𝜑𝜑 ≤ 𝑠𝑠𝑓𝑓

 (35) 

with 

𝑥𝑥𝑓𝑓(𝑡𝑡) = 𝑥𝑥𝑓𝑓𝑖𝑖 + �𝐶𝐶𝑥𝑥 − 𝑥𝑥𝑓𝑓𝑖𝑖�𝑡𝑡4 (36) 

where 𝑥𝑥𝑓𝑓(𝑡𝑡) is the time-dependent crack tip position function, 𝑥𝑥𝑓𝑓𝑖𝑖 is the starting crack tip coordinate in the 𝑥𝑥-axis and 
𝐶𝐶_𝑥𝑥 is the width of the domain in 𝑥𝑥-direction. The starting crack parameters are 𝑥𝑥𝑓𝑓𝑖𝑖 = 0.7 𝑠𝑠, 𝑥𝑥𝑖𝑖 = 0 𝑠𝑠, 𝑠𝑠𝑖𝑖 = 𝑠𝑠𝑓𝑓 = 0.5 𝑠𝑠. 
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The crack length is measured using three meshes with different refinements (𝑠𝑠 =  50, 100, 200) and compared 
with the exact value given by Eq. 35 and shown in Figure 6. 

The proposed method can closely follow the damage field and the crack tip, even with a coarser mesh. Evidently, 
the accuracy of the result depends on the mesh refinement. For the coarsest mesh, Figs. 6a-6b shows that the crack 
length evolution behaves as a step function where the damage rate is lower compared to Fig. 6c. Therefore, in the crack 
propagation simulation, the result accuracy is dependent on the measurement frequency (𝑓𝑓), the crack speed (𝑑𝑑), and 
the mesh refinement (𝜌𝜌) in such a way that 𝑓𝑓 ∝ 𝑑𝑑, 𝜌𝜌−1. 

The average percentage error is calculated for the three mesh refinements with values of 0.92%, 0.51%, and 
0.27%, respectively. 

To avoid dependence on the sampling frequency, the measurements are counted only when the crack advances to 
a new node. Figure 7 shows the results for 𝑠𝑠 = 50. The differences are more pronounced in the beginning but more 
accurate when measured. The average percentage error for this case is 0.62%. 

 

Figure 6 Crack length measured over time for different mesh refinements: (a) 𝑠𝑠 = 50, (b) 𝑠𝑠 = 100 and (c) 𝑠𝑠 = 200 

 

Figure 7 Crack length measured over time for 𝑠𝑠 = 50 excluding repeated measurements. 

4.3 Comparison with the compliance method 

The resulting crack length obtained from the 𝐴𝐴∗ method is compared with the crack length using the 
compliance technique. The compliance technique is often used in experimental tests since it is simpler to obtain 
the crack length when compared with other more accurate methods. The length of a straight crack can be indirectly 
measured using the crack mouth opening displacement (CMOD) and the applied force. For a standard specimen 
geometry, the crack length results from a calibrated function of the CMOD, the applied force, 𝑂𝑂, and the effective 
stiffness, 𝑂𝑂′. Also, the geometric parameters 𝑊𝑊 and 𝐵𝐵 are, respectively, the width (measured from the center of 
the fixation holes) and the thickness. The C(T) specimen is used with dimensions shown in Figure 8 according to the 
ASTM E399 standard (ASTM E399, 2017). 
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Figure 8 Comparison between the compliance and 𝐴𝐴∗ crack measurement methods. 

A fracture toughness test (mode I opening test) in the specimen under displacement control is simulated using the 
phase-field model stated in Eq. 21. The CMOD and the reaction force are provided from the finite element analysis, which 
are inputs for the crack length functional given by 

𝐷𝐷𝑐𝑐 = 𝑊𝑊(1.0 − 4.5 ⋅ 𝑈𝑈 + 13.157 ⋅ 𝑈𝑈2 − 172.551 ⋅ 𝑈𝑈3 + 879.944 ⋅ 𝑈𝑈4 − 1514.671 ⋅ 𝑈𝑈5) (37) 

with 

𝑈𝑈 = �√𝑂𝑂′ 𝐶𝐶 𝐵𝐵 + 1�
−1

 (38) 

where 𝐷𝐷𝐶𝐶  is the compliance crack length, 𝑈𝑈 is a dimensionless variable, and 𝐶𝐶 is the secant compliance given by 

𝐶𝐶 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝑃𝑃

. (39) 

Eq. 37 is valid for crack lengths of 0.2𝑊𝑊 ≤ 𝐷𝐷𝑐𝑐 ≤ 0.8𝑊𝑊 (ASTM E399, 2017). 
For the phase-field simulations, the parameters are �̃�𝑐 = 5.0 × 10−5, 𝑂𝑂 = 44  𝐺𝐺𝑂𝑂𝐷𝐷, ν = 0.3, Δ𝑡𝑡 =  0.0167 𝑠𝑠, 

𝐺𝐺𝑐𝑐 = 1830 𝐽𝐽/𝑠𝑠2 and γ = 3.5 × 10−3 𝑠𝑠. The analysis is done under the elastic regime, without plastic deformations. 
In this study, we have discretized the geometry utilizing over 75000 linear quadrilateral elements which have been 
strategically concentrated along the expected crack path. 

The crack length is computed using the proposed 𝐴𝐴∗ method every 20 time steps and also with the compliance 
technique every time step with 𝑂𝑂′ = 53 𝐺𝐺𝑂𝑂𝐷𝐷. The mesh is unstructured and refined in the expected crack path with an 
average element width of 5 × 10−5 𝑠𝑠. The goal node is located at the maximum von Mises stress and a physical crack is 
summed when φ ≥ 0.99. 

 
Figure 9 Comparison between the compliance and 𝐴𝐴∗ crack measurement methods. 
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The crack length measurements for the proposed 𝐴𝐴∗ and the compliance methods are shown in Figure 9. 
Notably, the weighted 𝐴𝐴∗ approach demonstrates remarkable agreement with the compliance method across the 
entire crack propagation. 

5 CONCLUSIONS 

Accurate measurement of crack paths is crucial for validating numerical simulations and improving the reliability of 
results. In this work, we introduced a novel application of the 𝐴𝐴∗ method for tracking cracks in numerical simulations. 
Unlike conventional methods that only measure the direct path from the crack nucleation site to the crack tip, our 
approach can track the entire crack path, regardless of its shape. The method is efficient because it searches the nodes 
closer to the crack path. 

We illustrated the effectiveness of the proposed method by presenting fabricated solution cases for both curved 
and branched crack patterns. Our method was compared to the traditional 𝐴𝐴∗ approach, and the results showed excellent 
qualitative and quantitative agreement. We also presented a time-dependent fabricated case that highlighted the 
influence of the mesh, crack velocity, and sampling frequency of the results. 

Furthermore, we applied our method to crack propagation simulations using the phase-field methodology and 
obtained an excellent agreement with the compliance technique. This improved accuracy allows for more reliable results 
and refined parameters. 

In future studies, we plan to extend the proposed method to the experimental field using digital image correlation (DIC) 
methodology, which bridges experimental and numerical analyses. 
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