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Abstract. This work introduces the problem of social influence diffu-
sion in complex networks, where vertices are linked not only through
simple pairwise relationships to other nodes but with groups of nodes
of arbitrary size. A challenging problem that arises in this domain is to
determine a small subset of nodes S (a target-set) able to spread their
influence in the whole network. This problem has been formalized and
studied in different ways, and many viable solutions have been found for
graphs. These have been applied to study several phenomena in research
fields such as social, economic, biological, and physical sciences.
In this contribution, we investigated the social influence problem on hy-
pergraphs. As hypergraphs are mathematical structures generalization of
graphs, they can naturally model the many-to-many relationships char-
acterizing a complex network. Given a network represented by a hyper-
graph H = (V,E), we consider a dynamic influence diffusion process on
H, evolving as follows. At the beginning of the process, the nodes in a
given set S ⊆ V are influenced. Then, at each iteration, the influenced
hyperedges set is augmented by all hyperedges having a sufficiently large
number of influenced nodes. Consequently, the set of influenced nodes is
extended by all the nodes contained in a sufficiently large number of al-
ready influenced hyperedges. The process terminates when no new nodes
can be influenced.
The so defined problem is an inherent chicken-and-egg question as nodes
are influenced by groups of other nodes (or hyperedges), while hyperedges
(or group of nodes) are influenced by the nodes they contain. In this
paper, we provide a formal definition of the influence diffusion problem
on hypergraphs. We propose a set of greedy-based heuristic strategies
for finding the minimum influence target set, and we present an in-depth
analysis of their performance on several classes of random hypergraphs.
Furthermore, we describe an experiment on a real use-case, based on the
character co-occurrences network of the Game-of-Thrones TV Series.

Keywords: Influence Diffusion · Target Set Selection· Random Hyper-
graphs· Social Network.
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1 Introduction

The current research on social networks is focusing on modeling community
structures to examine how and to what extent relationships between humans
or entities are the cause of complex emergent phenomena [40, 21]. In the past
decades, graphs have played an essential role in the modeling and analysis of
large-scale online social networks (OSNs) [8, 35], such as Facebook, Twitter or
Linkedin, as well as for studying biological [26, 38] or economic systems [24,
41]. Adopting graphs to model these networks assumes the existence of only
binary relationships between nodes. However, in many cases, complex networks
are characterized by more articulated interactions. For instance, communication
networks, reviewing activities, money transactions, geographical tracking, and
many other scenarios are governed by many-to-many relationships. For a more
clarifying example, we can consider the network built upon email exchanges be-
tween some users. In this context, the object email can be modeled as a relation
involving a group of users. Thus, in this case, nodes of the network represent
the persons, while the edges of the network incorporate a sub-set of them – i.e.,
all email receivers. It is worth noting that if we represent this scenario with
a graph, we lose the information about which users are receivers of the same
emails. This approach, combined with grouping messages having the same title,
can be used for anomaly and spam detection in electronic communication [39].
Recently, hypergraphs have been exploited as a tool for modeling complex net-
works. Being a generalization of graphs, where a (hyper)edge is a relationship
among an arbitrary number of nodes, they can naturally define many-to-many
relations between groups of objects, such as domain names and IP addresses [30].

This research constitutes a relatively new area investigated in several recent
works [16, 33]. A well-known problem in the field of network analysis is the ques-
tion of social influence maximization, which aims to identify the set of nodes
able to spread information in the whole network. However, little research on
this topic does take into account many-to-many relationships existing in a com-
plex network. Social influence [13, 18] is the process by which each individual
change its behavior or adapt its opinions, according to the interactions with
other people. With this aim in mind, it is crucial to notice that this process is
a fundamental aspect in many fields, such as viral marketing [22, 11], in which
the information diffusion process is used to attract people to adopt products or
ideas. According to Lately [32], “the traditional broadcast model of advertising-
one-way, one-to-many, read-only is increasingly being superseded by a vision of
marketing that wants and expects, consumers to spread the word themselves”.
The major contributions of this paper are summarized as follows.

– We formally define the dynamic social influence problem on hypergraphs,
and we present a variant of the target set problem, first presented in [31],
suitable for networks involving many-to-many relationships.

– We introduce four random hypergraphs generative algorithms to build i) ran-
dom hypergraphs (without any constraint); ii) k-uniform hypergraphs (where
each hyperedge has size k); iii) d-regular hypergraphs (where each node has
degree d); and iv) hypergraphs with the preferential attachment rule [5].
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– We propose three greedy-based heuristics for finding the minimum influence
target set on hypergraphs that eventually will influence the whole network.

– We present an evaluation of the proposed algorithms on a set of random
hypergraphs, varying the random properties of the networks, and results
on a real use-case, based on the network induced by the co-occurrences of
characters in the Game-of-Thrones TV Series.

Outline of the paper. The paper is organized as follows. In Section 2, we define the
minimum target set problem on hypergraphs, representing networks defined by
many-to-many relationships. Furthermore, we describe four generating models of
random hypergraphs. Section 3 reviews some relevant literature about the social
influence problem and its applications. In Section 4, we describe our proposed
greedy-based heuristics to solve the social influence problem. Section 5 presents
our experiments, and we also discuss results on a real use-case. Finally, Section 6
details the conclusion and future work.

2 Background

2.1 Hypergraphs

A hypergraph is an ordered pair H = (V,E) where V is the set of nodes or
vertices, which refers to a set of objects, and E is the set of (hyper)edges. Each
hyperedge is a non-empty subset of vertices; i.e., E ⊆ 2V \ {∅}, where 2V is the
power set of V . In this paper, we indicate with n = |V | the number of nodes in
V , and with m = |E| the number of hyperedges in E, respectively. A graph is a
hypergraph, where each hyperedge is a two element subset of V ; in other words,
a hypergraph G = (V,E) is a graph if E ⊆

(
V
2

)
⊆ 2V \ {∅}. For a hypergraph

H, a two-section representation [H]2 can be obtained by connecting two nodes
in the graph [H]2 if and only if they are in the same hyperedge of H [9]. As a
result, each hyperedge from H occurs as a complete graph in [H]2. In this work,
we considered the weighted [H]2 of H, which assumes that the weight of an edge
corresponds to the number of hyperedges containing both the edge endpoints.

2.2 Dynamic social influence diffusion on hypergraphs

Given a network represented by a hypergraph H = (V,E), we consider a dynamic
influence diffusion process on H, which evolves in discrete steps as follows. In the
beginning, the nodes in a given set S ⊆ V are influenced. Then, at each iteration:

1. the influenced hyperedges set is augmented by all edges which have a suffi-
ciently large number of influenced nodes;

2. consequently, the set of influenced nodes is augmented by all the nodes which
have a sufficiently large number of already influenced edges.

The process ends if no new nodes can be influenced.
Formally, let H = (V,E) be a hypergraph. For each v ∈ V , we denote with

E(v) ⊆ E the set of edges that contains v and with d(v) = |E(v)| the degree of
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v. Analogously, for each e ∈ E, we denote with V (e) ⊆ V the set of nodes in e
and with k(e) = |V (e)| the cardinality of e. Let tV : V → N = {0, 1, . . .} and
tE : E → N = {0, 1, . . .} be two functions assigning thresholds to the vertices
and to the hyperedges, respectively. For each node v ∈ V (resp. e ∈ E), the
value tV (v) (resp. tE(e)) quantifies how hard it is to influence node v (edge e),
in the sense that easy-to-influence elements of the network have “low” threshold
values, and hard-to-influence elements have “high” threshold values.

Definition 1. Let H = (V,E) be a hypergraph with threshold functions tV :
V −→ N and tE : E −→ N, and S ⊆ V . An information diffusion process in H,
starting with a seed S ⊆ V , is a sequence

IV [S, 0] ⊆ IV [S, 1] ⊆ . . . ⊆ IV [S, `] ⊆ . . . ⊆ V

of vertex subsets, with IV [S, 0] = S, and

IE [S, 0] ⊆ IE [S, 1] ⊆ . . . ⊆ IE [S, `] ⊆ . . . ⊆ E

of edge subsets, with IE [S, 0] = ∅ and and such that for all ` > 0

IE [S, `] = IE [S, `− 1]
⋃{

e ∈ E : |V (e) ∩ IV [S, `− 1]| ≥ tE(e)
}

IV [S, `] = IV [S, `− 1]
⋃{

v ∈ V : |E(v) ∩ IE [S, `]| ≥ tV (v)
}

A target set for H is a seed set S ⊆ V that will eventually influence the whole
network (i.e., IV [S, r] = V for some r ≥ 0).

We indicate the above information diffusion process on H with

IV [S], IE [S] = Φ(H,S, tV , tE),

where, IV [S] ⊆ V is the set of influenced vertices (IV [S] = IV [S, r]), and
IE [S] ⊆ E is the set of influenced hyperedges. tV and tE denote the thresholds
functions for nodes and hyperedges, respectively.

Example 1. Consider the hypergraph H in Fig. 1. The nodes are depicted as
an oval shape. The number on the top represents the node identifier; on the
bottom, its threshold value is shown. The hyperedge threshold value is drawn as
a black half oval shape. The hyperedge identifier is depicted inside the hyperedge.
Finally, influenced nodes are drawn in gray. Influenced hyperedges are shaped
using a gray dotted line. Given a possible seed set S for H equal to {v1, v4}, the
information diffusion process evolves as follows.

IE [S, 0] = ∅, IV [S, 0] = S = {v1, v4}
IE [S, 1] = {e2}, IV [S, 1] = {v1, v3, v4}
IE [S, 2] = {e2, e3}, IV [S, 2] = {v1, v3, v4, v5}
IE [S, 3] = {e1, e2, e3}, IV [S, 3] = {v1, v2, v3, v4, v5} = V.

Hence, S is a target set for H.

The problem examined in this paper is defined as follows:

Problem 1. Diffusion on Hypergraphs — DoH
Instance: H = (V,E), thresholds tV : V → N0 and tE : E → N0.
Problem: Find a seed set S ⊆ V of minimum size such that IV [S] = V .
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Fig. 1: An example of social influence diffusion process on H = (V,E).

2.3 Models for random hypergraphs

In this work, we investigate information diffusion processes on complex networks
by exploiting random hypergraphs. Here, we describe four generative models,
characterized according to the structural proprieties of the computed random
hypergraph (for example, hypergraphs with a fixed degree of nodes).

1. Random model. It generates a hypergraph without any structural property
constraint. Given two integer parameters n and m (the number of nodes
and hyperedges, respectively), the algorithm computes - for each hyperedge
he = 1, . . . ,m - a random number s ∈ [1, n] (i.e. the hyperedge size). Then,
the algorithm selects uniformly at random s vertices from V to add in he.

2. K-uniform model. It generates a k-uniform hypergraph, which is a hyper-
graph where each hyperedge has a size of k. The algorithm proceeds as the
random model, but forcing the size of each hyperedge equal to k.

3. D-regular model. It generates a d-regular hypergraph, where each node has
degree d. The algorithm exploits the k-uniform approach, described above,
to build a d-regular hypergraph H having m nodes and n edges. It then
returns the hypergraph H∗, dual of H.

4. Preferential-attachment model. It generates a hypergraph with a preferential
attachment rule between nodes, as described in [5]. The algorithm starts with
a fully-random graph with 5 nodes and 5 edges. It then iteratively adds a
node or an edge, according to a given parameter p, defining the probability of
creating a new node or a new hyperedge. In detail, the connections with the
new node or hyperedge are generated according to a preferential attachment
policy [5]. We slightly changed the algorithm to avoid repetitions in the
hyperedges.
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3 Related Work

The social influence diffusion problem. Previous research showed the im-
portance of the target set selection (TSS) problem to study the social influence
diffusion in networks. The TSS problem aims to select k initially-influenced seed
users to maximize the expected number of eventually-influenced users. In other
words, the objective is to find a subset of nodes in the network that, once active,
can activate all the nodes of the network under the linear threshold (LT) influence
propagation model. According to the LT model, a user v becomes active when
the sum of influences of its neighbors in the networks reaches a specific thresh-
old t(v) [17]. Given its importance in the context of influence spread in both the
online (social networks) and offline (word-of-mouth) worlds, the TSS problem is
extensively studied on graphs. Kempe et al. [31] first analyzed the problem in
networks with randomly chosen thresholds. Chen [12] studied the minimization
problem of finding the smallest target set able to influence the whole network
built with fixed arbitrary thresholds. Furthermore, Chen proved a strong inap-
proximability result that makes unlikely the existence of an algorithm for the
TSS problem on graphs (2-uniform hypergraphs) with an approximation factor

better than O(2log1−ε |V |). Cordasco et al. [16] presented an algorithm for the
TSS always producing an optimal solution (i.e., a minimum size subset of nodes
that influence the whole network) in case the network is either a tree, a cycle,
or a complete graph.

Considering that researchers started focusing on hypergraphs only in the
last decade, little or no literature exists on the TSS problem on hypergraphs.
Zhu et al. [42] deal with the problem of social influence maximization in social
networks. They model the crowd influence as a hyperedge e = (He, v) with
weight 0 ≤ Pe ≤ 1, where He is the head node-set and v is the tail node,
meaning that v will be activated by He with probability Pe only after each
node in He is activated. Their proposed algorithm selects k initially-influenced
seed users in a directed hypergraph G = (V,E, P ), maximizing the expected
number of eventually-influenced users. Another stochastic diffusion process in
which information diffusion can occur through interactions in groups of different
sizes is described by Iacopini et al. [28].

Our study addresses the social influence diffusion problem on networks char-
acterized by many-to-many relationships, using undirected hypergraphs, which
allow modeling more kinds of real-world use cases, such as social networks like
Facebook or Yelp. Furthermore, in our work, we adopted a linear thresholds
model, investigating different threshold values for nodes and hyperedges. We
also present a deterministic model which is more suitable for real use-cases.

Random hypergraphs generation. The foundations of random graph theory
lie in a seminal paper by Erdős and Rényi [20]. However, several models have
been developed that make it possible to generate random graphs having desired
topological properties to better mimic the real world. The Barabási-Albert mod-
els rich-get-richer phenomena. On the other hand Watts-Strogat small-world
model is useful for representation of social networks. Random graph structures
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have proved to be a useful concept in many disciplines. Still, more complex
mathematical tools are needed to comprehensively and accurately model many
real-world complex networks [5]. The study of random hypergraph models has
its origin from work by Erdős and Bollobas [7], which presents an analogous
to the Erdős-Rényi random graph model. In the following years, researchers fo-
cused on analyzing several properties of this model [15, 19, 23, 1]. Wang et al. [29]
first defined a preferential attachment model for hypergraphs, with vertex arrival
events and constant-size hyperedges. Starting from this model and its limitations,
Avin et al. [5] proposed a preferential attachment model generating hypergraphs
with hyperedges of arbitrary size, allowing cycles and non-uniformity. In partic-
ular, they extended the Chung-Lu preferential attachment model proposed for
graphs [14].

4 Finding the Minimum Target Set on Hypergraphs

In this Section, we discuss three greedy-based heuristics for the DoH problem
(see Section 2.2), i.e., finding the minimum influence target set S ⊆ V of a
hypergraph H = (V,E) able to influence the whole network. A simple greedy
strategy may be selecting - at each iteration - the nodes in descending order by
their degree until the current set can influence the whole network. We refer to
this approach with the label StaticGreedy . It enables us to compute the set S
by exploiting a binary search strategy detailed in Algorithm 1. As described in
Section 2.2, we indicate the diffusion process on H with Φ(H,S), and we denote
with IV [S] ⊆ V and IE [S] ⊆ E the end set of influenced nodes and hyperedges,
respectively.

Algorithm 1 StaticGreedy(H = (V,E), tV , tE)

1: Let σ(V ) be the list of nodes in descending order of their degree d(v).
2: left = 1, right = |V |
3: while left < right do . Binary Search

4: mid =
⌈
left+right

2

⌉
5: IV [S], IE [S] = Φ(H, σmid, tV , tE) . σi denotes the set containing the first i nodes in the

order σ(V );
6: if IV [S]! = V then
7: left = mid
8: else
9: right = mid− 1

10: return S = σleft+1

A dynamic approach, referred to as DynamicGreedy , is listed in Algorithm 2.
In this heuristic, all nodes are added to the candidates set U . At each stage, the
node of the maximum degree is added to S and removed from U . At this point,
some nodes and/or hyperedges become infected. The algorithm simulates the
diffusion process, and influenced edges are pruned from the network.The degree
of nodes (δ(v)) is updated accordingly.
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Algorithm 2 DynamicGreedy(H = (V,E), tV , tE)

1: S = ∅, U = V , E′ = E
2: for u ∈ U do
3: δ(u) = d(u)

4: while U 6= ∅ do
5: v = argmaxu∈Uδ(v)
6: U = U \ {v}
7: S = S ∪ {v}
8: IV [S], IE [S] = Φ(H,S, tV , tE)
9: if IV [S] = V then
10: break;

11: E′ = E − IE [S]
12: for u ∈ U do
13: δ(u) = |E(u) ∩ E′| . δ(u) denotes the degree of u in H = (V,E′).

14: return S

Given the DynamicGreedy algorithm, we have designed a similar heuristic,
named DynamicGreedy[H]2 , and listed in Algorithm 2. In this heuristic, we

compute the degree of the nodes on the [H]2 of the residual hypergraph Hi of
H. Hi is the hypergraph obtained removing all hyperedges already influenced
by the nodes in S at stage i.

Algorithm 3 DynamicGreedy[H]2(H(V,E), tV , tE)

1: S = ∅, U = V , E′ = E, [H]2 = 2Section(H(V,E))
2: while U 6= ∅ do
3: v = argmaxu∈Ud[H]2

(v) . d[H]2
(v) denotes the degree of v in [H]2.

4: U = U \ {v}
5: S = S ∪ {v}
6: IV [S], IE [S] = Φ(H,S, tV , tE)
7: if IV [S] = V then
8: break;

9: E′ = E − IE [S]
10: [H]2 = 2Section(H(V,E′))

11: return S

5 Experiments

We present experiments on the three greedy-based heuristics discussed in Sec-
tion 4. We investigated two classes of experiments; we evaluated the proposed
heuristics on random networks, and on a real use-case by exploiting the co-
occurrences network of the TV Series Game-of-Thrones.

5.1 Random networks

We performed three experimental scenarios for the case of random hypergraphs.
In the first and second scenarios, we fixed the node threshold to a random
value between 1 and its degree. In the last scenario, each node threshold varies
proportionally - from 0.1 to 0.9 - to the degree of the node. In particular, in
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the first scenario, we run the heuristics on random hypergraphs with no struc-
tural proprieties generated with the random model and hypergraphs generated
with the preferential-attachment rule. We ranged the hypergraph size, using
[100, 200, 400, 800] nodes and hyperedges. In the second scenario, we experi-
mented the heuristics on k-uniform and d-regular random hypergraphs, ranging
the value of k and d in [10, 20, 40, 80]. In the third and last scenario, we generated
a random hypergraph of fixed size (n = m = 500) with all generative models.
We fixed both k = 80 and d = 80, for the k-uniform and d-regular random
hypergraphs, respectively. In all experiments, we set each hyperedge activation
threshold proportional to its degree scaled of factor 0.5 (majority policy). We ex-
ecuted each experiment 48 times. We implement all heuristics and experiments in
Julia language, by exploiting the library SimpleHypergraphs.jl [3]. The Julia
code used in the paper is available at the following public GitHub repository4.

Scenario 1 — Increasing H size, random thresholds. Fig. 2 shows the
results obtained on random hypergraphs - with different sizes - generated by the
random and preferential-attachment models. On the y-axis, we report the size
of the influence target set S; on the x-axis, the hypergraph size (n = m). The
DynamicGreedy heuristic achieves the best average performance. However, as
shown in Fig. 2a, there is not a significant difference between the three strategies.
On the other hand, the DynamicGreedy heuristic significantly outperforms the
others in the case of the preferential-attachment scenario, as shown in Fig. 2b.
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(a) Random model.
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(b) Preferential-attachment model.

Fig. 2: Experiments on random hypergraphs H = (V,E), generated with the
random and preferential-attachment models, varying the degree of nodes and
hyperedges (n = m). For each node, the threshold is fixed to a random value
between 1 and the node degree. A fixed threshold to 0.5 is used for hyperedges.

Scenario 2 — Uniform and Regular H, random thresholds. Fig. 3 shows
the results obtained on random hypergraphs generated by the k-uniform and d-

4 https://github.com/pszufe/LTMSim.jl
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regular models. On the x-axis, we show values for k and d. As shown in Fig. 3a,
the DynamicGreedy strategy achieves better results for random k-uniform hy-
pergraphs, especially in the case of large values of k. Fig. 3b depicts the results
for random d-regular hypergraphs. By increasing the size of d, there is no sig-
nificant difference between the heuristics, even if for small values of d, their
results exhibit a more significant variance. It is worth discussing the interesting
- even though not so surprising - outcomes revealed by the comparison of the
results obtained in the k-uniform and d-regular experiments. In general, the k-
uniform hypergraphs require a target set of smaller size compared to d-regular
hypergraphs.
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(a) K-uniform model.
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(b) D-regular model.

Fig. 3: Experiments for random k-uniform and d-regular hypergraphs H =
(V,E), with a fixed hypergraph size n = m = 500. For each node, the threshold
is fixed to a random value between 1 and the node degree. A fixed threshold to
0.5 is used for hyperedges.

Scenario 3 —Varying node thresholds proportionally to their degree.
Fig. 4 outlines the results obtained on a hypergraph H of fixed size n = m = 500,
generated by each random model. We ranged nodes activation thresholds pro-
portionally to their degree size from 0.1 to 0.9, and we fixed the hyperedges
activation threshold proportionally to 0.5. The heuristics achieve almost the
same performance in the case of a completely random graph (Fig. 4a) and a d-
regular (Fig. 4d) hypergraph. Results obtained from the preferential-attachment
(Fig. 4b) and k-uniform (Fig. 4c) models are more attractive. In both experi-
ments, DynamicGreedy[H]2 exhibits the worst results compared to the other two
heuristics. Interestingly, the preferential-attachment case exhibits unusual be-
havior. When the thresholds are small, the performance of DynamicGreedy[H]2

is poor, but for larger values, its performance improves and is very close to the
DynamicGreedy heuristic. As a result of using high threshold values, it is hard
to trigger an information cascade in the network as, in this case, the influence
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(b) Preferential-attachment model.
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(c) 80k-uniform model.
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(d) 80d-regular model.

Fig. 4: Experiments for random hypergraphs H = (V,E), of size n = m = 500,
considering all random generative models. For each node, the threshold varies
proportionally - from 0.1 to 0.9 - to the degree of the node. A fixed threshold to
0.5 is used for hyperedges. The value of k and d for the k-uniform and d-regular
hypergraphs is set to 80.

diffusion process behaves more like a domination process. In general, this makes
the problem easier to face.

5.2 Game-of-Thrones TV series network

Game of Thrones [25] (GoT) is the screen adaption of the series of fantasy novels
A Song of Ice and Fire, written by George R.R. Martin. Created by D. Benioff
and D.B. Weiss for the American television network HBO, the American fan-
tasy drama TV series has attracted a record viewership and has a broad, active,
and international fan base—according to Wikipedia 5. This enthusiasm has led
the intricate world of GoT to be a profoundly immersive entertainment expe-
rience [4]. Both the academic community and industries took the opportunity
to study not only complex dynamics within the GoT storyline [6], but also how

5 https://en.wikipedia.org/wiki/Game of Thrones
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viewers engage with the GoT world on social media [2, 27, 37], or how the novel
itself is a portrait of real-world dynamics [10, 34, 36].
In this experiment, we exploited GoT season episodes data from the dataset
Game of Thrones Datasets and Visualizations, available at the following GitHub
repository6. Specifically, we used information describing each episode scenes.
They contain - for each scene - start, end, location, and a list of characters
performing in it. Table 1 reports some necessary information about the number
of episodes, scenes, and characters per GoT season. A more detailed description
of the dataset is available on the dataset GitHub repository.

The GoT network — HGoT . We modeled the GoT network using a hyper-
graph Hgot, considering the characters co-occurrences within scenes per each
season. The vertices of Hgot represents the 577 GoT characters. Each hyperedge
of Hgot, therefore, link together all characters that have acted in the same scene
together. The total number of considered scenes was 4165. Fig. 5 presents the
hyperedges size distribution of Hgot. It shows a typical power-law distribution,
where few scenes assemble a considerable number of characters. In contrast,
many others focus on few or no characters.

Season Episodes Scenes Characters
1 10 286 125
2 10 468 137
3 10 470 137
4 10 517 152
5 10 508 175
6 10 577 208
7 7 468 75
8 6 871 66

Table 1: Some GoT dataset numbers.
Fig. 5: HGoT hyperedges distribu-
tion.

Influencing the GoT network. We performed two experiments on the GoT
network, aiming at evaluating the performance of the heuristics in minimizing
the number of nodes (or characters) to influence. In Fig. 6, we detail the per-
formance of each heuristic both in the case of random threshold values for each
node (Fig. 6a), and in the case of proportional threshold values (Fig. 6a). The
DynamicGreedy and DynamicGreedy[H]2 provide similar results requiring a
seed set of about 120 nodes on average. The second case shows the same trend,
and they can find reasonable solutions and achieve, in the worst-case (0.9), a
target set of size about 30% of V . On the contrary, StaticGreedy provides a
target set almost equal to V for each threshold.

6 Conclusions and Future Work

This paper faces the social influence diffusion process in complex networks, ex-
ploiting the hypergraph structure. We propose a formulation of the dynamic

6 Game of Thrones Datasets and Visualizations.
https://github.com/jeffreylancaster/game-of-thrones by Jeffrey Lancaster
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(a) Random thresholds. (b) Degree proportional thresholds.

Fig. 6: Experiments for the GoT network using a) random and b) proportional
nodes thresholds values. A fixed threshold to 0.5 is used for hyperedges.

influence diffusion on hypergraphs, referred to as the Diffusion on Hypergraphs
(DoH) problem. The so-defined problem on hypergraphs differs from the cor-
respondent on graphs, as it introduces the influence propagation also on the
network connections, i.e., the hyperedges (which denote groups of related nodes).

A challenging problem arising in this domain is to determine a small subset
of nodes S (a target-set) able to spread their influence in the whole network.
We present three greedy-based heuristics to solve this problem on hypergraphs,
considering either the degree of nodes in the hypergraph H or in the two-section
view [H]2 of H, and selecting the nodes according to static or dynamic poli-
cies. We provided an exhaustive investigation of their performance on a bunch
of random networks and a real use-case based on the character co-occurrences
in the GoT TV series. We observed that the DynamicGreedy heuristic achieved
the best results in the case of random networks. In the real use-case of the GoT
network, experiments highlighted that dynamically selecting the nodes (accord-
ing to their degree in the residual hypergraph) to add to the target set results
in a more efficient solution compared to a static approach. Furthermore, for the
GoT network, we also noticed that the dynamic greedy-based heuristics (Dy-
namicGreedy and DynamicGreedy[H]2) provided a good seed set when choosing
an initial set of size at most 30% of V .

As future work, we plan to investigate more efficient algorithms and ap-
proaches for the DoH problem. Furthermore, we aim to experiments with the
proposed strategies on real-world datasets, such as a Twitter social network
built upon tweet hashtags or user reviews from the Yelp.com dataset. Results
are encouraging, and further investigation is needed to explore the social influ-
ence diffusion problem on hypergraphs as it might shed light on complex social
phenomena, like fake news sharing in online social networks.
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24. Göbel, M., and Araújo, T. A network structure analysis of economic crises. In
Complex Net. and Their App. VIII (2020), pp. 547–560.

25. HBO. Game of Thrones. https://www.hbo.com/game-of-thrones, 2019.
26. Hossain, M., Khan, A., and Uddin, S. Understanding the progression of con-

gestive heart failure of type 2 diabetes patient using disease network and hospital
claim data. In Complex Net. and Their App. VIII (2020).
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